WorldWideScience

Sample records for cytosolic o-acetylserine thiol

  1. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome

    Science.gov (United States)

    Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of the whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine sulfhydrylase (OASS; also known as O-acetylserine(thio...

  2. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target.

    Directory of Open Access Journals (Sweden)

    Francesca Spyrakis

    Full Text Available The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block

  3. Isolation of Nicotiana plumbaginifolia cDNAs encoding isoforms of serine acetyltransferase and O-acetylserine (thiol) lyase in a yeast two-hybrid system with Escherichia coli cysE and cysK genes as baits.

    Science.gov (United States)

    Liszewska, Frantz; Gaganidze, Dali; Sirko, Agnieszka

    2005-01-01

    We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.

  4. A spinach O-acetylserine(thiollyase homologue, SoCSaseLP, suppresses cysteine biosynthesis catalysed by other enzyme isoforms

    Directory of Open Access Journals (Sweden)

    Miki Noda

    2016-06-01

    Full Text Available An enzyme, O-acetylserine(thiollyase (OASTL, also known as O-acetylserine sulfhydrylase or cysteine synthase (CSase, catalyses the incorporation of sulfide into O-acetylserine and produces cysteine. We previously identified a cDNA encoding an OASTL-like protein from Spinacia oleracea, (SoCSaseLP, but a recombinant SoCSaseLP produced in Escherichia coli did not show OASTL activity. The exon-intron structure of the SoCSaseLP gene shared conserved structures with other spinach OASTL genes. The SoCSaseLP and a Beta vulgaris homologue protein, KMT13462, comprise a unique clade in the phylogenetic tree of the OASTL family. Interestingly, when the SoCSaseLP gene was expressed in tobacco plants, total OASTL activity in tobacco leaves was reduced. This reduction in total OASTL activity was most likely caused by interference by SoCSaseLP with cytosolic OASTL. To investigate the possible interaction of SoCSaseLP with a spinach cytosolic OASTL isoform SoCSaseA, a pull-down assay was carried out. The recombinant glutathione S-transferase (GST-SoCSaseLP fusion protein was expressed in E. coli together with the histidine-tagged SoCSaseA protein, and the protein extract was subjected to glutathione affinity chromatography. The histidine-tagged SoCSaseA was co-purified with the GST-SoCSaseLP fusion protein, indicating the binding of SoCSaseLP to SoCSaseA. Consistent with this interaction, the OASTL activity of the co-purified SoCSaseA was reduced compared with the activity of SoCSaseA that was purified on its own. These results strongly suggest that SoCSaseLP negatively regulates the activity of other cytosolic OASTL family members by direct interaction.

  5. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds.

    Science.gov (United States)

    Kim, Won-Seok; Chronis, Demosthenis; Juergens, Matthew; Schroeder, Amy C; Hyun, Seung Won; Jez, Joseph M; Krishnan, Hari B

    2012-01-01

    Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58-74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22-32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman-Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.

  6. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay

    2017-07-26

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5\\'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  7. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina V.; Asatryan, Armine; Ventura, Yvonne; Sagi, Moshe

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  8. Cysteine homeostasis plays an essential role in plant immunity.

    Science.gov (United States)

    Álvarez, Consolación; Bermúdez, M Ángeles; Romero, Luis C; Gotor, Cecilia; García, Irene

    2012-01-01

    • Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  9. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    OpenAIRE

    Silvia eTavares; Silvia eTavares; Markus eWirtz; Marcel Pascal Beier; Jochen eBogs; Jochen eBogs; Jochen eBogs; Ruediger eHell; Sara eAmâncio

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT protein fam...

  10. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    OpenAIRE

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family...

  11. Impact of thiol and amine functionalization on photoluminescence properties of ZnO films

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Saravanan, K.; Balasubramanian, T.

    2013-01-01

    In the present study, we have investigated surface functionalization of ZnO films with dodecanethiol (Thiol) and trioctylamine (amine) by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle (CA) and photoluminescence (PL) measurements. The chemical bondings of thiol and amine with ZnO have been confirmed via the formation of Zn–S and Zn–N bonds by XPS measurements. AFM measurements on ZnO films before and after surface functionalization with thiol and amine provide evidence for the successful functionalization of thiol and amine on ZnO surfaces without any island formation. The CA measurements on ZnO films before and after surface functionalization with thiol and amine show the hydrophobic nature. PL measurements of thiol and amine functionalized ZnO show enhancements of UV emission and quenching of visible emission. The enhanced UV emissions in thiol and amine functionalized ZnO films suggest that the surface defects such as oxygen vacancies are passivated by thiol and amine functionalization. -- Highlights: ► Surface functionalization is a new approach to reduce surface dependent non-radiative process. ► Oxygen vacancies are passivated on surface functionalization. ► Thiol and amine functionalized ZnO show enhancements of UV emission

  12. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  13. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    . In the cytosol regulatory disulfide bonds are typically formed in spite of the prevailing reducing conditions and may thereby function as redox switches. Such disulfide bonds are protected from enzymatic reduction by kinetic barriers and are thus allowed to exist long enough to elicit the signal. Factors......Regulation of intracellular thiol-disulfide redox status is an essential part of cellular homeostasis. This involves the regulation of both oxidative and reductive pathways, production of oxidant scavengers and, importantly, the ability of cells to respond to changes in the redox environment...... that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol-disulfide...

  14. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.

    Science.gov (United States)

    Holtgrefe, Simone; Gohlke, Jochen; Starmann, Julia; Druce, Samantha; Klocke, Susanne; Altmann, Bianca; Wojtera, Joanna; Lindermayr, Christian; Scheibe, Renate

    2008-06-01

    Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Furthermore, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent protein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.

  15. Activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine

    International Nuclear Information System (INIS)

    Jayalakshmi, G.; Gopalakrishnan, N.; Balasubramanian, T.

    2013-01-01

    Highlights: ► Room temperature ferromagnetism (RTFM) is observed in surface functionalized ZnO films. ► Surface functionalization is a new approach to make ZnO as ferromagnetic. ► The RTFM is attributed to the interaction between the adsorbates and the surface of ZnO. ► The oxygen vacancies are passivated upon surface functionalization. - Abstract: In this paper, we report the activation of room temperature ferromagnetism in ZnO films by surface functionalization with thiol and amine. The pure and surface functionalized ZnO films have been examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM) measurements. XRD measurements show that all the films have single phase and (0 0 2) preferred orientation. The chemical bonding of ZnO with thiol and amine molecules has been confirmed by XPS measurements. The quenching of visible emission in PL spectra indicates that the surface defects are passivated by functionalization with thiol and amine. Surface functionalization of ZnO films with thiol and amine induces robust room temperature ferromagnetism in ZnO films as evidenced from VSM measurements. It is concluded that the observed ferromagnetic behavior in functionalized ZnO films is attributed to the different electronegativity of the atom in the thiol (or amine) and the surface of ZnO.

  16. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants

    Science.gov (United States)

    Tavares, Sílvia; Wirtz, Markus; Beier, Marcel P.; Bogs, Jochen; Hell, Rüdiger; Amâncio, Sara

    2015-01-01

    In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription. PMID:25741355

  17. On the sulfation of O-desmethyltramadol by human cytosolic sulfotransferases.

    Science.gov (United States)

    Rasool, Mohammed I; Bairam, Ahsan F; Kurogi, Katsuhisa; Liu, Ming-Cheh

    2017-10-01

    Previous studies have demonstrated that sulfate conjugation is involved in the metabolism of the active metabolite of tramadol, O-desmethyltramadol (O-DMT). The current study aimed to systematically identify the human cytosolic sulfotransferases (SULTs) that are capable of mediating the sulfation of O-DMT. The sulfation of O-DMT under metabolic conditions was demonstrated using HepG2 hepatoma cells and Caco-2 human colon carcinoma cells. O-DMT-sulfating activity of thirteen known human SULTs and four human organ specimens was examined using an established sulfotransferase assay. pH-Dependency and kinetic parameters were also analyzed using, respectively, buffers at different pHs and varying O-DMT concentrations in the assays. Of the thirteen human SULTs tested, only SULT1A3 and SULT1C4 were found to display O-DMT-sulfating activity, with different pH-dependency profiles. Kinetic analysis revealed that SULT1C4 was 60 times more catalytically efficient in mediating the sulfation of O-DMT than SULT1A3 at respective optimal pH. Of the four human organ specimens tested, the cytosol prepared from the small intestine showed much higher O-DMT-sulfating activity than cytosols prepared from liver, lung, and kidney. Both cultured HepG2 and Caco-2 cells were shown to be capable of sulfating O-DMT and releasing sulfated O-DMT into cultured media. SULT1A3 and SULT1C4 were the major SULTs responsible for the sulfation of O-DMT. Collectively, the results obtained provided a molecular basis underlying the sulfation of O-DMT and contributed to a better understanding about the pharmacokinetics and pharmacodynamics of tramadol in humans. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Glucose acutely reduces cytosolic and mitochondrial H2O2 in rat pancreatic beta-cells.

    Science.gov (United States)

    Deglasse, Jean-Philippe; Roma, Leticia Prates; Pastor-Flores, Daniel; Gilon, Patrick; Dick, Tobias P; Jonas, Jean-Christophe

    2018-05-14

    Whether H2O2 contributes to the glucose-dependent stimulation of insulin secretion by pancreatic β-cells is highly controversial. We used two H2O2-sensitive probes, roGFP2-Orp1 and HyPer with its pH-control SypHer, to test the acute effects of glucose, monomethylsuccinate, leucine with glutamine, and α-ketoisocaproate, on β-cell cytosolic and mitochondrial H2O2 concentrations. We then tested the effects of low H2O2 and menadione concentrations on insulin secretion. RoGFP2-Orp1 was more sensitive than HyPer to H2O2 (response at 2-5 vs. 10µM) and less pH-sensitive. Under control conditions, stimulation with glucose reduced mitochondrial roGFP2-Orp1 oxidation without affecting cytosolic roGFP2-Orp1 and HyPer fluorescence ratios, except for the pH-dependent effects on HyPer. However, stimulation with glucose decreased the oxidation of both cytosolic probes by 15µM exogenous H2O2. The glucose effects were not affected by overexpression of catalase, mitochondrial catalase or superoxide dismutase 1 and 2. They followed the increase in NAD(P)H autofluorescence, were maximal at 5mM glucose in the cytosol and 10mM glucose in the mitochondria, and were partly mimicked by the other nutrients. Exogenous H2O2 (1-15µM) did not affect insulin secretion. By contrast, menadione (1-5µM) did not increase basal insulin secretion but reduced the stimulation of insulin secretion by 20mM glucose. Subcellular changes in β-cell H2O2 levels are better monitored with roGFP2-Orp1 than HyPer/SypHer. Nutrients acutely lower mitochondrial H2O2 levels in β-cells and promote degradation of exogenously supplied H2O2 in both cytosolic and mitochondrial compartments. The glucose-dependent stimulation of insulin secretion occurs independently of a detectable increase in β-cell cytosolic or mitochondrial H2O2 levels.

  19. Cysteine 893 is a target of regulatory thiol modifications of GluA1 AMPA receptors.

    Directory of Open Access Journals (Sweden)

    Lotta von Ossowski

    Full Text Available Recent studies indicate that glutamatergic signaling involves, and is regulated by, thiol modifying and redox-active compounds. In this study, we examined the role of a reactive cysteine residue, Cys-893, in the cytosolic C-terminal tail of GluA1 AMPA receptor as a potential regulatory target. Elimination of the thiol function by substitution of serine for Cys-893 led to increased steady-state expression level and strongly reduced interaction with SAP97, a major cytosolic interaction partner of GluA1 C-terminus. Moreover, we found that of the three cysteine residues in GluA1 C-terminal tail, Cys-893 is the predominant target for S-nitrosylation induced by exogenous nitric oxide donors in cultured cells and lysates. Co-precipitation experiments provided evidence for native association of SAP97 with neuronal nitric oxide synthase (nNOS and for the potential coupling of Ca2+-permeable GluA1 receptors with nNOS via SAP97. Our results show that Cys-893 can serve as a molecular target for regulatory thiol modifications of GluA1 receptors, including the effects of nitric oxide.

  20. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  1. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Thorsen, Michael; Kielland-Brandt, Morten C

    2007-01-01

    Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-c......Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma...... antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS...

  2. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O2-dependent oxidation of primary alcohols.

    Science.gov (United States)

    Morrow, William P; Sardar, Sinjinee; Thapa, Pawan; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2017-10-01

    Thiol dioxygenases are non-heme mononuclear iron enzymes that catalyze the O 2 -dependent oxidation of free thiols (-SH) to produce the corresponding sulfinic acid (-SO 2 - ). Previous chemical rescue studies identified a putative Fe III -O 2 - intermediate that precedes substrate oxidation in Mus musculus cysteine dioxygenase (Mm CDO). Given that a similar reactive intermediate has been identified in the extradiol dioxygenase 2, 3-HCPD, it is conceivable that these enzymes share other mechanistic features with regard to substrate oxidation. To explore this possibility, enzymatic reactions with Mm CDO (as well as the bacterial 3-mercaptopropionic acid dioxygenase, Av MDO) were performed using a substrate analogue (2-mercaptoaniline, 2ma). This aromatic thiol closely approximates the catecholic substrate of homoprotocatechuate of 2, 3-HPCD while maintaining the 2-carbon thiol-amine separation preferred by Mm CDO. Remarkably, both enzymes exhibit 2ma-gated O 2 -consumption; however, none of the expected products for thiol dioxygenase or intra/extradiol dioxygenase reactions were observed. Instead, benzothiazoles are produced by the condensation of 2ma with aldehydes formed by an off-pathway oxidation of primary alcohols added to aqueous reactions to solubilize the substrate. The observed oxidation of 1º-alcohols in 2ma-reactions is consistent with the formation of a high-valent intermediate similar to what has been reported for cytochrome P450 and mononuclear iron model complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Glutathionylation regulates cytosolic NADP+-dependent isocitrate dehydrogenase activity.

    Science.gov (United States)

    Shin, Seoung Woo; Oh, Chang Joo; Kil, In Sup; Park, Jeen-Woo

    2009-04-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.

  4. Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

    Science.gov (United States)

    Shin, Seoung Woo; Kil, In Sup; Park, Jeen-Woo

    2010-04-01

    Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Profiling of cytosolic and mitochondrial H2O2 production using the H2O2-sensitive protein HyPer in LPS-induced microglia cells.

    Science.gov (United States)

    Park, Junghyung; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Sang-Rae; Lee, Dong-Seok

    2017-07-27

    Dysregulation of the production of pro-inflammatory mediators in microglia exacerbates the pathologic process of neurodegenerative disease. ROS actively affect microglia activation by regulating transcription factors that control the expression of pro-inflammatory genes. However, accurate information regarding the function of ROS in different subcellular organelles has not yet been established. Here, we analyzed the pattern of cytosolic and mitochondrial H 2 O 2 formation in LPS-activated BV-2 microglia using the H 2 O 2- sensitive protein HyPer targeted to specific subcellular compartments. Our results show that from an early time, cytosolic H 2 O 2 started increasing constantly, whereas mitochondrial H 2 O 2 rapidly increased later. In addition, we found that MAPK affected cytosolic H 2 O 2 , but not mitochondrial H 2 O 2 . Consequently, our study provides the basic information about subcellular H 2 O 2 generation in activated microglia, and a useful tool for investigating molecular targets that can modulate neuroinflammatory responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  7. Evaluation and Control of Thiol-ene/Thiol-epoxy Hybrid Networks.

    Science.gov (United States)

    Carioscia, Jacquelyn A; Stansbury, Jeffrey W; Bowman, Christopher N

    2007-03-08

    The development of thiol-ene/thiol-epoxy hybrid networks offers the advantage of tailorable polymerization kinetics while producing a highly crosslinked, high T(g) polymer that has significantly reduced shrinkage stress. Stoichiometric mixtures of pentaerythritol tetra(3-mercaptopropionate) (PETMP)/triallyl-1,3,5-triazine-2,4,6-trione (TATATO) (thiol-ene, mixture 1) and PETMP/bisphenol a diglycidyl ether (BADGE) (thiol-epoxy, mixture 2) were prepared and hybrid mixtures of 75/25, 50/50, 25/75, and 10/90 w/w of mixtures 1 and 2 were polymerized using a combination of both radical and anionic initiation. The light exposure timing and the relative initiation conditions of the two types were used to control the order and relative rates of the radical and anionic polymerizations. The 50/50 w/w thiol-ene/thiol-epoxy hybrid material exhibited a final stress of only 0.2 MPa, which is 90 % lower than the stress developed in a control dimethacrylate resin. Kinetic analysis indicates composition affects network development in thiol-ene/thiol-epoxy hybrid networks and produces materials with robust mechanical properties.

  8. Evaluation and Control of Thiol-ene/Thiol-epoxy Hybrid Networks

    OpenAIRE

    Carioscia, Jacquelyn A.; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2007-01-01

    The development of thiol-ene/thiol-epoxy hybrid networks offers the advantage of tailorable polymerization kinetics while producing a highly crosslinked, high Tg polymer that has significantly reduced shrinkage stress. Stoichiometric mixtures of pentaerythritol tetra(3-mercaptopropionate) (PETMP)/triallyl-1,3,5-triazine-2,4,6-trione (TATATO) (thiol-ene, mixture 1) and PETMP/bisphenol a diglycidyl ether (BADGE) (thiol-epoxy, mixture 2) were prepared and hybrid mixtures of 75/25, 50/50, 25/75, ...

  9. Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly

    Science.gov (United States)

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie

    2017-01-01

    Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.

  10. From Proteomics to Structural Studies of Cytosolic/Mitochondrial-Type Thioredoxin Systems in Barley Seeds

    DEFF Research Database (Denmark)

    Shahpiri, Azar; Svensson, Birte; Finnie, Christine

    2009-01-01

    Thioredoxins (Trx) are ubiquitous proteins that participate in thiol disulfide reactions via two active site cysteine residues, allowing Trx to reduce disulfide bonds in target proteins. Recent progress in proteome analysis has resulted in identification of a wide range of potential target proteins...... for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx...

  11. Investigations of thiol-modified phenol derivatives for the use in thiol-ene photopolymerizations.

    Science.gov (United States)

    Reinelt, Sebastian; Tabatabai, Monir; Fischer, Urs Karl; Moszner, Norbert; Utterodt, Andreas; Ritter, Helmut

    2014-01-01

    Thiol-ene photopolymerizations gain a growing interest in academic research. Coatings and dental restoratives are interesting applications for thiol-ene photopolymerizations due to their unique features. In most studies the relative flexible and hydrophilic ester derivative, namely pentaerythritoltetra(3-mercaptopropionate) (PETMP), is investigated as the thiol component. Thus, in the present study we are encouraged to investigate the performance of more hydrophobic ester-free thiol-modified bis- and trisphenol derivatives in thiol-ene photopolymerizations. For this, six different thiol-modified bis- and trisphenol derivatives exhibiting four to six thiol groups are synthesized via the radical addition of thioacetic acid to suitable allyl-modified precursors and subsequent hydrolysis. Compared to PETMP better flexural strength and modulus of elasticity are achievable in thiol-ene photopolymerizations employing 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione (TATATO) as the ene derivative. Especially, after storage in water, the flexural strength and modulus of elasticity is twice as high compared to the PETMP reference system.

  12. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    Science.gov (United States)

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role. PMID:21282621

  13. Role of thiols in cellular response to radiation and drugs. Symposium: thiols

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme. A GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells

  14. Thiol/disulphide homeostasis in celiac disease

    Science.gov (United States)

    Kaplan, Mustafa; Ates, Ihsan; Yuksel, Mahmut; Ozderin Ozin, Yasemin; Alisik, Murat; Erel, Ozcan; Kayacetin, Ertugrul

    2017-01-01

    AIM To determine dynamic thiol/disulphide homeostasis in celiac disease and to examine the associate with celiac autoantibodies and gluten-free diet. METHODS Seventy three patients with celiac disease and 73 healthy volunteers were enrolled in the study. In both groups, thiol/disulphide homeostasis was examined with a new colorimetric method recently developed by Erel and Neselioglu. RESULTS In patients with celiac disease, native thiol (P = 0.027) and total thiol (P = 0.031) levels were lower, while disulphide (P < 0.001) level, disulphide/native thiol (P < 0.001) and disulphide/total thiol (P < 0.001) ratios were higher compared to the control group. In patients who do not comply with a gluten-free diet, disulphide/native thiol ratio was found higher compared to the patients who comply with the diet (P < 0.001). In patients with any autoantibody-positive, disulphide/native thiol ratio was observed higher compared to the patients with autoantibody-negative (P < 0.05). It is found that there is a negative correlation between celiac autoantibodies, and native thiol, total thiol levels and native thiol/total thiol ratio, while a positive correlation is observed between disulphide, disulphide/native thiol and disulphide/total thiol levels. CONCLUSION This study is first in the literature which found that the patients with celiac disease the dynamic thiol/disulphide balance shifts through disulphide form compared to the control group. PMID:28533921

  15. Magnetic Fe3O4@MCM-41 core-shell nanoparticles functionalized with thiol silane for efficient l-asparaginase immobilization.

    Science.gov (United States)

    Ulu, Ahmet; Noma, Samir Abbas Ali; Koytepe, Suleyman; Ates, Burhan

    2018-06-06

    l-Asparaginase (l-ASNase) is a vital enzyme for medical treatment and food industry. Here, we assessed the use of Fe 3 O 4 @Mobil Composition of Matter No. 41 (MCM-41) magnetic nanoparticles as carrier matrix for l-ASNase immobilization. In addition, surface of Fe 3 O 4 @MCM-41 magnetic nanoparticles was functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) to enhance stability of l-ASNase. The chemical structure, thermal properties, magnetic profile and morphology of the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential thermal analysis (DTA), differential scanning calorimetry (DSC), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectroscopy and zeta-potential measurement. l-ASNase was covalently immobilized onto the thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles. The properties of the immobilized enzyme, including optimum pH, temperature, kinetic parameters, thermal stability, reusability and storage stability were investigated and compared to free one. Immobilized enzyme was found to be stable over a wide range of pH and temperature range than free enzyme. The immobilized l-ASNase also showed higher thermal stability after 180 min incubation at 50 °C. The immobilized enzyme still retained 63% of its original activity after 16 times of reuse. The Km value for the immobilized enzyme was 1.15-fold lower than the free enzyme, which indicates increased affinity for the substrate. Additionally, the immobilized enzyme was active over 65% and 53% after 30 days of storage at 4 °C and room temperature (∼25 °C), respectively. Thereby, the results confirmed that thiol-functionalized Fe 3 O 4 @MCM-41 magnetic nanoparticles had high efficiency for l-ASNase immobilization and improved stability of L-ASNase.

  16. Hypochlorite-induced oxidation of thiols

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Hawkins, C L

    2000-01-01

    -molecular-weight thiols such as reduced glutathione (GSH), and sulfur-containing amino acids in proteins, are major targets for HOCl. Radicals have not generally been implicated as intermediates in thiol oxidation by HOCl, though there is considerable literature evidence for the involvement of radicals in the metal ion......-, thermal- or UV light-catalysed decomposition of sulfenyl or sulfonyl chlorides which are postulated intermediates in thiol oxidation. In this study we show that thiyl radicals are generated on reaction of a number of low-molecular-weight thiols with HOCl. With sub-stoichiometric amounts of HOCl, relative...... to the thiol, thiyl radicals are the major species detected by EPR spin trapping. When the HOCl is present in excess over the thiol, additional radicals are detected with compounds which contain amine functions; these additional radicals are assigned to nitrogen-centered species. Evidence is presented...

  17. Synthesis of soybean oil-based thiol oligomers.

    Science.gov (United States)

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. TriPer, an optical probe tuned to the endoplasmic reticulum tracks changes in luminal H2O2.

    Science.gov (United States)

    Melo, Eduardo Pinho; Lopes, Carlos; Gollwitzer, Peter; Lortz, Stephan; Lenzen, Sigurd; Mehmeti, Ilir; Kaminski, Clemens F; Ron, David; Avezov, Edward

    2017-03-27

    The fate of hydrogen peroxide (H 2 O 2 ) in the endoplasmic reticulum (ER) has been inferred indirectly from the activity of ER-localized thiol oxidases and peroxiredoxins, in vitro, and the consequences of their genetic manipulation, in vivo. Over the years hints have suggested that glutathione, puzzlingly abundant in the ER lumen, might have a role in reducing the heavy burden of H 2 O 2 produced by the luminal enzymatic machinery for disulfide bond formation. However, limitations in existing organelle-targeted H 2 O 2 probes have rendered them inert in the thiol-oxidizing ER, precluding experimental follow-up of glutathione's role in ER H 2 O 2 metabolism. Here we report on the development of TriPer, a vital optical probe sensitive to changes in the concentration of H 2 O 2 in the thiol-oxidizing environment of the ER. Consistent with the hypothesized contribution of oxidative protein folding to H 2 O 2 production, ER-localized TriPer detected an increase in the luminal H 2 O 2 signal upon induction of pro-insulin (a disulfide-bonded protein of pancreatic β-cells), which was attenuated by the ectopic expression of catalase in the ER lumen. Interfering with glutathione production in the cytosol by buthionine sulfoximine (BSO) or enhancing its localized destruction by expression of the glutathione-degrading enzyme ChaC1 in the lumen of the ER further enhanced the luminal H 2 O 2 signal and eroded β-cell viability. A tri-cysteine system with a single peroxidatic thiol enables H 2 O 2 detection in oxidizing milieux such as that of the ER. Tracking ER H 2 O 2 in live pancreatic β-cells points to a role for glutathione in H 2 O 2 turnover.

  19. Organizers and activators: Cytosolic Nox proteins impacting on vascular function.

    Science.gov (United States)

    Schröder, Katrin; Weissmann, Norbert; Brandes, Ralf P

    2017-08-01

    NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS) in the cardiovascular system. Of the 7 members of the Nox family, at least three depend for their activation on specific cytosolic proteins. These are p47phox and its homologue NoxO1 and p67phox and its homologue NoxA1. Also the Rho-GTPase Rac is important but as this protein has many additional functions, it will not be covered here. The Nox1 enzyme is preferentially activated by the combination of NoxO1 with NoxA1, whereas Nox2 gains highest activity with p47phox together with p67phox. As p47phox, different to NoxO1 contains an auto inhibitory region it has to be phosphorylated prior to complex formation. In the cardio-vascular system, all cytosolic Nox proteins are expressed but the evidence for their contribution to ROS production is not well established. Most data have been collected for p47phox, whereas NoxA1 has basically not yet been studied. In this article the specific aspects of cytosolic Nox proteins in the cardiovascular system with respect to Nox activation, their expression and their importance will be reviewed. Finally, it will be discussed whether cytosolic Nox proteins are suitable pharmacological targets to tamper with vascular ROS production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Thiol biochemistry of prokaryotes

    Science.gov (United States)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  1. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    Science.gov (United States)

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.

  2. Upregulation of cytosolic NADP+-dependent isocitrate dehydrogenase by hyperglycemia protects renal cells against oxidative stress.

    Science.gov (United States)

    Lee, Soh-Hyun; Ha, Sun-Ok; Koh, Ho-Jin; Kim, KilSoo; Jeon, Seon-Min; Choi, Myung-Sook; Kwon, Oh-Shin; Huh, Tae-Lin

    2010-02-28

    Hyperglycemia-induced oxidative stress is widely recognized as a key mediator in the pathogenesis of diabetic nephropathy, a complication of diabetes. We found that both expression and enzymatic activity of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) were upregulated in the renal cortexes of diabetic rats and mice. Similarly, IDPc was induced in murine renal proximal tubular OK cells by high hyperglycemia, while it was abrogated by co-treatment with the antioxidant N-Acetyl-Cysteine (NAC). In OK cells, increased expression of IDPc by stable transfection prevented hyperglycemia-mediated reactive oxygen species (ROS) production, subsequent cellular oxidative stress and extracellular matrix accumulation, whereas these processes were all stimulated by decreased IDPc expression. In addition, production of NADPH and GSH in the cytosol was positively correlated with the expression level of IDPc in OK cells. These results together indicate that upregulation of IDPc in response to hyperglycemia might play an essential role in preventing the progression of diabetic nephropathy, which is accompanied by ROS-induced cellular damage and fibrosis, by providing NADPH, the reducing equivalent needed for recycling reduced glutathione and low molecular weight antioxidant thiol proteins.

  3. Impaired Thiol-Disulfide Balance in Acute Brucellosis.

    Science.gov (United States)

    Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan

    2017-05-24

    The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p brucellosis than in the healthy controls (p brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.

  4. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  5. Novel thermal curing of cycloaliphatic resins by thiol-epoxy click process with several multifunctional thiols

    OpenAIRE

    Guzman, Dailyn; Mateu, Blai; Fernández Francos, Xavier; Ramis Juan, Xavier; Serra Albet, Àngels

    2017-01-01

    Novel thermosets were prepared by the base-catalysed reaction between a cycloaliphatic resin (ECC) and various thiol crosslinkers. 4-(N,N-Dimethylaminopyridine) (DMAP) was used as base catalyst for the thiol–epoxy reaction. A commercial tetrathiol (PETMP) and three different thiols synthesized by us, 6SH-SQ, 3SH-EU and 3SH-ISO, were tested. 6SH-SQ and 3SH-EU were prepared from vinyl or allyl compounds from renewable resources such as squalene and eugenol, respectively. Thiol 3SH-ISO was prepa...

  6. Thiol-based redox signaling in the nitrogen-fixing symbiosis

    Directory of Open Access Journals (Sweden)

    Pierre eFrendo

    2013-09-01

    Full Text Available In nitrogen poor soils legumes establish a symbiotic interaction with rhizobia that results in the formation of root nodules. These are unique plant organs where bacteria differentiate into bacteroids, which express the nitrogenase enzyme complex that reduces atmospheric N2 to ammonia. Nodule metabolism requires a tight control of the concentrations of reactive oxygen and nitrogen species (RONS so that they can perform useful signaling roles while avoiding nitro-oxidative damage. In nodules a thiol-dependent regulatory network that senses, transmits and responds to redox changes is starting to be elucidated. A combination of enzymatic, immunological, pharmacological and molecular analyses has allowed to conclude that glutathione and its legume-specific homolog, homoglutathione, are abundant in meristematic and infected cells, their spatio-temporally distribution is correlated with the corresponding (homoglutathione synthetase activities, and are crucial for nodule development and function. Glutathione is at high concentrations in the bacteroids and at moderate amounts in the mitochondria, cytosol and nuclei. Less information is available on other components of the network. The expression of multiple isoforms of glutathione peroxidases, peroxiredoxins, thioredoxins, glutaredoxins and NADPH-thioredoxin reductases has been detected in nodule cells using antibodies and proteomics. Peroxiredoxins and thioredoxins are essential to regulate and in some cases to detoxify RONS in nodules. Further research is necessary to clarify the regulation of the expression and activity of thiol redox-active proteins in response to abiotic, biotic and developmental cues, their interactions with downstream targets by disulfide-exchange reactions, and their participation in signaling cascades. The availability of mutants and transgenic lines will be crucial to facilitate systematic investigations into the function of the various proteins in the legume

  7. On the effect of oxygen or copper(II) in radiation-induced degradation of DNA in the presence of thiols

    International Nuclear Information System (INIS)

    Pruetz, W.A.; Moenig, Hans

    1987-01-01

    Degradiation of DNA when γ-irradiated in aqueous solutions containing cysteine can be efficiently enhanced not only with oxygen, but to the same extent also with Cu 2+ ions under hypoxic conditions. The result can be explained by 'self-repair' in this sytem due to recombination of DNA radical with RSS radical - R intermediates, and repair inhibition by oxygen or copper involving RSS radical - R scavenging. It is emphasized that oxygen enhancement in DNA-thiol systems may occur not only by peroxidation, via defect fixation (DNA-O radical 2 ) or thiol activation (RS-O radical 2 ), but also by the well-established inactivation of RSS radical - R by oxygen. There is evidence also from literature data for a correlation between oxygen enhancement and RSS radical - R stability, which varies with thiol concentration, pH and thiol structure. (author)

  8. Mn2+-ZnSe/ZnS@SiO2 Nanoparticles for Turn-on Luminescence Thiol Detection

    Directory of Open Access Journals (Sweden)

    Mohammad S. Yazdanparast

    2017-08-01

    Full Text Available Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for bimodal imaging. We found that these nanocrystals and silica-encapsulated nanoparticle derivatives exhibit enhanced luminescence in the presence of thiols in both organic solvent and aqueous solution. The key to using these nanocrystals as sensors is control over their surfaces. The addition of a ZnS barrier layer or shell produces more stable nanocrystals that are isolated from their surroundings, and luminescence enhancement is only observed with thinner, intermediate shells. Tunability is demonstrated with dodecanethiol and sensitivities decrease with thin, medium, and thick shells. Turn-on nanoprobe luminescence is also generated by several biological thiols, including glutathione, N-acetylcysteine, cysteine, and dithiothreitol. Nanoparticles prepared with different ZnS shell thicknesses demonstrated varying sensitivity to glutathione, which allows for the tuning of particle sensitivity without optimization. The small photoluminescence response to control amino acids and salts indicates selectivity for thiols. Preliminary magnetic measurements highlight the challenge of optimizing sensors for different imaging modalities. In this work, we assess the prospects of using these nanoparticles as luminescent turn-on thiol sensors and for MRI.

  9. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    International Nuclear Information System (INIS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-01-01

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb"2"+ and Cd"2"+ onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe_3O_4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe_3O_4@PAA-HEDred nanoparticles were tested as sorbent for Pb"2"+ and Cd"2"+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe_3O_4 nanoparticles and a nanosystem with disulfide groups (Fe_3O_4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials

  10. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    Energy Technology Data Exchange (ETDEWEB)

    Odio, Oscar F. [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro-Nanotecnologías, IPN, 07738 México City (Mexico); Palacios, Elia Guadalupe [Instituto Politécnico Nacional, ESIQIE, UPALM Zacatenco, 07738 México City (Mexico); Martínez, Ricardo [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Reguera, Edilso, E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico)

    2016-11-15

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb{sup 2+} and Cd{sup 2+} onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe{sub 3}O{sub 4}@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe{sub 3}O{sub 4}@PAA-HEDred nanoparticles were tested as sorbent for Pb{sup 2+} and Cd{sup 2+} cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe{sub 3}O{sub 4} nanoparticles and a nanosystem with disulfide groups (Fe{sub 3}O{sub 4}@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high

  11. A simple automated procedure for thiol measurement in human serum samples Procedimento automatizado simples para determinação de tióis em amostras de soro humano

    Directory of Open Access Journals (Sweden)

    Carolina M. da Costa

    2006-10-01

    Full Text Available Thiol groups have been described as the main responsible for antioxidative effects of plasmatic proteins. Also, thiol serum levels have shown a positive correlation with total antioxidant capacity (TAC in many studies. Measurement of TAC by substract oxidation-based methods have been widely used as a reference to measure antioxidant status; however, in many cases these methods are inexact or imprecise, usually when performed by manual procedures. In this paper we describe a simple automated procedure for the determination of total thiols in serum, which was based on Ellman’s method. It was correlated with several markers of oxidative/antioxidative status, such as TAC and thiobarbituric acid reactive substance test (TBARs. Serum thiol levels were correlated positively with TAC (r = 0.298, p Os tióis são descritos como os principais responsáveis pelos efeitos antioxidantes das proteínas plasmáticas. Além disso, diversos estudos mostram uma correlação positiva entre os níveis séricos de tióis e a capacidade antioxidante total (CAT. A medida da CAT por métodos baseados na oxidação de substratos tem sido amplamente usada como referência na estimativa da capacidade antioxidante em amostras biológicas; porém, em muitos casos esses métodos são inexatos e imprecisos, principalmente quando realizados por procedimentos não-automatizados. Neste artigo descrevemos um procedimento automatizado simples para a determinação de tióis totais no soro, com base no conhecido método de Ellman. A dosagem dos tióis foi correlacionada com diversos marcadores da capacidade oxidante/antioxidante, como a CAT, o teste das substâncias reativas ao ácido tiobarbitúrico (TBARs e os níveis de peróxidos totais. Os tióis correlacionaram-se positivamente com a CAT (r = 0,298; p < 0,001 e negativamente com os níveis de TBARs (r = - 0,330; p < 0,001. O procedimento aqui descrito para a dosagem de tióis pode ser uma ferramenta importante na medida da

  12. Thiol-yne/thiol-epoxy hybrid crosslinked materials based on propargyl modified hyperbranched poly(ethyleneimine) and diglycidylether of bisphenol A resins

    OpenAIRE

    Acebo Gorostiza, Cristina; Fernández Francos, Xavier; Ramis Juan, Xavier; Serra Albet, Àngels

    2016-01-01

    A novel curing methodology based on the combination of thiol-yne and thiol-epoxy click reactions has been developed. The curing process consists of a first photoinitiated thiol-yne reaction, followed by a thermal thiol-epoxy process. As alkyne substrate a new propargyl terminated hyperbranched poly(ethyleneimine) (PEIyne) has been synthesized from the reaction of commercial poly(ethylenimine) (PEI) and glycidyl propargyl ether. The evolution of the curing of different mixtures of PEIyne and d...

  13. Studies on alterations of the 86-rubidium efflux from rat pancreatic islets caused by thiol and thiol oxidants

    International Nuclear Information System (INIS)

    Wahl, M.A.

    1983-01-01

    The following findings were revealed by this study: 1) Oxidation-reduction (redox) of the intracellular system of glutathione influences the potassium efflux by way of an increase in the 86-rubidium efflux brought about by the oxidation of intracellular thiols. 2) The 86-rubidium efflux is not subject to change by oxidation of extracellular thiols located in the membrane, nor can it in any way be influenced by reduced glutathione of exogenous origin. 3) The potassium efflux from rat pancreatic islets, being generally known to trigger the electric activities of the beta-cell, is controlled by the oxidation-reduction of intracellular thiols rather than by that of extracellular thiols. (TRV) [de

  14. Total Thiols: Biomedical Importance And Their Alteration In Various Disorders

    Directory of Open Access Journals (Sweden)

    Mungli Prakash

    2009-09-01

    Full Text Available Thiols are the organic compounds that contain a sulphydryl group. Among all the antioxidants that are available in the body, thiols constitute the major portion of the total body antioxidants and they play a significant role in defense against reactive oxygen species. Total thiols composed of both intracellular and extracellular thiols either in the free form as oxidized or reduced glutathione, or thiols bound to proteins. Among the thiols that are bound to proteins, albumin makes the major portion of the protein bound thiols, which binds to sufhydryl group at its cysteine-34 portion. Apart from their role in defense against free radicals, thiols share significant role in detoxification, signal transduction, apoptosis and various other functions at molecular level. The thiol status in the body can be assessed easily by determining the serum levels of thiols. Decreased levels of thiols has been noted in various medical disorders including chronic renal failure and other disorders related to kidney, cardiovascular disorders, stroke and other neurological disorders, diabetes mellitus, alcoholic cirrhosis and various other disorders. Therapy using thiols has been under investigation for certain disorders.

  15. Fabrication and bonding of thiol-ene-based microfluidic devices

    International Nuclear Information System (INIS)

    Sikanen, Tiina M; Moilanen, Maria-Elisa; Lafleur, Josiane P; Zhuang, Guisheng; Jensen, Thomas G; Kutter, Jörg P

    2013-01-01

    In this work, the bonding strength of microchips fabricated by thiol-ene free-radical polymerization was characterized in detail by varying the monomeric thiol/allyl composition from the stoichiometric ratio (1:1) up to 100% excess of thiol (2:1) or allyl (1:2) functional groups. Four different thiol-ene to thiol-ene bonding combinations were tested by bonding: (i) two stoichiometric layers, (ii) two layers bearing complementary excess of thiols and allyls, (iii) two layers both bearing excess of thiols, or (iv) two layers both bearing excess of allyls. The results showed that the stiffness of the cross-linked polymer plays the most crucial role regarding the bonding strength. The most rigid polymer layers were obtained by using the stoichiometric composition or an excess of allyls, and thus, the bonding combinations (i) and (iv) withstood the highest pressures (up to the cut-off value of 6 bar). On the other hand, excess of thiol monomers yielded more elastic polymer layers and thus decreased the pressure tolerance for bonding combinations (ii) and (iii). By using monomers with more thiol groups (e.g. tetrathiol versus trithiol), a higher cross-linking ratio, and thus, greater stiffness was obtained. Surface characterization by infrared spectroscopy confirmed that the changes in the monomeric thiol/allyl composition were also reflected in the surface chemistry. The flexibility of being able to bond different types of thiol-enes together allows for tuning of the surface chemistry to yield the desired properties for each application. Here, a capillary electrophoresis separation is performed to demonstrate the attractive properties of stoichiometric thiol-ene microchips. (technical note)

  16. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide

    OpenAIRE

    Fomenko, Dmitri E.; Koc, Ahmet; Agisheva, Natalia; Jacobsen, Michael; Kaya, Alaattin; Malinouski, Mikalai; Rutherford, Julian C.; Siu, Kam-Leung; Jin, Dong-Yan; Winge, Dennis R.; Gladyshev, Vadim N.

    2011-01-01

    Hydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, w...

  17. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    Science.gov (United States)

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  18. Novel thiols of prokaryotes.

    Science.gov (United States)

    Fahey, R C

    2001-01-01

    Glutathione metabolism is associated with oxygenic cyanobacteria and the oxygen-utilizing purple bacteria, but is absent in many other prokaryotes. This review focuses on novel thiols found in those bacteria lacking glutathione. Included are glutathione amide and its perthiol, produced by phototrophic purple sulfur bacteria and apparently involved in their sulfide metabolism. Among archaebacteria, coenzyme M (2-mercaptoethanesulfonic acid) and coenzyme B (7-mercaptoheptanoylthreonine phosphate) play central roles in the anaerobic production of CH4 and associated energy conversion by methanogens, whereas the major thiol in the aerobic phototrophic halobacteria is gamma-glutamylcysteine. The highly aerobic actinomycetes produce mycothiol, a conjugate of N-acetylcysteine with a pseudodisaccharide of glucosamine and myo-inositol, AcCys-GlcNalpha(1 --> 1)Ins, which appears to play an antioxidant role similar to glutathione. Ergothioneine, also produced by actinomycetes, remains a mystery despite many years of study. Available data on the biosynthesis and metabolism of these and other novel thiols is summarized and key areas for additional study are identified.

  19. Facile synthesis of thiol-polyethylene glycol functionalized magnetic titania nanomaterials for highly efficient enrichment of N-linked glycopeptides.

    Science.gov (United States)

    Wang, Jiawen; Yao, Jizong; Sun, Nianrong; Deng, Chunhui

    2017-08-25

    As protein N-glycosylation involved in generation and development of various cancers and diseases, it is vital to capture glycopeptides from complex biological samples for biomarker discovery. In this work, by taking advantages of the interaction between titania and thiol groups, thiol-polyethylene glycol functionalized magnetic titania nanomaterials (denoted as Fe 3 O 4 @TiO 2 @PEG) were firstly fabricated as an excellent hydrophilic adsorbent of N-linked glycopeptides. On one hand, the special interaction of titanium-thiol makes the synthetic manipulation simple and provides a new idea for design and synthesis of novel nanomaterials; on the other hand, strong magnetic response could realize rapid separation and the outstanding hydrophilicity of polyethylene glycol makes Fe 3 O 4 @TiO 2 @PEG nanomaterials show superior performance for glycopeptides enrichment with ultralow limit of detection (0.1mol/μL) and high selectivity (1:100). As a result, 24 and 33 glycopeptides enriched from HRP and IgG digests were identified respectively by MALDI-TOF MS, and 300 glycopeptides corresponding to 106 glycoproteins were recognized from merely 2μL human serum, indicating a great potential of Fe 3 O 4 @TiO 2 @PEG nanomaterials for glycoproteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Protein Thiols as an Indication of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-06-01

    Full Text Available Thiol is an organic compound that contain sulphhydryl group that have a critical role in preventing any involvement of oxidative stress in the cell. These defensive functions are generally considered to be carried out by the low molecular weight thiol glutathione and by cysteine residues in the active sites of proteins such as thioredoxin and peroxiredoxin. In addition, there are thiols exposed on protein surfaces that are not directly involved with protein function, although they can interact with the intracellular environment.The process of protection of the cell against an oxidative damage occur by thiol and cystein residue that has a low molecular weight. These residue are present in the active sites of a protein like, peroxiredoxin and thioredoxin. Apart from intracellular antioxidant defense mechanism by protein thiol, there are presence of thiol in outer surface of protein that are not involved with the function of protein, even though they can interact with intracellular part of the cell. [Archives Medical Review Journal 2014; 23(3.000: 443-456

  1. Fabrication and bonding of thiol-ene-based microfluidic devices

    DEFF Research Database (Denmark)

    Sikanen, Tiina M; Lafleur, Josiane P.; Moilanen, Maria-Elisa

    2013-01-01

    In this work, the bonding strength of microchips fabricated by thiol-ene free-radical polymerization was characterized in detail by varying the monomeric thiol/allyl composition from the stoichiometric ratio (1:1) up to 100% excess of thiol (2:1) or allyl (1:2) functional groups. Four different...... properties for each application. Here, a capillary electrophoresis separation is performed to demonstrate the attractive properties of stoichiometric thiol-ene microchips....

  2. Thiol-PEG-carboxyl-stabilized Fe2O3/Au nanoparticles targeted to CD105: Synthesis, characterization and application in MR imaging of tumor angiogenesis

    International Nuclear Information System (INIS)

    Zhang, Song; Gong, Mingfu; Zhang, Dong; Yang, Hua; Gao, Fabao; Zou, Liguang

    2014-01-01

    Objective: To detect tumor angiogenesis in tumor-bearing mice using thiol-PEG-carboxyl-stabilized Fe 2 O 3 /Au nanoparticles targeted to CD105 on magnetic resonance imaging (MRI). Methods: Fe 2 O 3 /Au nanoparticles (hybrids) were prepared by reducing Au 3+ on the surface of Fe 2 O 3 nanoparticles. Hybrids were stabilized with thiol-PEG-carboxyl via the Au–S covalent bond, and further conjugated with anti-CD105 antibodies through amide linkages. Characteristics of the hybrid-PEG-CD105 nanoparticles were evaluated. Using these nanoparticles, the labeling specificity of human umbilical vein endothelial cells (HUVECs) was evaluated in vitro. MRI T2*-weighted images were obtained at different time points after intravenous administration of the hybrid-PEG-CD105 nanoparticles in the tumor-bearing mice. After MR imaging, the breast cancer xenografts were immediately resected for immunohistochemistry staining and Prussian blue staining to measure the tumor microvessel density (MVD) and evaluate the labeling of blood microvessels by the hybrid-PEG-CD105 nanoparticles in vivo. Results: The mean diameter of the hybrid-PEG-CD105 nanoparticles was 56.6 ± 8.0 nm, as measured by transmission electron microscopy (TEM). Immune activity of the hybrid-PEG-CD105 nanoparticles was 53% of that of the anti-CD105 antibody, as detected by enzyme-linked immunosorbent assay (ELISA). The specific binding of HUVECs with the hybrid-PEG-CD105 nanoparticles was proved by immunostaining and Prussian blue staining in vitro. For breast cancer xenografts, the combination of the hybrid-PEG-CD105 nanoparticles with blood microvessels was detectable by MRI after 60 min administration of the contrast agent. The T2* relative signal intensity (SI R ) was positively correlated with the tumor MVD (R 2 = 0.8972). Conclusion: Anti-CD105 antibody-coupled, thiol-PEG-carboxyl-stabilized core–shell Fe 2 O 3 /Au nanoparticles can efficiently target CD105 expressed by HUVECs. Furthermore, the hybrid-PEG-CD105

  3. A Search for Interstellar Monohydric Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Gorai, Prasanta; Das, Ankan; Das, Amaresh; Chakrabarti, Sandip K. [Indian Centre for Space Physics, 43 Chalantika, Garia Station Rd., Kolkata, 700084 (India); Sivaraman, Bhalamurugan [Atomic Molecular and Optical Physics Division, Physical Research Laboratory, Ahmedabad, 380009 (India); Etim, Emmanuel E., E-mail: ankan.das@gmail.com [Indian Institute of Science Bangalore, 560012 (India)

    2017-02-10

    It has been pointed out by various astronomers that a very interesting relationship exists between interstellar alcohols and the corresponding thiols (sulfur analog of alcohols) as far as the spectroscopic properties and chemical abundances are concerned. Monohydric alcohols such as methanol and ethanol are widely observed and 1-propanol was recently claimed to have been seen in Orion KL. Among the monohydric thiols, methanethiol (chemical analog of methanol) has been firmly detected in Orion KL and Sgr B2(N2) and ethanethiol (chemical analog of ethanol) has been observed in Sgr B2(N2), though the confirmation of this detection is yet to come. It is very likely that higher order thiols could be observed in these regions. In this paper, we study the formation of monohydric alcohols and their thiol analogs. Based on our quantum chemical calculation and chemical modeling, we find that the Tg conformer of 1-propanethiol is a good candidate of astronomical interest. We present various spectroscopically relevant parameters of this molecule to assist in its future detection in the interstellar medium.

  4. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  5. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien

    2016-03-19

    Reactive oxygen species (ROS), including superoxide (O2-HO2) and hydrogen peroxide (H2O2), are differentially produced during resistance responses to biotrophic pathogens and during susceptible responses to necrotrophic and hemi-biotrophic pathogens. Superoxide dismutase (SOD) is responsible for the catalysis of the dismutation of O2-HO2 to H2O2, regulating the redox status of plant cells. Increased SOD activity has been correlated previously with resistance in barley to the hemi-biotrophic pathogen Pyrenophora teres f. teres (Ptt, the causal agent of the net form of net blotch disease), but the role of individual isoforms of SOD has not been studied. A cytosolic CuZnSOD, HvCSD1, was isolated from barley and characterized as being expressed in tissue from different developmental stages. HvCSD1 was up-regulated during the interaction with Ptt and to a greater extent during the resistance response. Net blotch disease symptoms and fungal growth were not as pronounced in transgenic HvCSD1 knockdown lines in a susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi-biotrophic rice blast pathogen Magnaporthe oryzae or the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei, but HvCSD1 also played a role in the regulation of lesion development by methyl viologen. Together, these results suggest that HvCSD1 could be important in the maintenance of the cytosolic redox status and in the differential regulation of responses to pathogens with different lifestyles.

  6. Rapid labeling of amino acid neurotransmitters with a fluorescent thiol in the presence of o-phthalaldehyde.

    Science.gov (United States)

    Maddukuri, Naveen; Zhang, Qiyang; Zhang, Ning; Gong, Maojun

    2017-02-01

    LIF detection often requires labeling of analytes with fluorophores; and fast fluorescent derivatization is valuable for high-throughput analysis with flow-gated CE. Here, we report a fast fluorescein-labeling scheme for amino acid neurotransmitters, which were then rapidly separated and detected in flow-gated CE. This scheme was based on the reaction between primary amines and o-phthalaldehyde in the presence of a fluorescent thiol, 2-((5-fluoresceinyl)aminocarbonyl)ethyl mercaptan (FACE-SH). The short reaction time (neurotransmitters by coupling in vitro microdialysis with online derivatization and flow-gated CE. It is also anticipated that this fluorophore tagging scheme would be valuable for on-chip labeling of proteins retained on support in SPE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    Science.gov (United States)

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  8. Quantification of thiols and disulfides

    DEFF Research Database (Denmark)

    Winther, Jakob R.; Thorpe, Colin

    2014-01-01

    lengths to regulate thiol-disulfide bond homeostasis, typically with several, apparently redundant, systems working in parallel. Dissecting the extent of oxidation and reduction of disulfides is an ongoing challenge due, in part, to the facility of thiol/disulfide exchange reactions.......Disulfide bond formation is a key posttranslational modification, with implications for structure, function and stability of numerous proteins. While disulfide bond formation is a necessary and essential process for many proteins, it is deleterious and disruptive for others. Cells go to great...

  9. Cytosolic adenylate changes during exercise in prawn muscle

    International Nuclear Information System (INIS)

    Thebault, M.T.; Raffin, J.P.; Pichon, R.

    1994-01-01

    31 P NMR and biochemical analysis were used to assess the effect of heavy exercise on cytosolic adenylate levels in Palaemon serratus abdominal muscle. At rest, the MgATP level corresponded to 85.5% of the total ATP content. The cytosolic adenylate concentrations of the prawn muscle are considerably different from that of vertebrates. The percentage of ADP bound to myofilaments was lower in the prawn muscle. Consequently, the level of free cytosolic AMP was greatly higher (thirty fold higher) than in vertebrate muscle. During vigorous work, the concentration of MgATP dropped and the cytosolic AMP accumulated, while the cytosolic adenine nucleotide pool decreased significantly. The phosphorylation potential value and the ATP/ADP ratio, calculated from the cytosolic adenylate, dropped acutely during the whole period of muscular contractions. On the contrary, the adenylate energy charge calculated from the cytosolic adenylate decreased slightly. Therefore, even in muscle displaying no AMP deamination, the adenylate charge is stabilized during exercise by the dynamic changes between cytosolic and bound adenylate species. (author). 21 refs., 2 tabs

  10. “Oxygen sensing” by Na,K-ATPase: these miraculous thiols

    Directory of Open Access Journals (Sweden)

    Anna Bogdanova

    2016-08-01

    Full Text Available Control over the Na,K-ATPase function plays a central role in adaptation of the organisms to hypoxic and anoxic conditions. As the enzyme itself does not possess O2 binding sites its oxygen-sensitivity is mediated by a variety of redox-sensitive modifications including S-glutathionylation, S-nitrosylation and redox-sensitive phosphorylation. This is an overview of the current knowledge on the plethora of molecular mechanisms tuning the activity of the ATP-consuming Na,K-ATPase to the cellular metabolic activity. Recent findings suggest that oxygen-derived free radicals and H2O2, NO, and oxidised glutathione are the signalling messengers that make the Na,K-ATPase oxygen-sensitive. This very ancient signalling pathway targeting thiols of all three subunits of the Na,K-ATPase as well as redox-sensitive kinases sustains the enzyme activity at the optimal level avoiding terminal ATP depletion and maintaining the transmembrane ion gradients in cells of anoxia-tolerant species. We acknowledge the complexity of the underlying processes as we characterise the sources of reactive oxygen and nitrogen species production in hypoxic cells, and identify their targets, the reactive thiol groups which, upon modification, impact the enzyme activity. Structured accordingly, this review presents a summery on (i the sources of free radical production in hypoxic cells, (ii localisation of regulatory thiols within the Na,K-ATPase and the role reversible thiol modifications play in responses of the enzymes to a variety of stimuli (hypoxia, receptors’ activation control of the enzyme activity (iii redox-sensitive regulatory phosphorylation, and (iv the role of fine modulation of the Na,K-ATPase function in survival success under hypoxic conditions. The co-authors attempted to cover all the contradictions and standing hypotheses in the field and propose the possible future developments in this dynamic area of research, the importance of which is hard to overestimate

  11. The role of a cytosolic superoxide dismutase in barley-pathogen interactions

    KAUST Repository

    Lightfoot, Damien; Mcgrann, Graham R. D.; Able, Amanda J.

    2016-01-01

    susceptible background (cv. Golden Promise), when compared with wild-type plants, suggesting that cytosolic O2-HO2 contributes to the signalling required to induce a defence response to Ptt. There was no effect of HvCSD1 knockdown on infection by the hemi

  12. Investigation of thiol-disulphide balance in patients with acute urticaria and chronic spontaneous urticaria.

    Science.gov (United States)

    Akbas, Ayse; Kilinc, Fadime; Sener, Sertac; Aktaş, Akın; Baran, Pervin; Ergin, Merve

    2017-09-01

    Thiol-disulphide balance plays a major role in health and diseases. This balance may be disrupted by various diseases. We aimed to determine status of the effect of thiol-disulphide balance in urticaria. We aimed to investigate the thiol-disulphide balance in patients with acute urticaria (AUP) and chronic spontaneous urticaria (CSU). Study included 53 AUP and 47 healthy controls plus 57 patients with chronic spontaneous urticaria (CSUP) and 57 healthy controls. Levels of native thiols, disulphides and total thiols were evaluated in plasma using a new and automated spectrophotometric method. Ratios of disulphides/total thiols, disulphides/native thiols and native thiols/total thiols were calculated. For AU, there was no statistical difference compared to control group in levels of native thiols, disulphides and total thiols. For CSU, however, there was an increase in levels of native thiols, disulphides and total thiols and the ratio of thiol/disulphide in favour of disulphide. Thiol-disulphide balance was not affected by AU but shifted towards to disulphide in CSU indicating the presence of oxidative stress (OS).

  13. Fast and Selective Modification of Thiol Proteins/Peptides by N-(Phenylseleno)phthalimide

    Science.gov (United States)

    Wang, Zhengfang; Zhang, Yun; Zhang, Hao; Harrington, Peter B.; Chen, Hao

    2012-03-01

    We previously reported that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used to selectively derivatize thiols for mass spectrometric analysis, and the introduced selenium tags are useful as they could survive or removed with collision-induced dissociation (CID). Described herein is the further study of the reactivity of various protein/peptide thiols toward NPSP and its application to derivatize thiol peptides in protein digests. With a modified protocol (i.e., dissolving NPSP in acetonitrile instead of aqueous solvent), we found that quantitative conversion of thiols can be obtained in seconds, using NPSP in a slight excess amount (NPSP:thiol of 1.1-2:1). Further investigation shows that the thiol reactivity toward NPSP reflects its chemical environment and accessibility in proteins/peptides. For instance, adjacent basic amino acid residues increase the thiol reactivity, probably because they could stabilize the thiolate form to facilitate the nucleophilic attack of thiol on NPSP. In the case of creatine phosphokinase, the native protein predominately has one thiol reacted with NPSP while all of four thiol groups of the denatured protein can be derivatized, in accordance with the corresponding protein conformation. In addition, thiol peptides in protein/peptide enzymatic digests can be quickly and effectively tagged by NPSP following tri- n-butylphosphine (TBP) reduction. Notably, all three thiols of the peptide QCCASVCSL in the insulin peptic digest can be modified simultaneously by NPSP. These results suggest a novel and selective method for protecting thiols in the bottom-up approach for protein structure analysis.

  14. Thiol-PEG-carboxyl-stabilized Fe{sub 2}O{sub 3}/Au nanoparticles targeted to CD105: Synthesis, characterization and application in MR imaging of tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Song; Gong, Mingfu; Zhang, Dong; Yang, Hua [Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Gao, Fabao [Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041 (China); Zou, Liguang, E-mail: zlgxqyy@163.com [Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2014-07-15

    Objective: To detect tumor angiogenesis in tumor-bearing mice using thiol-PEG-carboxyl-stabilized Fe{sub 2}O{sub 3}/Au nanoparticles targeted to CD105 on magnetic resonance imaging (MRI). Methods: Fe{sub 2}O{sub 3}/Au nanoparticles (hybrids) were prepared by reducing Au{sup 3+} on the surface of Fe{sub 2}O{sub 3} nanoparticles. Hybrids were stabilized with thiol-PEG-carboxyl via the Au–S covalent bond, and further conjugated with anti-CD105 antibodies through amide linkages. Characteristics of the hybrid-PEG-CD105 nanoparticles were evaluated. Using these nanoparticles, the labeling specificity of human umbilical vein endothelial cells (HUVECs) was evaluated in vitro. MRI T2*-weighted images were obtained at different time points after intravenous administration of the hybrid-PEG-CD105 nanoparticles in the tumor-bearing mice. After MR imaging, the breast cancer xenografts were immediately resected for immunohistochemistry staining and Prussian blue staining to measure the tumor microvessel density (MVD) and evaluate the labeling of blood microvessels by the hybrid-PEG-CD105 nanoparticles in vivo. Results: The mean diameter of the hybrid-PEG-CD105 nanoparticles was 56.6 ± 8.0 nm, as measured by transmission electron microscopy (TEM). Immune activity of the hybrid-PEG-CD105 nanoparticles was 53% of that of the anti-CD105 antibody, as detected by enzyme-linked immunosorbent assay (ELISA). The specific binding of HUVECs with the hybrid-PEG-CD105 nanoparticles was proved by immunostaining and Prussian blue staining in vitro. For breast cancer xenografts, the combination of the hybrid-PEG-CD105 nanoparticles with blood microvessels was detectable by MRI after 60 min administration of the contrast agent. The T2* relative signal intensity (SI{sub R}) was positively correlated with the tumor MVD (R{sup 2} = 0.8972). Conclusion: Anti-CD105 antibody-coupled, thiol-PEG-carboxyl-stabilized core–shell Fe{sub 2}O{sub 3}/Au nanoparticles can efficiently target CD105 expressed

  15. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)

    International Nuclear Information System (INIS)

    Zhang Weihua; Cai Yong; Downum, Kelsey R.; Ma, Lena Q.

    2004-01-01

    Pteris vittata (Chinese brake fern) has potential for phytoremediation of As-contaminated sites. In this study, the synthesis of total thiols and acid-soluble thiols in P. vittata was investigated under arsenic exposure. The strong and positive correlation between As concentration and acid-soluble thiols in plant leaflets suggests that acid-soluble thiols may play a role in As detoxification. A major As-induced thiol was purified and characterized. A molecular ion (M+1) of 540 m/z suggests that the thiol was a phytochelatin (PC) with two base units (PC 2 ). However, the ratios of acid-soluble thiols to As in leaflets exposed to As ranged from 0.012 to 0.026, suggesting that only a very small part of As is complexed by PC 2 . PCs could play a minor detoxification role in this hyperaccumulator. A PC-independent mechanism appears to be mainly involved in As tolerance, while PC-dependent detoxification seems to be a supplement

  16. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weihua; Cai Yong; Downum, Kelsey R.; Ma, Lena Q

    2004-10-01

    Pteris vittata (Chinese brake fern) has potential for phytoremediation of As-contaminated sites. In this study, the synthesis of total thiols and acid-soluble thiols in P. vittata was investigated under arsenic exposure. The strong and positive correlation between As concentration and acid-soluble thiols in plant leaflets suggests that acid-soluble thiols may play a role in As detoxification. A major As-induced thiol was purified and characterized. A molecular ion (M+1) of 540 m/z suggests that the thiol was a phytochelatin (PC) with two base units (PC{sub 2}). However, the ratios of acid-soluble thiols to As in leaflets exposed to As ranged from 0.012 to 0.026, suggesting that only a very small part of As is complexed by PC{sub 2}. PCs could play a minor detoxification role in this hyperaccumulator. A PC-independent mechanism appears to be mainly involved in As tolerance, while PC-dependent detoxification seems to be a supplement.

  17. Preparation and Preliminary Dielectric Characterization of Structured C60-Thiol-Ene Polymer Nanocomposites Assembled Using the Thiol-Ene Click Reaction

    Directory of Open Access Journals (Sweden)

    Hanaa M. Ahmed

    2015-11-01

    Full Text Available Fullerene-containing materials have the ability to store and release electrical energy. Therefore, fullerenes may ultimately find use in high-voltage equipment devices or as super capacitors for high electric energy storage due to this ease of manipulating their excellent dielectric properties and their high volume resistivity. A series of structured fullerene (C60 polymer nanocomposites were assembled using the thiol-ene click reaction, between alkyl thiols and allyl functionalized C60 derivatives. The resulting high-density C60-urethane-thiol-ene (C60-Thiol-Ene networks possessed excellent mechanical properties. These novel networks were characterized using standard techniques, including infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, and thermal gravimetric analysis (TGA. The dielectric spectra for the prepared samples were determined over a broad frequency range at room temperature using a broadband dielectric spectrometer and a semiconductor characterization system. The changes in thermo-mechanical and electrical properties of these novel fullerene-thiol-ene composite films were measured as a function of the C60 content, and samples characterized by high dielectric permittivity and low dielectric loss were produced. In this process, variations in chemical composition of the networks were correlated to performance characteristics.

  18. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    Science.gov (United States)

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  19. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.

    Science.gov (United States)

    Cuddihy, Sarah L; Baty, James W; Brown, Kristin K; Winterbourn, Christine C; Hampton, Mark B

    2009-01-01

    The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.

  20. Modification of the mitochondrial sulfonylurea receptor by thiol reagents.

    Science.gov (United States)

    Szewczyk, A; Wójcik, G; Lobanov, N A; Nalecz, M J

    1999-08-19

    The purpose of this study was to investigate the effects exerted by thiol-modifying reagents on themitochondrial sulfonylurea receptor. The thiol-oxidizing agents (timerosal and 5, 5'-dithio-bis(2-nitrobenzoic acid)) were found to produce a large inhibition (70% to 80%) of specific binding of [(3)H]glibenclamide to the beef heart mitochondrial membrane. Similar effects were observed with membrane permeable (N-ethylmaleimide) and non-permeable (mersalyl) thiol modifying agents. Glibenclamide binding was also decreased by oxidizing agents (hydrogen peroxide) but not by reducing agents (reduced gluthatione, dithiothreitol and the 2,3-dihydroxy-1,4-dithiolbutane). The results suggest that intact thiol groups, facing the mitochondrial matrix, are essential for glibenclamide binding to the mitochondrial sulfonylurea receptor. Copyright 1999 Academic Press.

  1. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...

  2. Mercury Binding Sites in Thiol-Functionalized Mesostructured Silica

    International Nuclear Information System (INIS)

    Billinge, Simon J.L.; McKimmey, Emily J.; Shatnawi, Mouath; Kim, HyunJeong; Petkov, Valeri; Wermeille, Didier; Pinnavaia, Thomas J.

    2005-01-01

    Thiol-functionalized mesostructured silica with anhydrous compositions of (SiO 2 ) 1-x (LSiO 1.5 ) x , where L is a mercaptopropyl group and x is the fraction of functionalized framework silicon centers, are effective trapping agents for the removal of mercuric(II) ions from water. In the present work, we investigate the mercury-binding mechanism for representative thiol-functionalized mesostructures by atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data and by Raman spectroscopy. The mesostructures with wormhole framework structures and compositions corresponding to x = 0.30 and 0.50 were prepared by direct assembly methods in the presence of a structure-directing amine porogen. PDF analyses of five mercury-loaded compositions with Hg/S ratios of 0.50-1.30 provided evidence for the bridging of thiolate sulfur atoms to two metal ion centers and the formation of chain structures on the pore surfaces. We find no evidence for Hg-O bonds and can rule out oxygen coordination of the mercury at greater than the 10% level. The relative intensities of the PDF peaks corresponding to Hg-S and Hg-Hg atomic pairs indicate that the mercury centers cluster on the functionalized surfaces by virtue of thiolate bridging, regardless of the overall mercury loading. However, the Raman results indicate that the complexation of mercury centers by thiolate depends on the mercury loading. At low mercury loadings (Hg/S (le) 0.5), the dominant species is an electrically neutral complex in which mercury most likely is tetrahedrally coordinated to bridging thiolate ligands, as in Hg(SBu t ) 2 . At higher loadings (Hg/S 1.0-1.3), mercury complex cations predominate, as evidenced by the presence of charge-balancing anions (nitrate) on the surface. This cationic form of bound mercury is assigned a linear coordination to two bridging thiolate ligands.

  3. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks.

    Science.gov (United States)

    Schreck, Kathleen M; Leung, Diana; Bowman, Christopher N

    2011-09-15

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (T(g)) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated.

  4. Thiols in the alphaIIbbeta3 integrin are necessary for platelet aggregation.

    Science.gov (United States)

    Manickam, Nagaraj; Sun, Xiuhua; Hakala, Kevin W; Weintraub, Susan T; Essex, David W

    2008-07-01

    Sulfhydryl groups of platelet surface proteins are important in platelet aggregation. While p-chloromercuribenzene sulphonate (pCMBS) has been used in most studies on platelet surface thiols, the specific thiol-proteins that pCMBS reacts with to inhibit aggregation have not been well defined. Since the thiol-containing P2Y(12) ADP receptor is involved in most types of platelet aggregation, we used the ADP scavenger apyrase and the P2Y(12) receptor antagonist 2-MeSAMP to examine thiol-dependent reactions in the absence of contributions from this receptor. We provide evidence for a non-P2Y(12) thiol-dependent reaction near the final alphaIIbbeta3-dependent events of aggregation. We then used 3-(N-maleimidylpropionyl)biocytin (MPB) and pCMBS to study thiols in alphaIIbbeta3. As previously reported, disruption of the receptor was required to obtain labelling of thiols with MPB. Specificity of labelling for thiols in the alphaIIb and beta3 subunits was confirmed by identification of the purified proteins by mass spectrometry and by inhibition of labelling with 5,5'-dithiobis-(2-nitrobenzoic acid). In contrast to MPB, pCMBS preferentially reacted with thiols in alphaIIbbeta3 and blocked aggregation under physiological conditions. Similarly, pCMBS preferentially inhibited signalling-independent activation of alphaIIbbeta3 by Mn(2+). Our results suggest that the thiols in alphaIIbbeta3 that are blocked by pCMBS are important in the activation of this integrin.

  5. Quantification of protein-derived thiols during atmosphere-controlled brewing in laboratory scale

    DEFF Research Database (Denmark)

    Murmann, Anne Nordmark; Andersen, Preben; Mauch, Alexander

    2016-01-01

    . Fermentation caused an increase in free thiols, and the balance between free and total thiols was shifted toward a higher degree of free thiols. This was explained by either a reducing effect of fermentation or secretion of thiol-containing compounds from yeast. The efficiency of sulfite to reduce reversibly...... was more pronounced at longer incubation times. However, the reduction of the pool of oxidized thiols by sulfite was inefficient for sulfite concentrations typically found in beer, and the reaction was found to be relatively slow compared with reduction by tris(carboxyethyl)phosphine....

  6. Inhibition of the Vacuolar-like ATPase from Halobacterium saccharovorum by Thiol Reagents: Evidence for Different Functional Thiols

    Science.gov (United States)

    Hochstein, L. I.; Stanlotter, H.; Emrich, E.; Morrison, David (Technical Monitor)

    1994-01-01

    N-Ethylmaleimide (NEM) inhibited the vacuolar-like ATPase from Halobacterium saccharovorum (K(sub i) approximately 1 mM) by modifying one or more of the thiols located on the largest of the subunit. ATP protected against inhibition and coincidentally prevented NEM binding which suggested that NEM acts at or near the catalytic site. p-Chloromercuriphenylsulfonate (PCMS) also inhibited this ATPase (K(sub i) approximately 90 microM). ATP did not protect against PCMS inhibition. Dithiothreitol (DTT) partially reversed PCMS inhibition and restored approximately half of the initial activity of 90% inhibited enzyme. DTT did not restore activity of the NEM-inhibited enzyme or the PCMS-inhibited enzyme when it was subsequently incubated with NEM. The failure of ATP to protect against PCMS inhibition and the inability of DTT to restore activity of enzyme incubated in the presence of PCMS and NEM suggests these reagents react with different thiols and that the PCMS-sensitive thiol may have a structural role.

  7. Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Hakamada, Masataka, E-mail: hakamada.masataka.3x@kyoto-u.ac.jp; Kato, Naoki, E-mail: katou.naoki.75w@st.kyoto-u.ac.jp; Mabuchi, Mamoru, E-mail: mabuchi@energy.kyoto-u.ac.jp

    2016-11-30

    Highlights: • Nanoporous gold is modified with thiol-containing self-assembled monolayers. • The electrical resistivity of the thiol-modified nanoporous gold increases. • The electrical resistivity increases with increasing thiol concentration. • Monolayer tail groups enhance the atmosphere dependence of electrical resistivity. - Abstract: The electrical resistivity of nanoporous gold (NPG) modified with thiol self-assembled monolayers (SAMs) has been measured at 298 K using a four-probe method. We found that the adsorption of thiol SAMs increases the electrical resistivity of NPG by up to 22.2%. Dependence of the electrical resistivity on the atmosphere (air or water) was also observed in SAMs-modified NPG, suggesting that the electronic states of the tail groups affect the electrons of the binding sulfur and adjacent surface gold atoms. The present results suggest that adsorption of thiol molecules can influence the behavior of the conducting electrons in NPG and that modification of NPG with SAMs may be useful for environmental sensing.

  8. Thiol/disulfide redox states in signaling and sensing

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2015-01-01

    Rapid advances in redox systems biology are creating new opportunities to understand complexities of human disease and contributions of environmental exposures. New understanding of thiol-disulfide systems have occurred during the past decade as a consequence of the discoveries that thiol and disulfide systems are maintained in kinetically controlled steady-states displaced from thermodynamic equilibrium, that a widely distributed family of NADPH oxidases produces oxidants that function in cell signaling, and that a family of peroxiredoxins utilize thioredoxin as a reductant to complement the well-studied glutathione antioxidant system for peroxide elimination and redox regulation. This review focuses on thiol/disulfide redox state in biologic systems and the knowledge base available to support development of integrated redox systems biology models to better understand the function and dysfunction of thiol-disulfide redox systems. In particular, central principles have emerged concerning redox compartmentalization and utility of thiol/disulfide redox measures as indicators of physiologic function. Advances in redox proteomics show that, in addition to functioning in protein active sites and cell signaling, cysteine residues also serve as redox sensors to integrate biologic functions. These advances provide a framework for translation of redox systems biology concepts to practical use in understanding and treating human disease. Biological responses to cadmium, a widespread environmental agent, are used to illustrate the utility of these advances to the understanding of complex pleiotropic toxicities. PMID:23356510

  9. The Role of Follicular Fluid Thiol/Disulphide Homeostasis in Polycystic Ovary Syndrome.

    Science.gov (United States)

    Tola, Esra Nur; Köroğlu, Nadiye; Ergin, Merve; Oral, Hilmi Baha; Turgut, Abdülkadir; Erel, Özcan

    2018-04-04

    Oxidative stress is suggested as a potential triggering factor in the etiopathogenesis of Polycystic ovary syndrome related infertility. Thiol/disulphide homeostasis, a recently oxidative stress marker, is one of the antioxidant mechanism in human which have critical roles in folliculogenesis and ovulation. The aim of our study is to investigate follicular fluid thiol/disulphide homeostasis in the etiopathogenesis of Polycystic ovary syndrome and to determine its' association with in vitro fertilization outcome. The study procedures were approved by local ethic committee. Cross sectional design Methods: Follicular fluid of twenty-two Polycystic ovary syndrome women and twenty ovulatory controls undergoing in vitro fertilization treatment were recruited. Thiol/disulphide homeostasis was analyzed via a novel spectrophotometric method. Follicular native thiol levels were found to be lower in Polycystic ovary syndrome group than non- Polycystic ovary syndrome group (p=0.041) as well as native thiol/total thiol ratio (pPolycystic ovary syndrome group (pPolycystic ovary syndrome patients was found. A positive predictive effect of native thiol on fertilization rate among Polycystic ovary syndrome group was also found (p=0.03, β=0.45, 95% CI=0.031-0.643). Deterioration in thiol/disulphide homeostasis, especially elevated disulphide levels could be one of the etiopathogenetic mechanism in Polycystic ovary syndrome. Increased native thiol levels is related to fertilization rate among Polycystic ovary syndrome patients and also positive predictor marker of fertilization rate among Polycystic ovary syndrome patients. Improvement of thiol/disulphide homeostasis could be of importance in the treatment of Polycystic ovary syndrome to increase in vitro fertilization success in Polycystic ovary syndrome.

  10. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    Science.gov (United States)

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  11. The role of thiols in cellular response to radiation and drugs

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Varnes, M.E.; Clark, E.P.; Epp, E.R.

    1983-01-01

    Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole

  12. Protection by thiols against poisoning by radiomimetic agents. Chapter 8

    International Nuclear Information System (INIS)

    Bacq, Z.M.

    1975-01-01

    A review is presented of reports of studies aimed at detecting a protective effect of thiols against radiomimetic alkylating agents such as those used in cancer therapy (nitrogen mustards (HN2), sarcolysine, busulfan, etc.). Protection by thiols against alkylating agents has been observed in mammals, plant cells, bacteria, isolated mammalian cells and in model systems. The lack of correlation between the protective power of various thiols against radiomimetic agents and ionizing radiations indicates that different mechanisms are involved. Studies have been made of the toxicity of the protector and the competition factor, increased excretion of detoxication products of alkylating agents, decreased alkylation of DNA and RNA both in vivo and in vitro, the protection of hematopoietic tissues, tumours and the adrenal cortex, and the modification of the effects of nitrosoalkylamines, carbon tetrachloride and fungistatics by thiols. The restriction of DNA alkylation by the competitive removal of radiomimetic agents is thought to account for the protective effect of thiols against radiomimetic agents. (U.K.)

  13. Spectroscopic Characterization of Extracellular Polymeric Substances from Escherichia coli and Serratia marcescens: Suppression using Sub-Inhibitory Concentrations of Bismuth Thiols

    Energy Technology Data Exchange (ETDEWEB)

    Badireddy, Appala R.; Korpol, Bhoom Reddy; Chellam, Shankararaman; Gassman, Paul L.; Engelhard, Mark H.; Lea, Alan S.; Rosso, Kevin M.

    2008-10-21

    Free and capsular EPS produced by Escherichia coli and Serratia marcescens were characterized in detail using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Total EPS production decreased upon treatment with sub-inhibitory concentrations of lipophilic bismuth thiols (bismuth dimercaptopropanol, BisBAL; bismuth ethanedithiol, BisEDT; and bismuth pyrithione, BisPYR), BisBAL being most effective. Bismuth thiols also influenced acetylation and carboxylation of polysaccharides in EPS from S. marcescens. Extensive homology between EPS samples in the presence and absence of bismuth was observed with proteins, polysaccharides, and nucleic acids varying predominantly only in the total amount expressed. Second derivative analysis of the amide I region of FTIR spectra revealed decreases in protein secondary structures in the presence of bismuth thiols. Hence, anti-fouling properties of bismuth thiols appear to originate in their ability to suppress O-acetylation and protein secondary structures in addition to total EPS secretion.

  14. Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Lafleur, Josiane P.; Jensen, Thomas Glasdam

    2013-01-01

    -ene waveguides were fabricated from 40% excess thiol thiol-ene to ensure the presence of thiol functional groups at the surface of the waveguide. Biotin alkyne was photografted at specific locations using a photomask, directly at the interface between the microfluidic channel and the thiol-ene waveguide prior...

  15. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  16. Resistivity of thiol-modified gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Puerta, Jonathan [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso (Chile); Del Campo, Valeria [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Henríquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Häberle, Patricio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2014-11-03

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography.

  17. New insights into the posttranslational regulation of human cytosolic thioredoxin by S-palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhiyu; Zhong, Liangwei, E-mail: liazho@ucas.ac.cn

    2015-05-15

    High level of palmitate is associated with metabolic disorders. We recently showed that enhanced level of S-palmitoylated cytosolic thioredoxin (Trx1) in mouse liver was new characteristic feature of insulin resistance. However, our understanding of the effect of S-palmitoylation on Trx1 is limited, and the tissue specificity of Trx1 S-palmitoylation is unclear. Here we show that S-palmitoylation also occurs at Cys73 of Trx1 in living endothelial cells, and the level of S-palmitoylated Trx1 undergoes regulation by insulin signaling. Trx1 prefers thiol-thioester exchange with palmitoyl-CoA to acetyl-CoA. S-palmitoylation alters conformation or secondary structure of Trx1, as well as decreases the ability of Trx1 to transfer electrons from thioredoxin reductase to S-nitrosylated protein–tyrosine phosphatase 1B and S-nitroso-glutathione. Our results demonstrate that S-palmitoylation is an important post-translational modification of human Trx1. - Highlights: • S-palmitoylation occurs at Cys73 of Trx1 in living endothelial cells. • Insulin signaling may regulate level of S-palmitoylated Trx1 in the cells. • S-palmitoylation plays significant effects on Trx1 structure and functions.

  18. Multi-chamber and multi-layer thiol-ene microchip for cell culture

    DEFF Research Database (Denmark)

    Tan, H. Y.; Hemmingsen, Mette; Lafleur, Josiane P.

    2014-01-01

    We present a multi-layer and multi-chamber microfluidic chip fabricated using two different thiol-ene mixtures. Sandwiched between the thiol-ene chip layers is a commercially available membrane whose morphology has been altered with coatings of thiol-ene mixtures. Experiments have been conducted ...... with the microchip and shown that the fabricated microchip is suitable for long term cell culture....

  19. Cytosolic delivery of materials with endosome-disrupting colloids

    Science.gov (United States)

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  20. Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins

    Directory of Open Access Journals (Sweden)

    Aslı Neslihan Avan

    2016-08-01

    Full Text Available Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET-based total antioxidant capacity (TAC assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC, and ferric reducing antioxidant power (FRAP, were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol and (phenol + protein mixtures with minimal relative error. As ABTS/TEAC and FRAP methods gave small and large deviations, respectively, from additivity of absorbances arising from these components in mixtures, mercury(II compounds were added to stabilize the thiol components in the form of Hg(II-thiol complexes so as to enable selective spectrophotometric determination of phenolic components. This error compensation was most efficient for the FRAP method in testing (thiols + phenols mixtures.

  1. Highly tailorable thiol-ene based emulsion-templated monoliths

    DEFF Research Database (Denmark)

    Lafleur, J. P.; Kutter, J. P.

    2014-01-01

    The attractive surface properties of thiol-ene polymers combined with their ease of processing make them ideal substrates in many bioanalytical applications. We report the synthesis of highly tailorable emulsion-templated porous polymers and beads in microfluidic devices based on off-stoichiometr......The attractive surface properties of thiol-ene polymers combined with their ease of processing make them ideal substrates in many bioanalytical applications. We report the synthesis of highly tailorable emulsion-templated porous polymers and beads in microfluidic devices based on off......-stoichiometry thiolene chemistry. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single step. Variations in the monomer stoichiometric ratios and/or amount of porogen used allow for the creation of extremely varied polymer morphologies, from foam-like materials to dense networks...

  2. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization.

    Science.gov (United States)

    Rajaraman, Gopalan; Caneschi, Andrea; Gatteschi, Dante; Totti, Federico

    2011-03-07

    Here we present DFT calculations based on a periodic mixed gaussians/plane waves approach to study the energetics, structure, bonding of SAMs of simple thiols on Au(111). Several open issues such as structure, bonding and the nature of adsorbate are taken into account. We started with methyl thiols (MeSH) on Au(111) to establish the nature of the adsorbate. We have considered several structural models embracing the reconstructed surface scenario along with the MeS˙-Au(ad)-MeS˙ type motif put forward in recent years. Our calculations suggest a clear preference for the homolytic cleavage of the S-H bond leading to a stable MeS˙ on a gold surface. In agreement with the recent literature studies, the reconstructed models of the MeS˙ species are found to be energetically preferred over unreconstructed models. Besides, our calculations reveal that the model with 1:2 Au(ad)/thiols ratio, i.e. MeS˙-Au(ad)-MeS˙, is energetically preferred compared to the clean and 1:1 ratio models, in agreement with the experimental and theoretical evidences. We have also performed Molecular Orbital/Natural Bond Orbital, MO/NBO, analysis to understand the electronic structure and bonding in different structural motifs and many useful insights have been gained. Finally, the studies have then been extended to alkyl thiols of the RSR' (R, R' = Me, Et and Ph) type and here our calculations again reveal a preference for the RS˙ type species adsorption for clean as well as for reconstructed 1:2 Au(ad)/thiols ratio models.

  3. The Reducing Capacity of Thioredoxin on Oxidized Thiols in Boiled Wort

    DEFF Research Database (Denmark)

    Murmann, Anne N.; Hägglund, Per; Svensson, Birte

    2017-01-01

    system was also capable of increasing the free thiol concentration, although with lower efficiency to 187 and 170 μM, respectively. The presence of sulfite, an important antioxidant in beer secreted by the yeast during fermentation, was found to inactivate thioredoxin by sulfitolysis. Reduction......Free thiol-containing proteins are suggested to work as antioxidants in beer, but the majority of thiols in wort are present in their oxidized form as disulfides and are therefore not active as antioxidants. Thioredoxin, a disulfide-reducing protein, is released into the wort from some yeast...... and fluorescence detection of thiol-derivatives. When boiled wort was incubated with all components of the thioredoxin system at pH 7.0 and 25 °C for 60 min under anaerobic conditions, the free thiol concentration increased from 25 to 224 μM. At pH values similar to wort (pH 5.7) and beer (pH 4.5), the thioredoxin...

  4. The synthesis of novel hybrid thiol-functionalized nano-structured SBA-15

    International Nuclear Information System (INIS)

    Hoang, Van Duc; Dang, Tuyet Phuong; Dinh, Quang Khieu; Vu, Anh Tuan; Nguyen, Huu Phu

    2010-01-01

    Mesoporous thiol-functionalized SBA-15 has been directly synthesized by co-condensation of tetraethyl orthosilicate (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) with triblock copolymer P123 as-structure-directing agent under hydrothermal conditions. Surfactant removal was performed by Soxhlet ethanol extraction. These materials have been characterized by powder x-ray diffraction (XRD), nitrogen adsorption/desorption (BET model), transmission electron microscopy (TEM), thermal analysis, infrared spectroscopy (IR) and energy-dispersive x-ray spectroscopy (EDX). The main parameters, such as the initial molar ratio of MPTMS to TEOS, the time of adding MPTMS to synthesized gel and the Soxhlet ethanol extraction on the thiol functionalized SBA-15 with high thiol content and highly ordered hexagonal mesostructure, were investigated and evaluated. The adsorption capacity of the thiol-functionalized and non-functionalized SBA-15 materials for Pb 2+ ion from aqueous solution was tested. It was found that the Pb 2+ adsorption capacity of the thiol functionalized SBA-15 is three times higher than that of non-functionalized SBA-15

  5. Cytosolic PrP Can Participate in Prion-Mediated Toxicity

    Science.gov (United States)

    Thackray, Alana M.; Zhang, Chang; Arndt, Tina

    2014-01-01

    ABSTRACT Prion diseases are characterized by a conformational change in the normal host protein PrPC. While the majority of mature PrPC is tethered to the plasma membrane by a glycosylphosphatidylinositol anchor, topological variants of this protein can arise during its biosynthesis. Here we have generated Drosophila transgenic for cytosolic ovine PrP in order to investigate its toxic potential in flies in the absence or presence of exogenous ovine prions. While cytosolic ovine PrP expressed in Drosophila was predominantly detergent insoluble and showed resistance to low concentrations of proteinase K, it was not overtly detrimental to the flies. However, Drosophila transgenic for cytosolic PrP expression exposed to classical or atypical scrapie prion inocula showed a faster decrease in locomotor activity than similar flies exposed to scrapie-free material. The susceptibility to classical scrapie inocula could be assessed in Drosophila transgenic for panneuronal expression of cytosolic PrP, whereas susceptibility to atypical scrapie required ubiquitous PrP expression. Significantly, the toxic phenotype induced by ovine scrapie in cytosolic PrP transgenic Drosophila was transmissible to recipient PrP transgenic flies. These data show that while cytosolic PrP expression does not adversely affect Drosophila, this topological PrP variant can participate in the generation of transmissible scrapie-induced toxicity. These observations also show that PrP transgenic Drosophila are susceptible to classical and atypical scrapie prion strains and highlight the utility of this invertebrate host as a model of mammalian prion disease. IMPORTANCE During prion diseases, the host protein PrPC converts into an abnormal conformer, PrPSc, a process coupled to the generation of transmissible prions and neurotoxicity. While PrPC is principally a glycosylphosphatidylinositol-anchored membrane protein, the role of topological variants, such as cytosolic PrP, in prion-mediated toxicity and

  6. Identification of novel aroma-active thiols in pan-roasted white sesame seeds.

    Science.gov (United States)

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2010-06-23

    Screening for aroma-active compounds in an aroma distillate obtained from freshly pan-roasted sesame seeds by aroma extract dilution analysis revealed 32 odorants in the FD factor range of 2-2048, 29 of which could be identified. The highest FD factors were found for the coffee-like smelling 2-furfurylthiol, the caramel-like smelling 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the coffee-like smelling 2-thenylthiol (thiophen-2-yl-methylthiol), and the clove-like smelling 2-methoxy-4-vinylphenol. In addition, 9 odor-active thiols with sulfurous, meaty, and/or catty, black-currant-like odors were identified for the first time in roasted sesame seeds. Among them, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, and 4-mercapto-3-hexanone were previously unknown as food constituents. Their structures were confirmed by comparing their mass spectra and retention indices as well as their sensory properties with those of synthesized reference compounds. The relatively unstable 1-alkene-1-thiols represent a new class of food odorants and are suggested as the key contributors to the characteristic, but quickly vanishing, aroma of freshly ground roasted sesame seeds.

  7. Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

    Science.gov (United States)

    Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge; Labarre, Jean; Toledano, Michel B; Gladyshev, Vadim N

    2015-08-25

    Aerobic respiration is a fundamental energy-generating process; however, there is cost associated with living in an oxygen-rich environment, because partially reduced oxygen species can damage cellular components. Organisms evolved enzymes that alleviate this damage and protect the intracellular milieu, most notably thiol peroxidases, which are abundant and conserved enzymes that mediate hydrogen peroxide signaling and act as the first line of defense against oxidants in nearly all living organisms. Deletion of all eight thiol peroxidase genes in yeast (∆8 strain) is not lethal, but results in slow growth and a high mutation rate. Here we characterized mechanisms that allow yeast cells to survive under conditions of thiol peroxidase deficiency. Two independent ∆8 strains increased mitochondrial content, altered mitochondrial distribution, and became dependent on respiration for growth but they were not hypersensitive to H2O2. In addition, both strains independently acquired a second copy of chromosome XI and increased expression of genes encoded by it. Survival of ∆8 cells was dependent on mitochondrial cytochrome-c peroxidase (CCP1) and UTH1, present on chromosome XI. Coexpression of these genes in ∆8 cells led to the elimination of the extra copy of chromosome XI and improved cell growth, whereas deletion of either gene was lethal. Thus, thiol peroxidase deficiency requires dosage compensation of CCP1 and UTH1 via chromosome XI aneuploidy, wherein these proteins support hydroperoxide removal with the reducing equivalents generated by the electron transport chain. To our knowledge, this is the first evidence of adaptive aneuploidy counteracting oxidative stress.

  8. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    International Nuclear Information System (INIS)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-01-01

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag 2 S) mineral. The calculated interaction energies, ΔE, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and ΔE energies, the reactivity order of the collectors is found to be (C 2 H 5 ) 2 NCS 2 - > C 2 H 5 NHCS 2 - > C 2 H 5 OCS 2 - > C 2 H 5 SCS 2 - > (C 2 H 5 O)(OH)PS 2 - . The theoretically obtained results are in good agreement with the experimental data reported

  9. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles.

    Science.gov (United States)

    Devi, J Meena

    2017-06-01

    The structural and thermal properties of the passivated gold nanoparticles were explored employing molecular dynamics simulation for the different surface coverage densities of the self-assembled monolayer (SAM) of alkane thiol. The structural properties of the monolayer protected gold nanoparticles such us overall shape, organization and conformation of the capping alkane thiol chains were found to be influenced by the capping density. The structural order of the thiol capped gold nanoparticles enhances with the increase in the surface coverage density. The specific heat capacity of the alkane thiol capped gold nanoparticles was found to increase linearly with the thiol coverage density. This may be attributed to the enhancement in the lattice vibrational energy. The present simulation results suggest, that the structural and thermal properties of the alkane thiol capped gold nanoparticles may be modified by the suitable selection of the SAM coverage density. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mutagenic azide metabolite is azidoalanine

    International Nuclear Information System (INIS)

    Owais, W.M.; Rosichan, J.L.; Ronald, R.C.; Kleinhofs, A.; Nilan, R.A.

    1981-01-01

    Sodium axide produces high mutation rates in a number of species. Azide mutagenicity is mediated through a metabolite in barley and bacteria. Many studies showed that azide affects the L-cysteine biosynthesis pathway. Cell-free extracts of Salmonella typhimurium convert azide and O-acetylserine to the mutagenic metabolite. O-acetylserine sulfhydrylase was identified as the enzyme responsible for the metabolite biosynthesis. To confirm the conclusion that the azide metabolite is formed through the β-substitution pathway of L-cysteine, we radioactively labeled the azide metabolite using 14 C-labeled precursors. Moreover, the mutagenic azide metabolite was purified and identified as azidoalanine based on mass spectroscopy and elemental analysis. 26 refs., 3 figs., 1 tab

  12. Orented immobilization of farnesylated proteins by the thiol-ene reaction

    NARCIS (Netherlands)

    Weinrich, Dirk; Lin, Po-Chiao; Jonkheijm, Pascal; Nguyen, Uyen T.T.; Schröder, Hendrik; Niemeyer, Christof M.; Alexandrov, Kirill; Goody, Roger; Waldmann, Herbert

    2010-01-01

    Anchoring the protein: Proteins were immobilized rapidly under mild conditions by thiol-ene photocoupling between S-farnesyl groups attached to a genetically encodable “CAAX-box” tetrapeptide sequence (A is aliphatic) at the C terminus of the protein and surface-exposed thiols (see scheme). This

  13. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    Science.gov (United States)

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  14. Kinetics and mechanisms of thiol-disulfide exchange covering direct substitution and thiol oxidation-mediated pathways.

    Science.gov (United States)

    Nagy, Péter

    2013-05-01

    Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol-disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. This review is focused on the kinetics and mechanisms of thiol-disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery.

  15. Simple preparation of thiol-ene particles in glycerol and surface functionalization by thiol-ene chemistry (TEC) and surface chain transfer free radical polymerization (SCT-FRP)

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Chiaula, Valeria; Yu, Liyun

    2018-01-01

    functionalization of excess thiol groups via photochemical thiol-ene chemistry (TEC) resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization (SCT-FRP) was used for the first time to introduce a thicker polymer layer on the particle surface. The application potential...

  16. A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry

    Science.gov (United States)

    Durham, Olivia Z.

    This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension

  17. Detoxification of Atrazine by Low Molecular Weight Thiols in Alfalfa (Medicago sativa).

    Science.gov (United States)

    Zhang, Jing Jing; Xu, Jiang Yan; Lu, Feng Fan; Jin, She Feng; Yang, Hong

    2017-10-16

    Low molecular weight (LMW) thiols in higher plants are a group of sulfur-rich nonprotein compounds and play primary and multiple roles in cellular redox homeostasis, enzyme activities, and xenobiotics detoxification. This study focused on identifying thiols-related protein genes from the legume alfalfa exposed to the herbicide atrazine (ATZ) residues in environment. Using high-throughput RNA-sequencing, a set of ATZ-responsive thiols-related protein genes highly up-regulated and differentially expressed in alfalfa was identified. Most of the differentially expressed genes (DEGs) were involved in regulation of biotic and abiotic stress responses. By analyzing the genes involved in thiols-mediated redox homeostasis, we found that many of them were thiols-synthetic enzymes such as γ-glutamylcysteine synthase (γECS), homoglutathione synthetase (hGSHS), and glutathione synthetase (GSHS). Using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS), we further characterized a group of ATZ-thiols conjugates, which are the detoxified forms of ATZ in plants. Cysteine S-conjugate ATZ-HCl+Cys was the most important metabolite detected by MS. Several other ATZ-conjugates were also examined as ATZ-detoxified metabolites. Such results were validated by characterizing their analogs in rice. Our data showed that some conjugates under ATZ stress were detected in both plants, indicating that some detoxified mechanisms and pathways can be shared by the two plant species. Overall, these results indicate that LMW thiols play critical roles in detoxification of ATZ in the plants.

  18. Lignin-Based Materials Through Thiol-Maleimide "Click" Polymerization.

    Science.gov (United States)

    Buono, Pietro; Duval, Antoine; Averous, Luc; Habibi, Youssef

    2017-03-09

    In the present report an environmentally friendly approach to transforming renewable feedstocks into value-added materials is proposed. This transformation pathway was conducted under green conditions, without the use of solvents or catalyst. First, controlled modification of lignin, a major biopolymer present in wood and plants, was achieved by esterification with 11-maleimidoundecylenic acid (11-MUA), a derivative from castor oil that contains maleimide groups, following its transformation into 11-maleimidoundecanoyl chloride (11-MUC). Different degrees of substitution were achieved by using various amounts of the 11-MUC, leading to an efficient conversion of lignin hydroxy groups, as demonstrated by 1 H and 31 P NMR analyses. These fully biobased maleimide-lignin derivatives were subjected to an extremely fast (ca. 1 min) thiol-ene "click" polymerization with thiol-containing linkers. Aliphatic and aromatic thiol linkers bearing two to four thiol groups were used to tune the reactivity and crosslink density. The properties of the resulting materials were evaluated by swelling tests and thermal and mechanical analyses, which showed that varying the degree of functionality of the linker and the linker structure allowed accurate tailoring of the thermal and mechanical properties of the final materials, thus providing interesting perspectives for lignin in functional aromatic polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis

    Directory of Open Access Journals (Sweden)

    Mohamed eKaramoko

    2013-11-01

    Full Text Available Thiol oxidation to disulfides and the reverse reaction, i.e. disulfide reduction to free thiols, are under the control of catalysts in vivo. Enzymatically assisted thiol-disulfide chemistry is required for the biogenesis of all energy-transducing membrane systems. However, until recently, this had only been demonstrated for the bacterial plasma membrane. Long considered to be vacant, the thylakoid lumen has now moved to the forefront of photosynthesis research with the realization that its proteome is far more complicated than initially anticipated. Several lumenal proteins are known to be disulfide bonded in Arabidopsis, highlighting the importance of sulfhydryl oxidation in the thylakoid lumen. While disulfide reduction in the plastid stroma is known to activate several enzymatic activities, it appears that it is the reverse reaction, i.e. thiol oxidation that is required for the activity of several lumen-resident proteins. This paradigm for redox regulation in the thylakoid lumen has opened a new frontier for research in the field of photosynthesis. Of particular significance in this context is the discovery of trans-thylakoid redox pathways controlling disulfide bond formation and reduction, which are required for photosynthesis.

  20. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-09-15

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag{sub 2}S) mineral. The calculated interaction energies, {delta}E, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and {delta}E energies, the reactivity order of the collectors is found to be (C{sub 2}H{sub 5}){sub 2}NCS{sub 2}{sup -} > C{sub 2}H{sub 5}NHCS{sub 2}{sup -} > C{sub 2}H{sub 5}OCS{sub 2}{sup -} > C{sub 2}H{sub 5}SCS{sub 2}{sup -} > (C{sub 2}H{sub 5}O)(OH)PS{sub 2}{sup -}. The theoretically obtained results are in good agreement with the experimental data reported.

  1. The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid.

    Science.gov (United States)

    Bonanata, Jenner; Turell, Lucía; Antmann, Laura; Ferrer-Sueta, Gerardo; Botasini, Santiago; Méndez, Eduardo; Alvarez, Beatriz; Coitiño, E Laura

    2017-07-01

    Human serum albumin (HSA) has a single reduced cysteine residue, Cys34, whose acidity has been controversial. Three experimental approaches (pH-dependence of reactivity towards hydrogen peroxide, ultraviolet titration and infrared spectroscopy) are used to determine that the pK a value in delipidated HSA is 8.1±0.2 at 37°C and 0.1M ionic strength. Molecular dynamics simulations of HSA in the sub-microsecond timescale show that while sulfur exposure to solvent is limited and fluctuating in the thiol form, it increases in the thiolate, stabilized by a persistent hydrogen-bond (HB) network involving Tyr84 and bridging waters to Asp38 and Gln33 backbone. Insight into the mechanism of Cys34 oxidation by H 2 O 2 is provided by ONIOM(QM:MM) modeling including quantum water molecules. The reaction proceeds through a slightly asynchronous S N 2 transition state (TS) with calculated Δ ‡ G and Δ ‡ H barriers at 298K of respectively 59 and 54kJmol -1 (the latter within chemical accuracy from the experimental value). A post-TS proton transfer leads to HSA-SO - and water as products. The structured reaction site cages H 2 O 2 , which donates a strong HB to the thiolate. Loss of this HB before reaching the TS modulates Cys34 nucleophilicity and contributes to destabilize H 2 O 2 . The lack of reaction-site features required for differential stabilization of the TS (positive charges, H 2 O 2 HB strengthening) explains the striking difference in kinetic efficiency for the same reaction in other proteins (e.g. peroxiredoxins). The structured HB network surrounding HSA-SH with sequestered waters carries an entropic penalty on the barrier height. These studies contribute to deepen the understanding of the reactivity of HSA-SH, the most abundant thiol in human plasma, and in a wider perspective, provide clues on the key aspects that modulate thiol reactivity against H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Electrochemistry behavior of endogenous thiols on fluorine doped tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Luciana; Molero, Leonard; Tapia, Ricardo A.; Rio, Rodrigo del; Valle, M. Angelica del; Antilen, Monica [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile); Armijo, Francisco, E-mail: jarmijom@uc.cl [Departamento de Quimica Inorganica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Av Vicuna Mackenna 4860, Casilla 306, Correo 22, Macul, Santiago (Chile)

    2011-10-01

    Highlights: > The first time that fluorine doped tin oxide electrodes are used for the electrooxidation of endogenous thiols. > Low potentials of electrooxidation were obtained for the different thiols. > The electrochemical behavior of thiols depends on the pH and the ionic electroactive species, the electrooxidation proceeds for a process of adsorption of electroactive species on FTO and high values the heterogeneous electron tranfer rate constant of the reaction were obtained. - Abstract: In this work the electrochemical behavior of different thiols on fluorine doped tin oxide (FTO) electrodes is reported. To this end, the mechanism of electrochemical oxidation of glutathione (GSH), cysteine (Cys), homocysteine (HCys) and acetyl-cysteine (ACys) at different pH was investigated. FTO showed electroactivity for the oxidation of the first three thiols at pH between 2.0 and 4.0, but under these conditions no acetyl-cysteine oxidation was observed on FTO. Voltammetric studies of the electro-oxidation of GSH, Cys and HCys showed peaks at about 0.35, 0.29, and 0.28 V at optimum pH 2.4, 2.8 and 3.4, respectively. In addition, this study demonstrated that GSH, Cys and HCys oxidation occurs when the zwitterion is the electro-active species that interact by adsorption on FTO electrodes. The overall reaction involves 4e{sup -}/4H{sup +} and 2e{sup -}/2H{sup +}, respectively, for HCys and for GSH and Cys and high heterogeneous electron transfer rate constants. Besides, the use of FTO for the determination of different thiols was evaluated. Experimental square wave voltammetry shows a linear current vs. concentrations response between 0.1 and 1.0 mM was found for HCys and GSH, indicating that these FTO electrodes are promising candidates for the efficient electrochemical determination of these endogenous thiols.

  3. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  4. Thiol-disulfide exchange in peptides derived from human growth hormone.

    Science.gov (United States)

    Chandrasekhar, Saradha; Epling, Daniel E; Sophocleous, Andreas M; Topp, Elizabeth M

    2014-04-01

    Disulfide bonds stabilize proteins by cross-linking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form nonnative disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here, we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics was monitored to investigate the effect of pH (6.0-10.0), temperature (4-50°C), oxidation suppressants [ethylenediaminetetraacetic acid (EDTA) and N2 sparging], and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides, and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using reverse-phase HPLC and liquid chromatography-mass spectrometry. Concentration versus time data were fitted to a mathematical model using nonlinear least squares regression analysis. At all pH values, the model was able to fit the data with R(2) ≥ 0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Protection against ionising radiation and synergism with thiols by zinc aspartate

    International Nuclear Information System (INIS)

    Floersheim, G.L.; Floersheim, P.

    1986-01-01

    Pre-treatment with zinc aspartate protected mice against the lethal effects of radiation and raised the LD 50 from 8 gy to 12.2 Gy. Zinc chloride and zinc sulphate were clearly less active. The radioprotective effect of zinc aspartate was equivalent to cysteamine and slightly inferior to S,2-aminoethylisothiourea (AET). Zinc aspartate displayed a similar therapeutic index to the thiols but could be applied at an earlier time before irradiation. Synergistic effects occurred with the combined administration of zinc aspartate and thiols. By giving zinc aspartate with cysteamine, the LD 50 was increased to 13.25 Gy and, by combining it in the optimal protocol with AET, to 17.3 Gy. The radioprotection by zinc and its synergism with thiols is explained by the stabilisation of thiols through the formation of zinc complexes. (author)

  6. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water

    International Nuclear Information System (INIS)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-01-01

    Highlights: ► A novel type of functionalized MOF for heavy metal removal. ► Functionalization of MOF by a facile coordination-based postsynthetic strategy. ► Thiol-functionalization of MOF has been realized for the first time. ► Enhanced removal of Hg 2+ by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu 3 (BTC) 2 (H 2 O) 3 ] n (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu 3 (BTC) 2 ] n samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with –SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N 2 sorption–desorption isothermal. Significantly, the thiol-functionalized [Cu 3 (BTC) 2 ] n exhibited remarkably high adsorption affinity (K d = 4.73 × 10 5 mL g −1 ) and high adsorption capacity (714.29 mg g −1 ) for Hg 2+ adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg 2+ under the same condition.

  7. Evaluation of dynamic serum thiol/disulfide homeostasis in locally advanced and metastatic gastric cancer

    Directory of Open Access Journals (Sweden)

    Mutlu Hizal

    2018-04-01

    Full Text Available Background: Gastric cancer is one the most diagnosed cancer and the third leading cause of death from cancer worldwide. As an indicator of antioxidant capacity thiol/disulfide homeostasis regulates detoxification, cell signal mechanisms, apoptosis, transcription and antioxidant defense mechanisms. Disregulation of thiol/disulfide homeostasis identified in other cancer types by recent data. In this study, we aimed to evaluate the thiol/disulfide homeostasis in advanced gastric cancer patients. Methods: The patients who diagnosed with gastric cancer and healthy control subjects were included to study. Serum samples for the thiol-disulphide test were obtained at the time of diagnosis. Thiol-disulphide homeostasis tests were measured by the automated spectrophotometric method. Thiol-disulphide homeostasis was also measured according to clinical and laboratory features. Results: Thirty newly diagnosed advanced gastric adenocarcinoma patients and 28 healthy controls were enrolled in the study. The native thiol (NT and total thiol (TT levels of patients' group were significantly lower compared with controls (p = 0.001 and p < 0.001. In the CEA high (≥5.4 ng/ml group, DS/NT ratio were higher compared with CEA low (<5.4 ng/ml group (p = 0.024. In CA.19-9 high (≥28.3 kU/L group, both DS and DS/NT ratio were significantly higher compared with a CA19-9 low(<28.3 kU/L group (p < 0.05 both. The correlation between CEA and DS levels was also significant (p = 0.02. There was also a positive correlation between CEA levels and DS/NT ratio (p = 0.01. Conclusion: Derangements of thiol/disulfide homeostasis may have a role in gastric cancer pathogenesis and the higher level of oxidative stress may relate to extensive and aggressiveness of the advanced disease. The diagnostic and prognostic values of thiol/disulfide products need to identify with further studies. Keywords: Thiol, Disulfide, Oxidative stress, Gastric cancer, Metastatic

  8. Cytosolic cholesterol ester hydrolase in adrenal cortex

    OpenAIRE

    Tocher, Douglas R.

    1983-01-01

    Cholesterol ester hydrolase (CEH) in adrenocortical cytosol was known to be phosphorylated and activated, in response to ACTH in a cAMPdependent protein kinase mediated process. The purification of CEH from bovine adrenocortical cytosol was attempted. The use of detergents to solubilise the enzyme from lipid-rich aggregates was investigated and sodium cholate was found to be effective. A purification procedure using cholate solubilised enzyme was developed. The detergent int...

  9. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  10. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: Prevention by thiol group protecting agents

    International Nuclear Information System (INIS)

    Custodio, Jose B.A.; Cardoso, Carla M.P.; Santos, Maria S.; Almeida, Leonor M.; Vicente, Joaquim A.F.; Fernandes, Maria A.S.

    2009-01-01

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca 2+ -induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20 nmol/mg protein) induced Ca 2+ -dependent mitochondrial swelling, depolarization of membrane potential (ΔΨ), Ca 2+ release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40 nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the ΔΨ, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H 2 O 2 generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca 2+ -induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to

  11. Stretching of BDT-gold molecular junctions: Thiol or thiolate termination?

    KAUST Repository

    Souza, Amaury De Melo; Rungger, Ivan; Pontes, Renato Borges; Rocha, Alexandre Reily; Da Silva, Antô nio José Roque; Schwingenschlö gl, Udo; Sanvito, S.

    2014-01-01

    It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.

  12. Changes in Thiol-Disulfide Homeostasis of the Body to Surgical Trauma in Laparoscopic Cholecystectomy Patients.

    Science.gov (United States)

    Polat, Murat; Ozcan, Onder; Sahan, Leyla; Üstündag-Budak, Yasemin; Alisik, Murat; Yilmaz, Nigar; Erel, Özcan

    2016-12-01

    We aimed to investigate the short-term effect of laparoscopic surgery on serum thiol-disulfide homeostasis levels as a marker of oxidant stress of surgical trauma in elective laparoscopic cholecystectomy patients. Venous blood samples were collected, and levels of native thiols, total thiols, and disulfides were determined with a novel automated assay. Total antioxidant capacity (measured as the ferric-reducing ability of plasma) and serum ischemia modified albumin, expressed as absorbance units assayed by the albumin cobalt binding test, were determined. The major findings of the present study were that native thiol (283 ± 45 versus 241 ± 61 μmol/L), total thiol (313 ± 49 versus 263 ± 67 μmol/L), and disulfide (14.9 ± 4.6 versus 11.0 ± 6.1 μmol/L) levels were decreased significantly during operation and although they increased, they did not return to preoperation levels 24 hours after laparoscopic surgery compared to the levels at baseline. Disulfide/native thiol and disulfide/total thiol levels did not change during laparoscopic surgery. The decrease in plasma level of native and total thiol groups suggests impairment of the antioxidant capacity of plasma; however, the delicate balance between the different redox forms of thiols was maintained during surgery.

  13. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions.

    Science.gov (United States)

    Netto, Luis Eduardo S; de Oliveira, Marcos Antonio; Tairum, Carlos A; da Silva Neto, José Freire

    2016-01-01

    Thiol-disulfide exchange reactions are highly reversible, displaying nucleophilic substitutions mechanism (S(N)2 type). For aliphatic, low molecular thiols, these reactions are slow, but can attain million times faster rates in enzymatic processes. Thioredoxin (Trx) proteins were the first enzymes described to accelerate thiol-disulfide exchange reactions and their high reactivity is related to the high nucleophilicity of the attacking thiol. Substrate specificity in Trx is achieved by several factors, including polar, hydrophobic, and topological interactions through a groove in the active site. Glutaredoxin (Grx) enzymes also contain the Trx fold, but they do not share amino acid sequence similarity with Trx. A conserved glutathione binding site is a typical feature of Grx that can reduce substrates by two mechanisms (mono and dithiol). The high reactivity of Grx enzymes is related to the very acid pK(a) values of reactive Cys that plays roles as good leaving groups. Therefore, although distinct oxidoreductases catalyze similar thiol–disulfide exchange reactions, their enzymatic mechanisms vary. PDI and DsbA are two other oxidoreductases, but they are involved in disulfide bond formation, instead of disulfide reduction, which is related to the oxidative environment where they are found. PDI enzymes and DsbC are endowed with disulfide isomerase activity, which is related with their tetra-domain architecture. As illustrative description of specificity in thiol-disulfide exchange, redox aspects of transcription activation in bacteria, yeast, and mammals are presented in an evolutionary perspective. Therefore, thiol-disulfide exchange reactions play important roles in conferring specificity to pathways, a required feature for signaling.

  14. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    Science.gov (United States)

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  15. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    Science.gov (United States)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  16. Atomistic simulations of thiol-terminated modifiers for hybrid photovoltaic interfaces

    International Nuclear Information System (INIS)

    Malloci, G.; Petrozza, A.; Mattoni, A.

    2014-01-01

    Small aromatic molecules such as benzene or pyridine derivatives are often used as interface modifiers (IMs) at polymer/metal oxide hybrid interfaces. We performed a theoretical investigation on prototypical thiol-terminated IMs aimed at improving the photovoltaic performances of poly(3-hexylthiophene)/TiO 2 devices. By means of first-principles calculations in the framework of the density functional theory we investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol (6QT) molecules. We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine (4MP) which has recently shown to induce a large improvement in the overall power conversion efficiency of mesoporous films of TiO 2 infiltrated by poly(3-hexylthiophene). The IMs investigated are expected to keep the beneficial features of 4MP giving at the same time the possibility to further tune the interlayer properties (e.g., its thickness, stability, and density). Dense interlayers of 6QT turn out to be slightly unstable since the titania substrate induces a compressive strain in the molecular film. On the contrary, we predict very stable films for both 3FT and 4MB molecules, which makes them interesting candidates for future experimental investigations. - Highlights: • We performed a theoretical investigation on thiol-terminated interface modifiers. • We investigate 3-furanthiol (3FT), 4-mercaptobenzoicacid (4MB), and 6-isoquinolinethiol molecules. • We discuss the role of these molecules as modifiers alternative to 4-mercaptopyridine. • Dense interlayers of 6-isoquinolinethiol turn out to be slightly unstable. • We predict very stable self-assembled thin-films for both 3FT and 4MB molecules

  17. A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging.

    Science.gov (United States)

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Varma, Sreejith Jayasree; Talukdar, Pinaki

    2012-03-11

    A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated. This journal is © The Royal Society of Chemistry 2012

  18. Influence of oxygen on the repair of direct radiation damage to DNA by thiols in model systems

    International Nuclear Information System (INIS)

    Becker, D.; Summerfield, S.; Gillich, S.; Sevilla, M.D.

    1994-01-01

    Here the reactions of thiols with DNA primary radical intermediates formed after γ-irradiation of frozen (77K) anoxic and oxic solutions of DNA/thiol mixtures are investigated. Through analysis of the experimental composite spectra at each annealing temperature, the relative concentrations of individual radicals present are estimated and reaction sequences inferred. In all samples the primary DNA radical anions and cations (DNA · + and DNA · - ) are suggested to be the predominant radicals at low temperatures. In anoxic samples, TH · (5,6-dihydrothym-5-yl radical), RSSR · - and, in glutathione samples, · GSH [γ-glu-NHC(CH 2 SH) CO-gly] radicals are observed as the temperature is increased. The presence of oxygen efficiently suppresses the formation of RSSR · - and · GSH; instead, in oxic samples, O 2 · - , DNAOO · , RSOO · and RSO · are observed at higher temperatures. The photolytic conversion of RSOO · to RSO 2 · is used to verify the presence of RSOO · in γ-irradiated DNA/thiol systems and confirm that the computer analysis employed yields reasonable estimates of the relative DNAOO · and RSOO · concentrations. (Author)

  19. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance.

    Science.gov (United States)

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro; Bowman, Christopher N

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercaptopropionate-based thiol-ene or thiol-Michael networks. For polymers with no hydrolytically degradable esters, glass transition temperatures (T g 's) as high as 100 °C were achieved. Importantly, solvent resistance tests demonstrated enhanced stability of ester-free formulations over PETMP-based polymers, especially in concentrated basic solutions. Kinetic analysis showed that glassy step-growth polymers are readily formed at ambient conditions with conversions reaching 80% and higher.

  20. Selenocysteine in thiol/disulfide-like exchange reactions.

    Science.gov (United States)

    Hondal, Robert J; Marino, Stefano M; Gladyshev, Vadim N

    2013-05-01

    Among trace elements used as cofactors in enzymes, selenium is unique in that it is incorporated into proteins co-translationally in the form of an amino acid, selenocysteine (Sec). Sec differs from cysteine (Cys) by only one atom (selenium versus sulfur), yet this switch dramatically influences important aspects of enzyme reactivity. The main focus of this review is an updated and critical discussion on how Sec might be used to accelerate thiol/disulfide-like exchange reactions in natural selenoenzymes, compared with their Cys-containing homologs. We discuss in detail three major aspects associated with thiol/disulfide exchange reactions: (i) nucleophilicity of the attacking thiolate (or selenolate); (ii) electrophilicity of the center sulfur (or selenium) atom; and (iii) stability of the leaving group (sulfur or selenium). In all these cases, we analyze the benefits that selenium might provide in these types of reactions. It is the biological thiol oxidoreductase-like function that benefits from the use of Sec, since Sec functions to chemically accelerate the rate of these reactions. We review various hypotheses that could help explain why Sec is used in enzymes, particularly with regard to competitive chemical advantages provided by the presence of the selenium atom in enzymes. Ultimately, these chemical advantages must be connected to biological functions of Sec.

  1. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    Science.gov (United States)

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  2. Kinetic Resolution of sec-Thiols via Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase

    NARCIS (Netherlands)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco

    2018-01-01

    Various flavoprotein oxidases were recently shown to oxidize prim-thiols. Here we extend this reactivity towards sec-thiols via structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of rac-sec-thiols

  3. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  4. Chromosomal instability drives metastasis through a cytosolic DNA response.

    Science.gov (United States)

    Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C

    2018-01-25

    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.

  5. The effects of counter-ion condensation and co-ion depletion upon the rates of chemical repair of poly(U) radicals by thiols

    International Nuclear Information System (INIS)

    Fahey, R.C.; Vojnovic, B.; Michael, B.D.

    1991-01-01

    Bimolecular rate constants for reactions of poly(U) radicals with a series of thiols of varying net charge (Z) were measured by pulse radiolysis with conductivity detection at low ionic strength. At pH 7 and 18 o C the values of k 2 (M -1 s -1 ) were: reduced glutathione (Z = -1), 3 ; 2-mercaptoethanol (Z =0), 1.8 x 10 5 ; cysteine (Z=0), 2.0 x 10 5 ; cysteamine (Z = +1), 4.1 x 10 7 . Values determined at pH4 were: 2-mercaptoethanol, 6.1 x 10 5 ; cysteamine 2.2 x 10 8 ; N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065, Z = +2), 4.6 x 10 8 . The variation in rate with structure could not reasonably be attributed to inherent reactivity differences in the thiols and was ascribed to inhomogeneous distributions of the thiols in solution resulting from electrostatic interactions. (Author)

  6. Functionalization of Fe3O4 NPs by Silanization: Use of Amine (APTES and Thiol (MPTMS Silanes and Their Physical Characterization

    Directory of Open Access Journals (Sweden)

    Silvia Villa

    2016-10-01

    Full Text Available In this paper the results concerning the synthesis of magnetite (Fe3O4 nanoparticles (NPs, their functionalization using silane derivatives, such as (3-Aminopropyltriethoxysilane (APTES and (3-mercaptopropyltrimethoxysilane (MPTMS, and their exhaustive morphological and physical characterization by field emission scanning electron microscopy (FE-SEM with energy dispersion X-ray spectrometer (EDX analysis, AC magnetic susceptibility, UV-VIS and IR spectroscopy, and thermogravimetric (TGA analyses are reported. Two different paths were adopted to achieve the desired functionalization: (1 the direct reaction between the functionalized organo-silane molecule and the surface of the magnetite nanoparticle; and (2 the use of an intermediate silica coating. Finally, the occurrence of both the functionalization with amino and thiol groups has been demonstrated by the reaction with ninhydrin and the capture of Au NPs, respectively.

  7. Thiol/disulfide homeostasis in pregnant women with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Üstündağ, Yasemin; Demirci, Hakan; Balık, Rifat; Erel, Ozcan; Özaydın, Fahri; Kücük, Bilgen; Ertaş, Dilber; Ustunyurt, Emin

    2017-11-27

    Repetitive episodes of hypoxia and reoxygenation during sleep in patients with obstructive sleep apnea syndrome (OSAS) resemble an ischemia-reperfusion injury. We aimed to test the hypothesis that oxidative stress occurs in pregnant women with OSAS. We also aimed to compare thiol/disulfide homeostasis with ischemia-modified albumin (IMA) and total antioxidant capacity (TAC) as markers of ischemia-reperfusion injury in pregnant women with and without OSAS and healthy control. This study included 29 pregnant women with OSAS, 30 women without OSAS in the third trimester applying for periodic examinations, and 30 healthy women. Serum IMA and TAC (using the ferric reducing power of plasma method) were measured. Serum thiol/disulfide homeostasis was determined by a novel automated method. The mean age of the pregnant women with OSAS was 31.0 ± 4.7 years with a mean gestational age of 36.5 ± 3.0 weeks. The mean age of pregnant women without OSAS was 29.8 ± 4.9 years with a mean gestational age of 36.9 ± 2.7 weeks. The mean age of the nonpregnant control group was 29.7 ± 6.4 years. Both native thiol (291 ± 29 μmol/L versus 314 ± 30 μmol/L; p = .018) and total thiol (325 ± 32 versus 350 ± 32, p = .025) levels were lower in pregnant women with OSAS compared to pregnant women without OSAS, respectively (p total thiol levels were lower in pregnant women with OSAS compared to those without OSAS. However, dynamic thiol/disulfide homeostasis parameters cannot provide valuable information to discriminate OSAS in pregnant women.

  8. H2O2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels.

    Science.gov (United States)

    Ostrowski, Tim D; Dantzler, Heather A; Polo-Parada, Luis; Kline, David D

    2017-05-01

    Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H 2 O 2 ) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H 2 O 2 on cytosolic Ca 2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H 2 O 2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca 2+ concentration ([Ca 2+ ] i ). The H 2 O 2 -mediated increase in [Ca 2+ ] i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca 2+ source. The effect, however, was abolished by removal of extracellular Ca 2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca 2+ channels (VGCCs) as targets for H 2 O 2 modulation. Recording of the total voltage-dependent Ca 2+ current confirmed H 2 O 2 enhanced Ca 2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H 2 O 2 The number of responder cells to H 2 O 2 also decreased in the presence of dithiothreitol, suggesting the actions of H 2 O 2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H 2 O 2 increases [Ca 2+ ] i and its Ca 2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices. Copyright © 2017 the American Physiological Society.

  9. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg{sup 2+} from water

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fei [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Qiu, Ling-Guang, E-mail: lgqiu@ahu.edu.cn [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhu, Jun-Fa [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer A novel type of functionalized MOF for heavy metal removal. Black-Right-Pointing-Pointer Functionalization of MOF by a facile coordination-based postsynthetic strategy. Black-Right-Pointing-Pointer Thiol-functionalization of MOF has been realized for the first time. Black-Right-Pointing-Pointer Enhanced removal of Hg{sup 2+} by thiol-functionalized MOFs. - Abstract: The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu{sub 3}(BTC){sub 2}(H{sub 2}O){sub 3}]{sub n} (HKUST-1, BTC = benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu{sub 3}(BTC){sub 2}]{sub n} samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N{sub 2} sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu{sub 3}(BTC){sub 2}]{sub n} exhibited remarkably high adsorption affinity (K{sub d} = 4.73 Multiplication-Sign 10{sup 5} mL g{sup -1}) and high adsorption capacity (714.29 mg g{sup -1}) for Hg{sup 2+} adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg{sup 2+} under the same condition.

  10. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water.

    Science.gov (United States)

    Ke, Fei; Qiu, Ling-Guang; Yuan, Yu-Peng; Peng, Fu-Min; Jiang, Xia; Xie, An-Jian; Shen, Yu-Hua; Zhu, Jun-Fa

    2011-11-30

    The presence of coordinatively unsaturated metal centers in metal-organic frameworks (MOFs) provides an accessible way to selectively functionalize MOFs through coordination bonds. In this work, we describe thiol-functionalization of MOFs by choosing a well known three-dimensional (3D) Cu-based MOF, i.e. [Cu(3)(BTC)(2)(H(2)O)(3)](n) (HKUST-1, BTC=benzene-1,3,5-tricarboxylate), by a facile coordination-based postsynthetic strategy, and demonstrate their application for removal of heavy metal ion from water. A series of [Cu(3)(BTC)(2)](n) samples stoichiometrically decorated with thiol groups has been prepared through coordination bonding of coordinatively unsaturated metal centers in HKUST-1 with -SH group in dithioglycol. The obtained thiol-functionalized samples were characterized by powder X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, infrared spectroscopy, and N(2) sorption-desorption isothermal. Significantly, the thiol-functionalized [Cu(3)(BTC)(2)](n) exhibited remarkably high adsorption affinity (K(d)=4.73 × 10(5)mL g(-1)) and high adsorption capacity (714.29 mg g(-1)) for Hg(2+) adsorption from water, while the unfunctionalized HKUST-1 showed no adsorption of Hg(2+) under the same condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    Science.gov (United States)

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  12. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  13. Effect of thiol group on the curing process of alkaline developable photo-resists

    International Nuclear Information System (INIS)

    Hidetaka Oka; Masaki Ohwa; Hisatoshi Kura

    1999-01-01

    Photosensitivity of a conventional radical photo-initiator in an alkaline developable photoresist is boosted by substitution with a thiol group. Evidence is presented that the thiol group acts via chain transfer mechanism

  14. Do intracellular thiol or peroxidase levels block radiation sensitization by nitrous oxide in some E. coli strains?

    International Nuclear Information System (INIS)

    Ewing, D.; Guilfoil, D.S.; Ohm, M.B.

    1991-01-01

    Although nitrous oxide (N 2 O) is often a radiation sensitizer in procaryotic cells, it fails to sensitize some strains of bacteria, some yeast strains, and most eucaryotic cell lines. At present this inconsistency cannot be satisfactorily explained. The experiments here use eight strains of E. coli, some of which are not sensitized by N 2 O, to test the hypotheses that N 2 O's failure to sensitize might be based on high thiol content or on low peroxidase activity. Our data contradict those hypotheses. In addition, further data show that the strains not sensitized by N 2 O contain no unique cellular component or compound which blocks damage from N 2 O. (author)

  15. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance

    OpenAIRE

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro; Bowman, Christopher N.

    2015-01-01

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercapto...

  16. Preparation and Characterization of Fluorinated Hydrophobic UV-Crosslinkable Thiol-Ene Polyurethane Coatings

    Directory of Open Access Journals (Sweden)

    Wenjing Xia

    2017-08-01

    Full Text Available The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI, hydroxyl terminated polybutadiene (HTPB, 1,4-butanediol (BDO, and 2-hydroxyethyl acrylate (HEA. Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane coatings significantly enhanced the hydrophobic property, mechanical property, pencil hardness, and glossiness of the polyurethane coatings. This method of preparing UV crosslinkable, hydrophobic polyurethane coatings based on thiol-ene chemistry exhibited numerous advantages over other UV photocuring systems.

  17. Pharmacological aspects of application of 1,2,4-triazole-3-thiol furan derivatives

    Directory of Open Access Journals (Sweden)

    O. A. Bihdan

    2016-12-01

    Full Text Available Introduction. Nowadays 1,2,4-triazole-3-thiol furan derivatives have established themselves as a separate class of promising bioactive compounds. Presented substance is practically non-toxic and exhibits various kinds of pharmacological activity. New original drug «Tryfuzol» in two dosage forms (1% injectable solution and 1% solution for oral administration triumphantly entered the practice of the national veterinary. The most attractive in pharmacological aspects are water-soluble compounds 5-(furan-2-yl-4R-1,2,4-triazole-3-thiols. Other classes of 1,2,4-triazole-3-thiol furan derivatives are also in considerable scientific interest. However, despite the presence of a sufficiently large number of publications, the issue of pharmacological tests systematization of the 1,2,4-triazole-3-thiol furan derivatives is still open. In this way the aim of our work was the systematization of the available sources of domestic authors. Materials and methods. Our work presents the results of systematic analysis of the available domestic literature related to the study of pharmacological properties of 1,2,4-triazole-3-thiol furan derivatives. Research results. It is known that 1,2,4-triazole-3-thiol furan derivatives have wide range of properties and biological activities. Thioacetate salts of corresponding acids show the highest results. The authors investigated the properties of water-soluble compounds of 1,2,4-triazole-3-thiol furan derivatives. Another group of compounds was investigated on hypoglycemic activity. It was established that the most active were piperidine 2-(5-(furan-2-yl-4-(3-methylphenyl-1,2,4-triazol-3-ylthio acetate and piperidine 2-(5-(furan-2-yl-4-phenyl-1,2,4-triazol-3-ylthio acetate. Conclusion. The scientific potential of the domestic pharmaceutical industry has no doubts for today. The literature analysis of Russian authors proves the obvious prospect of further research of biologically active compounds among 1,2,4-triazole-3-thiol

  18. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    Science.gov (United States)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  20. Thiol-ene/methacrylate systems for mechanical damping

    Science.gov (United States)

    McNair, Olivia; Senyurt, Askim; Wei, Huanyu; Gould, Trent; Piland, Scott; Hoyle, Charles; Savin, Daniel

    2010-03-01

    Ternary thiol-ene-methacrylate (TEMA) networks as materials for mechanical energy damping are unique to the sports world. Using a photoinitiation process, TEMA systems are formed via an initial thiol-ene step-growth mechanism along with traditional radical polymerization of acrylate and ene monomers. Final networks have two-part morphologies: acrylate homopolymer sectors imbedded in a multi-component mesh. Several (TEMA) systems have been synthesized and analyzed via thermal and mechanical probing. Initial studies on these ternary systems have shown excellent properties compared to traditional ethylene vinyl alcohol (EVA) copolymers. For example, PEMA networks exhibit glass transition temperatures 33 K higher than EVA, resulting in improved damping at room temperature. This research will help develop relationships between tan delta, glass transition and their effects on mechanical energy damping for ternary (TEMA) systems.

  1. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  2. Low molecular weight thiols and thioredoxins are important players in Hg(II) resistance in Thermus thermophilus HB27.

    Science.gov (United States)

    Norambuena, J; Wang, Y; Hanson, T; Boyd, J M; Barkay, T

    2017-11-17

    Mercury (Hg), one of the most toxic and widely distributed heavy metals, has a high affinity for thiol groups. Thiol groups reduce and sequester Hg. Therefore, low molecular weight and protein thiols may be important cell components used in Hg resistance. To date, the role of low molecular weight thiols in Hg-detoxification remains understudied. The mercury resistance ( mer ) operon of Thermus thermophilus suggests an evolutionary link between Hg(II) resistance and low molecular weight thiol metabolism. This mer operon encodes for an enzyme involved in methionine biosynthesis, Oah. Challenge with Hg(II) resulted in increased expression of genes involved in the biosynthesis of multiple low molecular weight thiols (cysteine, homocysteine, and bacillithiol), as well as the thioredoxin system. Phenotypic analysis of gene replacement mutants indicated that Oah contributes to Hg resistance under sulfur limiting conditions, and strains lacking bacillithiol and/or thioredoxins are more sensitive to Hg(II) than the wild type. Growth in presence of either a thiol oxidizing agent or a thiol alkylating agent increased sensitivity to Hg(II). Furthermore, exposure to 3 μM Hg(II) consumed all intracellular reduced bacillithiol and cysteine. Database searches indicate that oah2 is present in all Thermus spp. mer operons. The presence of a thiol related gene was also detected in some alphaprotobacterial mer operons, in which a glutathione reductase gene was present, supporting the role of thiols in Hg(II) detoxification. These results have led to a working model in which LMW thiols act as Hg(II) buffering agents while Hg is reduced by MerA. Importance The survival of microorganisms in presence of toxic metals is central to life's sustainability. The affinity of thiol groups to toxic heavy metals drives microbe-metal interactions and modulate metal toxicity. Mercury detoxification ( mer ) genes likely originated early in microbial evolution among geothermal environments. Little is

  3. Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications

    International Nuclear Information System (INIS)

    Neville, Frances; Pchelintsev, Nikolay A; Broderick, Michael J F; Gibson, Tim; Millner, Paul A

    2009-01-01

    A novel one-pot neutral synthesis using bioinspired polymers to fabricate thiol-nanoparticles is presented. The thiol-particles may be directly tethered to metal surfaces such as gold, allowing the production of self-assembled nanostructured biocatalytic or biosensor surfaces. This one-pot method has also been used to entrap enzymes within the thiol-nanoparticles; it is apparent that once enzyme entrapment is carried out a bimodal distribution of particles is formed, with particles of one mode being very similar in size to thiol-nanoparticles without enzyme entrapped, and particles of the other mode being much larger in size. To this end, efforts have been made to separate the two modes of particles for the sample containing enzyme and it has been observed that the larger mode thiol-nanoparticles do indeed contain significant amounts of enzyme in comparison to the smaller mode ones. As the enzyme-containing thiol-nanoparticles can now be isolated, this means that there are many future possibilities for the use of thiol-particles containing enzyme, as they may be used in a wide range of processes and devices which require catalytic functionalized surfaces, such as biosensors and biocatalytic reactors.

  4. CodY Regulates Thiol Peroxidase Expression as Part of the Pneumococcal Defense Mechanism against H2O2 Stress.

    Science.gov (United States)

    Hajaj, Barak; Yesilkaya, Hasan; Shafeeq, Sulman; Zhi, Xiangyun; Benisty, Rachel; Tchalah, Shiran; Kuipers, Oscar P; Porat, Nurith

    2017-01-01

    Streptococcus pneumoniae is a facultative anaerobic pathogen. Although it maintains fermentative metabolism, during aerobic growth pneumococci produce high levels of H 2 O 2 , which can have adverse effects on cell viability and DNA, and influence pneumococcal interaction with its host. The pneumococcus is unusual in its dealing with toxic reactive oxygen species (ROS) in that it neither has catalase nor the global regulators of peroxide stress resistance. Previously, we identified pneumococcal thiol peroxidase (TpxD) as the key enzyme for enzymatic removal of H 2 O 2 , and showed that TpxD synthesis is up-regulated upon exposure to H 2 O 2 . This study aimed to reveal the mechanism controlling TpxD expression under H 2 O 2 stress. We hypothesize that H 2 O 2 activates a transcription factor which in turn up-regulates tpxD expression. Microarray analysis revealed a pneumococcal global transcriptional response to H 2 O 2 . Mutation of tpxD abolished H 2 O 2 -mediated response to high H 2 O 2 levels, signifying the need for an active TpxD under oxidative stress conditions. Bioinformatic tools, applied to search for a transcription factor modulating tpxD expression, pointed toward CodY as a potential candidate. Indeed, a putative 15-bp consensus CodY binding site was found in the proximal region of tpxD- coding sequence. Binding of CodY to this site was confirmed by EMSA, and genetic engineering techniques demonstrated that this site is essential for TpxD up-regulation under H 2 O 2 stress. Furthermore, tpxD expression was reduced in a Δ codY mutant. These data indicate that CodY is an activator of tpxD expression, triggering its up-regulation under H 2 O 2 stress. In addition we show that H 2 O 2 specifically oxidizes the 2 CodY cysteines. This oxidation may trigger a conformational change in CodY, resulting in enhanced binding to DNA. A schematic model illustrating the contribution of TpxD and CodY to pneumococcal global transcriptional response to H 2 O 2 is

  5. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam

    2012-01-01

    ” and “ene” monomers present in the microfluidic chip bulk material provides a simple and efficient way of tuning the chip’s surface chemistry. Here, thiol-ene chips displaying an excess of functional thiol groups at their surfaces are functionalized with biotin and streptavidin in a controlled fashion using...

  6. Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors

    DEFF Research Database (Denmark)

    Lafleur, Josiane P; Senkbeil, Silja; Novotny, Jakub

    2015-01-01

    A novel, rapid and simple method for the preparation of emulsion-templated monoliths in microfluidic channels based on thiol-ene chemistry is presented. The method allows monolith synthesis and anchoring inside thiol-ene microchannels in a single photoinitiated step. Characterization by scanning...... electron microscopy showed that the methanol-based emulsion templating process resulted in a network of highly interconnected and regular thiol-ene beads anchored solidly inside thiol-ene microchannels. Surface area measurements indicate that the monoliths are macroporous, with no or little micro...

  7. Do intracellular thiol or peroxidase levels block radiation sensitization by nitrous oxide in some E. coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, D.; Guilfoil, D.S.; Ohm, M.B. (Hahnemann Univ., Philadelphia, PA (USA). Dept. of Radiation Oncology and Nuclear Medicine)

    1991-01-01

    Although nitrous oxide (N{sub 2}O) is often a radiation sensitizer in procaryotic cells, it fails to sensitize some strains of bacteria, some yeast strains, and most eucaryotic cell lines. At present this inconsistency cannot be satisfactorily explained. The experiments here use eight strains of E. coli, some of which are not sensitized by N{sub 2}O, to test the hypotheses that N{sub 2}O's failure to sensitize might be based on high thiol content or on low peroxidase activity. Our data contradict those hypotheses. In addition, further data show that the strains not sensitized by N{sub 2}O contain no unique cellular component or compound which blocks damage from N{sub 2}O. (author).

  8. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    Science.gov (United States)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  9. Purification, Characterization, and Effect of Thiol Compounds on Activity of the Erwinia carotovora L-Asparaginase

    Directory of Open Access Journals (Sweden)

    Suchita C. Warangkar

    2010-01-01

    Full Text Available L-asparaginase was extracted from Erwinia carotovora and purified by ammonium sulfate fractionation (60–70%, Sephadex G-100, CM cellulose, and DEAE sephadex chromatography. The apparent Mr of enzyme under nondenaturing and denaturing conditions was 150 kDa and 37±0.5 kDa, respectively. L-asparaginase activity was studied in presence of thiols, namely, L-cystine (Cys, L-methionine (Met, N-acetyl cysteine (NAC, and reduced glutathione (GSH. Kinetic parameters in presence of thiols (10–400 M showed an increase in Vmax values (2000, 2223, 2380, 2500, and control 1666.7 moles mg−1min−1 and a decrease in K values (0.086, 0.076, 0.062, 0.055 and control 0.098 mM indicating nonessential mode of activation. KA values displayed propensity to bind thiols. A decrease in Vmax/K ratio in concentration plots showed inverse relationship between free thiol groups (NAC and GSH and bound thiol group (Cys and Met. Enzyme activity was enhanced in presence of thiol protecting reagents like dithiothreitol (DTT, 2-mercaptoethanol (2-ME, and GSH, but inhibited by p-chloromercurybenzoate (PCMB and iodoacetamide (IA.

  10. Aroma extraction dilution analysis of Sauternes wines. Key role of polyfunctional thiols.

    Science.gov (United States)

    Bailly, Sabine; Jerkovic, Vesna; Marchand-Brynaert, Jacqueline; Collin, Sonia

    2006-09-20

    The aim of the present work was to investigate Sauternes wine aromas. In all wine extracts, polyfunctional thiols were revealed to have a huge impact. A very strong bacon-petroleum odor emerged at RI = 845 from a CP-Sil5-CB column. Two thiols proved to participate in this perception: 3-methyl-3-sulfanylbutanal and 2-methylfuran-3-thiol. A strong synergetic effect was evidenced between the two compounds. The former, never mentioned before in wines, and not found in the musts of this study, is most probably synthesized during fermentation. 3-Methylbut-2-ene-1-thiol, 3-sulfanylpropyl acetate, 3-sulfanylhexan-1-ol, and 3-sulfanylheptanal also contribute to the global aromas of Sauternes wines. Among other key odorants, the presence of a varietal aroma (alpha-terpineol), sotolon, fermentation alcohols (3-methylbutan-1-ol and 2-phenylethanol) and esters (ethyl butyrate, ethyl hexanoate, and ethyl isovalerate), carbonyls (trans-non-2-enal and beta-damascenone), and wood flavors (guaiacol, vanillin, eugenol, beta-methyl-gamma-octalactone, and Furaneol) is worth stressing.

  11. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg

    NARCIS (Netherlands)

    Wiederhold, Jan G.; Cramer, Christopher J.; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-01-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound

  12. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  13. Fabrication of Carbon Nanotube/SiO2and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Li Haiqing

    2009-01-01

    Full Text Available Abstract Based on plasma-treated single wall carbon nanotubes (SWCNTs, SWCNT/SiO2and thiol groups-functionalized SWCNT/SiO2hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2shell of SWCNT/SiO2in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.

  14. O-GlcNAcylation mediates the control of cytosolic phosphoenolpyruvate carboxykinase activity via Pgc1α.

    Directory of Open Access Journals (Sweden)

    Pedro Latorre

    Full Text Available PGC1α is a coactivator of many transcription factors and cytosolic phosphoenolpyruvate carboxykinase (PCK1 is a key enzyme for gluconeogenesis. PGC1α interacts with the transcription factor PPARγ to stimulate PCK1 expression and thus de novo glucose synthesis. These proteins are not only important for central energy metabolism but also for supplying intermediates for other metabolic pathways, including lipidogenesis and protein synthesis and might therefore be important factors in the ethiopathogenesis of metabolic disorders like diabetes but also in other pathologies like cancer. Since polymorphisms in these proteins have been related to some phenotypic traits in animals like pigs and PGC1α G482S polymorphism increases fat deposition in humans, we have investigated the molecular basis of such effects focusing on a commonly studied polymorphism in pig Pgc1α, which changes a cysteine at position 430 (WT of the protein to a serine (C430S. Biochemical analyses show that Pgc1α WT stimulates higher expression of human PCK1 in HEK293T and HepG2 cells. Paradoxically, Pgc1α WT is less stable than Pgc1α p.C430S in HEK293T cells. However, the study of different post-translational modifications shows a higher O-GlcNAcylation level of Pgc1α p.C430S. This higher O-GlcNAcylation level significantly decreases the interaction between Pgc1α and PPARγ demonstrating the importance of post-translational glycosylation of PGC1α in the regulation of PCK1 activity. This, furthermore, could explain at least in part the observed epistatic effects between PGC1α and PCK1 in pigs.

  15. Investigations of thiol-modified phenol derivatives for the use in thiol–ene photopolymerizations

    Science.gov (United States)

    Reinelt, Sebastian; Tabatabai, Monir; Fischer, Urs Karl; Moszner, Norbert; Utterodt, Andreas

    2014-01-01

    Summary Thiol–ene photopolymerizations gain a growing interest in academic research. Coatings and dental restoratives are interesting applications for thiol–ene photopolymerizations due to their unique features. In most studies the relative flexible and hydrophilic ester derivative, namely pentaerythritoltetra(3-mercaptopropionate) (PETMP), is investigated as the thiol component. Thus, in the present study we are encouraged to investigate the performance of more hydrophobic ester-free thiol-modified bis- and trisphenol derivatives in thiol–ene photopolymerizations. For this, six different thiol-modified bis- and trisphenol derivatives exhibiting four to six thiol groups are synthesized via the radical addition of thioacetic acid to suitable allyl-modified precursors and subsequent hydrolysis. Compared to PETMP better flexural strength and modulus of elasticity are achievable in thiol–ene photopolymerizations employing 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione (TATATO) as the ene derivative. Especially, after storage in water, the flexural strength and modulus of elasticity is twice as high compared to the PETMP reference system. PMID:25161731

  16. Investigations of thiol-modified phenol derivatives for the use in thiol–ene photopolymerizations

    Directory of Open Access Journals (Sweden)

    Sebastian Reinelt

    2014-07-01

    Full Text Available Thiol–ene photopolymerizations gain a growing interest in academic research. Coatings and dental restoratives are interesting applications for thiol–ene photopolymerizations due to their unique features. In most studies the relative flexible and hydrophilic ester derivative, namely pentaerythritoltetra(3-mercaptopropionate (PETMP, is investigated as the thiol component. Thus, in the present study we are encouraged to investigate the performance of more hydrophobic ester-free thiol-modified bis- and trisphenol derivatives in thiol–ene photopolymerizations. For this, six different thiol-modified bis- and trisphenol derivatives exhibiting four to six thiol groups are synthesized via the radical addition of thioacetic acid to suitable allyl-modified precursors and subsequent hydrolysis. Compared to PETMP better flexural strength and modulus of elasticity are achievable in thiol–ene photopolymerizations employing 1,3,5-triallyl-1,3,5-triazine-2,4,6-trione (TATATO as the ene derivative. Especially, after storage in water, the flexural strength and modulus of elasticity is twice as high compared to the PETMP reference system.

  17. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane; Demangel, Caroline; Van Ingen, Jakko; Perez, Jorge; Baldeó n, Lucy R.; Abdallah, Abdallah; Caleechurn, Laxmee; Bottai, Daria; Van Zon, Maaike; De Punder, Karin; Van Der Laan, Tridia; Kant, Arie; Bossers-De Vries, Ruth; Willemsen, Peter Th J; Bitter, Wilbert M.; Van Soolingen, Dick; Brosch, Roland; Van Der Wel, Nicole N.; Peters, Peter J.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  18. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  19. A fluorescent probe which allows highly specific thiol labeling at low pH

    DEFF Research Database (Denmark)

    Nielsen, Jonas W.; Jensen, Kristine Steen; Hansen, Rosa E.

    2012-01-01

    and properties of a thiol-specific reagent, fluorescent cyclic activated disulfide (FCAD), which includes the fluorescein moiety as fluorophore and utilizes a variation of thiol-disulfide exchange chemistry. The leaving-group character of FCAD makes it reactive at pH 3, allowing modification at low pH, limiting...

  20. Preparation and Characterization of Fluorinated Hydrophobic UV-Crosslinkable Thiol-Ene Polyurethane Coatings

    OpenAIRE

    Wenjing Xia; Nianqing Zhu; Rongjie Hou; Wengui Zhong; Mingqing Chen

    2017-01-01

    The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI), hydroxyl terminated polybutadiene (HTPB), 1,4-butanediol (BDO), and 2-hydroxyethyl acrylate (HEA). Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane ...

  1. Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4'-dithiodipyridine

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Østergaard, Henrik; Nørgaard, Per

    2007-01-01

    Experimental determination of the number of thiols in a protein requires methodology that combines high sensitivity and reproducibility with low intrinsic thiol oxidation disposition. In detection of disulfide bonds, it is also necessary to efficiently reduce disulfides and to quantify...... the liberated thiols. Ellman's reagent (5,5'-dithiobis-[2-nitrobenzoic acid], DTNB) is the most widely used reagent for quantification of protein thiols, whereas dithiothreitol (DTT) is commonly used for disulfide reduction. DTNB suffers from a relatively low sensitivity, whereas DTT reduction is inconvenient...... sodium borohydride and the thiol reagent 4,4'-dithiodipyridine (4-DPS). Because borohydride is efficiently destroyed by the addition of acid, the complete reduction and quantification can be performed conveniently in one tube without desalting steps. Furthermore, the use of reverse-phase high...

  2. Detection of Cytosolic Shigella flexneri via a C-Terminal Triple-Arginine Motif of GBP1 Inhibits Actin-Based Motility

    Directory of Open Access Journals (Sweden)

    Anthony S. Piro

    2017-12-01

    Full Text Available Dynamin-like guanylate binding proteins (GBPs are gamma interferon (IFN-γ-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri. Rough lipopolysaccharide (LPS mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6. GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis. These studies reveal that human GBP1 uniquely functions as an intracellular “glue trap,” inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment.

  3. Quinoline-2-thiol Derivatives as Fluorescent Sensors for Metals, pH and HNO

    Directory of Open Access Journals (Sweden)

    Naphtali A. O’Connor

    2014-06-01

    Full Text Available A tautomeric equilibrium exists for quinoline-2-thiol and quinoline-2(1H-thione. Quantum mechanical calculations predict the thione is the major tautomer and this is confirmed by the absorption spectra. The utility of quinolone-2-thiol/quinoline-2(1H-thione as a chromophore for developing fluorescent sensors is explored. No fluorescence is observed when excited at absorption maxima, however a fluorescence increase is observed when exposed to HNO, a molecule of import as a cardiovascular therapeutic. Alkylated quinoline-2-thiol derivatives are found to be fluorescent and show a reduction in fluorescence when exposed to metals and changes in pH.

  4. Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.

    Science.gov (United States)

    Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai

    2018-04-01

    Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A membrane model for cytosolic calcium oscillations. A study using Xenopus oocytes.

    OpenAIRE

    Jafri, M S; Vajda, S; Pasik, P; Gillo, B

    1992-01-01

    Cytosolic calcium oscillations occur in a wide variety of cells and are involved in different cellular functions. We describe these calcium oscillations by a mathematical model based on the putative electrophysiological properties of the endoplasmic reticulum (ER) membrane. The salient features of our membrane model are calcium-dependent calcium channels and calcium pumps in the ER membrane, constant entry of calcium into the cytosol, calcium dependent removal from the cytosol, and buffering ...

  6. Integration of the thiol redox status with cytokine response to physical training in professional basketball players.

    Science.gov (United States)

    Zembron-Lacny, A; Slowinska-Lisowska, M; Ziemba, A

    2010-01-01

    The present study was designed to evaluate the plasma markers of reactive oxygen species (ROS) activity and cytokines, and their relationship with thiol redox status of basketball players during training. Sixteen professional players of the Polish Basketball Extraleague participated in the study. The study was performed during the preparatory period and the play-off round. Markers of ROS activity (lipid peroxidation TBARS, protein carbonylation PC) and reduced glutathione (GSH) demonstrated regularity over time, i.e. TBARS, PC and GSH were elevated at the beginning and decreased at the end of training periods. Oxidized glutathione (GSSG) was not affected by exercise training. Thiol redox status (GSH(total)-2GSSG/GSSG) correlated with TBARS and PC in both training periods. The level of interleukin-6 (IL-6) was increased and positively correlated with thiol redox (r=0.423) in the preparatory period, whereas tumor necrosis factor alpha (TNFalpha) was increased and inversely correlated with thiol redox (r= 0.509) in the play-off round. The present study showed significant shifts in markers of ROS activity, thiol redox status and inflammatory mediators (IL-6, TNFalpha) following professional sport training as well as correlation between changes in thiol redox and cytokine response.

  7. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle

    DEFF Research Database (Denmark)

    Satrústegui, Jorgina; Bak, Lasse K

    2015-01-01

    that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium...

  8. Thiol Redox Transitions in Cell Signaling: a Lesson from N-Acetylcysteine

    Directory of Open Access Journals (Sweden)

    Tiziana Parasassi

    2010-01-01

    Full Text Available The functional status of cells is under the control of external stimuli affecting the function of critical proteins and eventually gene expression. Signal sensing and transduction by messengers to specific effectors operate by post-translational modification of proteins, among which thiol redox switches play a fundamental role that is just beginning to be understood. The maintenance of the redox status is, indeed, crucial for cellular homeostasis and its dysregulation towards a more oxidized intracellular environment is associated with aberrant proliferation, ultimately related to diseases such as cancer, cardiovascular disease, and diabetes. Redox transitions occur in sensitive cysteine residues of regulatory proteins relevant to signaling, their evolution to metastable disulfides accounting for the functional redox switch. N-acetylcysteine (NAC is a thiol-containing compound that is able to interfere with redox transitions of thiols and, thus, in principle, able to modulate redox signaling. We here review the redox chemistry of NAC, then screen possible mechanisms to explain the effects observed in NAC-treated normal and cancer cells; such effects involve a modification of global gene expression, thus of functions and morphology, with a leitmotif of a switch from proliferation to terminal differentiation. The regulation of thiol redox transitions in cell signaling is, therefore, proposed as a new tool, holding promise not only for a deeper explanation of mechanisms, but indeed for innovative pharmacological interventions.

  9. Chromenoquinoline-based thiol probes: a study on the quencher position for controlling fluorescent Off-On characteristics.

    Science.gov (United States)

    Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Talukdar, Pinaki

    2013-02-13

    The design, synthesis and thiol sensing ability of chromenoquinoline-based fluorescent probes 4, 5 and 6 and are reported here. The relative position of the maleimide moiety was varied along the chromenoquinoline fluorophore to decrease the background fluorescence. Lower background fluorescence in probes 4 and 6 was rationalized by the smaller k(r)/k(nr) values compared to that of probe 5. An intramolecular charge transfer (ICT) mechanism was proposed for quenching and the extent was dependent on the position of the maleimide quencher. Fluorescent Off-On characteristics were evaluated by theoretical calculations. All probes were selective only towards thiol containing amino acids. Thiol sensing by probes 4 and 6 were much better compared to 5. Probe 4 displayed a better fluorescence response for less hindered thiol (185-, 223- and 156-fold for Hcy, Cys and GSH, respectively), while for probe 6, a higher enhancement in fluorescence was observed with more hindered thiols (180-, 205- and 245-fold for Hcy, Cys and GSH, respectively). The better response to bulkier thiol, GSH by probe 6 was attributed to the steric crowding at the C-4 position and bulkiness of the GSH group which force the succinimide unit to be in a nearly orthogonal conformation. This spatial arrangement was important in reducing the fluorescence quenching ability of the succinimide moiety. The application of probes 4, 5 and 6 was demonstrated by naked eye detection thiols using a 96-well plate system as well as by live-cell imaging.

  10. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature

    Science.gov (United States)

    Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.

    2018-02-01

    This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.

  11. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    International Nuclear Information System (INIS)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun

    2016-01-01

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  12. Surface modification of cyclomatrix polyphosphazene microsphere by thiol-ene chemistry and lectin recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chen; Zhu, Xue-yan; Gao, Qiao-ling; Fang, Fei; Huang, Xiao-jun, E-mail: hxjzxh@zju.edu.cn

    2016-11-30

    Graphical abstract: A new synthetic route leading to polyphosphazene cyclomatrix microsphere with various functional groups has achieved via thiol-ene click modification. Herein, hexacholorocyclophosphazene (HCCP) crosslinked with bisphenol-S and 4,4′-diallyl bisphenol-S to generate broadly dispersed microspheres. Thiol-ene modification under UV irradiation not only presented high efficiency and flexibility for post-functionalization, but also imposed no harm on global morphology and crosslinked skeleton of such microspheres. - Highlights: • Functional polyphosphazene microspheres with high chemical flexibility were synthesized by thiol-ene modification. • Polyphosphazene microspheres possessed high thermal stability. • Glycosylated polyphosphazene microspheres showed affinity to lectin Con-A, which inferred potential application in biomedicine. - Abstract: A new synthetic route leading to functional polyphosphazene cyclomatrix microsphere has been developed via thiol-ene click modification. Hexacholorocyclophosphazene (HCCP) was crosslinked with both bisphenol-S and 4,4′-diallyl bisphenol-S to obtain vinyl polyphosphazene microspheres (VPZM) in order to ensure high crosslinking degree and introduce vinyl moieties. Compared to the microspheres obtained by HCCP and bisphenol-S, the size of VPZM was broadly dispersed from 400 nm to 1.40 μm. Thiol-ene click reactions were carried out to attach functional groups, such as glucosyl, carboxyl, ester and dodecyl groups onto polyphosphazene microspheres, which demonstrated no change in morphology and size after modification. Solid state NMR (SSNMR) and Fourier transform infrared spectoscopy (FT-IR) results showed that the vinyl moieties were introduced in the period of crosslinking and functionalization was also successful via click reactions. Moreover, the microspheres presented a little difference in thermal properties after modification. Concanavalin A (Con-A) fluorescent adsorption was also observed for

  13. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    Science.gov (United States)

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Thiol-ene reaction as tool for crosslinking of polynorbornene micelles in the nanoscale

    Science.gov (United States)

    Rupp, Barbara; Bauer, Thomas; Slugovc, Christian

    2009-08-01

    The thiol-ene reaction is a established photoreaction of multifunctional thiols and enes. Virtually any type of ene will participate in a free radical polymerisation process with a thiol. An advantage over many other photochemical reactions is that the reaction proceeds almost as rapidly in ambient conditions as in inert atmosphere. In this work we introduce the UV-crosslinking of polynorbornenes made by ring opening metathesis polymerization making use of the residual double bond in the polymer backbone. The crosslinking experiments were done in thin films and were followed by FTIR measurements, to proof the accessibility of double-bonds in the polymers for the addition of the thiols. As a result of these pre-experiments we created flexible and light transmitting films. To further increase the scope of this reaction, amphiphilic block copolymers were prepared and used to form block copolymer micelles in a selective solvent, which were subsequently crosslinked with pentaerythritol tetra(3-mercaptopropionate) (PETMP). FT-IR, DLS and SEM-measurements were used to prove the successful crosslinking and thus nanoparticle formation.

  15. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Abstract. A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  16. Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier.

    Science.gov (United States)

    Hu, Bo; Zhao, Yang; Zhu, Hai-Zhou; Yu, Shu-Hong

    2011-04-26

    Thiol-containing biomolecules show strong affinity with noble metal nanostructures and could not only stably protect them but also control the self-assembly process of these special nanostructures. A highly selective and sensitive chromogenic detection method has been designed for the low and high molecular weight thiol-containing biomolecules, including cysteine, glutathione, dithiothreitol, and bovine serum albumin, using a new type of carbonaceous nanospheres loaded with silver nanoparticles (Ag NPs) as carrier. This strategy relies upon the place-exchange process between the reporter dyes on the surface of Ag NPs and the thiol groups of thiol-containing biomolecules. The concentration of biomolecules can be determined by monitoring with the fluorescence intensity of reporter dyes dispersed in solution. This new chromogenic assay method could selectively detect these biomolecules in the presence of various other amino acids and monosaccharides and even sensitively detect the thiol-containing biomolecules with different molecular weight, even including proteins.

  17. Studies of Aqueous U(IV) Complexation under Thiol-rich Conditions

    International Nuclear Information System (INIS)

    Cha, Wansik; Cho, Hyeryun; Jung, Euo Chang

    2013-01-01

    Organic thiol compounds and hydrogen sulfide (H 2 S) are electron donors and metabolic products of sulfate reducing bacteria. In addition, they are among redox potential (Eh) determinants of groundwater systems due to their redox characteristics. The low values of acid dissociation constants for .SH (pK a , 7-9) compared to those of aliphatic or phenolic .OH, impart greater anionic and metal-binding properties to the molecules. Recently, we demonstrated that a thiol compound (i. e., thiosalicylate) enhances the solubility of U(VI) at higher pH levels ( 2 nanoparticles may explain the observed solubility increase

  18. Multiplexed Thiol Reactivity Profiling for Target Discovery of Electrophilic Natural Products.

    Science.gov (United States)

    Tian, Caiping; Sun, Rui; Liu, Keke; Fu, Ling; Liu, Xiaoyu; Zhou, Wanqi; Yang, Yong; Yang, Jing

    2017-11-16

    Electrophilic groups, such as Michael acceptors, expoxides, are common motifs in natural products (NPs). Electrophilic NPs can act through covalent modification of cysteinyl thiols on functional proteins, and exhibit potent cytotoxicity and anti-inflammatory/cancer activities. Here we describe a new chemoproteomic strategy, termed multiplexed thiol reactivity profiling (MTRP), and its use in target discovery of electrophilic NPs. We demonstrate the utility of MTRP by identifying cellular targets of gambogic acid, an electrophilic NP that is currently under evaluation in clinical trials as anticancer agent. Moreover, MTRP enables simultaneous comparison of seven structurally diversified α,β-unsaturated γ-lactones, which provides insights into the relative proteomic reactivity and target preference of diverse structural scaffolds coupled to a common electrophilic motif and reveals various potential druggable targets with liganded cysteines. We anticipate that this new method for thiol reactivity profiling in a multiplexed manner will find broad application in redox biology and drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanism of the reaction of ebselen with endogenous thiols : dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen

    NARCIS (Netherlands)

    Haenen, G R; De Rooij, B M; Vermeulen, N P; Bast, A

    The therapeutic effect of ebselen has been linked to its peroxidase activity. In the present study, the peroxidase activity of ebselen toward H2O2 with the endogenous thiols GSH and dihydrolipoate [L(SH)2] as cofactors was determined. When GSH was used, peroxide removal was described by a ter uni

  20. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols

    Science.gov (United States)

    Kang, Jin; Huo, Fangjun; Chao, Jianbin; Yin, Caixia

    2018-04-01

    Small molecule biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play many crucial roles in physiological processes. In this work, we have prepared a nitroolefin-based BODIPY fluorescent probe with excellent water solubility for detection thiols, which displayed ratiometric fluorescent signal for thiols. Incorporation of a nitroolefin unit to the BODIPY dye would transform it into a strong Michael acceptor, which would be highly susceptible to sulfhydryl nucleophiles. This probe shows an obvious ratio change upon response with thiols, an increase of the emission at 517 nm along with a concomitant decrease of fluorescence peak at 573 nm. Moreover, these successes of intracellular imaging experiments in A549 cells indicated that this probe is suitable for imaging of ex-/endogenous thiols in living cells.

  1. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.

    Directory of Open Access Journals (Sweden)

    Javiera Norambuena

    Full Text Available Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR, periplasmic thiol oxidation system (DsbA/DsbB and a c-type cytochrome maturation system (DsbD/DsbE. Upon exposure of L. ferriphilum to reactive oxygen species (ROS-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.

  2. Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhonghao Jiang

    Full Text Available Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca(2+ concentration ([Ca(2+]i via Ca(2+ influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS. It is well established that ROS also triggers increases in [Ca(2+]i. However, the relationship and interaction between salinity stress-induced [Ca(2+]i increases and ROS-induced [Ca(2+]i increases remain poorly understood. Using an aequorin-based Ca(2+ imaging assay we have analyzed [Ca(2+]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca(2+]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca(2+]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca(2+]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca(2+]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca(2+]i than did addition of NaCl. These results imply that NaCl-gated Ca(2+ channels and H2O2-gated Ca(2+ channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca(2+]i may reduce the potency of both NaCl and H2O2 in triggering [Ca(2+]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca(2+ permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.

  3. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  4. A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome

    Directory of Open Access Journals (Sweden)

    T.R. Sutton

    2018-06-01

    Full Text Available Several diseases are associated with perturbations in redox signaling and aberrant hydrogen sulfide metabolism, and numerous analytical methods exist for the measurement of the sulfur-containing species affected. However, uncertainty remains about their concentrations and speciation in cells/biofluids, perhaps in part due to differences in sample processing and detection principles. Using ultrahigh-performance liquid chromatography in combination with electrospray-ionization tandem mass spectrometry we here outline a specific and sensitive platform for the simultaneous measurement of 12 analytes, including total and free thiols, their disulfides and sulfide in complex biological matrices such as blood, saliva and urine. Total assay run time is < 10 min, enabling high-throughput analysis. Enhanced sensitivity and avoidance of artifactual thiol oxidation is achieved by taking advantage of the rapid reaction of sulfhydryl groups with N-ethylmaleimide. We optimized the analytical procedure for detection and separation conditions, linearity and precision including three stable isotope labelled standards. Its versatility for future more comprehensive coverage of the thiol redox metabolome was demonstrated by implementing additional analytes such as methanethiol, N-acetylcysteine, and coenzyme A. Apparent plasma sulfide concentrations were found to vary substantially with sample pretreatment and nature of the alkylating agent. In addition to protein binding in the form of mixed disulfides (S-thiolation a significant fraction of aminothiols and sulfide appears to be also non-covalently associated with proteins. Methodological accuracy was tested by comparing the plasma redox status of 10 healthy human volunteers to a well-established protocol optimized for reduced/oxidized glutathione. In a proof-of-principle study a deeper analysis of the thiol redox metabolome including free reduced/oxidized as well as bound thiols and sulfide was performed

  5. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    Science.gov (United States)

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  6. Catalytic effects by thioltransferase on the transfer of methylmercury and p-mercuribenzoate from macromolecules to low molecular weight thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, S.; Svenson, A.

    1978-01-01

    Thiol agarose and glyceraldehyde-3-phosphate dehydrogenase were blocked with methylmercury or p-mercuribenzoate. The exchange of mercurials between the thiol-containing polymers and glutathione or dithioerythritol was investigated. The activity of glyceraldehyde-3-phosphate dehydrogenase was inhibited by blocking thiol-groups with the mercury compounds. Inhibition was reversible when a short period of inactivation was used. Inactivation for longer periods resulted in reduced regain of enzyme activity. The activity was in part regained when either of the 2 thiol compounds was added. Thioltransferase, known to catalyze thiol-disulfide exchange reactions, increased the regain of glyceraldehyde-3-phosphate dehydrogenase activity to nearly the original value. Here, thioltransferase is proposed to catalyze the transfer of organomercurial from one thiol complex to another. Some consequences of the observations in vivo are discussed.

  7. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Wintec

    *For correspondence. Also at the Chemical Biology Unit,. Jawaharlal Nehru Centre for Advanced Scientific Research,. Bangalore 560 064. Facially amphiphilic thiol capped gold and silver nanoparticles. †. SHREEDHAR BHAT a and UDAY MAITRA*. Department of Organic Chemistry, Indian Institute of Science, Bangalore ...

  8. Investigations of thiol-modified phenol derivatives for the use in thiol–ene photopolymerizations

    OpenAIRE

    Sebastian Reinelt; Monir Tabatabai; Urs Karl Fischer; Norbert Moszner; Andreas Utterodt; Helmut Ritter

    2014-01-01

    Summary Thiol–ene photopolymerizations gain a growing interest in academic research. Coatings and dental restoratives are interesting applications for thiol–ene photopolymerizations due to their unique features. In most studies the relative flexible and hydrophilic ester derivative, namely pentaerythritoltetra(3-mercaptopropionate) (PETMP), is investigated as the thiol component. Thus, in the present study we are encouraged to investigate the performance of more hydrophobic ester-free thiol-m...

  9. Modifying surface resistivity and liquid moisture management property of keratin fibers through thiol-ene click reactions.

    Science.gov (United States)

    Yu, Dan; Cai, Jackie Y; Church, Jeffrey S; Wang, Lijing

    2014-01-22

    This paper reports on a new method for improving the antistatic and liquid moisture management properties of keratinous materials. The method involves the generation of thiols by controlled reduction of cystine disulfide bonds in keratin with tris(2-carboxyethyl) phosphine hydrochloride and subsequent grafting of hydrophilic groups onto the reduced keratin by reaction with an acrylate sulfonate or acrylamide sulfonate through thiol-ene click chemistry. The modified substrates were characterized with Raman spectroscopy and scanning electron microscopy and evaluated for their performance changes in liquid moisture management, surface resistivity, and wet burst strength. The results have revealed that the thiol-acrylate reaction is more efficient than the thiol-acrylamide reaction, and the keratinous substrate modified with an acrylate sulfonate salt exhibits significantly improved antistatic and liquid moisture management properties.

  10. Electrodeposition of gold templated by patterned thiol monolayers

    Energy Technology Data Exchange (ETDEWEB)

    She, Zhe [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Di Falco, Andrea [SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS (United Kingdom); Hähner, Georg [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom); Buck, Manfred, E-mail: mb45@st-andrews.ac.uk [EaStCHEM School of Chemistry, University of St. Andrews, KY16 9ST (United Kingdom)

    2016-06-15

    Graphical abstract: - Highlights: • First demonstration of electrodeposition/lift-off of gold using thiol monolayers. • Microelectrode structures with large length to width ratio were generated. • Performance of two different patterning techniques was investigated. • Conditions for achieving good contrast in the electrodeposition were established. - Abstract: The electrochemical deposition of Au onto Au substrates modified by self-assembled monolayers (SAMs) was studied by linear sweep voltammetry (LSV), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Patterned SAMs exhibiting electrochemical contrast were prepared by two different methods. One used microcontact printing (μCP) to generate a binary SAM of ω-(4′-methyl-biphenyl-4-yl)-propane thiol (CH{sub 3}-C{sub 6}H{sub 4}-C{sub 6}H{sub 4}-(CH{sub 2}){sub 3}-SH, MBP3) and octadecane thiol (CH{sub 3}(CH{sub 2}){sub 17}SH, ODT). Templated by the SAM, a gold microelectrode structure was electrodeposited featuring a line 15 μm wide and 3 mm long. After transfer to an epoxy substrate the structure proved to be electrically conductive across the full length. The other patterning method applied electron beam lithography (EBL) where electrochemical contrast was achieved by crosslinking molecules in a single component SAM of MBP3. An electron dose above 250 mC/cm{sup 2} results in a high deposition contrast. The choice of parameters for the deposition/lift-off process is found to be more critical for Au compared to Cu studied previously. The origin of the differences and implications for nanoscale patterning are discussed.

  11. Quantitative interpretation of the transition voltages in gold-poly(phenylene) thiol-gold molecular junctions

    KAUST Repository

    Wu, Kunlin

    2013-01-01

    The transition voltage of three different asymmetric Au/poly(phenylene) thiol/Au molecular junctions in which the central molecule is either benzene thiol, biphenyl thiol, or terphenyl thiol is investigated by first-principles quantum transport simulations. For all the junctions, the calculated transition voltage at positive polarity is in quantitative agreement with the experimental values and shows weak dependence on alterations of the Au-phenyl contact. When compared to the strong coupling at the Au-S contact, which dominates the alignment of various molecular orbitals with respect to the electrode Fermi level, the coupling at the Au-phenyl contact produces only a weak perturbation. Therefore, variations of the Au-phenyl contact can only have a minor influence on the transition voltage. These findings not only provide an explanation to the uniformity in the transition voltages found for π-conjugated molecules measured with different experimental methods, but also demonstrate the advantage of transition voltage spectroscopy as a tool for determining the positions of molecular levels in molecular devices. © 2013 AIP Publishing LLC.

  12. The Protection of Hepatocyte Cells from the Effects of Oxidative Stress by Treatment with Vitamin E in Conjunction with DTT

    Directory of Open Access Journals (Sweden)

    Jen-Hsiang Tsai

    2010-01-01

    Full Text Available We investigated the effect of vitamin E on membrane protein thiols under oxidative stress, which we induced by treating hepatocytes with tert-butyl hydroperoxide (TBH for 60 mins. Those cells which we pretreated with vitamin E formed fewer blebs (22.3% compared to 60.0% in nonvitamin E-treated cells and maintained cytosolic calcium concentration and the number of membrane protein thiols instead of showing the usual symptoms in cells undergoing oxidative stress. Dithiothreitol (DTT also commonly reduces bleb formation in hepatocytes affected by TBH. However, our experiments clearly demonstrate that DTT does not prevent the changes in cytosolic calcium and membrane protein thiols in the blebbing cells. Consequently, we decided to pretreat cells with both DTT and vitamin E and found that the influence of TBH was entirely prevented. These findings may provide us with a new aspect for investigating the mechanism of bleb formation under oxidative stress.

  13. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins

    2011-06-01

    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  14. Role of endogenous thiols in protection

    Science.gov (United States)

    Vos, O.

    Aminothiols represent the most important group of radioprotective compounds. The most effective compounds administered at an optimal dose and time before irradiation are able to provide a protection in mice with a dose reduction factor (DRF) of about 2-2.5. The working mechanism can partly be explained as a scavenging process of radicals induced in water and partly as a chemical repair process of injured DNA. The endogenous aminothiol which has far-out the highest intracellular concentration is glutathione (GSH). The importance of intracellular GSH in determining cellular radiosensitivity has been shown by irradiating cells that had very low GSH levels. Such cells appear to have a high radiosensitivity, especially in hypoxic conditions. On the other hand, it has been demonstrated that induction of a high GSH level (100-200% above the normal level) provides only a small protection. In vitro experiments with DNA indicate that thiols with a high positive charge condense in the vicinity of DNA and are effective protectors, whereas thiols with a negative charge are kep away from it and are poor protectors. In comparison with the most effective exogenous aminothiols like cysteamine and WR1065, GSH is not an effective radioprotector. Putative explanations for this relatively poor protective ability of GSH are presented.

  15. Diselenolane-mediated cellular uptake† †Electronic supplementary information (ESI) available: Detailed procedures and results for all reported experiments. See DOI: 10.1039/c7sc05151d

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I.; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi

    2018-01-01

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides. PMID:29675232

  16. Diselenolane-mediated cellular uptake.

    Science.gov (United States)

    Chuard, Nicolas; Poblador-Bahamonde, Amalia I; Zong, Lili; Bartolami, Eline; Hildebrandt, Jana; Weigand, Wolfgang; Sakai, Naomi; Matile, Stefan

    2018-02-21

    The emerging power of thiol-mediated uptake with strained disulfides called for a move from sulfur to selenium. We report that according to results with fluorescent model substrates, cellular uptake with 1,2-diselenolanes exceeds uptake with 1,2-dithiolanes and epidithiodiketopiperazines with regard to efficiency as well as intracellular localization. The diselenide analog of lipoic acid performs best. This 1,2-diselenolane delivers fluorophores efficiently to the cytosol of HeLa Kyoto cells, without detectable endosomal capture as with 1,2-dithiolanes or dominant escape into the nucleus as with epidithiodiketopiperazines. Diselenolane-mediated cytosolic delivery is non-toxic (MTT assay), sensitive to temperature but insensitive to inhibitors of endocytosis (chlorpromazine, methyl-β-cyclodextrin, wortmannin, cytochalasin B) and conventional thiol-mediated uptake (Ellman's reagent), and to serum. Selenophilicity, the extreme CSeSeC dihedral angle of 0° and the high but different acidity of primary and secondary selenols might all contribute to uptake. Thiol-exchange affinity chromatography is introduced as operational mimic of thiol-mediated uptake that provides, in combination with rate enhancement of DTT oxidation, direct experimental evidence for existence and nature of the involved selenosulfides.

  17. Contrasting bonding behavior of thiol molecules on carbon fullerene structures

    International Nuclear Information System (INIS)

    Mixteco-Sanchez, J.C.; Guirado-Lopez, R.A.

    2003-01-01

    We have performed semiempirical as well as ab initio density-functional theory (DFT) calculations at T=0 to analyze the equilibrium configurations and electronic properties of spheroidal C 60 as well as of cylindrical armchair (5,5) and (8,8) fullerenes passivated with SCH 3 and S(CH 2 ) 2 CH 3 thiols. Our structural results reveal that the lowest-energy configurations of the adsorbates strongly depend on their chain length and on the structure of the underlying substrate. In the low-coverage regime, both SCH 3 and S(CH 2 ) 2 CH 3 molecules prefer to organize into a molecular cluster on one side of the C 60 surface, providing thus a less protective organic coating for the carbon structure. However, with increasing the number of adsorbed thiols, a transition to a more uniform distribution is obtained, which actually takes place for six and eight adsorbed molecules when using S(CH 2 ) 2 CH 3 and SCH 3 chains, respectively. In contrast, for the tubelike arrangements at the low-coverage regime, a quasi-one-dimensional zigzag organization of the adsorbates along the tubes is always preferred. The sulfur-fullerene bond is considerably strong and is at the origin of outward and lateral displacements of the carbon atoms, leading to the stabilization of three-membered rings on the surface (spheroidal structures) as well as to sizable nonuniform radial deformations (cylindrical configurations). The electronic spectrum of our thiol-passivated fullerenes shows strong variations in the energy difference between the highest occupied and lowest unoccupied molecular orbitals as a function of the number and distribution of adsorbed thiols, opening thus the possibility to manipulate the transport properties of these compounds by means of selective adsorption mechanisms

  18. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    Science.gov (United States)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  19. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.

    Science.gov (United States)

    Xiong, Li; Kendrick, Laken L; Heusser, Hannele; Webb, Jamie C; Sparks, Bradley J; Goetz, James T; Guo, Wei; Stafford, Christopher M; Blanton, Michael D; Nazarenko, Sergei; Patton, Derek L

    2014-07-09

    Superamphiphobic surfaces, exhibiting high contact angles and low contact angle hysteresis to both water and low surface tension liquids, have attracted a great deal attention in recent years because of the potential of these materials in practical applications such as liquid-resistant textiles, self-cleaning surfaces, and antifouling/anticorrosion coatings. In this work, we present a simple strategy for fabricating of superamphiphobic coatings based on photopolymerization of hybrid thiol-ene resins. Spray-deposition and UV photopolymerization of thiol-ene resins containing hydrophobic silica nanoparticles and perfluorinated thiols provide a multiscale topography and low-energy surface that endows the surface with superamphiphobicity. The wettability and chemical composition of the surfaces were characterized by contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The hierarchical roughness features of the thiol-ene surfaces were investigated with field-emission scanning electron microscopy. Droplet impact and sandpaper abrasion tests indicate the coatings respectively possess a robust antiwetting behavior and good mechanical durability.

  20. Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.

    Science.gov (United States)

    Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro

    2016-01-01

    Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A novel strategy for global analysis of the dynamic thiol redox proteome.

    Science.gov (United States)

    Martínez-Acedo, Pablo; Núñez, Estefanía; Gómez, Francisco J Sánchez; Moreno, Margoth; Ramos, Elena; Izquierdo-Álvarez, Alicia; Miró-Casas, Elisabet; Mesa, Raquel; Rodriguez, Patricia; Martínez-Ruiz, Antonio; Dorado, David Garcia; Lamas, Santiago; Vázquez, Jesús

    2012-09-01

    Nitroxidative stress in cells occurs mainly through the action of reactive nitrogen and oxygen species (RNOS) on protein thiol groups. Reactive nitrogen and oxygen species-mediated protein modifications are associated with pathophysiological states, but can also convey physiological signals. Identification of Cys residues that are modified by oxidative stimuli still poses technical challenges and these changes have never been statistically analyzed from a proteome-wide perspective. Here we show that GELSILOX, a method that combines a robust proteomics protocol with a new computational approach that analyzes variance at the peptide level, allows a simultaneous analysis of dynamic alterations in the redox state of Cys sites and of protein abundance. GELSILOX permits the characterization of the major endothelial redox targets of hydrogen peroxide in endothelial cells and reveals that hypoxia induces a significant increase in the status of oxidized thiols. GELSILOX also detected thiols that are redox-modified by ischemia-reperfusion in heart mitochondria and demonstrated that these alterations are abolished in ischemia-preconditioned animals.

  2. Chitosan scaffold modified with D-(+) raffinose and enriched with thiol-modified gelatin for improved osteoblast adhesion

    International Nuclear Information System (INIS)

    Galli, C; Parisi, L; Smerieri, A; Lumetti, S; Manfredi, E; Macaluso, G M; Elviri, L; Bianchera, A; Bettini, R; Lagonegro, P

    2016-01-01

    The aim of the present study was to investigate whether chitosan-based scaffolds modified with D-(+) raffinose and enriched with thiol-modified gelatin could selectively improve osteoblast adhesion and proliferation. 2, 3 and 4.5% chitosan films were prepared. Chitosan suitability for tissue engineering was confirmed by protein adsorption assay. Scaffolds were incubated with a 2.5 mg ml −1 BSA solution and the decrease of protein content in the supernatants was measured by spectrophotometry. Chitosan films were then enriched with thiol-modified gelatin and their ability to bind BSA was also measured. Then, 2% chitosan discs with or without thiol-modified gelatin were used as culture substrates for MC3T3-E1 cells. After 72 h cells were stained with trypan blue or with calcein AM and propidium iodide for morphology, viability and proliferation assays. Moreover, cell viability was measured at 48, 72, 96 and 168 h to obtain a growth curve. Chitosan films efficiently bound and retained BSA proportionally to the concentration of chitosan discs. The amount of protein retained was higher on chitosan enriched with thiol-modified gelatin. Moreover, chitosan discs allowed the adhesion and the viability of cells, but inhibited their proliferation. The functionalization of chitosan with thiol-modified gelatin enhanced cell spreading and proliferation. Our data confirm that chitosan is a suitable material for tissue engineering. Moreover, our data show that the enrichment of chitosan with thiol-modified gelatin enhances its biological properties. (paper)

  3. Modification of porous silicon rugate filters through thiol-yne photochemistry

    International Nuclear Information System (INIS)

    Soeriyadi, Alexander H.; Zhu, Ying; Gooding, J. Justin; Reece, Peter

    2014-01-01

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with optical reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)

  4. Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch

    International Nuclear Information System (INIS)

    Wang, Guan M; Sandberg, William C; Kenny, Steven D

    2006-01-01

    The mechanical and dynamical properties of a model Au(111)/thiol surface system were investigated by using localized atomic-type orbital density functional theory in the local density approximation. Relaxing the system gives a configuration where the sulfur atom forms covalent bonds to two adjacent gold atoms as the lowest energy structure. Investigations based on ab initio molecular dynamics simulations at 300, 350 and 370 K show that this tethering system is stable. The rupture behaviour between the thiol and the surface was studied by displacing the free end of the thiol. Calculated energy profiles show a process of multiple successive ruptures that account for experimental observations. The process features successive ruptures of the two Au-S bonds followed by the extraction of one S-bonded Au atom from the surface. The force required to rupture the thiol from the surface was found to be dependent on the direction in which the thiol was displaced, with values comparable with AFM measurements. These results aid the understanding of failure dynamics of Au(111)-thiol-tethered biosurfaces in microfluidic devices where fluidic shear and normal forces are of concern

  5. Acute effects of nitroglycerin depend on both plasma and intracellular sulfhydryl compound levels in vivo. Effect of agents with different sulfhydryl-modulating properties

    DEFF Research Database (Denmark)

    Boesgaard, S; Poulsen, H E; Aldershvile, J

    1993-01-01

    in SH group concentrations (cysteine and glutathione [GSH]) affect the responsiveness to NTG in vivo. METHODS AND RESULTS: GSH and cysteine levels in plasma, vena cava, and aorta were measured after administration of N-acetylserine (placebo, n = 6), N-acetylcysteine (NAC, extracellular and intracellular......BACKGROUND: Changes in sulfhydryl (SH) compound availability may alter the hemodynamic effect of nitroglycerin (NTG). Data on the relation between NTG effect and thiol levels are, however, limited to in vitro experiments. The present study investigates how intracellular and extracellular changes...... SH donor, n = 6), oxothiazolidine (OXO, intracellular SH donor, n = 6), buthionine sulfoximine (BSO, intracellular GSH-depleting agent, n = 6), BSO+NAC (n = 6), and BSO+OXO (n = 6) in chronically catheterized conscious rats. In addition, the effect of 2.5 mg NTG/kg i.v. on mean arterial pressure (MAP...

  6. Cellular thiol levels and aerobic radiosensitization by BSO

    International Nuclear Information System (INIS)

    Varnes, M.E.; Biaglow, J.E.; Roizin-Towle, L.; Hall, E.J.

    1984-01-01

    It has been previously shown that pretreatment of A549 human lung carcinoma cells and V79 cells with BSO results in enhancement of the aerobic radiation response. The authors and others have found that addition of either N-acetylcysteine (NAC) or the radioprotector WR-2721 to BSO-treated cells, just prior to irradiation, results in a return to control levels of aerobic sensitivity. NAC and WR-2721 have no effect on the aerobic response of control cells. Reversal of the BSO effect appears unrelated to intracellular thiol levels, since neither NAC nor WR-2721 replenish NPSH within the time that the reversal of the radiation effect is observed. In addition, NAC and WR-2721 must be present during irradiation in order to reverse the BSO sensitization. The authors are continuing to investigate the phenomenon of BSO-induced aerobic sensitization and its reversal, with particular emphasis on the role of membrane thiols and pyridine nucleotide reducing species in radiation response

  7. Thimerosal Exposure and the Role of Sulfation Chemistry and Thiol Availability in Autism

    Directory of Open Access Journals (Sweden)

    Mark R. Geier

    2013-08-01

    Full Text Available Autism spectrum disorder (ASD is a neurological disorder in which a significant number of the children experience a developmental regression characterized by a loss of previously acquired skills and abilities. Typically reported are losses of verbal, nonverbal, and social abilities. Several recent studies suggest that children diagnosed with an ASD have abnormal sulfation chemistry, limited thiol availability, and decreased glutathione (GSH reserve capacity, resulting in a compromised oxidation/reduction (redox and detoxification capacity. Research indicates that the availability of thiols, particularly GSH, can influence the effects of thimerosal (TM and other mercury (Hg compounds. TM is an organomercurial compound (49.55% Hg by weight that has been, and continues to be, used as a preservative in many childhood vaccines, particularly in developing countries. Thiol-modulating mechanisms affecting the cytotoxicity of TM have been identified. Importantly, the emergence of ASD symptoms post-6 months of age temporally follows the administration of many childhood vaccines. The purpose of the present critical review is provide mechanistic insight regarding how limited thiol availability, abnormal sulfation chemistry, and decreased GSH reserve capacity in children with an ASD could make them more susceptible to the toxic effects of TM routinely administered as part of mandated childhood immunization schedules.

  8. Circadian Rhythm of Hepatic Cytosolic and Nuclear Estrogen and Androgen Receptors

    Science.gov (United States)

    FRANCAVILLA, ANTONIO; EAGON, PATRICIA K.; DiLEO, ALFREDO; VAN THIEL, DAVID H.; PANELLA, CARMINE; POLIMENO, LORENZO; AMORUSO, CINZIA; INGROSSO, MARCELLO; AQUILINO, A. MARIA; STARZL, THOMAS E.

    2010-01-01

    Mammalian liver is a sex steroid-responsive tissue. The effects of these hormones presumably are mediated by hepatic estrogen receptors (ER) and androgen receptors (AR). Serum levels of sex hormones display circadian rhythms. Further, estrogens and androgens are commonly administered; administration of these agents is associated frequently with liver disease. Therefore, we investigated whether the cytosolic and nuclear sex steroid receptors also display a similar circadian rhythm, and whether variations occurred in the distribution of receptors between cytosolic and nuclear compartments. Animals were killed every 4 h from midnight till the following midnight; cytosolic and nuclear levels of both ER and AR were measured. Cytosolic ER reached a maximum level at 4 AM, and a minimum at 8 PM and midnight of both days. Nuclear ER was highest at 8 AM and lowest at 4 PM and 8 PM, a pattern which parallels variations in serum estradiol levels. Cytosolic AR was highest at 8 PM and lowest at midnight and 4 AM. Nuclear AR was highest at 4 AM and lowest at 4 PM and 8 PM. The highest level of nuclear AR does not correspond to the maximum serum testosterone level, which occurred at 4 PM. The total hepatic content of both ER and AR was not constant over the 24-h period, but varied considerably with time of day. These studies suggest that both ER and AR show a distinct circadian rhythm in subcellular compartmentalization, and that total hepatic content of ER and AR varies significantly during a 24-h period. PMID:3710067

  9. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  10. Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein

    DEFF Research Database (Denmark)

    Liu, Xiangdong; Martens, Helle; Schulz, Alexander

    Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein.......Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein....

  11. Involvement of thiol-based mechanisms in plant development.

    Science.gov (United States)

    Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal

    2015-08-01

    Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Urea- Hydrogen Peroxide (UHP Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator

    Directory of Open Access Journals (Sweden)

    M. H. Habibi

    2005-10-01

    Full Text Available Urea-hydrogen peroxide (UHP was used in the presence of maleic anhydride as mediator in a simple and convenient method for the oxidation in high yield of some thiols to the corresponding disulfides. Peroxymaleic acid formed in situ from the reaction of UHP with maleic anhydride has a key role in this oxidation. Performance of the reaction in various solvents showed that methanol was the solvent of choice at 0 oC. The products were isolated by simple filtration on silica gel.

  13. Capillary electrophoresis in the analysis of biologically important thiols

    Czech Academy of Sciences Publication Activity Database

    Lačná, J.; Kubáň, Petr; Foret, František

    2017-01-01

    Roč. 38, č. 1 (2017), s. 203-222 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : biological thiols * capillary electrophoresis * clinical applications Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  14. Cooperative functions of manganese and thiol redox system against oxidative stress in human spermatozoa

    Directory of Open Access Journals (Sweden)

    Amrit Kaur Bansal

    2009-01-01

    Full Text Available Aims: In this study, the effects of 0.1 mM Mn 2+ on thiol components (total thiols [TSH], glutathione reduced [GSH], glutathione oxidized [GSSG] and redox ratio [GSH/ GSSG] have been determined in human spermatozoa. Settings and Design: The subjects of the study were healthy males having more than 75% motility and 80 x 10 6 sperms/mL. Materials and Methods: Fresh semen was suspended in phosphate-buffered saline (PBS (pH 7.2 and this suspension was divided into eight equal fractions. All fractions, control (containing PBS and experimental (treated/untreated with [ferrous ascorbate, FeAA - 200 FeSO 4 μM, 1000 μM ascorbic acid, nicotine (0.5 mM and FeAA + nicotine], supplemented/unsupplemented with Mn 2+ [0.1 mM], were incubated for 2 h at 378C. These fractions were assessed for determining the thiol components. Statistical Analysis: The data were statistically analyzed by Students " t" test. Results and Conclusions: Ferrous ascorbate, nicotine and ferrous ascorbate + nicotine induced oxidative stress and decreased GSH and redox ratio (GSH/GSSG ratio but increased the TSH and GSSG levels. Mn 2+ supplementation improved TSH, GSH and redox ratio (GSH/GSSG but decreased the GSSG level under normal and oxidative stress conditions. Thiol groups serve as defense mechanisms of sperm cells to fight against oxidative stress induced by stress inducers such as ferrous ascorbate, nicotine and their combination (ferrous ascorbate + nicotine. In addition, Mn 2+ supplementation maintains the thiol level by reducing oxidative stress.

  15. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    International Nuclear Information System (INIS)

    Lavayen, V.; O'Dwyer, C.; Cardenas, G.; Gonzalez, G.; Sotomayor Torres, C.M.

    2007-01-01

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of ∼0.9nm and a stability of ∼85 days. V 2 O 5 nanotubes (VOx-NTs) with lengths of ∼2μm and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of ∼4x10 -3 mol dm -3 . The interchange reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane

  16. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control

    International Nuclear Information System (INIS)

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.

  17. Ammodytoxin, a neurotoxic secreted phospholipase A2, can act in the cytosol of the nerve cell

    International Nuclear Information System (INIS)

    Petrovic, Uros; Sribar, Jernej; Paris, Alenka; Rupnik, Marjan; Krzan, Mojca; Vardjan, Nina; Gubensek, Franc; Zorec, Robert; Krizaj, Igor

    2004-01-01

    Recent identification of intracellular proteins that bind ammodytoxin (calmodulin, 14-3-3 proteins, and R25) suggests that this snake venom presynaptically active phospholipase A 2 acts intracellularly. As these ammodytoxin acceptors are cytosolic and mitochondrial proteins, the toxin should be able to enter the cytosol of a target cell and remain stable there to interact with them. Using laser scanning confocal microscopy we show here that Alexa-labelled ammodytoxin entered the cytoplasm of the rat hippocampal neuron and subsequently also its nucleus. The transport of proteins into the nucleus proceeds via the cytosol of a cell, therefore, ammodytoxin passed the cytosol of the neuron on its way to the nucleus. Although it is not yet clear how ammodytoxin is translocated into the cytosol of the neuron, our results demonstrate that its stability in the cytosol is not in question, providing the evidence that the toxin can act in this cellular compartment

  18. Assessment of the aroma impact of major odor-active thiols in pan-roasted white sesame seeds by calculation of odor activity values.

    Science.gov (United States)

    Tamura, Hitoshi; Fujita, Akira; Steinhaus, Martin; Takahisa, Eisuke; Watanabe, Hiroyuki; Schieberle, Peter

    2011-09-28

    Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.

  19. Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer.

    Science.gov (United States)

    Bhatia, Meenakshi; Ahuja, Munish; Mehta, Heena

    2015-10-20

    Thiol-derivatization of xanthan gum polysaccharide was carried out by esterification with mercaptopropionic acid and thioglycolic acid. Thiol-derivatization was confirmed by Fourier-transformed infra-red spectroscopy. Xanthan-mercaptopropionic acid conjugate and xanthan-thioglycolic acid conjugate were found to possess 432.68mM and 465.02mM of thiol groups as determined by Ellman's method respectively. Comparative evaluation of mucoadhesive property of metronidazole loaded buccal pellets of xanthan and thiolated xanthan gum using chicken buccal pouch membrane revealed higher ex vivo bioadhesion time of thiolated xanthan gum as compared to xanthan gum. Improved mucoadhesive property of thiolated xanthan gum over the xanthan gum can be attributed to the formation of disulfide bond between mucus and thiolated xanthan gum. In vitro release study conducted using phosphate buffer (pH 6.8) revealed a sustained release profile of metronidazole from thiolated xanthan pellets as compared to xanthan pellets. In conclusion, thiolation of xanthan improves its mucoadhesive property and sustained the release of metronidazole over a prolonged period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Benign and efficient preparation of thioethers by solvent-free S-alkylation of thiols with alkyl halides catalyzed by potassium fluoride on alumina

    DEFF Research Database (Denmark)

    Nguyen, Kha Ngoc; Duus, Fritz; Luu, Thi Xuan Thi

    2016-01-01

    The preparation of thioethers by S-alkylation of various thiols with alkyl halides under solvent-free reaction conditions using potassium fluoride on alumina (KF/Al2O3) as a solid catalyst has been investigated in detail with respect to three different modes of reaction activation (ultrasound...... irradiation, microwave irradiation, and conventional heating) for obtaining maximum yield of the thioether. The importance of KF/Al2O3 as a particularly efficient catalyst was corroborated for all three modes of reaction activation, although the reaction time was found to be strongly dependent on the mode...

  1. Synthesis and characterization of thiol-ene functionalized siloxanes and evaluation of their polymerization kinetics, network properties, and dental applications

    Science.gov (United States)

    Cole, Megan A.

    We explored formation-structure-property relationships in thiol-ene functionalized oligosiloxanes to create crosslinked networks. Specifically, nine oligomers were synthesized, three with thiol-functional silane repeats and three with allyl-functional silane repeats. Structural variations in each oligomer were systematically induced through the incorporation of non-reactive repeats bearing either diphenyl or di-n-octyl moieties, and the oligomer molecular weight was limited by the presence of monofunctional silane condensation species. The molecular weights and chain compositions of all oligomers were ascertained and subsequently used in the evaluation of network properties formed upon photopolymerization of thiol- and ene-functional reactants. Polymerization kinetics of the thiol-ene functionalized siloxanes were also investigated using photoinitiation owing to the spatial and temporal control afforded by this technique. In particular, the effects of the viscosity of the ene-functionalized oligomer and the degree of thiol functionalization on the observed polymerization rate were determined. Results showed that the speed of polymerization varied with changes to the rate-limiting step, which was heavily influenced by neighboring non-reactive functionalities. Moreover, the thiol-ene reaction was found to exhibity unimolecular termination exclusively in siloxane-based systems. Proposed use of the thiol-ene functionalized siloxane system as a dental impression material necessitated the development of a redox initiation scheme. Evaluation of the benzoylperoxide/dimethyl-p-toluidine redox pair in traditional systems showed bulk thiol-ene polymerizations comparable to photoinitiation with the added advantage of uninhibited depth control, as also demonstrated in small molecule thiol-ene coupling reactions initiated by this same redox system. Application of the redox pair to the siloxane system allowed for the viscoelastic properties as well as the feature replication

  2. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    McKenzie, Marian J; Chen, Ronan K Y; Leung, Susanna; Joshi, Srishti; Rippon, Paula E; Joyce, Nigel I; McManus, Michael T

    2017-12-01

    The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts*

    Science.gov (United States)

    Yoshida, Keisuke; Hara, Satoshi; Hisabori, Toru

    2015-01-01

    Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. To directly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bisphosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network. PMID:25878252

  4. Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Vichi, Stefania; Cortés-Francisco, Nuria; Caixach, Josep

    2015-05-15

    A simultaneous derivatization/extraction method followed by liquid chromatography-electrospray-high resolution mass spectrometry for the determination of volatile thiols in hydroalcoholic matrixes was optimized and used to identify and quantify volatile thiols in wine and beer samples. The method was evaluated in terms of sensitivity, precision, accuracy and selectivity. The experimental LOQs of eleven thiols tested ranged between 0.01 ng/L and 10 ng/L. Intra-day relative standard deviation (RSD) was in general lower than 10% and inter-day RSD ranged between 10% and 30%. Recovery in the model and real matrixes ranged from 45% to 129%. The method was then applied for the analysis of four white wines and six beers. Five out of the eleven reference thiols were identified and quantified in the samples analyzed. The non-target approach, carried out by monitoring the diagnostic ion at m/z 275.9922 [C13H10ONSe](+) in the fragmentation spectrum, allowed detecting, in the same samples, fourteen non-target thiols. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Design, Synthesis, and Characterization of Novel Thiol-Derivatized Ibuprofen Monolayer Protected Gold Clusters

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, K.H.; Lin, Y.Sh.; Huang, P.J.

    2013-01-01

    A series of new thiol-derivatized ibuprofen monolayer protected gold clusters have been prepared by amidation of ibuprofen with alkyl alcohol or aminophenol affording the carboxamide, N-hydroxyalkyl amide 2, and N-hydroxyphenyl amide 6, which were then tosylate with p-toluenesulfonyl chloride at hydroxyl group to give 3 and 7. Reactions of 3 and 7 with NaSH afforded the mercapto derivatives 4 and 8. Conducting Brust’s reaction with a 3:1 mole ratio of thiolate ibuprofen/ AuCl 4 - yielded polydisperse thiol-derivatized ibuprofen-MPCs 5 and 9. All compounds have been identified by NMR, MS, UV, and IR spectroscopies. Compounds 4 and 8 and the MPCs 5 and 9 have been investigated by using the method of 1 H NMR spectroscopy. The broadening of the signals from 0.8 to 2.0 ppm in 1 H NMR spectrum of MPCs 5 and 9 confirmed the success of the conjugation of thiol-containing derivatives with nano gold cluster.

  6. Novel Thiol-Ene Hybrid Coating for Metal Protection

    Directory of Open Access Journals (Sweden)

    Mona Taghavikish

    2016-04-01

    Full Text Available A novel hybrid anticorrosion coating with dual network of inorganic (Si–O–Si and organic bonds (C–S–C was prepared on metal through an in situ sol-gel and thiol-ene click reaction. This novel interfacial thin film coating incorporates (3-mercaptopropyl trimethoxysilane (MPTS and 1,4-di(vinylimidazolium butane bisbromide based polymerizable ionic liquid (PIL to form a thiol-ene based photo-polymerized film, which on subsequent sol-gel reaction forms a thin hybrid interfacial layer on metal surface. On top of this PIL hybrid film, a self-assembled nanophase particle (SNAP coating was employed to prepare a multilayer thin film coating for better corrosion protection and barrier performance. The novel PIL hybrid film was characterised for structure and properties using Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA. The corrosion protection performance of the multilayer coating was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. The results reveal that this novel double layer coating on metal offers excellent protection against corrosion and has remarkably improved the barrier effect of the coating.

  7. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    International Nuclear Information System (INIS)

    He Jun; Yang Chen; Xu Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin Jianhua

    2009-01-01

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4 DMBD) interacts with the increasingly harder metal ions of Cu + , Pb 2+ and Eu 3+ to form the coordination networks of Cu 6 (DMBD) 3 (en) 4 (Hen) 6 (1), Pb 2 (DMBD)(en) 2 (2) and Eu 2 (H 2 DMBD) 3 (DEF) 4 (3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination. - Graphical Abstract: Molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid was reacted with Cu + , Pb 2+ and Eu 3+ ions to explore solid state networks with the rich structural features arising from the carboxyl-thiol combination.

  8. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  9. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  10. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    International Nuclear Information System (INIS)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi

    2014-01-01

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au 8 -clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au 8 -cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au 8 -cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au 8 -cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au 8 -cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au 8 -cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot

  11. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi, E-mail: shuyi@nhri.org.tw

    2014-11-07

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au{sub 8}-clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au{sub 8}-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au{sub 8}-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au{sub 8}-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au{sub 8}-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au{sub 8}-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.

  12. Thiol X Click Foldamers for Polymer Affinity

    Science.gov (United States)

    2016-06-24

    polymers   e. Invention  of  a  novel,  robust,  and  ambient   polymerization ...efficiently   polymerized   to   moderate  sized   polymers  capable  of  forming  >>1012  sequence  distinct   polymers ... polymerization  of  nucleobase  appended   thiol-­‐ene  monomers.    Naturally,   the  average   composition  of  the  

  13. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  14. Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2016-01-01

    Full Text Available The chance of exposure to heavy metal for human being rises severely today due to the increasing water contamination and air pollution. Here, we prepared a series of thiol-functionalized mesoporous silica as oral formulation for the prevention and treatment of heavy metal poisoning. The successful incorporation of thiol was verified by the FTIR spectra. SBA15-SH-10 was used for the study as it is of uniform mesopores and fine water dispersibility. In simulated gastrointestinal fluid, the thiol-functionalized mesoporous silica can selectively capture heavy metal, showing a very high affinity for inorganic mercury (II. The blood and urine mercury levels of rats fed with a diet containing Hg (II and material were significantly lower than those of rats fed with the metal-rich diet only. On the contrary, the mercury content in fecal excretion of the treatment group increased more than twice as much as that of the control group. This result indicated that SBA15-SH-10 could effectively remove mercury (II in vivo and the mercury loaded on SBA15-SH-10 would be excreted out. Hence, SBA15-SH-10 has potential application in preventing and treating heavy metal poisoning via digestive system.

  15. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction.

    Directory of Open Access Journals (Sweden)

    Wolfgang Giese

    2018-04-01

    Full Text Available The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus.

  16. Pressurized liquid extraction-assisted mussel cytosol preparation for the determination of metals bound to metallothionein-like proteins

    International Nuclear Information System (INIS)

    Santiago-Rivas, Sandra; Moreda-Pineiro, Antonio; Bermejo-Barrera, Pilar; Moreda-Pineiro, Jorge; Alonso-Rodriguez, Elia; Muniategui-Lorenzo, Soledad; Lopez-Mahia, Purificacion; Prada-Rodriguez, Dario

    2007-01-01

    The possibilities of pressurized liquid extraction (PLE) have been novelty tested to assist the cytosol preparation from wet mussel soft tissue before the determination of metals bound to metallothionein-like proteins (MLPs). Results obtained after PLE were compared with those obtained after a classical blending procedure for mussel cytosolic preparation. Isoforms MLP-1 (retention time of 4.1 min) and MLP-2 (retention time of 7.4 min) were separated by anion exchange high-performance liquid chromatography (HPLC) and the concentrations of Ba, Cu, Mn, Sr and Zn bound to MLP isoforms were directly measured by inductively coupled plasma-atomic emission spectrometry (ICP-OES) as a multi-element detector. The optimized PLE-assisted mussel cytosol preparation has consisted of one extraction cycle at room temperature and 1500 psi for 2 min. Since separation between the solid mussel residue and the extract (cytosol) is performed by the PLE system, the cytosol preparation method is faster than conventional cytosol preparation methods by cutting/blending using Ultraturrax or Stomacher devices

  17. Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter

    Science.gov (United States)

    Jeremiason, Jeffrey D.; Portner, Joshua C.; Aiken, George R.; Hiranaka, Amber J.; Dvorak, Michelle T.; Tran, Khuyen T.; Latch, Douglas E.

    2015-01-01

    This study examined the kinetics of photoreduction of Hg(II) and photodemethylation of methylmercury (MeHg+) attached to, or in the presence of, dissolved organic matter (DOM). Both Hg(II) and MeHg+ are principally bound to reduced sulfur groups associated with DOM in many freshwater systems. We propose that a direct photolysis mechanism is plausible for reduction of Hg(II) bound to reduced sulfur groups on DOM while an indirect mechanism is supported for photodemethylation of MeHg+ bound to DOM. UV spectra of Hg(II) and MeHg+ bound to thiol containing molecules demonstrate that the Hg(II)–S bond is capable of absorbing UV-light in the solar spectrum to a much greater extent than MeHg+–S bonds. Experiments with chemically distinct DOM isolates suggest that concentration of DOM matters little in the photochemistry if there are enough reduced S sites present to strongly bind MeHg+ and Hg(II); DOM concentration does not play a prominent role in photodemethylation other than to screen light, which was demonstrated in a field experiment in the highly colored St. Louis River where photodemethylation was not observed at depths ≥10 cm. Experiments with thiol ligands yielded slower photodegradation rates for MeHg+ than in experiments with DOM and thiols; rates in the presence of DOM alone were the fastest supporting an intra-DOM mechanism. Hg(II) photoreduction rates, however, were similar in experiments with only DOM, thiols plus DOM, or only thiols suggesting a direct photolysis mechanism. Quenching experiments also support the existence of an intra-DOM photodemethylation mechanism for MeHg+. Utilizing the difference in photodemethylation rates measured for MeHg+ attached to DOM or thiol ligands, the binding constant for MeHg+ attached to thiol groups on DOM was estimated to be 1016.7.

  18. Mitochondrial thiol modification by a targeted electrophile inhibits metabolism in breast adenocarcinoma cells by inhibiting enzyme activity and protein levels

    Directory of Open Access Journals (Sweden)

    M. Ryan Smith

    2016-08-01

    Full Text Available Many cancer cells follow an aberrant metabolic program to maintain energy for rapid cell proliferation. Metabolic reprogramming often involves the upregulation of glutaminolysis to generate reducing equivalents for the electron transport chain and amino acids for protein synthesis. Critical enzymes involved in metabolism possess a reactive thiolate group, which can be modified by certain oxidants. In the current study, we show that modification of mitochondrial protein thiols by a model compound, iodobutyl triphenylphosphonium (IBTP, decreased mitochondrial metabolism and ATP in MDA-MB 231 (MB231 breast adenocarcinoma cells up to 6 days after an initial 24 h treatment. Mitochondrial thiol modification also depressed oxygen consumption rates (OCR in a dose-dependent manner to a greater extent than a non-thiol modifying analog, suggesting that thiol reactivity is an important factor in the inhibition of cancer cell metabolism. In non-tumorigenic MCF-10A cells, IBTP also decreased OCR; however the extracellular acidification rate was significantly increased at all but the highest concentration (10 µM of IBTP indicating that thiol modification can have significantly different effects on bioenergetics in tumorigenic versus non-tumorigenic cells. ATP and other adenonucleotide levels were also decreased by thiol modification up to 6 days post-treatment, indicating a decreased overall energetic state in MB231 cells. Cellular proliferation of MB231 cells was also inhibited up to 6 days post-treatment with little change to cell viability. Targeted metabolomic analyses revealed that thiol modification caused depletion of both Krebs cycle and glutaminolysis intermediates. Further experiments revealed that the activity of the Krebs cycle enzyme, aconitase, was attenuated in response to thiol modification. Additionally, the inhibition of glutaminolysis corresponded to decreased glutaminase C (GAC protein levels, although other protein levels were

  19. Biochemical Characterization of a Thiol-Activated, Oxidation Stable Keratinase from Bacillus pumilus KS12

    Directory of Open Access Journals (Sweden)

    Rinky Rajput

    2010-01-01

    Full Text Available An extracellular keratinase from Bacillus pumilus KS12 was purified by DEAE ion exchange chromatography. It was a 45 kDa monomer as determined by SDS PAGE analysis. It was found to be an alkaline, serine protease with pH and temperature optima of 10 and 60C, respectively. It was thiol activated with two- and eight-fold enhancement in presence of 10 mM DTT and β-mercaptoethanol, respectively. In addition, its activity was stimulated in the presence of various surfactants, detergents, and oxidizing agents where a nearly 2- to 3-fold enhancement was observed in presence of H2O2 and NaHClO3. It hydrolyzed broad range of complex substrates including feather keratin, haemoglobin, fibrin, casein,and α-keratin. Analysis of amidolytic activity revealed that it efficiently cleaved phenylalanine → leucine → alanine- p-nitroanilides. It also cleaved insulin B chain between Val2- Asn3, Leu6-Cys7 and His10-Leu11 residues.

  20. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    Science.gov (United States)

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  1. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  2. Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices.

    Science.gov (United States)

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  3. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction

    OpenAIRE

    Saed, Mohand O.; Torbati, Amir H.; Nair, Devatha P.; Yakacki, Christopher M.

    2016-01-01

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addi...

  4. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    Science.gov (United States)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  5. Glutathione and Mitochondria

    Directory of Open Access Journals (Sweden)

    Vicent eRibas

    2014-07-01

    Full Text Available Glutathione (GSH is the main nonprotein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes. While synthesized exclusively in the cytosol from its constituent amino acids, GSH is distributed in different compartments, including mitochondria where its concentration in the matrix equals that of the cytosol. This feature and its negative charge at physiological pH imply the existence of specific carriers to import GSH from the cytosol to the mitochondrial matrix, where it plays a key role in defense against respiration-induced reactive oxygen species and in the detoxification of lipid hydroperoxides and electrophiles. Moreover, as mitochondria play a central strategic role in the activation and mode of cell death, mitochondrial GSH has been shown to critically regulate the level of sensitization to secondary hits that induce mitochondrial membrane permeabilization and release of proteins confined in the intermembrane space that once in the cytosol engage the molecular machinery of cell death. In this review, we summarize recent data on the regulation of mitochondrial GSH and its role in cell death and prevalent human diseases, such as cancer, fatty liver disease and Alzheimer’s disease.

  6. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    Haegele, R.G.

    1981-01-01

    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG) [de

  7. Oral-Fluid Thiol-Detection Test Identifies Underlying Active Periodontal Disease Not Detected by the Visual Awake Examination.

    Science.gov (United States)

    Queck, Katherine E; Chapman, Angela; Herzog, Leslie J; Shell-Martin, Tamara; Burgess-Cassler, Anthony; McClure, George David

    Periodontal disease in dogs is highly prevalent but can only be accurately diagnosed by performing an anesthetized oral examination with periodontal probing and dental radiography. In this study, 114 dogs had a visual awake examination of the oral cavity and were administered an oral-fluid thiol-detection test prior to undergoing a a full-mouth anesthetized oral examination and digital dental radiographs. The results show the visual awake examination underestimated the presence and severity of active periodontal disease. The thiol-detection test was superior to the visual awake examination at detecting the presence and severity of active periodontal disease and was an indicator of progression toward alveolar bone loss. The thiol-detection test detected active periodontal disease at early stages of development, before any visual cues were present, indicating the need for intervention to prevent periodontal bone loss. Early detection is important because without intervention, dogs with gingivitis (active periodontal disease) progress to irreversible periodontal bone loss (stage 2+). As suggested in the current AAHA guidelines, a thiol-detection test administered in conjunction with the visual awake examination during routine wellness examinations facilitates veterinarian-client communication and mitigates under-diagnosis of periodontal disease and underutilization of dental services. The thiol-detection test can be used to monitor the periodontal health status of the conscious patient during follow-up examinations based on disease severity.

  8. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    International Nuclear Information System (INIS)

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-01-01

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  9. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  10. Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity.

    Science.gov (United States)

    Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J; Xia, Menghang; Attene-Ramos, Matias S

    2017-08-01

    Haloacetamides (HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S N 2 reaction mechanism. Toxicity of the monohalogenated HAMs (iodoacetamide, IAM; bromoacetamide, BAM; or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints. Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM>BAM>CAM for Rad51, and BAM≈IAM>CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM. Copyright © 2017. Published by Elsevier B.V.

  11. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell Quantum Dots by Ligand Exchange

    Directory of Open Access Journals (Sweden)

    Huaping Zhu

    2014-01-01

    Full Text Available The colloidal photoluminescent quantum dots (QDs of CdSe (core and CdSe/ZnS (core/shell were synthesized at different temperatures with different growth periods. Optical properties (i.e., UV/Vis spectra and photoluminescent emission spectra of the resulting QDs were investigated. The shell-protected CdSe/ZnS QDs exhibited higher photoluminescent (PL efficiency and stability than their corresponding CdSe core QDs. Ligand exchange with various thiol molecules was performed to replace the initial surface passivation ligands, that is, trioctylphosphine oxide (TOPO and trioctylphosphine (TOP, and the optical properties of the surface-modified QDs were studied. The thiol ligand molecules in this study included 1,4-benzenedimethanethiol, 1,16-hexadecanedithiol, 1,11-undecanedithiol, biphenyl-4,4′-dithiol, 11-mercapto-1-undecanol, and 1,8-octanedithiol. After the thiol functionalization, the CdSe/ZnS QDs exhibited significantly enhanced PL efficiency and storage stability. Besides surface passivation effect, such enhanced performance of thiol-functionalized QDs could be due to cross-linked assembly formation of dimer/trimer clusters, in which QDs are linked by dithiol molecules. Furthermore, effects of ligand concentration, type of ligand, and heating on the thiol stabilization of QDs were also discussed.

  12. Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase

    Czech Academy of Sciences Publication Activity Database

    Benoni, Roberto; Beck, C. M.; Garza-Sánchez, F.; Bettati, S.; Mozzarelli, A.; Hayes, C. S.; Campanini, B.

    2017-01-01

    Roč. 7, Aug 18 (2017), č. článku 8817. ISSN 2045-2322 Institutional support: RVO:61388963 Keywords : O-acetylserine sulfhydrylase * dependent growth inhibition * Salmonella typhimurium LT-2 Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.259, year: 2016 https://www.nature.com/articles/s41598-017-09022-6

  13. Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection.

    Science.gov (United States)

    Borowczyk, Kamila; Wyszczelska-Rokiel, Monika; Kubalczyk, Paweł; Głowacki, Rafał

    2015-02-15

    In this paper, we describe a simple and robust HPLC based method for determination of total low- and high-molecular-mass thiols, protein S-linked thiols and reduced albumin in plasma. The method is based on derivatization of analytes with 2-chloro-1-methylquinolinium tetrafluoroborate, separation and quantification by reversed-phase liquid chromatography followed by UV detection. Disulfides were converted to their thiol counterparts by reductive cleavage with tris(2-carboxyethyl)phosphine. Linearity in detector response for total thiols was observed over the range of 1-40 μmol L(-1) for Hcy and glutathione (GSH), 5-100 μmol L(-1) for Cys-Gly, 20-300 μmol L(-1) for Cys and 3.1-37.5 μmol L(-1) (0.2-2.4gL(-1)) for human serum albumin (HSA). For the protein S-bound forms these values were as follows: 0.5-30 μmol L(-1) for Hcy and GSH, 2.5-60 μmol L(-1) for Cys-Gly and 5-200 μmol L(-1) for Cys. The LOQs for total HSA, Cys, Hcy, Cys-Gly and GSH were 0.5, 0.2, 0.4, 0.3 and 0.4 μmol L(-1), respectively. The estimated validation parameters for all analytes are more than sufficient to allow the analytical method to be used for monitoring of the total and protein bound thiols as well as redox status of HSA in plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Removal of lead(II ions from aqueous solutions using cashew nut shell liquid-templated thiol-silica materials

    Directory of Open Access Journals (Sweden)

    J. E. G. Mdoe

    2014-09-01

    Full Text Available A range of thiol-silica composites were prepared using cashew nut shell liquid (CNSL or one of its phenolic constituents, cardanol, as templates. The procedure involved formation of a CNSL or cardanol emulsion in a water-ethanol system into which (3-mercaptopropyl-trimethoxysilane and tetraethyl orthosilicate were simultaneously added at various ratios. The reaction mixture was aged at room temperature for 18 h followed by a Soxhlet extraction of the template and drying. The materials were characterized by diffuse reflectance Fourier transform infrared, nitrogen physisorption, scanning electron microscopy and acid titration. Results indicated that indeed the thiol-silica composites were successfully prepared, with thiol group loadings ranging from 1.6-2.5 mmol/g. The materials were tested for lead(II adsorption, and results showed that they had maximum adsorption capacities up to 66.7 mg/g, depending on the thiol group loading and type of template used in preparing the adsorbent. DOI: http://dx.doi.org/10.4314/bcse.v28i3.5

  15. TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing.

    Science.gov (United States)

    Seo, Gil Ju; Kim, Charlotte; Shin, Woo-Jin; Sklan, Ella H; Eoh, Hyungjin; Jung, Jae U

    2018-02-09

    Intracellular nucleic acid sensors often undergo sophisticated modifications that are critical for the regulation of antimicrobial responses. Upon recognition of DNA, the cytosolic sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) produces the second messenger cGAMP, which subsequently initiates downstream signaling to induce interferon-αβ (IFNαβ) production. Here we report that TRIM56 E3 ligase-induced monoubiquitination of cGAS is important for cytosolic DNA sensing and IFNαβ production to induce anti-DNA viral immunity. TRIM56 induces the Lys335 monoubiquitination of cGAS, resulting in a marked increase of its dimerization, DNA-binding activity, and cGAMP production. Consequently, TRIM56-deficient cells are defective in cGAS-mediated IFNαβ production upon herpes simplex virus-1 (HSV-1) infection. Furthermore, TRIM56-deficient mice show impaired IFNαβ production and high susceptibility to lethal HSV-1 infection but not to influenza A virus infection. This adds TRIM56 as a crucial component of the cytosolic DNA sensing pathway that induces anti-DNA viral innate immunity.

  16. MnTE-2-PyP modulates thiol oxidation in a hydrogen peroxide-mediated manner in a human prostate cancer cell.

    Science.gov (United States)

    Tong, Qiang; Zhu, Yuxiang; Galaske, Joseph W; Kosmacek, Elizabeth A; Chatterjee, Arpita; Dickinson, Bryan C; Oberley-Deegan, Rebecca E

    2016-12-01

    production could result in oxidized protein thiol groups. In the presence of MnTE-2-PyP, there was a significant increase in oxidized thiols in PC3 cell lysates and this was reversed with catalase overexpression. Specifically, we showed that p300 was oxidized after MnTE-2-PyP treatment, indicating that MnTE-2-PyP is creating a more oxidizing environment and this is altering the oxidation state of p300 thiol residues. Our data provide an in depth mechanism by which MnTE-2-PyP regulates gene transcription through induced H 2 O 2 mediated oxidation of particular proteins, supporting an important role for MnTE-2-PyP as an effective and innovative antitumor agent to enhance treatment outcomes in prostate cancer radiotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  18. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...

  19. Induction of Cytosolic Acetyl-Coenzyme A Carboxylase in Pea Leaves by Ultraviolet-B Irradiation

    OpenAIRE

    Tomokazu, Konishi; Takahiro, Kamoi; Ryuichi, Matsuno; Yukiko, Sasaki; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Molecular Genetics, Biotechnology Institute, Akita Prefectural College of Agriculture; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University; Department of Food Science and Technology, Faculty of Agriculture, Kyoto University:(Present)Laboratory of Plant Molecular Biology, School of Agricultural Sciences, Nagoya University

    1996-01-01

    Levels of subunits of two acetyl-coenzyme A carboxylases were high in small leaves of Pisum sativum, decreased with growth, and remained constant in fully expanded leaves. Irradiation of fully expanded leaves induced the cytosolic isozyme only. This result suggests a key role for the cytosolic enzyme in protection against UV-B.

  20. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica

    International Nuclear Information System (INIS)

    Li Guoliang; Zhao Zongshan; Liu Jiyan; Jiang Guibin

    2011-01-01

    A thiol-functionalized magnetic mesoporous silica material (called SH-mSi-Fe 3 O 4 ), synthesized by a modified Stoeber method, has been investigated as a convenient and effective adsorbent for heavy metal ions. Structural characterization by powder X-ray diffraction, N 2 adsorption-desorption isotherm, Fourier transform infrared spectroscopy and elemental analyses confirms the mesoporous structure and the organic moiety content of this adsorbent. The high saturation magnetization (38.4 emu/g) make it easier and faster to be separated from water under a moderate magnetic field. Adsorption kinetics was elucidated by pseudo-second-order kinetic equation and exhibited 3-stage intraparticle diffusion mode. Adsorption isotherms of Hg and Pb fitted well with Langmuir model, exhibiting high adsorption capacity of 260 and 91.5 mg of metal/g of adsorbent, respectively. The distribution coefficients of the tested metal ions between SH-mSi-Fe 3 O 4 and different natural water sources (groundwater, lake water, tap water and river water) were above the level of 10 5 mL/g. The material was very stable in different water matrices, even in strong acid and alkaline solutions. Metal-loaded SH-mSi-Fe 3 O 4 was able to regenerate in acid solution under ultrasonication. This novel SH-mSi-Fe 3 O 4 is suitable for repeated use in heavy metal removal from different water matrices.

  1. Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction

    OpenAIRE

    Guzman, Dailyn; Ramis Juan, Xavier; Fernández Francos, Xavier; de la Flor1 López, Sílvia; Serra Albet, Àngels

    2018-01-01

    © 2017 Elsevier B.V. A new triglycidyl eugenol derivative (3EPO-EU) was synthesized and characterized by spectroscopic techniques, and used as starting monomer in the preparation of novel bio-based thiol-epoxy thermosets. As thiols, commercially available tetrathiol derived from pentaerythritol (PETMP), a trithiol derived from eugenol (3SH-EU) and the hexathiol derived from squalene (6SH-SQ) were used in the presence of 4-(N,N-dimethylamino)pyridine as the basic catalyst. A flexible diglycidy...

  2. The cytosolic exonuclease TREX1 inhibits the innate immune response to HIV-1

    Science.gov (United States)

    Yan, Nan; Regalado-Magdos, Ashton D.; Stiggelbout, Bart; Lee-Kirsch, Min Ae; Lieberman, Judy

    2010-01-01

    Viral infection triggers innate immune sensors to produce type I interferons (IFN). However, HIV infection of T cells and macrophages does not trip these alarms. How HIV avoids activating nucleic acid sensors is unknown. The cytosolic exonuclease TREX1 suppressed IFN triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA interference, cytosolic HIV DNA accumulated, and HIV infection induced type I IFN that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate IFN expression via a TBK1, STING and IRF3 dependent pathway. HIV-stimulated IFN production in cells deficient in TREX1 did not involve known nucleic acid sensors. PMID:20871604

  3. Effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice

    International Nuclear Information System (INIS)

    Meng Qingyong; Chen Shali; Liu Shuzheng

    2003-01-01

    Objective: To the effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice. Methods: The expression of proteins was analyzed by gel filtration with Sephadex G-100 and HPLC based on separation of proteins on thymocyte cytosol and nuclei after whole-body irradiation with 75 mGy X-rays and sham-irradiation, and their biological activity was examined by mouse splenocyte proliferation and chromosome aberration of human peripheral blood lymphocytes. Results: HPLC analysis showed that there was a marked increase in expression of 61.4 kD protein in the extract of thymocyte cytosol and 30.4 kD protein in the extract of thymocyte nuclei in comparison with the corresponding fractions from the sham-irradiated control mice. These protein fractions from the thymocyte cytosol and nuclei of the irradiated mice showed both stimulating effect on normal T cell proliferation and protective effect on chromosome damage induced by high dose radiation. Conclusion: These findings might have implications in study of mechanism of immunoenhancement and cytogenetic adaptive response induced by low dose radiation

  4. Content of endogenous thiols and radioresistance of gemmating cells of Saccharomyces ellipsoideus and Saccharomyces cerevisiale yeasts

    International Nuclear Information System (INIS)

    Simonyan, N.V.; Avakyan, Ts.M.; Dzhanpoladyan, N.L.; Stepanyan, L.G.

    1983-01-01

    It has been shown that gemmating cells of ''wild type'' yeasts are more radioresistant and contain more endogenous thiols, than resting cells. Gemmating cells of Saccharomyces cerevisial yeasts, carrying the mutation rad 51, as to radioresistance and content of SH groups do not differ from resting cells. The results obtained testify to a connec-- tion between increased radioresistance of the yeast gemmating cells and increased content of endogenous thiols in them

  5. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Lykke, Anne; Rasmussen, Lene Juel

    2010-01-01

    Several enzymes of the metabolic pathways responsible for metabolism of cytosolic ribonucleotides and deoxyribonucleotides are located in mitochondria. Studies described in this paper suggest dysfunction of the mitochondria to affect these metabolic pathways and limit the available levels...

  6. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    Science.gov (United States)

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  7. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sund, James B., E-mail: jim@jamessund.com [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Causey, Corey P. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Wolter, Scott D. [Department of Physics, Elon University, Elon, NC 27244 (United States); Parker, Charles B., E-mail: charles.parker@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Stoner, Brian R. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Research Triangle Institute (RTI) International, Research Triangle Park, NC (United States); Toone, Eric J. [Departments of Chemistry and Biochemistry, Duke University, Durham, NC (United States); Glass, Jeffrey T. [Department of Electrical and Computer Engineering, Duke University, Durham, NC (United States)

    2014-05-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  8. Diamond surface functionalization with biomimicry – Amine surface tether and thiol moiety for electrochemical sensors

    International Nuclear Information System (INIS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-01-01

    Highlights: • Diamond surfaces were functionalized with organic molecules using a novel approach. • Used biomimicry to select a molecule to bind NO, similar to the human body. • Molecular orbital theory predicted the molecule-analyte oxidation behavior. • A thiol moiety was attached to an amine surface tether on the diamond surface. • XPS analysis verified each surface functionalization step. - Abstract: The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen–oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis

  9. Thiol peptides induction in the seagrass Thalassia testudinum (Banks ex Koenig) in response to cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Legorreta, Teresa [Departamento de Recursos del Mar, CINVESTAV-IPN, Unidad Merida, Apdo. Postal 73-Cordemex, Merida, Yucatan 97310 (Mexico); Mendoza-Cozatl, David; Moreno-Sanchez, Rafael [Departamento de Bioquimica, Instituto Nacional de Cardiologia, Mexico D.F. 14080 (Mexico); Gold-Bouchot, Gerardo [Departamento de Recursos del Mar, CINVESTAV-IPN, Unidad Merida, Apdo. Postal 73-Cordemex, Merida, Yucatan 97310 (Mexico)], E-mail: gold@mda.cinvestav.mx

    2008-01-20

    Trace metal accumulation and thiol compounds synthesis as induced by cadmium exposure was studied in the seagrass Thalassia testudinum. Shoots were exposed for 24, 48, 96 and 144 h to several CdCl{sub 2} concentrations (0, 30, 50 and 70 {mu}M). Levels of cadmium, cysteine, glutathione (GSH), {gamma}-glutamylcysteine ({gamma}-EC), and phytochelatin-like peptides were determined in green blades, live sheaths and root/rhizomes tissues. Metal accumulation was dependent on Cd concentration and type of tissue, with green blades showing the highest content followed by live sheaths and root/rhizomes. All tissues experienced an increase in thiol-containing compounds as a response to cadmium exposure. Live sheaths showed the highest levels of cysteine, GSH and {gamma}-EC. This is the first report of induction of thiol peptides, presumably phytochelatins, by a trace metal in a sea grass species.

  10. Formation of Underbrushes on thiolated Poly (ethylene glycol) PEG monolayers by Oligoethylene glycol (OEG) terminated Alkane Thiols on Gold

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    Adding underbrushes of oligoethylene glycol (OEG) to monolayers of long chain PEG molecules on a surface is one of the strategies [1] in designing a suitable platform for antifouling purpose, where it is possible to have high graft density and molecular conformational freedom[4] simultaneously......, there by maximal retention of activity of covalently immobilised antifouling enzyme [2] on PEG surfaces along with resistance to protein adsorption[3]. Here we present some our studies on the addition of OEG thiol molecules over a self assembled monolayer of PEG thiol on gold. The kinetics of addition of OEG thiol...

  11. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level.Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years].REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations.After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  12. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    Science.gov (United States)

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparison of monoclonal antibodies and tritiated ligands for estrogen receptor assays in 241 breast cancer cytosols

    International Nuclear Information System (INIS)

    Goussard, J.; Lechevrel, C.; Martin, P.M.; Roussel, G.

    1986-01-01

    Estrogen receptor determinations have been performed on 241 cytosols from 160 breast cancer tumors using both radioactive ligands ([ 3 H]-estradiol, [3H]R2858) and monoclonal antibodies (Abbott ER-EIA Kit) to compare the two methods and to evaluate the clinical usefulness of the new immunological, simplified assay. Intra- and interassay reproducibility of the enzyme immunoassay (EIA) method was studied during a 6-month period on 35 standard curves with 4 different batches of monoclonal antibodies. Intraassay coefficients of variation studied on duplicates were smaller than 5% in most cases and reproducibility of the curves showed coefficients of variation lower than 10% except for standard 0 and 5 fmol/ml. Pooled cytosols used as control for the dextran coated charcoal method had interassay variation coefficients between 3.8 and 11.4%. Reproducibility has been studied on clinical specimens assayed twice at two different periods with either EIA or dextran coated charcoal methods. Slopes obtained were 1.05 and 0.96, respectively. A good stability of EIA results was obtained with protein concentrations in the range 4-0.15 mg/ml cytosol. No significant effects of dithiothreitol or monothioglycerol (1 mM) on EIA and dextran coated charcoal assay were observed. Eighty breast cancer cytosols were assayed with both EIA and Scatchard analysis. The slope of the regression curve obtained was 1.04 (r = 0.963). Cytosols were assayed by EIA and by a saturating concentration of tritiated ligand (5 nM). With 153 cytosols the EIA/5 nM slope was 1.34 (r = 0.978). This slope can be compared with the slope Scatchard/5 nM obtained with 90 cytosols: 1.29 (r = 0.985). Absence of cross-reactivity of monoclonal ER antibodies with progesterone receptor was observed

  14. Alterations in cytosol free calcium in horseradish roots simultaneously exposed to lanthanum(III) and acid rain.

    Science.gov (United States)

    Zhang, Xuanbo; Wang, Lihong; Zhou, Anhua; Zhou, Qing; Huang, Xiaohua

    2016-04-01

    The extensive use of rare earth elements (REEs) has increased their environmental levels. REE pollution concomitant with acid rain in many agricultural regions can affect crop growth. Cytosol free calcium ions (Ca(2+)) play an important role in almost all cellular activities. However, no data have been reported regarding the role of cytosol free Ca(2+) in plant roots simultaneously exposed to REE and acid rain. In this study, the effects of exposures to lanthanum(III) and acid rain, independently and in combination, on cytosol free Ca(2+) levels, root activity, metal contents, biomass, cytosol pH and La contents in horseradish roots were investigated. The simultaneous exposures to La(III) and acid rain increased or decreased the cytosol free Ca(2+) levels, depending on the concentration of La(III), and these effects were more evident than independent exposure to La(III) or acid rain. In combined exposures, cytosol free Ca(2+) played an important role in the regulation of root activity, metal contents and biomass. These roles were closely related to La(III) dose, acid rain strength and treatment mode (independent exposure or simultaneous exposure). A low concentration of La(III) (20 mg L(-1)) could alleviate the adverse effects on the roots caused by acid rain, and the combined exposures at higher concentrations of La(III) and acid rain had synergic effects on the roots. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Differential Labeling of Free and Disulfide-Bound Thiol Functions in Proteins

    NARCIS (Netherlands)

    Seiwert, B.; Hayen, H.; Karst, U.

    2008-01-01

    A method for the simultaneous determination of the number of free cysteine groups and disulfide-bound cysteine groups in proteins has been developed based on the sequential labeling of free and bound thiol functionalities with two ferrocene-based maleimide reagents. Liquid

  16. A new ensemble approach based chemosensor for the reversible detection of bio-thiols and its application in live cell imaging

    International Nuclear Information System (INIS)

    Wang, Yue; Zhang, Zhiqiang; Meng, Qingtao; He, Cheng; Zhang, Run; Duan, Chunying

    2016-01-01

    Based on an aldazine-copper chemosensing ensemble (NP-Cu 2+ ), a new fluorescence chemosensor for the detection of biothiols (Cys, Hcy and GSH) was designed and synthesized. In aqueous solution, the ligand NP exhibited high selectivity toward Cu 2+ ions by forming a 2:1 complex, accompanied with a dramatic fluorescence quenching and a notable bathochromic-shift of the absorbance band. Due to the high affinity of thiols and copper, the specific interaction of thiols (Cys, Hcy and GSH) with NP-Cu 2+ ensemble led to the liberation of the NP. As the result, recovery of fluorescence and UV–vis absorbance was observed. The detection limits of NP-Cu 2+ to Cys, Hcy and GSH were estimated to be 1.5 μM, 1.8 μM and 2.2 μM, respectively. The fluorescence “OFF–ON” circle can be repeated to a minimum of 5 times by the alternative addition of thiols and Cu 2+ , implying that NP-Cu 2+ is a recyclable chemosensor for thiols. Results of fluorescence microscopy imaging suggested that NP-Cu 2+ has potential to be used as a powerful tool for the detection of intracellular thiols.

  17. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    Science.gov (United States)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  18. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2009-01-01

    ) of tent-butyl acrylate (tBA) in a controlled fashion by use of NiBr2(PPh3)(2) catalyst to produce Prot-PCL-b-PtBA with narrow polydispersities (1.17-1.39). Subsequent mild deprotection protocols provided HS-PCL-b-PAA. Reduction of a gold salt in the presence of this macroligand under thiol......Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  19. Silenced rice in both cytosolic ascorbate peroxidases displays pre-acclimation to cope with oxidative stress induced by 3-aminotriazole-inhibited catalase.

    Science.gov (United States)

    Bonifacio, Aurenivia; Carvalho, Fabrício E L; Martins, Marcio O; Lima Neto, Milton C; Cunha, Juliana R; Ribeiro, Carolina W; Margis-Pinheiro, Marcia; Silveira, Joaquim A G

    2016-08-20

    The maintenance of H2O2 homeostasis and signaling mechanisms in plant subcellular compartments is greatly dependent on cytosolic ascorbate peroxidases (APX1 and APX2) and peroxisomal catalase (CAT) activities. APX1/2 knockdown plants were utilized in this study to clarify the role of increased cytosolic H2O2 levels as a signal to trigger the antioxidant defense system against oxidative stress generated in peroxisomes after 3-aminotriazole-inhibited catalase (CAT). Before supplying 3-AT, silenced APX1/2 plants showed marked changes in their oxidative and antioxidant profiles in comparison to NT plants. After supplying 3-AT, APX1/2 plants triggered up-expression of genes belonging to APX (OsAPX7 and OsAPX8) and GPX families (OsGPX1, OsGPX2, OsGPX3 and OsGPX5), but to a lower extent than in NT plants. In addition, APX1/2 exhibited lower glycolate oxidase (GO) activity, higher CO2 assimilation, higher cellular integrity and higher oxidation of GSH, whereas the H2O2 and lipid peroxidation levels remained unchanged. This evidence indicates that redox pre-acclimation displayed by silenced rice contributed to coping with oxidative stress generated by 3-AT. We suggest that APX1/2 plants were able to trigger alternative oxidative and antioxidant mechanisms involving signaling by H2O2, allowing these plants to display effective physiological responses for protection against oxidative damage generated by 3-AT, compared to non-transformed plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Attachment Site Cysteine Thiol pKa Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody-Drug Conjugates.

    Science.gov (United States)

    Vollmar, Breanna S; Wei, Binqing; Ohri, Rachana; Zhou, Jianhui; He, Jintang; Yu, Shang-Fan; Leipold, Douglas; Cosino, Ely; Yee, Sharon; Fourie-O'Donohue, Aimee; Li, Guangmin; Phillips, Gail L; Kozak, Katherine R; Kamath, Amrita; Xu, Keyang; Lee, Genee; Lazar, Greg A; Erickson, Hans K

    2017-10-18

    The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pK a . We measured the cysteine thiol pK a using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pK a (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pK a and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pK a of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pK a . The influence of cysteine thiol pK a on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.

  1. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light

  2. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2008-01-01

    Amphiphilic poly(c-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) bearing thiol functionality at the PCL terminal has been synthesized by a combination of ring-opening polymerization (ROP) of c-caprolactone (c-CL), esterification of hydroxy chain end with protected mercaptoacetic acid, subsequ....... As a result stable, aggregation-free nanopaticles with moderate dispersity as estimated from UV-visible spectroscopy and transmission electron microscopy (TEM) data were obtained....... chromatography (SEC), nuclear magnetic resonance eR NMR) and infrared (FT IR) spectroscopy. The capacity of the resulting block copolymer in preparation of monolayer-protected gold nanoparticles has been examined by reduction of a gold salt in the presence of this macroligand under thiol-deficient conditions...

  3. The effects of irradiation on the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver

    International Nuclear Information System (INIS)

    Teshima, Teruki; Mori, Masaki; Honke, Yoshifumi

    1983-01-01

    The effects of irradiation on both the cytosol glucocorticoid receptor and concentrations of corticosterone and cyclic nucleotides in the rat liver were investigated. The liver concentrations of corticosterone and cyclic nucleotides were measured by radioimmunoassay before and after the irradiation of 1,000 rad/l fraction. The glucocorticoid receptor in the liver cytosol was determined by the measurement of the cytosol binding to 3 H-dexamethasone. The cytosol and nuclear corticosterone levels reached a peak 1 day after the irradiation of the rat liver and declined to the control levels after 2 days. The increase in corticosterone levels may be due to the direct stimulation of the right adrenal gland and/ or the stress induced by the irradiation. The binding capacity of the glucocorticoid receptor in rat liver cytosol decreased to the minimum 1 day after the irradiation, and the recovery occurred at 4 days. The Kd value of the glucocorticoid receptor remained unchanged from 1 hour until 4 days but was high at 4 and 7 days. The distinctly increased levels of cyclic GMP in the rat liver were found from 1 hour through 7 days after the irradiation, while cyclic AMP did not change. The inversed relationship between the cytosol glucocorticoid receptor and corticosterone levels in cytosol and the nuclei indicates that the receptor-bound corticosterone in cytosol can be transferred to a nucleus and remain there in the presence of appropriate amounts of corticosterone in cytosol, after which the receptor is released from the nucleus into cytosol. The high Kd values observed 4 -- 7 days after the irradiation may be either due to the direct effect of irradiation or to the replenishment of the receptor with a low affinity. (author)

  4. Fabrication of Biomolecule Microarrays Using Rapid Photochemical Surface Patterning in Thiol-Ene-Based Microfluidic Devices.

    Science.gov (United States)

    Jönsson, Alexander; Lafleur, Josiane P

    2018-01-01

    In many biochip applications, it is advantageous to be able to immobilize biomolecules at specific locations on the surface of solid supports. In this protocol, we describe a photochemical surface patterning procedure based on thiol-ene/yne photochemistry which allows for the simple and rapid selective patterning of biomolecules on thiol-ene solid supports. We describe the preparation of solid supports which are required for the immobilization, including porous monoliths, as well as two different immobilization schemes based on biotin-streptavidin interactions and covalent linkage via free amino groups respectively.

  5. Inhibition of Urease by Disulfiram, an FDA-Approved Thiol Reagent Used in Humans.

    Science.gov (United States)

    Díaz-Sánchez, Ángel Gabriel; Alvarez-Parrilla, Emilio; Martínez-Martínez, Alejandro; Aguirre-Reyes, Luis; Orozpe-Olvera, Jesica Aline; Ramos-Soto, Miguel Armando; Núñez-Gastélum, José Alberto; Alvarado-Tenorio, Bonifacio; de la Rosa, Laura Alejandra

    2016-11-26

    Urease is a nickel-dependent amidohydrolase that catalyses the decomposition of urea into carbamate and ammonia, a reaction that constitutes an important source of nitrogen for bacteria, fungi and plants. It is recognized as a potential antimicrobial target with an impact on medicine, agriculture, and the environment. The list of possible urease inhibitors is continuously increasing, with a special interest in those that interact with and block the flexible active site flap. We show that disulfiram inhibits urease in Citrullus vulgaris (CVU), following a non-competitive mechanism, and may be one of this kind of inhibitors. Disulfiram is a well-known thiol reagent that has been approved by the FDA for treatment of chronic alcoholism. We also found that other thiol reactive compounds (l-captopril and Bithionol) and quercetin inhibits CVU. These inhibitors protect the enzyme against its full inactivation by the thiol-specific reagent Aldrithiol (2,2'-dipyridyl disulphide, DPS), suggesting that the three drugs bind to the same subsite. Enzyme kinetics, competing inhibition experiments, auto-fluorescence binding experiments, and docking suggest that the disulfiram reactive site is Cys592, which has been proposed as a "hinge" located in the flexible active site flap. This study presents the basis for the use of disulfiram as one potential inhibitor to control urease activity.

  6. Characterization of plasma thiol redox potential in a common marmoset model of aging

    Directory of Open Access Journals (Sweden)

    James R. Roede

    2013-01-01

    Full Text Available Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys, cystine (CySS, glutathione (GSH and glutathione disulfide (GSSG. Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (EhCySS is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (Eh to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  7. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Increased thiol levels in antimony-resistant Leishmania infantum isolated from treatment-refractory visceral leishmaniasis in Brazil.

    Science.gov (United States)

    Magalhães, Lucas S; Bomfim, Lays Gs; Mota, Sthefanne G; Cruz, Geydson S; Corrêa, Cristiane B; Tanajura, Diego M; Lipscomb, Michael W; Borges, Valéria M; Jesus, Amélia R de; Almeida, Roque P de; Moura, Tatiana R de

    2018-02-01

    BACKGROUND Treatment-refractory visceral leishmaniasis (VL) has become an important problem in many countries. OBJECTIVES We evaluated the antimony-resistance mechanisms of Leishmania infantum isolated from VL patients refractory or responsive to treatment with pentavalent antimony. METHODS Strains isolated from antimony-refractory patients (in vitro antimony-resistant isolates) and antimony-responsive patients (in vitro antimony-sensitive isolates) were examined. Morphological changes were evaluated by transmission electron microscopy after trivalent antimony exposure. P-glycoprotein (P-gp) efflux pump activity was evaluated using the pump-specific inhibitor verapamil hydrochloride, and the role of thiol in trivalent antimony resistance was investigated using the enzymatic inhibitor L-buthionine sulfoximine. FINDINGS Antimony treatment induced fewer alterations in the cellular structure of L. infantum resistant isolates than in that of sensitive isolates. P-gp efflux activity was not involved in antimony resistance in these isolates. Importantly, the resistant isolates contained higher levels of thiol compared to the sensitive isolates, and inhibition of thiol synthesis in the resistant isolates recovered their sensitivity to trivalent antimony treatment, and enhanced the production of reactive oxygen species in promastigotes exposed to the drug. MAIN CONCLUSIONS Our results demonstrate that isolates from patients with antimony-refractory VL exhibited higher thiol levels than antimony-sensitive isolates. This indicates that redox metabolism plays an important role in the antimony-resistance of New World VL isolates.

  9. Factors influencing the oxidation of cysteamine and other thiols: implications for hyperthermic sensitization and radiation protection

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Issels, R.W.; Gerweck, L.E.; Varnes, M.E.; Jacobson, B.; Mittchell, J.B.; Russo, A.

    1984-01-01

    Some of the factors influencing the oxygen uptake and peroxide formation for cysteamine (MEA) and other thiols in serum-supplemented modified McCoy's 5A, a well-known medium used to cultivate a variety of cells in vitro, have been studied. The oxidation of MEA and cysteine in modified McCoy's 5A has been compared with that in Ham's F-12, MEM, and phosphate-buffered saline. The ability to produce peroxide is dependent upon the temperature, the concentration of thiol, the presence of copper ions, and pH of the medium. Catalase also reduces the oxygen uptake for all thiols. Superoxide dismutase (SOD) was found to stimulate the oxygen uptake in the case of MEA and cysteine, but had little or no effect with DTT and glutathione. The combined presence of SOD and catalase resulted in less inhibition of oxygen uptake than that obtained by catalase alone. Alkaline pH was found to enhance the oxidation of cysteine and MEA. The results indicate that many problems may arise when thiols are added to various media. A major consideration is concerned with the production of peroxide, superoxide, and reduced trace metal intermediates. The presence of these intermediates may result in the production of hydroxyl radical intermediates as well as the eventual oxygen depletion from the medium

  10. Nanocapsule-mediated cytosolic siRNA delivery for anti-inflammatory treatment.

    Science.gov (United States)

    Jiang, Ying; Hardie, Joseph; Liu, Yuanchang; Ray, Moumita; Luo, Xiang; Das, Riddha; Landis, Ryan F; Farkas, Michelle E; Rotello, Vincent M

    2018-06-05

    The use of nanoparticle-stabilized nanocapsules for cytosolic siRNA delivery for immunomodulation in vitro and in vivo is reported. These NPSCs deliver siRNA directly to the cytosol of macrophages in vitro with concomitant knockdown of gene expression. In vivo studies showed directed delivery of NPSCs to the spleen, enabling gene silencing of macrophages, with preliminary studies showing 70% gene knockdown at a siRNA dose of 0.28 mg/kg. Significantly, the delivery of siRNA targeting tumor necrosis factor-α efficiently silenced TNF-α expression in LPS-challenged mice, demonstrating efficacy in modulating immune response in an organ-selective manner. This research highlights the potential of the NPSC platform for targeted immunotherapy and further manipulation of the immune system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    Science.gov (United States)

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  12. A new ensemble approach based chemosensor for the reversible detection of bio-thiols and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue; Zhang, Zhiqiang [Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051 (China); Meng, Qingtao, E-mail: qtmeng@ustl.edu.cn [Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian High-Tech Industrial Zone, 116024 (China); He, Cheng [State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian High-Tech Industrial Zone, 116024 (China); Zhang, Run [Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051 (China); Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109 (Australia); Duan, Chunying, E-mail: cyduan@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian High-Tech Industrial Zone, 116024 (China)

    2016-07-15

    Based on an aldazine-copper chemosensing ensemble (NP-Cu{sup 2+}), a new fluorescence chemosensor for the detection of biothiols (Cys, Hcy and GSH) was designed and synthesized. In aqueous solution, the ligand NP exhibited high selectivity toward Cu{sup 2+} ions by forming a 2:1 complex, accompanied with a dramatic fluorescence quenching and a notable bathochromic-shift of the absorbance band. Due to the high affinity of thiols and copper, the specific interaction of thiols (Cys, Hcy and GSH) with NP-Cu{sup 2+} ensemble led to the liberation of the NP. As the result, recovery of fluorescence and UV–vis absorbance was observed. The detection limits of NP-Cu{sup 2+} to Cys, Hcy and GSH were estimated to be 1.5 μM, 1.8 μM and 2.2 μM, respectively. The fluorescence “OFF–ON” circle can be repeated to a minimum of 5 times by the alternative addition of thiols and Cu{sup 2+}, implying that NP-Cu{sup 2+} is a recyclable chemosensor for thiols. Results of fluorescence microscopy imaging suggested that NP-Cu{sup 2+} has potential to be used as a powerful tool for the detection of intracellular thiols.

  13. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    International Nuclear Information System (INIS)

    Serrano, Fabiana A; Machado, Joel Jr; Santos, Edson L; Pesquero, João B; Martins, Rafael M; Travassos, Luiz R; Caires, Antonio CF; Rodrigues, Elaine G; Matsuo, Alisson L; Monteforte, Priscila T; Bechara, Alexandre; Smaili, Soraya S; Santana, Débora P; Rodrigues, Tiago; Pereira, Felipe V; Silva, Luis S

    2011-01-01

    Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd 2 [S (-) C 2 , N-dmpa] 2 (μ-dppe)Cl 2 } named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. The cyclopalladated C7a complex is

  14. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration.

    Science.gov (United States)

    Gout, Elisabeth; Rébeillé, Fabrice; Douce, Roland; Bligny, Richard

    2014-10-28

    In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.

  15. Elevated oxidative stress monitored via the albumin-thiol redox state is correlated with matrix metalloproteinase-3 elevation in patients with rheumatoid arthritis.

    Science.gov (United States)

    Kizaki, Kazuha; Yoshizumi, Yusuke; Takahashi, Teppei; Era, Seiichi

    2015-01-01

    In rheumatoid arthritis (RA), matrix metalloproteinase-3 (MMP-3) and oxidative stress contribute to joint destruction. However, little is known about the relationship between MMP-3 and oxidative stress in RA. We measured the albumin-thiol redox state as a marker of oxidative stress, MMP-3, and the DAS-28 score calculated using CRP values among forty-seven patients (9 males and 38 females) with RA. According to the serum MMP-3 levels, they were divided into two groups (group A: within normal ranges of 36.9-121.0 ng/mL for men and 17.3-59.7 ng/mL for women; group B: above normal ranges). The albumin-thiol redox state in group B was significantly oxidized compared with that in group A (p < 0.01). The percentage of oxidized albumin-thiol showed a positive correlation with serum MMP-3 (r = 0.52). DAS-28 and CRP were also correlated with the percentage of oxidized albumin-thiol (r = 0.46, r = 0.44). The albumin-thiol redox state was significantly oxidized in correlation with serum MMP-3 elevation in RA.

  16. Interaction of cultured mammalian cells with WR-2721 and its thiol, WR-1065: implications for mechanisms of radioprotection

    International Nuclear Information System (INIS)

    Purdie, J.W.; Inhaber, E.R.; Schneider, H.; Labelle, J.L.

    1983-01-01

    An isothermal microcalorimeter was used to measure changes in heat flow when radioprotective drugs were added to cultured mammalian cells. The heat produced when WR-2721 was added continued for at least 90 min. WR-2721 was dephosphorylated by the cells to thiol (WR-1065) which oxidizes to disulphide. In the microcalorimeter, thiols give an immediate burst of heat due to this oxidation. A biological oxygen monitor revealed that WR-1065 and cysteamine rapidly consumed all the oxygen in culture medium. (10mM WR-1065 deoxygenated medium in 2 min.). Rapid consumption of oxygen by radioprotective thiols indicates that they will not co-exist with oxygen for long in cells. This has two important implications with respect to mechanisms of radioprotection: (1) oxygen in tissues will be consumed rapidly and could results in local hypoxia; and, (2) at modest doses of protective agents the thiol will be consumed in oxic cells and hence very little will be available for reactions such as hydrogen donation. The results indicate that anoxia is probably the principle mechanism of protection by aminothiols in mammals and aerated cells. (author)

  17. Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Moran, Christine H; Rycenga, Matthew; Zhang, Qiang; Xia, Younan

    2011-11-10

    In this work, we used surface-enhanced Raman scattering (SERS) to monitor the replacement of poly(vinyl pyrrolidone) (PVP) on Ag nanocubes by cysteamine, thiol-terminated PEG, and benzenedithiol. PVP is widely used as a colloidal stabilizer and capping agent to control the shape of Ag (as well as many other noble metals) nanocrystals during synthesis, and to stabilize the final colloidal suspension. However, the surface chemistry of Ag nanocrystals often needs to be tailored for specific applications, so the PVP coating must be removed and/or replaced by other ligands. By monitoring the signature peak from the carbonyl groups of PVP, we show, for the first time, that the PVP adsorbed on the surface of Ag nanocubes was completely replaced by the thiol molecules at room temperature over the course of a few hours. We observed the same trend no matter if the Ag nanocubes were suspended in an aqueous solution of the thiol or supported on a silicon substrate and then immersed in the thiol solution.

  18. Adsorption characteristics of self-assembled thiol and dithiol layer on gold

    International Nuclear Information System (INIS)

    Tlili, A.; Abdelghani, A.; Aguir, K.; Gillet, M.; Jaffrezic-Renault, N.

    2007-01-01

    Monolayers of functional proteins are important in many fields related to pure and applied biochemistry and biophysics. The formation of extended uniform protein monolayers by single- or multiple-step self-chemisorption depends on the quality of the functionalized gold surface. The optical and the electrical properties of the 1-nonanethiol and 1,9-nonanedithiol deposited on gold with the self-assembled technique were investigated. We use cyclic voltammetry and impedance spectroscopy to characterize the insulating properties of the two layers. The analysis of the impedance spectra in terms of equivalent circuit of the gold/electrolyte and gold/SAM/electrolyte interface allows defining the thickness of the two thiols and the percentage of coverage area. Atomic force microscopy, contact angle measurement and Fourier transform infra-red spectroscopy have been used for homogeneity, hydrophobic properties and molecular structure of the formed thiols layer, respectively. The measured thickness with impedance spectroscopy fit well the results found with atomic force microscopy

  19. Relationship of non-protein thiol pools and accumulated Cd or Hg in the marine macrophyte Posidonia oceanica (L.) Delile

    International Nuclear Information System (INIS)

    Maserti, B.E.; Ferrillo, V.; Avdis, O.; Nesti, U.; Di Garbo, A.; Catsiki, A.; Maestrini, P.L.

    2005-01-01

    The accumulation of cadmium or mercury and the effect of these elements on the levels of non-protein thiols in the blades of the marine macrophyte Posidonia oceanica were investigated. A significant accumulation of cadmium or mercury, dependent on metal concentration supplied, was observed in metal-treated blades. In the blades treated either with cadmium or mercury, a significant increase in the levels of non-protein thiols (other than glutathione) and a marked depletion of the reduced glutathione content as a function of the metal, exposure time and metal concentration supplied were found. This investigation provides first experimental report on the relationship between non-protein thiol pools and accumulated cadmium or mercury in P. oceanica

  20. Measurement of binding of adenine nucleotides and phosphate to cytosolic proteins in permeabilized rat-liver cells

    NARCIS (Netherlands)

    Gankema, H. S.; Groen, A. K.; Wanders, R. J.; Tager, J. M.

    1983-01-01

    1. A method is described for measuring the binding of metabolites to cytosolic proteins in situ in isolated rat-liver cells treated with filipin to render the plasma membrane permeable to compounds of low molecular weight. 2. There is no binding of ATP or inorganic phosphate to cytosolic proteins,

  1. Prognostic significance of cytosolic pS2 content in ovarian tumors

    International Nuclear Information System (INIS)

    Raigoso, P.; Allende, T.; Zeidan, N.; Llana, B.; Bernardo, L.; Roiz, C.; Tejuca, S.; Vazquez, J.; Lamelas, M.L.

    2002-01-01

    Aim: pS2 is an estrogen regulated peptide which has been associated with a good prognosis an with a more favorable response to treatment in breast cancer patients. In ovarian tumors, the expression of pS2 was demonstrated at both mRNA and protein levels. In addition, it has been showed significant association of pS2 with mucinous differentiation or well differentiation grade of the tumors. However, it is little know about the prognostic significance of the pS2 content in ovarian carcinomas. The aims of the present work were to analyze the cytosolic pS2 content in benign and malignant ovarian tumors, its relationship with clinico-pathologic parameters, steroid receptor status, and prognostic significance. Material and Methods: We analysed the cytosolic concentrations of pS2 in 91 specimen ovarian tissues by an immunoradiometric assay (ELSA-pS2, CIS, France). The tissues were 8 normal ovaries, 43 benign tumors and 40 malignant ovarian tumors. The same ovarian tissues processed to pS2 were analyzed to Estrogen (ER) and Progesterone (PgR) Receptor status. These steroid receptors were quantified biochemically following commercial ELISA method (ABBOTT Diagnostics, Germany). The relationship between cytosolic content and clinico-pathologic factors was examined by the Mann-Whitney or Kruskall-Wallis test. Correlation between steroid receptors and pS2 content was calculated with the Spearman test. Survival curves were calculated using the Kaplan-Meier method and compared by the log-rank test. Differences were considered significant at 5% probability level. Results: pS2 could be detected in 30 cases (32.9%) with values ranged from 0.04 to 89 ng/mg prt. Only one normal ovary showed detectable levels of pS2 and there were not differences in cytosolic content between benign and malignant ovarian tumors. The pS2 levels were only associated to mucinous differentiation in both benign and malignant ovarian tumors (p=0.029 and p=0.015, respectively). Significantly higher

  2. Mediator-assisted Simultaneous probing of Cytosolic and Mitochondrial Redox activity in living cells

    DEFF Research Database (Denmark)

    Heiskanen, Arto; Spegel, Christer; Kostesha, Natalie

    2009-01-01

    the ferricyanide-menadione double mediator system to study the effect of dicoumarol, an inhibitor of cytosolic and mitochondrial oxidoreductases and an uncoupler of the electron transport chain. Evaluation of the role of NAD(P)H-producing pathways in mediating biological effects is facilitated by introducing...... either fructose or glucose as the carbon source, yielding either NADH or NADPH through the glycolytic or pen-rose phosphate pathway, respectively. Respiratory noncompetent cells show greater inhibition of cytosolic menadione-reducing enzymes when NADH rather than NADPH is produced. Spectrophotometric...

  3. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    Science.gov (United States)

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. The chaperone BAG6 captures dislocated glycoproteins in the cytosol.

    Directory of Open Access Journals (Sweden)

    Jasper H L Claessen

    Full Text Available Secretory and membrane (glycoproteins are subject to quality control in the endoplasmic reticulum (ER to ensure that only functional proteins reach their destination. Proteins deemed terminally misfolded and hence functionally defective may be dislocated to the cytosol, where the proteasome degrades them. What we know about this process stems mostly from overexpression of tagged misfolded proteins, or from situations where viruses have hijacked the quality control machinery to their advantage. We know of only very few endogenous substrates of ER quality control, most of which are degraded as part of a signaling pathway, such as Insig-1, but such examples do not necessarily represent terminally misfolded proteins. Here we show that endogenous dislocation clients are captured specifically in association with the cytosolic chaperone BAG6, or retrieved en masse via their glycan handle.

  5. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives.

    Science.gov (United States)

    Lu, Hui; Carioscia, Jacquelyn A; Stansbury, Jeffery W; Bowman, Christopher N

    2005-12-01

    The goal of this work was to investigate the feasibility of formulating novel dental restorative materials that utilize a step-growth thiol-ene photopolymerization. Particularly, we are aiming to significantly reduce the polymerization shrinkage and shrinkage stress while retaining adequate physical properties as compared to current dimethacrylatre-based systems. The thiol-ene system is composed of a 4:3 molar mixture of triallyl-1,3,5-triazine-2,4,6-trione (TATATO) and pentaerythritol tetramercaptopropionate (PETMP). The simultaneous measurement of shrinkage stress and functional group conversion was performed. Solvent extraction of unreacted monomers and dynamic mechanical analysis on the polymer networks that were formed were also studied. Flexural strength was measured for both filled and unfilled PETMP/TATATO and Bis-GMA/TEGDMA systems. Photopolymerization of PETMP/TATATO occurs at a much higher rate, with the maximum polymerization rate six times faster, than Bis-GMA/TEGDMA cured under the identical conditions. The results from the simultaneous measurement of shrinkage stress and conversion showed that the onset of shrinkage stress coincides with the delayed gel point conversion, which is predicted to be 41% for the 3:4 stoichiometric PETMP/TATATO resin composition. The maximum shrinkage stress developed for PETMP/TATATO was about 0.4 MPa, which was only approximately 14% of the maximum shrinkage stress of the Bis-GMA/TEGDMA system. Adequate flexural strength and flexural modulus values were obtained for both filled and unfilled PETMP/TATATO systems. The dramatically reduced shrinkage stress, increased polymerization rate, significance increased functional group conversion, and decreased leachable species are all benefits for the use-of thiol-ene systems as potential dental restorative materials.

  6. Amphiphilic silicone architectures via anaerobic thiol-ene chemistry.

    Science.gov (United States)

    Keddie, Daniel J; Grande, John B; Gonzaga, Ferdinand; Brook, Michael A; Dargaville, Tim R

    2011-11-18

    Despite broad application, few silicone-based surfactants of known structure or, therefore, surfactancy have been prepared because of an absence of selective routes and instability of silicones to acid and base. Herein the synthesis of a library of explicit silicone-poly(ethylene glycol) (PEG) materials is reported. Pure silicone fragments were generated by the B(C(6)F(5))(3)-catalyzed condensation of alkoxysilanes and vinyl-functionalized hydrosilanes. The resulting pure products were coupled to thiol-terminated PEG materials using photogenerated radicals under anaerobic conditions.

  7. Enhancing Electrophoretic Display Lifetime: Thiol-Polybutadiene Evaporation Barrier Property Response to Network Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Caitlyn Christian [California State Polytechnic State Univ., San Luis Obispo, CA (United States)

    2017-02-27

    An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elastic response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and

  8. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  9. Heat- and light-induced thiol-ene oligomerization of soybean oil-based polymercaptan

    Science.gov (United States)

    Polymercaptanized soybean oil (PMSO), the product of a thiol-ene reaction between soybean oil and hydrogen sulfide, is a material of interest as a lubricant additive and polymer precursor. We investigated with gel permeation chromatography, nuclear magnetic resonance (one-dimensional and two-dimensi...

  10. Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol-Ene Functionalization.

    Science.gov (United States)

    Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A

    2016-12-14

    Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.

  11. RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

    Science.gov (United States)

    Wolf, Christine; Rapp, Alexander; Berndt, Nicole; Staroske, Wolfgang; Schuster, Max; Dobrick-Mattheuer, Manuela; Kretschmer, Stefanie; König, Nadja; Kurth, Thomas; Wieczorek, Dagmar; Kast, Karin; Cardoso, M Cristina; Günther, Claudia; Lee-Kirsch, Min Ae

    2016-05-27

    Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.

  12. Role of an external cell membrane and its thiols in realization of the radioprotective effect of anoxia

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Dontsova, G.V.; Panaeva, S.V.

    1988-01-01

    In experiments with Ehrlich ascites tumor cells using a specific thiol blocker 6.6-dithiodinicitinic acid that does not penetrate the cell and therefore only binds SH-groups of peripheral areas of an external cell membrane it was demonstrated that (1) the external cell membrane is the site where the radioprotective effect of anoxia (the oxygen effect) is realized (2) thiols of the esternal cell membrane contribute markedly to the oxygen effect and (3) they are needed at both stages of its realization

  13. Chemical groups and structural characterization of lignin via thiol-mediated demethylation

    Science.gov (United States)

    Lihong Hu; Hui Pan; Yonghong Zhou; Chung-Yun Hse; Chengguo Liu; Baofang Zhang; Bin Xu

    2014-01-01

    A new approach to increase the reactivity of lignin by thiol-mediated demethylation was investigated in this study. Demethylated lignin was characterized by the changes in its hydroxyl and methoxyl groups, molecular weight, and other properties using titration and spectroscopy methods including FT-IR, 1H NMR, UV,and GPC. The total...

  14. Iron and thiols as two major players in carcinogenesis: friends or foes?

    Science.gov (United States)

    Toyokuni, Shinya

    2014-01-01

    Iron is the most abundant metal in the human body and mainly works as a cofactor for proteins such as hemoglobin and various enzymes. No independent life forms on earth can survive without iron. However, excess iron is intimately associated with carcinogenesis by increasing oxidative stress via its catalytic activity to generate hydroxyl radicals. Biomolecules with redox-active sulfhydryl function(s) (thiol compounds) are necessary for the maintenance of mildly reductive cellular environments to counteract oxidative stress, and for the execution of redox reactions for metabolism and detoxification. Involvement of glutathione S-transferase and thioredoxin has long attracted the attention of cancer researchers. Here, I update recent findings on the involvement of iron and thiol compounds during carcinogenesis and in cancer cells. It is now recognized that the cystine/glutamate transporter (antiporter) is intimately associated with ferroptosis, an iron-dependent, non-apoptotic form of cell death, observed in cancer cells, and also with cancer stem cells; the former with transporter blockage but the latter with its stabilization. Excess iron in the presence of oxygen appears the most common known mutagen. Ironically, the persistent activation of antioxidant systems via genetic alterations in Nrf2 and Keap1 also contributes to carcinogenesis. Therefore, it is difficult to conclude the role of iron and thiol compounds as friends or foes, which depends on the quantity/distribution and induction/flexibility, respectively. Avoiding further mutation would be the most helpful strategy for cancer prevention, and myriad of efforts are being made to sort out the weaknesses of cancer cells.

  15. Investigation of curing rates of bio-based thiol-ene films from diallyl 2,5-furandicaboxylate

    DEFF Research Database (Denmark)

    Larsen, Daniel Bo; Sønderbæk-Jørgensen, Rene; Duus, Jens Ø.

    2018-01-01

    The bio-based monomer, 2,5-furandicarboxylic acid, has been adapted to classic thiol-ene chemistry by derivatization of the acid with allyl alcohol. This new monomer has allowed for the synthesis of new thermoset systems, capable of forming green, sustainable materials through UV-crosslinking. In......The bio-based monomer, 2,5-furandicarboxylic acid, has been adapted to classic thiol-ene chemistry by derivatization of the acid with allyl alcohol. This new monomer has allowed for the synthesis of new thermoset systems, capable of forming green, sustainable materials through UV......-crosslinking. In this study, the synthesis of the new monomer along with thorough kinetic studies of the new thermoset systems are presented. In order to determine kinetic values for the systems, all reactions have been followed by real-time FT-IR. Initially, a study of three different photoinitiators is performed...... on a classic TEMPIC-TATATO system, in order to determine the superior initiator for the new systems. The new monomer is crosslinked with five different thiol compounds in both stoichiometric and off-stoichiometric ratios, yielding an array of bio-based thermosets. The properties of these systems are determined...

  16. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Rinaldi, Monica

    2018-01-01

    The innate immune system provides the first line of defense against pathogen infection though also influences pathways involved in cancer immunosurveillance. The innate immune system relies on a limited set of germ line-encoded sensors termed pattern recognition receptors (PRRs), signaling proteins and immune response factors. Cytosolic receptors mediate recognition of danger damage-associated molecular patterns (DAMPs) signals. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Recent studies revealed that PRRs respond to nucleic acids (NA) released by dying, damaged, cancer cells, as danger DAMPs signals, and presence of signaling proteins across cancer types suggests that these signaling mechanisms may be involved in cancer biology. DAMPs play important roles in shaping adaptive immune responses through the activation of innate immune cells and immunological response to danger DAMPs signals is crucial for the host response to cancer and tumor rejection. Furthermore, PRRs mediate the response to NA in several vaccination strategies, including DNA immunization. As route of double-strand DNA intracellular entry, DNA immunization leads to expression of key components of cytosolic NA-sensing pathways. The involvement of NA-sensing mechanisms in the antitumor response makes these pathways attractive drug targets. Natural and synthetic agonists of NA-sensing pathways can trigger cell death in malignant cells, recruit immune cells, such as DCs, CD8 + T cells, and NK cells, into the tumor microenvironment and are being explored as promising adjuvants in cancer immunotherapies. In this minireview, we discuss how cGAS-STING and RIG-I-MAVS pathways have been targeted for cancer treatment in preclinical translational researches. In addition, we present a targeted selection of recent clinical trials employing agonists of cytosolic NA-sensing pathways showing how these pathways

  17. BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy.

    Science.gov (United States)

    Kobayashi, Shouhei; Koujin, Takako; Kojidani, Tomoko; Osakada, Hiroko; Mori, Chie; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-06-02

    Knowledge of the mechanisms by which a cell detects exogenous DNA is important for controlling pathogen infection, because most pathogens entail the presence of exogenous DNA in the cytosol, as well as for understanding the cell's response to artificially transfected DNA. The cellular response to pathogen invasion has been well studied. However, spatiotemporal information of the cellular response immediately after exogenous double-stranded DNA (dsDNA) appears in the cytosol is lacking, in part because of difficulties in monitoring when exogenous dsDNA enters the cytosol of the cell. We have recently developed a method to monitor endosome breakdown around exogenous materials using transfection reagent-coated polystyrene beads incorporated into living human cells as the objective for microscopic observations. In the present study, using dsDNA-coated polystyrene beads (DNA-beads) incorporated into living cells, we show that barrier-to-autointegration factor (BAF) bound to exogenous dsDNA immediately after its appearance in the cytosol at endosome breakdown. The BAF(+) DNA-beads then assembled a nuclear envelope (NE)-like membrane and avoided autophagy that targeted the remnants of the endosome membranes. Knockdown of BAF caused a significant decrease in the assembly of NE-like membranes and increased the formation of autophagic membranes around the DNA-beads, suggesting that BAF-mediated assembly of NE-like membranes was required for the DNA-beads to evade autophagy. Importantly, BAF-bound beads without dsDNA also assembled NE-like membranes and avoided autophagy. We propose a new role for BAF: remodeling intracellular membranes upon detection of dsDNA in mammalian cells.

  18. Thiol-Ene Photo-Click Collagen-PEG Hydrogels: Impact of Water-Soluble Photoinitiators on Cell Viability, Gelation Kinetics and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Róisín Holmes

    2017-06-01

    Full Text Available Thiol-ene photo-click hydrogels were prepared via step-growth polymerisation using thiol-functionalised type-I collagen and 8-arm poly(ethylene glycol norbornene-terminated (PEG-NB, as a potential injectable regenerative device. Type-I collagen was thiol-functionalised by a ring opening reaction with 2-iminothiolane (2IT, whereby up to 80 Abs.% functionalisation and 90 RPN% triple helical preservation were recorded via 2,4,6-Trinitrobenzenesulfonic acid (TNBS colorimetric assay and circular dichroism (CD. Type, i.e., either 2-Hydroxy-1-[4-(2-hydroxyethoxy phenyl]-2-methyl-1-propanone (I2959 or lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP, and concentration of photoinitiator were varied to ensure minimal photoinitiator-induced cytotoxicity and to enable thiol-ene network formation of collagen-PEG mixtures. The viability of G292 cells following 24 h culture in photoinitiator-supplemented media was largely affected by the photoinitiator concentration, with I2959-supplemented media observed to induce higher toxic response (0.1 → 0.5% (w/v I2959, cell survival: 62 → 2 Abs.% compared to LAP-supplemented media (cell survival: 86 → 8 Abs.%. In line with the in vitro study, selected photoinitiator concentrations were used to prepare thiol-ene photo-click hydrogels. Gelation kinetics proved to be largely affected by the specific photoinitiator, with LAP-containing thiol-ene mixtures leading to significantly reduced complete gelation time (τ: 187 s with respect to I2959-containing mixtures (τ: 1683 s. Other than the specific photoinitiator, the photoinitiator concentration was key to adjusting the hydrogel storage modulus (G’, whereby 15-fold G’ increase (232 → 3360 Pa was observed in samples prepared with 0.5% (w/v compared to 0.1% (w/v LAP. Further thiol-ene formulations with 0.5% (w/v LAP and varied content of PEG-NB were tested to prepare photo-click hydrogels with porous architecture, as well as tunable storage modulus (G

  19. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Erin L. Foresman

    2013-01-01

    Full Text Available Superoxide (O2•− contributes to the development of cardiovascular disease. Generation of O2•− occurs in both the intracellular and extracellular compartments. We hypothesized that the gene transfer of cytosolic superoxide dismutase (SOD1 or extracellular SOD (SOD3 to blood vessels would differentially protect against O2•−-mediated endothelial-dependent dysfunction. Aortic ring segments from New Zealand rabbits were incubated with adenovirus (Ad containing the gene for Escherichia coli β-galactosidase, SOD1, or SOD3. Activity assays confirmed functional overexpression of both SOD3 and SOD1 isoforms in aorta 24 h following gene transfer. Histochemical staining for β-galactosidase showed gene transfer occurred in the endothelium and adventitia. Next, vessels were prepared for measurement of isometric tension in Kreb's buffer containing xanthine. After precontraction with phenylephrine, xanthine oxidase impaired relaxation to the endothelium-dependent dilator acetylcholine (ACh, max relaxation 33±4% with XO vs. 64±3% without XO, p<0.05, whereas relaxation to the endothelium-independent dilator sodium nitroprusside was unaffected. In the presence of XO, maximal relaxation to ACh was improved in vessels incubated with AdSOD3 (55±2%, p<0.05 vs. control but not AdSOD1 (34±4%. We conclude that adenoviral-mediated gene transfer of SOD3, but not SOD1, protects the aorta from xanthine/XO-mediated endothelial dysfunction. These data provide important insight into the location and enzymatic source of O2•− production in vascular disease.

  20. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    International Nuclear Information System (INIS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-01-01

    Graphical abstract: - Highlights: • Thin layers of gold were deposited on glass substrate. • Layers were modified by two different ligands, 1,4-dithiothreitol and L-glutathione. • Red shift of SPR band was observed in spectra after modification of Au by thiols. • Charge transfer between Au and S atoms leads to ferromagnetic behaviour of samples. - Abstract: In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV–vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers

  1. Sequence of the gamma-subunit of Spirulina platensis : a new principle of thiol modulation of F0F1 ATP synthase?

    NARCIS (Netherlands)

    Steinemann, D.; Lill, H

    1995-01-01

    The gene encoding the gamma subunit of Spirulina platensis F0F1, the relative of the chloroplast F1 subunit responsible for thiol activation, has been cloned and sequenced. As in other cyanobacteria, a specific couple of cysteines like those involved in thiol modulation of the chloroplast enzyme was

  2. Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.

    Science.gov (United States)

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2015-09-01

    The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.

  3. Kinetics and mechanism of the conversion of a coordinated thiol to a coordinated disulfide by the one-equivalent oxidants neptunium(VI) and cobalt(III) in aqueous perchloric acid

    International Nuclear Information System (INIS)

    Woods, M.; Karbwang, J.; Sullivan, J.C.; Deutsch, E.

    1976-01-01

    Reaction of excess (2-mercaptoethylamine-N,S)bis(ethylenediamine)cobalt(III), I, with the 1-equiv oxidant Np(VI) (or Co 3+ (aq)) in aqueous perchloric acid media is shown to lead to (2-aminoethyl-N 2-ammonioethyl disulfide-S 1 ) bis(ethylenediamine)cobalt(III), II, according to the stoichiometry 5H + + 2I + Np(VI) → II + Co 2+ (aq) + Np(V) + 2enH 2 2+ . This reaction follows the rate law -d[I]/dt = k'' [I] [oxidant]. For Np(VI) as oxidant k'' is independent of [H + ]; at 25 0 C, μ = 1.00 M (LiClO 4 ), k'' = k 0 = 2842 +- 15 M -1 s -1 , ΔH 0 * = 7.57 +- 0.08 kcal/mol, and ΔS 0 * = -17.4 +- 0.3 eu. For Co 3+ (aq) as oxidant, k'' = k 0 + k/sub -1/[H + ] -1 where the inverse acid path is taken to reflect oxidation by CoOH 2+ (aq); at 25 0 C, μ = 1.00 M (LiClO 4 ), k 0 = 933 +- 32 M -1 s -1 , k/sub -1/ = 1152 +- 22 s -1 , ΔH 0 * = 12.5 +- 0.7 kcal/mol, ΔH*/sub -1/ = 18.0 +- 0.4 kcal/mol, ΔS 0 *= -3.1 +- 2.4 eu, and ΔS*/sub -1/ = 15.8 +- 1.2 eu. It is proposed that the conversion of I to II proceeds by initial 1-equiv oxidation of the coordinated thiol, reaction of the resultant coordinated thiol radical (RS.) with additional I to form a relatively stable radical ion dimer (RSSR. - ), and then internal electron transfer within the dimer to yield Co 2+ (aq) and II which contains a coordinated disulfide. The possible generality of this mechanism and its relevance to biological metal-thiol-disulfide interactions are noted

  4. Confirmation of 1-Phenylethane-1-thiol as the Character Impact Aroma Compound in Curry Leaves and Its Behavior during Tissue Disruption, Drying, and Frying.

    Science.gov (United States)

    Steinhaus, Martin

    2017-03-15

    The most odor-active compounds previously identified by application of an aroma extract dilution analysis were quantitated in freshly picked curry leaves, either by stable isotope dilution assays in combination with GC-GC-MS or by GC-FID after simultaneous extraction/fractionation. Odor activity values (OAVs) were calculated as ratios of concentrations to odor threshold values. The topmost OAVs were obtained for (3Z)-hex-3-enal (grassy; OAV 180 000), (1S)-1-phenylethane-1-thiol (sulfury, burnt; OAV 150 000), (1R)-1-phenylethane-1-thiol (sulfury, burnt; OAV 120 000), (3R)-linalool (citrusy; OAV 58 000), and myrcene (geranium leaf-like; OAV 23 000). The high OAVs calculated for its enantiomers confirmed 1-phenylethane-1-thiol as character impact compound of the typical sulfury and burnt aroma of curry leaves. The 1-phenylethane-1-thiol concentration in curry leaves decreased upon tissue disruption and drying, as well as upon frying of fresh leaves. By contrast, frying of dried leaves led to an increase of 1-phenylethane-1-thiol, indicating a yet unknown thermolabile precursor.

  5. Thiol Modification of Psyllium Husk Mucilage and Evaluation of Its Mucoadhesive Applications

    Directory of Open Access Journals (Sweden)

    Meenakshi Bhatia

    2013-01-01

    Full Text Available Thiol functionalization of psyllium was carried out to enhance its mucoadhesive potential. Thiolation of psyllium was achieved by esterification with thioglycolic acid. Thiolation was observed to change the surface morphology of psyllium from fibrous to granular and result in a slight increase in the crystallinity and swelling. Thiolated psyllium was found to contain 3.282 m moles of thiol groups/g of the polymer. Mucoadhesive applications of thiolated psylium were explored by formulating gels using metronidazole as the model drug. On comparative evaluation thiolated psyllium gels showed 3-fold higher mucoadhesive strength than the psyllium gels as determined by modified physical balance using chicken buccal pouch. The results of in vitro release study revealed that thiolated psyllium gels provided a prolonged release of metronidazole. Further, the psyllium and thiolated psyllium gels were found to release the drug following first-order kinetics by combination of polymer relaxation and diffusion through the matrix.

  6. Thiol Modification of Psyllium Husk Mucilage and Evaluation of Its Mucoadhesive Applications

    Science.gov (United States)

    Bhatia, Meenakshi

    2013-01-01

    Thiol functionalization of psyllium was carried out to enhance its mucoadhesive potential. Thiolation of psyllium was achieved by esterification with thioglycolic acid. Thiolation was observed to change the surface morphology of psyllium from fibrous to granular and result in a slight increase in the crystallinity and swelling. Thiolated psyllium was found to contain 3.282 m moles of thiol groups/g of the polymer. Mucoadhesive applications of thiolated psylium were explored by formulating gels using metronidazole as the model drug. On comparative evaluation thiolated psyllium gels showed 3-fold higher mucoadhesive strength than the psyllium gels as determined by modified physical balance using chicken buccal pouch. The results of in vitro release study revealed that thiolated psyllium gels provided a prolonged release of metronidazole. Further, the psyllium and thiolated psyllium gels were found to release the drug following first-order kinetics by combination of polymer relaxation and diffusion through the matrix. PMID:24348147

  7. Photocured thiol-ene based optical fluorescence sensor for determination of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Çubuk, Soner, E-mail: sonercubuk@marmara.edu.tr; Kahraman, Memet Vezir; Yetimoğlu, Ece Kök; Kenan, Sibel

    2014-02-17

    Graphical abstract: -- Highlights: •Photopolymerized fluorescence sensor for Au(III) analysis has been developed. •Preparation of polymeric sensor is simple and quick. •Fluorescence sensor used for analysis of Au(III) in real samples. -- Abstract: This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively.

  8. Photocured thiol-ene based optical fluorescence sensor for determination of gold(III)

    International Nuclear Information System (INIS)

    Çubuk, Soner; Kahraman, Memet Vezir; Yetimoğlu, Ece Kök; Kenan, Sibel

    2014-01-01

    Graphical abstract: -- Highlights: •Photopolymerized fluorescence sensor for Au(III) analysis has been developed. •Preparation of polymeric sensor is simple and quick. •Fluorescence sensor used for analysis of Au(III) in real samples. -- Abstract: This study describes the preparation and the characterization of a new thiol-ene based polymeric fluorescence sensor by photo initiated polymerization of trimethylolpropane tris(3-mercaptopropionate), 2-hydroxyethylacrylate, and 2,4,6-triallyloxy-1,3,5-triazine which are used as monomers and also a photo initiator (2,2-dimethoxy-2-phenylacetophenone) for its usage as optical sensor for gold ions. The thiol-ene based polymeric membrane sensor was characterized by using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). The response characteristics of the sensors including dynamic range, pH effect, response time, and the effect of foreign ions were investigated. Fluorescence spectra showed that the excitation/emission maxima of the membrane were at 379/425 nm, respectively

  9. Thermomechanical characterization of thiol-epoxy shape memory thermosets for mechanical actuators design

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-02-01

    In this paper, shape-memory "thiol-epoxy" polymers are synthesized and characterized as potential thermomechanical actuators. Their thermomechanical properties are investigated through dynamo mechanical and tensile analyses and related to their network structural properties by using "thiol" and "epoxy" compounds of different functionality and structure. Their mechanical properties (resistance at break, elongation limits and strain energy) are related to their shape-memory response under free-recovery conditions and partially-constrained conditions, thus, establishing the connection between network relaxation (free-recovery) with the work output capabilities (partially-constrained). Results show high mechanical performance, achieving high elongation at break values (up to 100%) and stress at break values (up to 50 MPa). The shape-memory experiments reveal strong dependence of the programming conditions and network structure on the recovery efficiency at free-conditions, whereas under partially-constrained conditions, the controlling factors are the mechanical limits at high temperature. Moreover, some recommendations to achieve the maximum work output efficiency for a given operational design of a thermomechanical actuator are deduced.

  10. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    Science.gov (United States)

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity. IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis , are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role

  11. Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs.

    Science.gov (United States)

    Schelté, P; Boeckler, C; Frisch, B; Schuber, F

    2000-01-01

    The comparative reactivity of maleimide and bromoacetyl groups with thiols (2-mercaptoethanol, free cysteine, and cysteine residues present at the N-terminus of peptides) was investigated in aqueous media. These studies were performed (i) with water-soluble functionalized model molecules, i.e., polyoxyethylene-based spacer arms that could also be coupled to lipophilic anchors destined to be incorporated into liposomes, and (ii) with small unilamellar liposomes carrying at their surface these thiol-reactive functions. Our results indicate that an important kinetic discrimination (2-3 orders of magnitude in terms of rate constants) can be achieved between the maleimide and bromoacetyl functions when the reactions with thiols are performed at pH 6.5. The bromoacetyl function which reacts at higher pH values (e.g., pH 9.0) retained a high chemoselectivity; i.e., under conditions where it reacted appreciably with the thiols of, e.g., HS-peptides, it did react with other nucleophilic functions such as alpha- and epsilon-amino groups or imidazole, which could also be present in peptides. This differential reactivity was applied to design chemically defined and highly immunogenic liposomal diepitope constructs as synthetic vaccines, i.e., vesicles carrying at their surface two different peptides conjugated each to a specific amphiphilic anchor. This was realized by coupling sequentially at pH 6.5 and 9.0 two HS-peptides to preformed vesicles containing lipophilic anchors functionalized with maleimide and bromoacetyl groups [Boeckler, C., et al. (1999) Eur. J. Immunol. 29, 2297-2308].

  12. Contribution of captopril thiol group to the prevention of spontaneous hypertension

    Czech Academy of Sciences Publication Activity Database

    Pecháňová, Olga

    2007-01-01

    Roč. 56, Suppl.2 (2007), S41-S48 ISSN 0862-8408 Grant - others:VEGA(SK) 2/6148/26; VEGA(SK) 1/3429/06; APPV(SK) 0586-06 Institutional research plan: CEZ:AV0Z50110509 Keywords : captopril and enalapril * thiols * spontaneous hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.505, year: 2007

  13. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. Dinitrosyl iron complexes with thiol-containing ligands as a "working form" of endogenous nitric oxide.

    Science.gov (United States)

    Vanin, Anatoly F

    2016-04-01

    The material presented herein is an overview of the results obtained by our research team during the many years' study of biological activities and occurrence of dinitrosyl iron complexes (DNIC) with thiol-containing ligands in human and animal organisms. With regard to their dose dependence and vast diversity of biological activities, DNIC are similar to the system of endogenous NO, one of the most universal regulators of biological processes. The role of biologically active components in DNIC is played by their iron-dinitrosyl fragments, [Fe(NO)2], endowed with the ability to generate neutral NO molecules and nitrosonium ions (NO(+)). Their release is effected by heme-and thiol-containing proteins, which fulfill the function of biological targets and acceptors of NO and NO(+). Beneficial regulatory effects of DNIC on physiological and metabolic processes are numerous and diverse and include, among other things, lowering of arterial pressure and accelerated healing of skin wounds. In the course of fast decomposition of their Fe(NO)2 fragments (e.g., in the presence of iron chelators), DNIC produce adverse (cytotoxic) effects, which can best be exemplified by their ability to suppress the development of experimental endometriosis in animals. In animal tissues, DNIC with thiol-containing ligands are predominantly represented by the binuclear form, which, contrary to mononuclear DNIC detectable by the 2.03 signal, is EPR-silent. The ample body of evidence on biological activities and occurrence of DNIC gained so far clearly demonstrates that in human and animal organisms DNIC with thiol-containing ligands represent a "working form" of the system of endogenous NO responsible for its accumulation and stabilization in animal tissues as well as its further transfer to its biological targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genetically encoded pH-indicators reveal activity-dependent cytosolic acidification of Drosophila motor nerve termini in vivo

    Science.gov (United States)

    Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T

    2013-01-01

    All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611

  16. Relationship between variations in the level of endogenous thiols and antioxidant activity of lipids and radiosensitivity of animals of different species

    International Nuclear Information System (INIS)

    Burlakova, E.B.; Graevskaya, B.M.; Ivanenko, G.F.; Shishkina, L.N.; AN SSSR, Moscow. Inst. Ehvolyutsionnoj Morfologii i Ehkologii Zhivotnykh)

    1978-01-01

    Initial levels of total and nonprotein sulfhydryl groups and antioxidant activity (AOA) of lipids of the spleen and liver are measured in animals of different species. Radiosensitivity of animals is assessed by the value of LDsub(50/30). No reliable correlation has been revealed between initial levels of endogenous thiols and AOA of lipids. There is a positive correlation between AOA of the spleen lipids and LDsub(50/30) as well as between the level of endogenous thiols and radioresistance of the animal species under study. It is likely that the level of endogenous thiols and AOA of lipids reflect various aspects of cellular metabolism which is responsible for radioresistance of the organism

  17. Preconcentration and Extraction of Copper ion on Activated Carbon using α-Benzoinoxime and Pyrimidin 2-Thiole

    International Nuclear Information System (INIS)

    Ghaedi, M.; Mortazavi, K.; Janbezar, M.; Parham, H.

    2006-01-01

    Activated carbon modified methods were used for preconcentration and determination of copper in some real sample by flame atomic absorption spectrometry. The copper was adsorbed quantitatively on activated carbon due to their complexation with α-benzoinoxime and pyrimidin 2-thiole. The adsorbed copper on solid phase was eluted quantitatively using nitric acid. The important parameters such as pH, amount of carrier, flow rate, amount of activated carbon and type and concentration of eluting agent for obtaining maximum recovery was optimized. The methods based on α- benzoinoxime and pyrimidin 2-thiole at optimum conditions is linear over concentration range of 0.05-1.3 ug mL and 0.06-1.2 ug mL of copper with correlation coefficient of 0.9997 and 0.9994 and both detection limit of 1.2 ngmL, respectively. The preconcentration leads to enrichment factor of 200 and 240 and break through volume of 1200 mL for methods based on α- benzoinoxime and pyrimidin 2-thiole, respectively. The methods have good tolerance limit of interfering ion and selectivity that has been successfully applied for determination of copper content in real sample such as blood, wastewater and river sample. (author)

  18. Contact-Engineered Electrical Properties of MoS2 Field-Effect Transistors via Selectively Deposited Thiol-Molecules.

    Science.gov (United States)

    Cho, Kyungjune; Pak, Jinsu; Kim, Jae-Keun; Kang, Keehoon; Kim, Tae-Young; Shin, Jiwon; Choi, Barbara Yuri; Chung, Seungjun; Lee, Takhee

    2018-05-01

    Although 2D molybdenum disulfide (MoS 2 ) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high-performance 2D MoS 2 -based devices. In this regard, many studies have been conducted to improve the carrier-injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time-consuming and low-yield transfer processes on sub-micrometer MoS 2 flakes. Here, a simple contact-engineering method is suggested, introducing chemically adsorbed thiol-molecules as thin tunneling barriers between the metal electrodes and MoS 2 channels. The selectively deposited thiol-molecules via the vapor-deposition process provide additional tunneling paths at the contact regions, improving the carrier-injection properties with lower activation energies in MoS 2 field-effect transistors. Additionally, by inserting thiol-molecules at the only one contact region, asymmetric carrier-injection is feasible depending on the temperature and gate bias. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A structurally driven analysis of thiol reactivity in mammalian albumins.

    Science.gov (United States)

    Spiga, Ottavia; Summa, Domenico; Cirri, Simone; Bernini, Andrea; Venditti, Vincenzo; De Chiara, Matteo; Priora, Raffaella; Frosali, Simona; Margaritis, Antonios; Di Giuseppe, Danila; Di Simplicio, Paolo; Niccolai, Neri

    2011-04-01

    Understanding the structural basis of protein redox activity is still an open question. Hence, by using a structural genomics approach, different albumins have been chosen to correlate protein structural features with the corresponding reaction rates of thiol exchange between albumin and disulfide DTNB. Predicted structures of rat, porcine, and bovine albumins have been compared with the experimentally derived human albumin. High structural similarity among these four albumins can be observed, in spite of their markedly different reactivity with DTNB. Sequence alignments offered preliminary hints on the contributions of sequence-specific local environments modulating albumin reactivity. Molecular dynamics simulations performed on experimental and predicted albumin structures reveal that thiolation rates are influenced by hydrogen bonding pattern and stability of the acceptor C34 sulphur atom with donor groups of nearby residues. Atom depth evolution of albumin C34 thiol groups has been monitored during Molecular Dynamic trajectories. The most reactive albumins appeared also the ones presenting the C34 sulphur atom on the protein surface with the highest accessibility. High C34 sulphur atom reactivity in rat and porcine albumins seems to be determined by the presence of additional positively charged amino acid residues favoring both the C34 S⁻ form and the approach of DTNB. Copyright © 2011 Wiley Periodicals, Inc.

  20. Reaction of [3H]-taurine maleimide with platelet surface thiols

    International Nuclear Information System (INIS)

    Karl, D.W.; Mills, D.C.B.

    1986-01-01

    Taurine Maleimide (2-maleimidoethanesulfonate, TM) was synthesized from [2- 3 H]-taurine and methoxycarbonylmaleimide (MCM). The yield of a 1 μmol synthesis approached 100% (based on taurine) when MCM was used in 4-fold excess. The product (TM*) was purified by ion exchange chromatography. TM* reacted irreversibly with thiol groups on the surface of washed human platelets, leading to incorporation of radioactivity into platelet pellets. Incorporation was blocked by cysteine, mercuribenzenesulfonate (MBS), dithiobisnitrobenzoate, and N-ethylmaleimide, but not by taurine or by inhibitors of anion transport. Reaction of TM* with platelets showed the dependence on time and concentration characteristics of a bimolecular reaction. The number of reactive sites ranged from 1 to 5 x 10 5 /platelet, and the apparent rate constant from 1 to 3 x 10 3 /(M x min). TM was less effective than MBS as an inhibitor of platelet aggregation induced by several agents. TM had no effect on the uptake of serotonin, taurine, or phosphate by the platelets, processes which are sensitive to MBS. These differences, considered with the similarity in size and charge of TM and MBS, suggest that classes of thiols defined as exofacial by their accessibility to MBS can differ substantially in their reactivity with other impermeant reagents

  1. Evaluation of Dynamic Disulphide/Thiol Homeostasis in Silica Exposed Workers

    Directory of Open Access Journals (Sweden)

    Meşide Gündüzöz

    2017-04-01

    Full Text Available Background: Oxidative stress is implicated as one of the main molecular mechanism underlying silicosis. Aims: In this study, our aim was to asses the redox status in occupationally silica-exposed workers, by evaluating the dynamic thiol-disulphide homeostasis. Study Design: Case-control study. Methods: Thirty-six male workers occupationally exposed to silica particles and 30 healthy volunteers, working as office workers were included to the study. Posteroanterior chest radiographs and pulmonary function tests of both groups were evaluated. Also serum thiol disulphide levels were measured using the spectrophotometric method described by Erel and Neşelioğlu. Results: Among the 36 workers that underwent pulmonary function tests 6 (17% had obstructive, 7 (19% had restrictive, 6 (17% had obstructive and restrictive signs whereas 17 (47% had no signs. The mean PFTs results of silica-exposed workers were significantly lower than control subjects. The serum disulphide levels of silica-exposed workers were significantly higher than control subjects (23.84±5.89 μmol/L and 21.18±3.44 μmol/L, respectively p=0.02. Conclusion: The serum disulphide levels, a biomarker of oxidative stress, are found to be higher in silica-exposed workers

  2. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  3. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  4. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings

    KAUST Repository

    Chen, Tianyou

    2017-09-21

    A strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity. The thiol-fluorous-supported catalyst was found active in Ullmann-type homocoupling of aryl halides and showed exceptional selectivity in this reaction.

  5. Thiols make for better catalysts: Au nanoparticles supported on functional SBA-15 for catalysis of Ullmann-type homocouplings

    KAUST Repository

    Chen, Tianyou; Chen, Batian; Bukhriakov, Konstantin; Rodionov, Valentin

    2017-01-01

    A strategy for arraying small gold nanoparticles on a mesoporous support modified with single-component or mixed self-assembled monolayers is described. The use of mixed surface modifiers allows easy access to a range of surface chemistries and modalities of interaction between nanoparticles and supports. A combination of thiol groups and linear semifluorinated chains effectively stabilized the nanoparticles against aggregation, while preserving their catalytic activity. The thiol-fluorous-supported catalyst was found active in Ullmann-type homocoupling of aryl halides and showed exceptional selectivity in this reaction.

  6. Effects of pO2 on the activation of skeletal muscle ryanodine receptors by NO: a cautionary note.

    Science.gov (United States)

    Cheong, Eunji; Tumbev, Vassil; Stoyanovsky, Detcho; Salama, Guy

    2005-11-01

    Eu et al., reported that O2 dynamically controls the redox state of 6-8 out of 50 thiols per skeletal ryanodine receptor (RyR1) subunit and thereby tunes the response of Ca2+-release channels to authentic nitric oxide (NO) [J.P. Eu, J. Sun, L. Xu, J.S. Stamler, G. Meissner, The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions, Cell 102 (2000) 499-509]. A role for O2 was based on the observation that RyR1 can be activated by submicromolar NO at physiological ( approximately 10 mmHg) but not ambient (approximately 150 mmHg) pO2. At ambient pO2, these critical thiols were oxidized but incubation at low pO2 reset the redox state of these thiols, closed RyR1 channels and made these thiols available for nitrosation by low NO concentrations. Eu et al., postulated the existence of a redox/O2sensor that couples channel activity to NO and pO2 and explained that "the nature of the 'redox/O2 sensor' that couples channel activity to intracellular redox chemistry is a mystery". Here, we re-examined the effect of pO2 on RyR1 and find that incubation of RyR1 at low pO2 did not alter channel activity and NO (0.5-50 microM) failed to activate RyR1 despite a wide range of pO2 pre-incubation conditions. We show that low levels of NO do not activate RyR1, do not reverse the inhibition of RyR1 by calmodulin (CaM) even at physiological pO2. Similarly, the pre-incubation of SR vesicles in low pO2 (for 10-80 min) did not inhibit channel activity or sensitization of RyR1 to NO. We discuss the significance of these findings and propose that caution should be taken when considering a role for pO2 and nitrosation by NO as mechanisms that tune RyRs in striated muscles.

  7. Influence of liposome forms of the rhenium compounds and cis-platin on thiol-disulfide coefficient in the rats’ blood

    Directory of Open Access Journals (Sweden)

    I. V. Klenina

    2007-12-01

    Full Text Available Thiol-disulfide coefficient (TDC and its different modifications in model in vivo were studied. Introduction of the liposome forms of cluster rhenium compounds with organic ligands (CROL leads to both TDC increasing and to the constancy of the TDC. Thus, CROLs aren’t toxic agents and some compounds could mobilize organisms’ thiol defence system. Liposome form of cis-platin leads to the TDC decreasing. Important CROL capacities for its future medical treatment practice were shown.

  8. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  9. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  10. Effects of deuterated water upon specific activity of some marker enzymes for cytosol and plasmatic membrane

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Coroiu, Viorica; Moldovan, Lucia; Titescu, G.; Stefanescu, I.

    2004-01-01

    Recently, numerous studies were devoted to the effects of an increased environmental deuterium concentration on physiological characteristics of various biological systems, from monocellular organisms up to mammals. Within these preoccupations the experiments on enzyme activity and parameters are of special interest since they throw light upon the mechanisms in metabolic biochemical reactions (glycolysis, photosynthesis, transport across membranes, etc). The present work concerns the effects of heavy water upon the activity of some enzymes (dehydrogenase-LDH lactate and 5' nucleotidase) implied in different metabolic pathways, serving as functional indicators for some cellular compartments such as the cytosols and cellular membranes. Enzyme activity was determined by growing for 6 days the cells (Hep 2, CHO, fibroblasts) in deuterated culture media at different concentration levels (20%, 40%, 65% si 90%), as well as in a reaction medium deuterated at 99.96%. In case of the first experimental run the LDH activity was monitored for the three cellular lines (Hep 2, CHO, fibroblasts) for different time intervals (1 d, 3 d and 6 d). After the first 24 h of cells' exposure the activity values were similar regardless of the heavy water concentration in the medium. Exposing the cells for longer time (6 days) led to modifications of LDH activity. In contrast to the case of media with relatively moderate D 2 O content, cell growing in conditions of intense deuteration 65% and 90 % D 2 O) led to an increase of cytosolic enzyme activity of about 50%. In case of 5' nucleotidase after 6 days of cell cultivation in deuteration conditions the activity decreased to 50% and 70% from the value corresponding to normal conditions for cell growth. This diminution of the activity was characteristic for the media with 65% and 90% D 2 O. In the second experimental run the activities of dehydrogenase lactate and 5' nucleotidase from the cellular homogenate obtained from cells grown in

  11. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  12. Species-Specific Thiol-Disulfide Equilibrium Constant: A Tool To Characterize Redox Transitions of Biological Importance.

    Science.gov (United States)

    Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla

    2015-08-13

    Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.

  13. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.

    2014-01-01

    Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyse substrate oxidation and as such it plays a key role in various biological processes such as aging, cell...... death and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labelled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining...... a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD+]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/ [lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD...

  14. The quercetin paradox

    International Nuclear Information System (INIS)

    Boots, Agnes W.; Li, Hui; Schins, Roel P.F.; Duffin, Rodger; Heemskerk, Johan W.M.; Bast, Aalt; Haenen, Guido R.M.M.

    2007-01-01

    Free radical scavenging antioxidants, such as quercetin, are chemically converted into oxidation products when they protect against free radicals. The main oxidation product of quercetin, however, displays a high reactivity towards thiols, which can lead to the loss of protein function. The quercetin paradox is that in the process of offering protection, quercetin is converted into a potential toxic product. In the present study, this paradox is evaluated using rat lung epithelial (RLE) cells. It was found that quercetin efficiently protects against H 2 O 2 -induced DNA damage in RLE cells, but this damage is swapped for a reduction in GSH level, an increase in LDH leakage as well as an increase of the cytosolic free calcium concentration. To our knowledge, this is the first study that indicates that the quercetin paradox, i.e. the exchange of damage caused by quercetin and its metabolites, also occurs in living lung cells. Following depletion of GSH in the cells by BSO pre-treatment, this quercetin paradox becomes more pronounced, confirming that the formation of thiol reactive quercetin metabolites is involved in the quercetin paradox. The quercetin paradox in living cells implies that the anti-oxidant directs oxidative damage selectively to thiol arylation. Apparently, the potential toxicity of metabolites formed during the actual antioxidant activity of free radical scavengers should be considered in antioxidant supplementation

  15. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    Science.gov (United States)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  16. A possible role of rabbit heart cytosol tocopherol binding in the transfer of tocopherol into nuclei.

    OpenAIRE

    Guarnieri, C; Flamigni, F; Caldarera, C M

    1980-01-01

    An alpha-tocopherol-binding macromolecule was isolated from the heart cytosol of rabbits fed for 1 month with an alpha-tocopherol-deficient diet. The amount of [3H]-tocopherol bound to nuclear chromatin was increased when the alpha-tocopherol-deficient heart nuclei were incubated in the presence of [3H]tocopherol-cytosol complex. In this condition, large amounts of [3H]tocopherol were associated with a subnuclear fraction that contained non-histone acidic proteins.

  17. Advantages and drawbacks of Thiol-ene based resins for 3D-printing

    Science.gov (United States)

    Leonards, Holger; Engelhardt, Sascha; Hoffmann, Andreas; Pongratz, Ludwig; Schriever, Sascha; Bläsius, Jana; Wehner, Martin; Gillner, Arnold

    2015-03-01

    The technology of 3D printing is conquering the world and awakens the interest of many users in the most varying of applications. New formulation approaches for photo-sensitive thiol-ene resins in combination with various printing technologies, like stereolithography (SLA), projection based printing/digital light processing (DLP) or two-photon polymerization (TPP) are presented. Thiol-ene polymerizations are known for its fast and quantitative reaction and to form highly homogeneous polymer networks. As the resins are locally and temporally photo-curable the polymerization type is very promising for 3D-printing. By using suitable wavelengths, photoinitiator-free fabrication is feasible for single- and two photon induced polymerization. In this paper divinyl ethers of polyethylene glycols in combination with star-shaped tetrathiols were used to design a simple test-system for photo-curable thiol-ene resins. In order to control and improve curing depth and lateral resolution in 3D-polymerization processes, either additives in chemical formulation or process parameters can be changed. The achieved curing depth and resolution limits depend on the applied fabrication method. While two-/multiphoton induced lithography offers the possibility of micron- to sub-micron resolution it lacks in built-up speed. Hence single-photon polymerization is a fast alternative with optimization potential in sub-10-micron resolution. Absorber- and initiator free compositions were developed in order to avoid aging, yellowing and toxicity of resulting products. They can be cured with UV-laser radiation below 300 nm. The development at Fraunhofer ILT is focusing on new applications in the field of medical products and implants, technical products with respect to mechanical properties or optical properties of 3D-printed objects. Recent process results with model system (polyethylene glycol divinylether/ Pentaerithrytol tetrakis (3-mercaptopropionat), Raman measurements of polymer conversion

  18. Hydrophobic Coatings by Thiol-Ene Click Functionalization of Silsesquioxanes with Tunable Architecture.

    Science.gov (United States)

    Dirè, Sandra; Bottone, Davide; Callone, Emanuela; Maniglio, Devid; Génois, Isabelle; Ribot, François

    2017-08-08

    The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains.

  19. Combined radiation-protective and radiation-sensitizing agents. III. Radiosensitization by misonidazole as a function of concentrations of endogenous glutathione or exogenous thiols

    International Nuclear Information System (INIS)

    Koch, C.J.; Stobbe, C.C.; Baer, K.A.

    1986-01-01

    Radiosensitization of V79 Chinese hamster fibroblasts by 0.5 mM misonidazole is a smooth function of endogenous glutathione (GSH) levels as modulated upwards by pre-incubation in medium containing cysteamine, or downwards by pre-incubation in medium containing buthionine sulfoximine. The enhancement ratio (radiation sensitivity in nitrogen/radiation sensitivity in nitrogen +/- sensitizer or thiol) varies from 1.3 at 12 mM to 2.25 at less than 0.1 mM endogenous GSH. The enhanced radiosensitivity of thiol-depleted hypoxic cells is reversed when exogenous thiols are added, and for equivalent ER, the exogenous thiol concentrations are much lower than the endogenous GSH concentrations. Measurement of intracellular drug concentrations amplified rather than diminished the above discrepancy, since intracellular concentrations of cysteamine were lower and glutathione much lower than the extracellular concentrations. Three possible explanations are addressed: an external membrane component of damage is involved, long-range protection to DNA target radicals is possible from outside the cell (e.g., donation of electrons), and (c) endogenous glutathione is not in a free or exchangeable state (e.g., bound)

  20. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation.

    Science.gov (United States)

    Musumeci, Lauren E; Ryona, Imelda; Pan, Bruce S; Loscos, Natalia; Feng, Hui; Cleary, Michael T; Sacks, Gavin L

    2015-07-06

    Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH), 3-mercaptohexylacetate (3-MHA), and 4-mercapto-4-methyl-2-pentanone (4-MMP)) are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS). We describe a method in which thiols are converted to pentafluorobenzyl (PFB) derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME) and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%-109%) and precision (5%-11% RSD) were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines), V. labruscana (Niagara), and Vitis spp. (Cayuga White). Mean 4-MMP concentrations in New York Niagara (17 ng/L) were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  1. Quantification of Polyfunctional Thiols in Wine by HS-SPME-GC-MS Following Extractive Alkylation

    Directory of Open Access Journals (Sweden)

    Lauren E. Musumeci

    2015-07-01

    Full Text Available Analyses of key odorous polyfunctional volatile thiols in wines (3-mercaptohexanol (3-MH, 3-mercaptohexylacetate (3-MHA, and 4-mercapto-4-methyl-2-pentanone (4-MMP are challenging due to their high reactivity and ultra-trace concentrations, especially when using conventional gas-chromatography electron impact mass spectrometry (GC-EI-MS. We describe a method in which thiols are converted to pentafluorobenzyl (PFB derivatives by extractive alkylation and the organic layer is evaporated prior to headspace solid phase microextraction (HS-SPME and GC-EI-MS analysis. Optimal parameters were determined by response surface area modeling. The addition of NaCl solution to the dried SPME vials prior to extraction resulted in up to less than fivefold improvement in detection limits. Using 40 mL wine samples, limits of detection for 4-MMP, 3-MH, and 3-MHA were 0.9 ng/L, 1 ng/L, and 17 ng/L, respectively. Good recovery (90%–109% and precision (5%–11% RSD were achieved in wine matrices. The new method was used to survey polyfunctional thiol concentrations in 61 commercial California and New York State wines produced from V. vinifera (Riesling, Gewürztraminer, Cabernet Sauvignon, Sauvignon blanc and non-varietal rosé wines, V. labruscana (Niagara, and Vitis spp. (Cayuga White. Mean 4-MMP concentrations in New York Niagara (17 ng/L were not significantly different from concentrations in Sauvignon blanc, but were significantly higher than 4-MMP in other varietal wines.

  2. Evaluation of fracture toughness and mechanical properties of ternary thiol-ene-methacrylate systems as resin matrix for dental restorative composites.

    Science.gov (United States)

    Beigi, Saeed; Yeganeh, Hamid; Atai, Mohammad

    2013-07-01

    Study and evaluation of fracture toughness, flexural and dynamic mechanical properties, and crosslink density of ternary thiol-ene-methacrylate systems and comparison with corresponding conventional methacrylate system were considered in the present study. Urethane tetra allyl ether monomer (UTAE) was synthesized as ene monomer. Different formulations were prepared based on combination of UTAE, BisGMA/TEGDMA and a tetrathiol monomer (PETMP). The photocuring reaction was conducted under visible light using BD/CQ combination as photoinitiator system. Mechanical properties were evaluated via measuring flexural strength, flexural modulus and fracture toughness. Scanning electron microscopy (SEM) was utilized to study the morphology of the fractured specimen's cross section. Viscoelastic properties of the samples were also determined by dynamic mechanical thermal analysis (DMTA). The same study was performed on a conventional methacrylate system. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). The results showed improvement in fracture toughness of the specimens containing thiol-ene moieties. DMTA revealed a lower glass transition temperature and more homogenous structure for thiol-ene containing specimens in comparison to the system containing merely methacrylate monomer. The flexural modulus and flexural strength of the specimens with higher thiol-ene content were lower than the neat methacrylate system. The SEM micrographs of the fractured surface of specimens with higher methacrylate content were smooth and mirror-like (shiny) which represent brittle fracture. The thiol-ene-methacrylate system can be used as resin matrix of dental composites with enhanced fracture toughness in comparison to the methacrylate analogous. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine.

    Science.gov (United States)

    Araujo, Leandro Dias; Vannevel, Sebastian; Buica, Astrid; Callerot, Suzanne; Fedrizzi, Bruno; Kilmartin, Paul A; du Toit, Wessel J

    2017-08-01

    Elemental sulfur is a fungicide traditionally used to control Powdery Mildew in the production of grapes. The presence of sulfur residues in grape juice has been associated with increased production of hydrogen sulfide during fermentation, which could take part in the formation of the varietal thiol 3-mercaptohexanol. This work examines whether elemental sulfur additions to Sauvignon blanc juice can increase the levels of sought-after varietal thiols. Initial trials were performed in South Africa and indicated a positive impact of sulfur on the levels of thiols. Further experiments were then carried out with New Zealand Sauvignon blanc and confirmed a positive relationship between elemental sulfur additions and wine varietal thiols. The formation of hydrogen sulfide was observed when the addition of elemental sulfur was made to clarified juice, along with an increase in further reductive sulfur compounds. When the addition of sulfur was made to pressed juice, prior to clarification, the production of reductive sulfur compounds was drastically decreased. Some mechanistic considerations are also presented, involving the reduction of sulfur to hydrogen sulfide prior to fermentation. Copyright © 2016. Published by Elsevier Ltd.

  4. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Role of peroxide in the radioprotective action of thiols in E. coli

    International Nuclear Information System (INIS)

    Naeslund, M.; Fedorcsak, I.; Ehrenberg, L.

    1976-01-01

    The radioprotective action of cysteamine (MEA) and cysteine in E. coli is due partly to autoxidatively generated hydrogen peroxide (H 2 0 2 ). This effect, which predominates at low concentrations of the thiols (1-2 mM in neutral solution), is regularly correlated with a metabolic block, measured as inhibition of RNA synthesis. In experiments with E. coli 15 (autotroph) under exponential growth in complete medium, the role of H 2 0 2 was demonstrated by (a) a decreased radioprotective action if catalase was present in the medium; (b) a radioprotective action if H 2 0 2 added to the medium; (c) a decreased protective action in the absence of catalytically active copper; and (d) oxygen being required for the radioprotective action to develop. At higher concentrations of the thiols, their radioprotective action, and the accompanying metabolic block, are less dependent on H 2 0 2 generation and presumably due to a different mechanism. The radioprotective action of H 2 0 2 is possibly related to the radioprotective action in mammals of catalase inhibitors. (author)

  6. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    Science.gov (United States)

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  7. Thiol-ene thermosets exploiting surface reactivity for layer-by-layer structures and control of penetration depth for selective surface reactivity

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Westh, Andreas; Pereira Rosinha Grundtvig, Ines

    Thiol-ene thermosets have been shown to be an efficient platform for preparation of functional polymer surfaces. Especially the effectiveness and versatility of the system has enabled a large variety of network properties to be obtained in a simple and straight-forward way. Due to its selectivity......, various thiols and allyl or other vinyl reactants can be used to obtain either soft and flexible1 or more rigid functional thermosets 2. The methodology permits use of etiher thermal or photochemical conditions both for matrix preparation as well as for surface functionalization. Due to excess reactive...... groups in thµe surface of thiol-ene thermosets, it is possible to prepare surface functional thermosets or to exploit the reactive groups for modular construction and subsequent chemical bonding. Here a different approach preparing monolithic layer-by-layer structures with controlled mechanical...

  8. Aeromonas caviae alters the cytosolic and mitochondrial creatine kinase activities in experimentally infected silver catfish: Impairment on renal bioenergetics.

    Science.gov (United States)

    Baldissera, Matheus D; Souza, Carine F; Júnior, Guerino B; Verdi, Camila Marina; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Vizzotto, Bruno S; Baldisserotto, Bernardo

    2017-09-01

    Cytosolic and mitochondrial creatine kinases (CK), through the creatine kinase-phosphocreatine (CK/PCr) system, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. However, the effects of bacterial infections on the kidney remain poorly understood and are limited only to histopathological analyses. Thus, the aim of this study was to investigate the involvement of cytosolic and mitochondrial CK activities in renal energetic homeostasis in silver catfish experimentally infected with Aeromonas caviae. Cytosolic CK activity decreased in infected animals, while mitochondrial CK activity increased compared to uninfected animals. Moreover, the activity of the sodium-potassium pump (Na + , K + -ATPase) decreased in infected animals compared to uninfected animals. Based on this evidence, it can be concluded that the inhibition of cytosolic CK activity by A. caviae causes an impairment on renal energy homeostasis through the depletion of adenosine triphosphate (ATP) levels. This contributes to the inhibition of Na + , K + -ATPase activity, although the mitochondrial CK activity acted in an attempt to restore the cytosolic ATP levels through a feedback mechanism. In summary, A. caviae infection causes a severe energetic imbalance in infected silver catfish, which may contribute to disease pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Pre-fermentation addition of grape tannin increases the varietal thiols content in wine.

    Science.gov (United States)

    Larcher, Roberto; Tonidandel, Loris; Román Villegas, Tomás; Nardin, Tiziana; Fedrizzi, Bruno; Nicolini, Giorgio

    2015-01-01

    The recent finding that grape tannin may contain significant amount of S-glutathionylated (GSH-3MH) and S-cysteinylated (Cys-3MH) precursors of the varietal thiols 3-mercapto-1-hexanol and 3-mercaptohexyl acetate, characteristic of Sauvignon blanc wines, offers new opportunities for enhancing the tropical aroma in fermented beverages. In this study this new hypothesis was investigated: Müller Thurgau (17 samples) and Sauvignon blanc (15 samples) grapes were fermented with and without addition of a selected grape tannin. As expected, the tannin-added juices were higher in precursors, and they produced wines with increased free thiols. Preliminary informal sensory tests confirmed that in particular the Sauvignon wines produced with the tannin addition were often richer with increased "fruity/green" notes than the corresponding reference wines. This outcome confirms that grape tannin addition prior to fermentation can fortify the level of these compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Studies of the activity of cytosol on the mixed disulfide bond formed by proteins and radioprotector mercaptoethylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, M [National Inst. of Oncology, Budapest (Hungary); Holland, J [Orszagos Onkologiai Intezet, Budapest (Hungary)

    1979-01-01

    The cytoplasm of normal and tumorous rat liver cells contains a heat-resistant compound with reducing ability to break the mixed disulfide bond of albumin-/sup 14/C-mercaptoethylguanidine. The reducing activity of cytosol is destoryed by 1000 krd /sup 60/Co-gamma-ray doses in diluted solution. In vivo supralethal of rats does not affect the activity of cytosol prepared from liver cells.

  11. Selection and Application of Sulfide Oxidizing Microorganisms Able to Withstand Thiols in Gas Biodesulfurization Systems.

    Science.gov (United States)

    Roman, Pawel; Klok, Johannes B M; Sousa, João A B; Broman, Elias; Dopson, Mark; Van Zessen, Erik; Bijmans, Martijn F M; Sorokin, Dimitry Y; Janssen, Albert J H

    2016-12-06

    After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H 2 S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d -1 ), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H 2 S (61 mM d -1 ) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.

  12. N-Acetylcysteine treatment of dystrophic mdx mice results in protein thiol modifications and inhibition of exercise induced myofibre necrosis.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Grounds, Miranda D; Arthur, Peter G

    2012-05-01

    Oxidative stress is implicated as a factor that increases necrosis of skeletal muscles in Duchenne Muscular Dystrophy (DMD) and the dystrophic mdx mouse. Consequently, drugs that minimize oxidative stress are potential treatments for muscular dystrophy. This study examined the in vivo benefits to mdx mice of an antioxidant treatment with the cysteine precursor N-acetylcysteine (NAC), administered in drinking water. NAC was completely effective in preventing treadmill exercise-induced myofibre necrosis (assessed histologically) and the increased blood creatine kinase levels (a measure of sarcolemma leakiness) following exercise were significantly lower in the NAC treated mice. While NAC had no effect on malondialdehyde level or protein carbonylation (two indicators of irreversible oxidative damage), treatment with NAC for one week significantly decreased the oxidation of glutathione and protein thiols, and enhanced muscle protein thiol content. These data provide in vivo evidence for protective benefits of NAC treatment on dystropathology, potentially via protein thiol modifications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Kandelia obovata (S., L.) Yong tolerance mechanisms to Cadmium: Subcellular distribution, chemical forms and thiol pools

    International Nuclear Information System (INIS)

    Weng Bosen; Xie Xiangyu; Weiss, Dominik J.; Liu Jingchun; Lu Haoliang; Yan Chongling

    2012-01-01

    Highlights: ► Cadmium tolerance mechanisms of Kandelia obovata was investigated systematacially. ► Thiol pool can play roles in cadmium detoxification mechanisms. ► Increasing cadmium treatment strength caused proportional increase of cadmium uptake. ► More than half of cadmium was localized in cell walls, and lowest in membranes. ► Sodium chloride and acetic acid extractable fractions were dominant. - Abstract: In order to explore the detoxification mechanisms adopted by mangrove under cadmium (Cd) stress, we investigated the subcellular distribution and chemical forms of Cd, in addition to the change of the thiol pools in Kandelia obovata (S., L.) Yong, which were cultivated in sandy culture medium treated with sequential Cd solution. We found that Cd addition caused a proportional increase of Cd in the organs of K. obovata. The investigation of subcellular distribution verified that most of the Cd was localized in the cell wall, and the lowest was in the membrane. Results showed sodium chloride and acetic acid extractable Cd fractions were dominant. The contents of non-protein thiol compounds, Glutathione and phytochelatins in K. obovata were enhanced by the increasing strength of Cd treatment. Therefore, K. obovata can be defined as Cd tolerant plant, which base on cell wall compartmentalization, as well as protein and organic acids combination.

  14. Unique hepatic cytosolic arginase evolved independently in ureogenic freshwater air-breathing teleost, Heteropneustes fossilis.

    Directory of Open Access Journals (Sweden)

    Shilpee Srivastava

    Full Text Available Hepatic cytosolic arginase (ARG I, an enzyme of the urea cycle operating in the liver of ureotelic animals, is reported to be present in an ammoniotelic freshwater air-breathing teleost, Heteropneustes fossilis which has ureogenic potential. Antibodies available against mammalian ARG I showed no cross reactivity with the H. fossilis ARG I. We purified unique ARG I from H. fossilis liver. Purified ARG I is a homotrimer with molecular mass 75 kDa and subunit molecular mass of 24 kDa. The pI value of the enzyme was 8.5. It showed maximum activity at pH 10.5 and 55°C. The Km of purified enzyme for L-arginine was 2.65±0.39 mM. L-ornithine and N(ω-hydroxy-L-arginine showed inhibition of the ARG I activity, with Ki values 0.52±0.02mM and 0.08±0.006mM, respectively. Antibody raised against the purified fish liver ARG I showed exclusive specificity, and has no cross reactivity against fish liver ARG II and mammalian liver ARG I and ARG II. We found another isoform of arginase bound to the outer membrane of the mitochondria which was released by 150-200 mM KCl in the extraction medium. This isoform was immunologically different from the soluble cytosolic and mitochondrial arginase. The results of present study support that hepatic cytosolic arginase evolved in this ureogenic freshwater teleost, H. fossilis. Phylogenetic analysis confirms an independent evolution event that occurred much after the evolution of the cytosolic arginase of ureotelic vertebrates.

  15. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses.

    Science.gov (United States)

    Takahama, Michihiro; Fukuda, Mitsunori; Ohbayashi, Norihiko; Kozaki, Tatsuya; Misawa, Takuma; Okamoto, Toru; Matsuura, Yoshiharu; Akira, Shizuo; Saitoh, Tatsuya

    2017-09-19

    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Michihiro Takahama

    2017-09-01

    Full Text Available Cyclic GMP-AMP synthase (cGAS is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5, in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING, the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis.

  17. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light

    Science.gov (United States)

    Santandrea, Jeffrey; Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, photocatalytic thiol-ene reaction using visible-light irradiation is described that allows students to explore concepts of green chemistry, photochemistry, photocatalysis, and continuous flow chemistry.

  18. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes.

    Science.gov (United States)

    Baroncini, Elyse A; Stanzione, Joseph F

    2018-07-01

    Growing environmental and economic concerns as well as the uncertainty that accompanies finite petrochemical resources contributes to the increase in research and development of bio-based, renewable polymers. Concurrently, industrial and consumer demand for smaller, safer, and more flexible technologies motivates a global research effort to improve electrolytic polymer separators in lithium-ion batteries. To incorporate the aromatic structural advantages of lignin, a highly abundant and renewable resource, into gel-polymer electrolytes, lignin-derived molecules, vanillyl alcohol and gastrodigenin are functionalized and UV-polymerized with multi-functional thiol monomers. The resulting thin, flexible, polymer films possess glass transition temperatures ranging from -42.1°C to 0.3°C and storage moduli at 25°C ranging from 1.90MPa to 10.08MPa. The crosslinked polymer films swollen with electrolyte solution impart conductivities in the range of 7.04×10 -7 to 102.73×10 -7 Scm -1 . Thiol molecular weight has the most impact on the thermo-mechanical properties of the resulting films while polymer crosslink density has the largest effect on conductivity. The conducting abilities of the bio-based gel-polymer electrolytes in this study prove the viability of lignin-derived feedstock for use in lithium-ion battery applications and reveal structurally and thermally desirable traits for future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Structural Basis of a Thiol-Disulfide Oxidoreductase in the Hedgehog-Forming Actinobacterium Corynebacterium matruchotii.

    Science.gov (United States)

    Luong, Truc Thanh; Tirgar, Reyhaneh; Reardon-Robinson, Melissa E; Joachimiak, Andrzej; Osipiuk, Jerzy; Ton-That, Hung

    2018-05-01

    The actinobacterium Corynebacterium matruchotii has been implicated in nucleation of oral microbial consortia leading to biofilm formation. Due to the lack of genetic tools, little is known about basic cellular processes, including protein secretion and folding, in this organism. We report here a survey of the C. matruchotii genome, which encodes a large number of exported proteins containing paired cysteine residues, and identified an oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA (MdbA Cd ). Crystallization studies uncovered that the 1.2-Å resolution structure of C. matruchotii MdbA (MdbA Cm ) possesses two conserved features found in actinobacterial MdbA enzymes, a thioredoxin-like fold and an extended α-helical domain. By reconstituting the disulfide bond-forming machine in vitro , we demonstrated that MdbA Cm catalyzes disulfide bond formation within the actinobacterial pilin FimA. A new gene deletion method supported that mdbA is essential in C. matruchotii Remarkably, heterologous expression of MdbA Cm in the C. diphtheriae Δ mdbA mutant rescued its known defects in cell growth and morphology, toxin production, and pilus assembly, and this thiol-disulfide oxidoreductase activity required the catalytic motif CXXC. Altogether, the results suggest that MdbA Cm is a major thiol-disulfide oxidoreductase, which likely mediates posttranslocational protein folding in C. matruchotii by a mechanism that is conserved in Actinobacteria IMPORTANCE The actinobacterium Corynebacterium matruchotii has been implicated in the development of oral biofilms or dental plaque; however, little is known about the basic cellular processes in this organism. We report here a high-resolution structure of a C. matruchotii oxidoreductase that is highly homologous to the Corynebacterium diphtheriae thiol-disulfide oxidoreductase MdbA. By biochemical analysis, we demonstrated that C. matruchotii MdbA catalyzes disulfide

  20. Thiol-functionalized silica colloids, grains, and membranes for irreversible adsorption of metal(oxide) nanoparticles

    NARCIS (Netherlands)

    Claesson, E.M.; Philipse, A.P.

    2007-01-01

    Thiol-functionalization is described for silica surfaces from diverging origin, including commercial silica nanoparticles and St¨ober silica as well as silica structures provided by porous glasses and novel polymer-templated silica membranes. The functionalization allows in all cases for the

  1. Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Trecha, Danusia O.; Ferreira, Patricia da C.; Jacob, Raquel G.; Perin, Gelson [Universidade Federal de Pelotas (UFPEL), Pelotas, RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)]. E-mail: lenardao@ufpel.edu.br

    2009-07-01

    A general, clean and easy method for the conjugated addition of thiols to citral promoted by KF/Al{sub 2}O{sub 3} under solvent-free or using glycerin as recyclable solvent at room temperature is described. It was found that the solvent-free protocol is applicable to the direct reaction of thiophenol with the essential oil of lemon grass (Cymbopogon citratus) to afford directly 3,7-dimethyl-3-(phenylthio)oct-6-enal, a potential bactericide agent. The method was extended to other electron-poor alkenes with excellent results. For the solvent-free protocol, the use of microwave irradiation facilitated the procedure and accelerates the reaction. The catalytic system and glycerin can be reused up to three times without previous treatment with comparable activity. (author)

  2. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Science.gov (United States)

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  3. The Hepatitis B Virus X Protein Elevates Cytosolic Calcium Signals by Modulating Mitochondrial Calcium Uptake

    Science.gov (United States)

    Yang, Bei

    2012-01-01

    Chronic hepatitis B virus (HBV) infections are associated with the development of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is thought to play an important role in the development of HBV-associated HCC. One fundamental HBx function is elevation of cytosolic calcium signals; this HBx activity has been linked to HBx stimulation of cell proliferation and transcription pathways, as well as HBV replication. Exactly how HBx elevates cytosolic calcium signals is not clear. The studies described here show that HBx stimulates calcium entry into cells, resulting in an increased plateau level of inositol 1,4,5-triphosphate (IP3)-linked calcium signals. This increased calcium plateau can be inhibited by blocking mitochondrial calcium uptake and store-operated calcium entry (SOCE). Blocking SOCE also reduced HBV replication. Finally, these studies also demonstrate that there is increased mitochondrial calcium uptake in HBx-expressing cells. Cumulatively, these studies suggest that HBx can increase mitochondrial calcium uptake and promote increased SOCE to sustain higher cytosolic calcium and stimulate HBV replication. PMID:22031934

  4. Location of the redox-active thiols of ribonucleotide reductase: sequences similarity between the Escherichia coli and Lactobacillus leichmannii enzymes

    International Nuclear Information System (INIS)

    Lin, A.N.I.; Ashley, G.W.; Stubbe, J.

    1987-01-01

    The redox-active thiols of Escherichia coli ribonucleoside diphosphate reductase and of Lactobacillus leichmannii ribonucleoside triphosphate reductase have been located by a procedure involving (1) prereduction of enzyme with dithiothreitol, (2) specific oxidation of the redox-active thiols by treatment with substrate in the absence of exogenous reductant, (3) alkylation of other thiols with iodoacetamide, and (4) reduction of the disulfides with dithiothreitol and alkylation with [1- 14 C]iodoacetamide. The dithiothreitol-reduce E. coli B1 subunit is able to convert 3 equiv of CDP to dCDP and is labeled with 5.4 equiv of 14 C. Sequencing of tryptic peptides shows that 2.8 equiv of 14 C is on cysteines-752 and -757 at the C-terminus of B1, while 1.0-1.5 equiv of 14 C is on cysteines-222 and -227. It thus appears that two sets of redox-active dithiols are involved in substrate reduction. The L. leichmannii reductase is able to convert 1.1 equiv of CTP to dCTP and is labeled with 2.1 equiv of 14 C. Sequencing of tryptic peptides shows that 1.4 equiv of 14 C is located on the two cysteines of C-E-G-G-A-C-P-I-K. This peptide shows remarkable and unexpected similarity to the thiol-containing region of the C-terminal peptide of E. coli B1, C-E-S-G-A-C-K-I

  5. Liver cytosolic 1 antigen-antibody system in type 2 autoimmune hepatitis and hepatitis C virus infection.

    Science.gov (United States)

    Lenzi, M; Manotti, P; Muratori, L; Cataleta, M; Ballardini, G; Cassani, F; Bianchi, F B

    1995-01-01

    Within the multiform liver/kidney microsomal (LKM) family, a subgroup of sera that reacts with a liver cytosolic (LC) protein has been isolated and the new antigen-antibody system is called LC1. Unlike LKM antibody type 1 (anti-LKM1), anti-LC1 is said to be unrelated to hepatitis C virus (HCV) infection and has therefore been proposed as a marker of 'true' autoimmune hepatitis type 2. Altogether 100 LKM1 positive sera were tested by immunodiffusion (ID). Twenty five gave a precipitation line with human liver cytosol; 17 of the 25 also reacted with rat liver cytosol. Thirteen of the 25 sera were anti-HCV positive by second generation ELISA: anti-HCV positive patients were significantly older (p LKM1, and that it is an additional marker of juvenile autoimmune hepatitis type 2. It does not, however, discriminate between patients with and without HCV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7797126

  6. Sorption kinetics and chemical forms of Cd(II) sorbed by thiol-functionalized 2:1 clay minerals

    International Nuclear Information System (INIS)

    Malferrari, D.; Brigatti, M.F.; Laurora, A.; Pini, S.; Medici, L.

    2007-01-01

    The interaction between Cd(II) in aqueous solution and two 2:1 expandable clay minerals (i.e., montmorillonite and vermiculite), showing different layer charge, was addressed via batch sorption experiments on powdered clay minerals both untreated and amino acid (cysteine) treated. Reaction products were characterized via X-ray powder diffraction (XRDP), chemical analysis (elemental analysis and atomic absorption spectrophotometry), thermal analysis combined with evolved gasses mass spectrometry (TGA-MSEGA) and synchrotron-based X-ray absorption spectroscopy via extended X-ray absorption fine structure (EXAFS) characterization. Sorption isotherms for Cd(II) in presence of different substrates, shows that Cd(II) uptake depends both on Cd(II) starting concentration and the nature of the substrate. Thermal decomposition of Cd-cysteine treated clay minerals evidences the evolution of H 2 O, H 2 S, NO 2 , SO 2 , and N 2 O 3 . These results are well consistent with XRDP data collected both at room and at increasing temperature and further stress the influence of the substrate, in particular cysteine, on the interlayer. EXAFS studies suggest that Cd(II) coordinates with oxygen atoms, to give monomer complexes or CdO molecules, either on the mineral surface and/or in the interlayer. For Cd-cysteine complexes EXAFS data agree with the existence of Cd-S clusters, thus suggesting a predominant role of the thiol group in the bonding of Cd with the amino acid

  7. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  8. Lithium-Catalyzed Thiol Alkylation with Tertiary and Secondary Alcohols: Synthesis of 3-Sulfanyl-Oxetanes as Bioisosteres.

    Science.gov (United States)

    Croft, Rosemary A; Mousseau, James J; Choi, Chulho; Bull, James A

    2018-01-19

    3-Sulfanyl-oxetanes are presented as promising novel bioisosteric replacements for thioesters or benzyl sulfides. From oxetan-3-ols, a mild and inexpensive Li catalyst enables chemoselective C-OH activation and thiol alkylation. Oxetane sulfides are formed from various thiols providing novel motifs in new chemical space and specifically as bioisosteres for thioesters due to their similar shape and electronic properties. Under the same conditions, various π-activated secondary and tertiary alcohols are also successful. Derivatization of the oxetane sulfide linker provides further novel oxetane classes and building blocks. Comparisons of key physicochemical properties of the oxetane compounds to selected carbonyl and methylene analogues indicate that these motifs are suitable for incorporation into drug discovery efforts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of alpha-tocopherol and alpha-tocopheryl quinone on the radiosensitivity of thiol-depleted mammalian cells

    International Nuclear Information System (INIS)

    Hodgkiss, R.J.; Stratford, M.R.; Watfa, R.R.

    1989-01-01

    The effect of hypoxic cell radiosensitizers is increased when mammalian cells are depleted of endogenous glutathione by buthionine sulphoximine pre-treatment in vitro; a similar gain has not been observed in tumors in vivo despite evidence of glutathione depletion in vivo following buthionine sulphoximine treatment. However, concentrations of biological reducing agents other than glutathione were not measured in the in vivo experiments. Other reducing agents found in tumors include alpha-tocopherol, which reduces the sensitizing efficiency of nitro-aromatic sensitizers in thiol-depleted mammalian cells. These data suggest that the failure to observe large gains in misonidazole sensitizing efficiency in thiol-depleted tumors in vivo may be due, in part, to the presence of biological reducing agents such as alpha-tocopherol

  10. High performance thiol-ene thermosets based on fully bio-based poly(limonene carbonate)s

    NARCIS (Netherlands)

    Li, C.; Johansson, M.; Sablong, R.J.; Koning, C.E.

    2017-01-01

    High glass transition temperature (Tg) thiol-ene networks (TENs) based on poly(limonene carbonate)s (PLCs), derived from orange oils and of potential degradability are described here. PLCs with moderate molecular weight were prepared by copolymerization of limonene oxide with CO2 and subsequent

  11. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  12. Chloride concentrations in human hepatic cytosol and mitochondria are a function of age.

    Science.gov (United States)

    Jahn, Stephan C; Rowland-Faux, Laura; Stacpoole, Peter W; James, Margaret O

    2015-04-10

    We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    remobilisation from ageing plant parts. Thus, GS is highly involved in determining crop yield and NUE. The major objective of this PhD project was to investigate the NUE properties of transgenic barley designed to constitutively overexpress a GS1 isogene (HvGS1.1). These transgenic lines exhibited an increased...... for N demand. Of the GS isogenes, only the transcript levels of root HvGS1.1 increased when plants were transferred from high to low N. This change coincided with an increase in total GS activity. Pronounced diurnal variation was observed for root nitrate transporter genes and GS isogenes in both root...... fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  14. GABA transaminases from Saccharomyces cerevisiae and Arabidopsis thaliana complement function in cytosol and mitochondria.

    Science.gov (United States)

    Cao, Juxiang; Barbosa, Jose M; Singh, Narendra; Locy, Robert D

    2013-07-01

    GABA transaminase (GABA-T) catalyses the conversion of GABA to succinate semialdehyde (SSA) in the GABA shunt pathway. The GABA-T from Saccharomyces cerevisiae (ScGABA-TKG) is an α-ketoglutarate-dependent enzyme encoded by the UGA1 gene, while higher plant GABA-T is a pyruvate/glyoxylate-dependent enzyme encoded by POP2 in Arabidopsis thaliana (AtGABA-T). The GABA-T from A. thaliana is localized in mitochondria and mediated by an 18-amino acid N-terminal mitochondrial targeting peptide predicated by both web-based utilities TargetP 1.1 and PSORT. Yeast UGA1 appears to lack a mitochondrial targeting peptide and is localized in the cytosol. To verify this bioinformatic analysis and examine the significance of ScGABA-TKG and AtGABA-T compartmentation and substrate specificity on physiological function, expression vectors were constructed to modify both ScGABA-TKG and AtGABA-T, so that they express in yeast mitochondria and cytosol. Physiological function was evaluated by complementing yeast ScGABA-TKG deletion mutant Δuga1 with AtGABA-T or ScGABA-TKG targeted to the cytosol or mitochondria for the phenotypes of GABA growth defect, thermosensitivity and heat-induced production of reactive oxygen species (ROS). This study demonstrates that AtGABA-T is functionally interchangeable with ScGABA-TKG for GABA growth, thermotolerance and limiting production of ROS, regardless of location in mitochondria or cytosol of yeast cells, but AtGABA-T is about half as efficient in doing so as ScGABA-TKG. These results are consistent with the hypothesis that pyruvate/glyoxylate-limited production of NADPH mediates the effect of the GABA shunt in moderating heat stress in Saccharomyces. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Serum ischemia modified albumin level and its relationship with the thiol/disulfide balance in placenta percreta patients.

    Science.gov (United States)

    Uyanikoglu, Hacer; Sak, Muhammet Erdal; Tatli, Faik; Hilali, Nese Gul; Sak, Sibel; Incebiyik, Adnan; Barut, Mert Ulas; Erel, Ozcan; Gonel, Ataman

    2018-06-08

    The pathogenesis of placenta percreta (PP) is not very well known. This study was designed to analyse the oxidative stress (OS), the thiol/disulphide balance, and ischaemia-modified albumin (IMA) the women with PP. The study included 38 pregnant women with PP and 40 similarly aged healthy pregnant women in their third trimester of gestation. We measured the IMA, native and total thiols, and disulphide concentrations in the maternal sera of all of the participating women. The IMA levels were higher and the native and total thiols were lower in the PP group than in the control group. However, there was no statistical significance with respect to the thiol/disulphide balance between the two groups. The results of this study suggest that an increase in the ischaemia and OS and a decrease in the antioxidant status may contribute to the pathogenesis of PP. Impact statement What is already known on this subject? Placenta percreta (PP) is a serious complication of pregnancy. Although there are several studies investigating the pathophysiological mechanism of PP, whether the pathology results from a lack of decidua or from the over-invasiveness of trophoblasts remains controversial. The pathology of PP is poorly understood. What do the results of this study add? This prospective study has shown an increased ischaemia modified albumin (IMA) and a decreased antioxidant capacity in the patients with placenta percreta. The results from 38 women with PP suggest that the serum concentrations of IMA and the oxidative stress parameters may be able to predict PP in cases of uncertainty. What are the implications of these findings for clinical practice and/or further research? The implication of these findings shed light on understanding the pathogenesis of PP for further research.

  16. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    Science.gov (United States)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  17. Soybean P34 Probable Thiol Protease Probably Has Proteolytic Activity on Oleosins.

    Science.gov (United States)

    Zhao, Luping; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei; Chen, Yeming

    2017-07-19

    P34 probable thiol protease (P34) and Gly m Bd 30K (30K) show high relationship with the protease of 24 kDa oleosin of soybean oil bodies. In this study, 9 day germinated soybean was used to separate bioprocessed P34 (P32) from bioprocessed 30K (28K). Interestingly, P32 existed as dimer, whereas 28K existed as monomer; a P32-rich sample had proteolytic activity and high cleavage site specificity (Lys-Thr of 24 kDa oleosin), whereas a 28K-rich sample showed low proteolytic activity; the P32-rich sample contained one thiol protease. After mixing with purified oil bodies, all P32 dimers were dissociated and bound to 24 kDa oleosins to form P32-24 kDa oleosin complexes. By incubation, 24 kDa oleosin was preferentially hydrolyzed, and two hydrolyzed products (HPs; 17 and 7 kDa) were confirmed. After most of 24 kDa oleosin was hydrolyzed, some P32 existed as dimer, and the other as P32-17 kDa HP. It was suggested that P32 was the protease.

  18. The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol

    Directory of Open Access Journals (Sweden)

    Flores Rhonda

    2011-04-01

    Full Text Available Abstract Background The periplasmic High Temperature Requirement protein A (HtrA plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.

  19. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2002-07-01

    Cytosolic pH in skeletal muscle may vary significantly because of proton production/consumption by creatine kinase and/or proton production by anaerobic glycolysis. A computer model of oxidative phosphorylation in intact skeletal muscle developed previously was used to study the kinetic effect of these variations on the oxidative phosphorylation system. Two kinds of influence were analysed: (i) via the change in pH across the inner mitochondrial membrane and (ii) via the shift in the equilibrium of the creatine kinase-catalysed reaction. Our simulations suggest that cytosolic pH has essentially no impact on the steady-state fluxes and most metabolite concentrations. On the other hand, rapid acidification/alkalization of cytosol causes a transient decrease/increase in the respiration rate. Furthermore, changes in pH seem to affect significantly the kinetic properties of transition between resting state and active state. An increase in pH brought about by proton consumption by creatine kinase at the onset of exercise lengthens the transition time. At intensive exercise levels this pH increase could lead to loss of the stability of the system, if not compensated by glycolytic H+ production. Thus our theoretical results stress the importance of processes/mechanisms that buffer/compensate for changes in cytosolic proton concentration. In particular, we suggest that the second main role of anaerobic glycolysis, apart from additional ATP supply, may be maintaining the stability of the system at intensive exercise.

  20. Detecting Release of Bacterial dsDNA into the Host Cytosol Using Fluorescence Microscopy.

    Science.gov (United States)

    Dreier, Roland Felix; Santos, José Carlos; Broz, Petr

    2018-01-01

    Recognition of pathogens by the innate immune system relies on germline-encoded pattern recognition receptors (PRRs) that recognize unique microbial molecules, so-called pathogen-associated molecular patterns (PAMPs). Nucleic acids and their derivatives are one of the most important groups of PAMPs, and are recognized by a number of surface-associated as well as cytosolic PRRs. Cyclic GMP-AMP synthase (cGAS) recognizes the presence of pathogen- or host-derived dsDNA in the cytosol and initiates type-I-IFN production. Here, we describe a methodology that allows for evaluating the association of cGAS with released bacterial dsDNA during Francisella novicida infection of macrophages, by fluorescence confocal microscopy. This method can be adapted to the study of cGAS-dependent responses elicited by other intracellular bacterial pathogens and in other cell types.

  1. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    Science.gov (United States)

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Synthesis of a novel class of nitrido Tc-99m radiopharmaceuticals with phosphino-thiol ligands showing transient heart uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bolzati, Cristina; Uccelli, Licia; Boschi, Alessandra; Malago, Erica; Duatti, Adriano E-mail: dta@unife.it; Tisato, Francesco; Refosco, Fiorenzo; Pasqualini, Roberto; Piffanelli, Adriano

    2000-05-01

    A novel class of technetium-99m radiopharmaceuticals showing high heart uptake is described. These complexes were prepared through a simple and efficient procedure, and their molecular structure fully characterized. They are formed by a terminal Tc{identical_to}N multiple bond and two bidentate phosphine-thiol ligands [R{sub 2}P-(CH{sub 2}){sub n}SH, n=2,3] coordinated to the metal ion through the neutral phosphorus atom and the deprotonated thiol sulfur atom. The resulting geometry was trigonal bipyramidal. Biodistribution studies were carried out in rats. The complexes exhibited high initial heart uptake and elimination through liver and kidneys. The washout kinetic from heart was dependent on the nature of the lateral R groups on the phosphine-thiol ligands. When R=phenyl, heart activity was rapidly eliminated within 10-20 min. Instead, when R=tolyl,cyclohexyl, persistent heart uptake was observed. Extraction of activity from myocardium tissue showed that no change of the chemical identity of the tracer occurred after heart uptake. On the contrary, metabolization to more hydrophilic species occurred in liver and kidneys.

  3. In vivo oxidative stress alters thiol redox status of peroxiredoxin 1 and 6 and impairs rat sperm quality

    Directory of Open Access Journals (Sweden)

    Yannan Liu

    2017-01-01

    Full Text Available Oxidative stress, the imbalance between the production of reactive oxygen species (ROS and antioxidant activity is a major culprit of male infertility. Peroxiredoxins (PRDXs are major antioxidant enzymes of mammalian spermatozoa and are thiol oxidized and inactivated by ROS in a dose-dependent manner. Their deficiency and/or inactivation have been associated with men infertility. The aim of this study was to elucidate the impact of oxidative stress, generated by the in vivo tert-butyl hydroperoxide (tert-BHP treatment on rat epididymal spermatozoa during their maturation process. Adult Sprague-Dawley males were treated with 300 μmoles tert-BHP/kg or saline (control per day intraperitoneal for 15 days. Lipid peroxidation (2-thibarbituric acid reactive substances assay, total amount and thiol oxidation of PRDXs along with the total amount of superoxide dismutase (SOD, motility and DNA oxidation (8-hydroxy-deoxyguanosine were determined in epididymal spermatozoa. Total amount of PRDXs and catalase and thiol oxidation of PRDXs were determined in caput and cauda epididymis. While animals were not affected by treatment, their epididymal spermatozoa have decreased motility, increased levels of DNA oxidation and lipid peroxidation along with increased PRDXs (and not SOD amounts. Moreover, sperm PRDXs were highly thiol oxidized. There was a differential regulation in the expression of PRDX1 and PRDX6 in the epididymis that suggests a segment-specific role for PRDXs. In conclusion, PRDXs are increased in epididymal spermatozoa in an attempt to fight against the oxidative stress generated by tert-BHP in the epididymis. These findings highlight the role of PRDXs in the protection of sperm function and DNA integrity during epididymal maturation.

  4. Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.

    KAUST Repository

    Huerlimann, Roger

    2015-07-01

    The understanding of algal phylogeny is being impeded by an unknown number of events of horizontal gene transfer (HGT), and primary and secondary/tertiary endosymbiosis. Through these events, previously heterotrophic eukaryotes developed photosynthesis and acquired new biochemical pathways. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the fatty acid synthesis and elongation pathways in algae, where ACCase exists in two locations (cytosol and plastid) and in two forms (homomeric and heteromeric). All algae contain nucleus-encoded homomeric ACCase in the cytosol, independent of the origin of the plastid. Nucleus-encoded homomeric ACCase is also found in plastids of algae that arose from a secondary/tertiary endosymbiotic event. In contrast, plastids of algae that arose from a primary endosymbiotic event contain heteromeric ACCase, which consists of three nucleus-encoded and one plastid-encoded subunits. These properties of ACCase provide the potential to inform on the phylogenetic relationships of hosts and their plastids, allowing different hypothesis of endosymbiotic events to be tested. Alveolata (Dinoflagellata and Apicomplexa) and Chromista (Stramenopiles, Haptophyta and Cryptophyta) have traditionally been grouped together as Chromalveolata, forming the red lineage. However, recent genetic evidence groups the Stramenopiles, Alveolata and green plastid containing Rhizaria as SAR, excluding Haptophyta and Cryptophyta. Sequences coding for plastid and cytosol targeted homomeric ACCases were isolated from Isochrysis aff. galbana (TISO), Chromera velia and Nannochloropsis oculata, representing three taxonomic groups for which sequences were lacking. Phylogenetic analyses show that cytosolic ACCase strongly supports the SAR grouping. Conversely, plastidial ACCase groups the SAR with the Haptophyta, Cryptophyta and Prasinophyceae (Chlorophyta). These two ACCase based, phylogenetic relationships suggest that the plastidial homomeric ACCase was acquired by the

  5. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography.

    Science.gov (United States)

    Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong

    2014-01-24

    This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    Science.gov (United States)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  7. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.

    Science.gov (United States)

    Groten, Karin; Dutilleul, Christelle; van Heerden, Philippus D R; Vanacker, Hélène; Bernard, Stéphanie; Finkemeier, Iris; Dietz, Karl-Josef; Foyer, Christine H

    2006-02-20

    Redox factors contributing to nodule senescence were studied in pea. The abundance of the nodule cytosolic peroxiredoxin but not the mitochondrial peroxiredoxin protein was modulated by ascorbate. In contrast to redox-active antioxidants such as ascorbate and cytosolic peroxiredoxin that decreased during nodule development, maximal extractable nodule proteinase activity increased progressively as the nodules aged. Cathepsin-like activities were constant throughout development but serine and cysteine proteinase activities increased during senescence. Senescence-induced cysteine proteinase activity was inhibited by cysteine, dithiotreitol, or E-64. Senescence-dependent decreases in redox-active factors, particularly ascorbate and peroxiredoxin favour decreased redox-mediated inactivation of cysteine proteinases.

  8. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany); Brosens, Jan [Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX (United Kingdom); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany)

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  9. Hypoglycemic, hepatoprotective and molecular docking studies of 5-[(4-chlorophenoxy methyl]-1, 3, 4-oxadiazole-2-thiol

    Directory of Open Access Journals (Sweden)

    Naureen Shehzadi

    2018-05-01

    Full Text Available The present study aimed at the evaluation of anti-hyperglycemic and hepatoprotective potential of a new drug candidate, 5-[(4-chlorophenoxy methyl]-1,3,4-oxadiazole-2-thiol (OXCPM through in vitro and in vivo assays, respectively. The compound displayed excellent dose-dependent ɑ-amylase (28.0-92.0%, ɑ-glucosidase (40.3-93.1% and hemoglobin glycosylation (9.0%-54.9% inhibitory effects and promoted the uptake of glucose by the yeast cells (0.2 to 26.3%. The treatment of the isoniazid- and rifampicin- (p.o., 50 mg/kg of each intoxicated rats with OXCPM (100 mg/kg, p.o. resulted in restoring the normal serum levels of the non-enzymatic (total bilirubin, total protein and albumin and bringing about a remarkable decrease in the levels of enzymatic (alanine transaminases, aspartate transaminases and alkaline phosphatase biomarkers. The molecular docking studies indicated high binding affinity of the compound for hyperglycemia-related protein targets; fructose-1,6-bisphosphatase, beta2-adrenergic receptors and glucokinase. The results indicate that OXCPM may not only reduce hyperglycemia by enzyme inhibition but also the disease complications through protection of hemoglobin glycosylation and hepatic injury.

  10. Hydrogen-atom tunneling through a very high barrier; spontaneous thiol → thione conversion in thiourea isolated in low-temperature Ar, Ne, H2 and D2 matrices.

    Science.gov (United States)

    Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J

    2018-05-23

    Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.

  11. Thiol oxidation of hemolymph proteins in oysters Crassostrea brasiliana as markers of oxidative damage induced by urban sewage exposure.

    Science.gov (United States)

    Trevisan, Rafael; Flores-Nunes, Fabrício; Dolores, Euler S; Mattos, Jacó J; Piazza, Clei E; Sasaki, Sílvio T; Taniguchi, Satie; Montone, Rosalinda C; Bícego, Márcia C; Dos Reis, Isis M M; Zacchi, Flávia L; Othero, Bárbara N M; Bastolla, Camila L V; Mello, Danielle F; Fraga, Ana Paula M; Wendt, Nestor; Toledo-Silva, Guilherme; Razzera, Guilherme; Dafre, Alcir L; de Melo, Cláudio M R; Bianchini, Adalto; Marques, Maria R F; Bainy, Afonso C D

    2017-07-01

    Urban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2). Seawater from an aquaculture laboratory was used as a reference. Local sewage input was marked by higher levels of coliforms, nitrogen, and phosphorus in seawater, as well as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), linear alkylbenzenes (LABs), and fecal steroid in sediments at CAM1. Exposure of oysters to CAM1 caused marked bioaccumulation of LABs and decreased PAH and PCB concentrations after exposure to both CAM1 and CAM2. Protein thiol oxidation in gills, digestive gland, and hemolymph was evaluated. Lower levels of reduced protein thiols were detected in hemolymph from CAM1, and actin, segon, and dominin were identified as targets of protein thiol oxidation. Dominin susceptibility to oxidation was confirmed in vitro by exposure to peroxides and hypochlorous acid, and 2 cysteine residues were identified as potential sites of oxidation. Overall, these data indicate that urban sewage contamination in local waters has a toxic potential and that protein thiol oxidation in hemolymph could be a useful biomarker of oxidative stress in bivalves exposed to contaminants. Environ Toxicol Chem 2017;36:1833-1845. © 2016 SETAC. © 2016 SETAC.

  12. Determination of thiol compounds by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with high-performance liquid chromatography-fluorescence detection

    International Nuclear Information System (INIS)

    Huang, K.J.; Han, C.H.; Han, C.Q.; Li, J.; Wu, Z.W.; Liu, Y.M.

    2011-01-01

    We describe a method for solid-phase extraction of biogenic thiols using multi-walled carbon nanotubes as adsorbent, and their subsequent determination via HPLC and fluorescence detection. The fluorogenic reagent N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-yl)methyl) iodoacetamide was applied to derivatizate the thiols. The type of eluent and its volume, the sample pH, extraction time and sample volume were optimized. The calibration curves of the thiols are linear in the range from 0. 5 to 200 nM (for glutathione), 0. 02 to 5 nM (for cysteine), and 2 to 500 nM (for acetylcysteine), and the correlation coefficients range between 0. 9955 and 0. 9997. The respective limits of detection are 20 pM, 4 pM and 80 pM (at an SNR of 3), and the limits of quatification are 67 pM, 13 pM, and 267 pM (at an SNR of 10). Recoveries range from 85.0% to 113.1% for human urine and plasma samples spiked with the three thiols, and relative standard deviations are in the range from 2.1 to 7.4%. (author)

  13. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles

    International Nuclear Information System (INIS)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M.A.; Haskel, D.; te Velthuis, S.G.E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M.A.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 · 10 -4 was found at the Au L 3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M s , of 0.06 emu/g Au . SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences

  14. Amino acid-incorporated polymer network by thiol-ene polymerization

    Directory of Open Access Journals (Sweden)

    R. Yokose

    2015-08-01

    Full Text Available Triallyl L-alanine (A3A and triallyl L-phenylalanine (A3F were synthesized by reactions of L-alanine and L-phenylalanine with allyl bromide in the presence of sodium hydroxide, respectively. Thiol-ene thermal polymerization of A3A or A3F with pentaerythritol-based primary tetrathiol (pS4P or pentaerythritol-based secondary tetrathiol (S4P at allyl/SH 1/1 in the presence of 2,2'-azobis(isobutyronitrile produced an amino acid-incorporated polymer network (A3ApS4P, A3A-S4P or A3F-S4P. Although the thermally cured resins were homogeneous and flat films, the corresponding thiol-ene photopolymerization did not give a successful result. Degree of swelling for each thermally cured film in N,Ndimethylformamide was much higher than that in water. The glass transition and 5% weight loss temperatures (Tg and T5 of A3F-pS4P and A3F-S4P were higher than those of A3A-pS4P and A3A-S4P, respectively. Also, A3F-pS4P and A3F-S4P exhibited much higher tensile strengths and moduli than A3A-pS4P and A3A-S4P did, respectively. Consequently, A3FpS4P displayed the highest Tg (38.7°C, T5 (282.0°C, tensile strength (9.5 MPa and modulus (406 MPa among all the thermally cured resins.

  15. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction.

    Science.gov (United States)

    Saed, Mohand O; Torbati, Amir H; Nair, Devatha P; Yakacki, Christopher M

    2016-01-19

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addition reaction. Strain-to-failure and glass transition behavior were investigated as a function of crosslinking monomer, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP). An example non-stoichiometric system of 15 mol% PETMP thiol groups and an excess of 15 mol% acrylate groups was used to demonstrate the robust nature of the material. The LCE formed an aligned and transparent monodomain when stretched, with a maximum failure strain over 600%. Stretched LCE samples were able to demonstrate both stress-driven thermal actuation when held under a constant bias stress or the shape-memory effect when stretched and unloaded. A permanently programmed monodomain was achieved via a second-stage photopolymerization reaction of the excess acrylate groups when the sample was in the stretched state. LCE samples were photo-cured and programmed at 100%, 200%, 300%, and 400% strain, with all samples demonstrating over 90% shape fixity when unloaded. The magnitude of total stress-free actuation increased from 35% to 115% with increased programming strain. Overall, the two-stage TAMAP methodology is presented as a powerful tool to prepare main-chain LCE systems and explore structure-property-performance relationships in these fascinating stimuli-sensitive materials.

  17. Sensitive determination of thiols in wine samples by a stable isotope-coded derivatization reagent d0/d4-acridone-10-ethyl-N-maleimide coupled with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis.

    Science.gov (United States)

    Lv, Zhengxian; You, Jinmao; Lu, Shuaimin; Sun, Weidi; Ji, Zhongyin; Sun, Zhiwei; Song, Cuihua; Chen, Guang; Li, Guoliang; Hu, Na; Zhou, Wu; Suo, Yourui

    2017-03-31

    As the key aroma compounds, varietal thiols are the crucial odorants responsible for the flavor of wines. Quantitative analysis of thiols can provide crucial information for the aroma profiles of different wine styles. In this study, a rapid and sensitive method for the simultaneous determination of six thiols in wine using d 0 /d 4 -acridone-10-ethyl-N-maleimide (d 0 /d 4 -AENM) as stable isotope-coded derivatization reagent (SICD) by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) has been developed. Quantification of thiols was performed by using d 4 -AENM labeled thiols as the internal standards (IS), followed by stable isotope dilution HPLC-ESI-MS/MS analysis. The AENM derivatization combined with multiple reactions monitoring (MRM) not only allowed trace analysis of thiols due to the extremely high sensitivity, but also efficiently corrected the matrix effects during HPLC-MS/MS and the fluctuation in MS/MS signal intensity due to instrument. The obtained internal standard calibration curves for six thiols were linear over the range of 25-10,000pmol/L (R 2 ≥0.9961). Detection limits (LODs) for most of analytes were below 6.3pmol/L. The proposed method was successfully applied for the simultaneous determination of six kinds of thiols in wine samples with precisions ≤3.5% and recoveries ≥78.1%. In conclusion, the developed method is expected to be a promising tool for detection of trace thiols in wine and also in other complex matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP mitigates salt and osmotic stress in transgenic tobacco plants

    Directory of Open Access Journals (Sweden)

    Pushpika eUdawat

    2016-04-01

    Full Text Available The Universal Stress Protein (USP is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologues of intron less SbUSP gene which encodes for salt and osmotic responsive universal stress protein. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control (wild type and vector control plants under different abiotic stress condition. Transgenic lines (T1 exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability and lower electrolyte leakage and lipid peroxidation (malondialdehyde content under stress treatments than control (WT and VC plants. Lower accumulation of H2O2 and O2- radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis (PCA exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant.

  19. Overexpression of a Cytosolic Abiotic Stress Responsive Universal Stress Protein (SbUSP) Mitigates Salt and Osmotic Stress in Transgenic Tobacco Plants

    Science.gov (United States)

    Udawat, Pushpika; Jha, Rajesh K.; Sinha, Dinkar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    The universal stress protein (USP) is a ubiquitous protein and plays an indispensable role in plant abiotic stress tolerance. The genome of Salicornia brachiata contains two homologs of intron less SbUSP gene which encodes for salt and osmotic responsive USP. In vivo localization reveals that SbUSP is a membrane bound cytosolic protein. The role of the gene was functionally validated by developing transgenic tobacco and compared with control [wild-type (WT) and vector control (VC)] plants under different abiotic stress condition. Transgenic lines (T1) exhibited higher chlorophyll, relative water, proline, total sugar, reducing sugar, free amino acids, polyphenol contents, osmotic potential, membrane stability, and lower electrolyte leakage and lipid peroxidation (malondialdehyde content) under stress treatments than control (WT and VC) plants. Lower accumulation of H2O2 and O2− radicals was also detected in transgenic lines compared to control plants under stress conditions. Present study confers that overexpression of the SbUSP gene enhances plant growth, alleviates ROS buildup, maintains ion homeostasis and improves the physiological status of the plant under salt and osmotic stresses. Principal component analysis exhibited a statistical distinction of plant response to salinity stress, and a significant response was observed for transgenic lines under stress, which provides stress endurance to the plant. A possible signaling role is proposed that some downstream genes may get activated by abiotic stress responsive cytosolic SbUSP, which leads to the protection of cell from oxidative damages. The study unveils that ectopic expression of the gene mitigates salt or osmotic stress by scavenging ROS and modulating the physiological process of the plant. PMID:27148338

  20. Electronic structure, magnetic properties, and microstructural analysis of thiol-functionalized Au nanoparticles: role of chemical and structural parameters in the ferromagnetic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Estefania; Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.e [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Fernandez-Pinel, Enrique; Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain)

    2008-12-15

    Gold nanoparticles (NPs) have been stabilized with a variety of thiol-containing molecules in order to change their chemical and physical properties; among the possible capping systems, alkane chains with different lengths, a carboxylic acid and a thiol-containing biomolecule (tiopronin) have been selected as protecting shells for the synthesized NPs; the NPs solubility in water or organic solvents is determined by the protecting molecule. A full microstructural characterization of these NPs is presented in the current research work. It has been shown that NPs capped with alkanethiol chains have a marked ferromagnetic behaviour which might also be dependent on the chain length. The simultaneous presence of Au-Au and Au-S bonds together with a reduced particle diameter, and the formation of an ordered monolayer protective shell, have proved to be key parameters for the ferromagnetic-like behaviour exhibited by thiol-functionalized gold NPs.

  1. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... The neutrophil cytosol factor 1 (NCF1) gene consists of 11 exons and is found in two forms; one is wild ... granulomatous disease, multiple sclerosis, arthritis and parasitic infection. ... TCR, T cell receptor; AhR, aryl hydrocarbon receptor; RA, .... During malaria, ROS production can contribute to both.

  2. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  3. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  4. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR.

    Science.gov (United States)

    Danyal, Karamatullah; de Jong, Willem; O'Brien, Edmund; Bauer, Robert A; Heppner, David E; Little, Andrew C; Hristova, Milena; Habibovic, Aida; van der Vliet, Albert

    2016-11-01

    Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca 2+ -dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens. Copyright © 2016 the American Physiological Society.

  5. Influence of indium-tin oxide surface structure on the ordering and coverage of carboxylic acid and thiol monolayers

    International Nuclear Information System (INIS)

    Cerruti, Marta; Rhodes, Crissy; Losego, Mark; Efremenko, Alina; Maria, Jon-Paul; Fischer, Daniel; Franzen, Stefan; Genzer, Jan

    2007-01-01

    This paper analyses the variability of self-assembled monolayers (SAMs) formation on ITO depending on the substrate surface features. In particular, we report on the formation of carboxylic acid- and thiol-based SAMs on two lots of commercially prepared indium-tin oxide (ITO) thin films. Contact angle measurements, electrochemical experiments, and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy showed that the quality of monolayers formed differed substantially between the two ITO batches. Only one of the two ITO substrates was capable of forming well-organized thiol- and carboxylic acid-based SAMs. In order to rationalize these observations, atomic force microscopy and x-ray diffraction analyses were carried out, and SAMs were prepared on ITO substrates fabricated by sputtering in our laboratories. An attempt was made to influence the film microstructure and surface morphology by varying substrate temperatures during ITO deposition. Good-quality thiol and carboxylic acid SAMs were obtained on one of the ITO substrates prepared in-house. While our characterization could not single out conclusively one specific parameter in ITO surface structure that could be responsible for good SAMs formation, we could point out homogeneous surface morphology as a relevant factor for the quality of the SAMs. Evidence was also found for ITO crystallographic orientation to be a parameter influencing SAMs organization

  6. Intracellular thiol levels and radioresistance: Studies with glutathione and glutathione mono ethyl ester

    International Nuclear Information System (INIS)

    Astor, M.B.; Meister, A.; Anderson, M.E.

    1987-01-01

    Intracellular thiols such as glutathione (GSH) protect cells against free radicals formed during oxidative metabolism or from exposure to drugs or ionizing radiation. The role of intracellular GSH in the repair of radiation induced free radical damage was studied using GSH or its analog glutathione mono ethyl ester (GEE), which readily penetrates into the cell. Chinese hamster V79 cells with normal GSH levels were afforded equal protection under aerated and hypoxic conditions (DMF = 1.2 OER = 3.7) by both 10 mM GSH and GEE although GEE had raised interacellular GSH levels three-fold. Growth of V79 cells in cysteine free media resulted in undetectable levels of GSH and OER of 2.2 with no change in aerated survival. Restoration of intracellular GSH by 10 mM GEE resulted in an increase of the OER from 2.2. to 3.8 (DMF = 1.7). Only 14% of the intracellular GSH needs to be repleted to give an OER of 3.0. These experiments provide evidence that thiols do play a role in the oxygen effect and are present at levels in excess of what is necessary for maximal radioprotection

  7. The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies

    Science.gov (United States)

    Iacobucci, Claudio; Piotrowski, Christine; Rehkamp, Anne; Ihling, Christian H.; Sinz, Andrea

    2018-04-01

    Cleavable cross-linkers are gaining increasing importance for chemical cross-linking/mass spectrometry (MS) as they permit a reliable and automated data analysis in structural studies of proteins and protein assemblies. Here, we introduce 1,3-diallylurea (DAU) as the first CID-MS/MS-cleavable, photo-thiol-reactive cross-linker. DAU is a commercially available, inexpensive reagent that efficiently undergoes an anti-Markovnikov hydrothiolation with cysteine residues in the presence of a radical initiator upon UV-A irradiation. Radical cysteine cross-linking proceeds via an orthogonal "click reaction" and yields stable alkyl sulfide products. DAU reacts at physiological pH and cross-linking reactions with peptides, and proteins can be performed at temperatures as low as 4 °C. The central urea bond is efficiently cleaved upon collisional activation during tandem MS experiments generating characteristic product ions. This improves the reliability of automated cross-link identification. Different radical initiators have been screened for the cross-linking reaction of DAU using the thiol-containing compounds cysteine and glutathione. Our concept has also been exemplified for the biologically relevant proteins bMunc13-2 and retinal guanylyl cyclase-activating protein-2. [Figure not available: see fulltext.

  8. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2013-05-01

    Full Text Available The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH, predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  9. Denatured protein-coated docetaxel nanoparticles: Alterable drug state and cytosolic delivery.

    Science.gov (United States)

    Zhang, Li; Xiao, Qingqing; Wang, Yiran; Zhang, Chenshuang; He, Wei; Yin, Lifang

    2017-05-15

    Many lead compounds have a low solubility in water, which substantially hinders their clinical application. Nanosuspensions have been considered a promising strategy for the delivery of water-insoluble drugs. Here, denatured soy protein isolate (SPI)-coated docetaxel nanosuspensions (DTX-NS) were developed using an anti-solvent precipitation-ultrasonication method to improve the water-solubility of DTX, thus improving its intracellular delivery. DTX-NS, with a diameter of 150-250nm and drug-loading up to 18.18%, were successfully prepared by coating drug particles with SPI. Interestingly, the drug state of DTX-NS was alterable. Amorphous drug nanoparticles were obtained at low drug-loading, whereas at a high drug-loading, the DTX-NS drug was mainly present in the crystalline state. Moreover, DTX-NS could be internalized at high levels by cancer cells and enter the cytosol by lysosomal escape, enhancing cell cytotoxicity and apoptosis compared with free DTX. Taken together, denatured SPI has a strong stabilization effect on nanosuspensions, and the drug state in SPI-coated nanosuspensions is alterable by changing the drug-loading. Moreover, DTX-NS could achieve cytosolic delivery, generating enhanced cell cytotoxicity against cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    Science.gov (United States)

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  12. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    Science.gov (United States)

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    Science.gov (United States)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  14. Altered Maternal Serum Dynamic Thiol-Disulfide Interchange Reactions in Pregnant Women with Gestational Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Melahat Yıldırım

    2016-12-01

    CONCLUSION: Thiol- disulphide balance has shifted to the oxidative side in pregnant women with GDM. So blood glucose regulation is extremely crucial for reducing the oxidative stress which may lead to damages to vital organs of a mother or possibly to development of a fetus in women with GDM.

  15. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism.

    Science.gov (United States)

    Exposito-Rodriguez, Marino; Laissue, Pierre Philippe; Yvon-Durocher, Gabriel; Smirnoff, Nicholas; Mullineaux, Philip M

    2017-06-29

    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H 2 O 2 ) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H 2 O 2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H 2 O 2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H 2 O 2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H 2 O 2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H 2 O 2 accumulation and high light-responsive gene expression. This is because the H 2 O 2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H 2 O 2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H 2 O 2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.

  16. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Smita Rai

    Full Text Available BACKGROUND: In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s and expression profiles of known genes involved in transport and thiol based redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We selected 7 clinical isolates (2 sensitive and 5 resistant in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. CONCLUSIONS/SIGNIFICANCE: Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.

  17. A cytosolic juxtamembrane interface modulates plexin A3 oligomerization and signal transduction.

    Directory of Open Access Journals (Sweden)

    Rachael Barton

    Full Text Available Plexins (plxns are transmembrane (TM receptors involved in the guidance of vascular, lymphatic vessel, and neuron growth as well as cancer metastasis. Plxn signaling results in cytosolic GTPase-activating protein activity, and previous research implicates dimerization as important for activation of plxn signaling. Purified, soluble plxn extracellular and cytosolic domains exhibit only weak homomeric interactions, suggesting a role for the plxn TM and juxtamembrane regions in homooligomerization. In this study, we consider a heptad repeat in the Danio rerio PlxnA3 cytosolic juxtamembrane domain (JM for its ability to influence PlxnA3 homooligomerization in TM-domain containing constructs. Site-directed mutagenesis in conjunction with the AraTM assay and bioluminescent energy transfer (BRET² suggest an interface involving a JM heptad repeat, in particular residue M1281, regulates PlxnA3 homomeric interactions when examined in constructs containing an ectodomain, TM and JM domain. In the presence of a neuropilin-2a co-receptor and semaphorin 3F ligand, disruption to PlxnA3 homodimerization caused by an M1281F mutation is eliminated, suggesting destabilization of the PlxnA3 homodimer in the JM is not sufficient to disrupt co-receptor complex formation. In contrast, enhanced homodimerization of PlxnA3 caused by mutation M1281L remains even in the presence of ligand semaphorin 3F and co-receptor neuropilin-2a. Consistent with this pattern of PlxnA3 dimerization in the presence of ligand and co-receptor, destabilizing mutations to PlxnA3 homodimerization (M1281F are able to rescue motor patterning defects in sidetracked zebrafish embryos, whereas mutations that enhance PlxnA3 homodimerization (M1281L are not. Collectively, our results indicate the JM heptad repeat, in particular residue M1281, forms a switchable interface that modulates both PlxnA3 homomeric interactions and signal transduction.

  18. Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells.

    Science.gov (United States)

    Ernst, Katharina; Schmid, Johannes; Beck, Matthias; Hägele, Marlen; Hohwieler, Meike; Hauff, Patricia; Ückert, Anna Katharina; Anastasia, Anna; Fauler, Michael; Jank, Thomas; Aktories, Klaus; Popoff, Michel R; Schiene-Fischer, Cordelia; Kleger, Alexander; Müller, Martin; Frick, Manfred; Barth, Holger

    2017-06-02

    Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.

  19. Mutations in N-acetylglucosamine (O-GlcNAc) transferase in patients with X-linked intellectual disability

    NARCIS (Netherlands)

    Willems, A.P.; Gundogdu, M.; Kempers, M.J.E.; Giltay, J.C.; Pfundt, R.P.; Elferink, M.; Loza, B.F.; Fuijkschot, J.; Ferenbach, A.T.; Gassen, K.L. van; Aalten, D.M.F. van; Lefeber, D.J.

    2017-01-01

    N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and

  20. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  1. A Combined Synthetic and DFT Study on the Catalyst-Free and Solvent-Assisted Synthesis of 1,3,4-Oxadiazole-2-thiol Derivatives

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman-Beigi

    2013-01-01

    Full Text Available A novel practical and efficient catalyst-free method for the synthesis of 5-substituted 1,3,4-oxadiazole-2-thiols has been developed, which is assisted by reaction solvent (DMF. The solvent effects on product selectivity were studied based on Onsager’s reaction field theory of electrostatic solvation. The ab initio theoretical studies on the effect of solvents on the process also supported the suitability of DMF as the reaction medium for the preparation of 1,3,4-oxadiazole-2-thiol derivatives.

  2. Selection of protease for increased solubilization of protein-derived thiols during mashing with limited release of free amino acids in beer

    DEFF Research Database (Denmark)

    Murmann, Anne Nordmark; Lunde, Christina; Lund, Marianne Nissen

    2016-01-01

    Extraction of protein-derived thiols by protease treatment during mashing for improvement of flavor stability in beer has previously been shown to cause concomitant increase in free amino acid concentrations and thereby increased levels of unwanted Maillard reaction products during aging. The pre......Extraction of protein-derived thiols by protease treatment during mashing for improvement of flavor stability in beer has previously been shown to cause concomitant increase in free amino acid concentrations and thereby increased levels of unwanted Maillard reaction products during aging...... of a protease with a higher temperature optimum dosed at only 3 mg of enzyme/kg of malt, it is possible to increase thiol concentrations in wort by 30% and with only a maximum 10% increase in amino acid concentration compared with a control. Pilot brewing showed that beer brewed with addition of protease...... stability during storage could not be evaluated. Overall, similar brewing and sensory characteristics were obtained compared with a control beer brewed without addition of protease. Foam stability was decreased by protease treatment, and formation of haze was reduced by protease treatment....

  3. Cross-Dehydrogenative Coupling Reactions Between P(O)-H and X-H (X = S, N, O, P) Bonds.

    Science.gov (United States)

    Hosseinian, Akram; Farshbaf, Sepideh; Fekri, Leila Zare; Nikpassand, Mohammad; Vessally, Esmail

    2018-05-26

    P(O)-X (X = S, N, O, P) bond-containing compounds have extensive application in medicinal chemistry, agrochemistry, and material chemistry. These useful organophosphorus compounds also have many applications in organic synthesis. In light of the importance of titled compounds, there is continuing interest in the development of synthetic methods for P(O)-X bonds construction. In the last 4 years, the direct coupling reaction of P(O)-H compounds with thiols, alcohols, and amines/amides has received much attention because of the atom-economic character. This review aims to give an overview of new developments in cross-dehydrogenative coupling reactions between P(O)-H and X-H (X = S, N, O, P) bonds, with special emphasis on the mechanistic aspects of the reactions.

  4. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  5. Vitamin A effects on UMR 106 osteosarcoma cells are not mediated by specific cytosolic receptors.

    OpenAIRE

    Oreffo, R O; Francis, J A; Triffitt, J T

    1985-01-01

    Retinol and retinoic acid at 20 microM altered cell morphology and inhibited cell proliferation of UMR 106 osteosarcoma cells in culture. No specific cytosolic binding proteins for retinol could be detected.

  6. Effect of the Network Structure and Programming Temperature on the Shape-Memory Response of Thiol-Epoxy “Click” Systems

    Directory of Open Access Journals (Sweden)

    Alberto Belmonte

    2015-10-01

    Full Text Available This paper presents a new methodology to develop “thiol-epoxy” shape-memory polymers (SMPs with enhanced mechanical properties in a simple and efficient manner via “click” chemistry by using thermal latent initiators. The shape-memory response (SMR, defined by the mechanical capabilities of the SMP (high ultimate strength and strain, the shape-fixation and the recovery of the original shape (shape-recovery, was analyzed on thiol-epoxy systems by varying the network structure and programming temperature. The glass transition temperature (Tg and crosslinking density were modified using 3- or 4- functional thiol curing agents and different amounts of a rigid triglycidyl isocyanurate compound. The relationship between the thermo-mechanical properties, network structure and the SMR was evidenced by means of qualitative and quantitative analysis. The influence of the programming temperature (Tprog on the SMR was also analyzed in detail. The results demonstrate the possibility of tailoring SMPs with enhanced mechanical capabilities and excellent SMR, and intend to provide a better insight into the relationship between the network structure properties, programming temperature and the SMR of unconstrained (stress-free systems; thus, making it easier to decide between different SMP and to define the operative parameters in the useful life.

  7. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  8. Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts.

    Science.gov (United States)

    Mazars, C; Thion, L; Thuleau, P; Graziana, A; Knight, M R; Moreau, M; Ranjeva, R

    1997-11-01

    Using Nicotiana plumbaginifolia constitutively expressing the recombinant bioluminescent calcium indicator, aequorin, it has been previously demonstrated that plant cells react to cold-shock by an immediate rise in cytosolic calcium. Such an opportune system has been exploited to address the regulatory pathway involved in the calcium response. For this purpose, we have used protoplasts derived from N. plumbaginifolia leaves that behave as the whole plant but with a better reproducibility. By both immunodetecting cytoskeletal components on membrane ghosts and measuring the relative change in cytosolic calcium, we demonstrate that the organization of the cytoskeleton has profound influences on the calcium response. The disruption of the microtubule meshwork by various active drugs, such as colchicin, oryzalin and vinblastin, leads to an important increase in the cytosolic calcium (up to 400 nM) in cold-shocked protoplasts over control. beta-Lumicolchicin, an inactive analogue of colchicin, is ineffective either on cytoplasmic calcium increase or on microtubule organization. A microfilament disrupting drug, cytochalasin D, exerts a slight stimulatory effect, whereas the simultaneous disruption of microtubule and microfilament meshworks results in a dramatic increase in the calcium response to cold-shock. The results described in the present paper illustrate the role of the intracellular organization and, more specifically, the role of cytoskeleton in controlling the intensity of calcium response to an extracellular stimulus.

  9. Liver/kidney microsomal antibody type 1 and liver cytosol antibody type 1 concentrations in type 2 autoimmune hepatitis

    OpenAIRE

    Muratori, L; Cataleta, M; Muratori, P; Lenzi, M; Bianchi, F

    1998-01-01

    Background—Liver/kidney microsomal antibody type 1 (LKM1) and liver cytosol antibody type 1 (LC1) are the serological markers of type 2 autoimmune hepatitis (AIH). 
Aims—Since LKM1 and LC1 react against two distinct liver specific autoantigens (cytochrome P450IID6 (CYP2D6) and a 58 kDa cytosolic polypeptide respectively), the aim was to see whether LKM1 and LC1 concentrations correlate with liver disease activity. 
Patients—Twenty one patients with type 2 AIH were studied. 
Methods—A...

  10. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor

    Science.gov (United States)

    Diehl, Katharine L.; Kolesnichenko, Igor V.; Robotham, Scott A.; Bachman, J. Logan; Zhong, Ye; Brodbelt, Jennifer S.; Anslyn, Eric V.

    2016-10-01

    The coupling and decoupling of molecular units is a fundamental undertaking of organic chemistry. Herein we report the use of a very simple conjugate acceptor, derived from Meldrum's acid, for the sequential ‘clicking’ together of an amine and a thiol in aqueous conditions at neutral pH. Subsequently, this linkage can be ‘declicked’ by a chemical trigger to release the original amine and thiol undisturbed. The reactivity differs from that of other crosslinking agents because the selectivity for sequential functionalization derives from an altering of the electrophilicity of the conjugate acceptor on the addition of the amine. We describe the use of the procedure to modify proteins, create multicomponent libraries and synthesize oligomers, all of which can be declicked to their starting components in a controlled fashion when desired. Owing to the mild reaction conditions and ease of use in a variety of applications, the method is predicted to have wide utility.

  11. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  12. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol.

    Science.gov (United States)

    Pavlik, Benjamin J; Hruska, Elizabeth J; Van Cott, Kevin E; Blum, Paul H

    2016-03-30

    Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was quantified by flow cytometry and found to be dependent on artificial enrichment of cells with the polysialoganglioside receptor GT1b. Visualization by confocal microscopy showed a dissociation of payloads from the early endosome indicating translocation of the chimeric toxin. The natural Clostridium botulinum C2 toxin was then delivered to human glioblastoma A172 and synchronized HeLa cells. In the presence of the fusion protein, native cytosolic enzymatic activity of the enzyme was observed and found to be GT1b-dependent. This retargeted toxin may enable delivery of therapeutics to peripheral neurons and be of use in addressing experimental questions about neural physiology.

  13. Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell.

    Science.gov (United States)

    Nikmaneshi, M R; Firoozabadi, B; Saidi, M S

    2018-01-23

    Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the G-actin transport was spatiotemporally modeled. We also for the first time modeled the effect of variable volume fraction of the moving F-actin porous network on solute transport in the cytosolic fluid. Our novel fully-coupled mathematical model provides a better understanding of intracellular dynamics of fast-migrating Keratocytes; such as the F-actin centripetal and cytosolic fountain-like flows, free-active myosin distribution, distribution sequence of the G-actin, F-actin, and myosin, and myosin-induced pressure flied of cytoplasm as well as the map of intracellular forces like myosin contraction and adhesion traction. All these results are qualitatively and quantitatively in good agreement with experimental observations. According to a range of value of parameters used in this model, our steady state of moving Keratocyte finds fan-like shape with the same aspect ratio as wide category of fish Keratocytes. This new model can predict shape of Keratocytes in other range of parameter values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    International Nuclear Information System (INIS)

    Price, E.M.; Ratnam, M.; Rodeman, K.M.; Freisheim, J.H.

    1988-01-01

    A radioiodinated photoaffinity analogue of methotrexate, N α -(4-amino-4-deoxy-10-methyl-pteroyl)-N ε -(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37 degree C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37 degree C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets

  15. Ultrasound-Accelerated Synthesis of Asymmetrical Thiosulfonate S-Esters by Base-Promoted Reaction of Sulfonyl Chlorides with Thiols

    DEFF Research Database (Denmark)

    Pham, Hien Thi; Nguyen, Ngoc-Lan Thi; Duus, Fritz

    2015-01-01

    Amberlyst A-26, Mg-Al hydrotalcite, potassium fluoride absorbed on alumina, triethylamine and pyridine have been tested as base catalysts and reagents for the reaction of sulfonyl chlorides with thiols to prepare thiosulfonate S-esters. The reactions were performed under solvent-free conditions...

  16. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  17. In vitro glutathione peroxidase mimicry of ebselen is linked to its oxidation of critical thiols on key cerebral suphydryl proteins - A novel component of its GPx-mimic antioxidant mechanism emerging from its thiol-modulated toxicology and pharmacology.

    Science.gov (United States)

    Kade, I J; Balogun, B D; Rocha, J B T

    2013-10-25

    The antioxidant mechanism of ebselen in rats brain is largely linked with its glutathione peroxidase (GPx) rather than its peroxiredoxin mimicry ability. However, the precise molecular dynamics between the GPx-mimicry of ebselen and thiol utilization is yet to be fully clarified and thus still open. Herein, we investigated the influence of dithiothreitol (DTT) on the antioxidant action of ebselen against oxidant-induced cerebral lipid peroxidation and deoxyribose degradation. Furthermore, the critical inhibitory concentrations of ebselen on the activities of sulphydryl enzymes such as cerebral sodium pump, δ-aminolevulinic acid dehydratase (δ-ALAD) and lactate dehydrogenase (LDH) were also investigated. We observe that ebselen (at ≥42 μM) markedly inhibited lipid peroxidation in the presence and absence of DTT, whereas it inhibited deoxyribose degradation only in the presence of DTT. Furthermore, under in vitro conditions, ebselen inhibited the thiol containing enzymes; cerebral sodium pump (at ≥40 μM), δ-ALAD (≥10 μM) and LDH (≥1 μM) which were either prevented or reversed by DTT. However, the inhibition of the activities of these sulphydryl proteins in diabetic animals was prevented by ebselen. Summarily, it is apparent that the effective in vitro inhibitory doses of ebselen on the activity of the sulphydryl proteins are far less than its antioxidant doses. In addition, the presence of DTT is evidently a critical requirement for ebselen to effect its antioxidant action against deoxyribose degeradation and not lipid peroxidation. Consequently, we conclude that ebselen possibly utilizes available thiols on sulphydryl proteins to effect its GPx mimicry antioxidant action against lipid peroxidation in rat brain homogenate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Cytosol cathepsin-D content and proliferative activity of human breast cancer. The Comitato Italiano per il Controllo di Qualita del Laboratorio in Oncologia.

    Science.gov (United States)

    Paradiso, A; Mangia, A; Correale, M; Abbate, I; Ferri, G; Piffanelli, A; Catozzi, L; Amadori, D; Riccobon, A; De Lena, M

    1992-01-01

    Mitogenic properties have been demonstrated in vitro for the lysosomal acidic protease cathepsin-D (cath-D). We investigated possible relationships between cath-D cytosol cell content and tumor proliferative activity in a series of 129 operable breast cancer patients. For total cytosol cath-D evaluation, a solid phase two-site immunoradiometric assay was utilized on tumor cell cytosol obtained for hormone receptor assay (DCC method). The percentage of S-phase cells was analyzed by 3H-thymidine autoradiographic assay. Median 3H-thymidine Labeling Index (3H-Tdr-LI) of the series was 2.7%; median cath-D content resulted 57 pmol/mg of protein cytosol and was significantly higher in node-positive with respect to the node-negative subgroup (p < 0.03). When classified in low, intermediate or high tumor cath-D content and slow or fast proliferative activity (cut-off: median values of the series), no significant agreement was found between the two variables. Statistical analysis, however, showed that a significant inverse correlation existed in node positive tumors between cath-D and 3H-Tdr-LI values which was even more evident in N-positive high estrogen receptor-positive (ER+) cases (coefficient of correlation = 0.6828; p = 0.0001). Cytosol cath-D content cannot be generally proposed as a direct marker of proliferative activity for operable breast cancer.

  19. Antibiofouling hybrid dendritic Boltorn/star PEG thiol-ene cross-linked networks.

    Science.gov (United States)

    Bartels, Jeremy W; Imbesi, Philip M; Finlay, John A; Fidge, Christopher; Ma, Jun; Seppala, Jonathan E; Nystrom, Andreas M; Mackay, Michael E; Callow, James A; Callow, Maureen E; Wooley, Karen L

    2011-06-01

    A series of thiol-ene generated amphiphilic cross-linked networks was prepared by reaction of alkene-modified Boltorn polyesters (Boltorn-ene) with varying weight percent of 4-armed poly(ethylene glycol) (PEG) tetrathiol (0-25 wt%) and varying equivalents of pentaerythritol tetrakis(3-mercaptopropionate) (PETMP) (0-64 wt%). These materials were designed to present complex surface topographies and morphologies, with heterogeneity of surface composition and properties and robust mechanical properties, to serve as nontoxic antibiofouling coatings that are amenable to large-scale production for application in the marine environment. Therefore, a two-dimensional matrix of materials compositions was prepared to study the physical and mechanical properties, over which the compositions spanned from 0 to 25 wt% PEG tetrathiol and 0-64 wt% PETMP (the overall thiol/alkene (SH/ene) ratios ranged from 0.00 to 1.00 equiv), with both cross-linker weight percentages calculated with respect to the weight of Boltorn-ene. The Boltorn-ene components were prepared through the esterification of commercially available Boltorn H30 with 3-butenoic acid. The subsequent cross-linking of the Boltorn-PEG-PETMP films was monitored using IR spectroscopy, where it was found that near-complete consumption of both thiol and alkene groups occurred when the stoichiometry was ca. 48 wt% PETMP (0.75 equiv SH/ene, independent of PEG amount). The thermal properties of the films showed an increase in T(g) with an increase in 4-armed PEG-tetrathiol wt%, regardless of the PETMP concentration. Investigation of the bulk mechanical properties in dry and wet states found that the Young's modulus was the greatest at 48 wt% PETMP (0.75 equiv of SH/ene). The ultimate tensile strength increased when PETMP was constant and the PEG concentration was increased. The Young's modulus was slightly lower for wet films at constant PEG or constant PETMP amounts, than for the dry samples. The nanoscopic surface features were

  20. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    Science.gov (United States)

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  1. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    Science.gov (United States)

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-01-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluconate or parathyroid hormone, a regimen that causes massive accumulation and crystallization of calcium phosphate in the mitochondria and cytosol of renal tubule cells in vivo. Administration of phosphocitrate greatly reduced the net uptake of Ca2+ by the kidneys and prevented the appearance of apatite-like crystalline structures within the mitochondrial matrix and cytosol of renal tubule cells. Phosphocitrate, which is a poor chelator of Ca2+, did not reduce the hypercalcemia induced by either agent. These in vivo observations therefore indicate that phosphocitrate acts primarily at the cellular level to prevent the extensive accumulation of calcium phosphate in kidney cells by inhibiting the mitochondrial accumulation or crystallization of calcium phosphate. Images PMID:6946490

  2. Multifunctional Cationic Lipid-Based Nanoparticles Facilitate Endosomal Escape and Reduction-Triggered Cytosolic siRNA Release

    Science.gov (United States)

    Gujrati, Maneesh; Malamas, Anthony; Shin, Tesia; Jin, Erlei; Sun, Lulu; Lu, Zheng-Rong

    2015-01-01

    Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems. PMID:25020033

  3. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    International Nuclear Information System (INIS)

    Miller, A.J.; Vogg, G.; Sanders, D.

    1990-01-01

    Cytosolic free calcium ([Ca 2+ ] c ) has been measured in the mycelial fungus Neurospora crassa with Ca 2+ - selective microelectrodes. The mean value of [Ca 2+ ] c is 92 ± 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca 2+ across the plasma membrane to be estimated as about -60 kJmol -1 - a value that cannot be sustained either by a simple Ca 2+ - ATPase, or, in alkaline conditions, by straightforward H + /Ca 2+ exchange with a stoichiometric ratio of + /Ca 2+ . The authors propose that the most likely alternative mechanism of Ca 2+ efflux is ATP-driven H + /Ca 2+ exchange, with a stoichiometric ratio of at least 2 H + /Ca 2+ . The increase in [Ca 2+ ] c in the presence of CN - at pH 8.4 is compared with 45 Ca 2+ influx under the same conditions. The proportion of entering Ca 2+ remaining free in the cytosol is only 8 x 10 -5 , and since the concentration of available chelation sites on Ca 2+ binding proteins is unlikely to exceed 100 μM, a major role for the fungal vacuole in short-term Ca 2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca 2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca 2+ uptake into fungal vacuoles

  4. Effects of D,L-buthionine-S,R-sulfoximine on cellular thiol levels and the oxygen effect in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Astor, M.B.; Hall, E.J.; Biaglow, J.E.; Hartog, B.

    1984-01-01

    The role of glutathione (GSH) and total non-protein thiols (NPSH) in repairing radiation-induced free radical damage incurred under aerated and hypoxic conditions was investigated using Chinese hamster V79 cells cultured in vitro. GSH and NPSH levels were depleted in V79 cells of varying cell densities using the gamma-glutamyl-cysteine-synthetase inhibitor, D,L-Buthionine-S,R-sulfoximine (BSO). A small change in hypoxic cell radiosensitivity could be attributed to the loss of GSH while depletion of thiols to lower levels affected both aerated and hypoxic cell radiosensitivity, resulting in no change in the OER

  5. Preparation of thiol-functionalized activated carbon from sewage sludge with coal blending for heavy metal removal from contaminated water.

    Science.gov (United States)

    Li, Juan; Xing, Xing; Li, Jiao; Shi, Mei; Lin, Aijun; Xu, Congbin; Zheng, Jianzhong; Li, Ronghua

    2018-03-01

    Sewage sludge produced from wastewater treatment is a pressing environmental issue. Mismanagement of the massive amount of sewage sludge would threat our valuble surface and shallow ground water resources. Use of activated carbon prepared from carbonization of these sludges for heavy metal removal can not only minimize and stabilize these hazardous materials but also realize resources reuse. In this study, thiol-functionalized activated carbon was synthesized from coal-blended sewage sludge, and its capacity was examined for removing Cu(II), Pb(II), Cd(II) and Ni(II) from water. Pyrolysis conditions to prepare activated carbons from the sludge and coal mixture were examined, and the synthesized material was found to achieve the highest BET surface area of 1094 m 2 /g under 500 °C and 30 min. Batch equilibrium tests indicated that the thiol-functionalized activated carbon had a maximum sorption capacity of 238.1, 96.2, 87.7 and 52.4 mg/g for Pb(II), Cd(II), Cu(II) and Ni(II) removal from water, respectively. Findings of this study suggest that thiol-functionalized activated carbon prepared from coal-blended sewage sludge would be a promising sorbent material for heavy metal removal from waters contaminated with Cu(II), Pb(II), Cd(II) and Ni(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Combining Orthogonal Chain-End Deprotections and Thiol-Maleimide Michael Coupling: Engineering Discrete Oligomers by an Iterative Growth Strategy.

    Science.gov (United States)

    Huang, Zhihao; Zhao, Junfei; Wang, Zimu; Meng, Fanying; Ding, Kunshan; Pan, Xiangqiang; Zhou, Nianchen; Li, Xiaopeng; Zhang, Zhengbiao; Zhu, Xiulin

    2017-10-23

    Orthogonal maleimide and thiol deprotections were combined with thiol-maleimide coupling to synthesize discrete oligomers/macromolecules on a gram scale with molecular weights up to 27.4 kDa (128mer, 7.9 g) using an iterative exponential growth strategy with a degree of polymerization (DP) of 2 n -1. Using the same chemistry, a "readable" sequence-defined oligomer and a discrete cyclic topology were also created. Furthermore, uniform dendrons were fabricated using sequential growth (DP=2 n -1) or double exponential dendrimer growth approaches (DP=22n -1) with significantly accelerated growth rates. A versatile, efficient, and metal-free method for construction of discrete oligomers with tailored structures and a high growth rate would greatly facilitate research into the structure-property relationships of sophisticated polymeric materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cyclic GMP-AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria.

    Science.gov (United States)

    Gallego-Marin, Carolina; Schrum, Jacob E; Andrade, Warrison A; Shaffer, Scott A; Giraldo, Lina F; Lasso, Alvaro M; Kurt-Jones, Evelyn A; Fitzgerald, Katherine A; Golenbock, Douglas T

    2018-01-15

    Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-β induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites. Copyright © 2018 by The American Association of Immunologists, Inc.

  8. Characterization of an engineered cellulose based membrane by thiol dendrimer for heavy metals removal

    OpenAIRE

    Algarra, Manuel; Vázquez, María Isabel; Alonso, Beatriz S.; Casado, Carmen Mª.; Casado, Juan; Benavente, Juana

    2014-01-01

    Diaminobutane based poly(propyleneimine) dendrimer functionalized with sixteen thiol groups, DAB-3-(SH)16, was successfully embeded in a swollen cellulosic support in order to achieve an easily handle engineered membrane. The membrane was characterised by physicochemical, electrical and transport measurements, and the effect of the dendrimer was established by comparing these results with those obtained for the original cellulosic support. Results show that dendrimer inclusion improves the me...

  9. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  10. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    Science.gov (United States)

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  11. Nanoparticles for cytosolic delivery of important biomolecular drugs such as DNA, RNA, peptides, and proteins

    Czech Academy of Sciences Publication Activity Database

    Sedlák, M.; Koňák, Čestmír; Dybal, Jiří

    2010-01-01

    Roč. 1, č. 2010 (2010), s. 87-90 ISSN 2210-2892 Institutional research plan: CEZ:AV0Z40500505 Keywords : cytosolic delivery * nanoparticle carriers * poly(ethylacrylic acid) Subject RIV: CD - Macromolecular Chemistry http://benthamopen.com/ABSTRACT/TOPROCJ-1-87

  12. Impairment of blood lipids pattern in gamma irradiated albino mice and prophylactic role of thiols and W R-2721

    Energy Technology Data Exchange (ETDEWEB)

    EL-dighidy, E A.M.; El-Kady, M H.R. [National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1987-12-31

    The present work aims to investigate the effect of shot doses of whole body gamma irradiation at the levels, 6, 7.5, 11, 25 and 15 Gy, on the blood lipids pattern in male swiss albino mice. This has been manifested by the levels of total lipids, triglycerides, phospholipids and cholesterol. The radioprotective capacities of two sulfhydryl compounds: thiols and W R-2721, against impairment in blood lipids pattern, have been evaluated in mice received the higher shot radiation dose-level at 15 Gy. Significant increases in the levels of blood total lipid, phospholipids, triglycerides and cholesterol have been recorded on the third day post exposure under the experiment conditions, the data indicated more efficient protection of blood lipid pattern exerted by W R-2721 than in case of thiols. 2 figs., 2 tabs.

  13. Impairment of blood lipids pattern in gamma irradiated albino mice and prophylactic role of thiols and W R-2721

    International Nuclear Information System (INIS)

    EL-dighidy, E.A.M.; El-Kady, M.H.R.

    1986-01-01

    The present work aims to investigate the effect of shot doses of whole body gamma irradiation at the levels, 6, 7.5, 11, 25 and 15 Gy, on the blood lipids pattern in male swiss albino mice. This has been manifested by the levels of total lipids, triglycerides, phospholipids and cholesterol. The radioprotective capacities of two sulfhydryl compounds: thiols and W R-2721, against impairment in blood lipids pattern, have been evaluated in mice received the higher shot radiation dose-level at 15 Gy. Significant increases in the levels of blood total lipid, phospholipids, triglycerides and cholesterol have been recorded on the third day post exposure under the experiment conditions, the data indicated more efficient protection of blood lipid pattern exerted by W R-2721 than in case of thiols. 2 figs., 2 tabs

  14. Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney.

    Science.gov (United States)

    Kim, Jinu; Kim, Ki Young; Jang, Hee-Seong; Yoshida, Takumi; Tsuchiya, Ken; Nitta, Kosaku; Park, Jeen-Woo; Bonventre, Joseph V; Park, Kwon Moo

    2009-03-01

    Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) synthesizes reduced NADP (NADPH), which is an essential cofactor for the generation of reduced glutathione (GSH), the most abundant and important antioxidant in mammalian cells. We investigated the role of IDPc in kidney ischemia-reperfusion (I/R) in mice. The activity and expression of IDPc were highest in the cortex, modest in the outer medulla, and lowest in the inner medulla. NADPH levels were greatest in the cortex. IDPc expression in the S1 and S2 segments of proximal tubules was higher than in the S3 segment, which is much more susceptible to I/R. IDPc protein was also highly expressed in the mitochondrion-rich intercalated cells of the collecting duct. IDPc activity was 10- to 30-fold higher than the activity of glucose-6-phosphate dehydrogenase, another producer of cytosolic NADPH, in various kidney regions. This study identifies that IDPc may be the primary source of NADPH in the kidney. I/R significantly reduced IDPc expression and activity and NADPH production and increased the ratio of oxidized glutathione to total glutathione [GSSG/(GSH+GSSG)], resulting in kidney dysfunction, tubular cell damage, and lipid peroxidation. In LLC-PK(1) cells, upregulation of IDPc by IDPc gene transfer protected the cells against hydrogen peroxide, enhancing NADPH production, inhibiting the increase of GSSG/(GSH+GSSG), and reducing lipid peroxidation. IDPc downregulation by small interference RNA treatment presented results contrasting with the upregulation. In conclusion, these results demonstrate that IDPc is expressed differentially along tubules in patterns that may contribute to differences in susceptibility to injury, is a major enzyme in cytosolic NADPH generation in kidney, and is downregulated with I/R.

  15. Sterol-induced Dislocation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase from Endoplasmic Reticulum Membranes into the Cytosol through a Subcellular Compartment Resembling Lipid Droplets*

    Science.gov (United States)

    Hartman, Isamu Z.; Liu, Pingsheng; Zehmer, John K.; Luby-Phelps, Katherine; Jo, Youngah; Anderson, Richard G. W.; DeBose-Boyd, Russell A.

    2010-01-01

    Sterol-induced binding to Insigs in the endoplasmic reticulum (ER) allows for ubiquitination of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in cholesterol synthesis. This ubiquitination marks reductase for recognition by the ATPase VCP/p97, which mediates extraction and delivery of reductase from ER membranes to cytosolic 26 S proteasomes for degradation. Here, we report that reductase becomes dislocated from ER membranes into the cytosol of sterol-treated cells. This dislocation exhibits an absolute requirement for the actions of Insigs and VCP/p97. Reductase also appears in a buoyant fraction of sterol-treated cells that co-purifies with lipid droplets, cytosolic organelles traditionally regarded as storage depots for neutral lipids such as triglycerides and cholesteryl esters. Genetic, biochemical, and localization studies suggest a model in which reductase is dislodged into the cytosol from an ER subdomain closely associated with lipid droplets. PMID:20406816

  16. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors.

    Science.gov (United States)

    Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter

    2012-05-14

    Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand

  17. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands.

    Science.gov (United States)

    Lau, Boris L T; Hsu-Kim, Heileen

    2008-10-01

    In sulfidic aquatic systems, metal sulfides can control the mobility and bioavailability of trace metal pollutants such as zinc, mercury, and silver. Nanoparticles of ZnS and other metal sulfides are known to exist in oxic and anoxic waters. However, the processes that lead to their persistence in the aquatic environment are relatively unknown. The objective of this study was to evaluate the importance of dissolved natural organics in stabilizing nanoparticulate ZnS that precipitates under environmentally relevant conditions. Precipitation and growth of ZnS particles were investigated in the presence of dissolved humic acid and low-molecular weight organic acids that are prevalent in sediment porewater. Dynamic light scattering was used to monitor the hydrodynamic diameter of particles precipitating in laboratory solutions. Zn speciation was also measured by filtering the ZnS solutions (precipitation experiments and not to the dissolved organic ligands. X-ray photoelectron spectroscopy and electron microscopy were used to confirm that amorphous particles containing Zn and S were precipitating in the suspensions. Observed growth rates of ZnS particles varied by orders of magnitude, depending on the type and concentration of organic ligand in solution. In the presence of humic acid and thiol-containing ligands (cysteine, glutathione, and thioglycolate), observed growth rates decreased by 1-3 orders of magnitude relative to controls without the ligands. In contrast, growth rates of the particles were consistently within 1 order of magnitude of the ligand-free control when oxygen- and amine-containing ligands (oxalate, serine, and glycolate) were present Furthermore, particle growth rates decreased with an increase in thiol concentration and increased with NaNO3 electrolyte concentration. These studies suggest that specific surface interactions with thiol-containing organics may be one factor that contributes to the persistence of naturally occurring and anthropogenic

  18. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    Science.gov (United States)

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  19. Automation of metabolic stability studies in microsomes, cytosol and plasma using a 215 Gilson liquid handler.

    Science.gov (United States)

    Linget, J M; du Vignaud, P

    1999-05-01

    A 215 Gilson liquid handler was used to automate enzymatic incubations using microsomes, cytosol and plasma. The design of automated protocols are described. They were based on the use of 96 deep well plates and on HPLC-based methods for assaying the substrate. The assessment of those protocols was made with comparison between manual and automated incubations, reliability and reproducibility of automated incubations in microsomes and cytosol. Examples of the use of those programs in metabolic studies in drug research, i.e. metabolic screening in microsomes and plasma were shown. Even rapid processes (with disappearance half lives as low as 1 min) can be analysed. This work demonstrates how stability studies can be automated to save time, render experiments involving human biological media less hazardous and may be improve inter-laboratory reproducibility.

  20. Synthesis of a stationary phase based on silica modified with branched octadecyl groups by Michael addition and photoinduced thiol-yne click chemistry for the separation of basic compounds.

    Science.gov (United States)

    Huang, Guang; Ou, Junjie; Wang, Hongwei; Ji, Yongsheng; Wan, Hao; Zhang, Zhang; Peng, Xiaojun; Zou, Hanfa

    2016-04-01

    A novel silica-based stationary phase with branched octadecyl groups was prepared by the sequential employment of the Michael addition reaction and photoinduced thiol-yne click chemistry with 3-aminopropyl-functionalized silica microspheres as the initial material. The resulting stationary phase denoted as SiO2 -N(C18)4 was characterized by elemental analysis, FTIR spectroscopy and Raman spectroscopy, demonstrating the existence of branched octadecyl groups in silica microspheres. The separations of benzene homologous compounds, acid compounds and amine analogues were conducted, demonstrating mixed-mode separation mechanism on SiO2 -N(C18)4 . Baseline separation of basic drugs mixture was acquired with the mobile phase of acetonitrile/H2 O (5%, v/v). SiO2 -N(C18)4 was further applied to separate Corydalis yanhusuo Wang water extracts, and more baseline separation peaks were obtained for SiO2 -N(C18)4 than those on Atlantis dC18 column. It can be expected that this new silica-based stationary phase will exhibit great potential in the analysis of basic compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.