WorldWideScience

Sample records for cytosolic glutathione reductase

  1. GLUTATHIONE TRANSFERASE, GLUTATHIONE REDUCTASE AND GLUTATHIONE PEROXIDASE OF CAECUM AND LIVER OF PIG

    OpenAIRE

    FEDETS O.M.

    2009-01-01

    The content of glutathione and the activity of enzymes have been investigated. The data of glutathione, glutathione transferase and glutathione peroxidase are the highest in the liver. In mucosa of caecum activity of glutathione reductase is the highest than in liver.

  2. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase.

    Science.gov (United States)

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa; Albrecht, Philipp; Methner, Axel

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro . We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.

  3. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Christina Hoffmann

    2017-01-01

    Full Text Available Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2 leading to increased synthesis of the major cellular antioxidant glutathione (GSH and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR, a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase.

  4. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione reductase assay. (a) Identification. A glutathione reductase assay is a device used to determine the...

  5. Mitochondrial Thioredoxin-Glutathione Reductase from Larval Taenia crassiceps (Cysticerci

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    2010-01-01

    Full Text Available Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci. The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25∘C specific activities were 437  ±  27 mU mg-1 and 840  ±  49 mU mg-1 with thioredoxin and GSSG, respectively. Apparent Km values were 0.87  ±  0.04  μM, 41  ±  6  μM and 19  ±  10  μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2 in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.

  6. Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state

    Science.gov (United States)

    Kojer, Kerstin; Bien, Melanie; Gangel, Heike; Morgan, Bruce; Dick, Tobias P; Riemer, Jan

    2012-01-01

    Glutathione is an important mediator and regulator of cellular redox processes. Detailed knowledge of local glutathione redox potential (EGSH) dynamics is critical to understand the network of redox processes and their influence on cellular function. Using dynamic oxidant recovery assays together with EGSH-specific fluorescent reporters, we investigate the glutathione pools of the cytosol, mitochondrial matrix and intermembrane space (IMS). We demonstrate that the glutathione pools of IMS and cytosol are dynamically interconnected via porins. In contrast, no appreciable communication was observed between the glutathione pools of the IMS and matrix. By modulating redox pathways in the cytosol and IMS, we find that the cytosolic glutathione reductase system is the major determinant of EGSH in the IMS, thus explaining a steady-state EGSH in the IMS which is similar to the cytosol. Moreover, we show that the local EGSH contributes to the partially reduced redox state of the IMS oxidoreductase Mia40 in vivo. Taken together, we provide a comprehensive mechanistic picture of the IMS redox milieu and define the redox influences on Mia40 in living cells. PMID:22705944

  7. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  8. Glutathione Reductase of Vacuole. Comparison of Glutathione Reductase Activity of Vacuole and Tissue Extract of Red Beet Root (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    E.V. Pradedova

    2016-02-01

    Full Text Available Glutathione reductase (GR, EC 1.8.1.7 is the enzyme that reduces oxidized glutathione (GSSG and thus regulates the redox state of glutathione (GSH/GSSG. GR has been studied in most plants. This enzyme has been identified in chloroplasts and cytosol, so these cellular compartments are considered to be the main place of the enzyme localization. In the same time, just a little is known about GR vacuoles. There are no conclusive evidences to prove the presence or absence of this enzyme in the vacuoles. GR activity was found in the vacuoles of red beet root cells (Beta vulgaris L.. The level of activity, the optimum pH and isoenzyme composition of GR were compared in the vacuoles and tissue extract of beet root. Vacuolar GR activity was quite high, it was 1.5-2 times higher than the activity of the tissue extract. Enzyme pH optimum of all the objects were identical. pH-optimum depend on the pyridine nucleotide nature: pH 7.0-8.0 was an optimal range with NADPH; pH 5.0 – with NADH. GR activity of the vacuoles and tissue extracts decreased in the presence of a noncompetitive inhibitor 1-chloro-2.4-dinitrobenzene (CDNB, indicating the specificity of this enzymatic reaction. Two bands with glutathione reductase activity have been identified in the vacuoles and tissue extracts using zymography method to determine the enzymatic activity in PAAG after electrophoresis of proteins. Belonging to the GR isoforms of these bands was confirmed by enzyme immunoassay (Western blotting. The electric mobility of isoforms of the study objects did not differ significantly. It is concluded that the biochemical characteristics of vacuolar glutathione reductase were substantially identical to the biochemical characteristics of other localization GR.

  9. Glutathione Reductase/Glutathione Is Responsible for Cytotoxic Elemental Sulfur Tolerance via Polysulfide Shuttle in Fungi*

    Science.gov (United States)

    Sato, Ikuo; Shimatani, Kanami; Fujita, Kensaku; Abe, Tsuyoshi; Shimizu, Motoyuki; Fujii, Tatsuya; Hoshino, Takayuki; Takaya, Naoki

    2011-01-01

    Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction. PMID:21474441

  10. Glutathione reductase/glutathione is responsible for cytotoxic elemental sulfur tolerance via polysulfide shuttle in fungi.

    Science.gov (United States)

    Sato, Ikuo; Shimatani, Kanami; Fujita, Kensaku; Abe, Tsuyoshi; Shimizu, Motoyuki; Fujii, Tatsuya; Hoshino, Takayuki; Takaya, Naoki

    2011-06-10

    Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction.

  11. Plastid-Localized Glutathione Reductase2–Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance[C][W

    Science.gov (United States)

    Yu, Xin; Pasternak, Taras; Eiblmeier, Monika; Ditengou, Franck; Kochersperger, Philip; Sun, Jiaqiang; Wang, Hui; Rennenberg, Heinz; Teale, William; Paponov, Ivan; Zhou, Wenkun; Li, Chuanyou; Li, Xugang; Palme, Klaus

    2013-01-01

    Glutathione is involved in thiol redox signaling and acts as a major redox buffer against reactive oxygen species, helping to maintain a reducing environment in vivo. Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) into reduced glutathione (GSH). The Arabidopsis thaliana genome encodes two GRs: GR1 and GR2. Whereas the cytosolic/peroxisomal GR1 is not crucial for plant development, we show here that the plastid-localized GR2 is essential for root growth and root apical meristem (RAM) maintenance. We identify a GR2 mutant, miao, that displays strong inhibition of root growth and severe defects in the RAM, with GR activity being reduced to ∼50%. miao accumulates high levels of GSSG and exhibits increased glutathione oxidation. The exogenous application of GSH or the thiol-reducing agent DTT can rescue the root phenotype of miao, demonstrating that the RAM defects in miao are triggered by glutathione oxidation. Our in silico analysis of public microarray data shows that auxin and glutathione redox signaling generally act independently at the transcriptional level. We propose that glutathione redox status is essential for RAM maintenance through both auxin/PLETHORA (PLT)-dependent and auxin/PLT-independent redox signaling pathways. PMID:24249834

  12. Histochemical localization of glutathione dependent NBT-reductase in mouse skin.

    Science.gov (United States)

    Shukla, Y

    2001-09-01

    Localization of the glutathione dependent Nitroblue tetrazolium (NBT) reductase in fresh frozen sections of mouse skin and possible dependence of NBT reductase on tissue thiol levels has been investigated. The fresh frozen tissue sections (8 m thickness) were prepared and incubated in medium containing NBT, reduced glutathione (GSH) and phosphate buffer. The staining for GSH was performed with mercury orange. The activity of the NBT-reductase in mouse skin has been found to be localized in the areas rich in glutathione and actively proliferating area of the skin. The activity of the NBT-reductase seems to be dependent on the glutathione contents.

  13. Interspecific variation for thermal dependence of glutathione reductase in sainfoin.

    Science.gov (United States)

    Kidambi, S P; Mahan, J R; Matches, A G

    1990-05-01

    Understanding the biochemical and physiological consequences of species variation would expedite improvement in agronomically useful genotypes of sainfoin (Onobrychis spp.) Information on variation among sainfoin species is lacking on thermal dependence of glutathione reductase (B.C. 1.6.4.2.), which plays an important role in the protection of plants from both high and low temperature stresses by preventing harmful oxidation of enzymes and membranes. Our objective was to investigate the interspecific variation for thermal dependency of glutathione reductase in sainfoin. Large variation among species was found for: (i) the minimum apparent Km (0.4-2.5 μM NADPH), (ii) the temperature at which the minimum apparent Km was observed (15°-5°C), and (iii) the thermal kinetic windows (2°-30°C width) over a 15°-45°C temperature gradient. In general, tetraploid species had narrower (≤17°C) thermal kinetic windows than did diploid species (∼30°C), with one exception among the diploids. Within the tetraploid species, the cultivars of O. viciifolia had a broader thermal kinetic window (≥7°C) than the plant introduction (PI 212241, >2 °C) itself.

  14. Glutathione cycle in diquat neurotoxicity: Assessed by intrastriatal pre-treatment with glutathione reductase

    Directory of Open Access Journals (Sweden)

    Đurđević Dragan

    2013-01-01

    Full Text Available Diquat (DQ neurotoxicity mechanisms are unknown, although, it's systemic toxicity is mediated by free radical reactions. The role of glutathione cycle was assessed by glutathione reductase (GR applied in the pre-treatment of DQ poisoning. Wistar rats were used and tested compounds were administered intrastriatally (i.s. in one single dose. Total glutathione (tGSH, glutathione disulfide (GSSG and glutathione peroxidase (GPx were measured in the vulnerable brain regions (VBRs (striatum, hippocampus and cortex, at 30 minutes, 24 hours and 7 days post treatment. Results from the intact and the sham operated groups were not statistically different. Rapid spatial spreading of oxidative stress was confirmed in the examined VBRs. Mortality (30-40%, within 24hrs and signs of lethargy were observed in the DQ group. Activity of GPx activity was elevated and GSSG/GSH was higher in the examined VBRs during the experiment, compared to the controls. The i.s. pre-treatment with GR achieved neuroprotective role against DQ induced neurotoxicity, based on animal survival, absence of lethargy and decreased GPx activity and GSSG/GSH in the examined VBRs during the experiment, compared to the DQ group. Our results confirmed that oxidation of GSH was the reason for the reduced antioxidative defense against DQ neurotoxicity. [Projekat Ministarstva nauke Republike Srbije, br. III41018

  15. Induction of Glutathione Synthesis and Glutathione Reductase Activity by Abiotic Stresses in Maize and Wheat

    Directory of Open Access Journals (Sweden)

    Gábor Kocsy

    2002-01-01

    Full Text Available The effect of different abiotic stresses (extreme temperatures and osmotic stress on the synthesis of glutathione and hydroxymethylglutathione, on the ratio of the reduced to oxidised forms of these thiols (GSH/GSSG, hmGSH/hmGSSG, and on the glutathione reductase (GR activity was studied in maize and wheat genotypes having different sensitivity to low temperature stress. Cold treatment induced a greater increase in total glutathione (TG content and in GR activity in tolerant genotypes of both species than in sensitive ones. The GSH/GSSG and hmGSH/hmGSSG ratios were increased by this treatment only in the frost-tolerant wheat variety. High-temperature stress increased the TG content and the GSH/GSSG ratio only in the chilling-sensitive maize genotype, but GR activity was greater after this treatment in both maize genotypes. Osmotic stress resulted in a great increase in the TG content in wheat and the GR activity in maize. The amount of total hydroxymethylglutathione increased following all stress treatments. These results indicate the involvement of these antioxidants in the stress responses of wheat and maize.

  16. Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol.

    Science.gov (United States)

    Gest, Noé; Garchery, Cécile; Gautier, Hélène; Jiménez, Ana; Stevens, Rebecca

    2013-04-01

    Ascorbate is a powerful antioxidant in plants, and its levels are an important quality criteria in commercial species. Factors influencing these levels include environmental variations, particularly light, and the genetic control of its biosynthesis, recycling and degradation. One of the genes involved in the recycling pathway encodes a monodehydroascorbate reductase (MDHAR), an enzyme catalysing reduction of the oxidized radical of ascorbate, monodehydroascorbate, to ascorbate. In plants, MDHAR belongs to a multigene family. Here, we report the presence of an MDHAR isoform in both the cytosol and peroxisomes and show that this enzyme negatively regulates ascorbate levels in Solanum lycopersicum (tomato). Transgenic lines overexpressing MDHAR show a decrease in ascorbate levels in leaves, whereas lines where MDHAR is silenced show an increase in these levels in both fruits and leaves. Furthermore, the intensity of these differences is light dependent. The unexpected effect of this MDHAR on ascorbate levels cannot be explained by changes in the expression of Smirnoff-Wheeler pathway genes, or the activity of enzymes involved in degradation (ascorbate peroxidase) or recycling of ascorbate (dehydroascorbate reductase and glutathione reductase), suggesting a previously unidentified mechanism regulating ascorbate levels. © 2012 INRA Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development.

    Science.gov (United States)

    Pasternak, Maciej; Lim, Benson; Wirtz, Markus; Hell, Rüdiger; Cobbett, Christopher S; Meyer, Andreas J

    2008-03-01

    Glutathione (GSH) homeostasis in plants is essential for cellular redox control and efficient responses to abiotic and biotic stress. Compartmentation of the GSH biosynthetic pathway is a unique feature of plants. The first enzyme, gamma-glutamate cysteine ligase (GSH1), responsible for synthesis of gamma-glutamylcysteine (gamma-EC), is, in Arabidopsis, exclusively located in the plastids, whereas the second enzyme, glutathione synthetase (GSH2), is located in both plastids and cytosol. In Arabidopsis, gsh2 insertion mutants have a seedling lethal phenotype in contrast to the embryo lethal phenotype of gsh1 null mutants. This difference in phenotype may be due to partial replacement of GSH functions by gamma-EC, which in gsh2 mutants hyperaccumulates to levels 5000-fold that in the wild type and 200-fold wild-type levels of GSH. In situ labelling of thiols with bimane and confocal imaging in combination with HPLC analysis showed high concentrations of gamma-EC in the cytosol. Feedback inhibition of Brassica juncea plastidic GSH1 by gamma-EC in vitro strongly suggests export of gamma-EC as functional explanation for hyperaccumulation. Complementation of gsh2 mutants with the cytosol-specific GSH2 gave rise to phenotypically wild-type transgenic plants. These results support the conclusion that cytosolic synthesis of GSH is sufficient for plant growth. The transgenic lines further show that, consistent with the exclusive plastidic localization of GSH1, gamma-EC is exported from the plastids to supply the cytosol with the immediate precursor for GSH biosynthesis, and that there can be efficient re-import of GSH into the plastids to allow effective control of GSH biosynthesis through feedback inhibition of GSH1.

  18. Structure, function, and mechanism of cytosolic quinone reductases.

    Science.gov (United States)

    Bianchet, Mario A; Erdemli, Sabri Bora; Amzel, L Mario

    2008-01-01

    Quinone reductases type 1 (QR1) are FAD-containing enzymes that catalyze the reduction of many quinones, including menadione (Vit K3), to hydroquinones using reducing equivalents provided by NAD(P)H. The reaction proceeds with a ping-pong mechanism in which the NAD(P)H and the substrate occupy alternatively overlapping regions of the same binding site and participate in a double hydride transfer: one from NAD(P)H to the FAD of the enzyme, and one from the FADH(2) of the enzyme to the quinone substrate. The main function of QR1 is probably the detoxification of dietary quinones but it may also contribute to the reduction of vitamin K for its involvement in blood coagulation. In addition, the same reaction that QR1 uses in the detoxification of quinones, activates some compounds making them cytotoxic. Since QR1 is elevated in many tumors, this property has encouraged the development of chemotherapeutic compounds that become cytotoxic after reduction by QR1. The structures of QR1 alone, and in complexes with substrates, inhibitors, and chemotherapeutic prodrugs, combined with biochemical and mechanistic studies have provided invaluable insight into the mechanism of the enzyme as well as suggestions for the improvements of the chemotherapeutic prodrugs. Similar information is beginning to accumulate about another related enzyme, QR2.

  19. Low activity of superoxide dismutase and high activity of glutathione reductase in erythrocytes from centenarians

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Jeune, B; Nybo, H

    1998-01-01

    aged between 60 and 79 years. MEASUREMENTS: enzyme activities of superoxide dismutase (CuZn-SOD), glutathione peroxidase, catalase and glutathione reductase (GR) in erythrocytes. Functional capacity among the centenarians was evaluated by Katz' index of activities of daily living, the Physical...

  20. Inherited glutathione reductase deficiency and Plasmodium falciparum malaria--a case study

    NARCIS (Netherlands)

    Gallo, Valentina; Schwarzer, Evelin; Rahlfs, Stefan; Schirmer, R. Heiner; van Zwieten, Rob; Roos, Dirk; Arese, Paolo; Becker, Katja

    2009-01-01

    In Plasmodium falciparum-infected red blood cells (RBCs), the flavoenzyme glutathione reductase (GR) regenerates reduced glutathione, which is essential for antioxidant defense. GR utilizes NADPH produced in the pentose phosphate shunt by glucose-6-phosphate dehydrogenase (G6PD). Thus, conditions

  1. Profiling patterns of glutathione reductase inhibition by the natural product illudin S and its acylfulvene analogues

    OpenAIRE

    LIU, XIAODAN; Sturla, Shana J.

    2009-01-01

    Acylfulvenes (AFs) are a class of antitumor agents with favorable cytotoxic selectivity profiles compared to their natural product precursor, illudin S. Like many alkylating agents, illudin S and AFs readily react with thiol-containing small molecules such as cysteine, glutathione and cysteine-containing peptides; reduced cellular glutathione levels can affect illudin S toxicity. Glutathione reductase (GR) is a critical cellular anti-oxidant enzyme that regulates the intracellular ratio of re...

  2. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    Science.gov (United States)

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria.

  3. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  4. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Igor Y. Iskusnykh

    2013-01-01

    Full Text Available Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9 and glutathione reductase (GR, EC 1.6.4.2 activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.

  5. Comparative inhibition of tetrameric carbonyl reductase activity in pig heart cytosol by alkyl 4-pyridyl ketones.

    Science.gov (United States)

    Shimada, Hideaki; Tanigawa, Takahiro; Matayoshi, Kazunori; Katakura, Kazufumi; Babazono, Ken; Takayama, Hiroyuki; Murahashi, Tsuyoshi; Akita, Hiroyuki; Higuchi, Toshiyuki; Eto, Masashi; Imamura, Yorishige

    2014-06-01

    The present study is to elucidate the comparative inhibition of tetrameric carbonyl reductase (TCBR) activity by alkyl 4-pyridyl ketones, and to characterize its substrate-binding domain. The inhibitory effects of alkyl 4-pyridyl ketones on the stereoselective reduction of 4-benzoylpyridine (4-BP) catalyzed by TCBR were examined in the cytosolic fraction of pig heart. Of alkyl 4-pyridyl ketones, 4-hexanoylpyridine, which has a straight-chain alkyl group of five carbon atoms, inhibited most potently TCBR activity and was a competitive inhibitor. Furthermore, cyclohexyl pentyl ketone, which is substituted by cyclohexyl group instead of phenyl group of hexanophenone, had much lower ability to be reduced than hexanophenone. These results suggest that in addition to a hydrophobic cleft corresponding to a straight-chain alkyl group of five carbon atoms, a hydrophobic pocket with affinity for an aromatic group is located in the substrate-binding domain of TCBR.

  6. FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.

    Science.gov (United States)

    Ono, S; Hirano, H

    1984-04-01

    We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.

  7. The glutathione reductase GSR-1 determines stress tolerance and longevity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Kai Lüersen

    Full Text Available Glutathione (GSH and GSH-dependent enzymes play a key role in cellular detoxification processes that enable organism to cope with various internal and environmental stressors. However, it is often not clear, which components of the complex GSH-metabolism are required for tolerance towards a certain stressor. To address this question, a small scale RNAi-screen was carried out in Caenorhabditis elegans where GSH-related genes were systematically knocked down and worms were subsequently analysed for their survival rate under sub-lethal concentrations of arsenite and the redox cycler juglone. While the knockdown of γ-glutamylcysteine synthetase led to a diminished survival rate under arsenite stress conditions, GSR-1 (glutathione reductase was shown to be essential for survival under juglone stress conditions. gsr-1 is the sole GSR encoding gene found in C. elegans. Knockdown of GSR-1 hardly affected total glutathione levels nor reduced glutathione/glutathione disulphide (GSH/GSSG ratio under normal laboratory conditions. Nevertheless, when GSSG recycling was impaired by gsr-1(RNAi, GSH synthesis was induced, but not vice versa. Moreover, the impact of GSSG recycling was potentiated under oxidative stress conditions, explaining the enormous effect gsr-1(RNAi knockdown had on juglone tolerance. Accordingly, overexpression of GSR-1 was capable of increasing stress tolerance. Furthermore, expression levels of SKN-1-regulated GSR-1 also affected life span of C. elegans, emphasising the crucial role the GSH redox state plays in both processes.

  8. Age-related changes in catalase, glutathione reductase activities, the amount of glutathione in total body of oregon and vestigial Drosophila melanogaster.

    Science.gov (United States)

    Fiskin, K; Kandemir, S; Hamamci, D; Yesilada, E; Bozcuk, A N

    1994-01-01

    Natural antioxidants, free radical scavengers as catalase, glutathione reductase and glutathione are considered for aging mechanism. The objective of our study was to investigate the differences in the life span of male Oregon (w.t.) and vestigial Drosophila melanogaster, the possible role of free radical scavengers such as catalase, glutathione reductase and reduced-oxidized glutathione levels in the aging process by studying the pattern of age-related changes. The life span of male Oregon D. melanogaster is longer than that of the vestigial D. melanogaster. The beginning of the dying phase of Oregon was around 40 days, while the vestigial's around 20 days. The maximum life span was 85 days in Oregon population and 56 days in vestigial population. Age-related changes of catalase activities were similar in male Oregon and vestigial and showed a decreasing curve during aging. Glutathione reductase activity of Oregon increased slightly between 10 and 40 days, decreased sharply therafter. Glutathione reductase activity of vestigial followed a pot-shaped trend with 60% decrease during the first 40 days and followed by a sharp increase during the late part of life. The amounts of reduced glutathione (GSH) and oxidized glutathione (GSSG) increased slightly up to 40 days of age and followed a sharp decline thereafter in male Oregon D. melanogaster. In male vestigial D. melanogaster, the concentrations of GSH and GSSG remained quite stable for the nogaster, the concentrations of GSH and GSSG remained quite stable for the first 10 days, followed by a sharp decline around 20th day and increased thereafter.

  9. Measuring protein-bound glutathioine (PSSG): Critical correction for cytosolic glutathione species

    Science.gov (United States)

    Introduction: Protein glutathionylation is gaining recognition as an important posttranslational protein modification. The common first step in measuring protein glutathionylation is the denaturation and precipitation of protein away from soluble, millimolar quantities of glutathione (GSH) and glut...

  10. Profiling patterns of glutathione reductase inhibition by the natural product illudin S and its acylfulvene analogues.

    Science.gov (United States)

    Liu, Xiaodan; Sturla, Shana J

    2009-09-01

    Acylfulvenes (AFs) are a class of antitumor agents with favorable cytotoxic selectivity profiles compared to their natural product precursor, illudin S. Like many alkylating agents, illudin S and AFs readily react with thiol-containing small molecules such as cysteine, glutathione and cysteine-containing peptides; reduced cellular glutathione levels can affect illudin S toxicity. Glutathione reductase (GR) is a critical cellular antioxidant enzyme that regulates the intracellular ratio of reduced-oxidized glutathione. In this study, we found that acylfulvene analogues are GR inhibitors, and evaluated aspects of the drug-enzyme interactions as compared with the structurally related natural product illudin S and the known irreversible GR inhibitor, carmustine. Acylfulvene analogues exhibited concentration-dependent GR inhibitory activity with micromolar IC(50)s; however, up to 2 mM illudin S did not inhibit GR activity. The absence of NADPH attenuates GR inhibition by AFs and the presence of glutathione disulfide (GSSG), the natural GR substrate, which binds to the enzyme active site, has a minimal effect in protecting GR from AFs. Furthermore, each compound can induce GR conformation changes independent of the presence of NADPH or GSSG. These results, together with gel-filtration analysis results and mass spectrometry data, indicate AF is a reversible inhibitor and HMAF an irreversible inhibitor that can form a bis-adduct with GR by reacting with active site cysteines. Finally in a cell-based assay, illudin S and HMAF were found to inhibit GR activity, but this inhibition was not associated with the reduction of GR levels in the cell. A model accounting for differences in mechanisms of GR inhibition by the series of compounds is discussed.

  11. Thioredoxin glutathione reductase as a novel drug target: evidence from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    LiJun Song

    Full Text Available BACKGROUND: Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia. METHODS AND FINDINGS: After cloning the S. japonicum TGR (SjTGR gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR, glutathione reductase (GR and glutaredoxin (Grx activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice. CONCLUSIONS: Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum.

  12. Identification of thioredoxin glutathione reductase inhibitors that kill cestode and trematode parasites.

    Directory of Open Access Journals (Sweden)

    Fabiana Ross

    Full Text Available Parasitic flatworms are responsible for serious infectious diseases that affect humans as well as livestock animals in vast regions of the world. Yet, the drug armamentarium available for treatment of these infections is limited: praziquantel is the single drug currently available for 200 million people infected with Schistosoma spp. and there is justified concern about emergence of drug resistance. Thioredoxin glutathione reductase (TGR is an essential core enzyme for redox homeostasis in flatworm parasites. In this work, we searched for flatworm TGR inhibitors testing compounds belonging to various families known to inhibit thioredoxin reductase or TGR and also additional electrophilic compounds. Several furoxans and one thiadiazole potently inhibited TGRs from both classes of parasitic flatworms: cestoda (tapeworms and trematoda (flukes, while several benzofuroxans and a quinoxaline moderately inhibited TGRs. Remarkably, five active compounds from diverse families possessed a phenylsulfonyl group, strongly suggesting that this moiety is a new pharmacophore. The most active inhibitors were further characterized and displayed slow and nearly irreversible binding to TGR. These compounds efficiently killed Echinococcus granulosus larval worms and Fasciola hepatica newly excysted juveniles in vitro at a 20 µM concentration. Our results support the concept that the redox metabolism of flatworm parasites is precarious and particularly susceptible to destabilization, show that furoxans can be used to target both flukes and tapeworms, and identified phenylsulfonyl as a new drug-hit moiety for both classes of flatworm parasites.

  13. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi

    Science.gov (United States)

    Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature. PMID:16000713

  14. Proteomic Profiling of Cytosolic Glutathione Transferases from Three Bivalve Species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea

    Directory of Open Access Journals (Sweden)

    José Carlos Martins

    2014-01-01

    Full Text Available Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs, in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  15. Proteomic profiling of cytosolic glutathione transferases from three bivalve species: Corbicula fluminea, Mytilus galloprovincialis and Anodonta cygnea.

    Science.gov (United States)

    Martins, José Carlos; Campos, Alexandre; Osório, Hugo; da Fonseca, Rute; Vasconcelos, Vítor

    2014-01-27

    Suspension-feeding bivalves are considered efficient toxin vectors with a relative insensitivity to toxicants compared to other aquatic organisms. This fact highlights the potential role of detoxification enzymes, such as glutathione transferases (GSTs), in this bivalve resistance. Nevertheless, the GST system has not been extensively described in these organisms. In the present study, cytosolic GSTs isoforms (cGST) were surveyed in three bivalves with different habitats and life strategies: Corbicula fluminea, Anodonta cygnea and Mytilus galloprovincialis. GSTs were purified by glutathione-agarose affinity chromatography, and the collection of expressed cGST classes of each bivalve were identified using a proteomic approach. All the purified extracts were also characterized kinetically. Results reveal variations in cGST subunits collection (diversity and properties) between the three tested bivalves. Using proteomics, four pi-class and two sigma-class GST subunits were identified in M. galloprovincialis. C. fluminea also yielded four pi-class and one sigma-class GST subunits. For A. cygnea, two mu-class and one pi-class GST subunits were identified, these being the first record of GSTs from these freshwater mussels. The affinity purified extracts also show differences regarding enzymatic behavior among species. The variations found in cGST collection and kinetics might justify diverse selective advantages for each bivalve organism.

  16. Characterization of nineteen antimony(III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase.

    Science.gov (United States)

    Karacan, Mehmet Sayım; Rodionova, Margarita V; Tunç, Turgay; Venedik, Kübra Begüm; Mamaş, Serhat; Shitov, Alexandr V; Zharmukhamedov, Sergei K; Klimov, Vyacheslav V; Karacan, Nurcan; Allakhverdiev, Suleyman I

    2016-12-01

    Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, (1)H-NMR, (13)C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.

  17. Susceptibility of the antioxidant selenoenyzmes thioredoxin reductase and glutathione peroxidase to alkylation-mediated inhibition by anticancer acylfulvenes

    OpenAIRE

    LIU, XIAODAN; Pietsch, Kathryn E.; Sturla, Shana J.

    2011-01-01

    Selenium, in the form of selenocysteine, is a critical component of some major redox-regulating enzymes, including thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). TrxR has emerged as an anticancer target for drug development due to its elevated expression level in many aggressive human tumors. Acylfulvenes (AFs) are semisynthetic derivatives of the natural product illudin S, and display improved cytotoxic selectivity profiles. AF and illudin S alkylate cellular macromolecules. ...

  18. Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function

    Directory of Open Access Journals (Sweden)

    Dauter Zbigniew

    2004-03-01

    Full Text Available Abstract Background The yffB (PA3664 gene of Pseudomonas aeruginosa encodes an uncharacterized protein of 13 kDa molecular weight with a marginal sequence similarity to arsenate reductase from Escherichia coli. The crystal structure determination of YffB was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. Results The structure was determined at 1.0 Å resolution by single-wavelength anomalous diffraction. The fold is very similar to that of arsenate reductase, which is an extension of the thioredoxin fold. Conclusion Given the conservation of the functionally important residues and the ability to bind glutathione, YffB is likely to function as a GSH-dependent thiol reductase.

  19. In vivo induction of phase II detoxifying enzymes, glutathione transferase and quinone reductase by citrus triterpenoids

    Directory of Open Access Journals (Sweden)

    Ahmad Hassan

    2010-09-01

    Full Text Available Abstract Background Several cell culture and animal studies demonstrated that citrus bioactive compounds have protective effects against certain types of cancer. Among several classes of citrus bioactive compounds, limonoids were reported to prevent different types of cancer. Furthermore, the structures of citrus limonoids were reported to influence the activity of phase II detoxifying enzymes. The purpose of the study was to evaluate how variations in the structures of citrus limonoids (namely nomilin, deacetyl nomilin, and isoobacunoic acid and a mixture of limonoids would influence phase II enzyme activity in excised tissues from a mouse model. Methods In the current study, defatted sour orange seed powder was extracted with ethyl acetate and subjected to silica gel chromatography. The HPLC, NMR and mass spectra were used to elucidate the purity and structure of compounds. Female A/J mice were treated with three limonoids and a mixture in order to evaluate their effect on phase II enzymes in four different tissues. Assays for glutathione S-transferase and NAD(PH: quinone reductase (QR were used to evaluate induction of phase II enzymatic activity. Results The highest induction of GST against 1-chloro-2,4-dinitrobenzene (CDNB was observed in stomach (whole, 58% by nomilin, followed by 25% isoobacunoic acid and 19% deacetyl nomilin. Deacetyl nomilin in intestine (small as well as liver significantly reduced GST activity against CDNB. Additionally isoobacunoic acid and the limonoid mixture in liver demonstrated a significant reduction of GST activity against CDNB. Nomilin significantly induced GST activity against 4-nitroquinoline 1-oxide (4NQO, intestine (280% and stomach (75% while deacetyl nomilin showed significant induction only in intestine (73%. Induction of GST activity was also observed in intestine (93% and stomach (45% treated with the limonoid mixture. Finally, a significant induction of NAD(PH: quinone reductase (QR activity was

  20. Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance.

    Science.gov (United States)

    Lim, B; Pasternak, M; Meyer, A J; Cobbett, C S

    2014-01-01

    The tripeptide glutathione (GSH) is an important metabolite with a broad spectrum of functions, and its homeostasis is essential to maintain cellular redox poise and effective responses to stress in plants. In Arabidopsis GSH is synthesised in two successive enzymatic steps by γ-glutamylcysteine synthetase (GSH1), localised exclusively in plastids, forming the pathway intermediate γ-glutamylcysteine (γ-EC), and then by glutathione synthetase (GSH2), which is located in both plastids and cytosol. This suggests a mechanism for γ-EC export from the plastids and, because the majority of GSH2 transcripts (90%) encode the cytosolic isoform, it is speculated that the cytosol may be the main compartment for GSH biosynthesis. With the availability of knockout lethal mutants of GSH1 and GSH2 in Arabidopsis, we were able to manipulate the GSH biosynthetic pathway within cells through transgenic techniques. We successfully complemented the gsh1 and gsh2 null mutants with a cytosol-targeted bacterial EcGSHA and plastid-targeted Arabidopsis GSH2 protein, respectively, to wild-type phenotypes. These transgenics were little affected under heavy metal (cadmium) or oxidative stress (H2 O2 ) when compared to the wild type. Collectively, our data show that redirecting GSH1 activity exclusively to the cytosol or restricting GSH biosynthesis to the plastids has no significant impact on development or stress resistance, suggesting efficient exchange of γ-EC and GSH between the plastid and cytosol compartments within cells. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Glutathione monoethyl ester and inhibition of the oxyhemoglobin-induced increase in cytosolic calcium in cultured smooth-muscle cells.

    Science.gov (United States)

    Arai, T; Takeyama, N; Tanaka, T

    1999-03-01

    The mechanism of arterial vasoconstriction caused by oxyhemoglobin production after subarachnoid hemorrhage was investigated. Using a fluorescent Ca++ indicator (fura-2 acetoxymethyl ester), the change in the cytosolic intracellular Ca++ concentration, [Ca++]i. was measured in cultured rat vascular smooth-muscle cells exposed to oxyhemoglobin and other substances. Oxyhemoglobin induced transient elevation of smooth-muscle cell [Ca++]i in either the presence or absence of ethyleneglycol-bis (beta-aminoethylether)-N,N'-tetraacetic acid, indicating that Ca++ released by oxyhemoglobin was derived from [Ca++]i stores. In contrast, methemoglobin had no effect on the smooth-muscle cells. Exposure of the cells to reactive oxygen species generated by xanthine plus xanthine oxidase yielded the same results as with oxyhemoglobin, that is, transient elevation of smooth-muscle cell [Ca++]i. Procaine (a Ca++ channel blocker) failed to inhibit the oxyhemoglobin-induced elevation of [Ca++]i. Ryanodine (a Ca++ channel opener) plus oxyhemoglobin caused markedly greater elevation of [Ca++]i than ryanodine alone, whereas thapsigargin (an adenosine triphosphate [ATP]-dependent Ca++ pump inhibitor) plus oxyhemoglobin had no additional effect when compared with thapsigargin alone. The oxyhemoglobin-induced elevation of [Ca++]i could be blocked by an Fe++ chelator (ferene), but not by an Fe chelator (deferoxamine mesylate). Treatment with either dithiothreitol or glutathione monoethyl ester markedly inhibited the oxyhemoglobin-induced elevation of [Ca++]i. These results indicate that Fe++-catalyzed hydroxyl radicals generated from oxyhemoglobin-derived free radicals induce the elevation of [Ca++]i by inhibiting the ATP-dependent Ca++ pump rather than the Ca++ channels in the sarcoplasmic reticulum and that thiols may prevent Ca++ pump inactivation by inhibiting the oxidation of membrane sulfhydryl groups.

  2. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  3. Susceptibility of the antioxidant selenoenyzmes thioredoxin reductase and glutathione peroxidase to alkylation-mediated inhibition by anticancer acylfulvenes.

    Science.gov (United States)

    Liu, Xiaodan; Pietsch, Kathryn E; Sturla, Shana J

    2011-05-16

    Selenium, in the form of selenocysteine, is a critical component of some major redox-regulating enzymes, including thioredoxin reductase (TrxR) and glutathione peroxidase (Gpx). TrxR has emerged as an anticancer target for drug development due to its elevated expression level in many aggressive human tumors. Acylfulvenes (AFs) are semisynthetic derivatives of the natural product illudin S and display improved cytotoxic selectivity profiles. AF and illudin S alkylate cellular macromolecules. Compared to AFs, illudin S more readily reacts with thiol-containing small molecules such as cysteine, glutathione, and cysteine-containing peptides. However, a previous study indicates that the reactivity of AFs and illudin S with glutathione reductase, a thiol-containing enzyme, is inversely correlated with the reactivity toward small molecule thiols. In this study, we investigate mechanistic aspects underlying the enzymatic and cellular effects of the AFs and illudin S on thioredoxin reductase. Both AF and HMAF were found to inhibit mammalian TrxR in the low- to submicromolar range, but illudin S was significantly less potent. TrxR inhibition by AFs was shown to be irreversible, concentration- and time-dependent, and mediated by alkylation of C-terminus active site Sec/Cys residues. In contrast, neither AFs nor illudin S inhibits Gpx, demonstrating that enzyme structure-specific small molecule interactions have a significant influence over the inherent reactivity of the Sec residue. In human cancer cells, TrxR activity can be inhibited by low micromolar concentrations of all three drugs. Finally, it was demonstrated that preconditioning cells by the addition of selenite to the cell culture media results in an enhancement in cell sensitivity toward AFs. These data suggest potential strategies for increasing drug activity by combination treatments that promote selenium enzyme activity.

  4. Prooxidant cytotoxicity of chromate in mammalian cells: the opposite roles of DT-diaphorase and glutathione reductase

    Energy Technology Data Exchange (ETDEWEB)

    Nivinskas, H.; Maroziene, A.; Cenas, N. [Vilnius Univ. (Lithuania). Inst. of Biochemistry; Nemeikaite-Ceniene, A.; Normantiene, T. [Vilnius Univ. (Lithuania). Inst. of Immunology

    2006-11-15

    The geno- and cytotoxicity of chromate, an important environmental pollutant, is partly attributed to the flavoenzyme-catalyzed reduction with the concomitant formation of reactive oxygen species. The aim of this work was to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1, DT-diaphorase, EC 1.6.99.2) and glutathione reductase (GR, EC 1.6.4.2) in the mammalian cell cytotoxicity of chromate, which was evidenced controversially so far. The chromate reductase activity of NQO1 was higher than that of GR, but lower than that of lipoamide dehydrogenase (EC 1.6.4.3), ferredoxin:NADP{sup +} reductase (EC 1.18.1.2), and NADPH: cytochrome P-450 reductase (EC 1.6.2.4). The reduction of chromate by NQO1 was accompanied by the formation of reactive oxygen species. The concentration of chromate for 50% survival of bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) during a 24-h incubation was (22 {+-} 4) {mu}M. The cytotoxicity was partly prevented by desferrioxamine, the antioxidant N,N'-diphenyl-p-phenylene diamine and by an inhibitor of NQO1, dicumarol, and potentiated by 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), which inactivates GR. The NADPH-dependent chromate reduction by digitonin-permeabilized FLK cells was partly inhibited by dicumarol and not affected by BCNU. Taken together, these data indicate that the oxidative stress-type cytotoxicity of chromate in FLK cells may be partly attributed to its reduction by NQO1, but not by GR. The effect of BCNU on the chromate cytotoxicity mav indicate that the general antioxidant action of reduced glutathione is more important than its prooxidant activities arising from the reactions with chromate. (orig.)

  5. Influence of two-stage weaning with subsequent transport on body weight, plasma lipid peroxidation, plasma selenium, and on leukocyte glutathione peroxidase and glutathione reductase activity in beef calves.

    Science.gov (United States)

    Burke, Nathaniel C; Scaglia, Guillermo; Boland, Holly T; Swecker, William S

    2009-02-15

    An experiment was conducted to assess the effects of two-stage weaning and subsequent transport on oxidative stress markers in calves. Thirty-six crossbred Angus steers (243+/-20.8 kg; 221+/-19.7 days) were allotted to control, fenceline (FL), and nose-clip (NC) weaning groups. Steers were weighed and blood samples were collected on days -7, 0 (pre-transit) and 7 surrounding transport. Leukocytes were analyzed for glutathione peroxidase and glutathione reductase activity, whereas malondialdehyde and Se were measured in plasma. Data were analyzed using PROC MIXED with the Tukey-Kramer adjustment applied post hoc. No treatment effects were detected for blood variables or weights. Glutathione peroxidase activity was not altered by time (P = 0.27). Glutathione reductase activity, Se, and malondialdehyde declined (Pweaning treatment groups gained weight between days 0 and 7 (Pweaning has little effect on examined markers of oxidative stress.

  6. Ethanol induced attenuation of oxidative stress is unable to alter mRNA expression pattern of catalase, glutathione reductase, glutathione-S- transferase (GST1A), and superoxide dismutase (SOD3) enzymes in Japanese rice fish (Oryzias latipes) embryogenesis

    Science.gov (United States)

    Wu, Minghui; Shariat-Madar, Bahbak; Haron, Mona H.; Wu, Mengmeng; Khan, Ikhlas A.; Dasmahapatra, Asok K.

    2010-01-01

    Although the mechanism of ethanol toxicity during embryogenesis is unknown, our earlier studies on Japanese rice fish (Oryzias latipes) embryos indicated that the effects might be mediated through oxidative stress. In this study we have determined the oxidative stress and the mRNA content of four antioxidant enzymes (catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) during Japanese rice fish embryogenesis (from 0 day post-fertilization to hatching) and after exposing the embryos to ethanol (100 and 300 mM) for 48 h at three stages (0–2, 1–3 and 4–6 day post fertilization, dpf) of organogenesis. We observed that oxidative stress was minimal in blastula, gastrula or neurula stages, increased gradually with the advancement of morphogenesis and reached its maximum level in hatchlings. The antioxidant enzyme mRNAs were constitutively expressed throughout development; however, the expression pattern was not identical among the enzymes. Catalase and superoxide dismutase (SOD) mRNAs were minimal in the fertilized eggs, but increased significantly in 1 dpf and then either sharply dropped (SOD) or maintained a steady-state (catalase). Glutathione S-transferase (GST) was very high in fertilized eggs and sharply dropped 1 dpf and then gradually increased thereafter. Glutathione reductase (GR) maintained a steady-state throughout the development. Ethanol was able to attenuate oxidative stress in embryos exposed only to 300 mM 1–3 dpf; no significant difference with controls was observed in other ethanol-treated groups. The antioxidant enzyme mRNAs also remained unaltered after ethanol treatment. From these data we conclude that the attenuation of oxidative stress by ethanol is probably due to the inhibition of normal growth of the embryos rather than by inhibiting catalase, GST, GR or SOD- dependent activities. PMID:20965276

  7. Effects of methodological variation on assessment of riboflavin status using the erythrocyte glutathione reductase activation coefficient assay.

    Science.gov (United States)

    Hill, Marilyn H E; Bradley, Angela; Mushtaq, Sohail; Williams, Elizabeth A; Powers, Hilary J

    2009-07-01

    Riboflavin status is usually measured as the in vitro stimulation with flavin adenine dinucleotide of the erythrocyte enzyme glutathione reductase, and expressed as an erythrocyte glutathione reductase activation coefficient (EGRAC). This method is used for the National Diet and Nutrition Surveys (NDNS) of the UK. In the period between the 1990 and 2003 surveys of UK adults, the estimated prevalence of riboflavin deficiency, expressed as an EGRAC value > or = 1.30, increased from 2 to 46 % in males and from 1 to 34 % in females. We hypothesised that subtle but important differences in the detail of the methodology between the two NDNS accounted for this difference. We carried out an evaluation of the performance of the methods used in the two NDNS and compared against an 'in-house' method, using blood samples collected from a riboflavin intervention study. Results indicated that the method used for the 1990 NDNS gave a significantly lower mean EGRAC value than both the 2003 NDNS method and the 'in-house' method (P FAD used in the assay and the duration of the period of incubation of FAD with enzyme. The details of the EGRAC method should be standardised for use in different laboratories and over time. Additionally, it is proposed that consideration be given to re-evaluating the basis of the EGRAC threshold for riboflavin deficiency.

  8. Influence of glutathione reductase on diquat neurotoxcity assessed by oxidative/nitrosative stress in the cortex of intrastriatally treated rats

    Directory of Open Access Journals (Sweden)

    Đukić Mirjana

    2012-01-01

    Full Text Available In this study we examined if the response of the cortex against diquat (DQ, intrastriatally (i.s. applied to Wistar rats, was mediated by oxidative/nitrosative stress (OS/NS. In particular, we were focused on the glutathione (GSH antioxidative role, thus we applied i.s. glutathione reductase (GR in the pre-treatment of DQ administration. Superoxide anion radical (O2 •-, nitrate (NO3 -, malondialdehyde (MDA and superoxide dismutase (SOD, were measured in ipsi- and contra- lateral sides of the cortex, at 30 minutes, 24 hours and 7 days post treatment. The redox balance was not significantly changed in the cortex of sham operated and intact groups. Also, no differences were observed between the ipsi- and contra- lateral side of the cortex. Lethargy and mortality (30-40% of the animals in the DQ group within 24 hrs, coincided with rapidly developed lipid peroxidation supported by OS/NS upon i.s. DQ administration. Strong redox potential of DQ probably resulted in a huge deprivation of molecular oxygen. The pretreatment with GR acted neuro-protectively, based on animal survival and absence of lethargy, although, lipid peroxidation was not developed in the GR+DQ group, OS was documented by a high concentration of O2 •- (within 24 hrs, descending and eventually inhibiting SOD activity (at 7 days. [Projekat Ministarstva nauke Republike Srbije, br. III41018

  9. Light‐dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol

    National Research Council Canada - National Science Library

    Gest, Noé; Garchery, Cécile; Gautier, Hélène; Jiménez, Ana; Stevens, Rebecca

    2013-01-01

    .... In plants, MDHAR belongs to a multigene family. Here, we report the presence of an MDHAR isoform in both the cytosol and peroxisomes and show that this enzyme negatively regulates ascorbate levels in Solanum lycopersicum (tomato...

  10. Regulation of sulphate assimilation by glutathione in poplars (Populus tremula x P. alba) of wild type and overexpressing gamma-glutamylcysteine synthetase in the cytosol.

    Science.gov (United States)

    Hartmann, Tanja; Hönicke, Petra; Wirtz, Markus; Hell, Rüdiger; Rennenberg, Heinz; Kopriva, Stanislav

    2004-04-01

    Glutathione (GSH) is the major low molecular weight thiol in plants with different functions in stress defence and the transport and storage of sulphur. Its synthesis is dependent on the supply of its constituent amino acids cysteine, glutamate, and glycine. GSH is a feedback inhibitor of the sulphate assimilation pathway, the primary source of cysteine synthesis. Sulphate assimilation has been analysed in transgenic poplars (Populus tremula x P. alba) overexpressing gamma-glutamylcysteine synthetase, the key enzyme of GSH synthesis, and the results compared with the effects of exogenously added GSH. Although foliar GSH levels were 3-4-fold increased in the transgenic plants, the activities of enzymes of sulphate assimilation, namely ATP sulphurylase, adenosine 5'-phosphosulphate reductase (APR), sulphite reductase, serine acetyltransferase, and O-acetylserine (thiol)lyase were not affected in three transgenic lines compared with the wild type. Also the mRNA levels of these enzymes were not altered by the increased GSH levels. By contrast, an increase in GSH content due to exogenously supplied GSH resulted in a strong reduction in APR activity and mRNA accumulation. This feedback regulation was reverted by simultaneous addition of O-acetylserine (OAS). However, OAS measurements revealed that OAS cannot be the only signal responsible for the lack of feedback regulation of APR by GSH in the transgenic poplars.

  11. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity

    Directory of Open Access Journals (Sweden)

    Dong-Gyu Kim

    2014-06-01

    Full Text Available BackgroundMitochondrial trans-2-enoyl-CoA reductase (MECR is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα. However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα.MethodsTo identify the expression pattern of MECR and the cytosolic form of MECR (cMECR, we performed reverse transcription polymerase chain reaction (RT-PCR with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity.ResultsWe provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells.ConclusionWe found the cytosolic form of MECR (cMECR was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.

  12. A Novel Cytosolic Isoform of Mitochondrial Trans-2-Enoyl-CoA Reductase Enhances Peroxisome Proliferator-Activated Receptor α Activity.

    Science.gov (United States)

    Kim, Dong-Gyu; Yoo, Jae Cheal; Kim, Eunju; Lee, Young-Sun; Yarishkin, Oleg V; Lee, Da Yong; Lee, Kun Ho; Hong, Seong-Geun; Hwang, Eun Mi; Park, Jae-Yong

    2014-06-01

    Mitochondrial trans-2-enoyl-CoA reductase (MECR) is involved in mitochondrial synthesis of fatty acids and is highly expressed in mitochondria. MECR is also known as nuclear receptor binding factor-1, which was originally reported with yeast two-hybrid screening as a binding protein of the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). However, MECR and PPARα are localized at different compartment, mitochondria, and the nucleus, respectively. Therefore, the presence of a cytosolic or nuclear isoform of MECR is necessary for functional interaction between MECR and PPARα. To identify the expression pattern of MECR and the cytosolic form of MECR (cMECR), we performed reverse transcription polymerase chain reaction (RT-PCR) with various tissue samples from Sprague-Dawley rats. To confirm the interaction between cMECR and PPARα, we performed several binding assays such as yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation. To observe subcellular localization of these proteins, immunocytochemistry was performed. A luciferase assay was used to measure PPARα activity. We provide evidence of an alternatively spliced variant of the rat MECR gene that yields cMECR. The cMECR lacks the N-terminal 76 amino acids of MECR and shows uniform distribution in the cytoplasm and nucleus of HeLa cells. cMECR directly bound PPARα in the nucleus and increased PPARα-dependent luciferase activity in HeLa cells. We found the cytosolic form of MECR (cMECR) was expressed in the cytosolic and/or nuclear region, directly binds with PPARα, and enhances PPARα activity.

  13. A cytosolic glutathione s-transferase, GST-theta from freshwater prawn Macrobrachium rosenbergii: molecular and biochemical properties.

    Science.gov (United States)

    Arockiaraj, Jesu; Gnanam, Annie J; Palanisamy, Rajesh; Bhatt, Prasanth; Kumaresan, Venkatesh; Chaurasia, Mukesh Kumar; Pasupuleti, Mukesh; Ramaswamy, Harikrishnan; Arasu, Abirami; Sathyamoorthi, Akila

    2014-08-10

    Glutathione S-transferases play an important role in cellular detoxification and may have evolved to protect cells against reactive oxygen metabolites. In this study, we report the molecular characterization of glutathione s-transferase-theta (GST-θ) from freshwater prawn Macrobrachium rosenbergii. A full length cDNA of GSTT (1417 base pairs) was isolated and characterized bioinformatically. Exposure to virus (white spot syndrome baculovirus or M. rosenbergii nodovirus), bacteria (Aeromonas hydrophila or Vibrio harveyi) or heavy metals (cadmium or lead) significantly increased the expression of GSTT (P<0.05) in hepatopancreas. Recombinant GST-θ with monochlorobimane substrate had an optimum activity at pH7.5 and 35 °C. Furthermore recombinant GST-θ activity was abolished by the denaturants triton X-100, Gua-HCl, Gua-thiocyanate, SDS and urea in a dose-dependent manner. Overall, the results suggest a potential role for M. rosenbergii GST-θ in detoxification and possibly conferring immune protection. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions.

    Science.gov (United States)

    Logan, Barry A; Monteiro, Gary; Kornyeyev, Dmytro; Payton, Paxton; Allen, Randy D; Holaday, A Scott

    2003-09-01

    In some studies, tissues from plants that have been genetically transformed to overproduce antioxidant enzymes sustain less damage when abruptly exposed to short-term chilling in the laboratory. However, few studies have examined the performance of transgenic plants during longer-term growth under chilling conditions. We compared growth of transgenic cotton that overproduces glutathione reductase (GR+; ∼40-fold overproduction) to growth of the wild type in a controlled environment chamber as leaf temperature was lowered from 28° to 14°C over 9 d and for a subsequent 9-d period at 14°C. In wild-type and GR+ cotton, chilling temperatures resulted in decreased dark-adapted F(v)/F(m) (the ratio of variable to maximal fluorescence; a measure of maximum photosystem II quantum yield) and mid-light period photosystem II quantum yield, coupled with increased 1 - q(P) (a nonlinear estimate of the reduction state of the primary quinone acceptor of photosystem II). The capacity for photosynthetic oxygen evolution decreased during the first portion of the chilling exposure, but recovered slightly during the second half. At no point during the chilling exposure did the performance of GR+ plants differ significantly from that of wild-type plants in any of the above parameters. The absence of an effect of GR overproduction under longer-term chilling may be explained, in part, by the fact that wild-type cotton acclimated to chilling by upregulating native GR activity.

  15. Ancient Plant Glyoxylate/Succinic Semialdehyde Reductases: GLYR1s Are Cytosolic, Whereas GLYR2s Are Localized to Both Mitochondria and Plastids

    Directory of Open Access Journals (Sweden)

    Barry J. Shelp

    2017-04-01

    Full Text Available Plant NADPH-dependent glyoxylate/succinic semialdehyde reductases 1 and 2 (GLYR1 and GLYR2 are considered to be involved in detoxifying harmful aldehydes, thereby preserving plant health during exposure to various abiotic stresses. Phylogenetic analysis revealed that the two GLYR isoforms appeared in the plant lineage prior to the divergence of the Chlorophyta and Streptophyta, which occurred approximately 750 million years ago. Green fluorescent protein fusions of apple (Malus x domestica Borkh., rice (Oryza sativa L. and Arabidopsis thaliana [L.] Heynh GLYRs were transiently expressed in tobacco (Nicotiana tabaccum L. suspension cells or Arabidopsis protoplasts, as well in methoxyfenozide-induced, stably transformed Arabidopsis seedlings. The localization of apple GLYR1 confirmed that this isoform is cytosolic, whereas apple, rice and Arabidopsis GLYR2s were localized to both mitochondria and plastids. These findings highlight the potential involvement of GLYRs within distinct compartments of the plant cell.

  16. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Lu, Hongjuan [Productivity Center of Jiangsu Province, Nanjing 210042, Jiangsu (China); Wang, Dongxu; Li, Shengrong; Sun, Kang; Wan, Xiaochun [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Taylor, Ethan Will [Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27402 (United States); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-12-15

    Thioredoxin reductase (TrxR) is a target for cancer therapy and the anticancer mechanism of cisplatin involves TrxR inhibition. We hypothesize that the anticancer drug nedaplatin (NDP), an analogue of cisplatin and a second-generation platinum complex, also targets TrxR. Furthermore, we investigate whether the therapeutic efficacy of NDP can be enhanced by simultaneous modulation of 1) TrxR, via NDP, and 2) glutathione (GSH), via the GSH synthesis inhibitor buthionine sulfoximine (BSO). Mice bearing ascitic hepatoma 22 (H22) cells were treated with NDP alone or NDP plus BSO. TrxR activity of H22 cells was inhibited by NDP in a dose-dependent manner. A high correlation between the inhibition of TrxR activity at 6 h and the inhibition of ascitic fluid volume at 72 h was established (r = 0.978, p < 0.01). As an adaptive response, the viable ascitic cancer cells after NDP treatment displayed an enlarged cell phenotype, assembled with several-fold more antioxidant enzymes and GSH-predominant non-protein free thiols. This adaptive response was largely eliminated when BSO was co-administered with NDP, leading to the decimation of the H22 cell population without enhancing renal toxicity, since at this dose, NDP did not inhibit renal TrxR activity. In conclusion, the pharmacological effect of NDP involves TrxR inhibition, and the adaptive response of NDP-treated ascitic H22 cells can be efficiently counteracted by BSO. Simultaneous modulation of TrxR and GSH on ascitic H22 cells using NDP plus BSO greatly enhances therapeutic efficacy as compared with the single modulation of TrxR using NDP alone. -- Highlights: ► Nedaplatin at a pharmacological dose inhibits TrxR in cancer cells but not in kidney. ► The nedaplatin-treated cancer cells exhibit adaptive response. ► Buthionine sulfoximine inhibits glutathione in both cancer cells and kidney. ► Buthionine sulfoximine counteracts the adaptive response to the nedaplatin treatment. ► Buthionine sulfoximine does not

  17. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation.

    Science.gov (United States)

    Varzari, Alexander; Deyneko, Igor V; Tudor, Elena; Turcan, Svetlana

    2016-02-01

    Glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and methylenetetrahydrofolate reductase (MTHFR) are important enzymes for protection against oxidative stress. In addition, MTHFR has an essential role in DNA synthesis, repair, and methylation. Their polymorphisms have been implicated in the pathogenesis of ulcerative colitis (UC). The aim of the present study was to investigate the role of selected polymorphisms in these genes in the development of UC in the Moldavian population. In a case-control study including 128 UC patients and 136 healthy individuals, GSTM1 and GSTT1 genotypes (polymorphic deletions) were determined using multiplex polymerase chain reaction (PCR). The GSTP1 rs1695 (Ile105Val), MTHFR rs1801133 (C677T), and MTHFR rs1801131 (A1298C) polymorphisms were studied with restriction fragment length polymorphism (RFLP) analysis. Genotype-phenotype correlations were examined using logistic regression analysis. None of the genotypes, either alone or in combination, showed a strong association with UC. The case-only sub-phenotypic association analysis showed an association of the MTHFR rs1801133 polymorphism with the extent of UC under co-dominant (p corrected = 0.040) and recessive (p corrected = 0.020; OR = 0.15; CI = 0.04-0.63) genetic models. Also, an association between the MTHFR rs1801131 polymorphism and the severity of UC was reported for the over-dominant model (p corrected = 0.023; coefficient = 0.32; 95% CI = 0.10-0.54). The GST and MTHFR genotypes do not seem to be a relevant risk factor for UC in our sample. There was, however, evidence that variants in MTHFR may influence the clinical features in UC patients. Additional larger studies investigating the relationship between GST and MTHFR polymorphisms and UC are required.

  18. Ethanol-induced attenuation of oxidative stress is unable to alter mRNA expression pattern of catalase, glutathione reductase, glutathione-S-transferase (GST1A), and superoxide dismutase (SOD3) enzymes in Japanese rice fish (Oryzias latipes) embryogenesis.

    Science.gov (United States)

    Wu, Minghui; Shariat-Madar, Bahbak; Haron, Mona H; Wu, Mengmeng; Khan, Ikhlas A; Dasmahapatra, Asok K

    2011-01-01

    Although the mechanism of ethanol toxicity during embryogenesis is unknown, our earlier studies on Japanese rice fish (Oryzias latipes) embryos indicated that the effects might be mediated through oxidative stress. In this study we have determined the oxidative stress and the mRNA content of four antioxidant enzymes (catalase, glutathione reductase, glutathione-S-transferase, and superoxide dismutase) during Japanese rice fish embryogenesis (from 0 day post-fertilization to hatching) and after exposing the embryos to ethanol (100 and 300 mM) for 48 h at three stages (0-2, 1-3 and 4-6 days post-fertilization, dpf) of organogenesis. We observed that oxidative stress was minimal in blastula, gastrula or neurula stages, increased gradually with the advancement of morphogenesis and reached its maximum level in hatchlings. The antioxidant enzyme mRNAs were constitutively expressed throughout development; however, the expression pattern was not identical among the enzymes. Catalase and superoxide dismutase (SOD) mRNAs were minimal in the fertilized eggs, but increased significantly in 1 dpf and then either sharply dropped (SOD) or maintained a steady-state (catalase). Glutathione-S-transferase (GST) was very high in fertilized eggs and sharply dropped 1 dpf and then gradually increased thereafter. Glutathione reductase (GR) maintained a steady-state throughout the development. Ethanol was able to attenuate oxidative stress in embryos exposed only to 300 mM 1-3 dpf; no significant difference with controls was observed in other ethanol-treated groups. The antioxidant enzyme mRNAs also remained unaltered after ethanol treatment. From these data we conclude that the attenuation of oxidative stress by ethanol is probably due to the inhibition of normal growth of the embryos rather than by inhibiting catalase, GST, GR or SOD-dependent activities. Published by Elsevier Inc.

  19. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  20. In vitro effects of some metal ions on glutathione reductase in the gills and liver of Capoeta trutta

    Directory of Open Access Journals (Sweden)

    M. Kirici

    2017-02-01

    Full Text Available Many aquatic environmental problems have arisen in consequence of contamination of water by toxic metals and organic pollutants in the present age of technology. Metals play vital roles in enzyme activities and other metabolic events due to their bioaccumulative and nonbiodegradable properties among aquatic pollutants. The aim of this study was to evaluate the inhibitory effects of some metal ions (Ag+, Cu2+, Co2+, Ni2+, Pb2+ and Zn2+ on Capoeta trutta gill and liver glutathione reductase (EC: 1.8.1.7; GR. For this purpose, initially, GR was purified from C. trutta gill and liver. Purification procedure consisted of three steps; preparation of hemolysate, ammonium sulphate precipitation and 2’, 5’-ADP Sepharose 4B affinity chromatography. Using this procedure, C. turtta gill GR, having the specific activity of 19.111 EU/mg proteins, was purified with a yield of 38.8% and 910.05-fold; C. trutta liver GR, having the specific activity of 16.167 EU/mg proteins, was purified with a yield of 21.1% and 734.86-fold. The purity of the enzymes was checked on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE and each purified enzyme showed a single band on the gel. In addition, inhibitory effects of some metal ions (Ag+, Cu2+, Co2+, Ni2+, Pb2+ and Zn2+ on GR from gill and liver were investigated in vitro. Ki constants and IC50 values for metal ions which showed inhibition effects were determined by Lineweaver-Burk graps and plotting activity % vs. [I]. In conclusion, IC50 values for fish gill GR were 0.000625, 0.153, 0.220, 0.247 and 0.216 mM and Ki constants for fish gill GR were 0.00045 ± 0.00008, 0.128 ± 0.036, 0.182 ± 0.138, 0.482 ± 0.219 and 0.112 ± 0.047 mM for Ag+, Cu2+, Co2+, Ni2+, Pb2+ and Zn2+, respectively. IC50 values for fish liver GR were 0.000437, 0.217, 0.185, 0.355 and 0.349 mM and Ki constants for fish liver GR were 0.00025 ± 0.00013, 0.532 ± 0.146, 0.123 ± 0.066, 0.093 ± 0.020 and 0.151 ± 0.084 mM for Ag

  1. Thioredoxin reductase induction coincides with melanin biosynthesis in brown and black guinea pigs and in murine melanoma cells.

    Science.gov (United States)

    Schallreuter, K U; Lemke, K R; Hill, H Z; Wood, J M

    1994-12-01

    X-rays were used to induce melanin biosynthesis in brown and black guinea pigs in vivo. During the course of pigmentation, the expression of thioredoxin reductase was increased, whereas for the other antioxidant enzymes, superoxide dismutase (cytosol Cu/Zn-enzyme), catalase, and glutathione reductase, levels and activities decreased. Isobutylmethylxanthine induced eumelanin biosynthesis in murine melanoma cells (Cloudman S-91). In these cells, thioredoxin reductase levels coincided with melanogenesis. Our results suggest that both tyrosinase and thioredoxin reductase respond to oxidative stress in the epidermis as well as in melanoma cells and react with superoxide anion radicals to stimulate melanogenesis and to prevent peroxidative damage, respectively.

  2. Isoniazid acetylating phenotype in patients with paracoccidioidomycosis and its relationship with serum sulfadoxin levels, glucose-6-phosphate dehydrogenase and glutathione reductase activities

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1991-06-01

    Full Text Available The authors evaluated the isoniazid acetylating phenotype and measured hematocrit, hemoglobin, glucose-6-phosphate dehydrogenase and glutathione reductase activities plus serum sulfadoxin levels in 39 patients with paracoccidioidomycosis (33 males and 6 females aged 17 to 58 years. Twenty one (53.84% of the patients presented a slow acetylatingphenotype and 18(46.16% a fast acetylating phenotype. Glucose-6-phosphate- dehydrogenase (G6PD acti vity was decreased in 5(23.80% slow acetylators and in 4(22.22% fast acetylators. Glutathione reductase activity was decreased in 14 (66.66% slow acetylators and in 12 (66.66% fast acetylators. Serum levels of free and total sulfadoxin Were higher in slow acetylator (p Os autores avaliaram o fenótipo acetilador da isoniazida, hematócrito, hemoglobina, atividade da glicose-6- fosfato desidrogenase, glutationa redutase e os níveis séricos de sulfadoxina de 39 doentes com paracoccidíoidomicose, senão 33 do sexo masculino e 6 do feminino, com idades compreendidas entre 17 e 58 anos. Vinte e um (53,84% doentes apresentaram fenótipo acetilador lento e 18 (46,16% rápido. A atividade da glicose-6-fosfato desidrogenase (G6PD esteve diminuída em 5 (23,80% acetiladores lentos e 4 (22,22% rápidos. A atividade da glutationa redutase esteve diminuída em 14 (66,66% acetiladores lentos e 12 (66,66% rápidos. Os níveis séricos de sulfadoxina livre e total foram maiores nos acetiladores lentos (p < 0,02. A análise dos resultados permite concluir que os níveis séricos de sulfadoxina relaciona-se com o fenótipo acetilador. Além disso, os níveis estiveram sempre acima de 50 µg/ml, níveis estes considerados terapêuticos. Por outro lado, a deficiência de glutationa redutase pode estar relacionada com a má absorção intestinal de nutrientes, entre eles riboflavina, vitamina precursora de FAD.

  3. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes.

    Science.gov (United States)

    Ku, MyungHee; Baek, Yong-Un; Kwak, Min-Kyu; Kang, Sa-Ouk

    2017-04-01

    Glutathione reductase maintains the glutathione level in a reduced state. As previously demonstrated, glutathione is required for cell growth/division and its biosynthesizing-enzyme deficiency causes methylglyoxal accumulation. However, experimental evidences for reciprocal relationships between Cph1-/Efg1-mediated signaling pathway regulation and methylglyoxal production exerted by glutathione reductase on yeast morphology remain unclear. Glutathione reductase (GLR1) disruption/overexpression were performed to investigate aspects of pathological/morphological alterations in Candida albicans. These assumptions were proved by observations of cellular susceptibility to oxidants and thiols, and measurements of methylglyoxal and glutathione content in hyphal-inducing conditions mainly through the activity of GLR1-overexpressing cells. Additionally, the transcriptional/translational levels of bioenergetic enzymes and dimorphism-regulating protein kinases were examined in the strain. The GLR1-deficient strain was non-viable when GLR1 expression under the control of a CaMAL2 promoter was conditionally repressed, despite partial rescue of growth by exogenous thiols. During filamentation, non-growing hyphal GLR1-overexpressing cells exhibited resistance against oxidants and cellular methylglyoxal was significantly decreased, which concomitantly increased expressions of genes encoding energy-generating enzymes, including fructose-1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and alcohol dehydrogenase (ADH1), with remarkable repression of Efg1-signaling cascades. This is the first report that GLR1-triggered Efg1-mediated signal transduction repression strictly reduces dimorphic switching and virulence by maintaining the basal level of methylglyoxal following the enhanced gene expressions of glycolytic enzymes and ADH1. The Efg1 downregulatory mechanism by GLR1 expression has possibilities to involve in other complex network of signal pathways

  4. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I)

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Gustavo [Worm Biology Lab, Institut Pasteur de Montevideo, Montevideo, Uruguay.; Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.; Gao, Wei [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; School of Science, Beijing Forestry University, Beijing, China.; Wang, Yang [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; Bonilla, Mariana [Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo, Uruguay.; Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Uruguay.; Yu, Long [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; Novikov, Andrey [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.; Virginio, Veridiana G. [Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.; Ferreira, Henrique B. [Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.; Vieites, Marisol [Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.; Gladyshev, Vadim N. [Brigham and Women' s Hospital, Harvard Medical School, Boston, Massachusetts.; Gambino, Dinorah [Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.; Dai, Shaodong [Department of Biomedical Research, National Jewish Health, Denver, Colorado.; Department of Immunology and Microbiology, University of Colorado Denver, School of Medicine, Aurora, Colorado.

    2017-12-20

    Aims: New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. Results: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer–monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. Innovation: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. Conclusions: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491–1504.

  5. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response.

    Directory of Open Access Journals (Sweden)

    Dmitri Rozanov

    Full Text Available A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR, a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.

  6. Whey protein concentrate promotes the production of glutathione (GSH) by GSH reductase in the PC12 cell line after acute ethanol exposure.

    Science.gov (United States)

    Tseng, Yang-Ming; Lin, Shu-Kai; Hsiao, Jen-Kuei; Chen, Ing-Jun; Lee, Jang-Hwa; Wu, Szu-Hsien; Tsai, Li-Yu

    2006-04-01

    Excessive ethanol consumption may increase the production of reactive oxygen species (ROS), which results in the damage of tissues, especially the neurons and glial cells in the central nervous system (CNS). The purpose of this study is to evaluate the effects of whey protein concentrate (WPC) on the glutathione (GSH) status after acute ethanol exposure in the pheochromocytoma (PC12) cell line. In this study, we assayed the cell viability, the percentage of lactate dehydrogenase released (% LDH released), the level of GSH, and the activity of GSH reductase (GRx). The results showed that with the supplement of WPC, the cell viability displayed no significant difference after acute exposure of ethanol in groups with or without ethanol treatment. The ethanol-induced cytotoxicity showed a slight decrease ,and the level of GSH showed a significant increase. The activity of GRx significantly increased when 0.1, 10mg/ml of WPC was supplied. In conclusion, these results suggest that WPC in a moderate concentration should be a precursor agent to promote the production of GSH and will enhance the antioxidant capacity in the PC12 cell line.

  7. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  8. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3',5,5'-tetramethylbenzidine.

    Science.gov (United States)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri

    2015-06-30

    It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd(2+) and S(2-) ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Glucose-6-phosphate dehydrogenase and glutathione reductase activity in methemoglobin reduction by methylene blue and cyst amine: study on glucose-6-phosphate dehydrogenase-deficient individuals, on normal subjects and on riboflavin-treated subjects

    Directory of Open Access Journals (Sweden)

    Benedito Barraviera

    1988-10-01

    Full Text Available The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05 for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s., respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01 for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01 before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1

  11. Artesunate effect on schistosome thioredoxin glutathione reductase and cytochrome c peroxidase as new molecular targets in schistosoma mansoni-infected mice.

    Science.gov (United States)

    Abdin, Amany A; Ashour, Dalia S; Shoheib, Zeinab S

    2013-12-01

    To investigate the possible effect of artesunate (ART) on schistosome thioredoxin glutathione reductase (TGR) and cytochrome c peroxidase (CcP) in Schistosoma mansoni-infected mice. A total of 200 laboratory bred male Swiss albino mice were divided into 4 groups (50 mice in each group). Group I: infected untreated group (Control group) received a vehicle of 1% sodium carbonyl methylcellulose (CMC-Na); Group II: infected then treated with artesunate; Group III: infected then treated with praziquantel, and group IV: infected then treated with artesunate then praziquantel. Adult S. mansoni worms were collected by Animal Perfusion Method, tissue egg counted, TGR, and CcP mRNA Expression were estimated of in S. mansoni adult worms by semi-quantitative rt-PCR. Semi-quantitative rt-PCR values revealed that treatment with artesunate caused significant decrease in expression of schistosome TGR and CcP in comparison to the untreated group. In contrast, the treatment with praziquantel did not cause significant change in expression of these genes. The results showed more reduction in total worm and female worm count in combined ART-PZQ treated group than in monotherapy treated groups by either ART or PZQ. Moreover, complete disappearance (100%) of tissue eggs was recorded in ART-PZQ treated group with a respective reduction rate of 95.9% and 68.4% in ART- and PZQ-treated groups. The current study elucidated for the first time that anti-schistosomal mechanisms of artesunate is mediated via reduction in expression of schistosome TGR and CcP. Linking these findings, addition of artesunate to praziquantel could achieve complete cure outcome in treatment of schistosomiasis. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  12. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata).

    Science.gov (United States)

    Richardson, Kristine L; Gold-Bouchot, Gerardo; Schlenk, Daniel

    2009-08-01

    Glutathione s-transferases (GST) play a critical role in the detoxification of exogenous and endogenous electrophiles, as well as the products of oxidative stress. As compared to mammals, GST activity has not been extensively characterized in reptiles. Throughout the globe, most sea turtle populations face the risk of extinction. Of the natural and anthropogenic threats to sea turtles, the effects of environmental chemicals and related biochemical mechanisms, such as GST catalyzed detoxification, are probably the least understood. In the present study, GST activity was characterized in four species of sea turtles with varied life histories and feeding strategies: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Although similar GST kinetics was observed between species, rates of catalytic activities using class-specific substrates show inter- and intra-species variation. GST from the spongivorous hawksbill sea turtle shows 3-4.5 fold higher activity with the substrate 4-nitrobenzylchloride than the other 3 species. GST from the herbivorous green sea turtle shows 3 fold higher activity with the substrate ethacrynic acid than the carnivorous olive ridley sea turtle. The results of this study may provide insight into differences in biotransformation potential in the four species of sea turtles and the possible health impacts of contaminant biotransformation by sea turtles.

  13. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Thorsen, Michael; Kielland-Brandt, Morten C

    2007-01-01

    -glutamyl-cysteine synthetase) and, particularly, GLR1 (glutathione reductase) are required for survival on DPS. DPS is uniquely thiol-specific, and we found that the cellular mechanisms for DPS detoxification differ substantially from that of the commonly used thiol oxidant diamide. In contrast to this oxidant, the full...... antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS...

  14. Application of photocatalytic cadmium sulfide nanoparticles to detection of enzymatic activities of glucose oxidase and glutathione reductase using oxidation of 3,3′,5,5′-tetramethylbenzidine

    Energy Technology Data Exchange (ETDEWEB)

    Grinyte, Ruta; Garai-Ibabe, Gaizka; Saa, Laura; Pavlov, Valeri, E-mail: vpavlov@cicbiomagune.es

    2015-06-30

    Highlights: • The light-powered nanosensor fabricated by enzymatic reactions was reported. • The sensor use energy of photons for oxidation of chromogenic enzymatic substrates. • Enzymatic assays for glucose oxidase and glutathione reductase were developed. - Abstract: It was found out that semiconductor CdS nanoparticles (NPs) are able to catalyze photooxidation of the well known chromogenic enzymatic substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen. The photocatalytical oxidation of TMB does not require hydrogen peroxide and its rate is directly proportional to the quantity of CdS NPs produced in situ through the interaction of Cd{sup 2+} and S{sup 2−} ions in an aqueous medium. This phenomenon was applied to development of colorimetric sensitive assays for glucose oxidase and glutathione reductase based on enzymatic generation of CdS NPs acting as light-powered catalysts. Sensitivity of the developed chromogenic assays was of the same order of magnitude or even better than that of relevant fluorogenic assays. The present approach opens the possibility for the design of simple and sensitive colorimetric assays for a number of enzymes using inexpensive and available TMB as a universal chromogenic compound.

  15. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green flu...

  16. Steady-state distribution of metals among metallothionein and other cytosolic ligands and links to cytotoxicity in bivalves living along a polymetallic gradient

    Energy Technology Data Exchange (ETDEWEB)

    Giguere, Anik; Couillard, Yves; Campbell, Peter G.C.; Perceval, Olivier; Hare, Landis; Pinel-Alloul, Bernadette; Pellerin, Jocelyne

    2003-07-16

    The present study was designed to assess the environmental effects of metals in a field setting. We explored exposure{yields}bioaccumulation{yields}effects relationships in freshwater molluscs exposed to metals in their natural habitat. Indigenous floater mussels (Pyganodon grandis) were collected from ten limnologically similar lakes located along a Cd, Cu and Zn gradient. Ambient free-metal ion concentrations were estimated as a measure of metal exposure. Metallothionein (MT) was measured in mussel gills and metal partitioning among the various cytosolic protein pools was determined by size exclusion chromatography. Various biomarkers were also measured, including malondialdehyde (MDA) concentrations in the gills and in the digestive gland, glutathione-peroxidase and glutathione-reductase activities in the digestive gland, and lipid concentrations in the gonad. Cadmium and MT concentrations in the gill cytosol increased along the contamination gradient, but Cu and Zn levels were independent of the ambient free-metal ion concentrations. The distribution of Cd among the various cytosolic complexes remained quite constant: 80% in the MT-like pool, 7% in the low molecular weight pool (LMW<1.8 kDa) and 13% in the high molecular weight pool (HMW>18 kDa). For these chronically exposed molluscs there was thus no threshold exposure concentration above which spillover of Cd occurred from the MT pool to other cytosolic ligands. However, the presence of Cd in the LMW and HMW fractions suggests that metal detoxification was imperfect, i.e. that P. grandis was subject to some Cd-related stress at low chronic exposure concentrations. Consistent with this suggestion, MDA concentrations, an indicator of oxidative stress, increased with gill cytosolic Cd. In the digestive gland, MDA concentrations were unrelated to any of the measured metals, but glutathione-peroxidase and glutathione-reductase activities increased with gill cytosolic copper. We speculate that cytosolic Cu

  17. Reduction of dimethylarsinic acid to the highly toxic dimethylarsinous acid by rats and rat liver cytosol.

    Science.gov (United States)

    Németi, Balázs; Gregus, Zoltán

    2013-03-18

    Dimethylarsinic acid (DMAs(V)), the major urinary metabolite of inorganic arsenic, is weakly cytotoxic, whereas its reduced form, dimethylarsinous acid (DMAs(III)), is highly toxic. Although glutathione S-transferase omega 1 (GSTO1) and arsenic methyltransferase have been shown or thought to catalyze DMAs(V) reduction, their role in DMAs(V) reduction in vivo, or in cell extracts is uncertain. Therefore, the reduction of DMAs(V) to DMAs(III) in rats and in rat liver cytosol was studied to better understand its mechanism. To assess DMAs(V) reduction in rats, a novel procedure was devised based on following the accumulation of red blood cell (RBC)-bound dimethylarsenic (DMAs), which represents DMAs(III), in the blood of DMAs(V)-injected anesthetized rats. These studies indicated that rats reduced DMAs(V) to DMAs(III) to a significant extent, as in 90 min 31% of the injected 50 μmol/kg DMAs(V) dose was converted to DMAs(III) that was sequestered by the circulating erythrocytes. Pretreatment of rats with glutathione (GSH) depletors (phorone or BSO) delayed the elimination of DMAs(V) and the accumulation of RBC-bound DMAs, whereas the indirect methyltransferase inhibitor periodate-oxidized adenosine was without effect. Assessment of DMAs(V)-reducing activity of rat liver cytosol revealed that reduction of DMAs(V) required cytosolic protein and GSH and was inhibited by thiol reagents, GSSG and dehydroascorbate. Although thioredoxin reductase (TRR) inhibitors (aurothioglucose and Sb(III)) inhibited cytosolic DMAs(V) reduction, recombinant rat TRR plus NADPH, alone or when added to the cytosol, failed to support DMAs(V) reduction. On ultrafiltration of the cytosol through a 3 kDa filter, the reducing activity in the retentate was lost but was largely restored by NADPH. Such experiments also suggested that the reducing enzyme was larger than 100 kDa and was not GSTO1. In summary, reduction of DMAs(V) to the highly toxic DMAs(III) in rats and rat liver cytosol is a GSH

  18. Determination of the molecular weight distribution of non-enzymatic browning products formed by roasting of glucose and glycine and studies on their effects on NADPH-cytochrome c-reductase and glutathione-S-transferase in Caco-2 cells.

    Science.gov (United States)

    Hofmann, T; Ames, J; Krome, K; Faist, V

    2001-06-01

    After thermal treatment of a mixture of glucose and glycine for 2 h at 125 degrees C, about 60% of the starting material was converted into non-soluble, black pigments, whereas 40% of the mixture was still water-soluble. Dialysis of the latter fraction revealed 30.4% of low molecular weight compounds (LMWs; MW or = 10,000 Da). The water-soluble Maillard reaction products (MRPs) were separated by gel permeation chromatography and ultrafiltration, revealing that 60% of the water-soluble products of the total carbohydrate/amino acid mixture had MWs 30,000 Da, amongst which 14.5% showed MWs > 100,000 Da, thus indicating an oligomerisation of LMWs to melanoidins under roasting conditions. To investigate the physiological effects of these MRPs, xenobiotic enzyme activities were analysed in intestinal Caco-2 cells. For Phase-I NADPH-cytochrome c-reductase, the activity in the presence of the LMW and HMW fraction was decreased by 13% and 22%, respectively. Phase-II glutathione-S-transferase activity decreased by 15% and 18%, respectively, after incubation with the LMW and the HMW fractions. Considering the different yields, 30% and 10%, respectively, of the LMW and the HMW fractions, the total amount of the LMW fraction present in the glucose-glycine mixture is more active in modulating these enzyme activities than that of the HMW fraction.

  19. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  20. Glutathione role in gallium induced toxicity | Ahmad | African Journal ...

    African Journals Online (AJOL)

    The effect of gallium metal on glutathione in blood components was discussed in this study in in vitro condition as a model for in vivo condition. Key words: Gallium nitrate, reduced glutathione (GSH), whole blood, plasma, cytosolic fraction (CF), oxidized glutathione (GSSG), Di-thiobis- dinitro-benzoic acid (DTNB).

  1. Relationship between glutathione S-transferase P1 (GSTP1), X-ray repair cross complementing group 1 (XRCC1) and 5,10-methylenetetrahydrofolate reductase (5,10-MTHFR) gene polymorphisms and response to chemotherapy in advanced gastric cancer.

    Science.gov (United States)

    Ji, Mei; Xu, Bin; Jiang, Jing-Ting; Wu, Jun; Li, Xiao-Dong; Zhao, Wei-Qing; Zhang, Hong-Yu; Zhou, Wen-Jie; Wu, Chang-Ping

    2013-01-01

    Our study aimed to investigate the relationship between glutathione S-transferase P1 (GSTP1), 5,10-methylenetetrahydrofolate reductase (5,10-MTHFR) and X-ray repair cross complementing group 1 (XRCC1) gene polymorphisms and the response to chemotherapy in advanced gastric cancer. 59 cases of advanced gastric cancer were enrolled. All patients were treated with the DCF regimen comprising docetaxel, cisplatin, and 5-fluorouracil. All patients' genotypes regarding GSTP1, XRCC1, and 5,10-MTHFR were analyzed by polymerase chain reaction/ligase detection reaction (PCR-LDR). There were 15 (25.42%) cases of G/G genotype, 21 (35.59%) of G/A genotype, and 23 (38.98%) of A/A genotype for GSTP1, 16 (27.12%) cases of A/A genotype, 18 (30.51%) of G/A genotype, and 25 (42.37%) of G/G genotype for XRCC1, and 21 (35.59%) cases of C/C genotype, 22 (37.29%) of C/T genotype, and 16 (27.12%) of T/T genotype for 5,10-MTHFR. After 2 cycles of chemotherapy, there were 4 cases of complete remission, 14 of partial remission, 19 of stable disease, and 22 of advanced disease, with a total effective rate of 30.51%. Better survival was shown for GSTP1 G/G genotype, XRCC1 A/A genotype, and 5,10-MTHFR T/T genotype (p MTHFR T/T have clinical value for predicting the response to the DCF regimen for advanced gastric cancer. © 2013 S. Karger GmbH, Freiburg.

  2. Subcellular Distribution of Glutathione Precursors in Arabidopsis thaliana

    Science.gov (United States)

    Koffler, Barbara Eva; Maier, Romana; Zechmann, Bernd

    2011-01-01

    Abstract Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) – the first enzyme of glutathione synthesis – causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells. PMID:22050910

  3. Subcellular compartmentation of glutathione in dicotyledonous plants

    Science.gov (United States)

    Müller, Maria

    2010-01-01

    This study describes the subcellular distribution of glutathione in roots and leaves of different plant species (Arabidopsis, Cucurbita, and Nicotiana). Glutathione is an important antioxidant and redox buffer which is involved in many metabolic processes including plant defense. Thus information on the subcellular distribution in these model plants especially during stress situations provides a deeper insight into compartment specific defense reactions and reflects the occurrence of compartment specific oxidative stress. With immunogold cytochemistry and computer-supported transmission electron microscopy glutathione could be localized in highest contents in mitochondria, followed by nuclei, peroxisomes, the cytosol, and plastids. Within chloroplasts and mitochondria, glutathione was restricted to the stroma and matrix, respectively, and did not occur in the lumen of cristae and thylakoids. Glutathione was also found at the membrane and in the lumen of the endoplasmic reticulum. It was also associated with the trans and cis side of dictyosomes. None or only very little glutathione was detected in vacuoles and the apoplast of mesophyll and root cells. Additionally, glutathione was found in all cell compartments of phloem vessels, vascular parenchyma cells (including vacuoles) but was absent in xylem vessels. The specificity of this method was supported by the reduction of glutathione labeling in all cell compartments (up to 98%) of the glutathione-deficient Arabidopsis thaliana rml1 mutant. Additionally, we found a similar distribution of glutathione in samples after conventional fixation and rapid microwave-supported fixation. Thus, indicating that a redistribution of glutathione does not occur during sample preparation. Summing up, this study gives a detailed insight into the subcellular distribution of glutathione in plants and presents solid evidence for the accuracy and specificity of the applied method. PMID:20186447

  4. Cytosolic glutamine synthetase

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie; Eriksson, Ulf Dennis; Møller, Inge Skrumsager

    2014-01-01

    Overexpression of the cytosolic enzyme glutamine synthetase 1 (GS1) has been investigated in numerous cases with the goal of improving crop nitrogen use efficiency. However, the outcome has generally been inconsistent. Here, we review possible reasons underlying the lack of success and conclude...

  5. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration

    Directory of Open Access Journals (Sweden)

    Bradley A. Carlson

    2016-10-01

    Full Text Available The selenoenzyme glutathione peroxidase 4 (Gpx4 is an essential mammalian glutathione peroxidase, which protects cells against detrimental lipid peroxidation and governs a novel form of regulated necrotic cell death, called ferroptosis. To study the relevance of Gpx4 and of another vitally important selenoprotein, cytosolic thioredoxin reductase (Txnrd1, for liver function, mice with conditional deletion of Gpx4 in hepatocytes were studied, along with those lacking Txnrd1 and selenocysteine (Sec tRNA (Trsp in hepatocytes. Unlike Txnrd1- and Trsp-deficient mice, Gpx4−/− mice died shortly after birth and presented extensive hepatocyte degeneration. Similar to Txnrd1-deficient livers, Gpx4−/− livers manifested upregulation of nuclear factor (erythroid-derived-like 2 (Nrf2 response genes. Remarkably, Gpx4−/− pups born from mothers fed a vitamin E-enriched diet survived, yet this protection was reversible as subsequent vitamin E deprivation caused death of Gpx4-deficient mice ~4 weeks thereafter. Abrogation of selenoprotein expression in Gpx4−/− mice did not result in viable mice, indicating that the combined deficiency aggravated the loss of Gpx4 in liver. By contrast, combined Trsp/Txnrd1-deficient mice were born, but had significantly shorter lifespans than either single knockout, suggesting that Txnrd1 plays an important role in supporting liver function of mice lacking Trsp. In sum our study demonstrates that the ferroptosis regulator Gpx4 is critical for hepatocyte survival and proper liver function, and that vitamin E can compensate for its loss by protecting cells against deleterious lipid peroxidation.

  6. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    Xu, Jia; Yang, Jun; Duan, Xiaoguang; Jiang, Yueming; Zhang, Peng

    2014-08-05

    Cassava (Manihot esculenta Crantz) is a tropical root crop, and is therefore, extremely sensitive to low temperature; its antioxidative response is pivotal for its survival under stress. Timely turnover of reactive oxygen species (ROS) in plant cells generated by chilling-induced oxidative damages, and scavenging can be achieved by non-enzymatic and enzymatic reactions in order to maintain ROS homeostasis. Transgenic cassava plants that co-express cytosolic superoxide dismutase (SOD), MeCu/ZnSOD, and ascorbate peroxidase (APX), MeAPX2, were produced and tested for tolerance against oxidative and chilling stresses. The up-regulation of MeCu/ZnSOD and MeAPX2 expression was confirmed by the quantitative reverse transcriptase-polymerase chain reaction, and enzymatic activity analyses in the leaves of transgenic cassava plant lines with a single-transgene integration site. Upon exposure to ROS-generating agents, 100 μM ROS-generating reagent methyl viologen and 0.5 M H₂O₂, higher levels of enzymatic activities of SOD and APX were detected in transgenic plants than the wild type. Consequently, the oxidative stress parameters, such as lipid peroxidation, chlorophyll degradation and H₂O₂ synthesis, were lower in the transgenic lines than the wild type. Tolerance to chilling stress at 4°C for 2 d was greater in transgenic cassava, as observed by the higher levels of SOD, catalase, and ascorbate-glutathione cycle enzymes (e.g., APX, monodehydroascorbate reductase, dehydroascorbate reducatase and glutathione reductase) and lower levels of malondialdehyde content. These results suggest that the expression of native cytosolic SOD and APX simultaneously activated the antioxidative defense mechanisms via cyclic ROS scavenging, thereby improving its tolerance to cold stress.

  7. Inactivation of glutathione peroxidase by benzaldehyde.

    Science.gov (United States)

    Tabatabaie, T; Floyd, R A

    1996-12-01

    Chronic benzaldehyde exposure is known to cause central nervous system (CNS) disturbances. Previous studies have shown that benzaldehyde causes the formation of reactive oxygen species (ROS) in rat synaptosomal fractions. Benzaldehyde has also been implicated in ROS formation in the CNS of rats treated with toluene. We have found that benzaldehyde effectively inactivates the antioxidant enzyme glutathione peroxidase (Ki approximately 15 microM), but has no effect on the other antioxidant enzymes tested: catalase, superoxide dismutase, and glutathione reductase. This effect has been found to be specific to benzaldehyde since other structurally related and unrelated aldehydes tested were found to be devoid of inactivating capacity toward glutathione peroxidase. Since glutathione peroxidase is the main enzyme responsible for removal of hydrogen peroxide and organic hydroperoxides in brain, its inactivation by benzaldehyde may be a main contributor to the observed ROS formation and the observed neurotoxicity caused by either benzaldehyde or toluene exposure.

  8. New insights into the posttranslational regulation of human cytosolic thioredoxin by S-palmitoylation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhiyu; Zhong, Liangwei, E-mail: liazho@ucas.ac.cn

    2015-05-15

    High level of palmitate is associated with metabolic disorders. We recently showed that enhanced level of S-palmitoylated cytosolic thioredoxin (Trx1) in mouse liver was new characteristic feature of insulin resistance. However, our understanding of the effect of S-palmitoylation on Trx1 is limited, and the tissue specificity of Trx1 S-palmitoylation is unclear. Here we show that S-palmitoylation also occurs at Cys73 of Trx1 in living endothelial cells, and the level of S-palmitoylated Trx1 undergoes regulation by insulin signaling. Trx1 prefers thiol-thioester exchange with palmitoyl-CoA to acetyl-CoA. S-palmitoylation alters conformation or secondary structure of Trx1, as well as decreases the ability of Trx1 to transfer electrons from thioredoxin reductase to S-nitrosylated protein–tyrosine phosphatase 1B and S-nitroso-glutathione. Our results demonstrate that S-palmitoylation is an important post-translational modification of human Trx1. - Highlights: • S-palmitoylation occurs at Cys73 of Trx1 in living endothelial cells. • Insulin signaling may regulate level of S-palmitoylated Trx1 in the cells. • S-palmitoylation plays significant effects on Trx1 structure and functions.

  9. [Utilization of nitrate by bacteroids and cytosol of nodules formed by Rhizobium leguminosarum].

    Science.gov (United States)

    Fernández-López, M; Delgado, M J; Olivares, J; Bedmar, E J

    1989-06-01

    Nitrite production by nodules and roots of pea plants (Pisum sativum L., cultivar Alaska) inoculated with Rhizobium leguminosarum strain 3855 has been studied. Nitrate reductase (NR) activity and nitrite reductase (NiR) activity of the bacteroidal and cytosolic fractions of the nodules were also determined, as well as the nitrite content of the nodules cytosol. Nitrite production by nodules and roots from plants treated with 5 mM KNO3 was higher than that of nodules and roots from plants not treated with nitrate, and regardless of the nitrate treatment, nitrite production increased with the incubation period. The presence of nitrate, propanol or both compounds in the incubation mixtures significantly increased the nitrite production by nodules and roots. Nitrite reductase activity was detected in fresh by isolated bacteroids of R. leguminosarum strain 3855, although the presence of nitrate reductase activity could not be detected both in bacteroids of nodules isolated from plants treated or not with 5 mM KNO3. After isolation, when bacteroids were incubated in a mixture with nitrate, nitrate reductase activity developed after incubation for 12 h. Consequently, there was an increase in nitrite reductase activity, which resulted in the disappearance of the nitrite previously accumulated in the incubation medium. Nitrate utilization by bacteroids was not detected until 5 h from the beginning of the incubation period. Since the presence of chloramphenicol or rifampicin in the incubation medium prevented the development of the nitrate reductase activity, such activity was induced in bacteroids. Nitrite content and nitrate reductase and nitrite reductase activities of the cytosol from nodules of pea plants treated or not with 5 mM KNO3 varied with the buffer used for nodules homogenization. However, no nitrite was found when nodules were homogenized with ethanol, what indicates that nitrite accumulation in the cytosol occurs during the homogenization process of the

  10. Endoplasmic reticulum transport of glutathione by Sec61 is regulated by Ero1 and Bip

    DEFF Research Database (Denmark)

    Ponsero, Alise J.; Igbaria, Aeid; Darch, Maxwell A.

    2017-01-01

    In the endoplasmic reticulum (ER), Ero1 catalyzes disulfide bond formation and promotes glutathione (GSH) oxidation to GSSG. Since GSSG cannot be reduced in the ER, maintenance of the ER glutathione redox state and levels likely depends on ER glutathione import and GSSG export. We used quantitative...... GSH and GSSG biosensors to monitor glutathione import into the ER of yeast cells. We found that glutathione enters the ER by facilitated diffusion through the Sec61 protein-conducting channel, while oxidized Bip (Kar2) inhibits transport. Increased ER glutathione import triggers H2O2-dependent Bip...... oxidation through Ero1 reductive activation, which inhibits glutathione import in a negative regulatory loop. During ER stress, transport is activated by UPR-dependent Ero1 induction, and cytosolic glutathione levels increase. Thus, the ER redox poise is tuned by reciprocal control of glutathione import...

  11. Polymorphism in the glutathione conjugation activity of human erythrocytes towards ethylene dibromide and 1,2-epoxy-3-(p-nitrophenoxy)-propane

    NARCIS (Netherlands)

    Ploemen, J.H.T.M.; Wormhoudt, L.W.; Ommen, B. van; Commandeur, J.N.M.; Vermeulen, N.P.E.; Bladeren, P.J. van

    1995-01-01

    In this study a polymorphism in the conjugating activity of human erythrocyte cytosol towards the dihaloethane, ethylene dibromide (EDB; 1,2-dibromoethane) was found. Two out of 12 human erythrocyte cytosols did not catalyze the formation of glutathione (GSH) conjugates of [1,2-14C]EDB. Ten cytosols

  12. Glutathione, glutathione-related enzymes, and oxidative stress in individuals with subacute occupational exposure to lead.

    Science.gov (United States)

    Dobrakowski, Michał; Pawlas, Natalia; Hudziec, Edyta; Kozłowska, Agnieszka; Mikołajczyk, Agnieszka; Birkner, Ewa; Kasperczyk, Sławomir

    2016-07-01

    The aim of the study was to investigate the influence of subacute exposure to lead on the glutathione-related antioxidant defense and oxidative stress parameters in 36 males occupationally exposed to lead for 40±3.2days. Blood lead level in the examined population increased significantly by 359% due to lead exposure. Simultaneously, erythrocyte glutathione level decreased by 16%, whereas the activity of glutathione-6-phosphate dehydrogenase in erythrocytes and leukocytes decreased by 28% and 10%, respectively. Similarly, the activity of glutathione-S-transferase in erythrocytes decreased by 45%. However, the activity of glutathione reductase in erythrocytes and leukocytes increased by 26% and 6%, respectively, whereas the total oxidant status value in leukocytes increased by 37%. Subacute exposure to lead results in glutathione pool depletion and accumulation of lipid peroxidation products; however, it does not cause DNA damage. Besides, subacute exposure to lead modifies the activity of glutathione-related enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Activation of the microsomal glutathione-S-transferase and reduction of the glutathione dependent protection against lipid peroxidation by acrolein

    NARCIS (Netherlands)

    Haenen, G R; Vermeulen, N P; Tai Tin Tsoi, J N; Ragetli, H M; Timmerman, H; Blast, A

    1988-01-01

    Allyl alcohol is hepatotoxic. It is generally believed that acrolein, generated out of allyl alcohol by cytosolic alcohol dehydrogenase, is responsible for this toxicity. The effect of acrolein in vitro and in vivo on the glutathione (GSH) dependent protection of liver microsomes against lipid

  14. Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo

    DEFF Research Database (Denmark)

    Bønsager, Birgit Christine; Shahpiri, Azar; Finnie, Christine

    2010-01-01

    -fold increase at 144 h PI. Glutathione reductase and monodehydroascorbate reductase activities were also detected at 4 h PI, and showed modest increases of 1.8- and 2.7-fold, respectively, by 144 h PI. The combination of functional analysis with the proteomics approach enabled correlation...

  15. Subcellular distribution of glutathione and cysteine in cyanobacteria

    Science.gov (United States)

    Tomašić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-01-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria. PMID:20349253

  16. A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems.

    Science.gov (United States)

    Dóka, Éva; Pader, Irina; Bíró, Adrienn; Johansson, Katarina; Cheng, Qing; Ballagó, Krisztina; Prigge, Justin R; Pastor-Flores, Daniel; Dick, Tobias P; Schmidt, Edward E; Arnér, Elias S J; Nagy, Péter

    2016-01-01

    Hydrogen sulfide signaling involves persulfide formation at specific protein Cys residues. However, overcoming current methodological challenges in persulfide detection and elucidation of Cys regeneration mechanisms from persulfides are prerequisites for constructing a bona fide signaling model. We here establish a novel, highly specific protein persulfide detection protocol, ProPerDP, with which we quantify 1.52 ± 0.6 and 11.6 ± 6.9 μg/mg protein steady-state protein persulfide concentrations in human embryonic kidney 293 (HEK293) cells and mouse liver, respectively. Upon treatment with polysulfides, HEK293 and A549 cells exhibited increased protein persulfidation. Deletion of the sulfide-producing cystathionine-γ-lyase or cystathionine-β-synthase enzymes in yeast diminished protein persulfide levels, thereby corroborating their involvement in protein persulfidation processes. We here establish that thioredoxin (Trx) and glutathione (GSH) systems can independently catalyze reductions of inorganic polysulfides and protein persulfides. Increased endogenous persulfide levels and protein persulfidation following polysulfide treatment in thioredoxin reductase-1 (TrxR1) or thioredoxin-related protein of 14 kDa (TRP14) knockdown HEK293 cells indicated that these enzymes constitute a potent regeneration system of Cys residues from persulfides in a cellular context. Furthermore, TrxR1-deficient cells were less viable upon treatment with toxic amounts of polysulfides compared to control cells. Emphasizing the dominant role of cytosolic disulfide reduction systems in maintaining sulfane sulfur homeostasis in vivo, protein persulfide levels were markedly elevated in mouse livers where hepatocytes lack both TrxR1 and glutathione reductase (TR/GR-null). The different persulfide patterns observed in wild-type, GR-null, and TR/GR-null livers suggest distinct roles for the Trx and GSH systems in regulating subsets of protein persulfides and thereby fine-tuning sulfide

  17. Purification, characterization and preliminary X-ray crystallographic studies of monodehydroascorbate reductase from Oryza sativa L. japonica.

    Science.gov (United States)

    Do, Hackwon; Kim, Il-Sup; Kim, Young-Saeng; Shin, Sun-Young; Kim, Jin-Ju; Mok, Ji-Eun; Park, Seong-Im; Wi, Ah Ram; Park, Hyun; Lee, Jun Hyuck; Yoon, Ho-Sung; Kim, Han-Woo

    2014-09-01

    Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) is a key enzyme in the reactive oxygen species (ROS) detoxification system of plants. The participation of MDHAR in ascorbate (AsA) recycling in the ascorbate-glutathione cycle is important in the acquired tolerance of crop plants to abiotic environmental stresses. Thus, MDHAR represents a strategic target protein for the improvement of crop yields. Although physiological studies have intensively characterized MDHAR, a structure-based functional analysis is not available. Here, a cytosolic MDHAR (OsMDHAR) derived from Oryza sativa L. japonica was expressed using Escherichia coli strain NiCo21 (DE3) and purified. The purified OsMDHAR showed specific enzyme activity (approximately 380 U per milligram of protein) and was crystallized using the hanging-drop vapour-diffusion method at pH 8.0 and 298 K. The crystal diffracted to 1.9 Å resolution and contained one molecule in the asymmetric unit (the Matthews coefficient VM is 1.98 Å(3) Da(-1), corresponding to a solvent content of 38.06%) in space group P41212 with unit-cell parameters a = b = 81.89, c = 120.4 Å. The phase of the OsMDHAR structure was resolved by the molecular-replacement method using a ferredoxin reductase from Acidovorax sp. strain KKS102 (PDB entry 4h4q) as a model.

  18. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean ( Vicia faba L.)

    Science.gov (United States)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal

    2013-07-01

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed "graphene oxide") are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean ( Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L-1) of graphene oxide (0.5-5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L-1), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L-1) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione-metabolizing enzymes.

  19. Compartment specific importance of glutathione during abiotic and biotic stress

    Directory of Open Access Journals (Sweden)

    Bernd eZechmann

    2014-10-01

    Full Text Available The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species, redox signaling, the modulation of defense gene expression and important for the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state of plants through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, Tobacco Mosaic Virus. The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g. glutathione synthesis takes place in chloroplasts and the cytosol. Thus this review will reveal the compartment specific importance of glutathione during abiotic and biotic stress conditions.

  20. Glutathione in cyanobacteria

    Science.gov (United States)

    Bermudes, D.

    1985-01-01

    The effects of light and O2 on glutathione production were determined. Results of light and dark studies under normal and reduced oxygen tensions were compared to determine the effect of reduction in oxygen tension on glutathione levels. The growth rate of Anacystis nidulans and concurrent production of glutathione is presented. The generation of time of Anacystis nidulans was approximately 12 hours. Results of light and dark incubation of Aphanothece halophytica dominated planktonic microbial community from Pond 4 and Anacystis nidulans under high and low oxygen tension is also presented. It appears that light grown Anacystis nidulans cells have equal amounts of glutathione while dark grown cells produce more glutathione in the presence of increased O2.

  1. Neonicotinoid insecticides: reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes.

    Science.gov (United States)

    Schulz-Jander, Daniel A; Leimkuehler, William M; Casida, John E

    2002-09-01

    The major insecticide imidacloprid (IMI) is known to be metabolized by human cytochrome P450 3A4 with NADPH by imidazolidine hydroxylation and dehydrogenation to give 5-hydroxy-imidacloprid and the olefin, respectively, and by nitroimine reduction and cleavage to yield the nitrosoimine, guanidine, and urea derivatives. More extensive metabolism by human or rabbit liver microsomes with NADPH or rabbit liver cytosol without added cofactor reduces the IMI N-nitro group to an N-amino substituent, i.e., the corresponding hydrazone. A major metabolite on incubation of IMI in the human microsome-NADPH system is tentatively assigned by LC/MS as a 1,2,4-triazol-3-one derived from the hydrazone; the same product is obtained on reaction of the hydrazone with ethyl chloroformate. The hydrazone and proposed triazolone are considered here together (referred to as the hydrazone) for quantitation. Only a portion of the microsomal reduction and cleavage of the nitroimine substituent is attributable to a CYP450 enzyme. The cytosolic enzyme conversion to the hydrazone is inhibited by added cofactors (NAD > NADH > NADP > NADPH) and enhanced by an argon instead of an air atmosphere. The responsible cytosolic enzyme(s) does not appear to be DT-diaphorase (which is inhibited by several neonicotinoids), aldose reductase, aldehyde reductase, or xanthine oxidase. However, the cytosolic metabolism of IMI is inhibited by several aldo-keto-reductase inhibitors (i.e., alrestatin, EBPC, Ponalrestat, phenobarbital, and quercetin). Other neonicotinoids with nitroimine, nitrosoimine, and nitromethylene substituents are probably also metabolized by "neonicotinoid nitro reductase(s)" since they serve as competitive substrates for [(3)H]IMI metabolism.

  2. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  3. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern

    Directory of Open Access Journals (Sweden)

    Adinan Alves da Silva

    2017-09-01

    Full Text Available ABSTRACT In many plant species, tolerance to toxic metals is highly dependent on glutathione, an essential metabolite for cellular detoxification. We evaluated the responses of glutathione metabolism to arsenite (AsIII in Salvinia molesta, an aquatic fern that has unexplored phytoremediation potential. Plants were exposed to different AsIII concentrations in nutrient solution for 24 h. AsIII caused cell membrane damage to submerged leaves, indicating oxidative stress. There was an increase in the glutathione content and ϒ-glutamylcysteine synthetase enzyme activity in the submerged and floating leaves. The glutathione peroxidase and glutathione sulfotransferase enzymes also showed increased activity in both plant parts, whereas glutathione reductase only showed increased activity in the submerged leaves. These findings suggest an important role for glutathione in the protection of S. molesta against the toxic effects of AsIII, with more effective tolerance responses in the floating leaves.

  4. Cytosolic glutamine synthetase in barley

    DEFF Research Database (Denmark)

    Thomsen, Hanne Cecilie

    fertilizer requirement. The enzyme glutamine synthetase (GS) has been a major topic in plant nitrogen research for decades due to its central role in plant N metabolism. The cytosolic version of this enzyme (GS1) plays an important role in relation to primary N assimilation as well as in relation to N...

  5. Cytosolic delivery: Just passing through

    Science.gov (United States)

    Sánchez-Navarro, Macarena; Teixidó, Meritxell; Giralt, Ernest

    2017-08-01

    Intracellular protein delivery has been a major challenge in the field of cell biology for decades. Engineering such delivery is a key step in the development of protein- and antibody-based therapeutics. Now, two different approaches that enable the delivery of antibodies and antibody fragments into the cytosol have been developed.

  6. Glutathione and mitochondria

    National Research Council Canada - National Science Library

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2014-01-01

    Glutathione (GSH) is the main non-protein thiol in cells whose functions are dependent on the redox-active thiol of its cysteine moiety that serves as a cofactor for a number of antioxidant and detoxifying enzymes...

  7. Differential expression of disulfide reductase enzymes in a free-living platyhelminth (Dugesia dorotocephala.

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    Full Text Available A search of the disulfide reductase activities expressed in the adult stage of the free-living platyhelminth Dugesia dorotocephala was carried out. Using GSSG or DTNB as substrates, it was possible to obtain a purified fraction containing both GSSG and DTNB reductase activities. Through the purification procedure, both disulfide reductase activities were obtained in the same chromatographic peak. By mass spectrometry analysis of peptide fragments obtained after tryptic digestion of the purified fraction, the presence of glutathione reductase (GR, thioredoxin-glutathione reductase (TGR, and a putative thioredoxin reductase (TrxR was detected. Using the gold compound auranofin to selectively inhibit the GSSG reductase activity of TGR, it was found that barely 5% of the total GR activity in the D. dorotocephala extract can be assigned to GR. Such strategy did allow us to determine the kinetic parameters for both GR and TGR. Although It was not possible to discriminate DTNB reductase activity due to TrxR from that of TGR, a chromatofocusing experiment with a D. dorotocephala extract resulted in the obtention of a minor protein fraction enriched in TrxR, strongly suggesting its presence as a functional protein. Thus, unlike its parasitic counterparts, in the free-living platyhelminth lineage the three disulfide reductases are present as functional proteins, albeit TGR is still the major disulfide reductase involved in the reduction of both Trx and GSSG. This fact suggests the development of TGR in parasitic flatworms was not linked to a parasitic mode of life.

  8. Glutathione and glutathione S-transferases in Barrett's epithelium.

    OpenAIRE

    Peters, W. H.; Roelofs, H. M.; Hectors, M P; Nagengast, F. M.; Jansen, J B

    1993-01-01

    Glutathione content, enzyme activity and isoenzyme composition of glutathione S-transferases were assayed in normal and Barrett's esophageal epithelium of ten patients with Barrett's esophagus. In addition, gastric and duodenal specimens from the same patients were also investigated. Glutathione content, glutathione S-transferase enzyme activity as well as glutathione S-transferase pi content were all significantly lower in Barrett's epithelium as compared to normal esophageal mucosa. In cont...

  9. Biliverdin reductase: A major physiologic cytoprotectant

    Science.gov (United States)

    Barañano, David E.; Rao, Mahil; Ferris, Christopher D.; Snyder, Solomon H.

    2002-01-01

    Bilirubin, an abundant pigment that causes jaundice, has long lacked any clear physiologic role. It arises from enzymatic reduction by biliverdin reductase of biliverdin, a product of heme oxygenase activity. Bilirubin is a potent antioxidant that we show can protect cells from a 10,000-fold excess of H2O2. We report that bilirubin is a major physiologic antioxidant cytoprotectant. Thus, cellular depletion of bilirubin by RNA interference markedly augments tissue levels of reactive oxygen species and causes apoptotic cell death. Depletion of glutathione, generally regarded as a physiologic antioxidant cytoprotectant, elicits lesser increases in reactive oxygen species and cell death. The potent physiologic antioxidant actions of bilirubin reflect an amplification cycle whereby bilirubin, acting as an antioxidant, is itself oxidized to biliverdin and then recycled by biliverdin reductase back to bilirubin. This redox cycle may constitute the principal physiologic function of bilirubin. PMID:12456881

  10. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. (Rockefeller Univ., New York, NY (United States)); Sweet, R.M. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  11. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  12. Glutathione synthesis is compromised in erythrocytes from individuals with HIV

    Directory of Open Access Journals (Sweden)

    Vishwanath eVenketaraman

    2014-04-01

    Full Text Available We demonstrated that the levels of enzymes responsible for the synthesis of glutathione (GSH such as glutathione synthase (GSS, glutamate-cysteine ligase-catalytic subunit (GCLC and glutathione reductase (GSR were significantly reduced in the red blood cells (RBCs isolated from individuals with human immunodeficiency virus (HIV infection and this reduction correlated with decreased levels of intracellular GSH. GSH content in RBCs can be used as a marker for increased overall oxidative stress and immune dysfunctions caused by HIV infection. Our data supports our hypothesis that compromised levels of GSH in HIV infected individuals’ is due to decreased levels of GSH-synthetic enzymes. The role of GSH in combating oxidative stress and improving the functions of immune cells in HIV patients’ indicates the benefit of an antioxidant supplement which can reduce the cellular damage and promote the functions of immune cells.

  13. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency.

    OpenAIRE

    Goyette, P; Frosst, P.; Rosenblatt, D S; ROZEN, R.

    1995-01-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA fo...

  14. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Zechmann, Bernd; Liou, Liang-Chun; Koffler, Barbara E; Horvat, Lucija; Tomašić, Ana; Fulgosi, Hrvoje; Zhang, Zhaojie

    2011-01-01

    Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H2O2) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress. PMID:22093747

  15. Inhibition of rat, mouse, and human glutathione S-transferase by eugenol and its oxidation products

    NARCIS (Netherlands)

    Rompelberg, C.J.M.; Ploemen, J.H.T.M.; Jespersen, S.; Greef, J. van der; Verhagen, H.; Bladeren, P.J. van

    1996-01-01

    The irreversible and reversible inhibition of glutathione S-transferases (GSTs) by eugenol was studied in rat, mouse and man. Using liver cytosol of human, rat and mouse, species differences were found in the rate of irreversible inhibition of GSTs by eugenol in the presence of the enzyme

  16. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    Science.gov (United States)

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  17. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    Science.gov (United States)

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  18. Glutathione Levels in Human Tumors

    Science.gov (United States)

    Gamcsik, Michael P.; Kasibhatla, Mohit S.; Teeter, Stephanie D.; Colvin, O. Michael

    2013-01-01

    This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker. PMID:22900535

  19. Quinone Reductase 2 Is a Catechol Quinone Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao (NYMEDCO)

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  20. Glutathione transferases: emerging multidisciplinary tools in red and green biotechnology.

    Science.gov (United States)

    Chronopoulou, Evangelia G; Labrou, Nikolaos E

    2009-01-01

    Cytosolic glutathione transferases (GSTs) are a diverse family of enzymes involved in a wide range of biological processes, many of which involve the conjugation of the tripeptide glutathione (GSH) to an electrophilic substrate. Detailed studies of GSTs are justified because of the considerable interest of these enzymes in medicine, agriculture and analytical biotechnology. For example, in medicine, GSTs are explored as molecular targets for the design of new anticancer drugs as a plausible means to sensitize drug-resistant tumors that overexpress GSTs. In agriculture, GSTs are exploited in the development of transgenic plants with increased resistance to biotic and abiotic stresses. Recently, selected isoenzymes of GSTs have found successful applications in the development of enzyme biosensors for the direct monitoring of environmental pollutants, such as herbicides and insecticides. This review article summarizes recent representative patents related to GSTs and their applications in biotechnology.

  1. Glutathione conjugation and contaminant transformation

    Science.gov (United States)

    Field, Jennifer A.; Thurman, E.M.

    1996-01-01

    The recent identification of a novel sulfonated metabolite of alachlor in groundwater and metolachlor in soil is likely the result of glutathione conjugation. Glutathione conjugation is an important biochemical reaction that leads, in the case of alachlor, to the formation of a rather difficult to detect, water-soluble, and therefore highly mobile, sulfonated metabolite. Research from weed science, toxicology, and biochemistry is discussed to support the hypothesis that glutathione conjugation is a potentially important detoxification pathway carried out by aquatic and terrestrial plants and soil microorganisms. A brief review of the biochemical basis for glutathione conjugation is presented. We recommend that multidisciplinary research focus on the occurrence and expression of glutathione and its attendant enzymes in plants and microorganisms, relationships between electrophilic substrate structure and enzyme activity, and the potential exploitation of plants and microorganisms that are competent in glutathione conjugation for phytoremediation and bioremediation.

  2. Metabolism by rat liver cytosol of illudin S, a toxic substance of Lampteromyces japonicus. II. Characterization of illudin S-metabolizing enzyme.

    Science.gov (United States)

    Tanaka, K; Inoue, T; Kadota, S; Kikuchi, T

    1992-01-01

    1. Enzyme systems responsible for formation of cyclopropane ring-cleavage metabolites (M1 and M2) of illudin S in rat liver were characterized. 2. The enzymes were localized in the cytosol fraction and utilized NADPH alone as electron donor; they were not affected by oxygen and had low pH optima. 3. Formation of metabolites M1 and M2 was inhibited completely by dicumarol (10(-4) M), an inhibitor of DT-diaphorase. 4. Menadione (10(-4) M) and quercetin (10(-4) M) both inhibited formation of M1 and M2 by 35% and 15%, respectively, but quinacrine, barbital, pyrazole and p-chloromercuribenzoic acid had no significant effect. 5. Results show that the enzyme systems may differ from DT-diaphorase, aldehyde oxidase, xanthine oxidase, ketone reductase, aldose reductase, aldehyde reductase and alcohol dehydrogenase, known cytosolic enzymes responsible for xenobiotic metabolism.

  3. Biliverdin Reductase: a Target for Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Peter eGibbs

    2015-06-01

    Full Text Available Biliverdin reductase (BVR is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1 and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.

  4. Interactions of gold with cytosolic selenium-containing proteins in rat kidney and liver.

    Science.gov (United States)

    Hu, M L; Viljoen, A J; Tappel, A L

    1988-04-01

    Rats injected with aurothioglucose (ATG) for 5 days were subsequently injected with [75Se]selenious acid and killed after 3 days. Kidney and liver cytosols were chromatographed on Sephadex G-150. 75Se in kidney was associated with high molecular weight (HMW), 85,000 Mr, 26,000 Mr, and 10,000 Mr proteins and with a nonprotein fraction. The elution profile of liver cytosol was similar to that of kidney, but without a 26,000 Mr protein. ATG injection increased the association of 75Se with all fractions of kidney cytosol except the 85,000 Mr fractions, which contained Se-glutathione peroxidase (SeGSHPx) activity; 75Se in liver was increased only in HMW fractions. Unfractionated kidney cytosolic SeGSHPx activity was decreased 14% by ATG injection, but liver enzyme activity was not changed. However, Sephadex G-150 chromatography showed that total and specific activities, respectively, were decreased 28 and 23% in kidney and 25 and 16% in liver. Au coeluted with HMW and 10,000 Mr 73Se-containing kidney proteins; the latter contained 50% of the Au eluted from the column. DEAE Sephacel chromatography of the 10,000 Mr kidney protein showed that both Au and 75Se were tightly associated with metallothionein-like proteins. This study demonstrates the interaction of Au with rat liver and kidney 75Se-containing proteins.

  5. The role of glutathione transferases in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ćorić Vesna

    2016-01-01

    Full Text Available Mounting evidence suggest that members of the subfamily of cytosolic glutathione S-transferases (GSTs possess roles far beyond the classical glutathione-dependent enzymatic conjugation of electrophilic metabolites and xenobiotics. Namely, monomeric forms of certain GSTs are capable of forming protein: protein interactions with protein kinases and regulate cell apoptotic pathways. Due to this dual functionality of cytosolic GSTs, they might be implicated in both the development and the progression of renal cell carcinoma (RCC. Prominent genetic heterogeneity, resulting from the gene deletions, as well as from SNPs in the coding and non-coding regions of GST genes, might affect GST isoenzyme profiles in renal parenchyma and therefore serve as a valuable indicator for predicting the risk of cancer development. Namely, GSTs are involved in the biotransformation of several compounds recognized as risk factors for RCC. The most potent carcinogen of polycyclic aromatic hydrocarbon diol epoxides, present in cigarette smoke, is of benzo(apyrene (BPDE, detoxified by GSTs. So far, the relationship between GST genotype and BPDE-DNA adduct formation, in determining the risk for RCC, has not been evaluated in patients with RCC. Although the association between certain individual and combined GST genotypes and RCC risk has been debated in a the literature, the data on the prognostic value of GST polymorphism in patients with RCC are scarce, probably due to the fact that the molecular mechanism supporting the role of GSTs in RCC progression has not been clarified as yet.

  6. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling.

    Science.gov (United States)

    Sullivan, Lucas B; Martinez-Garcia, Eva; Nguyen, Hien; Mullen, Andrew R; Dufour, Eric; Sudarshan, Sunil; Licht, Jonathan D; Deberardinis, Ralph J; Chandel, Navdeep S

    2013-07-25

    The tricarboxylic acid cycle enzyme fumarate hydratase (FH) has been identified as a tumor suppressor in a subset of human renal cell carcinomas. Human FH-deficient cancer cells display high fumarate concentration and ROS levels along with activation of HIF-1. The underlying mechanisms by which FH loss increases ROS and HIF-1 are not fully understood. Here, we report that glutamine-dependent oxidative citric acid cycle metabolism is required to generate fumarate and increase ROS and HIF-1 levels. Accumulated fumarate directly bonds the antioxidant glutathione in vitro and in vivo to produce the metabolite succinated glutathione (GSF). GSF acts as an alternative substrate to glutathione reductase to decrease NADPH levels and enhance mitochondrial ROS and HIF-1 activation. Increased ROS also correlates with hypermethylation of histones in these cells. Thus, fumarate serves as a proto-oncometabolite by binding to glutathione which results in the accumulation of ROS. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The proto-oncometabolite fumarate binds glutathione to amplify ROS dependent signaling

    Science.gov (United States)

    Sullivan, Lucas B.; Garcia-Martinez, Eva; Nguyen, Hien; Mullen, Andrew R.; Dufour, Eric; Sudarshan, Sunil; Licht, Jonathan D.; Deberardinis, Ralph J.; Chandel, Navdeep S.

    2013-01-01

    SUMMARY The tricarboxylic acid cycle enzyme fumarate hydratase (FH) has been identified as a tumor suppressor in a subset of human renal cell carcinomas. Human FH deficient cancer cells display high fumarate concentration and ROS levels along with activation of HIF-1. The underlying mechanisms by which FH loss increases ROS and HIF-1 are not fully understood. Here, we report that glutamine dependent oxidative citric acid cycle metabolism is required to generate fumarate and increase ROS and HIF-1 levels. Accumulated fumarate directly bonds the antioxidant glutathione in vitro and in vivo to produce the novel metabolite succinated glutathione (GSF). GSF acts as an alternative substrate to glutathione reductase to decrease NADPH levels and enhance mitochondrial ROS and HIF-1 activation. Increased ROS also correlates with hyper-methylation of histones in these cells. Thus, fumarate serves as a proto-oncometabolite by binding to glutathione which results in the accumulation of ROS. PMID:23747014

  8. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.

    Science.gov (United States)

    Hara, Kiyotaka Y; Aoki, Naoko; Kobayashi, Jyumpei; Kiriyama, Kentaro; Nishida, Keiji; Araki, Michihiro; Kondo, Akihiko

    2015-11-01

    Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.

  9. Reduced glutathione as a physiological co-activator in the activation of peptidylarginine deiminase

    DEFF Research Database (Denmark)

    Damgaard, Dres; Bjørn, Mads Emil; Steffensen, Maria A

    2016-01-01

    (DTT) are normally added to the reaction buffer when determining PAD activity in vitro. We investigated the ability of reduced glutathione (GSH), the most abundant intracellular small-molecule thiol in vivo, to activate PADs. METHODS: Activity of recombinant human (rh) PAD2 and PAD4, PADs contained......-incubation of the cells with the glutathione reductase inhibitor 2-AAPA. No PAD activity was observed in the corresponding supernatants, but addition of exogenous GSH restored activity. CONCLUSIONS: Catalytic activity of PAD requires reducing conditions. GSH meets this requirement at concentrations comparable with those...

  10. GLUTATHIONE AND ANTIOXIDANT ENZYMES IN THE HEPATOPANCREAS OF CRAYFISH PROCAMBARUS CLARKII (GIRARD, 1852 OF LAKE TRASIMENO (ITALY

    Directory of Open Access Journals (Sweden)

    ELIA A. C.

    2006-01-01

    Full Text Available Antioxidant parameters, such as total glutathione, glutathione S-transferase, glutathione peroxidase, glutathione reductase, glyoxalases, catalase, and some heavy metals such as, lead, cadmium and chromium were examined in hepatopancreas of both sexes of Procambarus clarkii collected seasonally from Lake Trasimeno, from winter 2002-2003 to autumn 2003. Heavy metals content in hepatopancreas in males and females of P. clarkii was low and did not vary through the sampling periods and between sexes. On the contrary, crayfish exhibited sex-dependent differences in levels of some enzyme activities and of total glutathione, and no apparent relationship was found between contaminant burdens and antioxidant indexes in hepatopancreas. Because measured metal concentrations were low, other factors, presumably, were involved in antioxidant variations in P. clarkii and these latter seemed to be affected more by biological and environmental factors, other than those related to pollutants body burdens.

  11. ENDURANCE TRAINING AND GLUTATHIONE-DEPENDENT ANTIOXIDANT DEFENSE MECHANISM IN HEART OF THE DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    Mustafa Atalay

    2003-06-01

    Full Text Available Regular physical exercise beneficially influences cardiac antioxidant defenses in normal rats. The aim of this study was to test whether endurance training can strengthen glutathione-dependent antioxidant defense mechanism and decrease lipid peroxidation in heart of the streptozotocin-induced diabetic rats. Redox status of glutathione in blood of diabetic rats in response to training and acute exercise was also examined. Eight weeks of treadmill training increased the endurance in streptozotocin-induced diabetic rats. It did not affect glutathione level in heart tissue at rest and also after exercise. On the other hand, endurance training decreased glutathione peroxidase activity in heart, while glutathione reductase and glutathione S-transferase activities were not affected either by acute exhaustive exercise or endurance training. Reduced and oxidized glutathione levels in blood were not affected by either training or acute exercise. Conjugated dienes levels in heart tissue were increased by acute exhaustive exercise and also 8 weeks treadmill training. Longer duration of exhaustion in trained group may have contributed to the increased conjugated dienes levels in heart after acute exercise. Our results suggest that endurance type exercise may make heart more susceptible to oxidative stress. Therefore it may be wise to combine aerobic exercise with insulin treatment to prevent its adverse effects on antioxidant defense in heart in patients with diabetes mellitus

  12. FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase1

    Science.gov (United States)

    Laskowski, Marta J.; Dreher, Kate A.; Gehring, Mary A.; Abel, Steffen; Gensler, Arminda L.; Sussex, Ian M.

    2002-01-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress. PMID:11842161

  13. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase.

    Science.gov (United States)

    Laskowski, Marta J; Dreher, Kate A; Gehring, Mary A; Abel, Steffen; Gensler, Arminda L; Sussex, Ian M

    2002-02-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.

  14. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

    Science.gov (United States)

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001 PMID:25073928

  15. Efficacy of free glutathione and niosomal glutathione in the treatment ...

    African Journals Online (AJOL)

    Acetaminophen (APAP) administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH) (200mg/kg), niosomal GSH (14 mg/kg) and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine) ...

  16. Active biomonitoring of a subtropical river using glutathione-S ...

    African Journals Online (AJOL)

    The aim of this study was to establish the level of water quality impairment along a mine effluent receiving river, Pote River in Zimbabwe, using Oreochromis niloticus (Nile tilapia) as an indicator organism. Glutathione-S-transferase (GST) enzyme and heat shock protein (HSP 70) expression in the stomach tissue of Nile ...

  17. Effect of Glutathione on the Taste and Texture of Type I Sourdough Bread.

    Science.gov (United States)

    Tang, Kai Xing; Zhao, Cindy J; Gänzle, Michael G

    2017-05-31

    Type I sourdough fermentations with Lactobacillus sanfranciscensis as predominant organism accumulate reduced glutathione through glutathione reductase (GshR) activity of L. sanfranciscensis. Reduced glutathione acts as chain terminator for gluten polymerization but is also kokumi-active and may thus enhance bread taste. This study implemented a type I model sourdough fermentations to quantitate glutathione accumulation sourdough, bread dough, and bread and to assess the effect of L. sanfranciscensis GshR on bread volume by comparison of L. sanfranciscensis and an isogenic strain devoid of GshR. L. sanfranciscensis sourdough accumulated the highest amount of reduced glutathione during proofing. Bread produced with the wild type strain had a lower volume when compared to the gshR deficient mutant. The accumulation of γ-glutamyl-cysteine was also higher in L. sanfranciscensis sourdoughs when compared to doughs fermented with the gshR mutant strain. The accumulation of reduced glutathione in L. sanfranciscensis bread did not enhance the saltiness of bread.

  18. Alterations in erythrocyte glutathione metabolism associated with cervical dysplasias and carcinoma in situ.

    Science.gov (United States)

    Basu, J; Duttagupta, C; Vermund, S H; Ahn, C; Palan, P R; Romney, S L

    1993-01-01

    The study was designed to test the hypothesis whether cervical dysplasias of the more severe grades are associated with elevated erythrocyte glutathione levels. Subjects were women who obtained Pap tests and were subsequently found (1) not to have any cervical lesions or (2) to have colposcopically visualized, biopsy-confirmed cervical abnormalities histopathologically diagnosed as mild, moderate, severe dysplasias, or carcinoma in situ (CIS). The erythrocyte levels of reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PD), and 6-phosphogluconate dehydrogenase (6PGD) were analyzed from coded peripheral venous blood samples. GSH and GR concentrations increased with increasing severity of dysplasia. Exploratory data analysis and multiple pairwise comparisons suggested comparable levels of the glutathione-related variables between these histopathological pairs: (1) mild and moderate dysplasias or (2) severe dysplasia and CIS. We suggest that the changes in erythrocyte glutathione-related indices in conjunction with histopathological diagnosis may have the potential to distinguish between low- and high-grade cervical dysplastic lesions.

  19. Nigella sativa fixed and essential oil modulates glutathione redox enzymes in potassium bromate induced oxidative stress.

    Science.gov (United States)

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Karim, Roselina; Ahmed, Waqas; Kaka, Ubedullah; Ahmad, Shakeel; Dewanjee, Saikat; Jaafar, Hawa Z E; Zia-Ul-Haq, M

    2015-09-18

    Nigella sativa is an important component of several traditional herbal preparations in various countries. It finds its applications in improving overall health and boosting immunity. The current study evaluated the role of fixed and essential oil of Nigella sativa against potassium bromate induced oxidative stress with special reference to modulation of glutathione redox enzymes and myeloperoxidase. Animals; 30 rats (Sprague Dawley) were divided in three groups and oxidative stress was induced using mild dose of potassium bromate. The groups were on their respective diets (iso-caloric diets for a period of 56 days) i.e. control and two experimental diets containing N. sativa fixed (4%) and essential (0.3%) oils. The activities of enzymes involved in glutathione redox system and myeloperoxidase (MPO) were analyzed. The experimental diets modulated the activities of enzymes i.e. glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (Pbromate induced oxidative stress.

  20. Fructose-1,6-bisphosphate preserves intracellular glutathione and protects cortical neurons against oxidative stress.

    Science.gov (United States)

    Vexler, Zinaida S; Wong, Arthur; Francisco, Carla; Manabat, Catherine; Christen, Stephan; Täuber, Martin; Ferriero, Donna M; Gregory, George

    2003-01-17

    Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.

  1. Glutathione depletion in antioxidant defense of differentiated NT2-LHON cybrids.

    Science.gov (United States)

    Schoeler, S; Winkler-Stuck, K; Szibor, R; Haroon, M F; Gellerich, F N; Chamaon, K; Mawrin, C; Kirches, E

    2007-03-01

    The mechanism of retinal ganglion cell loss in Leber's hereditary optic neuropathy (LHON) is still uncertain, and a role of enhanced superoxide production by the mutant mitochondrial complex I has been hypothesized. In the present study, it was shown that LHON cybrids, carrying the np11778 mutation, became selectively more H(2)O(2) sensitive compared with the parental cell line only following short-term retinoic acid differentiation. They contained a decreased cellular glutathione pool (49%, p< or =0.05), despite 1.5-fold enhanced expression of the regulatory subunit of gamma-glutamylcysteine synthetase (p< or =0.05). This points to a reduction of the capacity to detoxify H(2)O(2) and to changes in thiol redox potential. The activity of the H(2)O(2) degrading enzyme glutathione peroxidase (GPx) and the activities of glutathione reductase (GR) and superoxide dismutase (SOD) were unaffected.

  2. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii.

    Science.gov (United States)

    Kavitha, S; Chandra, T S

    2014-11-01

    Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.

  3. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-01-01

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans’ attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants. PMID:26907270

  4. Expression Patterns of Genes Involved in Ascorbate-Glutathione Cycle in Aphid-Infested Maize (Zea mays L.) Seedlings.

    Science.gov (United States)

    Sytykiewicz, Hubert

    2016-02-23

    Reduced forms of ascorbate (AsA) and glutathione (GSH) are among the most important non-enzymatic foliar antioxidants in maize (Zea mays L.). The survey was aimed to evaluate impact of bird cherry-oat aphid (Rhopalosiphum padi L.) or grain aphid (Sitobion avenae F.) herbivory on expression of genes related to ascorbate-glutathione (AsA-GSH) cycle in seedlings of six maize varieties (Ambrozja, Nana, Tasty Sweet, Touran, Waza, Złota Karłowa), differing in resistance to the cereal aphids. Relative expression of sixteen maize genes encoding isoenzymes of ascorbate peroxidase (APX1, APX2, APX3, APX4, APX5, APX6, APX7), monodehydroascorbate reductase (MDHAR1, MDHAR2, MDHAR3, MDHAR4), dehydroascorbate reductase (DHAR1, DHAR2, DHAR3) and glutathione reductase (GR1, GR2) was quantified. Furthermore, effect of hemipterans' attack on activity of APX, MDHAR, DHAR and GR enzymes, and the content of reduced and oxidized ascorbate and glutathione in maize plants were assessed. Seedling leaves of more resistant Z. mays varieties responded higher elevations in abundance of target transcripts. In addition, earlier and stronger aphid-triggered changes in activity of APX, MDHAR, DHAR and GR enzymes, and greater modulations in amount of the analyzed antioxidative metabolites were detected in foliar tissues of highly resistant Ambrozja genotype in relation to susceptible Tasty Sweet plants.

  5. Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities

    Science.gov (United States)

    2013-01-01

    Background Excess light conditions induce the generation of reactive oxygen species (ROS) directly in the chloroplasts but also cause an accumulation and production of ROS in peroxisomes, cytosol and vacuoles. Antioxidants such as ascorbate and glutathione occur in all cell compartments where they detoxify ROS. In this study compartment specific changes in antioxidant levels and related enzymes were monitored among Arabidopsis wildtype plants and ascorbate and glutathione deficient mutants (vtc2-1 and pad2-1, respectively) exposed to different light intensities (50, 150 which was considered as control condition, 300, 700 and 1,500 μmol m-2 s-1) for 4 h and 14 d. Results The results revealed that wildtype plants reacted to short term exposure to excess light conditions with the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol and an increased activity of catalase in the leaves. Long term exposure led to an accumulation of ascorbate and glutathione mainly in chloroplasts. In wildtype plants an accumulation of ascorbate and hydrogen peroxide (H2O2) could be observed in vacuoles when exposed to high light conditions. The pad2-1 mutant reacted to long term excess light exposure with an accumulation of ascorbate in peroxisomes whereas the vtc2-1 mutant reacted with an accumulation of glutathione in the chloroplasts (relative to the wildtype) and nuclei during long term high light conditions indicating an important role of these antioxidants in these cell compartments for the protection of the mutants against high light stress. Conclusion The results obtained in this study demonstrate that the accumulation of ascorbate and glutathione in chloroplasts, peroxisomes and the cytosol is an important reaction of plants to short term high light stress. The accumulation of ascorbate and H2O2 along the tonoplast and in vacuoles during these conditions indicates an important route for H2O2 detoxification under these conditions. PMID

  6. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses.

    Science.gov (United States)

    Maughan, Spencer C; Pasternak, Maciej; Cairns, Narelle; Kiddle, Guy; Brach, Thorsten; Jarvis, Renee; Haas, Florian; Nieuwland, Jeroen; Lim, Benson; Müller, Christopher; Salcedo-Sora, Enrique; Kruse, Cordula; Orsel, Mathilde; Hell, Rüdiger; Miller, Anthony J; Bray, Patrick; Foyer, Christine H; Murray, James A H; Meyer, Andreas J; Cobbett, Christopher S

    2010-02-02

    In Arabidopsis thaliana, biosynthesis of the essential thiol antioxidant, glutathione (GSH), is plastid-regulated, but many GSH functions, including heavy metal detoxification and plant defense activation, depend on cytosolic GSH. This finding suggests that plastid and cytosol thiol pools are closely integrated and we show that in Arabidopsis this integration requires a family of three plastid thiol transporters homologous to the Plasmodium falciparum chloroquine-resistance transporter, PfCRT. Arabidopsis mutants lacking these transporters are heavy metal-sensitive, GSH-deficient, and hypersensitive to Phytophthora infection, confirming a direct requirement for correct GSH homeostasis in defense responses. Compartment-specific measurements of the glutathione redox potential using redox-sensitive GFP showed that knockout of the entire transporter family resulted in a more oxidized glutathione redox potential in the cytosol, but not in the plastids, indicating the GSH-deficient phenotype is restricted to the cytosolic compartment. Expression of the transporters in Xenopus oocytes confirmed that each can mediate GSH uptake. We conclude that these transporters play a significant role in regulating GSH levels and the redox potential of the cytosol.

  7. Metabolism of prostaglandin E and of glutathione conjugate of prostaglandin A (GSH-prostaglandin A) by prostaglandin 9-ketoreductase from rabbit kidney

    DEFF Research Database (Denmark)

    Toft, B.S.; Hansen, Harald S.

    1979-01-01

    Rabbit kidney prostaglandin 9-ketoreductase was found to metabolize the glutathione conjugate of prostaglandin A (GSH-prostaglandin A). Apparent K (GSH-prostaglandin A) 13 µM and apparent K (prostaglandin E) 200 µM. The cytosolic preparation was subjected to gelfiltration and isoelectric focusing...

  8. Methylenetetrahydrofolate reductase in the rat central nervous system: intracellular and regional distribution

    Energy Technology Data Exchange (ETDEWEB)

    Burton, E.G.; Sallach, H.J.

    1975-01-01

    Methylenetetrahydrofolate reductase and methyltetrahydrofolate-homocysteine methyltransferase were found to be localized in the soluble fraction of rat brain. They are clearly separated from serine hydroxymethyltransferase and the glycine cleavage complex which are localized in the mitochondria in this tissue. Hence, although the primary, if not the only, site of 5, 10-methylenetetrahydrofolate formation in brain appears to be the mitochondrion, the utilization of this compound for 5-methyltetrahydrofolate synthesis and utilization of the latter compound for methylation of homocysteine occurs in the cytosol. Parallel experiments with rat liver confirmed that the reductase and homocysteine methyltransferase of this tissue are also localized in the soluble fraction, while the hydroxymethyltransferase is about evenly divided between mitochondria and cytosol. However, in liver (but not in brain) the reductase activity of the supernatant fraction is only partially expressed unless the fraction is dialyzed. We have found that this phenomenon, which initially suggested the occurrence of an endogenous inhibitor in liver extracts is due to loss of the product (5, 10-methylenetetrahydrofolate) of the reductase assay via its oxidation by methylenetetrahydrofolate dehydrogenase, in combination with the NADP present in undialyzed extracts. All regions of the rat central nervous system tested contained methylenetetrahydrofolate reductase activity. Regional variations were observed however, with an almost threefold difference between the specific activities of the highest and lowest ranking regions. Comparison of the rank order of 12 regions tested with respect to reductase specific activity (this study) and methyltetrahydrofolate-tryptamine N-methyltransferase specific activity shows a high positive correlation (r = 0.916) between these activities in the selected regions.

  9. BIOLOGICAL ROLE OF ALDO-KETO REDUCTASES IN RETINOIC ACID BIOSYNTHESIS AND SIGNALING

    Directory of Open Access Journals (Sweden)

    F. Xavier eRuiz

    2012-04-01

    Full Text Available Several aldo-keto reductase (AKR enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low Km and kcat values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3, as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.

  10. Glutathione role in gallium induced toxicity

    African Journals Online (AJOL)

    Asim

    2012-01-26

    GSH) present in tissues. It is very important and interesting to study the reaction of gallium nitrate and glutathione as biomarker of glutathione role in detoxification and conjugation in whole blood components (plasma and ...

  11. The role of glutathione in intestinal dysfunction.

    Science.gov (United States)

    Jefferies, Heather; Bot, Joan; Coster, Jane; Khalil, Alizan; Hall, John C; McCauley, Rosalie D

    2003-01-01

    Glutathione plays an important cytoprotective role in the gut. Animal studies have demonstrated that the provisions of glutathione precursors are protective for different types of free-radical-mediated cellular injury. There is a need to clarify the potential role of glutathione supplementation in ischemia-reperfusion injury and inflammatory bowel disease. More speculative is whether treatment with glutathione precursors can modify the progress of colorectal cancer.

  12. Glutathione protects Lactococcus lactis against oxidative stress

    NARCIS (Netherlands)

    Li, Y.; Hugenholtz, J.; Abee, T.; Molenaar, D.

    2003-01-01

    Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to similar to60 mM glutathione when this compound was added

  13. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    William M. Johnson

    2012-10-01

    Full Text Available Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.

  14. Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases

    Science.gov (United States)

    Johnson, William M.; Wilson-Delfosse, Amy L.; Mieyal, John. J.

    2012-01-01

    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated. PMID:23201762

  15. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    Science.gov (United States)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  16. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    OpenAIRE

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious s...

  17. Cytosolic delivery of materials with endosome-disrupting colloids

    Science.gov (United States)

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  18. Impaired glutathione synthesis in schizophrenia

    DEFF Research Database (Denmark)

    Gysin, René; Kraftsik, Rudolf; Sandell, Julie

    2007-01-01

    Schizophrenia is a complex multifactorial brain disorder with a genetic component. Convergent evidence has implicated oxidative stress and glutathione (GSH) deficits in the pathogenesis of this disease. The aim of the present study was to test whether schizophrenia is associated with a deficit...... of GSH synthesis. Cultured skin fibroblasts from schizophrenia patients and control subjects were challenged with oxidative stress, and parameters of the rate-limiting enzyme for the GSH synthesis, the glutamate cysteine ligase (GCL), were measured. Stressed cells of patients had a 26% (P = 0.......002) decreased GCL activity as compared with controls. This reduction correlated with a 29% (P schizophrenia in two...

  19. Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Francisco Bay region

    Science.gov (United States)

    Hoffman, D.J.; Ohlendorf, H.M.; Marn, C.M.; Pendleton, G.W.

    1998-01-01

    Adult male greater scaup (Aythya marila) (GS), surf scoters (Melanitta perspicillata)(SS), and ruddy ducks (Oxyura jamaicensis) (RD) were collected from Suisun Bay and coastal Tomales Bay in the greater San Francisco Bay area to assess exposure to inorganic contaminants. Hepatic selenium (Se) concentrations were highest in GS (geometric mean = 67 ppm, dw) and SS (119 ppm) in Suisun Bay, whereas hepatic mercury (Hg) was highest (19 ppm) in GS and SS from Tomales Bay. Hepatic Se and Hg were lower in RD and did not differ between locations. Hepatic supernatants were assayed for enzymes related to glutathione metabolism and antioxidant activity including: glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH-peroxidase), glutathione reductase (GSSG-reductase), and glutathione-S-transferase (GSH-transferase). GSH-peroxidase activity was higher in SS and RD, and G-6-PDH higher in GS and SS from Suisun Bay than Tomales Bay. GSSG-reductase was higher in SS from Suisun Bay. The ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH) was greater in all species from Tomales Bay. The following significant relationships were found in one or more species with increasing hepatic Hg concentration: lower body, liver and heart weights; decreased hepatic GSH concentration, G-6-PDH and GSH-peroxidase activities; increased ratio of GSSG to GSH, and increased GSSG-reductase activity. With increasing hepatic Se concentration, GSH-peroxidase increased but GSH decreased. It is concluded that measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. Concentrations of mercury and selenium and variable affected have been associated with adverse effects on reproduction and neurological function in experimental studies with mallards.

  20. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    Science.gov (United States)

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  2. Purification and characterization of a glutathione S-transferase from the fungus Cunninghamella elegans.

    Science.gov (United States)

    Cha, C J; Coles, B F; Cerniglia, C E

    2001-09-25

    Cunninghamella elegans grown on Sabouraud dextrose broth had glutathione S-transferase (GST) activity. The enzyme was purified 172-fold from the cytosolic fraction (120000 x g) of the extract from a culture of C. elegans, using Q-Sepharose ion exchange chromatography and glutathione affinity chromatography. The GST showed activity against 1-chloro-2,4-dinitrobenzene, 1,2-dichloro-4-nitrobenzene, 4-nitrobenzyl chloride, and ethacrynic acid. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel filtration chromatography revealed that the native enzyme was homodimeric with a subunit of M(r) 27000. Comparison by Western blot analysis implied that this fungal GST had no relationship with mammalian alpha-, mu-, and pi-class GSTs, although it showed a small degree of cross-reactivity with a theta-class GST. The N-terminal amino acid sequence of the purified enzyme showed no significant homology with other known GSTs.

  3. Mitochondrial Swelling Induced by Glutathione

    Science.gov (United States)

    Lehninger, Albert L.; Schneider, Marion

    1959-01-01

    Reduced glutathione, in concentrations approximating those occurring in intact rat liver, causes swelling of rat liver mitochondria in vitro which is different in kinetics and extent from that yielded by L-thyroxine. The effect is also given by cysteine, which is more active, and reduced coenzyme A, but not by L-ascorbate, cystine, or oxidized glutathione. The optimum pH is 6.5, whereas thyroxine-induced swelling is optimal at pH 7.5. The GSH-induced swelling is not inhibited by DNP or dicumarol, nor by high concentrations of sucrose, serum albumin, or polyvinylpyrrolidone, in contrast to thyroxine-induced swelling. ATP inhibits the GSH swelling, but ADP and AMP are ineffective. Mn-+ is a very potent inhibitor, but Mg++ is ineffective. Ethylenediaminetetraacetate is also an effective inhibitor of GSH-induced swelling. The respiratory inhibitors amytal and antimycin A do not inhibit the swelling action of GSH, but cyanide does; these findings are consistent with the view that the oxidation-reduction state of the respiratory chain between cytochrome c and oxygen is a determinant of GSH-induced swelling. Reversal of GSH-induced swelling by osmotic means or by ATP in KCl media could not be observed. Large losses of nucleotides and protein occur during the swelling by GSH, suggesting that the action is irreversible. The characteristically drastic swelling action of GSH could be prevented if L-thyroxine was also present in the medium. PMID:13630941

  4. Emerging regulatory paradigms in glutathione metabolism

    Science.gov (United States)

    Liu, Yilin; Hyde, Annastasia S.; Simpson, Melanie A.; Barycki, Joseph J.

    2015-01-01

    One of the hallmarks of cancer is the ability to generate and withstand unusual levels of oxidative stress. In part, this property of tumor cells is conferred by elevation of the cellular redox buffer glutathione. Though enzymes of the glutathione synthesis and salvage pathways have been characterized for several decades, we still lack a comprehensive understanding of their independent and coordinate regulatory mechanisms. Recent studies have further revealed that overall central metabolic pathways are frequently altered in various tumor types, resulting in significant increases in biosynthetic capacity, and feeding into glutathione synthesis. In this review, we will discuss the enzymes and pathways affecting glutathione flux in cancer, and summarize current models for regulating cellular glutathione through both de novo synthesis and efficient salvage. In addition, we examine the integration of glutathione metabolism with other altered fates of intermediary metabolites, and highlight remaining questions about molecular details of the accepted regulatory modes. PMID:24974179

  5. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  6. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  7. Crystal structure of human quinone reductase type 2, a metalloflavoprotein.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Zhao, Q; Amzel, L M

    1999-08-03

    In mammals, two separate but homologous cytosolic quinone reductases have been identified: NAD(P)H:quinone oxidoreductase type 1 (QR1) (EC 1.6.99.2) and quinone reductase type 2 (QR2). Although QR1 and QR2 are nearly 50% identical in protein sequence, they display markedly different catalytic properties and substrate specificities. We report here two crystal structures of QR2: in its native form and bound to menadione (vitamin K(3)), a physiological substrate. Phases were obtained by molecular replacement, using our previously determined rat QR1 structure as the search model. QR2 shares the overall fold of the major catalytic domain of QR1, but lacks the smaller C-terminal domain. The FAD binding sites of QR1 and QR2 are very similar, but their hydride donor binding sites are considerably different. Unexpectedly, we found that QR2 contains a specific metal binding site, which is not present in QR1. Two histidine nitrogens, one cysteine thiol, and a main chain carbonyl group are involved in metal coordination. The metal binding site is solvent-accessible, and is separated from the FAD cofactor by a distance of about 13 A.

  8. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae

    Science.gov (United States)

    Matern, Sanja; Peskan-Berghoefer, Tatjana; Gromes, Roland; Kiesel, Rebecca Vazquez; Rausch, Thomas

    2015-01-01

    The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed. PMID:25628332

  9. Pseudoazurin-nitrite reductase interactions.

    Science.gov (United States)

    Impagliazzo, Antonietta; Krippahl, Ludwig; Ubbink, Marcellus

    2005-09-01

    The nitrite reductase-binding site on pseudoazurin has been determined by using NMR chemical-shift perturbations. It comprises residues in the hydrophobic patch surrounding the exposed copper ligand His81 as well as several positively charged residues. The binding site is similar for both redox states of pseudoazurin, despite differences in the binding mode. The results suggest that pseudoazurin binds in a well-defined orientation. Docking simulations provide a putative structure of the complex with a binding site on nitrite reductase that has several hydrophobic and polar residues as well as a ridge of negatively charged side chains and a copper-to-copper distance of 14 A.

  10. Effect of Semecarpus anacardium Linn. nut milk extract on glutathione and its associated enzymes in experimentally induced mammary carcinoma.

    Science.gov (United States)

    Mathivadhani, P; Shanthi, P; Sachdanandam, P

    2006-01-01

    Reduced glutathione (GSH) is a ubiquitous thiol-containing tripeptide that plays a key role in the etiology of many diseases and, in particular, cancer. GSH, the foremost internal protective system, participates directly in the destruction of free radical compounds and detoxification of carcinogens. The effect of Semecarpus anacardium nut milk extract was studied for gaining insight into the disease relationship to GSH and its metabolizing enzymes. Mammary carcinoma was induced by giving 7,12-dimethylbenz[a]anthracene (DMBA) (25 mg/mL of olive oil) perorally by gastric intubation, and nut milk extract of S. anacardium was administered orally (200 mg/kg of body weight/day) for 14 days to mammary carcinoma-bearing rats. The levels of GSH and its metabolizing enzyme activities were determined in liver and kidney homogenates. Significant decreases in GSH, glutathione peroxidase, glutathione S-transferase, glutathione reductase, and gamma-glutamylcysteine synthetase and a concomitant increase in oxidized glutathione, gamma-glutamyl transpeptidase, and glucose 6-phosphate dehydrogenase were observed in DMBA-induced mammary carcinoma in rats, while drug treatment reversed the conditions to near normal levels. There was a marked increase in GSH level and gamma-glutamylcysteine synthetase activity in drug control rats. These findings suggest that S. anacardium can exert its protective effect in maintaining the glutathione redox status by restoring the associated enzymes against oxidative stress in experimental mammary carcinoma.

  11. Glutathione treatment of hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Dalhoff, K; Ranek, L; Mantoni, M

    1992-01-01

    abnormal alfa-1-fetoprotein (AFP) returned to normal after GSH treatment. AFP remained normal throughout the treatment period in the other women. These observations indicate that GSH may have a sex-dependent effect on HCC. However, further studies involving more patients are required to pursue......This prospective study was undertaken to substantiate observations that glutathione (GSH) inhibits or reverses tumor growth in humans with hepatocellular carcinoma (HCC), a neoplasm with an extremely poor prognosis. Eight patients with biopsy-proven HCC not amenable to surgery were given 5 g of GSH...... daily from the time of diagnosis. Two patients withdrew shortly after receiving GSH due to intolerable side-effects. Of the six eligible patients, two had mildly advanced tumors and four moderately advanced tumors. At 1-2-month intervals the liver was CT and ultra-sound scanned to assess the growth...

  12. [Glutathione redox system, immune status, antioxidant enzymes and metabolism of purine nucleotides in hypothyroidism].

    Science.gov (United States)

    Tapbergenov, S O; Sovetov, B S; Bekbosynova, R B; Bolysbekova, S M

    2015-01-01

    The immune status, components of the glutathione redox system, the activity of antioxidant enzymes and metabolism of purine nucleotides have been investigated in animals with experimental hypothyroidism. On day 8 after an increase in the number of leukocytes, lymphocytes, T-helpers and T-suppressors as well as increased number of B-lymphocytes was found in blood of thyroidectomized rats. This was accompanied by decreased activity of adenosine deaminase (AD), AMP-deaminase (AMPD), and 5'-nucleotidase (5'N) in blood, but the ratio of enzyme activity AD/AMPD increased. These changes in the activity of enzymes, involved in purine catabolism can be regarded as increased functional relationships between T and B lymphocytes in hypothyroidism. The functional changes of immune system cells were accompanied by increased activity of glutathione peroxidase (GPx), a decrease in the activity of superoxide dismutase (SOD), glutathione reductase (GR) and the ratio GH/GPx. Thyroidectomized rats had increased amounts of total, oxidized (GSSG) and reduced glutathione (GSH), but the ratio GSH/GSSG decerased as compared with control animals. In the liver, hypothyroidism resulted in activation of SOD, GPx, decreased activity of GR and decreased ratio GR/GPx. At the same time, the levels of total, oxidized, and reduced glutathione increased, but the ratio GSH/GSSG as well as activities of enzymes involved in purine nucleotide metabolism ratio (and their ratio 5'N/AD + AMPD) decreased. All these data suggest a functional relationship of the glutathione redox system not only with antioxidant enzymes, but also activity of enzymes involved purine nucleotide metabolism and immune status.

  13. Quantitative real-time imaging of glutathione

    Science.gov (United States)

    Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe—designated as RealThiol (RT)—that can quantitatively monitor the real-time ...

  14. Glutathione, cell proliferation and differentiation | Ashtiani | African ...

    African Journals Online (AJOL)

    All organisms require an equivalent source for living. Reduced glutathione is the most abundant thiol containing protein in mammalian cells and organs. Glutathione was discovered by Hopkins in 1924 who published his findings in JBC. It is a three peptide containing glutamic acid, cystein and glycin and is found in reduced ...

  15. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  16. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Leigh A Knodler

    Full Text Available Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV. We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1, but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  17. Hepatitis viral load correlates to glutathione levels.

    Science.gov (United States)

    1998-01-01

    Several recent scientific articles have found a direct correlation between Glutathione levels and viral activity for hepatitis B and C. When viral load increases, Glutathione decreases. Researchers from Germany report that adding NAC (N-acetyl cysteine) to HBV producing cells lines can reduce hepatitis viral load 50 fold. Glutathione is used by the liver to help break down toxins. Patients who have chronic infection for more than 90 days should ask their physicians to check their Glutathione levels. A test kit is available from ImmunoSciences Labs; contact information is included. An amino acid, L-Glutamine, can be used with Alpha Lipoic Acid and NAC to increase Glutathione levels. Chlorophyll also offers benefits to people with hepatitis and other infections. Instructions on how to use a special retention enema containing chlorophyll, water, and apple cider vinegar are provided.

  18. A regulatory review for products containing glutathione

    Directory of Open Access Journals (Sweden)

    Nur Hidayah Abd Rahim

    2016-01-01

    Full Text Available Glutathione is a potent antioxidant as well as has important role for DNA synthesis and repair, protein synthesis, amino acid transport, and enzyme activation. Besides this, Glutathione products are now mainly selling as whitening agent which are mainly marketing through social media (Facebook and different websites. Information is not available whether glutathione product are following the regulatory guidelines of National Pharmaceutical Control Bureau of Malaysia (NPCB for selling, advertisement and promotion. This review was carried out by extracting information about glutathione from scientific database using PubMed, Cochrane Library and Embase. Analysis of the available information, case example of glutathione products showed that a brand of glutathione (Glutacaps HQ did not show the product's registration number from NPCB, and also did not show the name, address, contact number of the advertiser, and even not found the name of the manufacture. Without providing the above mentioned information, the product is selling and promoting through social media (fb which is not allowed by the NPCB guidelines part 4.14. So far, only two clinical trials were conducted on glutathione supplementation for 4 weeks duration. There was no serious or systematic adverse effects reported in clinical trials. As the two clinic trials resulted contradictory outcomes, further studies needed for conformation of the clinic benefits of glutathione. Otherwise, random use of glutathione may be risk for the health of the people. Besides, the marketer mainly promoting glutathione as the skin whitening beauty product instead of using as health supplement, it may cause additional and serious risk to the users as the manufacturer not providing sufficient information about the product, its registration number, manufacturing company, etc.

  19. The Arabidopsis cytosolic proteome

    DEFF Research Database (Denmark)

    Ito, Jun; Parsons, Harriet Tempé; Heazlewood, Joshua L.

    2014-01-01

    of secondary metabolites, and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular...... compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted...

  20. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice

    Directory of Open Access Journals (Sweden)

    Ruixia Dong

    2016-12-01

    Full Text Available Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(PH:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  1. Relationships between nitrate uptake and nitrate reductase activity in Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    Grażyna Kłobus

    2014-01-01

    Full Text Available Anti-NR IgG fragments obtained after papain digestion of polyclonal antibodies gave the positive immunological reaction with both, a soluble and plasma membrane-bound nitrate reductase. Anti-NR antibody as well as IgG fragments almost totally inhibited the nitrate reductase activity in cytosol proving a crossreaction of antibody with the catalytic site of a soluble NR. Anti-NR IgG fragments, but not undigested polyclonal antibodies affected the activity of the nitrate reductase associated with plasma membranes. Discrepancy in the action of intact antibodies and fragments obtained after they digestion were interpreted as a consequence of same differences in the ability of those molecules to the penetration through the membrane. Undigested anti-NR antibody have no effect on the nitrate uptake by intact plants, as well as by the right-side plasma membrane vesicles. On the other hand, IgG fragments of polyclonal antibodies abolished almost totally the nitrate uptake in the case of intact seedlings, but have only slight effect on the N03 uptake in plasma membranes. On the basis of above findings, some relations between nitrate uptake and its assimilation inside the cell are suggested. Since IgG fragments only slightly changed the N03 absorption in vesicles whereas the activity of plasmalemma associated nitrate reductase was strongly repressed, we concluded that the PM-NR is not structurally involved in the nitrate transport through the membrane.

  2. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  3. Glutathione in Cancer Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Angel L. [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain); Mena, Salvador [Green Molecular SL, Pol. Ind. La Coma-Parc Cientific, 46190 Paterna, Valencia (Spain); Estrela, Jose M., E-mail: jose.m.estrela@uv.es [Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 17 Av. Blasco Ibanez, 46010 Valencia (Spain)

    2011-03-11

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.

  4. Glutathione Efflux and Cell Death

    Science.gov (United States)

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  5. Impaired Glutathione Synthesis in Neurodegeneration

    Science.gov (United States)

    Aoyama, Koji; Nakaki, Toshio

    2013-01-01

    Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed. PMID:24145751

  6. Distinct responses of compartmentalized glutathione redox potentials to pharmacologic quinones targeting NQO1.

    Science.gov (United States)

    Kolossov, Vladimir L; Ponnuraj, Nagendraprabhu; Beaudoin, Jessica N; Leslie, Matthew T; Kenis, Paul J; Gaskins, H Rex

    2017-01-29

    Deoxynyboquinone (DNQ), a potent novel quinone-based antineoplastic agent, selectively kills solid cancers with overexpressed cytosolic NAD(P)H:quinone oxidoreductase-1 (NQO1) via excessive ROS production. A genetically encoded redox-sensitive probe was used to monitor intraorganellar glutathione redox potentials (EGSH) as a direct indicator of cellular oxidative stress following chemotherapeutic administration. Beta-lapachone (β-lap) and DNQ-induced spatiotemporal redox responses were monitored in human lung A549 and pancreatic MIA-PaCa-2 adenocarcinoma cells incubated with or without dicumarol and ES936, potent NQO1 inhibitors. Immediate oxidation of EGSH in both the cytosol and mitochondrial matrix was observed in response to DNQ and β-lap. The DNQ-induced cytosolic oxidation was fully prevented with NQO1 inhibition, whereas mitochondrial oxidation in A549 was NQO1-independent in contrast to MIA-PaCa-2 cells. However, at pharmacologic concentrations of β-lap both quinone-based substrates directly oxidized the redox probe, a possible sign of off-target reactivity with cellular thiols. Together, these data provide new evidence that DNQ's direct and discerning NQO1 substrate specificity underlies its pharmacologic potency, while β-lap elicits off-target responses at its effective doses. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A mathematical model of glutathione metabolism

    Directory of Open Access Journals (Sweden)

    James S Jill

    2008-04-01

    Full Text Available Abstract Background Glutathione (GSH plays an important role in anti-oxidant defense and detoxification reactions. It is primarily synthesized in the liver by the transsulfuration pathway and exported to provide precursors for in situ GSH synthesis by other tissues. Deficits in glutathione have been implicated in aging and a host of diseases including Alzheimer's disease, Parkinson's disease, cardiovascular disease, cancer, Down syndrome and autism. Approach We explore the properties of glutathione metabolism in the liver by experimenting with a mathematical model of one-carbon metabolism, the transsulfuration pathway, and glutathione synthesis, transport, and breakdown. The model is based on known properties of the enzymes and the regulation of those enzymes by oxidative stress. We explore the half-life of glutathione, the regulation of glutathione synthesis, and its sensitivity to fluctuations in amino acid input. We use the model to simulate the metabolic profiles previously observed in Down syndrome and autism and compare the model results to clinical data. Conclusion We show that the glutathione pools in hepatic cells and in the blood are quite insensitive to fluctuations in amino acid input and offer an explanation based on model predictions. In contrast, we show that hepatic glutathione pools are highly sensitive to the level of oxidative stress. The model shows that overexpression of genes on chromosome 21 and an increase in oxidative stress can explain the metabolic profile of Down syndrome. The model also correctly simulates the metabolic profile of autism when oxidative stress is substantially increased and the adenosine concentration is raised. Finally, we discuss how individual variation arises and its consequences for one-carbon and glutathione metabolism.

  8. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis.

    Science.gov (United States)

    Vadassery, Jyothilakshmi; Tripathi, Swati; Prasad, Ram; Varma, Ajit; Oelmüller, Ralf

    2009-08-15

    Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state.

  9. Reversal of arsenic-induced hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes.

    Science.gov (United States)

    Mishra, Deepshikha; Mehta, Ashish; Flora, Swaran J S

    2008-02-01

    Arsenicosis, due to contaminated drinking water in the Indo-Bangladesh region, is a serious health hazard in terms of morbidity and mortality. Reactive oxygen species (ROS) generated due to arsenic toxicity have been attributed as one of the initial signals that impart cellular toxicity, which is controlled by the internal antioxidant glutathione (GSH). In the present study, we investigated (i) the role of GSH and its linked enzymes, glutathione peroxidase and glutathione reductase, in reversing chronic arsenic toxicity using a thiol chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), or one of its analogues individually or in combination; (ii) if alterations in the carbon side chain of DMSA increased efficacy; and (iii) whether the combination therapy enhance arsenic removal from hepatic tissue and prevent hepatic apoptosis. Results indicated that chronic arsenic exposure led to a ROS-mediated, mitochondrial-driven, caspase-dependent apoptosis in hepatic cells with a significant increase in glutathione disulfide (GSSG) levels and decreased glutathione reductase levels. Monotherapy with DMSA and its analogues did show minimal recovery postchelation. However, the combination of DMSA with long carbon chain analogues like monoisoamyl DMSA (MiADMSA) or monocyclohexyl DMSA (MchDMSA) showed a better efficacy in terms of reducing the arsenic burden as well as reversing altered biochemical variables indicative of oxidative stress and apoptosis. We also observed that GSH and its linked enzymes, especially glutathione reductase, play a vital role in scavenging ROS, maintaining GSH pools, and providing clinical recoveries. On the basis of the above observations, we recommend that combinational therapy of DMSA and its long carbon chain analogues MiADMSA or MchDMSA would be more effective in arsenic toxicity.

  10. The antioxidant master glutathione and periodontal health

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Bains

    2015-01-01

    Full Text Available Glutathione, considered to be the master antioxidant (AO, is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials.

  11. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    Science.gov (United States)

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Genetics Home Reference: glutathione synthetase deficiency

    Science.gov (United States)

    ... with severe glutathione synthetase deficiency also develop recurrent bacterial infections. Related Information What does it mean if a disorder seems to run in my family? What is the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency ...

  13. Glutathione levels in and total antioxidant capacity of Candida sp. cells exposed to oxidative stress caused by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Maxwel Adriano Abegg

    2012-10-01

    Full Text Available INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB-glutathione disulfide (GSSG reductase reconversion method; the total antioxidant capacity (TAC was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS*+. Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM. RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.

  14. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    Science.gov (United States)

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  15. [Aldehyde reductase activity and blood aldo-keto reductase spectrum in adolescents with neuroendocrine obesity].

    Science.gov (United States)

    Kuleshova, D K; Davydov, V V; Shvets, V N

    2012-01-01

    Investigation of aldehyde-reductase activity and blood aldo-keto reductase spectrum has been performed in 13-15 and 16-18-years old adolescents with obesity to clear up the mechanisms of neuroendocrine obesity at the age of puberty. It has been established that basal aldehyde reductase activity and blood aldo-keto reductase spectrum of healthy adolescents in early puberty do not differ from those of healthy adolescents in late puberty. A decreased aldehyde reductase activity and some alterations in blood aldo-keto reductase spectrum have been observed in late puberty in adolescents with neuroendocrine obesity. In adolescents with obesity there have been registered some changes in blood aldo-keto reductase spectrum which are not accompanied by any alterations in its aldehyde reductase activity. The results obtained suggest that certain prerequisites are formed in late puberty to complicate the course of neuroendocrine obesity.

  16. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  17. [The state of enzymatic redox system of glutathione in the blood of patients with lymphosarcoma (non-Hodgkin's lymphoma].

    Science.gov (United States)

    Gavriliuk, L A; Robu, M V; Vratichian, A I; Lysyĭ, L T

    2009-06-01

    Lipid peroxidation (LPO) processes are enhanced and metabolism is disturbed in patients with lymphosarcoma (LS) (non-Hodgkin's lymphoma). The blood enzymatic redox system was analyzed in patients with LS of two types: lymphoblastic LS (LB LS) and prolymphocytic LS (PL LS). The activities of glutathione reductase (GR), glutathione peroxidase (GP), glutathione dehydroascorbate reductase (GDAR), gamma-glutamyl transpeptidase (GGT), and glucose-6-phosphate dehydrogenase (G6PDH) were spectrophotometrically (Humalyzer 2000, DE) determined in the peripheral plasma, white blood cells, lymphocytes, and red blood cells of 32 aged 42-57 years who had LS and 25 healthy individuals. Peripheral blood lymphocytes and leukocytes were obtained by the method developed by A. Böyum. A search for a correlation was made by the Spearman method. The activities of the enzymes and the data of the correlation analysis suggested antioxidant defense system imbalance and metabolic disturbances in patients with LS. Close functional correlations between GR and GP, GR and G6PDH persisted in patients with both types of the disease. Functional relationships between GR and GDAR remained only in patients with PL LS (r = 0.946; p blood cells was found in patients with LB LS, which may be used as an additional biochemical test in the differential diagnosis of LS.

  18. Abnormal glutathione conjugation in patients with tyrosinaemia type I

    NARCIS (Netherlands)

    Mulders, T. M.; Bergman, D. J.; Poll-The, B. T.; Smit, G. P.; Breimer, D. D.; Mulder, G. J.; Duran, M.; Smeitink, J. A.

    1997-01-01

    Previous studies have suggested that tyrosinaemia type I may be associated with reduced glutathione availability due to conjugation of tyrosinaemia-associated reactive intermediates with glutathione. In the present study, the glutathione/ glutathione S-transferase system of two tyrosinaemia patients

  19. Abnormal glutathione conjugation in patients with tyrosinaemia type I

    NARCIS (Netherlands)

    Bergman, DJW; PollThe, BT; Smit, GPA; Breimer, DD; Duran, M; Smeitink, JAM

    Previous studies have suggested that tyrosinaemia type I may be associated with reduced glutathione availability due to conjugation of tyrosinaemia-associated reactive intermediates with glutathione. In the present study, the glutathione/glutathione S-transferase system of two tyrosinaemia patients

  20. 21 CFR 862.1365 - Glutathione test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione test system. 862.1365 Section 862.1365....1365 Glutathione test system. (a) Identification. A glutathione test system is a device intended to measure glutathione (the tripeptide of glycine, cysteine, and glutamic acid) in erythrocytes (red blood...

  1. The Arabidopsis cytosolic proteome: the metabolic heart of the cell

    Directory of Open Access Journals (Sweden)

    Jun eIto

    2014-02-01

    Full Text Available The plant cytosol is the major intracellular fluid that acts as the medium for inter-organellar crosstalk and where a plethora of important biological reactions take place. These include its involvement in protein synthesis and degradation, stress response signaling, carbon metabolism, biosynthesis of secondary metabolites and accumulation of enzymes for defense and detoxification. This central role is highlighted by estimates indicating that the majority of eukaryotic proteins are cytosolic. Arabidopsis thaliana has been the subject of numerous proteomic studies on its different subcellular compartments. However, a detailed study of enriched cytosolic fractions from Arabidopsis cell culture has been performed only recently, with over 1,000 proteins reproducibly identified by mass spectrometry. The number of proteins allocated to the cytosol nearly doubles to 1,802 if a series of targeted proteomic characterizations of complexes is included. Despite this, few groups are currently applying advanced proteomic approaches to this important metabolic space. This review will highlight the current state of the Arabidopsis cytosolic proteome since its initial characterization a few years ago.

  2. Cytosolic proteostasis through importing of misfolded proteins into mitochondria.

    Science.gov (United States)

    Ruan, Linhao; Zhou, Chuankai; Jin, Erli; Kucharavy, Andrei; Zhang, Ying; Wen, Zhihui; Florens, Laurence; Li, Rong

    2017-03-16

    Loss of proteostasis underlies ageing and neurodegeneration characterized by the accumulation of protein aggregates and mitochondrial dysfunction. Although many neurodegenerative-disease-associated proteins can be found in mitochondria, it remains unclear how mitochondrial dysfunction and protein aggregation could be related. In dividing yeast cells, protein aggregates that form under stress or during ageing are preferentially retained by the mother cell, in part through tethering to mitochondria, while the disaggregase Hsp104 helps to dissociate aggregates and thereby enables refolding or degradation of misfolded proteins. Here we show that, in yeast, cytosolic proteins prone to aggregation are imported into mitochondria for degradation. Protein aggregates that form under heat shock contain both cytosolic and mitochondrial proteins and interact with the mitochondrial import complex. Many aggregation-prone proteins enter the mitochondrial intermembrane space and matrix after heat shock, and some do so even without stress. Timely dissolution of cytosolic aggregates requires the mitochondrial import machinery and proteases. Blocking mitochondrial import but not proteasome activity causes a marked delay in the degradation of aggregated proteins. Defects in cytosolic Hsp70s leads to enhanced entry of misfolded proteins into mitochondria and elevated mitochondrial stress. We term this mitochondria-mediated proteostasis mechanism MAGIC (mitochondria as guardian in cytosol) and provide evidence that it may exist in human cells.

  3. Ascaris suum NADH-methemo(myo)globin reductase systems recovering differential functions of hemoglobin and myoglobin, adapting to environmental hypoxia.

    Science.gov (United States)

    Takamiya, Shinzaburo; Hashimoto, Muneaki; Kazuno, Saiko; Kikkawa, Mika; Yamakura, Fumiyuki

    2009-09-01

    We reported previously that Ascaris suum cytochrome b5, specifically expressed in this nematode at the adult stage and dually localized in extracellular perienteric fluid and hypodermis, is involved in both perienteric NADH-methemoglobin and cytosolic NADH-metmyoglobin reduction, where cytochrome b5 functions as an electron carrier between NADH-mediated cytochrome b5 reductase and substrates, methemo(myo)globins to reduce the nonfunctional globins back to functional ferrous hemo(myo)globins. To further characterize NADH-methemo(myo)globin reductase systems, the midpoint potentials of A. suum perienteric hemoglobin and body wall myoglobin, as well as the affinities of Ascaris methemoglobin and metmyoglobin toward cytochrome b5, were evaluated using potentiometric titration and surface plasmon resonance techniques, respectively. Midpoint potentials of +7.2 mV and +19.5 mV were obtained for Ascaris perienteric hemoglobin and body wall myoglobin, respectively. The affinities of Ascaris perienteric methemoglobin and body wall metmyoglobin toward the nematode cytochrome b5 were comparable to that for mammalian hemoglobin and cytochrome b5; association constants were 0.585 x 10(3) M(-1) and 2.32 x 10(3) M(-1), respectively, with rapid equilibration kinetics. These observations highlight the physiological importance of A. suum perienteric NADH-methemoglobin and cytosolic metmyoglobin reductase systems. Differential roles of A. suum perienteric hemoglobin and body wall myoglobin are also discussed from the viewpoint of oxygen homeostasis under hypoxic conditions.

  4. Sulforaphane induces oxidative stress and death by p53-independent mechanism: implication of impaired glutathione recycling.

    Directory of Open Access Journals (Sweden)

    José Miguel P Ferreira de Oliveira

    Full Text Available Sulforaphane (SFN is a naturally-occurring isothiocyanate best known for its role as an indirect antioxidant. Notwithstanding, in different cancer cell lines, SFN may promote the accumulation of reactive oxygen species (ROS and cause cell death e.g. by apoptosis. Osteosarcoma often becomes chemoresistant, and new molecular targets to prevent drug resistance are needed. Here, we aimed to determine the effect of SFN on ROS levels and to identify key biomarkers leading to ROS unbalance and apoptosis in the p53-null MG-63 osteosarcoma cell line. MG-63 cells were exposed to SFN for up to 48 h. At 10 μM concentration or higher, SFN decreased cell viability, increased the%early apoptotic cells and increased caspase 3 activity. At these higher doses, SFN increased ROS levels, which correlated with apoptotic endpoints and cell viability decline. In exposed cells, gene expression analysis revealed only partial induction of phase-2 detoxification genes. More importantly, SFN inhibited ROS-scavenging enzymes and impaired glutathione recycling, as evidenced by inhibition of glutathione reductase (GR activity and combined inhibition of glutathione peroxidase (GPx gene expression and enzyme activity. In conclusion, SFN induced oxidative stress and apoptosis via a p53-independent mechanism. GPx expression and activity were found associated with ROS accumulation in MG-63 cells and are potential biomarkers for the efficacy of ROS-inducing agents e.g. as co-adjuvant drugs in osteosarcoma.

  5. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  6. Hepatobiliary transport of glutathione and glutathione conjugate in rats with hereditary hyperbilirubinemia

    NARCIS (Netherlands)

    Elferink, R. P.; Ottenhoff, R.; Liefting, W.; de Haan, J.; Jansen, P. L.

    1989-01-01

    TR- mutant rats have an autosomal recessive mutation that is expressed as a severely impaired hepatobiliary secretion of organic anions like bilirubin-(di)glucuronide and dibromosulphthalein (DBSP). In this paper, the hepatobiliary transport of glutathione and a glutathione conjugate was studied in

  7. Real-time imaging of the intracellular glutathione redox potential in the malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Denis Kasozi

    Full Text Available In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2, we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH of drug-sensitive (3D7 and resistant (Dd2 P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be -314.2±3.1 mV and -313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h. As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in

  8. Inhibition of Tapeworm Thioredoxin and Glutathione Pathways by an Oxadiazole N-Oxide Leads to Reduced Mesocestoides vogae Infection Burden in Mice.

    Science.gov (United States)

    Pasquet, Vivian; Bisio, Hugo; López, Gloria V; Romanelli-Cedrez, Laura; Bonilla, Mariana; Saldaña, Jenny; Salinas, Gustavo

    2015-06-26

    Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR) is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti). This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole N2-oxide (VL16E), an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.

  9. Inhibition of Tapeworm Thioredoxin and Glutathione Pathways by an Oxadiazole N-Oxide Leads to Reduced Mesocestoides vogae Infection Burden in Mice

    Directory of Open Access Journals (Sweden)

    Vivian Pasquet

    2015-06-01

    Full Text Available Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti. This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl-1,2,5-oxadiazole N2-oxide (VL16E, an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.

  10. Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils.

    Science.gov (United States)

    Talaat, Neveen B

    2014-07-01

    No information is available regarding effective microorganisms (EM) influence on the enzymatic and non-enzymatic antioxidant defence system involved in the ascorbate-glutathione cycle under saline conditions. Therefore, as a first approach, this article focuses on the contribution of EM to the scavenging capacity of the ascorbate-glutathione cycle in salt-stressed plants. It investigates some mechanisms underlying alleviation of salt toxicity by EM application. Phaseolus vulgaris cv. Nebraska plants were grown under non-saline or saline conditions (2.5 and 5.0 dSm(-1)) with and without EM application. Lipid peroxidation and H2O2 content were significantly increased in response to salinity, while they decreased with EM application in both stressed and non-stressed plants. Activities of ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) increased under saline conditions; these increases were more significant in salt-stressed plants treated by EM. Activities of monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) decreased in response to salinity; however, they were significantly increased in stressed plants treated with EM. Ascorbate and glutathione contents were increased with the increasing salt concentration; moreover they further increased in stressed plants treated with EM. Ratios of AsA/DHA and GSH/GSSG decreased under saline conditions, whereas they were significantly increased with EM treatment in the presence or in the absence of soil salinization. The EM treatment detoxified the stress generated by salinity and significantly improved plant growth and productivity. Enhancing the H2O2-scavenging capacity of the ascorbate-glutathione cycle in EM-treated plants may be an efficient mechanism to attenuate the activation of plant defences. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Inhibition of Anthracycline Alcohol Metabolite Formation in Human Heart Cytosol: A Potential Role for Several Promising Drugs.

    Science.gov (United States)

    Mordente, Alvaro; Silvestrini, Andrea; Martorana, Giuseppe Ettore; Tavian, Daniela; Meucci, Elisabetta

    2015-11-01

    The clinical efficacy of anthracyclines (e.g., doxorubicin and daunorubicin) in cancer therapy is limited by their severe cardiotoxicity, the etiology of which is still not fully understood. The development of anthracycline-induced cardiomyopathy has been found to correlate with myocardial formation and accumulation of anthracycline secondary alcohol metabolites (e.g., doxorubicinol and daunorubicinol) that are produced by distinct cytosolic NADPH-dependent reductases. The aim of the current study is to identify chemical compounds capable of inhibiting myocardial reductases implied in anthracycline reductive metabolism in an attempt to decrease the production of cardiotoxic C-13 alcohol metabolites. Among the variety of tested compounds (metal chelators, radical scavengers, antioxidants, β-blockers, nitrone spin traps, and lipid-lowering drugs), ebselen, cyclopentenone prostaglandins, nitric oxide donors, and short-chain coenzyme Q analogs resulted in being effective inhibitors of both doxorubicinol and daunorubicinol formation. In particular, ebselen (as well as ebselen diselenide, its storage form in the cells) was the most potent inhibitor of cardiotoxic anthracycline alcohol metabolites with 50% inhibition of doxorubicinol formation at 0.2 mol Eq of ebselen with respect to doxorubicin concentration. The high efficacy, together with its favorable pharmacological profile (low toxicity, lack of adverse effects, and metabolic stability) portends ebselen as a promising cardioprotective agent against anthracycline-induced cardiotoxicity. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: reversal by dl-{alpha}-lipoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shila, Samuel; Subathra, Marimuthu; Devi, Muthuswamy Anusuya; Panneerselvam, Chinnakkannu [University of Madras, Department of Medical Biochemistry, Chennai (India)

    2005-03-01

    The purpose of this study was to examine the effects of dl-{alpha}-lipoic acid (LA) on arsenic (As) induced alteration of glutathione (GSH) level and of the activity of glutathione-related enzymes - glutathione peroxidase (GSH-Px), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) - in rat brain regions (cortex, hypothalamus, striatum, cerebellum and hippocampus). Male Wistar rats of 150{+-}10 g weight were divided into four groups: control and three experimental groups supplemented with arsenic (sodium arsenite) alone (100 ppm mixed in drinking water), lipoic acid alone (70 mg kg{sup -1} body weight), arsenic plus lipoic acid (100 ppm arsenic in drinking water plus 70 mg lipoic acid kg{sup -1} body weight). The arsenic content of brain regions was found to increase with the administration of sodium arsenite. Arsenic exposure elicited a significant decline in glutathione content and in the activity of related enzymes, with the greatest decreases seen in the cortex, striatum, and hippocampus, whereas there were no significant differences between control rats and the group treated with lipoic acid alone. Highly elevated content of the thiobarbituric acid-reactive substance malondialdehyde (MDA) in the brain regions of arsenic-exposed rats reflected extensive lipid peroxidation (LPO) processes. Simultaneous lipoic acid treatment was effective in reducing brain regional arsenic levels and lipid peroxidation and in increasing the glutathione content and the activity of its related enzymes. Lipoic acid, by acting as an alternative sulfhydryl nucleophile to glutathione, prevents its oxidation to glutathione disulfide in detoxifying reactions against reactive oxygen species and consequently increases the activity of glutathione-related enzymes. (orig.)

  13. L-Buthionine (S,R) sulfoximine depletes hepatic glutathione but protects against ethanol-induced liver injury.

    Science.gov (United States)

    Donohue, Terrence M; Curry-McCoy, Tiana V; Todero, Sandra L; White, Ronda L; Kharbanda, Kusum K; Nanji, Amin A; Osna, Natalia A

    2007-06-01

    L-Buthionine (S,R) sulfoximine (BSO) is an inhibitor of glutathione biosynthesis and has been used as an effective means of depleting glutathione from cells and tissues. Here we investigated whether treatment with BSO enhanced ethanol-induced liver injury in mice. Female C57Bl/6 mice were pair fed with control and ethanol-containing liquid diets in which ethanol was 29.2% of total calories. During the final 7 days of pair feeding, groups of control-fed and ethanol-fed mice were given 0, 5 or 7.6 mM BSO in the liquid diets. Compared with controls, ethanol given alone decreased total liver glutathione. This effect was exacerbated in mice given ethanol with 7.6 mM BSO, causing a 72% decline in hepatic glutathione. While ethanol alone caused no decrease in mitochondrial glutathione, inclusion of 7.6 mM BSO caused a 2-fold decline compared with untreated controls. L-Buthionine (S,R) sulfoximine did not affect ethanol consumption, but serum ethanol levels in BSO-treated mice were nearly 6-fold lower than in mice given ethanol alone. The latter decline in serum ethanol was associated with a significant elevation in the specific activities of cytochrome P450 2E1 and alcohol dehydrogenase in livers of BSO-treated animals. Ethanol consumption caused a 3.5-fold elevation in serum alanine aminotransferase levels but the enzyme fell to control levels when BSO was included in the diet. L-Buthionine (S,R) sulfoximine administration also attenuated ethanol-induced steatosis, prevented the leakage of lysosomal cathepsins into the cytosol, and prevented the ethanol-elicited decline in proteasome activity. L-Buthionine (S,R) sulfoximine, administered with ethanol, significantly depleted hepatic glutathione, compared with controls. However, despite the decrease in hepatic antioxidant levels, liver injury by ethanol was alleviated, due, in part, to a BSO-elicited acceleration of ethanol metabolism.

  14. Wege des Exports von Glutathion aus Astrocyten

    OpenAIRE

    Minich, Tobias Florian

    2008-01-01

    Vorliegender Arbeit lag die Aufgabe zugrunde herauszufinden, welche(s) Transportsystem(e) außer dem Multidrug-Transporter 1 (multidrug resistance protein 1, MRP1) zum Austritt des Tripeptides Glutathion aus Primärkulturen von Astrogliazellen in das extrazelluläre Milieu beitragen. Als Grundlage für die Untersuchungen wurde zunächst an zwei Wildtyp Mausstämmen (NMRI und FVB/N) sichergestellt, dass astrogliareiche Primärkulturen aus Mäusen sowohl reduziertes als auch oxidiertes Glutathion expor...

  15. Smartphone-based colorimetric detection of glutathione.

    Science.gov (United States)

    Vobornikova, Irena; Pohanka, Miroslav

    2016-12-18

    Glutathione belongs to the family of small-molecular weight antioxidants like ascorbic acid, cysteine, α-tocopherol, uric acid, etc. These molecules play important role in the neutralization of free radicals and reactive oxygen species (ROS). Oxidative stress may lead to ageing and the development of large scale of pathological states of organism. This low molecular weight antioxidant´s level can alter under pathological conditions from reduced (GSH, thiols) to oxidized (oxidized glutathione -GSSG, disulfides) form. A GSSG-to-GSH ratio is indicative marker of oxidative stress. There is a large scale of methods how to determine this biomarker. The trend of the analysis is to minimalize the instrument equipment, sample application volume and analysis cost. Reduced glutathione (GSH) solutions were prepared in water in the concentration 0-16 mmol/L. Other small-molecular weight antioxidants like 0.25 mmol/L ascorbic acid, 0.15 mmol/L TROLOX and 0.02 mmol/L N-acetyl-cysteine (NAcCys) were studied as possible interferents. The samples were mixed with 5,5´-dithiobis-(2-nitrobenzoic) acid (DTNB) resulting in yellow colored drops forming. Coloration was assayed using camera integrated in a smartphone and color channels analysis. The total volume of 10 µl of sample was applied for one analysis. The smartphone-based data were compared with the reference Ellman assay. The calibration of glutathione was evaluated. The blue channel intensity data were decreasing according to the increasing glutathione concentration. Red and green channel intensities were stagnating during the whole concentration scale of glutathione. Limits of detection were 0.4 mmol/l for glutathione. Addition of 0.25 mmol/L of ascorbic acid, 0.15 mmol/L of TROLOX and 0.02mmol/L of N-acetylcysteine to GSH in final concentration 0-16 mmol/L had minimal influence on the assay. The results from smartphone-based analysis correlate with the standard Ellman method. The detection limit for GSH was 0.03 mmol

  16. Glutathione Metabolism and Parkinson’s Disease

    Science.gov (United States)

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  17. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium.

    Science.gov (United States)

    Nzengue, Yves; Steiman, Régine; Garrel, Catherine; Lefèbvre, Emmanuel; Guiraud, Pascale

    2008-01-14

    Cadmium affects the cellular homeostasis and generates damage via complex mechanisms involving interactions with other metals and oxidative stress induction. In this work we used a human keratinocyte cell line (HaCaT) as a model to study the oxidative damage induced by cadmium to cellular macromolecules, its effect on the antioxidant systems and the role of glutathione in cell protection toward cadmium toxicity. The cells were incubated for 24 and 48 h with cadmium (3, 15, 50 and 100 microM). High doses of cadmium were required to induce a cytotoxicity: 100 microM lead to 30% mortality after 24h and 50% after 48 h. The oxidation of lipids and proteins and the DNA damage, respectively, assessed by thiobarbituric acid reactants determination, thiol group measurement and comet assay, were observed for 50-100 microM cadmium. The cytotoxic effects were strongly correlated to the cellular cadmium content. The glutathione peroxidase and the catalase activities were decreased, while the glutathione reductase activity and the glutathione concentration were increased after cadmium treatment. The superoxide dismutases activities were unchanged. A depletion in glutathione prior to cadmium exposure increased the cytotoxic effects and provoked DNA damage. Our results suggested that the hydroxyl radical could be the major compound involved in the oxidative stress generated by cadmium and that glutathione could play a major role in the protection of HaCaT cells from cytotoxicity but mostly from DNA damage induced by cadmium.

  18. Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation

    Directory of Open Access Journals (Sweden)

    Mohammad Anwar Hossain

    2012-01-01

    Full Text Available Heavy metal (HM toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS and methylglyoxal (MG, both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH, or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.

  19. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells.

    Science.gov (United States)

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G; Rodenburg, Richard J T; Verwiel, Eugène T P; Smeitink, Jan A M; Willems, Peter H G M; Koopman, Werner J H

    2012-12-15

    Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca(2+)) handling in healthy human skin fibroblasts. Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2',7'-dichlorodihydro-fluorescein (CM-H(2)DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O(2) consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca(2+) transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders.

  20. Targeted liposomes for cytosolic drug delivery to tumor cells

    NARCIS (Netherlands)

    Mastrobattista, E.

    2001-01-01

    In this thesis, a Trojan horse strategy with antibody-targeted liposomes has been followed to obtain cytosolic delivery of biotherapeutics to tumor cells in vitro. This strategy involves targeting of immunoliposomes to specific receptors on tumor cells that result in receptor-mediated uptake of the

  1. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    Science.gov (United States)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  2. Calcium-independent phospholipase A2 in rat tissue cytosols

    NARCIS (Netherlands)

    Pierik, A.J.; Nijssen, J.G.; Aarsman, A.J.; Bosch, H. van den

    1988-01-01

    Cytosols (105000 X g supernatant) from seven rat tissues were assayed for Ca²⁺-independent phospholipase A₂ activity with either 1-acyl-2-[1-¹⁴C]linoleoyl-sn-glycero-3-phosphocholine, 1-acyl-2-[l-¹⁴C]linoleoyl-snglycero- 3-phosphoethanohunine or

  3. Binding properties of ferrocene-glutathione conjugates as inhibitors and sensors for glutathione S-transferases.

    Science.gov (United States)

    Martos-Maldonado, Manuel C; Casas-Solvas, Juan M; Téllez-Sanz, Ramiro; Mesa-Valle, Concepción; Quesada-Soriano, Indalecio; García-Maroto, Federico; Vargas-Berenguel, Antonio; García-Fuentes, Luís

    2012-02-01

    The binding properties of two electroactive glutathione-ferrocene conjugates that consist in glutathione attached to one or both of the cyclopentadienyl rings of ferrocene (GSFc and GSFcSG), to Schistosoma japonica glutathione S-transferase (SjGST) were studied by spectroscopy fluorescence, isothermal titration calorimetry (ITC) and differential pulse voltammetry (DPV). Such ferrocene conjugates resulted to be competitive inhibitors of glutathione S-transferase with an increased binding affinity relative to the natural substrate glutathione (GSH). We found that the conjugate having two glutathione units (GSFcSG) exhibits an affinity for SjGST approximately two orders of magnitude higher than GSH. Furthermore, it shows negative cooperativity with the affinity for the second binding site two orders of magnitude lower than that for the first one. We propose that the reason for such negative cooperativity is steric since, i) the obtained thermodynamic parameters do not indicate profound conformational changes upon GSFcSG binding and ii) docking studies have shown that, when bound, part of the first bound ligand invades the second site due to its large size. In addition, voltammetric measurements show a strong decrease of the peak current upon binding of ferrocene-glutathione conjugates to SjGST and provide very similar K values than those obtained by ITC. Moreover, the sensing ability, expressed by the sensitivity parameter shows that GSFcSG is much more sensitive than GSFc, for the detection of SjGST. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Old and new inhibitors of quinone reductase 2.

    Science.gov (United States)

    Ferry, Gilles; Hecht, Sabrina; Berger, Sylvie; Moulharat, Natacha; Coge, Francis; Guillaumet, Gérald; Leclerc, Véronique; Yous, Saïd; Delagrange, Philippe; Boutin, Jean A

    2010-07-30

    Quinone reductase 2 is a cytosolic enzyme which catalyses the reduction of quinones, such as menadione and coenzymes Q. Despite a relatively close sequence-based resemblance to NAD(P)H:quinone oxidoreductase 1 (QR1), it has many different features. QR2 is the third melatonin binding site (MT3). It is inhibited in the micromolar range by melatonin, and does not accept conventional phosphorylated nicotinamides as hydride donors. QR2 has a powerful capacity to activate quinones leading to unexpected toxicity situations. In the present paper, we report the characterization of three QR2 modulators: melatonin, resveratrol and S29434. The latter compound inhibits QR2 activity with an IC(50) in the low nanomolar range. The potency of the modulators ranged as follows, from the least to the most potent: melatonin

  5. Urinary alpha- and pi-glutathione s-transferases in adult patients with type 1 diabetes

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Theilade, Simone; Lajer, Maria

    2014-01-01

    BACKGROUND/AIMS: Glutathione S-transferases (GSTs) are cytosolic enzymes excreted from renal tubules following tubular damage. α-GST primarily originates from proximal tubules, while π-GST from distal tubules and collecting ducts. We investigated if GST levels are associated with renal function...... in patients with type 1 diabetes. METHODS: We conducted a cross-sectional study including 189 Caucasian patients with type 1 diabetes and 16 nondiabetic controls. α- and π-GST were measured by ELISA and reported as GST/urinary creatinine excretion (μg/mmol). RESULTS: The subjects were 53 ± 14 years old, 66...... diabetes. In addition, we did not find associations with albuminuria degree or level of renal function. The significance of increased or decreased excretion of α- and π-GST among patients with diabetes needs to be clarified....

  6. Role of nitric oxide and reduced glutathione and their implication on typhoid

    Directory of Open Access Journals (Sweden)

    Syed Haque

    2012-01-01

    Full Text Available Typhoid one of the most important causes of illness and death, particularly among children and adolescents in south-central and Southeast Asia, due to poor sanitation and unsafe food and drinking water. Nitric oxide (NO is a versatile molecules produced in a biological system. Reduced glutathione (GSH is the most abundant cytosolic thiol that easily reacts with NO and forms S-nitrosoglutathione (GS-NO these thiol compounds might decrease the levels of free forms of NO, thereby affecting its fate and biological activity. Infection with bacteria to control mice resulted in significant decrease in the GSH level by 10% at day 8 of infection and after treatment with formulated drugs significant increment was observed.

  7. Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Anna T Tillmann

    Full Text Available The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling enzymes in redox homeostasis, stress adaptation and virulence in C. albicans: glutathione reductase (Glr1 and the S-nitrosoglutathione reductase (GSNOR, Fdh3. We show that the NADPH-dependent Glr1 recycles GSSG to GSH, is induced in response to oxidative stress and is required for resistance to macrophage killing. GLR1 deletion increases the sensitivity of C. albicans cells to H2O2, but not to formaldehyde or NO. In contrast, Fdh3 detoxifies GSNO to GSSG and NH3, and FDH3 inactivation delays NO adaptation and increases NO sensitivity. C. albicans fdh3⎔ cells are also sensitive to formaldehyde, suggesting that Fdh3 also contributes to formaldehyde detoxification. FDH3 is induced in response to nitrosative, oxidative and formaldehyde stress, and fdh3Δ cells are more sensitive to killing by macrophages. Both Glr1 and Fdh3 contribute to virulence in the Galleria mellonella and mouse models of systemic infection. We conclude that Glr1 and Fdh3 play differential roles during the adaptation of C. albicans cells to oxidative, nitrosative and formaldehyde stress, and hence during the colonisation of the host. Our findings emphasise the importance of the glutathione system and the maintenance of intracellular redox homeostasis in this major pathogen.

  8. Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Marco Pirazzini

    2014-09-01

    Full Text Available Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  9. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R. [McGill Univ., Montreal (Canada)

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  10. Glutathione conjugation as a bioactivation reaction

    NARCIS (Netherlands)

    Bladeren, P.J. van

    2000-01-01

    In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate

  11. Plant glutathione transferase-mediated stress tolerance

    NARCIS (Netherlands)

    Nianiou-Obeidat, Irini; Madesis, Panagiotis; Kissoudis, Christos; Voulgari, Georgia; Chronopoulou, Evangelia; Tsaftaris, Athanasios; Labrou, Nikolaos E.

    2017-01-01

    Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural

  12. Glutathione-Dependent Detoxification Processes in Astrocytes

    DEFF Research Database (Denmark)

    Dringen, Ralf; Brandmann, Maria; Hohnholt, Michaela C

    2015-01-01

    component in many of the astrocytic detoxification processes is the tripeptide glutathione (GSH) which serves as electron donor in the GSH peroxidase-catalyzed reduction of peroxides. In addition, GSH is substrate in the detoxification of xenobiotics and endogenous compounds by GSH-S-transferases which...... knowledge on the GSH metabolism of astrocytes with a special emphasis on GSH-dependent detoxification processes....

  13. Glutathione S-transferases in earthworms (Lumbricidae).

    Science.gov (United States)

    Stenersen, J; Guthenberg, C; Mannervik, B

    1979-01-01

    Glutathione S-transferase activity (EC 2.5.1.18) was demonstrated in six species of earthworms of the family Lumbricidae: Eisenia foetida, Lumbricus terrestris, Lumbricus rebellus, Allolobophora longa, Allolobophora caliginosa and Allolobophora chlorotica. Considerable activity was obtained with 1-chlorl-2,4-dinitrobenzene and low activity with 3,4-dichloro-1-nitrobenzene, but no enzymic reaction was detectable with sulphobromophthalein 1,2-epoxy-3-(p-nitrophenoxy)propane of trans-4-phenylbut-3-en-2-one as substrates. Enzyme prepartations from L. rubellus and A. longa were the most active, whereas A. chlorotica gave the lowest activity. The ratio of the activities obtained with 1-chloro-2,4-dinitrobenzene and 3,4-cichloro-1-nitrobenzene was very different in the various species, but no phylogenetic pattern was evident. Isoelectric focusing gave rise to various activity peaks as measured with 1-chloro-2,4-dinitrobenzene as a substrate, and the activity profiles of the species examined appeared to follow a taxonomic pattern. The activity of Allolobophora had the highest peak in the alkaline region, whereas that of Lumbricus had the highest peak in the acid region. Eisenia showed a very complex activity profile, with the highest peak ne pH 7. As determined by an enzymic assay, all the species contained glutathione, on an average about 0.5 mumol/g wet wt. Conjugation with glutathione catalysed by glutathione S-transferases may consequently be an important detoxification mechanism in earthworms. PMID:486159

  14. Erythrocyte potassium and glutathione polymorphism determination ...

    African Journals Online (AJOL)

    This research is aimed at determining the erythrocyte potassium and glutathione polymorphisms and also to identify the relationship among the various blood parameters in Saanen x Malta crossbred goat raised in Turkey. The allele gene frequencies of KH and KL associated with the potassium concentration were ...

  15. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    Science.gov (United States)

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    leaves) and 15.1 mM (in the apex of older leaves) were found. The second highest amount of glutathione was found in nuclei (between 5.5 mM and 9.7 mM in the base and the center of younger leaves, respectively) followed by peroxisomes (between 2.6 mM in the edge of younger leaves and 4.8 mM in the base of older leaves, respectively) and the cytosol (2.8 mM in the edge of younger and 4.5 mM in the center of older leaves, respectively). Chloroplasts contained rather low amounts of glutathione (between 1 mM and 1.4 mM). Vacuoles had the lowest concentrations of glutathione (0.01 mM and 0.14 mM) but showed large differences between the different leaf areas. Clear differences in glutathione contents between the different leaf areas could only be found in vacuoles and mitochondria revealing that glutathione in the later cell organelle accumulated with leaf age to concentrations of up to 15 mM and that concentrations of glutathione in vacuoles are quite low in comparison to the other cell compartments. PMID:23265941

  16. Aldo-keto reductase 1B10 and its role in proliferation capacity of drug-resistant cancers

    Directory of Open Access Journals (Sweden)

    Toshiyuki eMatsunaga

    2012-01-01

    Full Text Available The human aldo-keto reductase AKR1B10, originally identified as an aldose reductase-like protein and human small intestine aldose reductase, is a cytosolic NADPH-dependent reductase that metabolizes a variety of endogenous compounds, such as aromatic and aliphatic aldehydes and dicarbonyl compounds, and some drug ketones. The enzyme is highly expressed in solid tumors of several tissues including lung and liver, and as such has received considerable interest as a relevant biomarker for the development of those tumors. In addition, AKR1B10 has been recently reported to be significantly up-regulated in some cancer cell lines (medulloblastoma D341 and colon cancer HT29 acquiring resistance towards chemotherapeutic agents (cyclophosphamide and mitomycin c, suggesting the validity of the enzyme as a chemoresistance marker. Although the detailed information on the AKR1B10-mediated mechanisms leading to the drug resistance process is not well understood so far, the enzyme has been proposed to be involved in functional regulations of cell proliferation and metabolism of drugs and endogenous lipids during the development of chemoresistance. This article reviews the current literature focusing mainly on expression profile and roles of AKR1B10 in the drug resistance of cancer cells. Recent developments of AKR1B10 inhibitors and their usefulness in restoring sensitivity to anticancer drugs are also reviewed.

  17. Glutathione synthesis is essential for pollen germination in vitro

    Science.gov (United States)

    2011-01-01

    Background The antioxidant glutathione fulfills many important roles during plant development, growth and defense in the sporophyte, however the role of this important molecule in the gametophyte generation is largely unclear. Bioinformatic data indicate that critical control enzymes are negligibly transcribed in pollen and sperm cells. Therefore, we decided to investigate the role of glutathione synthesis for pollen germination in vitro in Arabidopsis thaliana accession Col-0 and in the glutathione deficient mutant pad2-1 and link it with glutathione status on the subcellular level. Results The depletion of glutathione by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, reduced pollen germination rates to 2-5% compared to 71% germination in wildtype controls. The application of reduced glutathione (GSH), together with BSO, restored pollen germination and glutathione contents to control values, demonstrating that inhibition of glutathione synthesis is responsible for the decrease of pollen germination in vitro. The addition of indole-3-acetic acid (IAA) to media containing BSO restored pollen germination to control values, which demonstrated that glutathione depletion in pollen grains triggered disturbances in auxin metabolism which led to inhibition of pollen germination. Conclusions This study demonstrates that glutathione synthesis is essential for pollen germination in vitro and that glutathione depletion and auxin metabolism are linked in pollen germination and early elongation of the pollen tube, as IAA addition rescues glutathione deficient pollen. PMID:21439079

  18. Protective effects of taurine on glutathione and glutathione-dependent enzymes in ethanol-fed rats.

    Science.gov (United States)

    Pushpakiran, G; Mahalakshmi, K; Anuradha, C V

    2004-11-01

    Ethanol, by its property of generating free radicals during the course of its metabolism, alters redox homeostasis and causes damage to cell structure and function. This study investigated the effect of taurine on ethanol-induced experimental toxicity in rats. Ethanol was administered chronically to rats for 28 days. This resulted in significant increases in the activities of transaminases, alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT) and bilirubin in plasma. The activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the contents of glutathione (GSH) and thiols in plasma and tissues were significantly reduced as compared to control animals. Simultaneous administration of taurine along with ethanol prevented the leakage of enzymes into circulation and restored glutathione and tissue thiols. The activities of antioxidant enzymes were normalized. We propose that taurine may have a bioprotective effect on ethanol-induced toxicity.

  19. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Glutathione synthetase deficiency associated with antenatal cerebral bleeding

    NARCIS (Netherlands)

    Brüggemann, L. W.; Groenendaal, F.; Ristoff, E.; Larsson, A.; Duran, M.; van Lier, J. A. C.; Dorland, L.; Berger, R.; de Koning, T. J.

    2004-01-01

    We present a newborn with glutathione synthetase deficiency and intracranial haemorrhages. Because the latter are rare in term newborns a possible relationship with glutathione synthetase deficiency will be discussed

  1. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Comparative study of biological activity of glutathione, sodium tungstate and glutathione-tungstate mixture. Arshad Farid, Abdul Haleem Shah, Muhammad Ayaz, Adnan Amin, Muhammad Yaseen, Hafeez Ullah, Fazal Haq ...

  2. Plant glutathione S-transferase classification, structure and evolution ...

    African Journals Online (AJOL)

    Glutathione S-transferases are multifunctional proteins involved in diverse intracellular events such as primary and secondary metabolisms, stress metabolism, herbicide detoxification and plant protection ... Key words: Glutathione S-transferases (GST), classification, structure, evolution, phylogenetic analysis, xenobiotics.

  3. Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein

    DEFF Research Database (Denmark)

    Liu, Xiangdong; Martens, Helle; Schulz, Alexander

    Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein.......Developmental changes in cytosolic coupling between epidermis cells as visualized by photoactivation of fluorescein....

  4. Genetics Home Reference: 5-alpha reductase deficiency

    Science.gov (United States)

    ... G. New mutations, hotspots, and founder effects in Brazilian patients with steroid 5alpha-reductase deficiency type 2. ... should consult with a qualified healthcare professional . About Selection Criteria for Links Data Files & API Site Map ...

  5. Methylenetetrahydrofolate Reductase A1298C Polymorphism and ...

    African Journals Online (AJOL)

    Epigenetic alterations in cancer-related genes are recognized to play an important role in BC carcinogenesis. Epidemiological studies have consistently supported that ... Methylenetetrahydrofolate reductase (MTHFR) enzyme is essential for DNA synthesis ...... disease: A common mutation in methylenetetrahydrofolate.

  6. Artificial Loading of ASC Specks with Cytosolic Antigens.

    Directory of Open Access Journals (Sweden)

    Ali Can Sahillioğlu

    Full Text Available Inflammasome complexes form upon interaction of Nod Like Receptor (NLR proteins with pathogen associated molecular patterns (PAPMS inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation.

  7. Effect of Vitamin C on Glutathione Peroxidase Activities in Pregnant ...

    African Journals Online (AJOL)

    Glutathione peroxidase is one of the most important antioxidant enzymes in humans. We studied the relationship between serum glutathione peroxidase activity and vitamin C ingestion during normal pregnancy in women attending antenatal clinic in the University of Ilorin Teaching Hospital, Ilorin. Glutathione peroxidase ...

  8. Molecular cloning, characterization and positively selected sites of the glutathione S-transferase family from Locusta migratoria.

    Directory of Open Access Journals (Sweden)

    Xueyao Zhang

    Full Text Available Glutathione S-transferases (GSTs are multifunctional enzymes that are involved in the metabolism of endogenous and exogenous compounds and are related to insecticide resistance. The purpose of this study was to provide new information on the molecular characteristics and the positive selection of locust GSTs. Based on the transcriptome database, we sequenced 28 cytosolic GSTs and 4 microsomal GSTs from the migratory locust (Locusta migratoria. We assigned the 28 cytosolic GSTs into 6 classes--sigma, epsilon, delta, theta, omega and zeta, and the 4 microsomal GSTs into 2 subclasses--insect and MGST3. The tissue- and stage-expression patterns of the GSTs differed at the mRNA level. Further, the substrate specificities and kinetic constants of the cytosolic GSTs differed markedly at the protein level. The results of likelihood ratio tests provided strong evidence for positive selection in the delta class. The result of Bayes Empirical Bayes analysis identified 4 amino acid sites in the delta class as positive selection sites. These sites were located on the protein surface. Our findings will facilitate the elucidation of the molecular characteristics and evolutionary aspects of insect GST superfamily.

  9. Circadian regulation of permethrin susceptibility by glutathione S-transferase (BgGSTD1) in the German cockroach (Blattella germanica).

    Science.gov (United States)

    Lin, Yu-Hsien; Lee, Chi-Mei; Huang, Jia-Hsin; Lee, How-Jing

    2014-06-01

    The daily susceptibility rhythm to permethrin and the expression level of the delta class glutathione S-transferase (BgGSTD1) gene were investigated in Blattella germanica. Male cockroaches were exposed to the same concentration of permethrin at different times in a light-dark cycle, and results showed that the highest resistance occurred at night. Furthermore, the circadian rhythmicity of permethrin susceptibility was demonstrated by the highest resistance at subjective night under constant darkness. The mRNA level of the BgGSTD1 gene in the fat body of B. germanica peaked early in the day or subjective day under light-dark or constant dark conditions, whereas enzyme activity of cytosolic GSTs did not reflect the rhythmic pattern as well as BgGSTD1 expression. RNA interference (RNAi) was employed to study the function of BgGSTD1 in the circadian rhythm of permethrin susceptibility in B. germanica. Both BgGSTD1 mRNA level and cytosolic GSTs activity were significantly decreased by dsGSTD1 injection. In addition, survival of B. germanica with silenced BgGSTD1 was significantly decreased at night but not in the day when the cockroaches were exposed to permethrin. Total cytosolic GSTs activity demonstrated that is not the only gene involved in the circadian regulation of the permethrin resistance, although it is one of the major regulators of permethrin resistance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosolic DNA reco...gnition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic DNA reco

  11. The phytohormone precursor OPDA is isomerized in the insect gut by a single, specific glutathione transferase.

    Science.gov (United States)

    Dabrowska, Paulina; Freitak, Dalial; Vogel, Heiko; Heckel, David G; Boland, Wilhelm

    2009-09-22

    Oxylipins play important roles in stress signaling in plants. The compound 12-oxophytodienoic acid (cis-OPDA) is an early biosynthetic precursor of jasmonic acid (JA), the key phytohormone orchestrating the plant anti-herbivore defense. When consumed by feeding Lepidopteran larvae, plant-derived cis-OPDA suffers rapid isomerization to iso-OPDA in the midgut and is excreted in the frass. Unlike OPDA epimerization (yielding trans-OPDA), the formation of iso-OPDA is enzyme-dependent, and is catalyzed by an inducible glutathione transferase (GSTs) from the larval gut. Purified GST fractions from the gut of Egyptian cotton leafworm (Spodoptera littoralis) and cotton bollworm (Helicoverpa armigera) both exhibited strong OPDA isomerization activity, most likely via transient formation of a glutathione-OPDA conjugate. Out of 16 cytosolic GST proteins cloned from the gut of cotton bollworm larvae and expressed in E. coli, only one catalyzed the OPDA isomerization. The biological function of the double bond shift might be seen in an inactivation of cis-OPDA, similar to the inactivation of prostaglandin A1 to prostaglandin B1 in mammalian tissue. The enzymatic isomerization is particularly widespread among generalist herbivores that have to cope with various amounts of cis-OPDA in their spectrum of host plants.

  12. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins

    2011-06-01

    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  13. Characterization of a Phanerochaete chrysosporium glutathione transferase reveals a novel structural and functional class with ligandin properties.

    Science.gov (United States)

    Mathieu, Yann; Prosper, Pascalita; Buée, Marc; Dumarçay, Stéphane; Favier, Frédérique; Gelhaye, Eric; Gérardin, Philippe; Harvengt, Luc; Jacquot, Jean-Pierre; Lamant, Tiphaine; Meux, Edgar; Mathiot, Sandrine; Didierjean, Claude; Morel, Mélanie

    2012-11-09

    Glutathione S-transferases (GSTs) form a superfamily of multifunctional proteins with essential roles in cellular detoxification processes. A new fungal specific class of GST has been highlighted by genomic approaches. The biochemical and structural characterization of one isoform of this class in Phanerochaete chrysosporium revealed original properties. The three-dimensional structure showed a new dimerization mode and specific features by comparison with the canonical GST structure. An additional β-hairpin motif in the N-terminal domain prevents the formation of the regular GST dimer and acts as a lid, which closes upon glutathione binding. Moreover, this isoform is the first described GST that contains all secondary structural elements, including helix α4' in the C-terminal domain, of the presumed common ancestor of cytosolic GSTs (i.e. glutaredoxin 2). A sulfate binding site has been identified close to the glutathione binding site and allows the binding of 8-anilino-1-naphtalene sulfonic acid. Competition experiments between 8-anilino-1-naphtalene sulfonic acid, which has fluorescent properties, and various molecules showed that this GST binds glutathionylated and sulfated compounds but also wood extractive molecules, such as vanillin, chloronitrobenzoic acid, hydroxyacetophenone, catechins, and aldehydes, in the glutathione pocket. This enzyme could thus function as a classical GST through the addition of glutathione mainly to phenethyl isothiocyanate, but alternatively and in a competitive way, it could also act as a ligandin of wood extractive compounds. These new structural and functional properties lead us to propose that this GST belongs to a new class that we name GSTFuA, for fungal specific GST class A.

  14. Glutathione and its antiaging and antimelanogenic effects

    Directory of Open Access Journals (Sweden)

    Weschawalit S

    2017-04-01

    Full Text Available Sinee Weschawalit,1 Siriwan Thongthip,2 Phanupong Phutrakool,3 Pravit Asawanonda1 1Department of Medicine, Division of Dermatology, 2Chula Clinical Research Center, 3Chula Data Management Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand Background: Previous studies showed that supplementation of reduced form of glutathione (GSH, 500 mg/d has a skin-lightening efficacy in humans. This study was designed to evaluate the influences of both GSH and oxidized form (GSSG, at doses lower than 500 mg/d, on improving skin properties. Patients and methods: A randomized, double-blind, placebo-controlled, parallel, three-arm study was conducted. Healthy female subjects were equally randomized into three groups and took GSH (250 mg/d, GSSG (250 mg/d, or placebo orally for 12 weeks. At each visit at baseline and for 12 weeks, skin features including melanin index, wrinkles, and other relevant biophysical properties were measured. Blood samples were collected for safety monitoring. Results: In generalized estimating equation analyses, melanin index and ultraviolet spots of all sites including face and arm when given GSH and GSSG tended to be lower than placebo. At some sites evaluated, subjects who received GSH showed a significant reduction in wrinkles compared with those taking placebo. A tendency toward increased skin elasticity was observed in GSH and GSSG compared with placebo. There were no serious adverse effects throughout the study. Conclusion: We showed that oral glutathione, 250 mg/d, in both reduced and oxidized forms effectively influences skin properties. Overall, glutathione in both forms are well tolerated. Keywords: glutathione, melanin, pigment, aging, wrinkle, whitening

  15. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2013-12-01

    Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence in autism suggests a deficit in glutathione (GSH), a major endogenous antioxidant. It is not known whether the synthesis, consumption, and/or regeneration of GSH is affected in autism. In the cerebellum tissues from autism (n=10) and age-matched control subjects (n=10), the activities of GSH-related enzymes glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glutamate cysteine ligase (GCL) involved in antioxidant defense, detoxification, GSH regeneration, and synthesis, respectively, were analyzed. GCL is a rate-limiting enzyme for GSH synthesis, and the relationship between its activity and the protein expression of its catalytic subunit GCLC and its modulatory subunit GCLM was also compared between the autistic and the control groups. Results showed that the activities of GPx and GST were significantly decreased in autism compared to that of the control group (Pautism and control groups, 40% of autistic subjects showed lower GR activity than 95% confidence interval (CI) of the control group. GCL activity was also significantly reduced by 38.7% in the autistic group compared to the control group (P=0.023), and 8 of 10 autistic subjects had values below 95% CI of the control group. The ratio of protein levels of GCLC to GCLM in the autism group was significantly higher than that of the control group (P=0.022), and GCLM protein levels were reduced by 37.3% in the autistic group compared to the control group. A positive strong correlation was observed between GCL activity and protein levels of GCLM (r=0.887) and GCLC (r=0.799) subunits in control subjects but not in autistic subjects, suggesting that regulation of GCL activity is affected in autism. These results suggest that enzymes involved in GSH homeostasis have impaired activities in the cerebellum in autism, and lower GCL activity in autism may be

  16. No Net Splanchnic Release of Glutathione in Man during N-Acetylcysteine Infusion

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Vilstrup, H.; Almdal, Thomas Peter

    1994-01-01

    Farmakologi, N-acetylcysteine, glutathione, indocyanine green, amino acid analysis, glutathione synthesis, liver/liver vein catheterization......Farmakologi, N-acetylcysteine, glutathione, indocyanine green, amino acid analysis, glutathione synthesis, liver/liver vein catheterization...

  17. Characterization of the quinine reductase activity of the ferrice reductase B protein from Paracoccus denitrificans.

    NARCIS (Netherlands)

    Sedlacek, V.; van Spanning, R.J.M.; Kucera, I.

    2009-01-01

    The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates,

  18. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    Energy Technology Data Exchange (ETDEWEB)

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase {alpha} activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of {sup 3}H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF{sub 1} mice. Approximately 50% of {sup 3}H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces.

  19. Erythrocyte selenium-glutathione peroxidase activity is lower in patients with coronary atherosclerosis.

    Science.gov (United States)

    Yegin, A; Yegin, H; Alicigüzel, Y; Deger, N; Semiz, E

    1997-11-01

    To obtain further insight into the role of erythrocyte antioxidant systems in the development of atherosclerosis, intraerythrocyte enzyme activities and selenium levels in erythrocytes were determined in 37 patients with angiographically proved coronary artery stenosis and 15 subjects with normal coronary angiograms as controls. In a preliminary study, the enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR) and selenium-dependent glutathione peroxidase (Se-GPx) were measured in both venous and arterial blood samples obtained from patients before angiography. The data of the preliminary study, which showed that only the Se-GPx decreased in the patients, led us to concentrate on the Se-GPx and Se levels to determine the changes in these variables. Our results showed that there was a decrease in both the activity of Se-GPx and Se levels in erythrocytes parallel to the increase in the severity of coronary artery disease. It was concluded that these parameters might be used as determinants in the assessment of the severity of the disease.

  20. Modulatory influence of noscapine on the ethanol-altered hepatic biotransformation system enzymes, glutathione content and lipid peroxidation in vivo in rats.

    Science.gov (United States)

    Aneja, Ritu; Katyal, Anju; Chandra, Ramesh

    2004-01-01

    The modulatory potential of noscapine, an opium alkaloid was assessed on the ethanol-induced changes in hepatic drug metabolizing enzyme systems, glutathione content and microsomal lipid peroxidation. Noscapine was administered orally to male Wistar rats at a dose level of 200 mg/kg bw alone as well as in combination with 50% ethanol (v/v) for 5 days. Noscapine administration was associated with a approximately 91% decrease in hepatic microsomal cytochrome P-450 content. A decline of approximately 36% was observed in the NADPH-cytochrome c reductase activity on noscapine administration. The lowering of cytochrome P-450 levels on noscapine administration was accompanied by a concomitant increase in heme oxygenase activity as well as serum bilirubin levels. Our results indicate that the combination dosage of noscapine and ethanol antagonised the ethanol-induced elevation of cytochrome P-450 levels. Noscapine fed rats had decreased glutathione (GSH) content and enhanced lipid peroxidation compared to control rats as indexed by MDA method. Further, noscapine and ethanol coexposure produced a more pronounced elevation in lipid peroxidation and the glutathione levels also decreased significantly. We speculate on the basis of our results that the significant enhancement of lipid peroxidation on combination dosage of noscapine and ethanol is a consequence of depletion of glutathione to certain critical levels. The inhibition of glutathione-S-transferase (GST) as well as lowering of cytochrome P-450 suggests that the biotransformation of noscapine and ethanol is significantly altered following acute coexposures.

  1. [Glutathione participation in regulating the secretory function of the stomach].

    Science.gov (United States)

    Shlygin, G K; Vasilevskaia, L S; Martinchik, A N; Ignatenko, L G

    1987-01-01

    In experiments on dogs with Pavlov's pouches it was shown that glutathione infusion into the blood produced a highly pronounced stimulating effect on the gastric secretion induced by pentagastrin. Endogenous glutathione produced similar effect. It was found that intake as a drink of mono-sodium glutamate led to a significant increase of glutathione concentration in the dogs' blood, that was, probably, the result of its intensified production in the intestinal wall and passing into the blood. The growth of glutathione concentration in the blood coincided with its stimulating effect on the gastric secretion. Glutathione administered separately into the blood, or intake of glutathione without pentagastrin did not produce stimulating effect on gastric secretion. The data presented have evidenced that glutathione, besides its known functions, plays a role of the factor engaged in the regulation of gastric secretion.

  2. Yeast and Mammals Utilize Similar Cytosolic Components to Drive Protein Transport through the Golgi Complex

    Science.gov (United States)

    Dunphy, William G.; Pfeffer, Suzanne R.; Clary, Douglas O.; Wattenberg, Binks W.; Glick, Benjamin S.; Rothman, James E.

    1986-03-01

    Vesicular transport between successive compartments of the mammalian Golgi apparatus has recently been reconstituted in a cell-free system. In addition to ATP, transport requires both membrane-bound and cytosolic proteins. Here we report that the cytosol fraction from yeast will efficiently substitute for mammalian cytosol. Mammalian cytosol contains several distinct transport factors, which we have distinguished on the basis of gel filtration and ion-exchange chromatography. Yeast cytosol appears to contain the same collection of transport factors. Resolved cytosol factors from yeast and mammals complement each other in a synergistic manner. These findings suggest that the molecular mechanisms of intracellular protein transport have been conserved throughout evolution. Moreover, this hybrid cell-free system will enable the application of yeast genetics to the identification and isolation of cytosolic proteins that sustain intracellular protein transport.

  3. Regulation of Hepatic Glutathione Turnover in Rats In Vivo and Evidence for Kinetic Homogeneity of the Hepatic Glutathione Pool

    OpenAIRE

    Lauterburg, Bernhard H.; Mitchell, Jerry R.

    1981-01-01

    The intracellular distribution of glutathione into kinetically distinct pools and the determinants of glutathione turnover were examined in vivo. Glutathione turnover was measured in individual, restrained rats with a biliary fistula by administration of acetaminophen to trap the previously labeled hepatic glutathione as an excretable acetaminophen adduct. Fasting for 48 h resulted in a decrease of hepatic glutathione from 4.7±0.9 to 3.6±0.8 μmol/g liver and a marked increase in the fractiona...

  4. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity.

    Science.gov (United States)

    Porté, Sergio; Xavier Ruiz, F; Giménez, Joan; Molist, Iago; Alvarez, Susana; Domínguez, Marta; Alvarez, Rosana; de Lera, Angel R; Parés, Xavier; Farrés, Jaume

    2013-02-25

    Biological activity of natural retinoids requires the oxidation of retinol to retinoic acid (RA) and its binding to specific nuclear receptors in target tissues. The first step of this pathway, the reversible oxidoreduction of retinol to retinaldehyde, is essential to control RA levels. The enzymes of retinol oxidation are NAD-dependent dehydrogenases of the cytosolic medium-chain (MDR) and the membrane-bound short-chain (SDR) dehydrogenases/reductases. Retinaldehyde reduction can be performed by SDR and aldo-keto reductases (AKR), while its oxidation to RA is carried out by aldehyde dehydrogenases (ALDH). In contrast to SDR, AKR and ALDH are cytosolic. A common property of these enzymes is that they only use free retinoid, but not retinoid bound to cellular retinol binding protein (CRBP). The relative contribution of each enzyme type in retinoid metabolism is discussed in terms of the different subcellular localization, topology of membrane-bound enzymes, kinetic constants, binding affinity of CRBP for retinol and retinaldehyde, and partition of retinoid pools between membranes and cytoplasm. The development of selective inhibitors for AKR enzymes 1B1 and 1B10, of clinical relevance in diabetes and cancer, granted the investigation of some structure-activity relationships. Kinetics with the 4-methyl derivatives of retinaldehyde isomers was performed to identify structural features for substrate specificity. Hydrophilic derivatives were better substrates than the more hydrophobic compounds. We also explored the inhibitory properties of some synthetic retinoids, known for binding to retinoic acid receptors (RAR) and retinoid X receptors (RXR). Consistent with its substrate specificity towards retinaldehyde, AKR1B10 was more effectively inhibited by synthetic retinoids than AKR1B1. A RARβ/γ agonist (UVI2008) inhibited AKR1B10 with the highest potency and selectivity, and docking simulations predicted that its carboxyl group binds to the anion-binding pocket

  5. Astrocyte control of fetal cortical neuron glutathione homeostasis: up-regulation by ethanol.

    Science.gov (United States)

    Rathinam, Mary Latha; Watts, Lora Talley; Stark, Avishay A; Mahimainathan, Lenin; Stewart, Jennifer; Schenker, Steven; Henderson, George I

    2006-03-01

    Ethanol increases apoptotic neuron death in the developing brain and at least part of this may be mediated by oxidative stress. In cultured fetal rat cortical neurons, Ethanol increases levels of reactive oxygen species (ROS) within minutes of exposure and reduces total cellular glutathione (GSH) shortly thereafter. This is followed by onset of apoptotic cell death. These responses to Ethanol can be blocked by elevating neuron GSH with N-acetylcysteine or by co-culturing neurons with neonatal cortical astrocytes. We describe here mechanisms by which the astrocyte-neuron gamma-glutamyl cycle is up-regulated by Ethanol, enhancing control of neuron GSH in response to the pro-oxidant, Ethanol. Up to 6 days of Ethanol exposure had no consistent effects on activities of gamma-glutamyl cysteine ligase or glutathione synthetase, and GSH content remained unchanged (p glutathione reductase was increased with 1 and 2 day Ethanol exposures, 25% and 39% for 2.5 and 4.0 mg/mL Ethanol by 1 day, and 11% and 16% for 2.5 and 4.0 mg/mL at 2 days, respectively (p Ethanol increased GSH efflux from astrocyte up to 517% (p Ethanol increased both gamma-glutamyl transpeptidase expression and activity on astrocyte within 24 h of exposure (40%, p = 0.05 with 4.0 mg/mL) and this continued for at least 4 days of Ethanol treatment. Aminopeptidase N activity on neurons increased by 62% and 55% within 1 h of Ethanol for 2.5 and 4.0 mg/mL concentration, respectively (p Ethanol, the net effect being to enhance neuron GSH homeostasis, thereby protecting neurons from Ethanol-mediated oxidative stress and apoptotic death.

  6. Monoterpenoid indole alkaloids and phenols are required antioxidants in glutathione depleted Uncaria tomentosa root cultures

    Directory of Open Access Journals (Sweden)

    Ileana eVera-Reyes

    2015-04-01

    Full Text Available Plants cells sense their environment through oxidative signaling responses and make appropriate adjustments to gene expression, physiology and metabolic defense. Root cultures of Uncaria tomentosa, a native plant of the Amazon rainforest, were exposed to stressful conditions by combined addition of the glutathione inhibitor, buthionine sulfoximine (0.8 mM and 0.2 mM jasmonic acid. This procedure induced a synchronized two-fold increase of hydrogen peroxide and guaiacol peroxidases, while the glutathione content and glutathione reductase activity were reduced. Likewise in elicited cultures, production of the antioxidant secondary metabolites, monoterpenoid oxindole and glucoindole alkaloids, were 2.1 and 5.5-fold stimulated (704.0 ± 14.9 and 845.5 ± 13.0 µg/g DW, respectively after 12 h after, while phenols were three times increased. Upon elicitation, the activities and mRNA transcript levels of two enzymes involved in the alkaloid biosynthesis, strictosidine synthase and strictosidine β-glucosidase, were also enhanced. Differential proteome analysis performed by two-dimensional polyacrylamide gel electrophoresis of elicited and control root cultures showed that, after elicitation, several new protein spots appeared. Two of them were identified as thiol-related enzymes, namely cysteine synthase and methionine synthase. Proteins associated with antioxidant and stress responses, including two strictosidine synthase isoforms, were identified as well, together with others as caffeic acid O-methyltransferase. Our results propose that in U. tomentosa roots a signaling network involving hydrogen peroxide and jasmonate derivatives coordinately regulates the antioxidant response and secondary metabolic defense via transcriptional and protein activation.

  7. The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development

    Directory of Open Access Journals (Sweden)

    Cletus A. Wezena

    2017-11-01

    Full Text Available The enzymes glyoxalase 1 and 2 (Glo1 and Glo2 are found in most eukaryotes and catalyze the glutathione-dependent conversion of 2-oxoaldehydes to 2-hydroxycarboxylic acids. Four glyoxalases are encoded in the genome of the malaria parasite Plasmodium falciparum, the cytosolic enzymes PfGlo1 and PfcGlo2, the apicoplast enzyme PftGlo2, and an inactive Glo1-like protein that also carries an apicoplast-targeting sequence. Inhibition or knockout of the Plasmodium glyoxalases was hypothesized to lead to an accumulation of 2-oxoaldehydes and advanced glycation end-products (AGE in the host-parasite unit and to result in parasite death. Here, we generated clonal P. falciparum strain 3D7 knockout lines for PFGLO1 and PFcGLO2 using the CRISPR-Cas9 system. Although 3D7Δglo1 knockout clones had an increased susceptibility to external glyoxal, all 3D7Δglo1 and 3D7Δcglo2 knockout lines were viable and showed no significant growth phenotype under standard growth conditions. Furthermore, the lack of PfcGlo2, but not PfGlo1, increased gametocyte commitment in the knockout lines. In summary, PfGlo1 and PfcGlo2 are dispensable during asexual blood-stage development while the loss of PfcGlo2 may induce the formation of transmissible gametocytes. These combined data show that PfGlo1 and PfcGlo2 are most likely not suited as targets for selective drug development.

  8. Glutathione-binding site of a bombyx mori theta-class glutathione transferase.

    Directory of Open Access Journals (Sweden)

    M D Tofazzal Hossain

    Full Text Available The glutathione transferase (GST superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents.

  9. Effect of an aqueous extract of Cucurbita ficifolia Bouché on the glutathione redox cycle in mice with STZ-induced diabetes.

    Science.gov (United States)

    Díaz-Flores, M; Angeles-Mejia, S; Baiza-Gutman, L A; Medina-Navarro, R; Hernández-Saavedra, D; Ortega-Camarillo, C; Roman-Ramos, R; Cruz, M; Alarcon-Aguilar, F J

    2012-10-31

    Cucurbita ficifolia is used in Mexican traditional medicine as an anti-diabetic and anti-inflammatory agent and its actions can be mediated by antioxidant mechanisms. Disturbance in the homeostasis of glutathione has been implicated in the etiology and progression of diabetes mellitus and its complications. It was evaluated, the effect of an aqueous extract of Cucurbita ficifolia on glycemia, plasma lipid peroxidation; as well as levels of reduced (GSH) and oxidized (GSSG) glutathione and activities of enzymes involved in glutathione redox cycle: glutathione peroxidase (GPx) and glutathione reductase (GR) in liver, pancreas, kidney and heart homogenates of streptozotocin-induced diabetic mice. Increased blood glucose and lipid peroxidation, together with decreased of GSH concentration, GSH/GSSG ratio and its redox potential (E(h)), and enhanced activity of GPx and GR in liver, pancreas and kidney were the salient features observed in diabetic mice. Administration of the aqueous extract of Cucurbita ficifolia to diabetic mice for 30 days, used at a dose of 200 mg/kg, resulted in a significant reduction in glycemia, polydipsia, hyperphagia and plasma lipid peroxidation. Moreover, GSH was increased in liver, pancreas and kidney, and GSSG was reduced in liver, pancreas and heart, therefore GSH/GSSG ratio and its E(h) were restored. Also, the activities involved in the glutathione cycle were decreased, reaching similar values to controls. An aqueous extract of Cucurbita ficifolia with hypoglycemic action, improve GSH redox state, increasing glutathione pool, GSH, GSH/GSSG ratio and its E(h), mechanism that can explain, at least in part, its antioxidant properties, supporting its use as an alternative treatment for the control of diabetes mellitus, and prevent the induction of complications by oxidative stress. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    Science.gov (United States)

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  11. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    Science.gov (United States)

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  12. Spectral components of cytosolic [Ca2+] spiking in neurons

    DEFF Research Database (Denmark)

    Kardos, J; Szilágyi, N; Juhász, G

    1998-01-01

    into evolutionary spectra of a characteristic set of frequencies. Non-delayed small spikes on top of sustained [Ca2+]c were synthesized by a main component frequency, 0.132+/-0.012 Hz, showing its maximal amplitude in phase with the start of depolarization (25 mM KCI) combined with caffeine (10 mM) application......We show here, by means of evolutionary spectral analysis and synthesis of cytosolic Ca2+ ([Ca2+]c) spiking observed at the single cell level using digital imaging fluorescence microscopy of fura-2-loaded mouse cerebellar granule cells in culture, that [Ca2+]c spiking can be resolved...

  13. Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis.

    Science.gov (United States)

    Tamaki, Shun; Maruta, Takanori; Sawa, Yoshihiro; Shigeoka, Shigeru; Ishikawa, Takahiro

    2015-07-01

    At least four peroxiredoxins that are coupled with the thioredoxin (Trx) system have been shown to play a key role in redox metabolism in the unicellular phytoflagellate Euglena gracilis. In order to clarify Trx-mediated redox regulation in this alga, we herein identified three NADPH-dependent thioredoxin reductases (NTRs) using a homologous search and characterized their enzymatic properties and physiological roles. Each Euglena NTR protein belonged to the small, large, and NTRC types, and were named EgNTR1, EgNTR2, and EgNTRC, respectively. EgNTR2 was phylogenetically different from the known NTRs in eukaryotic algae. EgNTR1 was predicted to be localized in mitochondria, EgNTR2 in the cytosol, and EgNTRC in plastids. The catalytic efficiency of EgNTR2 for NADPH was 30-46-fold higher than those of EgNTR1 and truncated form of EgNTRC, suggested that large type EgNTR2 reduced Trx more efficiently. The silencing of EgNTR2 gene expression resulted in significant growth inhibition and cell hypertrophy in Euglena cells. These results suggest that EgNTRs function in each cellular compartment and are physiologically important, particularly in the cytosol. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Elliot Bradshaw

    2017-09-01

    Full Text Available Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+ and suppressive (rho− or hypersuppressive (HS rho− mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast.

  15. Conjugate products of pyocyanin-glutathione reactions.

    Science.gov (United States)

    Cheluvappa, Rajkumar; Eri, Rajaraman

    2015-08-05

    This "Letter to the Editor" is a "gentle but purposeful rejoinder" to specific comments made in pages 36-37 of your Muller and Merrett (2015) publication regarding the data presented in our Cheluvappa et al. (2008) paper. Our rebuttal topics include the effect of oxygen on the pyocyanin-glutathione reaction, relevance of reaction-duration to pathophysiology, rationale of experiments, veracity of statements germane to molecular-structure construction, and correction of hyperbole. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  17. Human Liver Microsomal Cytochrome P450 3A Enzymes Involved in Thalidomide 5-Hydroxylation and Formation of a Glutathione Conjugate

    Science.gov (United States)

    Chowdhury, Goutam; Murayama, Norie; Okada, Yusuke; Uno, Yasuhiro; Shimizu, Makiko; Shibata, Norio; Guengerich, F. Peter; Yamazaki, Hiroshi

    2013-01-01

    (R)-Thalidomide was oxidized to 5-hydroxythalidomide and 5’-hydroxythalidomide by NADPH-fortified liver microsomes from humans and monkeys. (R)-Thalidomide was hydroxylated more efficiently than (S)-thalidomide. Recombinant human P450s 3A4, 3A5, and 3A7 and monkey P450s 3A8 and 3A5 (co-expressed with NADPH-P450 reductase in bacterial membranes) also catalyzed (R)-thalidomide 5-hydroxylation. Purified human P450s 2C19, 3A4, and 3A5 mediated (R)-thalidomide 5-hydroxylation at similar rates in reconstituted systems. P450 2C19 showed a rather non-saturable substrate-velocity curve; however, P450s 3A4 and 3A5 showed sigmoidal curves. P450 also oxidized 5-hydroxythalidomide to an epoxide or dihydroxy compound. Liquid chromatography-mass spectrometry analysis revealed formation of a glutathione conjugate from (R)- and (S)-5-hydroxythalidomide, catalyzed by liver microsomal P450s 3A4 and 3A5 in the presence of glutathione (assigned as a conjugate of 5-hydroxythalidomide formed on the phenyl ring). These results indicate that human P450s 3A4 and 3A5 mediate thalidomide 5-hydroxylation and further oxidation leading to a glutathione conjugate, which may be of relevance in the pharmacological and toxicological actions of thalidomide. PMID:20443640

  18. Subnormothermic Perfusion in the Isolated Rat Liver Preserves the Antioxidant Glutathione and Enhances the Function of the Ubiquitin Proteasome System

    Directory of Open Access Journals (Sweden)

    Teresa Carbonell

    2016-01-01

    Full Text Available The reduction of oxidative stress is suggested to be one of the main mechanisms to explain the benefits of subnormothermic perfusion against ischemic liver damage. In this study we investigated the early cellular mechanisms induced in isolated rat livers after 15 min perfusion at temperatures ranging from normothermia (37°C to subnormothermia (26°C and 22°C. Subnormothermic perfusion was found to maintain hepatic viability. Perfusion at 22°C raised reduced glutathione levels and the activity of glutathione reductase; however, lipid and protein oxidation still occurred as determined by malondialdehyde, 4-hydroxynonenal-protein adducts, and advanced oxidation protein products. In livers perfused at 22°C the lysosomal and ubiquitin proteasome system (UPS were both activated. The 26S chymotrypsin-like (β5 proteasome activity was significantly increased in the 26°C (46% and 22°C (42% groups. The increased proteasome activity may be due to increased Rpt6 Ser120 phosphorylation, which is known to enhance 26S proteasome activity. Together, our results indicate that the early events produced by subnormothermic perfusion in the liver can induce oxidative stress concomitantly with antioxidant glutathione preservation and enhanced function of the lysosomal and UPS systems. Thus, a brief hypothermia could trigger antioxidant mechanisms and may be functioning as a preconditioning stimulus.

  19. Targeting Thioredoxin Reductase by Parthenolide Contributes to Inducing Apoptosis of HeLa Cells*

    Science.gov (United States)

    Duan, Dongzhu; Zhang, Junmin; Yao, Juan; Liu, Yaping; Fang, Jianguo

    2016-01-01

    Parthenolide (PTL), a major active sesquiterpene lactone from the herbal plant Tanacetum parthenium, has been applied in traditional Chinese medicine for centuries. Although PTL demonstrates potent anticancer efficacy in numerous types of malignant cells, the cellular targets of PTL have not been well defined. We reported here that PTL interacts with both cytosolic thioredoxin reductase (TrxR1) and mitochondrial thioredoxin reductase (TrxR2), two ubiquitous selenocysteine-containing antioxidant enzymes, to elicit reactive oxygen species-mediated apoptosis in HeLa cells. PTL selectively targets the selenocysteine residue in TrxR1 to inhibit the enzyme function, and further shifts the enzyme to an NADPH oxidase to generate superoxide anions, leading to reactive oxygen species accumulation and oxidized thioredoxin. Under the conditions of inhibition of TrxRs in cells, PTL does not cause significant alteration of cellular thiol homeostasis, supporting selective target of TrxRs by PTL. Importantly, overexpression of functional TrxR1 or Trx1 confers protection, whereas knockdown of the enzymes sensitizes cells to PTL treatment. Targeting TrxRs by PTL thus discloses an unprecedented mechanism underlying the biological activity of PTL, and provides deep insights to understand the action of PTL in treatment of cancer. PMID:27002142

  20. The defense potential of glutathione-ascorbate dependent detoxification pathway to sulfur dioxide exposure in Tagetes erecta.

    Science.gov (United States)

    Wei, Aili; Fu, Baochun; Wang, Yunshan; Li, Rui; Zhang, Chao; Cao, Dongmei; Zhang, Xiaobing; Duan, Jiuju

    2015-01-01

    Sulfur dioxide (SO2) exposure is associated with increased risk of various damages to plants. However, little is known about the defense response in ornamental plants. In this study, an artificial fumigation protocol was carried out to study the defense potential of the glutathione (GSH)-ascorbate (AsA) dependent detoxification pathway to SO2 exposure in Tagetes erecta. The results show that when the plants were exposed to different doses of SO2 (0, 15, 30, 50 or 80 mg m(-3)) for different times (6, 12, 18, 24 or 33 h), SO2 induced oxidative stress was confirmed by the increased hydrogen peroxide (H2O2), malondialdehyde (MDA) and relative conductivity of membrane (RC) in a dose-dependent manner for different exposure times. However, the increased levels for H2O2, MDA and RC were not significant vis-a-vis the control when SO2 doses and exposure times were lower than 15 mg m(-3)/33 h, 30 mg m(-3)/24 h or 50 mg m(-3)/12 h (p>0.05). The results could be explained by the increases in the content of reduced form of glutathione (GSH), total glutathione (TGSH), ascorbate (AsA), ratio of GSH/GSSG (oxidized form of glutathione), activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferases (GST). On the other hand, exposure to higher doses of SO2 and longer exposure times, the values of the GSH-AsA dependent antioxidative indices decreased significantly (p<0.01), manifested by increased levels of H2O2. Furthermore, the levels of H2O2, MDA and RC varied little when SO2 doses and exposure times reached a 'critical' value (50 mg m(-3)/24 h). The defense ability of T. erecta to SO2 reached nearly extremity. To summarize, the response of T. erecta to elevated SO2 was related to higher H2O2 levels. GSH-AsA dependent detoxification pathway played an important role in against SO2-induced toxicity, although the defense response could not sufficiently alleviate oxidative damage when SO2 doses and exposure times

  1. Effect of rosella ( Hibiscus sabdariffa L ) extract on glutathione-S ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of rosella (Hibiscus sabdariffa L) extract on glutathione-S-trasferase (GST) activity and its hepatoprotective effect. Methods: A total of 25 rats were divided randomly into 5 groups (5 rats per group). Group I served as the baseline, group II was the negative control group, while groups III, IV and ...

  2. Metabolism of antitumor acylfulvene by rat liver cytosol.

    Science.gov (United States)

    McMorris, T C; Elayadi, A N; Yu, J; Kelner, M J

    1999-01-01

    Illudins are novel compounds from which a potent class of antitumor agents, called acylfulvenes, have been synthesized. The model illudin, illudin S, has marked in vitro and in vivo toxicity but displays a poor therapeutic index. The toxicity of illudin S is believed to involve a combination of enzymatic reduction and chemical reaction. Enzymatic reduction by a cytosolic NADPH-dependent enzyme produces an aromatic metabolite, as does reaction with thiols. Acylfulvene is formed from illudin S by reverse Prins reaction. Acylfulvene is 100-fold less toxic in vitro and in vivo than illudin S but possesses marked antitumor efficacy in vivo, thus displaying opposite properties from illudin S. For this reason we investigated the in vitro metabolism of acylfulvene. Incubation of acylfulvene with NADPH and rat liver cytosol yielded two metabolites. One metabolite, the aromatic product, is similar to that obtained with illudin S in this in vitro system and was anticipated. The other metabolite, the hydroxylated product, was not expected and no corresponding metabolite for illudin S could be detected. The production of this hydroxylated metabolite from acylfulvene may explain, in part, the increased antitumor activity of novel acylfulvenes as compared with the illudins.

  3. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione.

    Science.gov (United States)

    Kalaras, Michael D; Richie, John P; Calcagnotto, Ana; Beelman, Robert B

    2017-10-15

    While mushrooms are the highest dietary source for the unique sulfur-containing antioxidant ergothioneine, little is known regarding levels of the major biological antioxidant glutathione. Thus, our objectives were to determine and compare levels of glutathione, as well as ergothioneine, in different species of mushrooms. Glutathione levels varied >20-fold (0.11-2.41mg/gdw) with some varieties having higher levels than reported for other foods. Ergothioneine levels also varied widely (0.15-7.27mg/gdw) and were highly correlated with those of glutathione (r=0.62, Pmushrooms species. Agaricus bisporus harvested during the third cropping flush contained higher levels of ergothioneine and glutathione compared to the first flush, possibly as a response to increased oxidative stress. This study demonstrated that certain mushroom species are high in glutathione and ergothioneine and should be considered an excellent dietary source of these important antioxidants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness

    Science.gov (United States)

    Guilford, Frederick T.; Hope, Janette

    2014-01-01

    Evidence for the role of oxidative stress in the pathophysiology of mycotoxin-related illness is increasing. The glutathione antioxidant and detoxification systems play a major role in the antioxidant function of cells. Exposure to mycotoxins in humans requires the production of glutathione on an “as needed” basis. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione. Mycotoxin-related compromise of glutathione production can result in an excess of oxidative stress that leads to tissue damage and systemic illness. The review discusses the mechanisms by which mycotoxin-related deficiency of glutathione may lead to both acute and chronic illnesses. PMID:24517907

  5. Characterization of the chlorate reductase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.; Schiltz, E.; Hagedoorn, P.L.; Hagen, W.R.; Kengen, S.W.M.; Stams, A.J.M.

    2003-01-01

    A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were

  6. Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to Tobacco mosaic virus during a hypersensitive response

    Science.gov (United States)

    Király, Lóránt; Künstler, András; Höller, Kerstin; Fattinger, Maria; Juhász, Csilla; Müller, Maria; Gullner, Gábor; Zechmann, Bernd

    2012-01-01

    Sufficient sulfate supply has been linked to the development of sulfur induced resistance or sulfur enhanced defense (SIR/SED) in plants. In this study we investigated the effects of sulfate (S) supply on the response of genetically resistant tobacco (Nicotiana tabacum cv. Samsun NN) to Tobacco mosaic virus (TMV). Plants grown with sufficient sulfate (+S plants) developed significantly less necrotic lesions during a hypersensitive response (HR) when compared to plants grown without sulfate (−S plants). In +S plants reduced TMV accumulation was evident on the level of viral RNA. Enhanced virus resistance correlated with elevated levels of cysteine and glutathione and early induction of a Tau class glutathione S-transferase and a salicylic acid-binding catalase gene. These data indicate that the elevated antioxidant capacity of +S plants was able to reduce the effects of HR, leading to enhanced virus resistance. Expression of pathogenesis-related genes was also markedly up-regulated in +S plants after TMV-inoculation. On the subcellular level, comparison of TMV-inoculated +S and −S plants revealed that +S plants contained 55–132 % higher glutathione levels in mitochondria, chloroplasts, nuclei, peroxisomes and the cytosol than −S plants. Interestingly, mitochondria were the only organelles where TMV-inoculation resulted in a decrease of glutathione levels when compared to mock-inoculated plants. This was particularly obvious in −S plants, where the development of necrotic lesions was more pronounced. In summary, the overall higher antioxidative capacity and elevated activation of defense genes in +S plants indicate that sufficient sulfate supply enhances a preexisting plant defense reaction resulting in reduced symptom development and virus accumulation. PMID:22122784

  7. Plant Glutathione Biosynthesis: Diversity in Biochemical Regulation and Reaction Products

    Directory of Open Access Journals (Sweden)

    Ashley eGalant

    2011-09-01

    Full Text Available In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an antioxidant by quenching reactive oxygen species, and is involved in the ascorbate-glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone, and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate-cysteine ligase (GCL, and glutathione synthetase (GS. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

  8. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  9. Effect of sodium molybdate on the thyroxine-binding affinity of transport cytosol proteins.

    Science.gov (United States)

    Svobodová, V; Kraml, J; Schreiber, V

    1985-01-01

    The presence of sodium molybdate during tissue homogenization is known to increase the number of cytosol binding sites for glucocorticoids, progesterone, androgens and oestrogens. We wondered whether a phenomenon similar to this stabilization of steroid receptors would also occur in thyroxine-binding cytosol protein. We found that the presence of sodium molybdate (10 mmol/l) in rat adenohypophyseal cytosol increased its thyroxine-binding capacity by up to 96%. In the case of binding protein cytosol minus molybdate, Ka = 5.5 X 10(9) l.mol-1, whereas for cytosol plus molybdate Ka(1) = 6.0 X 10(9) l.mol-1 and Ka(2) = 3.0 X 10(10) l.mol-1. Cytosol prepared without molybdate did not contain a binding protein class with a higher Ka. The effect is stereo-specific and the LT4 bond is not displaced by DT4.

  10. A protective role of methionine-R-sulfoxide reductase against cadmium in Schizosaccharomyces pombe.

    Science.gov (United States)

    Lim, Chang-Jin; Jo, Hannah; Kim, Kyunghoon

    2014-11-01

    The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.

  11. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  12. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  13. Promiscuity and diversity in 3-ketosteroid reductases

    Science.gov (United States)

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  14. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium ... due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism.

  15. Two Greek siblings with sepiapterin reductase deficiency.

    NARCIS (Netherlands)

    Verbeek, M.M.; Willemsen, M.A.A.P.; Wevers, R.A.; Lagerwerf, A.J.; Abeling, N.G.; Blau, N.; Thony, B.; Vargiami, E.; Zafeiriou, D.I.

    2008-01-01

    BACKGROUND: Sepiapterin reductase (SR) deficiency is a rare inherited disorder of neurotransmitter metabolism; less than 25 cases have been described in the literature so far. METHODS: We describe the clinical history and extensive cerebrospinal fluid (CSF) and urine examination of two Greek

  16. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  17. Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase ...

    Indian Academy of Sciences (India)

    Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase activity of lamin B receptor (Lbr) is essential for neutrophil differentiation. Durgadas P Kasbekar. Volume 37 ... Keywords. Greenberg/HEM dysplasia; lymphohematopoietic progenitor cells; nuclear envelope; Pelger-Huët anomaly; promyelocyte differentiation ...

  18. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    Mohammed A AboElAsrar

    2012-05-05

    May 5, 2012 ... Elevated homocysteine is a known risk factor for vascular disease. So the polymorphism in methylenetetrahydrofolate reductase may have detrimental consequences [5]. In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction and folate supplementa- tion improves ...

  19. Inhibition of 5 alpha-reductase, receptor binding, and nuclear uptake of androgens in the prostate by a 4-methyl-4-aza-steroid.

    Science.gov (United States)

    Liang, T; Heiss, C E

    1981-08-10

    17 beta-N,N-Diethylcarbamoyl-4-methyl-4-aza-5 alpha-androstan-3-one (DMAA) is a potent reversible inhibitor of 5 alpha-reductase. The inhibition by DMAA of the conversion of testosterone to 5 alpha-dihydrotestosterone by rat prostate 5 alpha-reductase is competitive with testosterone, the apparent Ki being 5 nM, and uncompetitive with NADPH, DMAA inhibited both membrane-bound and solubilized 5 alpha-reductase. DMAA has moderate affinity for the prostate cytosol androgen receptor: 3 X 10(-6) M gives 50% inhibition of the binding of 10(-9) M 5 alpha-[3H]dihydrotestosterone to this receptor. This affinity to the androgen receptor is 1,000-, 500-, 120-, and 40-fold lower than that of 5 alpha-dihydrotestosterone, testosterone, spironolactone, and cyproterone acetate, respectively, and 7-fold higher than that of cimetidine. After incubation of [3H]testosterone with minced prostate, more than 90% of the radioactivity extracted from the nuclei co-chromatographed with 5 alpha-dihydrotestosterone and the rest with testosterone. DMAA at low concentrations decreased the ratio of 5 alpha-dihydrotestosterone to testosterone in the nuclei without significantly reducing the total uptake. DMAA at high concentrations also reduced the total radioactivity in the nuclei. This differential effect may reflect a higher affinity of DMAA for 5 alpha-reductase than for the androgen receptor. When 5 alpha-[3H]dihydrotestosterone was used in the tissue incubations, all radioactivity extracted from nuclei co-chromatographed with 5 alpha-dihydrotestosterone, regardless of whether or not DMAA was present. This nuclear uptake of 5 alpha-dihydrotestosterone is inhibited only by high concentrations of DMAA. In a cell-free system, the nuclear uptake of 5 alpha-[3H]dihydrotestosterone prebound to the cytosol receptor was not inhibited by DMAA. These results suggest that DMAA may inhibit nuclear uptake of 5 alpha-dihydrotestosterone by inhibiting the receptor binding. Sucrose gradient centrifugation of

  20. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  1. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  2. Decreased oxidized glutathione with aerosolized cyclosporine delivery.

    Science.gov (United States)

    Katz, A; Coran, A G; Oldham, K T; Guice, K S

    1993-06-01

    Cyclosporine immunosuppression remains vital for successful lung transplantation. Cyclosporine also functions as a membrane active biological response modifier and has been noted to have a variable effect on ischemia-reperfusion (I/R) injury in various tissues. Glutathione plays an important role in the endogenous antioxidant defense system; plasma oxidized glutathione (GSSG) levels are useful as a sensitive indicator of in vivo oxidant stress and I/R injury. Lung transplantation results in ischemia, followed by a period of reperfusion, potentially producing functional injury. This study was designed to evaluate the effect of cyclosporine on oxygen radical generation in a model of single-lung transplantation. Single-lung transplantation was performed in 12 mongrel puppies, with animals assigned to receive either intravenous or aerosolized cyclosporine. Arterial blood and bronchoalveolar lavage fluid (BALF) samples were obtained to determine GSSG levels via a spectrophotometric technique. Samples were obtained both prior to and following the revascularization of the transplanted lung. Whole blood and tissue cyclosporine levels were determined via an high-performance liquid chromatography technique 3 hr following the completion of the transplant. Aerosolized cyclosporine administration resulted in greatly decreased arterial plasma and BALF GSSG levels, whole blood cyclosporine levels, and equivalent tissue cyclosporine levels when compared to intravenous cyclosporine delivery. These findings support the hypothesis that the transplanted lung is a source of GSSG production and release into plasma. Additionally, these findings suggest that cyclosporine may have a direct antioxidant effect on pulmonary tissue, with this activity occurring at the epithelial surface, an area susceptible to oxidant injury.

  3. Structural characterization of coatomer in its cytosolic state

    Directory of Open Access Journals (Sweden)

    Shengliu Wang

    2016-07-01

    Full Text Available Abstract Studies on coat protein I (COPI have contributed to a basic understanding of how coat proteins generate vesicles to initiate intracellular transport. The core component of the COPI complex is coatomer, which is a multimeric complex that needs to be recruited from the cytosol to membrane in order to function in membrane bending and cargo sorting. Previous structural studies on the clathrin adaptors have found that membrane recruitment induces a large conformational change in promoting their role in cargo sorting. Here, pursuing negative-stain electron microscopy coupled with single-particle analyses, and also performing CXMS (chemical cross-linking coupled with mass spectrometry for validation, we have reconstructed the structure of coatomer in its soluble form. When compared to the previously elucidated structure of coatomer in its membrane-bound form we do not observe a large conformational change. Thus, the result uncovers a key difference between how COPI versus clathrin coats are regulated by membrane recruitment.

  4. Metabolism of antitumor hydroxymethylacylfulvene by rat liver cytosol.

    Science.gov (United States)

    McMorris, T C; Elayadi, A N; Yu, J; Hu, Y; Kelner, M J

    1999-09-01

    Acylfulvenes are a potent class of antitumor agents derived from illudin S, a fungal sesquiterpene. Illudin S possesses antitumor activity but has a poor therapeutic index. Acylfulvene is 100-fold less toxic against human lung adenocarcinoma cells than illudin S, but inhibits tumor growth in human xenografts, opposite to illudin S. An analog of acylfulvene, MGI 114 (hydroxymethylacylfulvene), shows much greater efficacy, producing complete tumor regression in xenograft models. MGI 114 is currently in phase II clinical trials. Cytotoxicity of MGI 114, like that of illudin S, is believed to involve both chemical reaction and enzymatic reduction. Enzymatic reduction by a cytosolic NADPH-dependent enzyme (from rat liver) produced an aromatic metabolite similar to that formed from illudin S. However, the reaction occurred more slowly. In addition, four new metabolites were isolated, two hydroxylated derivatives and two in which the primary allylic hydroxyl was replaced by hydride. All retained the reactive centers of the parent MGI 114.

  5. Nod-like receptors: cytosolic watchdogs for immunity against pathogens.

    Directory of Open Access Journals (Sweden)

    Jean-Claude Sirard

    2007-12-01

    Full Text Available In mammals, tissue-specific sets of pattern-recognition molecules, including Nod-like receptors (NLR, enable concomitant and sequential detection of microbial-associated molecular patterns from both the extracellular and intracellular microenvironment. Repressing and de-repressing the cytosolic surveillance machinery contributes to vital immune homeostasis and protective responses within specific tissues. Conversely, defective biology of NLR drives the development of recurrent infectious, autoimmune and/or inflammatory diseases by failing to mount barrier functions against pathogens, to tolerate commensals, and/or to instruct the adaptive immune response against microbes. Better decoding microbial strategies that are evolved to circumvent NLR sensing will provide clues for the development of rational therapies aimed at curing and/or preventing common and emerging immunopathologies.

  6. Cytosolic nucleic acid sensors and innate immune regulation.

    Science.gov (United States)

    Ori, Daisuke; Murase, Motoya; Kawai, Taro

    2017-03-04

    During viral and bacterial infections, pathogen-derived cytosolic nucleic acids are recognized by the intracellular RNA sensors retinoic acid-inducible gene I and melanoma-differentiated gene 5 and intracellular DNA sensors, including cyclic-di-GMP-AMP synthase, absent in melanoma 2, interferon (IFN)-gamma inducible protein 16, polymerase III, and so on. Binding of intracellular nucleic acids to these sensors activates downstream signaling cascades, resulting in the production of type I IFNs and pro-inflammatory cytokines to induce appropriate systematic immune responses. While these sensors also recognize endogenous nucleic acids and activate immune responses, they can discriminate between self- and non-self-nucleic acids. However, dysfunction of these sensors or failure of regulatory mechanisms causes aberrant activation of immune response and autoimmune disorders. In this review, we focus on how intracellular immune sensors recognize exogenous nucleic acids and activate the innate immune system, and furthermore, how autoimmune diseases result from dysfunction of these sensors.

  7. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling

    DEFF Research Database (Denmark)

    Peiter, Edgar; Sun, Jongho; Heckmann, Anne Birgitte Lau

    2007-01-01

    nodulation have been cloned in model legumes. Among them, Medicago truncatula DMI1 (DOESN'T MAKE INFECTIONS1) is required for the generation of nucleus-associated calcium spikes in response to the rhizobial signaling molecule Nod factor. DMI1 encodes a membrane protein with striking similarities...... to the Methanobacterium thermoautotrophicum potassium channel (MthK). The cytosolic C terminus of DMI1 contains a RCK (regulator of the conductance of K+) domain that in MthK acts as a calcium-regulated gating ring controlling the activity of the channel. Here we show that a dmi1 mutant lacking the entire C terminus acts...... as a dominant-negative allele interfering with the formation of nitrogen-fixing nodules and abolishing the induction of calcium spikes by the G-protein agonist Mastoparan. Using both the full-length DMI1 and this dominant-negative mutant protein we show that DMI1 increases the sensitivity of a sodium...

  8. Interactive effects of herbicide and enhanced UV-B on growth, oxidative damage and the ascorbate-glutathione cycle in two Azolla species.

    Science.gov (United States)

    Prasad, Sheo Mohan; Kumar, Sushil; Parihar, Parul; Singh, Rachana

    2016-11-01

    A field experiment was conducted to investigate the impact of alone and combined exposures of herbicide pretilachlor (5, 10 and 20μgml(-1)) and enhanced UV-B radiation (UV-B1; ambient +2.2kJm(-2) day(-1) and UV-B2; ambient +4.4kJm(-2) day(-1)) on growth, oxidative stress and the ascorbate-glutathione (AsA-GSH) cycle in two agronomically important Azolla spp. viz., Azolla microphylla and Azolla pinnata. Decreased relative growth rate (RGR) in both the species under tested stress could be linked to enhanced oxidative stress, thus higher H2O2 accumulation was observed, that in turn might have caused severe damage to lipids and proteins, thereby decreasing membrane stability. The effects were exacerbated when spp. were exposed to combined treatments of enhanced UV-B and pretilachlor. Detoxification of H2O2 is regulated by enzymes/metabolites of AsA-GSH cycle such as ascorbate peroxidase (APX) and glutathione reductase (GR) activity that were found to be stimulated. While, dehydroascorabte reductase (DHAR) activity, and the amount of metabolites: ascorbate (AsA), glutathione (GSH) and ratios of reduced/oxidized AsA (AsA/DHA) and GSH (GSH/GSSG), showed significant reduction with increasing doses of both the stressors, either applied alone or in combination. Glutathione-S-transferase (GST), an enzyme involved in scavenging of xenobiotics, was found to be stimulated under the tested stress. This study suggests that decline in DHAR activity and in AsA/DHA ratio might have led to enhanced H2O2 accumulation, thus decreased RGR was noticed under tested stress in both the species and the effect was more pronounced in A. pinnata. Owing to better performance of AsA-GSH cycle in A. microphylla, this study substantiates the view that A. microphylla is more tolerant than A. pinnata. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease.

    Science.gov (United States)

    Peng, Min; Ostrovsky, Julian; Kwon, Young Joon; Polyak, Erzsebet; Licata, Joseph; Tsukikawa, Mai; Marty, Eric; Thomas, Jeffrey; Felix, Carolyn A; Xiao, Rui; Zhang, Zhe; Gasser, David L; Argon, Yair; Falk, Marni J

    2015-09-01

    Mitochondrial respiratory chain (RC) disease therapies directed at intra-mitochondrial pathology are largely ineffective. Recognizing that RC dysfunction invokes pronounced extra-mitochondrial transcriptional adaptations, particularly involving dysregulated translation, we hypothesized that translational dysregulation is itself contributing to the pathophysiology of RC disease. Here, we investigated the activities, and effects from direct inhibition, of a central translational regulator (mTORC1) and its downstream biological processes in diverse genetic and pharmacological models of RC disease. Our data identify novel mechanisms underlying the cellular pathogenesis of RC dysfunction, including the combined induction of proteotoxic stress, the ER stress response and autophagy. mTORC1 inhibition with rapamycin partially ameliorated renal disease in B6.Pdss2(kd/kd) mice with complexes I-III/II-III deficiencies, improved viability and mitochondrial physiology in gas-1(fc21) nematodes with complex I deficiency, and rescued viability across a variety of RC-inhibited human cells. Even more effective was probucol, a PPAR-activating anti-lipid drug that we show also inhibits mTORC1. However, directly inhibiting mTORC1-regulated downstream activities yielded the most pronounced and sustained benefit. Partial inhibition of translation by cycloheximide, or of autophagy by lithium chloride, rescued viability, preserved cellular respiratory capacity and induced mitochondrial translation and biogenesis. Cycloheximide also ameliorated proteotoxic stress via a uniquely selective reduction of cytosolic protein translation. RNAseq-based transcriptome profiling of treatment effects in gas-1(fc21) mutants provide further evidence that these therapies effectively restored altered translation and autophagy pathways toward that of wild-type animals. Overall, partially inhibiting cytosolic translation and autophagy offer novel treatment strategies to improve health across the diverse array

  10. Mitochondrial reactive oxygen species production mediates ursolic acid-induced mitochondrial uncoupling and glutathione redox cycling, with protection against oxidant injury in H9c2 cells.

    Science.gov (United States)

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2015-02-01

    Ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, is a ubiquitous compound widely distributed in many plants, fruits and medicinal herbs worldwide. A previous study in our laboratory has shown that UA can increase the mitochondrial ATP generation capacity (ATP-GC) and a glutathione-dependent antioxidant response, thereby protecting against oxidant injury in H9c2 cells in vitro and rat hearts ex vivo. However, the mechanism underlying the cellular protective effects induced by UA remains largely unknown. The present study has shown that pre-incubation with UA produces a transient increase in the mitochondrial membrane potential in H9c2 cells, which was accompanied by increases in mitochondrial reactive oxygen species (ROS) production. Studies using an antioxidant (dimethylthiourea) indicated that the suppression of mitochondrial ROS completely abrogated the UA-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, as well as protection against menadione cytotoxicity in H9c2 cells. Co-incubation with specific inhibitors of uncoupling proteins and GR almost completely prevented the cytoprotection afforded by UA against menadione-induced cytotoxicity in H9c2 cells. The results obtained so far suggest that UA-induced mitochondrial ROS production can elicit mitochondrial uncoupling and glutathione-dependent antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  11. Hepatic antioxidant enzymes and total glutathione of Cyprinus carpio exposed to three disinfectants, chlorine dioxide, sodium hypochlorite and peracetic acid, for superficial water potabilization.

    Science.gov (United States)

    Elia, Antonia Concetta; Anastasi, Valeria; Dörr, Ambrosius Josef Martin

    2006-09-01

    This study was carried out in order to assess the effects of disinfectant-treatment on antioxidant response of Cyprinus carpio L. Therefore, enzymatic activities of glutathione S-transferases, glyoxalase I, glyoxalase II, glutathione peroxidases, glutathione reductase, catalase and total glutathione content of carp liver, exposed to surface water treated with three disinfectants for potabilization, sodium hypochlorite, chlorine dioxide and peracetic acid were investigated. Specimens of carp were exposed in four experimental tanks supplied with a continuous water flow from Lake Trasimeno (Italy), three of them treated with constant concentration of sodium hypochlorite, chlorine dioxide and peracetic acid, for 10 and 20 days, while the control tank was supplied with untreated lake water. Differences in biochemical parameters were observed in specimens following exposure to these disinfectants and mainly, chlorine compounds induced marked biochemical variations of carp liver, compared to those induced by peracetic acid treatment. Our results showed that antioxidant parameters of Cyprinus carpio could be used as biomarkers of oxidative stress when this species is exposed to disinfectants for water potabilization.

  12. Response of Glutathione and Glutathione S-transferase in Rice Seedlings Exposed to Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Chun-hua ZHANG

    2008-03-01

    Full Text Available A hydroponic culture experiment was done to investigate the effect of Cd stress on glutathione content (GSH and glutathione S-transferase (GST, EC 2.5.1.18 activity in rice seedlings. The rice growth was severely inhibited when Cd level in the solution was higher than 10 mg/L. In rice shoots, GSH content and GST activity increased with the increasing Cd level, while in roots, GST was obviously inhibited by Cd treatments. Compared with shoots, the rice roots had higher GSH content and GST activity, indicating the ability of Cd detoxification was much higher in roots than in shoots. There was a significant correlation between Cd level and GSH content or GST activity, suggesting that both parameters may be used as biomarkers of Cd stress in rice.

  13. Induction of quinone reductase (QR) by withanolides isolated from Physalis pubescens L. (Solanaceae).

    Science.gov (United States)

    Ji, Long; Yuan, Yonglei; Ma, Zhongjun; Chen, Zhe; Gan, Lishe; Ma, Xiaoqiong; Huang, Dongsheng

    2013-09-01

    In the present study, it was demonstrated that the dichloromethane extract of Physalis pubescens L. (DEPP) had weak potential quinone reductase (QR) inducing activity, but an UPLC-ESI-MS method with glutathione (GSH) as the substrate revealed that the DEPP had electrophiles (with an α,β-unsaturated ketone moiety). These electrophiles could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, four withanolides, including three new compounds physapubescin B (2), physapubescin C (3), physapubescin D (4), together with one known steroidal compound physapubescin (1) were isolated. Structures of these compounds were determined by spectroscopic analysis and that of physapubescin C (3) was confirmed by a combination of molecular modeling and quantum chemical DFT-GIAO calculations. Evaluation of the QR inducing activities of all withanolides indicated potent activities of compounds 1 and 2, which had a common α,β-unsaturated ketone moiety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae).

    Science.gov (United States)

    Ding, Hui; Hu, Zhijuan; Yu, Liyan; Ma, Zhongjun; Ma, Xiaoqiong; Chen, Zhe; Wang, Dan; Zhao, Xiaofeng

    2014-08-01

    In the present study, the EtOAc extract of the persistent calyx of Physalis angulata L. var. villosa Bonati (PA) was tested for its potential quinone reductase (QR) inducing activity with glutathione (GSH) as the substrate using an UPLC-ESI-MS method. The result revealed that the PA had electrophiles that could induce quinone reductase (QR) activity, which might be attributed to the modification of the highly reactive cysteine residues in Keap1. Herein, three new withanolides, compounds 3, 6 and 7, together with four known withanolides, compounds 1, 2, 4 and 5 were isolated from PA extract. Their structures were determined by spectroscopic techniques, including (1)H-, (13)C NMR (DEPT), and 2D-NMR (HMBC, HMQC, (1)H, (1)H-COSY, NOESY) experiments, as well as by HR-MS. All the seven compounds were tested for their QR induction activities towards mouse hepa 1c1c7 cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Crystal structure of the Trypanosoma cruzi trypanothione reductase.mepacrine complex.

    Science.gov (United States)

    Jacoby, E M; Schlichting, I; Lantwin, C B; Kabsch, W; Krauth-Siegel, R L

    1996-01-01

    The three-dimensional structure of the complex between Trypanosoma cruzi trypanothione reductase (TR) (EC 1.6.4.8) and the antiparasitic drug mepacrine (quinacrine) has been solved at 2.9 angstoms resolution. Mepacrine is a competitive inhibitor of TR but does not affect human glutathione reductase (GR), a closely related host enzyme. Of particular importance for inhibitor binding are four amino acid residues in the disulfide substrate-binding site of TR that are not conserved in human GR, namely, Glu-18 (Ala-34 in GR), Trp-21 (Arg-37), Ser-109 (Ile-113), and Met-113 (Asn-117). The acridine ring of mepacrine is fixed at the active site close to the hydrophobic wall formed by Trp-21 and Met-113. Specific pairwise interactions between functional groups of the drug and amino acid side chains include the ring nitrogen and Met-113, the chlorine atom and Trp-21, and the oxymethyl group and Ser-109. The alkylamino chain of mepacrine points into the inner region of the active site and is held in position by a solvent-mediated hydrogen bond to Glu-18. The structure of the complex shows for the first time the atomic interactions between TR and an inhibitory ligand. This is a crucial step towards the rational design of inhibitors that might be suited as drugs against Chagas' disease.

  16. Lower plasma levels of selenium and glutathione in smear- positive ...

    African Journals Online (AJOL)

    admin

    Abstract. Objective: The objective of this study was to investigate selenium and glutathione levels in pulmonary tuberculosis patients and controls in Malawi. Methods: The case-control study included 19 patients and 15 apparently healthy controls for whom, levels of selenium and glutathione were measured. Results: The ...

  17. Kinetic analysis of glutathione transferase from rats exposed to sub ...

    African Journals Online (AJOL)

    The effects of lethal and sublethal doses of lead acetate on the induction and kinetic characteristics of glutathione transferase (GST) isozymes in rat liver and kidney were investigated. GST isozymes induction was monitored by the ability of the induced enzyme to conjugate glutathione (GSH) with model GST substrates.

  18. Glutathione Redox System in β-Thalassemia/Hb E Patients

    Directory of Open Access Journals (Sweden)

    Ruchaneekorn W. Kalpravidh

    2013-01-01

    Full Text Available β-thalassemia/Hb E is known to cause oxidative stress induced by iron overload. The glutathione system is the major endogenous antioxidant that protects animal cells from oxidative damage. This study aimed to determine the effect of disease state and splenectomy on redox status expressed by whole blood glutathione (GSH/glutathione disulfide (GSSG and also to evaluate glutathione-related responses to oxidation in β-thalassemia/Hb E patients. Twenty-seven normal subjects and 25 β-thalassemia/Hb E patients were recruited and blood was collected. The GSH/GSSG ratio, activities of glutathione-related enzymes, hematological parameters, and serum ferritin levels were determined in individuals. Patients had high iron-induced oxidative stress, shown as significantly increased serum ferritin, a decreased GSH/GSSG ratio, and increased activities of glutathione-related enzymes. Splenectomy increased serum ferritin levels and decreased GSH levels concomitant with unchanged glutathione-related enzyme activities. The redox ratio had a positive correlation with hemoglobin levels and negative correlation with levels of serum ferritin. The glutathione system may be the body’s first-line defense used against oxidative stress and to maintain redox homeostasis in thalassemic patients based on the significant correlations between the GSH/GSSH ratio and degree of anemia or body iron stores.

  19. Effects Of Alcohol And Paracetamol On Hepatic Glutathione ...

    African Journals Online (AJOL)

    The effect of paracetamol on hepatic glutathione concentration in rats after chronic alcohol and given intoxication was investigated using biochemical indices. Male albino rats were grouped into five and the different dosage regimens of paracetamol (300 mg/kg) and 12% alcohol. Hepatic glutathione concentration and the ...

  20. A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily.

    Directory of Open Access Journals (Sweden)

    Katholiki Skopelitou

    Full Text Available In the present work, we report a novel class of glutathione transferases (GSTs originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701 with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H. This enzyme (designated as AtuGSTH1-1 was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl-glutathione (Nb-GSH. Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34, an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity.

  1. Steroid 5alpha-reductase inhibitors.

    Science.gov (United States)

    Flores, Eugenio; Bratoeff, Eugene; Cabeza, Marisa; Ramirez, Elena; Quiroz, Alexandra; Heuze, Ivonne

    2003-05-01

    The objective of this study is to synthesize new steroidal compounds based on the progesterone skeleton with a high inhibitory activity for the enzyme 5alpha-reductase. Presently similar compounds are being used for the treatment of androgen dependent diseases such as: hirsutism, androgenic alopecia, bening prostatic hyperplasia and prostate cancer. Dihydrotestosterone 2 (Fig. (1)), a 5alpha-reduced metabolite of testosterone 1 has been implicated as a causative factor in the progression of these diseases, largely through the clinical evaluation of males who are genetically deficient of steroid 5alpha-reductase enzyme. As a result of this study, the inhibition of this enzyme has become a pharmacological strategy for the design and synthesis of new antiandrogenic drugs. The advent of finasteride 8 (Fig. (4)) a 5alpha-reductase inhibitor has grately alleviated the symptoms associated with benign prostatic hyperplasia. In our laboratory we recently synthesized several new 16beta-methyl-pregnadiene-3,20-diones derivatives 27 (Fig.(6)), 38-42 (Fig. (11)), 16beta-phenyl-pregnadiene-3,17a-dione derivatives 32-33 (Fig. (7)), 16beta-phenyl-pregnatriene-3,17a-diones, 30, 31 (Fig. (7)) and 16beta-methyl-pregnatriene-3,20-diones 43-46 (Fig. (11)). These compounds were evaluated as 5alpha-reductase inhibitors in the following biological models: Penicillium crustosum broths, the flank organs of gonadectomized male hamsters, the incorporation of radiolabeled sodium acetate into lipids, the effect of the new steroids on the reduction of the weight of the seminal vesicles and on the in vitro metabolism of [(3)H]T to [(3)H]DHT in seminal vesicles homogenates of gonadectomized male hamsters. All trienones 30, 31, and 43-46 in all biological models showed consistently a higher 5alpha-reductase inhibitory activity than the corresponding dienones 27, 32, 33 and 38-42. We believe that with these compounds the 5alpha-reductase enzyme is inactivated by an irreversible Michael type addition

  2. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, P.J. van; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an α,β-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional 1H NMR analysis, and

  3. Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in Caco-2 cells

    NARCIS (Netherlands)

    Usta, M.; Wortelboer, H.M.; Vervoort, J.J.M.; Boersma, M.G.; Rietjens, I.M.C.M.; Bladeren, van P.J.; Cnubben, N.H.P.

    2007-01-01

    Curcumin, an alpha,beta-unsaturated carbonyl compound, reacts with glutathione, leading to the formation of two monoglutathionyl curcumin conjugates. In the present study, the structures of both glutathione conjugates of curcumin were identified by LC-MS and one- and two-dimensional H-1 NMR

  4. Quantitation of protein S-glutathionylation by liquid chromatograph-tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide

    Science.gov (United States)

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfides (PSSG) are commonly quantified by the reduction of the disulfide and detection of the resultant glutathione species. This met...

  5. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle

    DEFF Research Database (Denmark)

    Satrústegui, Jorgina; Bak, Lasse K

    2015-01-01

    that MAS is regulated by fluctuations in cytosolic Ca(2+) levels, and that this regulation is required to maintain a tight coupling between neuronal activity and mitochondrial respiration and oxidative phosphorylation. At cytosolic Ca(2+) fluctuations below the threshold of the mitochondrial calcium...

  6. Improving scFv antibody expression levels in the plant cytosol.

    NARCIS (Netherlands)

    Schouten, A.; Roosien, J.; Boer, de J.M.; Wilmink, A.; rosso, M.N.; Bosch, D.; Stiekema, W.J.; gommers, F.J.; Bakker, J.; Schots, A.

    1997-01-01

    Expression of single-chain antibody fragments (scFvs) in the plant cytosol is often cumbersome. It was unexpectedly shown that addition at the C-terminus of the ER retention signal KDEL resulted in significantly improved expression levels. In this report the cytosolic location of the scFv-CK was

  7. A quantitative comparison of cytosolic delivery via different protein uptake systems

    NARCIS (Netherlands)

    Verdurmen, W.P.R.; Mazlami, M.; Pluckthun, A.

    2017-01-01

    Over many years, a variety of delivery systems have been investigated that have the capacity to shuttle macromolecular cargoes, especially proteins, into the cytosol. Due to the lack of an objective way to quantify cytosolic delivery, relative delivery efficiencies of the various transport systems

  8. Glutathione S-Transferase (GST Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.

  9. Comparison of plasma malondialdehyde, glutathione, glutathione peroxidase, hydroxyproline and selenium levels in patients with vitiligo and healthy controls

    Directory of Open Access Journals (Sweden)

    Ozturk I

    2008-01-01

    Full Text Available Background: The etiology and pathophysiologic mechanism of vitiligo are still unclear. The relationship between increased oxidative stress due to the accumulation of radicals and reactive oxygen species and the associated changes in blood and epidermal component of vitiliginous skin have been reported many times. We investigated the possible changes of plasma malondialdehyde, glutathione, selenium, hydroxyproline and glutathione peroxidase activity levels in patients with vitiligo in order to evaluate the relationship between oxidative stress and etiopathogenesis of vitiligo. Materials and Methods: Plasma malondialdehyde, glutathione, hydroxyproline and glutathione peroxidase activity levels were measured by spectrophotometric methods, and HPLC was used for measurement of selenium concentrations. Results: Our results showed increased malondialdehyde, hydroxyproline and glutathione peroxidase activity levels in plasma of vitiligo group ( P < 0.05. Conclusion: Support of antioxidant system via nonenzymatic antioxidant compounds and antioxidant enzymes may be useful to prevent of melanocyte degeneration which occur due to oxidative damage in vitiligo.

  10. Mutation of ataxia-telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia.

    Science.gov (United States)

    Campbell, Andrew; Bushman, Jared; Munger, Joshua; Noble, Mark; Pröschel, Christoph; Mayer-Pröschel, Margot

    2016-02-01

    Astroglial dysfunction plays an important role in neurodegenerative diseases otherwise attributed to neuronal loss of function. Here we focus on the role of astroglia in ataxia-telangiectasia (A-T), a disease caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. A hallmark of A-T pathology is progressive loss of cerebellar neurons, but the mechanisms that impact neuronal survival are unclear. We now provide a possible mechanism by which A-T astroglia affect the survival of cerebellar neurons. As astroglial functions are difficult to study in an in vivo setting, particularly in the cerebellum where these cells are intertwined with the far more numerous neurons, we conducted in vitro coculture experiments that allow for the generation and pharmacological manipulation of purified cell populations. Our analyses revealed that cerebellar astroglia isolated from Atm mutant mice show decreased expression of the cystine/glutamate exchanger subunit xCT, glutathione (GSH) reductase, and glutathione-S-transferase. We also found decreased levels of intercellular and secreted GSH in A-T astroglia. Metabolic labeling of l-cystine, the major precursor for GSH, revealed that a key component of the defect in A-T astroglia is an impaired ability to import this rate-limiting precursor for the production of GSH. This impairment resulted in suboptimal extracellular GSH supply, which in turn impaired survival of cerebellar neurons. We show that by circumventing the xCT-dependent import of L-cystine through addition of N-acetyl-L-cysteine (NAC) as an alternative cysteine source, we were able to restore GSH levels in A-T mutant astroglia providing a possible future avenue for targeted therapeutic intervention. © 2015 Wiley Periodicals, Inc.

  11. Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Bin, E-mail: ndgb@163.com [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Liu, Chen; Li, Hua [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Yi, Keke [Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Ding, Nengfei; Li, Ningyu; Lin, Yicheng [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China); Fu, Qinglin, E-mail: fuql161@yahoo.com.cn [Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Geological Research Center For Agricultural Applications, China Geological Survey, Hangzhou (China)

    2016-10-05

    Highlights: • The role of endogenous SA in mediating Cd tolerance was explored using sid2 mutants. • Cd stress induces SA accumulation in a SID2 dependent way. • Depletion of SA causes negative effects on Cd tolerance. • Endogenous SA is required for promoting Cd tolerance by modulating GSH metabolism. • Possible mode of SA signaling through GR/GSH pathway under Cd toxicity was discussed. - Abstract: A few studies with NahG transgenic lines of Arabidopsis show that depletion of SA enhances cadmium (Cd) tolerance. However, it remains some uncertainties that the defence signaling may be a result of catechol accumulation in NahG transgenic lines but not SA deficiency. Here, we conducted a set of hydroponic assays with another SA-deficient mutant sid2 to examine the endogenous roles of SA in Cd tolerance, especially focusing on the glutathione (GSH) cycling. Our results showed that reduced SA resulted in negative effects on Cd tolerance, including decreased Fe uptake and chlorophyll concentration, aggravation of oxidative damage and growth inhibition. Cd exposure significantly increased SA concentration in wild-type leaves, but did not affect it in sid2 mutants. Depletion of SA did not disturb the Cd uptake in either roots or shoots. The reduced Cd tolerance in sid2 mutants is due to the lowered GSH status, which is associated with the decreased expression of serine acetyltransferase along with a decline in contents of non-protein thiols, phytochelatins, and the lowered transcription and activities of glutathione reductase1 (GR1) which reduced GSH regeneration. Finally, the possible mode of SA signaling through the GR/GSH pathway during Cd exposure is discussed.

  12. Cytosolic Ca2+, exocytosis, and endocytosis in single melanotrophs of the rat pituitary.

    Science.gov (United States)

    Thomas, P; Surprenant, A; Almers, W

    1990-11-01

    We have monitored cytosolic [Ca2+] with fura-2 and exocytosis by measuring the membrane capacitance, and we have studied the influence of cytosolic [Ca2+] on secretion in single endocrine cells. As in neurons, cytosolic Ca2+ is sufficient to trigger exocytosis. The rate of secretion grows with the fourth or fifth power of cytosolic [Ca2+], and paired stimuli reveal facilitation. Ca2+ influx through voltage-sensitive Ca2+ channels can stimulate secretion 1000-fold over the basal levels measured biochemically. Unlike neurons, however, melanotrophs continue to secrete for seconds afer a depolarizing pulse, while they extrude or sequester the Ca2+ that has entered through Ca2+ channels. Following episodes of secretion, pituitary cells can retrieve membrane with half-times around 30 s at 32 degrees C, even in the absence of cytosolic K+.

  13. Labor Augmentation with Oxytocin Decreases Glutathione Level

    Directory of Open Access Journals (Sweden)

    Naomi Schneid-Kofman

    2009-01-01

    Full Text Available Objective. To compare oxidative stress following spontaneous vaginal delivery with that induced by Oxytocin augmented delivery. Methods. 98 women recruited prior to labor. 57 delivered spontaneously, while 41 received Oxytocin for augmentation of labor. Complicated deliveries and high-risk pregnancies were excluded. Informed consent was documented. Arterial cord blood gases, levels of Hematocrit, Hemoglobin, and Bilirubin were studied. Glutathione (GSH concentration was measured by a spectroscopic method. Plasma and red blood cell (RBC levels of Malondialdehyde indicated lipid peroxidation. RBC uptake of phenol red denoted cell penetrability. SPSS data analysis was used. Results. Cord blood GSH was significantly lower in the Oxytocin group (2.3±0.55 mM versus 2.55±0.55 mM, =.01. No differences were found in plasma or RBC levels of MDA or in uptake of Phenol red between the groups. Conclusion. Lower GSH levels following Oxytocin augmentation indicate an oxidative stress, though selected measures of oxidative stress demonstrate no cell damage.

  14. The Genetic Architecture of Murine Glutathione Transferases.

    Directory of Open Access Journals (Sweden)

    Lu Lu

    Full Text Available Glutathione S-transferase (GST genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6 and DBA2/J (D2--the BXD family--was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01 with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.

  15. Prognostic significance of glutathione peroxidase 2 in gastric carcinoma.

    Science.gov (United States)

    Liu, Dongzhe; Sun, Liang; Tong, Jinxue; Chen, Xiuhui; Li, Hui; Zhang, Qifan

    2017-06-01

    Increasing evidence suggests that the glutathione peroxidase 2 may actually play important roles in tumorigenesis and progression in various human cancers such as colorectal carcinomas and lung adenocarcinomas. However, the role of glutathione peroxidase 2 in gastric carcinoma remains to be determined. In this study, the expression and prognostic significance of glutathione peroxidase 2 in gastric carcinoma were investigated and the well-known prognostic factor Ki-67 labeling index was also assessed as positive control. Glutathione peroxidase 2 expression levels in the tumor tissue specimens, the matched adjacent normal tissue specimens, and the lymph node metastases of 176 patients with gastric carcinoma were evaluated by quantitative polymerase chain reaction, western blotting, and immunohistochemical staining. The associations between glutathione peroxidase 2 expression levels, as determined by immunohistochemical staining, and multiple clinicopathological characteristics were determined by Pearson's chi-square test and Spearman's correlation analysis. The relationships between glutathione peroxidase 2 expression and other clinicopathological variables and patient prognoses were analyzed further by the Kaplan-Meier method, the log-rank test, and Cox multivariate regression. The quantitative polymerase chain reaction, western blotting, and immunohistochemical staining results showed that glutathione peroxidase 2 expression levels were upregulated in both the primary tumor foci and the lymph node metastases of patients with gastric carcinoma (all p values carcinoma (all p values carcinoma that may be used to devise personalized therapeutic regimens and precision treatments for this disease.

  16. Liver microsomal fraction is known to participate in:

    African Journals Online (AJOL)

    Abdullahi Balarabe

    Table 2 shows the effect of the phytochemicals contained in the various food materials on the activity of the endogenous antioxidant enzymes such as. Glutathione S-transferases (GST), Glutathione. Reductase (GR), Catalase (CAT), cytosolic superoxide dismutase (SOD1) and Mitochondrial superoxide dismutase (SOD2).

  17. Glutathione imbalance in patients with X-linked adrenoleukodystrophy☆

    Science.gov (United States)

    Petrillo, Sara; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Aiello, Chiara; Pujol, Aurora; Cappa, Marco; Bertini, Enrico

    2013-01-01

    Background X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder of X-linked inheritance caused by a mutation in the ABCD1 gene which determines an accumulation of long-chain fatty acids in plasma and tissues. Recent evidence shows that oxidative stress may be a hallmark in the pathogenesis of X-ALD and glutathione plays an important role in the defense against free radicals. In this study we have analyzed glutathione homeostasis in lymphocytes of 14 patients with X-ALD and evaluated the balance between oxidized and reduced forms of glutathione, in order to define the role of this crucial redox marker in this condition. Methods Lymphocytes, plasma and erythrocytes were obtained from the whole blood of 14 subjects with X-ALD and in 30 healthy subjects. Total, reduced and protein-bound glutathione levels were measured in lymphocytes by HPLC analysis. Erythrocyte free glutathione and antioxidant enzyme activities, plasma thiols and carbonyl content were determined by spectrophotometric assays. Results A significant decrease of total and reduced glutathione was found in lymphocytes of patients, associated to high levels of all oxidized glutathione forms. A decline of free glutathione was particularly significant in erythrocytes. The increased oxidative stress in X-ALD was additionally confirmed by the decrease of plasma thiols and the high level of carbonyls. Conclusion Our results strongly support a role for oxidative stress in the pathophysiology of X-ALD and strengthen the importance of the balance among glutathione forms as a hallmark and a potential biomarker of the disease. PMID:23768953

  18. Glutathione imbalance in patients with X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Petrillo, Sara; Piemonte, Fiorella; Pastore, Anna; Tozzi, Giulia; Aiello, Chiara; Pujol, Aurora; Cappa, Marco; Bertini, Enrico

    2013-08-01

    X-linked adrenoleukodystrophy (X-ALD) is a genetic disorder of X-linked inheritance caused by a mutation in the ABCD1 gene which determines an accumulation of long-chain fatty acids in plasma and tissues. Recent evidence shows that oxidative stress may be a hallmark in the pathogenesis of X-ALD and glutathione plays an important role in the defense against free radicals. In this study we have analyzed glutathione homeostasis in lymphocytes of 14 patients with X-ALD and evaluated the balance between oxidized and reduced forms of glutathione, in order to define the role of this crucial redox marker in this condition. Lymphocytes, plasma and erythrocytes were obtained from the whole blood of 14 subjects with X-ALD and in 30 healthy subjects. Total, reduced and protein-bound glutathione levels were measured in lymphocytes by HPLC analysis. Erythrocyte free glutathione and antioxidant enzyme activities, plasma thiols and carbonyl content were determined by spectrophotometric assays. A significant decrease of total and reduced glutathione was found in lymphocytes of patients, associated to high levels of all oxidized glutathione forms. A decline of free glutathione was particularly significant in erythrocytes. The increased oxidative stress in X-ALD was additionally confirmed by the decrease of plasma thiols and the high level of carbonyls. Our results strongly support a role for oxidative stress in the pathophysiology of X-ALD and strengthen the importance of the balance among glutathione forms as a hallmark and a potential biomarker of the disease. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo

    Science.gov (United States)

    Timme-Laragy, Alicia R.; Goldstone, Jared V.; Imhoff, Barry R.; Stegeman, John J.; Hahn, Mark E.; Hansen, Jason M.

    2013-01-01

    Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous non-protein antioxidant defense molecule is the tri-peptide glutathione (γ-glutamyl-cysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days post-fertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione (GSH, GSSG) using HPLC, and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 hours of zebrafish development (including mature oocytes, fertilization, mid-blastula transition, gastrulation, somitogenesis, pharyngula, pre-hatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 hours post fertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study

  20. Glutathione content in sperm cells of infertile men

    Directory of Open Access Journals (Sweden)

    R. V. Fafula

    2017-04-01

    Full Text Available Hyperproduction of reactive oxygen species can damage sperm cells and is considered to be one of the mechanisms of male infertility. Cell protection from the damaging effects of free radicals and lipid peroxidation products is generally determined by the degree of antioxidant protection. Glutathione is non-enzymatic antioxidant which plays an important protective role against oxidative damages and lipid peroxidation. The aim of the present work is to determine the content of reduced and oxidized glutathione in sperm cells of infertile men. Semen samples from 20 fertile men (normozoospermics and 72 infertile patients (12 oligozoospermics, 17 asthenozoospermics, 10 oligoasthenozoosper­mics and 33 leucocytospermic were used. The total, oxidized (GSSG and reduced (GSH glutathione levels were measured spectrophotometrically. The levels of total glutathione were significantly lower in the spermatozoa of patients with oligozoo-, asthenozoo- and oligoasthenozoospermia than in the control. Infertile groups showed significantly decreased values of reduced glutathione in sperm cells vs. fertile men, indicating an alteration of oxidative status. The oxidized glutathione levels in sperm cells of infertile men did not differ from those of normozoospermic men with proven fertility. The GSH/GSSG ratio was significantly decreased in the oligo-, astheno- and oligoasthenozoospermic groups compared to the normozoospermic group. In patients with leucocytospermia the GSH/GSSG ratio was lower but these changes were not significant. In addition, glutathione peroxidase activity in sperm cells was decreased in patients with oligozoo-, astenozoo-, oligoastenozoospermia and with leucocytospermia. The most significant changes in glutathione peroxidase activity were observed in infertile men with leucocytospermia. Decreased GSH/GSSG ratio indicates a decline in redox-potential of the glutathione system in sperm cells of men with decreased fertilizing potential

  1. Surveillance for Intracellular Antibody by Cytosolic Fc Receptor TRIM21

    Directory of Open Access Journals (Sweden)

    William A. McEwan

    2016-11-01

    Full Text Available TRIM21 has emerged as an atypical Fc receptor that is broadly conserved and widely expressed in the cytoplasm of mammalian cells. Viruses that traffic surface-bound antibodies into the cell during infection recruit TRIM21 via a high affinity interaction between Fc and TRIM21 PRYSPRY domain. Following binding of intracellular antibody, TRIM21 acts as both antiviral effector and sensor for innate immune signalling. These activities serve to reduce viral replication by orders of magnitude in vitro and contribute to host survival during in vivo infection. Neutralization occurs rapidly after detection and requires the activity of the ubiquitin-proteasome system. The microbial targets of this arm of intracellular immunity are still being identified: TRIM21 activity has been reported following infection by several non-enveloped viruses and intracellular bacteria. These findings extend the sphere of influence of antibodies to the intracellular domain and have broad implications for immunity. TRIM21 has been implicated in the chronic auto-immune condition systemic lupus erythematosus and is itself an auto-antigen in Sjögren’s syndrome. This review summarises our current understanding of TRIM21’s role as a cytosolic Fc receptor and briefly discusses pathological circumstances where intracellular antibodies have been described, or are hypothesized to occur, and may benefit from further investigations of the role of TRIM21.

  2. Target proteins of the cytosolic thioredoxin in Plasmodium falciparum.

    Science.gov (United States)

    Kawazu, Shin-ichiro; Takemae, Hitoshi; Komaki-Yasuda, Kanako; Kano, Shigeyuki

    2010-06-01

    The target proteins of a cytosolic Trx (PfTrx-1) in Plasmodium falciparum with Trx-affinity chromatography were examined. Based on the Trx protein reduction pathway, we generated a cysteine mutant of PfTrx-1, which captures the target protein as a mixed disulfide intermediate. A number of proteins were captured with PfTrx-1(C33S) immobilized on resin and were eluted by DTT treatment. The PfTrx-1(C33S) immobilized resin-captured proteins were trypsin-digested and analyzed on a liquid chromatography-mass spectrometry system. Analysis of the sequence data against databases assigned 20 proteins, four of which had been found previously in P. falciparum, with the remaining 16 being new targets. The potential Trx-target proteins included those in pathways such as the redox cycle, protein biosynthesis, energy metabolism and signal transduction. We captured 4 enzymes in the glycolysis pathway (hexokinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate mutase and L-lactate dehydrogenase (LDH)) as Trx-targets, and we found that PfTrx-1 enhanced the activity of PfGAPDH and PfLDH.

  3. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm.

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.

  4. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation.

    Science.gov (United States)

    McEwan, William A; Falcon, Benjamin; Vaysburd, Marina; Clift, Dean; Oblak, Adrian L; Ghetti, Bernardino; Goedert, Michel; James, Leo C

    2017-01-17

    Alzheimer's disease (AD) and other neurodegenerative disorders are associated with the cytoplasmic aggregation of microtubule-associated protein tau. Recent evidence supports transcellular transfer of tau misfolding (seeding) as the mechanism of spread within an affected brain, a process reminiscent of viral infection. However, whereas microbial pathogens can be recognized as nonself by immune receptors, misfolded protein assemblies evade detection, as they are host-derived. Here, we show that when misfolded tau assemblies enter the cell, they can be detected and neutralized via a danger response mediated by tau-associated antibodies and the cytosolic Fc receptor tripartite motif protein 21 (TRIM21). We developed fluorescent, morphology-based seeding assays that allow the formation of pathological tau aggregates to be measured in situ within 24 h in the presence of picomolar concentrations of tau seeds. We found that anti-tau antibodies accompany tau seeds into the cell, where they recruit TRIM21 shortly after entry. After binding, TRIM21 neutralizes tau seeds through the activity of the proteasome and the AAA ATPase p97/VCP in a similar manner to infectious viruses. These results establish that intracellular antiviral immunity can be redirected against host-origin endopathogens involved in neurodegeneration.

  5. 8-Methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a non-competitive inhibitor of trypanothione reductase

    Directory of Open Access Journals (Sweden)

    Zani Carlos L

    2003-01-01

    Full Text Available The enzyme trypanothione reductase is a recognised drug target in trypanosomatids and has been used in the search of new compounds with potential activity against diseases such as leishmaniasis, Chagas disease and African trypanosomiasis. 8-Methoxy-naphtho [2,3-b] thiophen-4,9-quinone was selected in a screening of natural and synthetic compounds using an in vitro assay with the recombinant enzyme from Trypanosoma cruzi. Its mode of inhibition fits a non-competitive model with respect to the substrate (trypanothione and to the co-factor (NADPH, with Ki-values of 5 and 3.6 µM, respectively. When tested against human glutathione reductase, this compound did not display any significant inhibition at 100 µM, indicating a good selectivity against the parasite enzyme.

  6. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its d,l-polylactide microparticle formulation

    Science.gov (United States)

    Bartolini, D.; Piroddi, M.; Tidei, C.; Giovagnoli, S.; Pietrella, D.; Manevich, Y.; Tew, K.D.; Giustarini, D.; Rossi, R.; Townsend, D.M.; Santi, C.; Galli, F.

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage

  7. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    system is an alternative thiol-based antioxidant system, but the glutathione biosynthesis system is not present in all organisms. This thesis focuses on the TrxR from the lactic acid bacteria (LAB) model organism Lactococcus lactis ssp. cremoris MG1363, a strain that is glutathione- and catalasenegative......,4-dihydroxyphenylalanine (DOPA). A novel FAD si-face open space was identified in all structures of LlTrxR and predicted to accommodate O2, thus acting as an oxygen pocket. This model explains how the protein-bound FAD can function as a de facto photosensitizer, generating reactive oxygen species (ROS) upon light exposure...... conditions. Cell extracts from the same 17 h in vivo irradiated cells showed ~14% remaining TrxR activity. The present investigation shows that TrxR light sensitivity might be a widespread phenomenon among bacteria, particular within the phylum of Firmicutes. This feature can potentially be exploited...

  8. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, Andrea; Flores, Carmen-Lisset

    2004-01-01

    3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial...... obtained with wild-type cells and transfectants overexpressing the enzyme established that HMGR in both T. cruzi and Leishmania major is localized primarily in the mitochondrion and that elimination of the mitochondrial targeting sequence in Leishmania leads to protein accumulation in the cytosolic...... compartment. Furthermore, T. cruzi HMGR is efficiently targeted to the mitochondrion in yeast cells. Thus, when the gene encoding T. cruzi HMGR was expressed in a hmg1 hmg2 mutant of Saccharomyces cerevisiae, the mevalonate auxotrophy of mutant cells was relieved, and immunoelectron analysis showed...

  9. Enzymatic reduction of disulfide bonds in lysosomes: Characterization of a Gamma-interferon-inducible lysosomal thiol reductase (GILT)

    Science.gov (United States)

    Arunachalam, Balasubramanian; Phan, Uyen T.; Geuze, Hans J.; Cresswell, Peter

    2000-01-01

    Proteins internalized into the endocytic pathway are usually degraded. Efficient proteolysis requires denaturation, induced by acidic conditions within lysosomes, and reduction of inter- and intrachain disulfide bonds. Cytosolic reduction is mediated enzymatically by thioredoxin, but the mechanism of lysosomal reduction is unknown. We describe here a lysosomal thiol reductase optimally active at low pH and capable of catalyzing disulfide bond reduction both in vivo and in vitro. The active site, determined by mutagenesis, consists of a pair of cysteine residues separated by two amino acids, similar to other enzymes of the thioredoxin family. The enzyme is a soluble glycoprotein that is synthesized as a precursor. After delivery into the endosomal/lysosomal system by the mannose 6-phosphate receptor, N- and C-terminal prosequences are removed. The enzyme is expressed constitutively in antigen-presenting cells and induced by IFN-γ in other cell types, suggesting a potentially important role in antigen processing.

  10. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    Science.gov (United States)

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  11. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  12. Genome-Derived Cytosolic DNA Mediates Type I Interferon-Dependent Rejection of B Cell Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Yu J. Shen

    2015-04-01

    Full Text Available The DNA damage response (DDR induces the expression of type I interferons (IFNs, but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.

  13. Quantitation of protein S-glutathionylation by liquid chromatography-tandem mass spectrometry: correction for contaminating glutathione and glutathione disulfide.

    Science.gov (United States)

    Bukowski, Michael R; Bucklin, Christopher; Picklo, Matthew J

    2015-01-15

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfide (PSSG) is commonly quantified by reduction of the disulfide and detection of the resultant glutathione species. This methodology is susceptible to contamination by free unreacted cellular glutathione (GSH) species, which are present in 1000-fold greater concentration. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method was developed for quantification of glutathione and glutathione disulfide (GSSG), which was used for the determination of PSSG in biological samples. Analysis of rat liver samples demonstrated that GSH and GSSG coprecipitated with proteins similar to the range for PSSG in the sample. The use of [(13)C2,(5)N]GSH and [(13)C4,(5)N2]GSSG validated these results and demonstrated that the release of GSH from PSSG did not occur during sample preparation and analysis. These data demonstrate that GSH and GSSG contamination must be accounted for when determining PSSG content in cellular/tissue preparations. A protocol for rinsing samples to remove the adventitious glutathione species is demonstrated. The fragmentation patterns for glutathione were determined by high-resolution mass spectrometry, and candidate ions for detection of PSSG on protein and protein fragments were identified. Published by Elsevier Inc.

  14. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  15. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression.

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J

    2015-03-20

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol.

    Directory of Open Access Journals (Sweden)

    Carlos A Labriola

    2010-10-01

    Full Text Available For most secretory pathway proteins, crossing the endoplasmic reticulum (ER membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD, is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C, since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes.

  17. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Science.gov (United States)

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  18. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    Directory of Open Access Journals (Sweden)

    Susanna Boronat

    2017-06-01

    Full Text Available The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR. RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  19. Metabolic Activation of the Antibacterial Agent Triclocarban by Cytochrome P450 1A1 Yielding Glutathione Adducts

    Science.gov (United States)

    Muvvala, Jaya B.; Morin, Dexter; Buckpitt, Alan R.; Hammock, Bruce D.; Rice, Robert H.

    2014-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC) is an antibacterial agent used in personal care products such as bar soaps. Small amounts of chemical are absorbed through the epidermis. Recent studies show that residues of reactive TCC metabolites are bound covalently to proteins in incubations with keratinocytes, raising concerns about the potential toxicity of this antimicrobial agent. To obtain additional information on metabolic activation of TCC, this study characterized the reactive metabolites trapped as glutathione conjugates. Incubations were carried out with 14C-labeled TCC, recombinant CYP1A1 or CYP1B1, coexpressed with cytochrome P450 reductase, glutathione-S-transferases (GSH), and an NADPH-generating system. Incubations containing CYP1A1, but not 1B1, led to formation of a single TCC-GSH adduct with a conversion rate of 1% of parent compound in 2 hours. Using high-resolution mass spectrometry and diagnostic fragmentation, the adduct was tentatively identified as 3,4-dichloro-3′-glutathionyl-4′-hydroxycarbanilide. These findings support the hypothesis that TCC is activated by oxidative dehalogenation and oxidation to a quinone imine. Incubations of TCDD-induced keratinocytes with 14C-TCC yielded a minor radioactive peak coeluting with TCC-GSH. Thus, we conclude that covalent protein modification by TCC in TCDD-induced human keratinocyte incubations is mainly caused by activation of TCC by CYP1A1 via a dehalogenated TCC derivative as reactive species. PMID:24733789

  20. Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2014-01-01

    Full Text Available Epalrestat (EPS, approved in Japan, is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Here we report that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH, which is important for protection against oxidative injury, through transcription regulation. Treatment of Schwann cells with EPS caused a dramatic increase in intracellular GSH levels. EPS increased the mRNA levels of γ-glutamylcysteine synthetase (γ-GCS, the enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that plays a central role in regulating the expression of γ-GCS. ELISA revealed that EPS increased nuclear Nrf2 levels. Knockdown of Nrf2 by siRNA suppressed the EPS-induced GSH biosynthesis. Furthermore, pretreatment with EPS reduced the cytotoxicity induced by H2O2, tert-butylhydroperoxide, 2,2'-azobis (2-amidinopropane dihydrochloride, and menadione, indicating that EPS plays a role in protecting against oxidative stress. This is the first study to show that EPS induces GSH biosynthesis via the activation of Nrf2. We suggest that EPS has new beneficial properties that may prevent the development and progression of disorders caused by oxidative stress.

  1. Purification and biochemical characterization of a novel glutathione ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    dinitrobenzene as a substrate. ..... purification of GST enzyme from other insect species, which were from 3 to 26% in Hyphantria .... Glutathione S-transferases from the larval gut of the silkworm. Bombyx mori: cDNA cloning, gene ...

  2. Central nervous system uptake of intranasal glutathione in Parkinson's disease

    National Research Council Canada - National Science Library

    Laurie K Mischley; Kevin E Conley; Eric G Shankland; Terrance J Kavanagh; Michael E Rosenfeld; John E Duda; Collin C White; Timothy K Wilbur; Prysilla U De La Torre; Jeannie M Padowski

    2016-01-01

      Glutathione (GSH) is depleted early in the course of Parkinson's disease (PD), and deficiency has been shown to perpetuate oxidative stress, mitochondrial dysfunction, impaired autophagy, and cell death...

  3. Glutathione transferase mimics : Micellar catalysis of an enzymic reaction

    NARCIS (Netherlands)

    Lindkvist, Björn; Weinander, Rolf; Engman, Lars; Koetse, Marc; Engberts, Jan B.F.N.; Morgenstern, Ralf

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic

  4. Molecular Cloning and Characterization of Ecdysone oxidase and 3-dehydroecdysone-3α-reductase Involved in the Ecdysone Inactivation Pathway of Silkworm, Bombyx mori

    Science.gov (United States)

    Sun, Wei; Shen, Yi-Hong; Qi, Deng-Wei; Xiang, Zhong-Huai; Zhang, Ze

    2012-01-01

    Molting hormone (ecdysteroid) is one of the most important hormones in insects. The synthesis and inactivation of the ecdysteroid regulate the developmental process of insects. A major pathway of ecdysone inactivation is that ecdysone is converted to 3-dehydroecdysone, and then further to 3-epiecdysone in insects. Two enzymes (ecdysone oxidase: EO and 3DE-3α-reductase) participate in this pathway. In this study, based on the previously characterized cDNAs in Spodoptera littoralis, we cloned and characterized EO and 3DE-3α-reductase genes in the silkworm, Bombyx mori. The heterologously expressed proteins of the two genes in yeast showed the ecdysone oxidase and 3DE-3α-reductase activities, respectively. Expression of BmEO was only detected in the midgut at transcriptional and translational levels. We also localized EO within the midgut goblet cell cavities. For Bm3DE-3α-reductase gene, RT-PCR and western blot showed that it was expressed in the midgut and the Malpighian tubules. Moreover, we localized 3DE-3α-reductase within the midgut goblet cell cavities and the cytosol of principal cells of the Malpighian tubules. These two genes have similar expression profiles during different developmental stages. Both genes were highly expressed at the beginning of the 5th instar, and remained a relative low level during the feeding stage, and then were highly expressed at the wandering stage. All these results showed that the profiles of the two genes were well correlated with the ecdysteroid titer. The functional characterization of the enzymes participating in ecdysone inactivation in the silkworm provides hints for the artificial regulation of the silkworm development and biological control of pests. PMID:22215981

  5. DMPD: Regulation of arachidonic acid release and cytosolic phospholipase A2activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10080535 Regulation of arachidonic acid release and cytosolic phospholipase A2activ...on of arachidonic acid release and cytosolic phospholipase A2activation. PubmedID 10080535 Title Regulation ...of arachidonic acid release and cytosolic phospholipase A2activation. Authors Gij

  6. Nanofiltration concentration of extracellular glutathione produced by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Sasaki, Kengo; Hara, Kiyotaka Y; Kawaguchi, Hideo; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    OpenAIRE

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cy...

  8. A rat brain cytosolic N-methyltransferase(s) activity converting phosphorylethanolamine into phosphorylcholine.

    Science.gov (United States)

    Andriamampandry, C; Massarelli, R; Freysz, L; Kanfer, J N

    1990-09-14

    It had been previously speculated upon but never proved that the methylation of phosphorylethanolamine could contribute to the production of choline containing compounds. However, experimental evidence obtained with neuronal cultures was interpreted as showing that the stepwise methylation of phosphobases may be an important route for this biosynthesis. We demonstrate that cytosolic fraction from rat brain possesses a N-methyltransferase activity capable of methylating phosphorylethanolamine and its mono- and dimethyl-derivatives into phosphorylcholine. The level of activity detectable in rat liver cytosol is only 18% of that found in the brain cytosol.

  9. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit.

    Science.gov (United States)

    Pyngrope, Samantha; Bhoomika, Kumari; Dubey, R S

    2013-04-01

    Water deficit for rice is a worldwide concern, and to produce drought-tolerant varieties, it is essential to elucidate molecular mechanisms associated with water deficit tolerance. In the present study, we investigated the differential responses of nonenzymatic antioxidants ascorbate (AsA), glutathione (GSH), and their redox pool as well as activity levels of enzymes of ascorbate-glutathione cycle in seedlings of drought-sensitive rice (Oryza sativa L.) cv. Malviya-36 and drought-tolerant cv. Brown Gora subjected to water deficit treatment of -1.0 and -2.1 MPa for 24-72 h using PEG-6000 in sand cultures. Water deficit caused increased production of reactive oxygen species such as O2[Symbol: see text](-), H2O2, and HO[Symbol: see text] in the tissues, and the level of production was higher in the sensitive than the tolerant cultivar. Water deficit caused reduction in AsA and GSH and decline in their redox ratios (AsA/DHA and GSH/GSSG) with lesser decline in tolerant than the sensitive seedlings. With progressive level of water deficit, the activities of monodehydroascorbate reductase, dehydroascorbate reductase, ascorbate peroxidase (APX), and glutathione transferase increased in the seedlings of both rice cultivars, but the increased activity levels were higher in the seedlings of drought-tolerant cv. Brown Gora compared to the sensitive cv. Malviya-36. Greater accumulation of proline was observed in stressed seedlings of tolerant than the sensitive cultivar. In-gel activity staining of APX revealed varying numbers of their isoforms and their differential expression in sensitive and tolerant seedlings under water deficit. Results suggest that an enhanced oxidative stress tolerance by a well-coordinated cellular redox state of ascorbate and glutathione in reduced forms and induction of antioxidant defense system by elevated activity levels of enzymes of ascorbate-glutathione cycle is associated with water deficit tolerance in rice.

  10. Human Cytosolic Extracts Stabilize the HIV-1 Core

    Science.gov (United States)

    Fricke, Thomas; Brandariz-Nuñez, Alberto; Wang, Xiaozhao; Smith, Amos B.

    2013-01-01

    The stability of the HIV-1 core in the cytoplasm is crucial for productive HIV-1 infection. Mutations that stabilize or destabilize the core showed defects on HIV-1 reverse transcription and infection. We developed a novel and simple assay to measure the stability of in vitro-assembled HIV-1 CA-NC complexes. The assay allowed us to demonstrate that cytosolic extracts strongly stabilize the HIV-1 core. Interestingly, stabilization of in vitro-assembled HIV-1 CA-NC complexes is not due solely to macromolecular crowding, suggesting the presence of specific cellular factors that stabilize the HIV-1 core. By using our novel assay, we measured the abilities of different drugs, such as PF74, CAP-1, IXN-053, cyclosporine, Bi2 (also known as BI-2), and the peptide CAI, to modulate the stability of in vitro-assembled HIV-1 CA-NC complexes. Interestingly, we found that PF74 and Bi2 strongly stabilized HIV-1 CA-NC complexes. On the other hand, the peptide CAI destabilized HIV-1 CA-NC complexes. We also found that purified cyclophilin A destabilizes in vitro-assembled HIV-1 CA-NC complexes in the presence of cellular extracts in a cyclosporine-sensitive manner. In agreement with previous observations using the fate-of-the-capsid assay, we also demonstrated the ability of recombinant CPSF6 to stabilize HIV-1 CA-NC complexes. Overall, our findings suggested that cellular extracts specifically stabilize the HIV-1 core. We believe that our assay can be a powerful tool to assess HIV-1 core stability in vitro. PMID:23885082

  11. Cytosolic superoxide dismutase can provide protection against Fasciola gigantica.

    Science.gov (United States)

    Jaikua, Wipaphorn; Kueakhai, Pornanan; Chaithirayanon, Kulathida; Tanomrat, Rataya; Wongwairot, Sirima; Riengrojpitak, Suda; Sobhon, Prasert; Changklungmoa, Narin

    2016-10-01

    Superoxide dismutases (SOD), antioxidant metallo-enzymes, are a part of the first line of defense in the trematode parasites which act as the chief scavengers for reactive oxygen species (ROS). A recombinant Fasciola gigantica cytosolic SOD (FgSOD) was expressed in Escherichia coli BL21 (DE3) and used for immunizing rabbits to obtain polyclonal antibodies (anti-rFgSOD). This rabbit anti-rFgSOD reacted with the native FgSOD at a molecular weight of 17.5kDa. The FgSOD protein was expressed at high level in parenchyma, caecal epithelium and egg of the parasite. The rFgSOD reacted with antisera from rabbits infected with F. gigantica metacercariae collected at 2, 5, and 7 weeks after infection, and reacted with sera of infected mice. Anti-rFgSOD exhibited cross reactivity with the other parasites' antigens, including Eurytrema pancreaticum, Cotylophoron cotylophorum, Fischoederius cobboldi, Gastrothylax crumenifer, Paramphistomum cervi, and Setaria labiato papillosa. A vaccination was performed in imprinting control region (ICR) mice by subcutaneous injection with 50μg of rFgSOD combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 15 metacercariae by oral route. IgG1 and IgG2a in the immune sera were determined to indicate Th2 and Th1 immune responses. It was found that the parasite burden was reduced by 45%, and both IgG1 and IgG2a levels showed correlation with the numbers of worm recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ethnic diversity in a critical gene responsible for glutathione synthesis.

    Science.gov (United States)

    Willis, Alecia S; Freeman, Michael L; Summar, Samantha R; Barr, Frederick E; Williams, Scott M; Dawson, Elliott; Summar, Marshall L

    2003-01-01

    The tripeptide glutathione is an important biomolecule that acts as a scavenger of free radicals and plays a role in a number of other cellular processes. A number of diseases, including Parkinson's disease, cancer, sickle cell anemia, and HIV infection, are thought to involve oxidative stress and depletion of glutathione. The heterodimeric enzyme glutamate cysteine ligase catalyzes the first, rate-limiting step in the de novo synthesis of glutathione. Functional polymorphisms within the gene encoding the subunits of glutamate cysteine ligase have the potential to affect the body's capacity to synthesize glutathione and thus, may affect those diseases in which oxidative stress and glutathione have roles. We undertook systematic screening for polymorphisms within the exons and intronic flanking sequences of the gene encoding the catalytic subunit of glutamate cysteine ligase (GCLC). We identified 11 polymorphisms in GCLC and established allele frequencies for those polymorphisms in a population fitting the demographics of the middle Tennessee area. The nonsynonymous polymorphism C1384T was found only in individuals of African descent. In addition, allele frequencies for three other polymorphisms differ between Caucasians and African-Americans. Understanding these polymorphisms may lead to better understanding of diseases where glutathione is important so that better treatments may be developed.

  13. A dual role for plant quinone reductases in host-fungus interaction.

    Science.gov (United States)

    Heyno, Eiri; Alkan, Noam; Fluhr, Robert

    2013-11-01

    Quinone reductases (QR, EC 1.5.6.2) are flavoproteins that protect organisms from oxidative stress. The function of plant QRs has not as yet been addressed in vivo despite biochemical evidence for their involvement in redox reactions. Here, using knock-out (KO) and overexpressing lines, we studied the protective role of two groups of Arabidopsis thaliana cytosolic QRs, Nqr (NAD(P)H:quinone oxidoreductase) and Fqr (flavodoxin-like quinone reductase), in response to infection by necrotrophic fungi. The KO lines nqr(-) and fqr1(-) displayed significantly slower development of lesions of Botrytis cinerea and Sclerotinia sclerotium in comparison to the wild type (WT). Consistent with this observation, the overexpressing line FQR1(+) was hypersensitive to the pathogens. Both the nqr(-) and fqr1(-) displayed increased fluorescence of 2',7'-dichlorofluorescein,‬ a reporter for reactive oxygen species in response to B. cinerea. Infection by B. cinerea was accompanied with increased Nqr and Fqr1 protein levels in the WT as revealed by western blotting. In addition, a marked stimulation of salicylic acid-sensitive transcripts and suppression of jasmonate-sensitive transcripts was observed in moderately wounded QR KO mutant leaves, a condition mimicking the early stage of infection. In contrast to the above observations, germination of conidia was accelerated on leaves of QR KO mutants in comparison with the WT and FQR1(+). The same effect was observed in water-soluble leaf surface extracts. It is proposed that the altered interaction between B. cinerea and the QR mutants is a consequence of subtly altered redox state of the host, which perturbs host gene expression in response to environmental stress such as fungal growth.‬‬‬‬‬‬ © 2013 Scandinavian Plant Physiology Society.

  14. Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic.

    Science.gov (United States)

    Talukdar, Dibyendu; Talukdar, Tulika

    2014-07-01

    Response of sulfate transporters, thiol metabolism, and antioxidant defense system was studied in roots of two lentil (Lens culinaris Medik.) genotypes grown in arsenic (10, 25, and 40 μM As(V))-supplemented nutrient solution, and significant changes compared to control (0 μM As(V)) were observed mainly at 25 and 40 μM. In L 414, high glutathione (GSH) redox (0.8-0.9) was maintained with elevated thiol synthesis, powered by transcriptional up-regulation of LcSultr1;1 and LcSultr1;2 sulfate transporters and significant induction of LcSAT1;1 and LcSAT1;2 (serine acetyltransferase), OAS-TL (O-acetylserine(thiol)-lyase), γ-ECS (γ-glutamylcysteine synthetase), and PCS (phytochelatin synthase) genes predominantly within 12-24 h of As exposure at 25 μM and within 6-12 h at 40 μM. This thiolic potency in L 414 roots was effectively complemented by up-regulation of gene expressions and consequent enhanced activities of superoxide dismutase, ascorbate peroxidase (APX), dehydroascorbate reductase, glutathione reductase (GR), and glutathione-S-transferase (GST) isoforms at 25 and 40 μMAs, efficiently scavenging excess reactive oxygen species to prevent onset of As-induced oxidative stress and consequent inhibition of root growth in L 414. In contrast, down-regulation of vital sulfate-uptake transporters as well as entire thiol-metabolizing system and considerably low APX, GST, and GR expressions in DPL 59 not only resulted in reduced GSH redox but also led to over-accumulation of H2O2. This triggered membrane lipid peroxidations as the marks of As-induced oxidative damage. Results indicated coordinated response of thiol-metabolism and antioxidant defense in conferring As-tolerance in lentil, and GSH is the key point in this cascade.

  15. Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells.

    Science.gov (United States)

    Robitaille, Stephan; Mailloux, Ryan J; Chan, Hing Man

    2016-08-10

    Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of transgenic methionine sulfoxide reductase A (MsrA expression on lifespan and age-dependent changes in metabolic function in mice

    Directory of Open Access Journals (Sweden)

    Adam B. Salmon

    2016-12-01

    Full Text Available Mechanisms that preserve and maintain the cellular proteome are associated with long life and healthy aging. Oxidative damage is a significant contributor to perturbation of proteostasis and is dealt with by the cell through regulation of antioxidants, protein degradation, and repair of oxidized amino acids. Methionine sulfoxide reductase A (MsrA repairs oxidation of free- and protein-bound methionine residues through enzymatic reduction and is found in both the cytosol and the mitochondria. Previous studies in Drosophila have shown that increasing expression of MsrA can extend longevity. Here we test the effects of increasing MsrA on longevity and healthy aging in two transgenic mouse models. We show that elevated expression of MsrA targeted specifically to the cytosol reduces the rate of age-related death in female mice when assessed by Gompertz analysis. However, neither cytosolic nor mitochondrial MsrA overexpression extends lifespan when measured by log-rank analysis. In mice with MsrA overexpression targeted to the mitochondria, we see evidence for improved insulin sensitivity in aged female mice. With these and our previous data, we conclude that the increasing MsrA expression in mice has differential effects on aging and healthy aging that are dependent on the target of its subcellular localization.

  17. Both genome and cytosol dynamics change in E. coli challenged with sublethal rifampicin

    Science.gov (United States)

    Wlodarski, Michal; Raciti, Bianca; Kotar, Jurij; Cosentino Lagomarsino, Marco; Fraser, Gillian M.; Cicuta, Pietro

    2017-02-01

    While the action of many antimicrobial drugs is well understood at the molecular level, a systems-level physiological response to antibiotics remains largely unexplored. This work considers fluctuation dynamics of both the chromosome and cytosol in Escherichia coli, and their response to sublethal treatments of a clinically important antibiotic, rifampicin. We precisely quantify the changes in dynamics of chromosomal loci and cytosolic aggregates (a rheovirus nonstructural protein known as μNS-GFP), measuring short time-scale displacements across several hours of drug exposure. To achieve this we develop an empirical method correcting for photo-bleaching and loci size effects. This procedure allows us to characterize the dynamic response to rifampicin in different growth conditions, including a customised microfluidic device. We find that sub-lethal doses of rifampicin cause a small but consistent increase in motility of both the chromosomal loci and cytosolic aggregates. Chromosomal and cytosolic responses are consistent with each other and between different growth conditions.

  18. Structural and biochemical characterization of cinnamoyl-coa reductases

    Science.gov (United States)

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  19. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    nitrate transformation into nitrite (µg of NO2. -/min/g F.W) is observed when incubation period of enzyme is short (1 to 5 min). Key words: Extraction, dosage, nitrate reductase activity, callus, cotton. INTRODUCTION. Nitrate reductase (EC. 1.7.99.4) is an oxidoreductase enzyme involved in nitrogen assimilation in plant. It.

  20. Reduced glutathione as a persistence indicator of alien plants of the Amelancheir family

    Directory of Open Access Journals (Sweden)

    L. G. Dolgova

    2009-04-01

    Full Text Available It was proved that glutathione is an important indicator of the vegetation condition and persistence. According to the amount of glutathione the studied mespilus species are adapted to the environmental conditions. Increase of the glutathione amount is caused by some abiotic factors, e.g. temperature. Some differences of the glutathione content may be explained by the plants species patterns.

  1. Low colonic glutathione detoxification capacity in patients at risk for colon cancer.

    NARCIS (Netherlands)

    Grubben, M.J.A.L.; Braak, C.C.M.; Nagengast, F.M.; Peters, W.H.M.

    2006-01-01

    BACKGROUND: Colon carcinogenesis is a multifactorial process influenced by hereditary as well as environmental factors. The glutathione/glutathione S-transferase detoxification system in the colon is important for protection against carcinogens. We investigated the levels of glutathione/glutathione

  2. Do glutathione levels decline in aging human brain?

    Science.gov (United States)

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [High throughput screening of active and stereoselective carbonyl reductases].

    Science.gov (United States)

    Zhang, Hang; Chen, Xi; Feng, Jinhui; Bao, Jinku; Wu, Qiaqing; Zhu, Dunming

    2015-02-01

    In this study, a fast carbonyl reductases colorimetric screening method for discovering stereoselective carbonyl reductases was established by combining the reverse alcohol oxidation with the azoreductase-catalyzed reduction of azo dye. When azo dye (Orange I , 4-(4-hydroxy-1-naphthylazo) benzenesulfonic acid) and azoreductase (AzoB) were added into the reaction system of alcohol oxidation catalyzed by carbonyl reductase, the produced NAD(P)H served as electron donor for the azoreductase to reduce the azo dye, resulting the color fade. Hence, the carbonyl reductases can be screened by the obvious color change. When chiral alcohol was used as the substrate, the activity and stereoselectivity of carbonyl reductases can be screened at the same time.

  4. Protein abundance profiling of the Escherichia coli cytosol

    Directory of Open Access Journals (Sweden)

    Mann Matthias

    2008-02-01

    Full Text Available Abstract Background Knowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale, but proteomic technologies have now advanced to a stage where this information becomes readily accessible. Results Here, we describe an experimental scheme to maximize the coverage of proteins identified by mass spectrometry of a complex biological sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal proteins. Proteins involved in energy metabolism as well as those with binding function were also found in high copy number while proteins annotated with the terms metabolism, transcription, transport, and cellular organization were rare. The barrel-sandwich fold was found to be the structural fold with the highest abundance. Highly abundant proteins are predicted to be less prone to aggregation based on their length, pI values, and occurrence patterns of hydrophobic stretches. We also find that abundant proteins tend to be predominantly essential. Additionally we observe a significant correlation between protein and mRNA abundance in E. coli cells. Conclusion Abundance measurements for more than 1000 E. coli proteins presented in this work

  5. Growth hormone-binding proteins in high-speed cytosols of multiple tissues of the rabbit.

    Science.gov (United States)

    Herington, A C; Ymer, S; Roupas, P; Stevenson, J

    1986-04-11

    Soluble, specific binding protein(s) for growth hormone (GH) have been identified and partially characterized in high-speed cytosolic preparations from a number of rabbit tissues. The binding of 125I-labelled human GH to proteins in liver, heart, adipose tissue, skeletal muscle and kidney cytosols was dependent on time and cytosolic protein concentration. By Scatchard analysis, the binding affinities (KA: (2-7) X 10(9) M-1) were somewhat higher than those generally reported for membrane GH receptors. The binding proteins had a greater specificity for somatotrophic hormones than lactogenic hormones, although the kidney appeared to have, in addition, a lactogen-binding protein. By gel filtration, the Mr of the cytosolic GH-binding protein was approximately 100 000 in all tissues. None of the binding proteins was detectable by the poly(ethylene glycol) precipitation method used widely for soluble hormone receptors. The cytosolic GH-binding proteins also cross-reacted with a monoclonal antibody to the rabbit liver membrane GH receptor. These results indicate the ubiquitous presence of apparently naturally soluble GH-binding proteins in the cytosolic fractions of several tissues in the rabbit. Of great interest is their presence in muscle, where GH receptors or binding proteins have not previously been detected, despite muscle being recognized as a classical GH target tissue.

  6. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay.

    Science.gov (United States)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil; Kim, Dong-Myung; Yoo, Tae Hyeon; Kim, Yong-Sung

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Quantitative assessment of cellular uptake and cytosolic access of antibody in living cells by an enhanced split GFP complementation assay

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Dong-Myung [Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoo, Tae Hyeon [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong-Sung, E-mail: kimys@ajou.ac.kr [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2015-11-27

    Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.

  8. Arsenate V induced glutathione efflux from human erythrocytes.

    Science.gov (United States)

    Yildiz, Deniz; Cakir, Yeliz

    2012-01-01

    The objective of the present study was to investigate if arsenate V exposure results in glutathione efflux from human erythrocytes. The changes in intracellular and extracellular nonprotein sulfhydryl and glutathione levels were determined in arsenate (V) exposed erythrocytes. Presence of any cellular membrane damage was assessed by lactate dehydrogenase activity measurement in the supernatant. When erythrocytes were exposed to 10 mM of arsenate (V) for 4 h, the intracellular NPSH level decreased to 0.28±0025 μmol/ml erythrocyte. In contrast, extracellular nonprotein thiol level was increased to 0.180±0.010 μmol/ml erythrocyte in 4 h. Extracellular glutathione levels reached to 0.028±0.001, 0.052±0.002, and 0.054±0.004 μmol/ml erythrocyte with 1, 5, and 10 mM of arsenate (V), respectively. Utilization of MK571 a multi drug resistance-associated protein 1 inhibitor decreased the rate of glutathione efflux from erythrocytes suggesting a role for this membrane transporter in the process. The results of the present study indicate that erythrocytes efflux glutathione when exposed to arsenate (V). Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Glutathione-dependent responses of plants to drought: a review

    Directory of Open Access Journals (Sweden)

    Mateusz Labudda

    2014-02-01

    Full Text Available Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.

  10. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants.

    Science.gov (United States)

    Hartman, Matías D; Figueroa, Carlos M; Arias, Diego G; Iglesias, Alberto A

    2017-01-01

    Glucitol, also known as sorbitol, is a major photosynthetic product in plants from the Rosaceae family. This sugar alcohol is synthesized from glucose-6-phosphate by the combined activities of aldose-6-phosphate reductase (Ald6PRase) and glucitol-6-phosphatase. In this work we show the purification and characterization of recombinant Ald6PRase from peach leaves. The recombinant enzyme was inhibited by glucose-1-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate and orthophosphate. Oxidizing agents irreversibly inhibited the enzyme and produced protein precipitation. Enzyme thiolation with oxidized glutathione protected the enzyme from insolubilization caused by diamide, while incubation with NADP+ (one of the substrates) completely prevented enzyme precipitation. Our results suggest that Ald6PRase is finely regulated to control carbon partitioning in peach leaves. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Light Sensitivity of Lactococcus lactis Thioredoxin Reductase

    DEFF Research Database (Denmark)

    Skjoldager, Nicklas

    system is an alternative thiol-based antioxidant system, but the glutathione biosynthesis system is not present in all organisms. This thesis focuses on the TrxR from the lactic acid bacteria (LAB) model organism Lactococcus lactis ssp. cremoris MG1363, a strain that is glutathione- and catalasenegative...... with a shift in the absorbance spectrum of the tightly bound FAD co-enzyme and oxidation of the methyl group of the isoalloxazine ring, as determined by MS. The extracted FAD from photo-inactivated LlTrxR also displayed a positive result in a dinitrophenylhydrazine (DNPH) test, indicating the presence...... of a carbonyl group, i. e. an aldehyde. LlTrxR reduces O2 in the presence of NADPH faster than the EcTrxR and the photo-inactivation is lowered at semi-anaerobic conditions and in the presence of iodine a well-known quencher of photoexcited triplet state flavin. The present PhD study was initiated in order...

  12. Selenium homeostasis and induction of thioredoxin reductase during long term selenite supplementation in the rat

    DEFF Research Database (Denmark)

    Erkhembayar, Suvd; Mollbrink, Annelie; Eriksson, Malin

    2011-01-01

    drinking water containing 1μg/mL or 5μg/mL sodium selenite. Selenium levels were monitored in serum and liver tissue over the 10-week period, and the kinetics of induction of the redox-active cytosolic selenoenzyme thioredoxin reductase were followed. Selenite exposure via drinking water caused a dose......Selenium is a candidate treatment for liver tumour prevention in chronic liver disease. In this study, we have studied selenium uptake, distribution and accumulation in rats provided with water containing tumour-preventive doses of sodium selenite for 10weeks. Male Fischer 344 rats were given...... selenium levels was also seen, and the induction of TrxR1 mRNA was seen only during the first three days of treatment, when the levels of selenium in the liver were increasing. Sodium selenite at 1 and 5μg/mL did not affect body weight or relative liver mass. We concluded that long-term treatment...

  13. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    Directory of Open Access Journals (Sweden)

    Yuan-Jie Zhang

    Full Text Available Dehydroascorbate reductase (DHAR, which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens and eudicots (e.g. Arabidopsis thaliana. In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  14. High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H₂O₂ distribution during Botrytis cinerea infection in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Uwe K Simon

    Full Text Available In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H₂O₂ was monitored over a time frame of 96 h post inoculation (hpi in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS and the area around the IS which was defined as area adjacent to the inoculation site (AIS. H₂O₂ accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H₂O₂ in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi correlated with an accumulation of H₂O₂ in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H₂O₂ in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size, chlorosis and necrosis of the leaves.

  15. High Resolution Imaging of Temporal and Spatial Changes of Subcellular Ascorbate, Glutathione and H2O2 Distribution during Botrytis cinerea Infection in Arabidopsis

    Science.gov (United States)

    Simon, Uwe K.; Polanschütz, Lisa M.; Koffler, Barbara E.; Zechmann, Bernd

    2013-01-01

    In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H2O2) was monitored over a time frame of 96 h post inoculation (hpi) in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS) and the area around the IS which was defined as area adjacent to the inoculation site (AIS). H2O2 accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H2O2 in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi) correlated with an accumulation of H2O2 in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS) which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H2O2 in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size), chlorosis and necrosis of the leaves. PMID:23755284

  16. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    Science.gov (United States)

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  17. Balneotherapy and platelet glutathione metabolism in type II diabetic patients

    Science.gov (United States)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Agishi, Yuko

    1996-09-01

    Effects of balneotherapy on platelet glutathione metabolism were investigated in 12 type II (non-insulin-dependent) diabetic patients. Levels of the reduced form of glutathione (GSH) on admission were well correlated with those of fasting plasma glucose (FPG; r=0.692, P150 mg/dl), the value decreased ( Pplatelet GSH synthesis appeared to be induced in response to oxidative stress; (2) lowered GPX activities indicated that the antioxidative defense system was impaired; and (3) platelet glutathione metabolism was partially improved by 4 weeks balneotherapy, an effect thought to be dependent on the control status of plasma glucose levels. It is suggested that balneotherapy is beneficial for patients whose platelet antioxidative defense system is damaged, such as those with diabetes mellitus and coronary heart disease.

  18. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...... potential of -295 mV for the mixed disulfide. In another set of experiments, the pKa value of the active site cysteine was determined. In line with what has been observed for other glutaredoxins, this cysteine was found to have a very low pKa value. The glutathionylation of glutaredoxin was shown to have...

  19. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    Science.gov (United States)

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  20. Src Dependent Pancreatic Acinar Injury Can Be Initiated Independent of an Increase in Cytosolic Calcium.

    Directory of Open Access Journals (Sweden)

    Vivek Mishra

    Full Text Available Several deleterious intra-acinar phenomena are simultaneously triggered on initiating acute pancreatitis. These culminate in acinar injury or inflammatory mediator generation in vitro and parenchymal damage in vivo. Supraphysiologic caerulein is one such initiator which simultaneously activates numerous signaling pathways including non-receptor tyrosine kinases such as of the Src family. It also causes a sustained increase in cytosolic calcium- a player thought to be crucial in regulating deleterious phenomena. We have shown Src to be involved in caerulein induced actin remodeling, and caerulein induced changes in the Golgi and post-Golgi trafficking to be involved in trypsinogen activation, which initiates acinar cell injury. However, it remains unclear whether an increase in cytosolic calcium is necessary to initiate acinar injury or if injury can be initiated at basal cytosolic calcium levels by an alternate pathway. To study the interplay between tyrosine kinase signaling and calcium, we treated mouse pancreatic acinar cells with the tyrosine phosphatase inhibitor pervanadate. We studied the effect of the clinically used Src inhibitor Dasatinib (BMS-354825 on pervanadate or caerulein induced changes in Src activation, trypsinogen activation, cell injury, upstream cytosolic calcium, actin and Golgi morphology. Pervanadate, like supraphysiologic caerulein, induced Src activation, redistribution of the F-actin from its normal location in the sub-apical area to the basolateral areas, and caused antegrade fragmentation of the Golgi. These changes, like those induced by supraphysiologic caerulein, were associated with trypsinogen activation and acinar injury, all of which were prevented by Dasatinib. Interestingly, however, pervanadate did not cause an increase in cytosolic calcium, and the caerulein induced increase in cytosolic calcium was not affected by Dasatinib. These findings suggest that intra-acinar deleterious phenomena may be initiated

  1. Insulin Induces an Increase in Cytosolic Glucose Levels in 3T3-L1 Cells with Inhibited Glycogen Synthase Activation

    Directory of Open Access Journals (Sweden)

    Helena H. Chowdhury

    2014-10-01

    Full Text Available Glucose is an important source of energy for mammalian cells and enters the cytosol via glucose transporters. It has been thought for a long time that glucose entering the cytosol is swiftly phosphorylated in most cell types; hence the levels of free glucose are very low, beyond the detection level. However, the introduction of new fluorescence resonance energy transfer-based glucose nanosensors has made it possible to measure intracellular glucose more accurately. Here, we used the fluorescent indicator protein (FLIPglu-600µ to monitor cytosolic glucose dynamics in mouse 3T3-L1 cells in which glucose utilization for glycogen synthesis was inhibited. The results show that cells exhibit a low resting cytosolic glucose concentration. However, in cells with inhibited glycogen synthase activation, insulin induced a robust increase in cytosolic free glucose. The insulin-induced increase in cytosolic glucose in these cells is due to an imbalance between the glucose transported into the cytosol and the use of glucose in the cytosol. In untreated cells with sensitive glycogen synthase activation, insulin stimulation did not result in a change in the cytosolic glucose level. This is the first report of dynamic measurements of cytosolic glucose levels in cells devoid of the glycogen synthesis pathway.

  2. Enhancement of nitrate reductase activity by benzyladenine in Agrostemma githago

    Energy Technology Data Exchange (ETDEWEB)

    Kende, H.; Hahn, H.; Kays, S.E.

    1971-01-01

    Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO/sub 3//sup -/ and cytokinins. Discussed was whether cytokinins affected nitrate reductase activity directly or through NO/sub 3//sup -/, either by amplifying the effect of low endogenous NO/sub 3//sup -/ levels, or by making NO/sub 3//sup -/ available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO/sub 3//sup -/ and benzyladenine, additive responses were obtained. The effects of NO/sub 3//sup -/ and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO/sub 3//sup -/, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO/sub 3//sup -/ was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO/sub 3//sup -/ and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increased again as a result of a second treatment with benzyladenine but not with NO/sub 3//sup -/. At the time of the second exposure to benzyladenine, no NO/sub 3//sup -/ was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO/sub 3//sup -/. 11 references, 5 figures, 3 tables.

  3. Limited reactivity of formyl chloride with glutathione and relevance to metabolism and toxicity of dichloromethane.

    Science.gov (United States)

    Watanabe, Kengo; Guengerich, F Peter

    2006-08-01

    Formyl chloride has been indirectly implicated as an intermediate in the oxidation of CH(2)Cl(2) and proposed to be a product of the oxidation of some other compounds. Formyl chloride was synthesized and added to aqueous solutions, with CO formed as a product. The presence of glutathione (GSH) did not reduce the yield of CO at any of the pH values tested. At pH >or= 9, a small amount of S-formyl GSH was detected (cytosol nor purified GSH transferase (rat) 5-5 or (human) T1-1 significantly enhanced the level of S-formyl GSH recovered in incubations with either NADPH-fortified microsomes and CH(2)Cl(2) or synthetic formyl chloride. The oxidation pathway is the principal route of metabolism of CH(2)Cl(2) at low doses in vivo, and previous literature assumes that the formyl chloride product is reactive with GSH and protein. We provide evidence that formyl chloride can react with GSH but that, in contrast to suggestions in the literature, the extent is very limited because of the known high rate of rearrangement to CO in aqueous solution. The very limited reaction of formyl chloride with nucleophiles is consistent with the low toxicity of CH(2)Cl(2), and formyl chloride binding cannot be used as an explanation for discrepancies in pharmacokinetic models [Gargas, M. L., Clewell, H. J., III, and Andersen, M. E. (1986) Toxicol. Appl. Pharmacol. 82, 211-223; Clewell, H. J., III (1995) Toxicology 102, 83-94].

  4. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    Science.gov (United States)

    Moons, Ann

    2005-01-01

    Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-conjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein function from oxidative damage and DHAR activity functioning in redox homeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles

  5. Development of glutathione-deficient embryos in Arabidopsis is influenced by the maternal level of glutathione.

    Science.gov (United States)

    Lim, B; Meyer, A J; Cobbett, C S

    2011-07-01

    Glutathione (GSH) biosynthesis-deficient gsh1 and gsh2 null mutants of Arabidopsis thaliana have late embryonic-lethal and early seedling-lethal phenotypes, respectively, when segregating from a phenotypically wild-type parent plant, indicating that GSH is required for seed maturation and during germination. In this study, we show that gsh2 embryos generated in a partially GSH-deficient parent plant, homozygous for either the cad2 mutation in the GSH1 gene or homozygous for mutations in CLT1, CLT2 and CLT3 encoding plastid thiol transporters, abort early in embryogenesis. In contrast, individuals homozygous for the same combinations of mutations but segregating from heterozygous, phenotypically wild-type parents exhibit the parental gsh2 seedling-lethal phenotype. Similarly, homozygous gsh1 embryos generated in a gsh1/cad2 partially GSH-deficient parent plant abort early in development. These observations indicate that the development of gsh1 and gsh2 embryos to a late stage is dependent on the level of GSH in the maternal plant. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Effects on levels of glutathione and some related enzymes in tissues after an acute arsenic exposure in rats and their relationship to dietary protein deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, S. [University Grants Commission, New Delhi (India); Dept. of Physiology, Calcutta Univ. (India); Chatterjee, A.K. [Dept. of Physiology, Calcutta Univ. (India)

    2001-11-01

    Arsenic is a potent toxin, carcinogen and modulator of antioxidant defense system. In this study, male rats of Wistar strain, maintained on either 18% or 6% protein (casein) diet, received an acute i.p. exposure to sodium arsenite (As{sup 3+}) at its LD{sub 50} dose (15.86 mg/kg body weight). One hour after the arsenic exposure, glutathione (GSH) concentration was significantly depleted and lipid peroxidation was increased. A relationship between any two of tissue arsenic concentrations, GSH levels and lipid peroxidation values was observed only for liver when the proportional changes of respective parameters in either of the dietary groups of animals were compared. This suggests that, in liver, arsenic metabolism appears dependant upon the GSH concentration. Acute arsenic exposure significantly increased the glutathione peroxidase (GPx) activity in liver of both dietary groups and in kidney of only the 18% protein-fed group of animals. The glutathione-S-transferase (GST) activity significantly decreased in liver of the 18% protein-fed animals while GST increased in kidney of both the 18% and the 6% protein-fed groups. No significant change in glutathione reductase (GR) or glucose-6-phosphate dehydrogenase (G6PDH) activity was observed. In the present investigation, liver as a whole seems to be more affected in terms of GSH level and GST activity. The mode of responses of GPx and GR activities as well as the unaltered G6PDH activity might result in arsenic-induced GSH depletion and increase in lipid peroxidation. The animals of the 6% protein-fed group, appeared to be affected less in terms of tissue arsenic concentration, lipid peroxidation, GSH level and GST activity. (orig.)

  7. Babesia microti Aldo-keto Reductase-Like Protein Involved in Antioxidant and Anti-parasite Response

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2017-10-01

    Full Text Available The intraerythrocytic apicomplexan Babesia microti is the primary causative agent of human babesiosis, which is an infectious disease that occurs in various regions around the world. Although the aldo-keto reductases (AKRs of this parasite have been sequenced and annotated, their biological properties remain unknown. AKRs are a superfamily of enzymes with diverse functions in the reduction of aldehydes and ketones. In the present study, we cloned the full-length cDNA of a B. microti aldo-keto reductase-like protein (BmAKR and analyzed the deduced amino acid sequence of the BmAKR protein. This protein has a conserved AKR domain with an N-terminal signal sequence. Bmakr was upregulated on the 8th day after infection, whereas it was downregulated during the later stages. The recombinant protein of BmAKR was expressed in a glutathione S-transferase-fused soluble form in Escherichia coli. Western blot analysis showed that the mouse anti-BmAKR antibody recognized native BmAKR from a parasite lysate. Immunofluorescence microscopy localized BmAKR to the cytoplasm of B. microti merozoites in mouse RBCs in this study. Bmakr expression was significantly upregulated in the presence of oxidant stress. Atovaquone, a known anti-babesiosis drug, and robenidine, a known anti-coccidiosis drug, induced upregulation of Bmakr mRNA, thereby suggesting that Bmakr may be involved in anti-parasite drug response.

  8. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues.

    Science.gov (United States)

    Tichá, Tereza; Lochman, Jan; Činčalová, Lucie; Luhová, Lenka; Petřivalský, Marek

    2017-12-09

    Nitric oxide (NO) is considered as a signalling molecule involved in a variety of important physiological and pathological processes in plant and animal systems. The major pathway of NO reactions in vivo represents S-nitrosation of thiols to form S-nitrosothiols. S-nitrosoglutathione reductase (GSNOR) is the key enzyme in the degradation pathway of S-nitrosoglutathione (GSNO), a low-molecular weight adduct of NO and glutathione. GSNOR indirectly regulates the level of protein S-nitrosothiol in the cells. This study was focused on the dynamic regulation of the activity of plant GSNORs through reversible S-nitrosation and/or oxidative modifications of target cysteine residues. Pre-incubation with NO/NO - donors or hydrogen peroxide resulted in a decreased reductase and dehydrogenase activity of all studied plant GSNORs. Incubation with thiol reducing agent completely reversed inhibitory effects of nitrosative modifications and partially also oxidative inhibition. In biotin-labelled samples, S-nitrosation of plant GSNORs was confirmed after immunodetection and using mass spectrometry S-nitrosation of conserved Cys271 was identified in tomato GSNOR. Negative regulation of constitutive GSNOR activity in vivo by nitrosative or oxidative modifications might present an important mechanism to control GSNO levels, a critical mediator of the downstream signalling effects of NO, as well as for formaldehyde detoxification in dehydrogenase reaction mode. Copyright © 2017. Published by Elsevier Inc.

  9. Measuring Changes in Cytosolic Calcium Levels in HBV- and HBx-Expressing Cultured Primary Hepatocytes.

    Science.gov (United States)

    Casciano, Jessica C; Bouchard, Michael J

    2017-01-01

    Chronic infection with hepatitis B virus (HBV) remains a major worldwide health concern and is the leading cause of hepatocellular carcinoma (HCC). The HBV X protein (HBx) is the only regulatory protein encoded in the HBV genome; HBx stimulates HBV replication in vivo and in vitro. HBx also regulates cytosolic Ca(2+) signaling, and altered Ca(2+) signaling is associated with the development of many diseases, including HCC. Importantly, many HBx functions, including HBx modulation of cell proliferation, apoptosis, and transcription pathways, have been linked to changes in cytosolic Ca(2+) signaling. Additionally, several stages of HBV replication, including capsid formation and activation of the HBV polymerase, are dependent on intracellular Ca(2+). Consequently, defining the molecular mechanism that underlies HBV and HBx modulation of cytosolic Ca(2+) levels is important for understanding HBV pathogenesis and the role of HBx in HBV replication. Here, we describe a single-cell Ca(2+)-imaging protocol that we use to investigate HBV and HBx effects on the level of cytosolic Ca(2+). We specifically outline two methods that we use to evaluate HBV and HBx regulation of cytosolic Ca(2+) levels in cultured primary hepatocytes. This protocol can also be adapted for use in liver cell lines.

  10. Micrometer-Scale Membrane Transition of Supported Lipid Bilayer Membrane Reconstituted with Cytosol of Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Kei Takahashi

    2017-03-01

    Full Text Available Background: The transformation of the supported lipid bilayer (SLB membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum, is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level, contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.

  11. An assay for clogging the ciliary pore complex distinguishes mechanisms of cytosolic and membrane protein entry.

    Science.gov (United States)

    Takao, Daisuke; Dishinger, John F; Kee, H Lynn; Pinskey, Justine M; Allen, Ben L; Verhey, Kristen J

    2014-10-06

    As a cellular organelle, the cilium contains a unique protein composition. Entry of both membrane and cytosolic components is tightly regulated by gating mechanisms at the cilium base; however, the mechanistic details of ciliary gating are largely unknown. We previously proposed that entry of cytosolic components is regulated by mechanisms similar to those of nuclear transport and is dependent on nucleoporins (NUPs), which comprise a ciliary pore complex (CPC). To investigate ciliary gating mechanisms, we developed a system to clog the pore by inhibiting NUP function via forced dimerization. We targeted NUP62, a component of the central channel of the nuclear pore complex (NPC), for forced dimerization by tagging it with the homodimerizing Fv domain. As proof of principle, we show that forced dimerization of NUP62-Fv attenuated (1) active transport of BSA into the nuclear compartment and (2) the kinesin-2 motor KIF17 into the ciliary compartment. Using the pore-clogging technique, we find that forced dimerization of NUP62 attenuated the gated entry of cytosolic proteins but did not affect entry of membrane proteins or diffusional entry of small cytosolic proteins. We propose a model in which active transport of cytosolic proteins into both nuclear and ciliary compartments requires functional NUPs of the central pore, whereas lateral entry of membrane proteins utilizes a different mechanism that is likely specific to each organelle's limiting membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Cytosolic and membrane-bound chitinases of two mucoraceous fungi: a comparative study.

    Science.gov (United States)

    Balasubramanian, R; Manocha, M S

    1992-04-01

    Chitinases isolated from membrane and cytosolic fractions of two mucoraceous fungi, Choanephora cucurbitarum and Phascolomyces articulosus, were investigated. The membrane-bound chitinase was isolated by Bio-Gel P-100 and DEAE Bio-Gel A chromatographic techniques. On SDS-PAGE the chitinase from both fungi migrated as a single band of M(r) 66 kDa. The cytosolic chitinase from the mycelial extracts of these fungi was separated by heat treatment, ammonium sulphate precipitation, and by affinity chromatography with regenerated chitin. SDS-PAGE showed two bands for each fungus with M(r) of 69.5 and 55 kDa in C. cucurbitarum and M(r) 69.5 and 53 kDa in Ph. articulosus. Chitinases, membrane bound or cytosolic, hydrolyzed regenerated chitin, colloidal chitin, glycol chitin, N,N'-diacetylchitobiose, and N,N',N"-triacetylchitotriose. Heavy metals, inhibitors, and N-acetylglucosamine inhibited chitinase activity, whereas trypsin and an acid protease enhanced its activity. Chitinase preparations showed lysozyme activity that was inhibited by histamine but not by N-acetylglucosamine. There was no N-acetylglucosamanidase activity, but beta-1,3 glucanase activity was found in cytosolic preparations only. Despite slight differences in their molecular mass, both the membrane-bound and cytosolic chitinases showed similarities in substrate utilization, response to inhibitors, and activation by trypsin and acid protease; pH and temperature optima also were similar.

  13. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  14. Is Glutathione the Major Cellular Target of Cisplatin?

    DEFF Research Database (Denmark)

    Kasherman, Yonit; Stürup, Stefan; gibson, dan

    2009-01-01

    Cisplatin is an anticancer drug whose efficacy is limited because tumors develop resistance to the drug. Resistant cells often have elevated levels of cellular glutathione (GSH), believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly, forming...

  15. Effects of antioxidants on drug-induced glutathione instability and ...

    African Journals Online (AJOL)

    Glutathione (GSH) instability leading to its depletion, and enhanced lipid peroxidation, are associated with the pathogenesis, progression and therapy of many diseases / disease conditions – including sickle cell disease. In this study, the effects of two antioxidants, ascorbic acid and á - tocopherol, on GSH instability and ...

  16. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sylke Müller

    2015-06-01

    Full Text Available Malaria in humans is caused by one of five species of obligate intracellular protozoan parasites of the genus Plasmodium. P. falciparum causes the most severe disease and is responsible for 600,000 deaths annually, primarily in Sub-Saharan Africa. It has long been suggested that during their development, malaria parasites are exposed to environmental and metabolic stresses. One strategy to drug discovery was to increase these stresses by interfering with the parasites’ antioxidant and redox systems, which may be a valuable approach to disease intervention. Plasmodium possesses two redox systems—the thioredoxin and the glutathione system—with overlapping but also distinct functions. Glutathione is the most abundant low molecular weight redox active thiol in the parasites existing primarily in its reduced form representing an excellent thiol redox buffer. This allows for an efficient maintenance of the intracellular reducing environment of the parasite cytoplasm and its organelles. This review will highlight the mechanisms that are responsible for sustaining an adequate concentration of glutathione and maintaining its redox state in Plasmodium. It will provide a summary of the functions of the tripeptide and will discuss the potential of glutathione metabolism for drug discovery against human malaria parasites.

  17. Comparative Study of Glutathione S-Transferase Activity of Three ...

    African Journals Online (AJOL)

    Investigation to ascertain the levels of glutathione S-transferase (GST) activity of three human erythrocyte genotypes (HbAA, HbAS and HbSS) obtained from apparently healthy and clinically confirmed malarious subjects/volunteers was carried out. The incubation of human erythrocytes with 1-chloro-2,4- dinitrobenzene ...

  18. Spectral study of the complexation of Nd (III) with glutathione ...

    Indian Academy of Sciences (India)

    Studies on the difference in energy parameters and comparative absorption spectrophotometry involving 4-4 transitions on Nd(III) and glutathione reduced (GSH) in the absence and presence of Zn(II) have been carried out in aquated organic solvents (50 : 50) like methanol, dioxane, acetonitrile and dimethylformamide.

  19. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    2017-10-26

    Oct 26, 2017 ... Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) ...

  20. (Monodora myristica) on reduced glutathione, uric acid levels

    African Journals Online (AJOL)

    This study investigated the effect of the methanolic extract of. Aframomum sceptrum and Monodora myristica on the reduced glutathione (GSH) and uric acid levels in the plasma and liver of streptozotocin (STZ)-induced-diabetic rats. The possible hepatic damage resulting from the administration of the spices was also

  1. Metabolic modulation of glutathione in whole blood components ...

    African Journals Online (AJOL)

    Lead has been found to have the ability to interfere in the metabolism and biological activities of many proteins. It has also been found that metalloelements have strong affinity for sulfhydryl (-SH) groups in biological molecules including glutathione (GSH) in tissues. Because of these facts, it was of interest to investigate ...

  2. Glutathione dysregulation and the etiology and progression of human diseases.

    NARCIS (Netherlands)

    Ballatori, N.; Krance, S.M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C.L.

    2009-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases

  3. Molecular characterization of zeta class glutathione S-transferases ...

    Indian Academy of Sciences (India)

    Abstract. Glutathione transferases (GSTs; EC 2.5.1.18) play important roles in stress tolerance and metabolic detoxification in plants. In higher plants, studies on GSTs have focussed largely on agricultural plants. There is restricted information about molecular characterization of GSTs in gymnosperms. To date, only tau class ...

  4. Purification and biochemical characterization of a novel glutathione ...

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... Purification and biochemical characterization of a novel glutathione S-transferase of the silkworm, ... silkworm as a model for lepidopteran insects is also useful to obtain data on its detoxification .... The effect of temperature on CDNB conjugation reaction catalyzed by BmGST was examined under the ...

  5. Activation of human erythrocyte glutathione – s – transferase (EC ...

    African Journals Online (AJOL)

    ) of the isolated caffeine were tested in-vitro on their possible effect on human erythrocyte (red cell) glutathione – S – transferase (EC. 2.5.1.18) activity. The result indicated significant (P < 0.05) activation of the erythrocyte enzyme (GST) by ...

  6. Intravenous glutathione for skin lightening: Inadequate safety data ...

    African Journals Online (AJOL)

    Two controlled clinical trials (GSH capsules: 60 patients; 2% glutathione disulphide lotion: 30 patients) and a case series (GSH lozenges: 30 patients) reported a significantly decreased melanin index. A case series (GSH soap: 15 patients) reported skin lightening based on photography. Two systematic reviews of IV GSH ...

  7. Selection of antisense oligodeoxynucleotides against glutathione S-transferase Mu

    NARCIS (Netherlands)

    ’t Hoen, Peter a.C; Out, Ruud; Commandeur, Jan N M; Vermeulen, Nico P E; van Batenburg, F H D; Manoharan, Muthiah; van Berkel, Theo J C; Biessen, Erik A L; Bijsterbosch, Martin K

    2002-01-01

    The aim of the present study was to identify functional antisense oligodeoxynucleotides (ODNs) against the rat glutathione S-transferase Mu (GSTM) isoforms, GSTM1 and GSTM2. These antisense ODNs would enable the study of the physiological consequences of GSTM deficiency. Because it has been

  8. Cloning and expression of a tomato glutathione S- transferase (GST ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-20

    Mar 20, 2012 ... 1Key laboratory of Plant-Microbe Interaction, Department of Life Science, Shangqiu Normal University, Shangqiu. 476000, China. ..... (2011). A putative glutathione S-transferase gene is required for Ol-1- mediated resistance against powdery mildew in tomato. Plant Mol. Biol. Rep. 29: 972-978. Sheehan D ...

  9. Comparative study of biological activity of glutathione, sodium ...

    African Journals Online (AJOL)

    Asim ur Rehman

    Glutathione (GSH) and sodium tungstate (Na2WO4) are important pharmacological agents. They provide protection to cells against cytotoxic agents and thus reduce their cytotoxicity. It was of interest to study the biological activity of these two pharmacological active agents. Different strains of bacteria were used and the ...

  10. Effects Of Alcohol And Paracetamol On Hepatic Glutathione ...

    African Journals Online (AJOL)

    In conclusion the administration of paracetamol after excessive consumption of alcohol may cause more damage than the expected relief. KEY WORDS: Hepatic Glutathione concentration, Paracetamol and alcohol which revealed that administration. Journal of Medical Investigation and Practice Vol. 4: 2003: 8-11 ...

  11. Role of the ascorbate-glutathione cycle during senescence and ...

    African Journals Online (AJOL)

    Programmed cell death is an integral part of normal plant development including leaf senescence. This study investigated the response of some component of ascorbate-glutathione cycle, chlorophylls.a & b, protein content, and membrane leakage during the developmental stages of Phaseolus cotyledons from imbibition till ...

  12. Insecticide resistance and glutathione S-transferases in mosquitoes ...

    African Journals Online (AJOL)

    Mosquito glutathione S-transferases (GSTs) have received considerable attention in the last 20 years because of their role in insecticide metabolism producing resistance. Many different compounds, including toxic xenobiotics and reactive products of intracellular processes such as lipid peroxidation, act as GST substrates.

  13. [Fumarate reductase in the mitochondria of the trematode Calicophoron ijimai].

    Science.gov (United States)

    Iarygina, G V; Vykhrestiuk, N P; Burenina, E A

    1983-01-01

    The presence of active fumarate reductase system in mitochondria of the trematode Calicophoron ijimai was shown. Fumarate reductase activities in different collections of C. ijimai vary considerably. Maximum activity accounts for 47.7 +/- 1.0 nM/min/mg protein whereas minimum--for 15.1 +/- 0.1. Some properties of the enzyme were studied. The effect of thiabendazole, bitionol, oxinid and preparations of G-1026 and G-937 on the fumarate reductase activity was investigated. G-1026, G-937 preparations and bitionol have the strongest inhibitory effect on the enzyme. Thiabendazole inhibited but little the fumarate reductase reaction in C. ijimai. The enzyme activity was not affected by oxinid.

  14. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  15. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  16. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    Science.gov (United States)

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  17. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  18. Glutathione maintenance mitigates age-related susceptibility to redox cycling agents

    Directory of Open Access Journals (Sweden)

    Nicholas O. Thomas

    2016-12-01

    Full Text Available Isolated hepatocytes from young (4–6 mo and old (24–26 mo F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. An LC50 for each age group was established, which showed that aging resulted in a nearly 2-fold increase in susceptibility to menadione (LC50 for young: 405 μM; LC50 for old: 275 μM. Examination of the known Nrf2-regulated pathways associated with menadione detoxification revealed, surprisingly, that NAD(PH: quinone oxido-reductase 1 (NQO1 protein levels and activity were induced 9-fold and 4-fold with age, respectively (p=0.0019 and p=0.018; N=3, but glutathione peroxidase 4 (GPX4 declined by 70% (p=0.0043; N=3. These results indicate toxicity may stem from vulnerability to lipid peroxidation instead of inadequate reduction of menadione semi-quinone. Lipid peroxidation was 2-fold higher, and GSH declined by a 3-fold greater margin in old versus young rat cells given 300 µM menadione (p2-fold reduction in cell death, suggesting that the age-related increase in menadione susceptibility likely stems from attenuated GSH-dependent defenses. This data identifies cellular targets for intervention in order to limit age-related toxicological insults to menadione and potentially other redox cycling compounds.

  19. Erythrocyte glutathione levels in lithium-induced hypothyroidism.

    Science.gov (United States)

    Engin, Atilla; Altan, Nilgun; Isik, Erdal

    2005-01-01

    Lithium, widely used in the prophylaxis of psychiatric patients with bipolar affective disorders, is well known to induce thyroid alterations. However, a possible metabolic linkage between blood thyroxine levels and its regulatory function on erythrocyte glutathione concentration has not yet been evaluated in lithium-treated patients. The aim of this study was to assess the antioxidative capacity of erythrocytes in lithium-induced hypothyroidism before and after thyroxine replacement. Thyroid ultrasound with clinical and laboratory evaluation of thyroid function and thyroid-stimulating hormone assay were performed prior to and at 6-month intervals during lithium prophylaxis in 76 patients with bipolar affective disorders. The daily lithium dosage was adjusted to 600-1200 mg and the mean duration of treatment was 2.2 +/- 0.4 years. Final assessment revealed that 12 patients had evidence of primary hypothyroidism, and these were assigned as the test group. Lithium prophylaxis was supplemented with thyroxine at a dosage of 100 mg/day within 6 months after thyroid dysfunction was diagnosed. Red blood cell superoxide dismutase activities and the glutathione contents were measured before and after thyroxine replacement. In order to assess the effect of long-term lithium administration on red blood cell glutathione and superoxide dismutase levels, 12 patients who had not developed hypothyroidism during the follow-up period were selected for the lithium-treated euthyroid group. Mann Whitney U-test and Wilcoxon rank sum W-test were used for comparison of data. A comparison of the lithium-treated test group with healthy volunteers and their own values after thyroxine replacement revealed a significant decrease in red blood cell glutathione concentrations (p = 0.000) in the hypothyroid state. However, no clinically significant changes were observed in red blood cell superoxide dismutase activities of the test group. A statistical survey also demonstrated that there was no

  20. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    Science.gov (United States)

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  1. A Western diet induced NAFLD in LDLR(-/)(-) mice is associated with reduced hepatic glutathione synthesis.

    Science.gov (United States)

    Li, Ling; Zhang, Guo-Fang; Lee, Kwangwon; Lopez, Rocio; Previs, Stephen F; Willard, Belinda; McCullough, Arthur; Kasumov, Takhar

    2016-07-01

    Oxidative stress plays a key role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Glutathione is the major anti-oxidant involved in cellular oxidative defense, however there are currently no simple non-invasive methods for assessing hepatic glutathione metabolism in patients with NAFLD. As a primary source of plasma glutathione, liver plays an important role in interorgan glutathione homeostasis. In this study, we have tested the hypothesis that measurements of plasma glutathione turnover could be used to assess the hepatic glutathione metabolism in LDLR(-/)(-) mice, a mouse model of diet-induced NAFLD. Mice were fed a standard low fat diet (LFD) or a high fat diet containing cholesterol (a Western type diet (WD)). The kinetics of hepatic and plasma glutathione were quantified using the (2)H2O metabolic labeling approach. Our results show that a WD leads to reduced fractional synthesis rates (FSR) of hepatic (25%/h in LFD vs. 18%/h in WD, Pplasma glutathione (43%/h in LFD vs. 21%/h in WD, Pinduced concordant changes in both hepatic and plasma glutathione turnover suggest that the plasma glutathione turnover measurements could be used to assess hepatic glutathione metabolism. The safety, simplicity, and low cost of the (2)H2O-based glutathione turnover approach suggest that this method has the potential for non-invasive probing of hepatic glutathione metabolism in patients with NAFLD and other diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Single domain antibodies for the knockdown of cytosolic and nuclear proteins.

    Science.gov (United States)

    Böldicke, Thomas

    2017-05-01

    Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic. © 2017 The Protein Society.

  3. Protective roles of methionine-R-sulfoxide reductase against stresses in Schizosaccharomyces pombe.

    Science.gov (United States)

    Jo, Hannah; Cho, Young-Wook; Ji, Sun-Young; Kang, Ga-Young; Lim, Chang-Jin

    2014-01-01

    The Schizosaccharomyces pombe msrB(+) gene encoding methionine-R-sulfoxide reductase (MsrB) was cloned into the shuttle vector pRS316 to generate the recombinant plasmid pFMetSO. The msrB(+) mRNA level was significantly increased in the S. pombe cells harboring pFMetSO, indicating that the cloned msrB(+) gene is functioning. In the presence of 0.1 mM L-methionine-(R,S)-sulfoxide, the S. pombe cells harboring pFMetSO could grow normally but the growth of the vector control cells was almost arrested. The S. pombe cells harboring pFMetSO exhibited the enhanced growth on the minimal medium plates with stress-inducing agents, such as hydrogen peroxide, superoxide radical-generating menadione (MD), nitric oxide (NO)-generating sodium nitroprusside (SNP), and cadmium (Cd), when compared with the vector control cells. They also gave rise to the enhanced growth at the high incubation temperature of 37 °C than the vector control cells. The S. pombe cells harboring pFMetSO contained lower reactive oxygen species (ROS) and higher total glutathione (GSH) levels than the vector control cells. In brief, the S. pombe MsrB plays a protective role against oxidative, nitrosative, and thermal stresses, and is involved in diminishing intracellular ROS level. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quinone reductase (QR) inducers from Andrographis paniculata and identification of molecular target of andrographolide.

    Science.gov (United States)

    Yuan, Yonglei; Ji, Long; Luo, Liping; Lu, Juan; Ma, Xiaoqiong; Ma, Zhongjun; Chen, Zhe

    2012-12-01

    In the present study, it was demonstrated that the petroleum extract of Andrographis paniculata (AP) had quinone reductase (QR) inducing activity, which might be attributed to the modification of key cysteine residues in Keap1 by Michael addition acceptors (MAAs) in it. To screen MAAs in AP, glutathione (GSH) was employed, and a LC/MS/MS method was implied. Three compounds, andrographoside, andrographolide, 14-deoxy-14,15-dehydroandrographolide were revealed could well conjugated with GSH. Then, andrographolide along with 4 new and 14 known compounds were isolated to conduct QR induction evaluation, and the CD (the concentration required to double the activity of QR) value of andrographolide is 1.43μM. The QR induce activity of andrographolide might be attributed to its targeting multiple cysteine residues in Keap1, therefore, the alkylation of Keap1 by andrographolide was further studied and the result showed that four cysteine residues: Cys77, Cys151, Cys273 and Cys368 were alkylated, which indicated that Keap1 is a potential target for the QR induce activity of andrographolide. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Hybrid Mechanism for the Synechocystis Arsenate Reductase Revealed by Structural Snapshots during Arsenate Reduction.

    Science.gov (United States)

    Hu, Cuiyun; Yu, Caifang; Liu, Yanhua; Hou, Xianhui; Liu, Xiaoyun; Hu, Yunfei; Jin, Changwen

    2015-09-04

    Evolution of enzymes plays a crucial role in obtaining new biological functions for all life forms. Arsenate reductases (ArsC) are several families of arsenic detoxification enzymes that reduce arsenate to arsenite, which can subsequently be extruded from cells by specific transporters. Among these, the Synechocystis ArsC (SynArsC) is structurally homologous to the well characterized thioredoxin (Trx)-coupled ArsC family but requires the glutaredoxin (Grx) system for its reactivation, therefore classified as a unique Trx/Grx-hybrid family. The detailed catalytic mechanism of SynArsC is unclear and how the "hybrid" mechanism evolved remains enigmatic. Herein, we report the molecular mechanism of SynArsC by biochemical and structural studies. Our work demonstrates that arsenate reduction is carried out via an intramolecular thiol-disulfide cascade similar to the Trx-coupled family, whereas the enzyme reactivation step is diverted to the coupling of the glutathione-Grx pathway due to the local structural difference. The current results support the hypothesis that SynArsC is likely a molecular fossil representing an intermediate stage during the evolution of the Trx-coupled ArsC family from the low molecular weight protein phosphotyrosine phosphatase (LMW-PTPase) family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli.

    Science.gov (United States)

    van Wonderen, Jessica H; Burlat, Bénédicte; Richardson, David J; Cheesman, Myles R; Butt, Julea N

    2008-04-11

    Cytochrome c nitrite reductase (NrfA) from Escherichia coli has a well established role in the respiratory reduction of nitrite to ammonium. More recently the observation that anaerobically grown E. coli nrf mutants were more sensitive to NO. than the parent strain led to the proposal that NrfA might also participate in NO. detoxification. Here we describe protein film voltammetry that presents a quantitative description of NrfA NO. reductase activity. NO. reduction is initiated at similar potentials to NrfA-catalyzed reduction of nitrite and hydroxylamine. All three activities are strongly inhibited by cyanide. Together these results suggest a common site for reduction of all three substrates as axial ligands to the lysine-coordinated NrfA heme rather than nonspecific NO. reduction at one of the four His-His coordinated hemes also present in each NrfA subunit. NO. reduction by NrfA is described by a K(m) of the order of 300 microm. The predicted turnover number of approximately 840 NO. s(-1) is much higher than that of the dedicated respiratory NO. reductases of denitrification and the flavorubredoxin and flavohemoglobin of E. coli that are also proposed to play roles in NO. detoxification. In considering the manner by which anaerobically growing E. coli might detoxify exogenously generated NO. encountered during invasion of a human host it appears that the periplasmically located NrfA should be effective in maintaining low NO. levels such that any NO. reaching the cytoplasm is efficiently removed by flavorubredoxin (K(m) approximately 0.4 microm).

  7. Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of paracetamol and the potential glutathione-depletion biomarkers ophthalmic acid and 5-oxoproline in humans and rats

    NARCIS (Netherlands)

    Geenen, S.; Yates, J.W.T.; Kenna, J.G.; Bois, F.Y.; Wilson, I.D.; Westerhoff, H.V.

    2013-01-01

    A key role of the antioxidant glutathione is detoxification of chemically reactive electrophilic drug metabolites within the liver. Therefore glutathione depletion can have severe toxic consequences. Ophthalmic acid and 5-oxoproline are metabolites involved in glutathione metabolism, which can be

  8. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  9. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  10. Lipid peroxidation, antioxidant enzymes and glutathione levels in human erythrocytes exposed to colloidal iron hydroxide in vitro

    Directory of Open Access Journals (Sweden)

    Ferreira A.L.A.

    1999-01-01

    Full Text Available The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+ on the normal human red blood cell (RBC antioxidant system was evaluated in vitro by measuring total (GSH and oxidized (GSSG glutathione levels, and superoxide dismutase (SOD, catalase, glutathione peroxidase (GSH-Px and reductase (GSH-Rd activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS. The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a GSH = 3.52 ± 0.27 µM/g Hb; b GSSG = 0.17 ± 0.03 µM/g Hb; c GSH-Px = 19.60 ± 1.96 IU/g Hb; d GSH-Rd = 3.13 ± 0.17 IU/g Hb; e catalase = 394.9 ± 22.8 IU/g Hb; f SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

  11. Expression of the glutathione enzyme system of human colon mucosa by localisation, gender and age.

    NARCIS (Netherlands)

    Hoensch, H.; Peters, W.H.M.; Roelofs, H.M.J.; Kirch, W.

    2006-01-01

    BACKGROUND: The glutathione S-transferases (GST) can metabolise endogenous and exogenous toxins and carcinogens by catalysing the conjugation of diverse electrophiles with reduced glutathione (GSH). Variations of GST enzyme activity could influence the susceptibility of developing cancers in certain

  12. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Suwanjang, Wilasinee; Abramov, Andrey Y; Charngkaew, Komgrid; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-07-01

    Stressor exposure activates the hypothalamic-pituitary-adrenal (HPA) axis and causes elevations in the levels of glucocorticoids (GC) from the adrenal glands. Increasing evidence has demonstrated that prolonged exposure to high GC levels can lead to oxidative stress, calcium deregulation, mitochondrial dysfunction and apoptosis in a number of cell types. However, melatonin, via its antioxidant activity, exhibits a neuroprotective effect against oxidative stress-induced cell death. Therefore, in the present study, we explored the protective effect of melatonin in GC-induced toxicity in human neuroblastoma SH-SY5Y cells. Cellular treatment with the toxically high doses of the synthetic GC receptor agonist, dexamethasone (DEX) elicited marked decreases in the levels of glutathione and increases in ROS production, lipid peroxidation and cell death. DEX toxicity also induced increases in the levels of cytosolic calcium and mitochondrial fusion proteins (Mfn1 and Opa1) but decreases in the levels of mitochondrial fission proteins (Fis1 and Drp1). Mitochondrial damage was observed in large proportions of the DEX-treated cells. Pretreatment of the cells with melatonin substantially prevented the DEX-induced toxicity. These results suggest that melatonin might exert protective effects against oxidative stress, cytosolic calcium overload and mitochondrial damage in DEX-induced neurotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  14. The role of light in the inducation of nitrate reductase and nitrite reductase in cucumber seedlings

    Directory of Open Access Journals (Sweden)

    J. Buczek

    2015-01-01

    Full Text Available The activity of nitrate reductase (NR and nitrite reductase (NiR was investigated in vivo and in vitro in the roots and NR activity in 3-day-old cotyledons of cucumber seedlings. NR activity in the roots appears almost immediately after addition of nitrate ions to the induction medium, whereas, in the cotyledones NR induction is delayed. In general light enhances NR activity in the cotyledons and depresses it in the roots in experiments of short duration. Etiolation of the cotyledons reduces NR activity in the roots and leads to disappearance of the activity of this enzyme in the cotyledons, whereas the NR activity of roots kept in darkness, after transfer of the etiolated plants to light, increases threefold. In roots growing in darkness a delay in NiR induction is observed, while in those growing in ligth it occurs at the same time as NR induction. Chlormaphenicol (CAP, cycloheximide (CHI and actinomycin D (ACM applied at the beginning of the period of seedling induction with initrates inhibit NR activity in the cotyledons, whereas in the roots only CHI and ACM exert such an effect. To sum up, NR is synthesized in cucumber roots and cotyledons de novo on the cytoplasmic polyribosomes, and light per se is not indispensable for this synthesis, but it has an indirect influence on the activity level of NR and NiR both in the roots and the cotyledons.

  15. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  16. Transport of the glutathione conjugate of ethacrynic acid by the human multidrug resistance protein MRP

    NARCIS (Netherlands)

    Zaman, G.J.R.; Cnubben, N.H.P.; Bladeren, P.J. van; Evers, R.; Borst, P.

    1996-01-01

    The multidrug resistance protein MRP has been shown to mediate the transport of glutathione S-conjugates across membranes. In this study we demonstrate that the glutathione S-conjugate of the diuretic drug ethacrynic acid, which is an efficient inhibitor of glutathione S-transferases, is a

  17. THE ROLE OF GLUTATHIONE IN BILE SECRETION OF ENDOGENOUS TRACE-ELEMENTS IN RATS

    NARCIS (Netherlands)

    DIJKSTRA, M; KUIPERS, F; SMIT, EP; HAVINGA, R; VONK, RJ

    To evaluate the role of glutathione in biliary secretion of endogenous trace elements, we quantitated trace element output rates by proton-induced x-ray emission under various conditions with altered biliary glutathione secretion and hepatic glutathione content in the rat. Treatment with

  18. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  19. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... in innate immunity and produce reactive oxygen species and reduce the severity and duration of parasitic infection and autoimmune disease. NCF1 also has a role in T cell activation. Key words: Neutrophil cytosol factor 1 (NCF1) gene, exons, T cell activation. INTRODUCTION. An immune system is a ...

  20. Changes in the level of cytosolic calcium, nitric oxide and nitric oxide ...

    Indian Academy of Sciences (India)

    Variceal bleeding due to abnormal platelet function is a well-known complication of cirrhosis. Nitric oxide-related stress has been implicated in the pathogenesis of liver cirrhosis. In the present investigation, we evaluated the level of platelet aggregation and concomitant changes in the level of platelet cytosolic calcium ...

  1. Enzymatic Regulation of Cytosolic Thymidine Kinase 1 and Mitochondrial Thymidine Kinase 2

    DEFF Research Database (Denmark)

    Munch-Petersen, Birgitte

    2010-01-01

    . Apart from the complex de novo synthesis of dTTP through UDP reduction, dTTP is provided through salvage of thymidine catalyzed by the thymidine kinases, the cytosolic and cell cycle regulated TK1 and the mitochondrial and constitutively expressed TK2. The complex enzymatic regulation of TK1 and TK2...

  2. A reporter of UV intensity delivered to the cytosol during photolytic uncaging

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Dewitt, Sharon; Hallett, Maurice B

    2010-01-01

    Photolytic uncaging of biologically-active molecules within cells is a powerful technique. However, the delivery of uncaging light into the cytosol can vary between cell types, individual cells of the same type, and different loci within an individual cell because of optical differences in absorb...

  3. Cytosolic beta-glycosidases for activation of glycoside prodrugs of daunorubicin

    NARCIS (Netherlands)

    Pinedo, H.M.; Quadir, R.; Haisma, H.J.; Boven, E.

    2003-01-01

    Human cytosolic beta-glycosidase is a small monomeric enzyme that is active under physiological conditions, which might be ideal for enzyme-prodrug therapy. We have previously reported the synthesis of a galactoside (DNR-GlA(3)) and a glucoside (DNR-GsA3) prodrug of daunorubicin. In the present

  4. Structure and role of neutrophil cytosol factor 1 (NCF1) gene in ...

    African Journals Online (AJOL)

    Yomi

    2010-12-27

    Dec 27, 2010 ... The neutrophil cytosol factor 1 (NCF1) gene consists of 11 exons and is found in two forms; one is wild type gene and the other is pseudogene. It has more than 98% homology. Both genes occupy the same chromosome region. The mutation in this gene leads to various types of diseases such as chronic.

  5. The cytosolic B-glucosidase GBA3 does not influence type 1 Gaucher disease manifestation

    NARCIS (Netherlands)

    Dekker, N.; Voorn-Brouwer, T.; Verhoek, M.; Wennekes, T.; Narayan, R.S.; Speijer, D.; Hollak, C.E.M.; Overkleeft, H.S.; Boot, R.G.; Aerts, J.M.F.G.

    2011-01-01

    GBA3, also known as cytosolic ß-glucosidase, is thought to hydrolyze xenobiotic glycosides in man. Deficiency of glucocerebrosidase (GBA), a ß-glucosidase degrading glucosylceramide, underlies Gaucher disease. We examined GBA3, which recently was proposed to degrade glucosylceramide and influence

  6. The cytosolic beta-glucosidase GBA3 does not influence type 1 Gaucher disease manifestation

    NARCIS (Netherlands)

    Dekker, Nick; Voorn-Brouwer, Tineke; Verhoek, Marri; Wennekes, Tom; Narayan, Ravi S.; Speijer, Dave; Hollak, Carla E. M.; Overkleeft, Hermen S.; Boot, Rolf G.; Aerts, Johannes M. F. G.

    2011-01-01

    GBA3, also known as cytosolic beta-glucosidase, is thought to hydrolyze xenobiotic glycosides in man. Deficiency of glucocerebrosidase (GBA), a beta-glucosidase degrading glucosylteramide, underlies Gaucher disease. We examined GBA3, which recently was proposed to degrade glucosylceramide and

  7. Assay of oestrogen and progestin receptors in human meningioma cytosols using immunological methods

    NARCIS (Netherlands)

    Blankenstein, M.A.; Meulen-Dijk, C. van der; Thijssen, J.H.H.

    1987-01-01

    Oestrogen (ER) and progestin receptors (PR) were assayed in human meningioma cytosol by radioligand binding assay with Scatchard plot analysis and by monoclonal antibody based enzyme immunoassays. For comparison, human breast cancer tissues were used. Results of both assays agreed very well. For

  8. Glutathione Utilization by Candida albicans Requires a Functional Glutathione Degradation (DUG) Pathway and OPT7, an Unusual Member of the Oligopeptide Transporter Family

    Science.gov (United States)

    Desai, Prashant Ramesh; Thakur, Anil; Ganguli, Dwaipayan; Paul, Sanjoy; Morschhäuser, Joachim; Bachhawat, Anand K.

    2011-01-01

    Candida albicans lacks the ability to survive within its mammalian host in the absence of endogenous glutathione biosynthesis. To examine the ability of this yeast to utilize exogenous glutathione, we exploited the organic sulfur auxotrophy of C. albicans met15Δ strains. We observed that glutathione is utilized efficiently by the alternative pathway of glutathione degradation (DUG pathway). The major oligopeptide transporters OPT1–OPT5 of C. albicans that were most similar to the known yeast glutathione transporters were not found to contribute to glutathione transport to any significant extent. A genomic library approach to identify the glutathione transporter of C. albicans yielded OPT7 as the primary glutathione transporter. Biochemical studies on OPT7 using radiolabeled GSH uptake revealed a Km of 205 μm, indicating that it was a high affinity glutathione transporter. OPT7 is unusual in several aspects. It is the most remote member to known yeast glutathione transporters, lacks the two highly conserved cysteines in the family that are known to be crucial in trafficking, and also has the ability to take up tripeptides. The transporter was regulated by sulfur sources in the medium. OPT7 orthologues were prevalent among many pathogenic yeasts and fungi and formed a distinct cluster quite remote from the Saccharomyces cerevisiae HGT1 glutathione transporter cluster. In vivo experiments using a systemic model of candidiasis failed to detect expression of OPT7 in vivo, and strains disrupted either in the degradation (dug3Δ) or transport (opt7Δ) of glutathione failed to show a defect in virulence. PMID:21994941

  9. Live cell imaging of cytosolic NADH/NAD+ratio in hepatocytes and liver slices.

    Science.gov (United States)

    Masia, Ricard; McCarty, William J; Lahmann, Carolina; Luther, Jay; Chung, Raymond T; Yarmush, Martin L; Yellen, Gary

    2018-01-01

    Fatty liver disease (FLD), the most common chronic liver disease in the United States, may be caused by alcohol or the metabolic syndrome. Alcohol is oxidized in the cytosol of hepatocytes by alcohol dehydrogenase (ADH), which generates NADH and increases cytosolic NADH/NAD + ratio. The increased ratio may be important for development of FLD, but our ability to examine this question is hindered by methodological limitations. To address this, we used the genetically encoded fluorescent sensor Peredox to obtain dynamic, real-time measurements of cytosolic NADH/NAD + ratio in living hepatocytes. Peredox was expressed in dissociated rat hepatocytes and HepG2 cells by transfection, and in mouse liver slices by tail-vein injection of adeno-associated virus (AAV)-encoded sensor. Under control conditions, hepatocytes and liver slices exhibit a relatively low (oxidized) cytosolic NADH/NAD + ratio as reported by Peredox. The ratio responds rapidly and reversibly to substrates of lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH). Ethanol causes a robust dose-dependent increase in cytosolic NADH/NAD + ratio, and this increase is mitigated by the presence of NAD + -generating substrates of LDH or SDH. In contrast to hepatocytes and slices, HepG2 cells exhibit a relatively high (reduced) ratio and show minimal responses to substrates of ADH and SDH. In slices, we show that comparable results are obtained with epifluorescence imaging and two-photon fluorescence lifetime imaging (2p-FLIM). Live cell imaging with Peredox is a promising new approach to investigate cytosolic NADH/NAD + ratio in hepatocytes. Imaging in liver slices is particularly attractive because it allows preservation of liver microanatomy and metabolic zonation of hepatocytes. NEW & NOTEWORTHY We describe and validate a new approach for measuring free cytosolic NADH/NAD + ratio in hepatocytes and liver slices: live cell imaging with the fluorescent biosensor Peredox. This approach yields dynamic, real

  10. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda.

    Science.gov (United States)

    Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent

    2016-10-10

    The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic

  11. Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol

    NARCIS (Netherlands)

    Schouten, A.; Roosien, J.; Bakker, J.; Schots, A.

    2002-01-01

    Disulfide bridge formation in the reducing environment of the cytosol is considered a rare event and is mostly linked to inactivation of protein activity. In this report the in vivo redox state of a single-chain Fv (scFv) antibody fragment in the plant cytosol was investigated. The scFv antibody

  12. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  13. Mitochondrial Iron-Sulfur Cluster Activity and Cytosolic Iron Regulate Iron Traffic in Saccharomyces cerevisiae.

    Science.gov (United States)

    Wofford, Joshua D; Lindahl, Paul A

    2015-11-06

    An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar Fe(II) is oxidized to Fe(III). The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin Fe(II) ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such "dual sensing" probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Limits to anaerobic energy and cytosolic concentration in the living cell

    Science.gov (United States)

    Paglietti, A.

    2015-11-01

    For many physical systems at any given temperature, the set of all states where the system's free energy reaches its largest value can be determined from the system's constitutive equations of internal energy and entropy, once a state of that set is known. Such an approach is fraught with complications when applied to a living cell, because the cell's cytosol contains thousands of solutes, and thus thousands of state variables, which makes determination of its state impractical. We show here that, when looking for the maximum energy that the cytosol can store and release, detailed information on cytosol composition is redundant. Compatibility with cell's life requires that a single variable that represents the overall concentration of cytosol solutes must fall between defined limits, which can be determined by dehydrating and overhydrating the cell to its maximum capacity. The same limits are shown to determine, in particular, the maximum amount of free energy that a cell can supply in fast anaerobic processes, starting from any given initial state. For a typical skeletal muscle in normal physiological conditions this energy, i.e., the maximum anaerobic capacity to do work, is calculated to be about 960 J per kg of muscular mass. Such energy decreases as the overall concentration of solutes in the cytosol is increased. Similar results apply to any kind of cell. They provide an essential tool to understand and control the macroscopic response of single cells and multicellular cellular tissues alike. The applications include sport physiology, cell aging, disease produced cell damage, drug absorption capacity, to mention the most obvious ones.

  15. Pentose Phosphate Pathway and Glutathione System of Red Blood Cells at the Exacerbation of Chronic Cytomegalovirus Infection during Pregnancy

    Directory of Open Access Journals (Sweden)

    Michael T. Lucenko

    2017-03-01

    Full Text Available Objective: To determine the peculiarities of PPP function and GS activity in RBCs of pregnant women at 28 to 30 weeks of gestation during the exacerbation of chronic CMV infection (CMVI. Methods: The study included 50 pregnant women at 28 to 30 weeks of gestation: 25 CMV-seropositive pregnant women (the main group with CMVI exacerbation and 25 CMV-seronegative pregnant women (the control group. The two groups were matched in age. We determined the activity of G6PD, GR, GP, and the amount of reduced glutathione and NADP; fatty acid peroxide levels in RBCs; the amount of degenerative forms of RBCs; RBC deformation ability; and indicators of the oxygenated form of hemoglobin and 2,3-DPG. Results: In RBCs of pregnant women with CMVI exacerbation at 28 to 30 weeks of gestation, cytophotometry analysis of blood smears showed a 2.16-times reduction in the intensity of histochemical reaction to G6P (P<0.001, a 3.3-times reduction in the intensity of histochemical reaction to reduced glutathione (P<0.001, and a 3.1-times reduction in the intensity of histochemical reaction to reduced NADP (P<0.001, compared with the control group. There were disorders in functioning and structural equivalence in both the disulfide reductase system and oxidative systems of PPP in RBCs, which was reflected in lower activity of GR and GP, 1.9 times (P<0.001 and 2.5 times (P<0.001, respectively, in the main group. At the same time, the content of 2,3-DPG was 1.24 times more (P<0.001, whereas RBC deformability was 2.25 times less than in the control group. Conclusion: CMVI exacerbation at 28 to 30 weeks of gestation causes the inhibition of the metabolic activity of the enzymes of PPP and glutathione system, an initiation of membrane destruction oxidative processes that enhance the deformability of RBCs and decrease oxygen metabolism, which creates the risk of anemia and hemic hypoxia in pregnant women.

  16. Nrf2-mediated antioxidant response by ethanolic extract of Sida cordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2015-03-01

    Objective The study aimed to evaluate the antioxidant property of ethanolic extract of Sida cordifolia (SAE) on alcohol-induced oxidative stress and to elucidate its mechanism of action. Methods Male albino rats of the Sprague-Dawley strain were grouped into four: (1) control, (2) alcohol (4 g/kg body weight), (3) SAE (50 mg/100 g body weight), and (4) alcohol (4 g/kg body weight) + SAE (50 mg/100 g body weight). Alcohol and SAE were given orally each day by gastric intubation. The duration of treatment was 90 days. Results The activities of toxicity markers in liver and serum increased significantly in alcohol-treated rats and to a lesser extent in the group administered SAE + alcohol. The activity of alcohol dehydrogenase and the reactive oxygen species level were increased significantly in alcohol-treated rats but attenuated in the SAE co-administered group. Oxidative stress was increased in alcohol-treated rats as evidenced by the lowered activities of antioxidant enzymes, decreased level of reduced glutathione (GSH), increased lipid peroxidation products, and decreased expression of γ-glutamyl cysteine synthase in liver. The co-administration of SAE with alcohol almost reversed these changes. The activity of glutathione-S-transferase and translocation of Nrf2 from cytosol to nucleus in the liver was increased in both the alcohol and alcohol + SAE groups, but the maximum changes were observed in the latter group. Discussion The SAE most likely elicits its antioxidant potential by reducing oxidative stress, enhancing the translocation of Nrf2 to nucleus and thereby regulating glutathione metabolism, leading to enhanced GSH content.

  17. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.

    Science.gov (United States)

    Wang, Nuo; McCammon, J Andrew

    2016-01-01

    In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa. © 2015 The Protein Society.

  18. Human dehydrogenase/reductase (SDR family) member 8 (DHRS8): a description and evaluation of its biochemical properties.

    Science.gov (United States)

    Lundová, Tereza; Štambergová, Hana; Zemanová, Lucie; Svobodová, Markéta; Havránková, Jana; Šafr, Miroslav; Wsól, Vladimír

    2016-01-01

    Dehydrogenase/reductase (SDR family) member 8 (DHRS8, SDR16C2) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily, one of the largest enzyme groups. In addition to the well-known members which participate in the metabolism of important eobiotics and xenobiotics, this superfamily contains many poorly characterized proteins. DHRS8 is a member of the Multisubstrate NADP(H)-dependent SDR16C family, which generally contains insufficiently described enzymes. Despite the limited knowledge about DHRS8, preliminary indicators have emerged regarding its significant function in the modulation of steroidal activity, at least in the case of 3α-adiol, lipid metabolism and detoxification. The aim of this study was to describe additional biochemical properties of DHRS8 and to unify knowledge about this enzyme. The DHRS8 was prepared in recombinant form and its membrane topology in the endoplasmic reticulum as an integral protein with cytosolic orientation was demonstrated. The enzyme participates in the NAD(+)-dependent oxidation of steroid hormones as β-estradiol and testosterone in vitro; apparent K m and V max values were 39.86 µM and 0.80 nmol × mg(-1) × min(-1) for β-estradiol and 1207.29 µM and 3.45 nmol × mg(-1) × min(-1) for testosterone. Moreover, synthetic steroids (methyltestosterone and nandrolone) used as anabolics as well as all-trans-retinol were for the first time identified as substrates of DHRS8. This knowledge of its in vitro activity together with a newly described expression pattern at the protein level in tissues involved in steroidogenesis (adrenal gland and testis) and detoxification (liver, lung, kidney and small intestine) could suggest a potential role of DHRS8 in vivo.

  19. Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis.

    Science.gov (United States)

    Meyer, Knut; Stecca, Kevin L; Ewell-Hicks, Kim; Allen, Stephen M; Everard, John D

    2012-07-01

    This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that

  20. Effects of S-Adenosylmethionine and Its Combinations With Taurine and/or Betaine on Glutathione Homeostasis in Ethanol-induced Acute Hepatotoxicity.

    Science.gov (United States)

    Lee, Seo Yeon; Ko, Kwang Suk

    2016-09-01

    Exposure to ethanol abuse and severe oxidative stress are risk factors for hepatocarcinoma. The aim of this study was to evaluate the effects of S-adenosylmethionine (SAMe) and its combinations with taurine and/or betaine on the level of glutathione (GSH), a powerful antioxidant in the liver, in acute hepatotoxicity induced by ethanol. To examine the effects of SAMe and its combinations with taurine and/or betaine on ethanol-induced hepatotoxicity, AML12 cells and C57BL/6 mice were pretreated with SAMe, taurine, and/or betaine, followed by ethanol challenge. Cell viability was detected with an MTT assay. GSH concentration and mRNA levels of GSH synthetic enzymes were measured using GSH reductase and quantitative real-time reverse transcriptase-PCR. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were measured with commercially available kits. Pretreatment of SAMe, with or without taurine and/or betaine, attenuated decreases in GSH levels and mRNA expression of the catalytic subunit of glutamate-cysteine ligase (GCL), the rate-limiting enzyme for GSH synthesis, in ethanol-treated cells and mice. mRNA levels of the modifier subunit of GCL and glutathione synthetase were increased in mice treated with SAMe combinations. SAMe, taurine, and/or betaine pretreatment restored serum ALT and AST levels to control levels in the ethanol-treated group. Combinations of SAMe with taurine and/or betaine have a hepatoprotective effect against ethanol-induced liver injury by maintaining GSH homeostasis.

  1. Glutathione peroxidase (EC 1.11.1.9) and superoxide dismutase (EC 1.15.1.1) activities in riboflavin-deficient rats infected with Plasmodium berghei malaria.

    Science.gov (United States)

    Adelekan, D A; Thurnham, D I

    1998-03-01

    Riboflavin deficiency interferes with the growth and multiplication of malaria parasites as well as the host response to malaria. The objective of the present work was to determine the effects of riboflavin deficiency on erythrocyte glutathione peroxidase (EC 1.11.1.9; GPx) and superoxide dismutase (EC 1.15.1.1; SOD) in rats infected with Plasmodium berghei malaria. Riboflavin in its co-enzyme form, FAD, is required by glutathione reductase (EC 1.6.4.1) to regenerate GSH and GSH is an important cellular antioxidant both in its own right and also as a substrate for the enzyme GPx. Weanling rats were deprived of riboflavin for 8 weeks before intraperitoneal injection of 1 x 10(6) P. berghei parasites. Control animals were weight-matched to the respective riboflavin-deficient group. At 10 d post-infection, parasite counts were higher in the weight-matched control group than the riboflavin-deficient group (P = 0.004). GPx activity was higher in erythrocytes of rats parasitized with P. berghei than comparable non-infected rats regardless of riboflavin status (P diets adequate in riboflavin (weight-matched controls) whether parasitized or not, but the difference was not significant. Neither riboflavin deficiency nor malaria had any effect on erythrocyte SOD activity. It was concluded that riboflavin deficiency has no marked effect on erythrocyte GPx or SOD activity in the rat.

  2. Cell death in response to antimetabolites directed at ribonucleotide reductase and thymidylate synthase

    Directory of Open Access Journals (Sweden)

    Asuncion Valenzuela MM

    2015-02-01

    Full Text Available Malyn M Asuncion Valenzuela, Imilce Castro, Amber Gonda, Carlos J Diaz Osterman, Jessica M Jutzy, Jonathan R Aspe, Salma Khan, Jonathan W Neidigh, Nathan R Wall Center for Health Disparities and Molecular Medicine, Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA Abstract: New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor and 5-fluorouracil (thymidylate synthase inhibitor were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma. Keywords: IAPs, exosomes, pancreatic cancer, antimetabolites, gemcitabine, cladribine, hydroxyurea, 5-fluorodeoxyuridine, 5-fluorouracil

  3. Selenium homeostasis and induction of thioredoxin reductase during long term selenite supplementation in the rat.

    Science.gov (United States)

    Erkhembayar, Suvd; Mollbrink, Annelie; Eriksson, Malin; Larsen, Erik H; Eriksson, Lennart C

    2011-12-01

    Selenium is a candidate treatment for liver tumour prevention in chronic liver disease. In this study, we have studied selenium uptake, distribution and accumulation in rats provided with water containing tumour-preventive doses of sodium selenite for 10 weeks. Male Fischer 344 rats were given drinking water containing 1 μg/mL or 5 μg/mL sodium selenite. Selenium levels were monitored in serum and liver tissue over the 10-week period, and the kinetics of induction of the redox-active cytosolic selenoenzyme thioredoxin reductase were followed. Selenite exposure via drinking water caused a dose-dependent increase in blood and liver selenium levels, with plateaus at 6 and 8 weeks, respectively. These plateaus were reached at the same level of selenium regardless of dose, and no further accumulation was observed. A selenium-dependent increase in the activity of TrxR1 in parallel with the increase in liver selenium levels was also seen, and the induction of TrxR1 mRNA was seen only during the first three days of treatment, when the levels of selenium in the liver were increasing. Sodium selenite at 1 and 5 μg/mL did not affect body weight or relative liver mass. We concluded that long-term treatment with selenite did not cause accumulation of selenium and that the activity of TrxR1 in the liver rose with the selenium levels. We therefore suggest that sodium selenite at doses up to 5 μg/mL could be used for long-term tumour prevention. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Role of glutathione in ethanol stress tolerance in yeast Pachysolen tannophilus.

    Science.gov (United States)

    Saharan, Rajesh Kumar; Kanwal, Smita; Sharma, Sukesh Chander

    2010-06-25

    The effect of glutathione enrichment and depletion on the survival of Pachysolen tannophilus after ethanol stress was investigated. In this work, we verified that both control and glutathione deficient yeast cells were much more oxidized after ethanol stress. Depletion of cellular glutathione enhanced the sensitivity to ethanol and suppressed the adaptation. Incubation of the cell with amino acids constituting glutathione (GIu, Cys, Gly) increased the intracellular glutathione content, and subsequently the cell acquired resistance against ethanol. The level of reactive oxygen species, protein carbonyl, and lipid peroxidation in glutathione enriched groups were also studied. These results strongly suggest that intracellular glutathione plays an important role in the adaptive response in P. tannophilus to ethanol induced oxidative stress. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Effect of glutathione on phytochelatin synthesis in tomato cells. [Lycopersicon esculentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendum, M.L.; Gupta, S.C.; Goldsbrough, P.B. (Purdue Univ., West Lafayette, IN (USA))

    1990-06-01

    Growth of cell suspension cultures of tomato, Lycopersicon esculentum Mill. cv VFNT-Cherry, in the presence of cadmium is inhibited by buthionine sulfoximine, an inhibitor of glutathione synthesis. Cell growth and phytochelatin synthesis are restored to cells treated with buthionine sulfoximine by the addition of glutathione to the medium. Glutathione stimulates the accumulation of phytochelatins in cadmium treated cells, indicating that availability of glutathione can limit synthesis of these peptides. Exogenous glutathione causes a disproportionate increase in the level of smaller phytochelatins, notably ({gamma}-Glu-Cys){sub 2}-Gly. In the presence of buthionine sulfoximine and glutathione, phytochelatins that are produced upon exposure to cadmium incorporate little ({sup 35}S)cysteine, indicating that these peptides are probably not synthesized by sequential addition of cysteine and glutamate to glutathione.

  6. Mitochondrial thioredoxin reductase 2 is elevated in long-lived primate as well as rodent species and extends fly mean lifespan.

    Science.gov (United States)

    Pickering, Andrew M; Lehr, Marcus; Gendron, Christi M; Pletcher, Scott D; Miller, Richard A

    2017-08-01

    In a survey of enzymes related to protein oxidation and cellular redox state, we found activity of the redox enzyme thioredoxin reductase (TXNRD) to be elevated in cells from long-lived species of rodents, primates, and birds. Elevated TXNRD activity in long-lived species reflected increases in the mitochondrial form, TXNRD2, rather than the cytosolic forms TXNRD1 and TXNRD3. Analysis of published RNA-Seq data showed elevated TXNRD2 mRNA in multiple organs of longer-lived primates, suggesting that the phenomenon is not limited to skin-derived fibroblasts. Elevation of TXNRD2 activity and protein levels was also noted in liver of three different long-lived mutant mice, and in normal male mice treated with a drug that extends lifespan in males. Overexpression of mitochondrial TXNRD2 in Drosophila melanogaster extended median (but not maximum) lifespan in female flies with a small lifespan extension in males; in contrast, overexpression of the cytosolic form, TXNRD1, did not produce a lifespan extension. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Sulfite Reductase Activity in Extracts of Various Photosynthetic Bacteria

    Science.gov (United States)

    Peck, H. D.; Tedro, S.; Kamen, M. D.

    1974-01-01

    Extracts of representative bacterial strains from the various families of photosynthetic prokaryotes are demonstrated to possess significant levels of sulfite reductase [EC 1.8.99.1; hydrogen-sulfide: (acceptor)oxidoreductase] activity with reduced methyl viologen as electron donor, but not NADPH2. The enzyme is localized primarily in the soluble fraction of the extracts, in contrast to adenylysulfate reductase [EC 1.8.99.2; AMP, sulfite: (acceptor) oxidoreductase], which is bound normally in the membrane fractions of those bacteria in which it is found. Assignment of the sulfite reductase activities to the biosynthetic (“assimilatory”) pathway is suggested by levels of specific activity noted and ready solubility. PMID:4526215

  8. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...

  9. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs......Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...... of counteracting oxidation. This assay was used to compare metHb reduction in rainbow trout and carp RBCs under both oxygenated and deoxygenated conditions. Washing resulted in effective wash-out of nitrite to low and safe values (~2μM). The subsequent decline in [metHb] with time followed first-order kinetics...

  10. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  12. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    Directory of Open Access Journals (Sweden)

    William D. Leavitt

    2015-12-01

    Full Text Available The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR. Here we provide the only direct observation of the major (34S/32S and minor (33S/32S, 36S/32S sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB. Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB to be 15.3±2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150±0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3 to 0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr-p = 16.1‰ (r – p indicates reactant versus product, n = 648. This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4-H2S = 17.3±1.5‰ and in modern marine sediments (34εSO4-H2S = 17.3±3.8‰. Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern

  13. Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Paula B. Andrade

    2012-05-01

    Full Text Available This study aims to evaluate the antioxidant potential of extracts of Brassica oleracea L. var. acephala DC. (kale and several materials of Pieris brassicae L., a common pest of Brassica cultures using a cellular model with hamster lung fibroblast (V79 cells under quiescent conditions and subjected to H2O2-induced oxidative stress. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and glutathione was determined by the 5,5'-dithiobis(2-nitrobenzoic acid (DTNB-oxidized glutathione (GSSG reductase recycling assay. The phenolic composition of the extracts was also established by HPLC-DAD. They presented acylated and non acylated flavonoid glycosides, some of them sulfated, and hydroxycinnamic acyl gentiobiosides. All extracts were cytotoxic by themselves at high concentrations and failed to protect V79 cells against H2O2 acute toxicity. No relationship between phenolic composition and cytotoxicity of the extracts was found. Rather, a significant increase in glutathione was observed in cells exposed to kale extract, which contained the highest amount and variety of flavonoids. It can be concluded that although flavonoids-rich extracts have the ability to increase cellular antioxidant defenses, the use of extracts of kale and P. brassicae materials by pharmaceutical or food industries, may constitute an insult to health, especially to debilitated individuals, if high doses are consumed.

  14. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    ) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced......A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  15. NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT

    Directory of Open Access Journals (Sweden)

    Klimenko S.B.

    2006-03-01

    Full Text Available Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0С on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

  16. Conjugation of isoprene monoepoxides with glutathione, catalyzed by α, μ, π and θ-class glutathione S-transferases of rat and man

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Venekamp, J.C.; Salmon, F.G.C.; Bladeren, P.J. van

    1999-01-01

    In the present study, the enzymatic conjugation of the isoprene monoepoxides 3,4 epoxy-3-methyl-1-butene (EPOX-I) and 3,4-epoxy-2-methyl-1-butene (EPOX-II) with glutathione was investigated, using purified glutathione S-transferases (GSTs) of the α, μ, π and θ-class of rat and man. HPLC analysis of

  17. Cytosolic Cl- Affects the Anticancer Activity of Paclitaxel in the Gastric Cancer Cell Line, MKN28 Cell

    Directory of Open Access Journals (Sweden)

    Sachie Tanaka

    2017-05-01

    Full Text Available Background/Aims: Our previous study revealed that cytosolic Cl- affected neurite elongation promoted via assembly of microtubule in rat pheochromocytoma PC12D cells and Cl-–induced blockade of intrinsic GTPase enhanced tubulin polymerization in vitro. Paclitaxel (PTX is a microtubule-targeted chemotherapeutic drug and stabilizes microtubules resulting in mainly blockade of mitosis at the metaphase-anaphase transition and induction of apoptosis. In the present study, we tried to clarify whether the cytosolic Cl- affected PTX ability to inhibit cell growth in the gastric cancer cell line, MKN28. Methods: To clarify the cytosolic Cl- action on PTX-induced cell death and metaphase-anaphase transition in the gastric cancer cell line, MKN28 cell, and PTX-induced tubulin polymerization, we performed cell proliferation assay, cytosolic Cl- concentration measurement, immunofluorescence microscopy, and in vitro tubulin polymerization assay. Results: The decline of cytosolic Cl- weakened the cytotoxic effect of PTX on cell proliferation of MKN28 cells, which could pass through the metaphase-anaphase transition. Moreover, in vitro PTX-induced tubulin polymerization was diminished under the low Cl- condition. Conclusions: Our results strongly suggest that the upregulation of cytosolic Cl- concentration would enhance the antitumor effect of PTX, and that the cytosolic Cl- would be one of the key targets for anti-cancer therapy.

  18. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2013-05-01

    Full Text Available The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH, predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  19. Sulfation of afimoxifene, endoxifen, raloxifene, and fulvestrant by the human cytosolic sulfotransferases (SULTs: A systematic analysis

    Directory of Open Access Journals (Sweden)

    Ying Hui

    2015-07-01

    Full Text Available Previous studies demonstrated that sulfate conjugation is involved in the metabolism of three commonly used breast cancer drugs, tamoxifen, raloxifene and fulvestrant. The current study was designed to systematically identify the human cytosolic sulfotransferases (SULTs that are capable of sulfating raloxifene, fulvestrant, and two active metabolites of tamoxifen, afimoxifene and endoxifen. A systematic analysis using 13 known human SULTs revealed SULT1A1 and SULT1C4 as the major SULTs responsible for the sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant. Kinetic parameters of these two human SULTs in catalyzing the sulfation of these drug compounds were determined. Sulfation of afimoxifene, endoxifen, raloxifene and fulvestrant under metabolic conditions was examined using HepG2 human hepatoma cells and MCF-7 breast cancer cells. Moreover, human intestine, kidney, liver, and lung cytosols were examined to verify the presence of afimoxifene/endoxifen/raloxifene/fulvestrant-sulfating activity.

  20. Glutathione S-transferase gene polymorphisms in presbycusis.

    Science.gov (United States)

    Ateş, Nurcan Aras; Unal, Murat; Tamer, Lülüfer; Derici, Ebru; Karakaş, Sevim; Ercan, Bahadir; Pata, Yavuz Selim; Akbaş, Yücel; Vayisoğlu, Yusuf; Camdeviren, Handan

    2005-05-01

    Glutathione and glutathione-related antioxidant enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Reactive oxygen species generation occurs in prolonged relative hypoperfusion conditions such as in aging. The etiology of presbycusis is much less certain; however, a complex genetic cause is most likely. The effect of aging shows a wide interindividual range; we aimed to investigate whether profiles of (glutathione S-transferase (GST) M1, T1 and P1 genotypes may be associated with the risk of age-related hearing loss. We examined 68 adults with presbycusis and 69 healthy controls. DNA was extracted from whole blood, and the GSTM1, GSTT1 and GSTP1 polymorphisms were determined using a real-time polymerase chain reaction and fluorescence resonance energy transfer with a Light-Cycler Instrument. Associations between specific genotypes and the development of presbycusis were examined by use of logistic regression analyses to calculate odds ratios and 95% confidence intervals. Gene polymorphisms at GSTM1, GSTT1, and GSTP1 in subjects with presbycusis were not significantly different than in the controls (p > 0.05). Also, the combinations of different GSTM1, GSTT1, and GSTP1 genotypes were not an increased risk of presbycusis (p > 0.05). We could not demonstrate any significant association between the GSTM1, GSTT1, and GSTP1 polymorphism and age-related hearing loss in this population. This may be because of our sample size, and further studies need to investigate the exact role of GST gene polymorphisms in the etiopathogenesis of the presbycusis.