WorldWideScience

Sample records for cytokine-induced bone resorptive

  1. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption.

    Science.gov (United States)

    van't Hof, R J; Armour, K J; Smith, L M; Armour, K E; Wei, X Q; Liew, F Y; Ralston, S H

    2000-07-05

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFkappaB and in NFkappaB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFkappaB in osteoclast precursors.

  2. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    Science.gov (United States)

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  3. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    OpenAIRE

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study,...

  4. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells.

    Science.gov (United States)

    Nishigaki, Masaru; Yamamoto, Toshiro; Ichioka, Hiroaki; Honjo, Ken-Ichi; Yamamoto, Kenta; Oseko, Fumishige; Kita, Masakazu; Mazda, Osam; Kanamura, Narisato

    2013-07-01

    β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of Cytokines on Osteoclast Formation and Bone Resorption during Mechanical Force Loading of the Periodontal Membrane

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2014-01-01

    Full Text Available Mechanical force loading exerts important effects on the skeleton by controlling bone mass and strength. Several in vivo experimental models evaluating the effects of mechanical loading on bone metabolism have been reported. Orthodontic tooth movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse model of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on the compressed side of the periodontal ligament. In TNF-receptor-deficient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type mice. These results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament depend on TNF-α. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have found that inflammatory cytokines such as IL-12 and IFN-γ strongly inhibit osteoclast formation and tooth movement. Blocking macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In this review we describe and discuss the effect of cytokines in the periodontal ligament on osteoclast formation and bone resorption during mechanical force loading.

  6. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    Science.gov (United States)

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  7. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

    Directory of Open Access Journals (Sweden)

    Chen-he Zhou

    2018-03-01

    Full Text Available Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK and phosphatidylinositol 3-kinase (PI3K-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist and/or SC79 (an AKT agonist in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

  8. Immunolocalization of bone-resorptive cytokines in rat pulp and periapical lesions following surgical pulp exposure.

    Science.gov (United States)

    Tani-Ishii, N; Wang, C Y; Stashenko, P

    1995-08-01

    The bone-resorptive cytokines interleukin 1 (IL-1) and tumor necrosis factor (TNF) have been implicated in the pathogenesis of many chronic inflammatory diseases, including pulpitis and apical periodontitis.To further elucidate their role in these disorders, we have identified cells that express IL-1 alpha and TNF alpha in infected pulps and in developing rat periapical lesions after surgical pulp exposure. As detected by immunohistochemistry, IL-1 alpha- and TNF alpha-positive cells were present as early as 2 days after pulp exposure in both the pulp and periapical region. The numbers of cytokine-expressing cells increased up to day 4 in the pulp and up to day 30 in the periapex. In contrast, cells expressing IL-1 beta and TNF beta, the homologous forms of these mediators, were not found in pulp or periapical lesions during this period. Cells expressing IL-1 alpha and TNF alpha were identified primarily as macrophages and fibroblasts, with occasional staining of polymorphonuclear leukocytes. Osteoblasts and osteoclasts were also positive, whereas lymphocytes were negative. In general, cytokine-expressing cells were located proximal to abscesses and the root apex. These findings demonstrate that cells that express bone-resorptive cytokines IL-1 alpha and TNF alpha are present immediately after pulp exposure in this model, which supports the hypothesis that these mediators play a key role in pulpal and periapical pathogenesis, including the concomitant bone destruction. They also indicate that both resident connective tissue cells as well as infiltrating cells express bone-resorptive cytokines in response to infection in these lesions.

  9. Calcitonin causes a sustained inhibition of protein kinase C-stimulated bone resorption in contrast to the transient inhibition of parathyroid hormone-induced bone resorption

    International Nuclear Information System (INIS)

    Ransjoe, M.; Lerner, U.H.

    1990-01-01

    Calcitonin is a well known inhibitor of osteoclastic bone resortion, both in vivo and in vitro. However, it is also known that calcitonin has only a transient inhibitory effect on bone resorption. The mechanism for this so-called ''escape from inhibition'' phenomenon is not clear. In the present study, the inhibitory effect of calcitonin on phorbol ester-induced bone resorption was examined in cultured neonatal mouse calvaria. Bone resorption was assessed as the release of radioactivity from bones prelabelled in vivo with 45 Ca. Two proteon kinase C-activating phorbol esters, phorbol-12-myristate-13-acetate and phorbol-12,13-dibutyrate, both stimulated 45 Ca release in 120-h cultures at a concentration of 10 nmul/l. Calcitonin (30 nmol/l) inhibited phorbol esterstimulated bone resorption without any ''escape from inhibition''. This was in contrast to the transient inhibitory effect of calcitonin on bone resorption stimulated by parathyroid hormone (10 nmol/l), prostaglandin E 2 (2 μmol/l), and bradykinin (1 μmol/l). Our results suggest that activation of protein kinase C produces a sustained inhibitory effect of calcitonin on bone resorption. (author)

  10. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  11. Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep.

    Science.gov (United States)

    Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele; Perfetti, Giorgio

    2014-06-01

    To measure in vivo impact of dense bone overheating on implant osseointegration and peri-implant bone resorption comparing different bur irrigation methods vs. no irrigation. Twenty TI-bone implants were inserted in the inferior edge of mandibles of sheep. Different cooling procedures were used in each group: no irrigation (group A), only internal bur irrigation (group B), both internal and external irrigation (group C), and external irrigation (group D). The histomorphometric parameters calculated for each implant were as follows: %cortical bone-implant contact (%CBIC) and %cortical bone volume (%CBV). Friedman's test was applied to test the statistical differences. In group A, we found a huge resorption of cortical bone with %CBIC and %CBV values extremely low. Groups B and C showed mean %CBIC and %BV values higher than other groups The mean %CBV value was significantly different when comparing group B and group C vs. group A (P bone caused massive resorption of the cortical bone and implant failure. Drilling procedures on hard bone need an adequate cooling supply because the bone matrix overheating may induce complete resorption of dense bone around implants. Internal-external irrigation and only internal irrigation showed to be more efficient than other types of cooling methods in preventing bone resorption around implants. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. The role of lipopolysaccharide in infectious bone resorption of periapical lesion.

    Science.gov (United States)

    Hong, Chi-Yuan; Lin, Sze-Kwan; Kok, Sang-Heng; Cheng, Shih-Jung; Lee, Ming-Shu; Wang, Tong-Mei; Chen, Chuan-Shuo; Lin, Li-Deh; Wang, Juo-Song

    2004-03-01

    The role of lipopolysaccharide (LPS) in periapical lesion-induced bone resorption was investigated. Polymyxin B (PMB), a specific inhibitor of LPS, was evaluated to treat the apical lesion. Lipopolysaccharide isolated from two common endodontic pathogens, Fusobacterium nucleatum and Porphyromonas endodontalis, stimulated mouse macrophage (J774) to release interleukin-1alpha (IL-1 alpha) and tumor necrosis factor-alpha (TNF-alpha) in a time-dependent manner. Combination of LPS further enhanced the stimulation. PMB inhibited these effects significantly. LPS also stimulated matrix metalloproteinase-1 (MMP-1) gene expression in J774, whereas anti-IL-1 alpha and anti-TNF-alpha antibodies, as well as PMB, diminished this effect. A disease model of periapical lesion was established in Wistar rat. Administration of PMB reduced the extent of lesion-associated bone resorption by 76% to approximately 80%, and simultaneously reduced the numbers of MMP-1-producing macrophages. It is suggested that LPS released from the infected root canal triggers the synthesis of IL-1 alpha and TNF-alpha from macrophages. These pro-inflammatory cytokines up-regulate the production of MMP-1 by macrophages to promote periapical bone resorption.

  13. Inhibition of bone resorption in vitro and prevention of ovariectomy-induced bone loss in vivo by flurbiprofen nitroxybutylester (HCT1026).

    Science.gov (United States)

    Armour, K J; van 't Hof, R J; Armour, K E; Torbergsen, A C; Del Soldato, P; Ralston, S H

    2001-09-01

    Inhibitors of prostaglandin production, such as nonsteroidal antiinflammatory drugs (NSAIDs), and pharmacologic nitric oxide (NO) donors, such as organic nitrates, have been suggested to protect against bone loss in both humans and experimental animals. Recently, a new class of nitrosylated NSAID (known as NO-NSAIDs) has been developed, which combines the properties of a NO donor with those of a cyclooxygenase (COX) inhibitor. This study investigated the effects of one of these compounds, flurbiprofen nitroxybutylester (HCT1026), on bone metabolism in vitro and in vivo. The effects of HCT1026 on osteoclast formation and resorption were determined in vitro using cocultures of primary mouse osteoblasts and osteoclasts. The effect of HCT1026 in vivo was assessed using a mouse model of ovariectomy-induced bone loss. HCT1026 was significantly more efficacious than the parent compound, flurbiprofen, at inhibiting osteoclast formation and bone resorption in vitro, and these effects could not be reproduced by combinations of flurbiprofen with a variety of NO donors. Studies in vivo showed that HCT1026 protected against ovariectomy-induced bone loss by inhibiting osteoclastic bone resorption, whereas flurbiprofen at similar concentrations was ineffective. These data indicate that HCT1026 is a potent inhibitor of bone resorption in vitro and protects against ovariectomy-induced bone loss in vivo by a novel mechanism that appears to be distinct from its NO donor properties and from its inhibitory effects on COX activity. We conclude that HCT1026 may be of clinical value in the prevention and treatment of inflammatory diseases such as rheumatoid arthritis, which are characterized by joint inflammation as well as periarticular and systemic bone loss.

  14. Mechanisms of Bone Resorption in Periodontitis

    Directory of Open Access Journals (Sweden)

    Stefan A. Hienz

    2015-01-01

    Full Text Available Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.

  15. The Effect of An Angiogenic Cytokine on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Lotfi, Ali; Badiee, Mohammad Reza; Abdolazimi, Zahra; Amdjadi, Parisa; Bargrizan, Majid

    2016-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is an undesirable sequel of tooth movement after sterile necrosis that takes place in periodontal ligament due to blockage of blood vessels following exertion of orthodontic force. This study sought to assess the effect of an angiogenic cytokine on OIIRR in rat model. Materials and Methods In this experimental animal study, 50 rats were randomly divided into 5 groups of 10 each: E10, E100 and E1000 receiving an injection of 10, 100 and 1000 ng of basic fibroblast growth factor (bFGF), respectively, positive control group (CP) receiving an orthodontic appliance and injection of phosphate buffered saline (PBS) and the negative control group (CN) receiving only the anesthetic agent. A nickel titanium coil spring was placed between the first molar and the incisor on the right side of maxilla. Twenty-one days later, the rats were sacrificed. Histopathological sections were made to assess the number and area of resorption lacunae, number of blood vessels, osteoclasts and Howship’s lacunae. Data were statistically analyzed using ANOVA and Tukey’s honest significant difference (HSD) test. Results Number of resorption lacunae and area of resorption lacunae in E1000 (0.97 ± 0.80 and 1. 27 ± 0.01×10-3, respectively) were significantly lower than in CP (4.17 ± 0.90 and 2.77 ± 0.01×10-3, respectively, P=0.000). Number of blood vessels, osteoclasts and Howship’s lacunae were significantly higher in E1000 compared to CP (Proot resorption by providing more oxygen and angiogenesis. PMID:27551674

  16. Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption.

    Directory of Open Access Journals (Sweden)

    An Qin

    Full Text Available Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.

  17. Heterotopic new bone formation causes resorption of the inductive bone matrix

    International Nuclear Information System (INIS)

    Nilsson, O.S.; Persson, P.E.; Ekelund, A.

    1990-01-01

    The bone matrix of growing rats was labeled by multiple injections of 3H-proline, and demineralized bone matrix (DBM) was prepared. The DBM was allotransplanted heterotopically into growing rats. New bone formation was induced in and around the implants. The new bone formation was accompanied by a decrease in the content of 3H; 20 and 30 days after implantation, 72% and 46%, respectively, of the activity remained in the implants. Daily injections of indomethacin (2 mg/kg) inhibited calcium uptake by about 20% at 20 and 30 days and inhibited the release of 3H from the DBM to a similar degree. Heterotopic bone induction by DBM is accompanied by matrix resorption, and inhibition of the new bone formation decreases the resorption of DBM

  18. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    Science.gov (United States)

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  19. Tumor necrosis factor alpha and interleukin-1 stimulate bone resorption in vivo as measured by urinary [3H]tetracycline excretion from prelabeled mice

    International Nuclear Information System (INIS)

    Koenig, A.M.; Muehlbauer, R.C.F.; Fleisch, H.

    1988-01-01

    Tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1) have been shown to stimulate bone resorption in vitro. We have now investigated whether these cytokines also cause a similar action when administered in vivo. This was made possible by the adaptation of a newly developed technique that enables the continual assessment of bone resorption in vivo in mice by measuring urinary excretion of 3 H from [ 3 H]tetracycline-prelabeled animals. Experiments using maneuvers known to influence bone resorption, such as a change in dietary calcium or administration of parathyroid hormone or dichloromethylenebisphosphonate, indicate that the technique is reliable and sensitive in mice. Daily intravenous administration of either recombinant human or recombinant murine TNF-alpha, as well as subcutaneous administration of recombinant human IL-1 alpha, were found to stimulate bone resorption in a dose-dependent manner. The effect was maximal within 2 days. Thus, exogenous TNF-alpha and IL-1 alpha can stimulate bone resorption in vivo, suggesting that these cytokines may also exert a systemic effect on bone

  20. Porphyromonas gingivalis GroEL induces osteoclastogenesis of periodontal ligament cells and enhances alveolar bone resorption in rats.

    Directory of Open Access Journals (Sweden)

    Feng-Yen Lin

    Full Text Available Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL activation and alkaline phosphatase (ALP mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption.

  1. Osteoporotic cytokines and bone metabolism on rats with induced hyperthyroidism; changes as a result of reversal to euthyroidism.

    Science.gov (United States)

    Simsek, Gönül; Karter, Yesari; Aydin, Seval; Uzun, Hafize

    2003-12-31

    Hyperthyroidism is characterized by increased bone turnover and resorptive activity. Raised levels of serum osteoporotic cytokines, such as interleukin (IL) -1beta, IL-6 and tumor necrosis factor (TNF)-alpha have been demonstrated previously in hyperthyroidism. These elevations are controversial and it is difficult to differentiate the contribution of thyroid hormones to the elevation of cytokines from that of the autoimmune inflammation in Graves' disease (GD) and follicular cell damage in thyroiditis. Therefore, we investigated the effect of thyroid hormones on serum IL-1beta, IL-6, TNF-alpha levels and bone metabolism on L-thyroxine induced hyperthyroid rats and changes in cytokine levels and bone metabolism on the same rats after reversal to euthyroidism. Rats were treated with L-thyroxine for 5 weeks (0.4 mg/ 100 g food). Plasma T3, T4, TSH and serum IL-1beta, IL-6, TNFalpha, Calcium (Ca), phosphorous (P), parathyroid hormone (PTH), alkaline phosphatase (ALP), bone alkaline phosphatase (B-ALP) levels were measured and differential leucocyte counts were made initially, at the 5th week of the experiment (hyperthyroid state) and 5 weeks after quitting the administration of L-thyroxine (euthyroid state). Significant rises in serum IL-1beta, IL-6 and TNFalpha were noted in hyperthyroidism (P hyperthyroid state while there was no correlation in euthyroid states. Ca and P levels did not differ significantly while PTH levels declined significantly in the hyperthyroid state (P hyperthyroidism (P hyperthyroid state (P metabolism in hyperthyroidism might be mediated by cytokines and the increased bone turnover in hyperthyroidism failed to decrease despite euthyroidism.

  2. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  3. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  4. [In vitro study on bone resorption of odontogenic cysts and ameloblastomas].

    Science.gov (United States)

    Gao, Li; Li, Tie-jun

    2005-05-01

    To investigate the effect of bone resorption by odontogenic cysts and ameloblastomas in vitro. Fragments of odontogenic cysts (14 odontogenic keratocysts, 6 inflamed odontogenic keratocysts, 5 dentigerous cysts) and ameloblastomas (n = 7) were incubated in vitro for 24 h. The supernatant was then removed into the culture system of SD rat calvaria. After incubation (48 h), the calcium contents of the media were measured by atom spectrophotometer. The supernatant of odontogenic cysts and ameloblastomas was measured for the bone resorption related factors such as IL-6, TNF-alpha, PGE(2), bone Gla-containing protein (BGP) and calcitonin (CT) by a radioimmunoassay system. The calcium released in the calvaria culture media by all the odontogenic lesions was significantly higher than that in the blank controls (P keratocyst group had a significantly higher calcium concentration than odontogenic keratocyst and ameloblastoma groups (P keratocyst groups were significantly higher than that of ameloblastoma group (P keratocyst was significantly higher than those of odontogenic keratocyst and dentigerous cyst groups (P < 0.05). Correlation and regression analysis showed that IL-6 was significantly correlated with the calcium content (P < 0.01). The odontogenic lesions could promote bone resorption in vitro and it is likely to be related to some of the cytokines secreted by the lesions.

  5. Non-invasive markers of bone turnover and plasma cytokines differ in osteoporotic patients with multiple myeloma and monoclonal gammopathies of undetermined significance

    International Nuclear Information System (INIS)

    Diamond, T.; Levy, S.; Smith, A.; Day, P.; Manoharan, A.

    2001-01-01

    Multiple myeloma (MM) is a common malignancy manifest by bone marrow infiltration with malignant plasma cells, the production of a paraprotein and lytic bone lesions. Monoclonal gammopathy of undetermined significance (MGUS) is assumed to be the precursor of clinically apparent myeloma, with one or more additional genetic events being required for progression to MM. Elderly patients presenting with osteoporosis and skeletal fractures are not infrequently found to have elevated serum paraprotein concentrations suggestive of either MM or MGUS. Differentiating between these two clinical disorders may prove challenging, despite bone marrow biopsy evidence of plasmacytosis. The underlying pathogenesis of bone loss in these conditions is complex and may be attributed to cytokine-induced osteoclastogenesis coupled with increased osteoclastic bone resorption. In the present study, various markers of bone turnover and plasma cytokines were measured in order to determine whether they may be of value in differentiating between these two disorders. It is concluded that the urinary deoxypyridinoline excretion rate is a sensitive marker of bone resorption and of underlying bone disease activity. It may also help to differentiate between MM and MGUS

  6. The Effect of Long-Term Exercise on the Production of Osteoclastogenic and Antiosteoclastogenic Cytokines by Peripheral Blood Mononuclear Cells and on Serum Markers of Bone Metabolism

    Directory of Open Access Journals (Sweden)

    J. Kelly Smith

    2016-01-01

    Full Text Available Although it is recognized that the mechanical stresses associated with physical activity augment bone mineral density and improve bone quality, our understanding of how exercise modulates bone homeostasis at the molecular level is lacking. In a before and after trial involving 43 healthy adults, we measured the effect of six months of supervised exercise training on the spontaneous and phytohemagglutinin-induced production of osteoclastogenic cytokines (interleukin-1α, tumor necrosis factor-α, antiosteoclastogenic cytokines (transforming growth factor-β1 and interleukins 4 and 10, pleiotropic cytokines with variable effects on osteoclastogenesis (interferon-γ, interleukin-6, and T cell growth and differentiation factors (interleukins 2 and 12 by peripheral blood mononuclear cells. We also measured lymphocyte phenotypes and serum markers of bone formation (osteocalcin, bone resorption (C-terminal telopeptides of Type I collagen, and bone homeostasis (25 (OH vitamin D, estradiol, testosterone, parathyroid hormone, and insulin-like growth factor 1. A combination of aerobic, resistance, and flexibility exercises done on average of 2.5 hours a week attenuated the production of osteoclastogenic cytokines and enhanced the production of antiosteoclastogenic cytokines. These changes were accompanied by a 16% reduction in collagen degradation products and a 9.8% increase in osteocalcin levels. We conclude that long-term moderate intensity exercise exerts a favorable effect on bone resorption by changing the balance between blood mononuclear cells producing osteoclastogenic cytokines and those producing antiosteoclastogenic cytokines. This trial is registered with Clinical Trials.gov Identifier: NCT02765945.

  7. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  8. Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Hartmann, Bolette; Gottschalck, Ida B

    2007-01-01

    -bowel syndrome (SBS) or total gastrectomy in order to elucidate whether the signal for the meal-induced reduction of bone resorption is initiated from the stomach or the intestine. MATERIAL AND METHODS: Bone resorption was assessed from the serum concentration of collagen type I C-telopeptide cross-links (s......OBJECTIVE: Food intake inhibits bone resorption by a mechanism thought to involve gut hormones, and the intestinotrophic glucagon-like peptide 2 (GLP-2) is a candidate because exogenous GLP-2 inhibits bone resorption in humans. The purpose of the study was to investigate patients with short...

  9. Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats.

    Science.gov (United States)

    Kurohama, Takeshi; Hotokezaka, Hitoshi; Hashimoto, Megumi; Tajima, Takako; Arita, Kotaro; Kondo, Takanobu; Ino, Airi; Yoshida, Noriaki

    2017-06-01

    The purpose of this study was to evaluate the relationships among the volume of bone cut during corticotomy, amount of tooth movement, volume of root resorption, and volume of the resultant alveolar bone resorption after tooth movement. Ten-week-old female Wistar rats were distributed into the corticotomy groups and a control group that underwent sham corticotomy. Two experiments employing two different orthodontic forces (10 or 25g) and experimental periods (14 or 21 days) were performed. The volumes of the bone cut by corticotomy were 0.1, 1.0, and 1.7mm3 in the 25g groups, and 1.0 and 1.7mm3 in the 10g groups. Nickel-titanium closed-coil springs were set on the maxillary left first molars to induce mesial movement. After orthodontic tooth movement, the amount of tooth movement, volume of root resorption, and volume of alveolar bone resorption were measured. Despite differences in the volume of bone cut among the different corticotomy groups, there were not significant differences in the amount of tooth movement and volume of root resorption between the control group and any of the corticotomy groups. However, higher volume of bone cut during corticotomy was significantly related to the decreased alveolar bone volume-in particular, to the reduced height of the alveolar bone crest after tooth movement. The volume of the alveolar bone cut during corticotomy does not affect tooth movement or root resorption in 10-week-old female Wistar rats; however, it may increase alveolar bone loss after tooth movement. © The Author 2016. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  10. Hydroxychloroquine affects bone resorption both in vitro and in vivo.

    Science.gov (United States)

    Both, Tim; Zillikens, M Carola; Schreuders-Koedam, Marijke; Vis, Marijn; Lam, Wai-Kwan; Weel, Angelique E A M; van Leeuwen, Johannes P T M; van Hagen, P Martin; van der Eerden, Bram C J; van Daele, Paul L A

    2018-02-01

    We recently showed that patients with primary Sjögren syndrome (pSS) have significantly higher bone mineral density (BMD) compared to healthy controls. The majority of those patients (69%) was using hydroxychloroquine (HCQ), which may have favorable effects on BMD. The aim of the study was to evaluate whether HCQ modulates osteoclast function. Osteoclasts were cultured from PBMC-sorted monocytes for 14 days and treated with different HCQ doses (controls 1 and 5 μg/ml). TRAP staining and resorption assays were performed to evaluate osteoclast differentiation and activity, respectively. Staining with an acidification marker (acridine orange) was performed to evaluate intracellular pH at multiple timepoints. Additionally, a fluorescent cholesterol uptake assay was performed to evaluate cholesterol trafficking. Serum bone resorption marker β-CTx was evaluated in rheumatoid arthritis patients. HCQ inhibits the formation of multinuclear osteoclasts and leads to decreased bone resorption. Continuous HCQ treatment significantly decreases intracellular pH and significantly enhanced cholesterol uptake in mature osteoclasts along with increased expression of the lowdensity lipoprotein receptor. Serum β-CTx was significantly decreased after 6 months of HCQ treatment. In agreement with our clinical data, we demonstrate that HCQ suppresses bone resorption in vitro and decreases the resorption marker β-CTx in vivo. We also showed that HCQ decreases the intracellular pH in mature osteoclasts and stimulates cholesterol uptake, suggesting that HCQ induces osteoclastic lysosomal membrane permeabilization (LMP) leading to decreased resorption without changes in apoptosis. We hypothesize that skeletal health of patients with increased risk of osteoporosis and fractures may benefit from HCQ by preventing BMD loss. © 2017 Wiley Periodicals, Inc.

  11. Effects of the Natural and Artificial Menstrual Cycle on the Production of Osteoprotegerin and the Bone Resorptive Cytokines IL-1b and IL-6

    DEFF Research Database (Denmark)

    Abrahamsen, B.; Stilgren, L.S.; Rettmer, E.

    2003-01-01

    ) within the menstrual cycle prevent the increase in bone remodelling, which would otherwise have been the result of the luteal increase in the capacity for producing resorptive cytokines. The study population consisted of healthy female volunteers: premenopausal women (n = 11, mean age 39.4 y +/- 6.......1) without cycle irregularities. Postmenopausal women (n = 11, mean age 56.8 y +/- 3.6) receiving cyclic HRT (estradiol and noretisterone acetate). Luteal and follicular phase blood samples were diluted and cultured for 24 hours with and without lipopolysaccharide (LPS). The supernatant was assayed for IL-1...

  12. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro

    Directory of Open Access Journals (Sweden)

    Yeong-Min Yoo

    2014-04-01

    Full Text Available Neuropeptides such as vasoactive intestinal peptide (VIP and calcitonin gene-related peptide (CGRP are present in nerve fibers of bone tissues and have been suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF-induced shear stress is a potent signal in mechanotransduction that is capable of regulating both anabolic and catabolic bone remodeling. However, the interaction between neuropeptides and mechanical induction in bone remodeling is poorly understood. In this study, we attempted to quantify the effects of combined neuropeptides and mechanical stimuli on mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL and osteoprotegerin (OPG mRNA and protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared to control. Changes were not further enhanced with combined neuropeptides and OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to mechanical loading.

  13. Novel anti-cancer strategy in bone tumors by targeting molecular and cellular modulators of bone resorption.

    Science.gov (United States)

    Brounais, Bénédicte; Ruiz, Carmen; Rousseau, Julie; Lamoureux, François; Blanchard, Frédéric; Heymann, Dominique; Redini, Françoise

    2008-11-01

    Tumor cells alter the balanced process of bone formation and bone resorption mediated respectively by osteoblasts and osteoclasts, leading to the disruption of the normal equilibrium and resulting in a spectrum of osteolytic to osteoblastic lesions. This review will summarize research on molecules that play direct and essential roles in the differentiation and activity of osteoclasts, and the role of these molecules in bone destruction caused by cancer. Results from experimental models suggest that the Receptor Activator of NF-kB Ligand (RANKL), a member of the TNF superfamily is a common effector of bony lesions in osteolysis caused by primary and secondary bone tumors. Therefore, osteoclast represents an attractive target across a broad range of tumors that develop in bone. Elucidation of the mechanisms of RANKL interactions with its activator (RANK) and decoy (osteoprotegerin: OPG) receptors has enable the development of pharmacological inhibitors of RANKL (and of its signalling pathway) which have been recently patented, with potential for the treatment of cancer-induced bone disease. Blocking bone resorption by specific other drugs such as bisphosphonates, inhibitors of cathepsin K (the main enzyme involved in bone resorption mechanisms) or signalling pathways regulating osteoclast differentiation and activation is also a promising target for the treatment of osteolysis associated to bone tumors.

  14. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption......) from human osteoclasts cultured on either bone or plastic, and tested their effects on bone nodule formation by osteoblasts. Both types of CM were shown to dose-dependently induce bone nodule formation, whereas non-conditioned osteoclast culture medium had no effects. These data show that osteoclasts...

  15. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    Science.gov (United States)

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Polyethylene and methyl methacrylate particle-stimulated inflammatory tissue and macrophages up-regulate bone resorption in a murine neonatal calvaria in vitro organ system.

    Science.gov (United States)

    Ren, Weiping; Wu, Bin; Mayton, Lois; Wooley, Paul H

    2002-09-01

    There is considerable evidence that orthopaedic wear debris plays a crucial role in the pathology of aseptic loosening of joint prostheses. This study examined the effect of inflammatory membranes stimulated with methyl methacrylate and polyethylene on bone resorption, using the murine air pouch model. The capacity of RAW 264.7 mouse macrophages exposed to polymer particles to produce factors affecting bone metabolism was also studied. Neonatal calvaria bones were co-cultured with either pouch membranes or conditioned media from activated macrophages. Bone resorption was measured by the release of calcium from cultured bones, and the activity of tartrate-resistant acid phosphatase in both bone sections and culture medium was also assayed. Results showed that inflammatory pouch membrane activated by methyl methacrylate and polyethylene enhanced osteoclastic bone resorption. Conditioned media from particles stimulated mouse macrophages also stimulated bone resorption, although this effect was weaker than resorption induced by inflammatory pouch membranes. The addition of the particles directly into the medium of cultured calvaria bones had little effect on bone resorption. Our observations indicate that both inflammatory tissue and macrophages provoked by particles can stimulate bone resorption in cultured mouse neonatal calvaria bones. This simple in vitro bone resorption system allows us to investigate the fundamental cellular and molecular mechanism of wear debris induced bone resorption and to screen potential therapeutic approaches for aseptic loosening.

  17. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    International Nuclear Information System (INIS)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei; Ouyang, Zhengxiao; Wu, Chuanlong; Liu, Guangwang; Fan, Qiming; Tang, Tingting; Qin, An; Dai, Kerong

    2014-01-01

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases

  18. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang; Li, Haowei [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha (China); Wu, Chuanlong [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Liu, Guangwang [Department of Orthopaedic Surgery, The Central Hospital of Xuzhou, Affiliated Hospital of Medical Collage of Southeast University, Xuzhou (China); Fan, Qiming; Tang, Tingting [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Dai, Kerong, E-mail: krdai@163.com [Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2014-01-10

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.

  19. Coupling of Bone Resorption and Formation in Real Time

    DEFF Research Database (Denmark)

    Lassen, Nicolai Ernlund; Andersen, Thomas Levin; Pløen, Gro Grunnet

    2017-01-01

    measurements show that the latter contribute the most to overall resorption. Of note, the density of osteoprogenitors continuously grew along the "reversal/resorption" surface, reaching at least 39 cells/mm on initiation of bone formation. This value was independent of the length of the reversal......It is well known that bone remodeling starts with a resorption event and ends with bone formation. However, what happens in between and how resorption and formation are coupled remains mostly unknown. Remodeling is achieved by so-called basic multicellular units (BMUs), which are local teams...... of osteoclasts, osteoblasts, and reversal cells recently proven identical with osteoprogenitors. Their organization within a BMU cannot be appropriately analyzed in common histology. The originality of the present study is to capture the events ranging from initiation of resorption to onset of formation...

  20. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study.

    Science.gov (United States)

    Klein, Gordon L; Xie, Yixia; Qin, Yi-Xian; Lin, Liangjun; Hu, Minyi; Enkhbaatar, Perenlei; Bonewald, Lynda F

    2014-03-01

    nearly twice that of the controls. Moreover, whole blood ionized Ca measured at 3- to 6-h intervals over the first 24 h in both burn and control sheep showed a 6 % reduction versus baseline in the burned sheep with sheep model was previously used to demonstrate upregulation of the parathyroid calcium-sensing receptor within the timeframe of the present study. Because both early bone resorption, supported by this study, and calcium-sensing receptor upregulation, consistent with the observed reduction in blood ionized Ca, are mediated by proinflammatory cytokines that are present as part of the post-burn systemic inflammatory response, we may postulate that post-burn upregulation of the parathyroid calcium-sensing receptor may be an adaptive response to clear the blood of excess calcium liberated by cytokine-mediated bone resorption.

  1. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Chuandong Wang

    2017-06-01

    Full Text Available Postmenopausal osteoporosis is a disease characterized by excessive osteoclastic bone resorption. Some anti-diabetic drugs were demonstrated for anti-osteoclastic bone-loss effects. The present study investigated the skeletal effects of chronic administration of sitagliptin, a dipeptidyl peptidase IV (DPP IV inhibitor that is increasingly used for type 2 diabetes treatments, in an estrogen deficiency-induced osteoporosis and elucidated the associated mechanisms. This study indicated that sitagliptin effectively prevented ovariectomy-induced bone loss and reduced osteoclast numbers in vivo. It was also indicated that sitagliptin suppressed receptor activator of nuclear factor-κB ligand (RANKL-mediated osteoclast differentiation, bone resorption, and F-actin ring formation in a manner of dose-dependence. In addition, sitagliptin significantly reduced the expression of osteoclast-specific markers in mouse bone-marrow-derived macrophages, including calcitonin receptor (Calcr, dendrite cell-specific transmembrane protein (Dc-stamp, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1. Further study indicated that sitagliptin inhibited osteoclastogenesis by suppressing AKT and ERK signaling pathways, scavenging ROS activity, and suppressing the Ca2+ oscillation that consequently affects the expression and/or activity of the osteoclast-specific transcription factors, c-Fos and NFATc1. Collectively, these findings suggest that sitagliptin possesses beneficial effects on bone and the suppression of osteoclast number implies that the effect is exerted directly on osteoclastogenesis.

  2. Effects of epidermal growth factor on bone formation and resorption in vivo

    International Nuclear Information System (INIS)

    Marie, P.J.; Hott, M.; Perheentupa, J.

    1990-01-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double [3H]proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in the periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse

  3. Impact of bone graft harvesting techniques on bone formation and graft resorption

    DEFF Research Database (Denmark)

    Saulacic, Nikola; Bosshardt, Dieter D; Jensen, Simon S

    2015-01-01

    BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone fo......: Transplantation of autogenous bone particles harvested with four techniques in the present model resulted in moderate differences in terms of bone formation and graft resorption.......BACKGROUND: Harvesting techniques can affect cellular parameters of autogenous bone grafts in vitro. Whether these differences translate to in vivo bone formation, however, remains unknown. OBJECTIVE: The purpose of this study was to assess the impact of different harvesting techniques on bone...... formation and graft resorption in vivo. MATERIAL AND METHODS: Four harvesting techniques were used: (i) corticocancellous blocks particulated by a bone mill; (ii) bone scraper; (iii) piezosurgery; and (iv) bone slurry collected from a filter device upon drilling. The grafts were placed into bone defects...

  4. BIOCHEMICAL MARKERS OF BONE RESORPTION AND HORMONAL REGULATION OF BONE METABOLISM FOLLOWING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2013-01-01

    Full Text Available Aim. Comparative evaluation of two biochemical markers of bone resorption and hormonal regulation of bone metabolism in liver recipients. Methods and results. Bоne densitometry of L2–L4 and neck of femur, serum level of some hormones (PTH, vitamin D3, estradiol, testosterone regulating osteoclastogenesis as well as com- parative analyses of two bone resorption markers β-crosslaps and tartrate-resistant acid phosphatase type 5b (TRAP-5b were fulfilled in patients after orthotopic liver transplantation (OLT. In 1 month after OLT bone density reduction of L2–L4 and neck of femur; decrease of vitamin D3, estradiol in women, testosterone in men and increase levels of bone resorption markers were observed. In 1 and 2 years after OLT the rise of bone density, increased levels of PTH, estradiol, testosterone and decreased β-crosslaps levels were revealed, while vitamin D3 and TRAP-5b levels remained stable. Conclusion. TRAP-5b was found to be a more speciffic marker of bone resorption, independent from collagen metabolism in liver. Osteoporosis defined in long-term period after OLT was associated with higher TRAP-5b and revialed in women with low estradiol level. 

  5. Effect of odanacatib on root resorption and alveolar bone metabolism during orthodontic tooth movement.

    Science.gov (United States)

    Wei, X X; Chu, J P; Zou, Y Z; Ru, N; Cui, S X; Bai, Y X

    2015-12-22

    The aim of this study was to investigate the effect of local administration of odanacatib (ODN) on orthodontic root resorption and the status of alveolar bone metabolism in rat molars. All specimens were scanned using microcomputed tomography and then the raw images were reconstructed. The total volume of the root resorption craters of the 60 g-NS (normal saline) group was higher than in the 60 g-ODN group and the control group. In the 60 g-NS group, the bone volume fraction values of alveolar bone were significantly decreased compared with the other 2 groups. There were no significant differences in the bone volume fraction values of the tibiae among the 3 groups. The results of tartrate-resistant acid phosphatase-positive (TRAP+) numbers showed that there was no difference between the 60 g-NS group and the 60 g-ODN group. The expression of cathepsin K was decreased significantly in the 60 g-ODN group. These results indicate that ODN reduces orthodontics-induced external root resorption and increases alveolar bone metabolism. This may be because ODN inhibits the activity of odontoclasts, but maintains the quantity of odontoclasts and enhances bone formation. ODN promotes local alveolar bone metabolism, but does not affect systemic bone metabolism.

  6. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Bai, Yuxing; Li, Song; Liu, Yunfeng; Wei, Xiaoxia

    2016-04-01

    BoneCeramic (Straumann, Basel, Switzerland) can regenerate bone in alveolar defects after tooth extraction, but it is unknown whether it is feasible to move a tooth through BoneCeramic grafting sites. The objective of this study was to investigate 3-dimensional real-time root resorption and bone responses in grafted sites during orthodontic tooth movement. Sixty 5-week-old rats were randomly assigned to 3 groups to receive BoneCeramic, natural bovine cancellous bone particles (Bio-Oss; Geistlich Pharma, Wolhusen, Switzerland), or no graft, after the extraction of the maxillary left first molar. After 4 weeks, the maxillary left second molar was moved into the extraction site for 28 days. Dynamic bone microstructures and root resorption were evaluated using in-vivo microcomputed tomography. Stress distribution and corresponding tissue responses were examined by the finite element method and histology. Mixed model analysis of variance was performed to compare the differences among time points with Bonferroni post-hoc tests at the significance level of P root resorption volumes and craters, and the highest bone volume fraction, trabecular number, and mean trabecular thickness, followed by the Bio-Oss and the control groups. The highest stress accumulated in the cervical region of the mesial roots. BoneCeramic has better osteoconductive potential and induces less root resorption compared with Bio-Oss grafting and naturally recovered extraction sites. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  7. Facilitation of bone resorption activities in synovial lavage fluid patients with mandibular condyle fractures.

    Science.gov (United States)

    Takano, H; Takahashi, T; Nakata, A; Nogami, S; Yusa, K; Kuwajima, S; Yamazaki, M; Fukuda, M

    2016-05-01

    The aim of this study was to investigate the bone resorption effect of the mediators delivered in joint cavity of patients with mandibular condyle fractures by detecting osteoclast markers using cellular biochemistry methods, and by analysing bone resorption activities via inducing osteoclast differentiation of the infiltrated cells from arthrocentesis. Sixteen joints in 10 patients with mandibular condyle fractures were evaluated. The control group consisted of synovial fluid (SF) samples from seven joints of four volunteers who had no clinical signs or symptoms involving the temporomandibular joint (TMJ) or disc displacement. We collected SF cells from all patients during therapeutic arthrocentesis. The infiltrating cells from TMJ SF were cultured, differentiated into tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells and examined bone resorption activities. We also investigated factors related to osteoclast induction of SF, using ELISA procedures. Osteoclast-like cells were induced from the SF cells obtained from all patients with condylar fractures. These multinucleated giant cells were positive for TRAP and actin, and had the ability to absorb dentin slices. The levels of macrophage colony-stimulating factor (M-CSF), prostaglandin E2 (PGE2), soluble form of receptor activator of nuclear factor kappa-B ligand (sRANKL) and osteoprotegerin (OPG), in SF samples from the patients, were significantly higher than in the controls. These findings indicate that bone resorption activities in SF from patients with mandibular condyle fractures were upregulated and may participate in the pathogenesis and wound healing. © 2016 The Authors. Journal of Oral Rehabilitation Published by John Wiley & Sons Ltd.

  8. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  9. Bone Resorption Increases as Early as the Second Day in Head- Down Bed Rest

    Science.gov (United States)

    Heer, M.; Kamps, N.; Mika, C.; Boese, A.; Gerzer, R.

    Long-term bed rest and space mission studies have shown that immobilization as well as microgravity induce increased bone resorption while bone formation tends to decrease. In order to analyze the kinetics of short-term changes in bone turnover we studied in a randomized, strictly controlled crossover design the effects of 6 days 6° head-down tilt bed rest (HDT) in 8 male healthy subjects (mean body weight (BW): 70.1 +/- 1.88 kg; mean age: 25.5 +/- 1.04 years) in our metabolic ward. Two days before arriving in the metabolic ward the subjects started with a diet consisting of an energy content of 10 MJ/d, 2000 mg Calcium/d, 400 i.U. Vitamin D, 200 mEq Na+ and 50 ml water/kg BW/d. The diet was continued in the metabolic ward. The metabolic ward period (11days) was divided into 3 parts: 4 ambulatory days, 6 days either HDT or control and 1 recovery day. Continuous urine collection started on the first day in the metabolic ward to analyze calcium excretion and bone resorption markers, namely C-telopeptide (CTX) and N-telopeptide (NTX). On the 2nd ambulatory day in the metabolic ward and on the 5th day in HDT or control blood was drawn to analyze serum calcium, parathyroid hormone, and bone formation markers (bone Alkaline Phosphatase (bAP), Procollagen-I-Propeptide (P-I-CP). Both study phases were identical with respect to environmental conditions, study protocol and diet. Urinary calcium excretion was as early as the first day in immobilization increased (pcontrol. But, already on the 2nd day of immobilization both bone resorption markers significantly increased. NTX-excretion was increased by 28.7 +/- 14.0% (pcontrol. In contrast to the bone resorption markers, the formation marker P-I-CP tended to decrease as early as the fifth day of immobilization (phormone-, as well as bAP concentrations were unchanged. We conclude from these results of a pronounced rise of bone resorption markers that already 24 hours of immobilization induce a significant rise in osteoclast

  10. Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.

    OpenAIRE

    Krieger, N S; Stappenbeck, T S; Stern, P H

    1987-01-01

    The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations bel...

  11. Cardiotonic agent milrinone stimulates resorption in rodent bone organ culture.

    Science.gov (United States)

    Krieger, N S; Stappenbeck, T S; Stern, P H

    1987-01-01

    The cardiotonic agent amrinone inhibits bone resorption in vitro. Milrinone, an amrinone analog, is a more potent cardiotonic agent with lower toxicity. In contrast to amrinone, milrinone stimulated resorption in cultures of neonatal mouse calvaria and fetal rat limb bones. Threshold doses were 0.1 microM in calvaria and 0.1 mM in limb bones; maximal stimulation occurred in calvaria at 0.1 mM. Maximal responses to milrinone and parathyroid hormone were comparable. Milrinone concentrations below 0.1 mM did not affect calvarial cyclic AMP. 0.5 microM indomethacin inhibited milrinone effects in calvaria but usually not in limb bones. 3 nM calcitonin inhibited milrinone-stimulated resorption and there was no escape from this inhibition. Structural homology between milrinone and thyroxine has been reported. We find similarities between milrinone and thyroxine actions on bone, because prostaglandin production was crucial for the effects of both agents in calvaria but not in limb bones, and neither agent exhibited escape from calcitonin inhibition. PMID:3027124

  12. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption

    DEFF Research Database (Denmark)

    Karsdal, M.A.; Henriksen, K.; Sorensen, M.G.

    2005-01-01

    Patients with defective osteoclastic acidification have increased numbers of osteoclasts, with decreased resorption, but bone formation that remains unchanged. We demonstrate that osteoclast survival is increased when acidification is impaired, and that impairment of acidification results in inhi...

  13. Morphological characteristics of frontal sinus and nasal bone focusing on bone resorption and apposition in hypophosphatemic rickets

    DEFF Research Database (Denmark)

    Gjørup, Hans; Kjaer, I; Sonnesen, L

    2013-01-01

    To characterize the size and the morphology of the frontal sinus (i.e., structure evolved by bone resorption) and the nasal bone (i.e., structure evolved by bone formation) in adults with hypophosphatemic rickets (HR) compared with controls.......To characterize the size and the morphology of the frontal sinus (i.e., structure evolved by bone resorption) and the nasal bone (i.e., structure evolved by bone formation) in adults with hypophosphatemic rickets (HR) compared with controls....

  14. Influence of diphenylhydantoin on lysosomal enzyme release during bone resorption in vitro

    International Nuclear Information System (INIS)

    Lerner, U.; Haenstroem, L.

    1980-01-01

    The effect of diphenylhydantoin (DPH) on the release of lysosomal enzymes during resorption of cultured mouse calvarial bone was studied. The enzyme activities of β-glucuronidase and β-galactosidase in the culture medium was taken as indicators for lysosomal enzyme release. In concentrations 50 μg/ml or higher, DPH inhibited the release of β-glucuronidase and β-galactosidase in parallel with bone resorption as indicated by reduced release of 4 Ca, Ca 2 , Psub(i) and hydroxyproline. The release of the cytosolic enzyme lactate dehydrogenase was not influenced by concentrations of DPH up to 50 μg/ml but higher concentrations caused an increased release indicating cell injury. When bone resorption was stimulated by prostaglandin E 2 , DPH(50 μg/ml) also reduced the mobilization of bone mineral and the release of β- glucuronidase without influencing the release of lactate dehydrogenase. It is suggested that DPH by interfering with cellular release processes reduces the resorption on bone. (author)

  15. The clinical study of the early soft tissue healing and marginal bone resorption after non-submerged implants

    International Nuclear Information System (INIS)

    Xu Anchen; Yang Desheng; Hu Bei; Leng Bin; Zhang Li

    2009-01-01

    Objective: To compare the amount of early marginal bone resorption in the first three months after non-submerged implants and to explore the relationship between the amount of early marginal bone resorption and the soft tissue healing in the first month. Method: ITI with non-submerged implants were implanted in 33 patients. Digital panoramic radiographs were taken during the operation, one month and three months later. The amount of marginal bone resorption was measured in the first, second and the third month after implant operation. The soft tissue healing was observed after 10 days. Results: There was significant difference (P<0.01) in the amount of early marginal bone resorption between one month and three months later. The early marginal bone resorption in the first month after implantation kept correlation with the soft tissue healing on 10th day(r=0.794, P<0.01). Conclusion: The amount of early marginal bone resorption in the first month exceeds that in the second and the third months after implant operation, and the soft tissue healing affects the amount of early marginal bone resorption in the first month. Biological seal is the critical factor influencing the early marginal bone resorption. (authors)

  16. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Shaobo [Department of Orthopaedics, PLA General Hospital, Beijing 100853 (China); Xu, Jiawei [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Chenghua [Department of Orthopaedics, Changle County Hospital of Traditional Chinese Medicine, Weifang 262400 (China); Xu, Chen [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Liu, Ming, E-mail: ming_li4717@sina.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yu, Degang, E-mail: ydg163@126.com [Department of Orthopaedics, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China)

    2016-01-29

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  17. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    International Nuclear Information System (INIS)

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua; Xu, Chen; Liu, Ming; Yu, Degang

    2016-01-01

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retarded IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.

  18. Effect of Nanocrystalline Hydroxyapatite Socket Preservation on Orthodontically Induced Inflammatory Root Resorption

    Science.gov (United States)

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Objective Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. Materials and Methods This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. Results The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10-4mm2 in the maxilla and 21.41 ± 11.25×10-4mm2 in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). Conclusion The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®. PMID:25685742

  19. Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption.

    Science.gov (United States)

    Seifi, Massoud; Arayesh, Ali; Shamloo, Nafise; Hamedi, Roya

    2015-01-01

    Orthodontically induced inflammatory root resorption (OIIRR) is considered to be an important sequel associated with orthodontic tooth movement (OTM). OTM after Socket preservation enhances the periodontal condition before orthodontic space closure. The purpose of this study is to investigate the histologic effects of NanoBone®, a new highly nonsintered porous nano-crystalline hydroxyapatite bone on root resorption following OTM. This experimental study was conducted on four male dogs. In each dog, four defects were created at the mesial aspects of the maxillary and mandibular first premolars. The defects were filled with NanoBone®. We used the NiTi closed coil for mesial movement of the first premolar tooth. When the experimental teeth moved approximately halfway into the defects, after two months, the animals were sacrificed and we harvested the area of interest. The first premolar root and adjacent tissues were histologically evaluated. The three-way ANOVA statistical test was used for comparison. The mean root resorption in the synthetic bone substitute group was 22.87 ± 11.25×10(-4)mm(2) in the maxilla and 21.41 ± 11.25×10(-4)mm(2) in the mandible. Statistically, there was no significant difference compared to the control group (p>0.05). The use of a substitution graft in the nano particle has some positive effects in accessing healthy periodontal tissue following orthodontic procedures without significant influence on root resorption (RR). Histological evaluation in the present study showed osteoblastic activity and remodeling environment of nanoparticles in NanoBone®.

  20. Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study

    Directory of Open Access Journals (Sweden)

    Wong Pius

    2009-07-01

    Full Text Available Abstract Background Asymptomatic local bone resorption of the tibia under the baseplate can occasionally be observed after total knee arthroplasty (TKA. Its occurrence is not well documented, and so far no explanation is available. We report the incidence of this finding in our practice, and investigate whether it can be attributed to specific mechanical factors. Methods The postoperative radiographs of 500 consecutive TKA patients were analyzed to determine the occurrence of local medial bone resorption under the baseplate. Based on these cases, a 3D FE model was developed. Cemented and cementless technique, seven positions of the baseplate and eleven load sharing conditions were considered. The average VonMises stress was evaluated in the bone-baseplate interface, and the medial and lateral periprosthetic region. Results Sixteen cases with local bone resorption were identified. In each, bone loss became apparent at 3 months post-op and did not increase after one year. None of these cases were symptomatic and infection screening was negative for all. The FE analysis demonstrated an influence of baseplate positioning, and also of load sharing, on stresses. The average stress in the medial periprosthetic region showed a non linear decrease when the prosthetic baseplate was shifted laterally. Shifting the component medially increased the stress on the medial periprosthetic region, but did not significantly unload the lateral side. The presence of a cement layer decreases the stresses. Conclusion Local bone resorption of the proximal tibia can occur after TKA and might be attributed to a stress shielding effect. This FE study shows that the medial periprosthetic region of the tibia is more sensitive than the lateral region to mediolateral positioning of the baseplate. Medial cortical support of the tibial baseplate is important for normal stress transfer to the underlying bone. The absence of medial cortical support of the tibial baseplate may lead

  1. A preliminary investigation of short-term cytokine  expression in gingival crevicular fluid secondary to high-level orthodontic forces and the associated root resorption: case series analytical study.

    Science.gov (United States)

    Ahuja, Rajiv; Almuzian, Moahmmed; Khan, Alamgir; Pascovici, Dana; Dalci, Oyku; Darendeliler, M Ali

    2017-12-01

    Orthodontically induced iatrogenic root resorption (OIIRR) is an unavoidable inflammatory process. Several factors claimed to be related to the severity of OIIRR. Orthodontic forces cause micro-trauma to the periodontal ligament and activate a cascade of cellular events associated with local periodontal inflammation. The purpose of this split-mouth study were (1) to investigate the changes in cytokine profile in the gingival crevicular fluid (GCF) secondary to heavy orthodontic forces and (2) to compare the cytokine expression between participants showing high and low root resorption. Eight participants requiring maxillary first premolar extractions involved in this study. The teeth on the tested side (TS) received 225 g of controlled buccal tipping force for 28 days, while the contralateral teeth act as a control (CS). GCF was collected from both TS and CS teeth at 0 h (prior to application of force) and 3 h, 1 day, 3 days, 7 days and 28 days after the application of force, and analysed with multiplex bead immunoassay to determine the cytokine levels. Statistically significant temporal increase was found in the TS teeth for tumour necrosis factor alpha (TNF-α) at 3 h and 28 days (p = 0.01). Interleukin 7 (IL-7) significantly peaked at the 28th day. Comparing cytokine profile for participants with high and low root resorption (>0.35 and root resorption cases (p root resorption which craters on mesial, distal surfaces and middle third region were significant in the TS teeth (p resorptive cytokine) increased significantly secondary to a high-level of orthodontic force application. Significantly high levels of granulocyte macrophage colony-stimulating factor (anti-resorptive cytokine) were detected in mild root resorption cases secondary to high-level orthodontic force application. A future long-term randomised clinical trial with larger sample taking in consideration gender, age and growth pattern distribution would be recommended.

  2. Bone metastasis target redox-responsive micell for the treatment of lung cancer bone metastasis and anti-bone resorption.

    Science.gov (United States)

    Ye, Wei-Liang; Zhao, Yi-Pu; Cheng, Ying; Liu, Dao-Zhou; Cui, Han; Liu, Miao; Zhang, Bang-Le; Mei, Qi-Bing; Zhou, Si-Yuan

    2018-01-16

    In order to inhibit the growth of lung cancer bone metastasis and reduce the bone resorption at bone metastasis sites, a bone metastasis target micelle DOX@DBMs-ALN was prepared. The size and the zeta potential of DOX@DBNs-ALN were about 60 nm and -15 mV, respectively. DOX@DBMs-ALN exhibited high binding affinity with hydroxyapatite and released DOX in redox-responsive manner. DOX@DBMs-ALN was effectively up taken by A549 cells and delivered DOX to the nucleus of A549 cells, which resulted in strong cytotoxicity on A549 cells. The in vivo experimental results indicated that DOX@DBMs-ALN specifically delivered DOX to bone metastasis site and obviously prolonged the retention time of DOX in bone metastasis site. Moreover, DOX@DBMs-ALN not only significantly inhibited the growth of bone metastasis tumour but also obviously reduced the bone resorption at bone metastasis sites without causing marked systemic toxicity. Thus, DOX@DBMs-ALN has great potential in the treatment of lung cancer bone metastasis.

  3. Cytokines and T-lymphocyte subsets in healthy post-menopausal women: estrogen retards bone loss without affecting the release of IL-1 or IL-1ra

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Bendtzen, Klaus; Beck-Nielsen, H

    1997-01-01

    resorptive cytokines and have also been linked with bone metabolism and the development of osteoporosis. Cytokine secretion from whole blood cell cultures was compared between two randomized groups of healthy early post-menopausal women (mean age 52.5 yrs, N = 91) and lymphocyte subsets were quantitated....... There was no association between cytokine release and bone mass or loss assessed over 2 yrs. The only exception was a weak estrogen-independent correlation between basal IL-1ra secretion and bone loss (r = -0.21, p loss...... cells may be important in the pathophysiology of post-menopausal bone loss. The possibility that IL-1ra acts as an independent bone-sparing factor unrelated to estrogen withdrawal warrants further investigation. In conclusion, ERT maintains bone without affecting the release of the IL-1 family...

  4. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  5. Bis-enoxacin Inhibits Bone Resorption and Orthodontic Tooth Movement

    Science.gov (United States)

    Toro, E.J.; Zuo, J.; Guiterrez, A.; La Rosa, R.L.; Gawron, A.J.; Bradaschia-Correa, V.; Arana-Chavez, V.; Dolce, C.; Rivera, M.F.; Kesavalu, L.; Bhattacharyya, I.; Neubert, J.K.; Holliday, L.S.

    2013-01-01

    Enoxacin inhibits binding between the B-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. Abbreviations: BE, bis-enoxacin; V-ATPase, vacuolar H+-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement. PMID:23958763

  6. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  7. Effect of calvarial burring on resorption of onlay cranial bone graft.

    Science.gov (United States)

    Hassanein, Aladdin H; Clune, James E; Mulliken, John B; Arany, Praveen R; Rogers, Gary F; Kulungowski, Ann M; Greene, Arin K

    2012-09-01

    Variable resorption occurs whenever calvarial bone graft is used for onlay cranioplasty. The recipient ectocortex may be burred to expose vessels and osteocytes to maximize healing. The purpose of this study was to determine whether abrading the recipient site improves the volume of onlay graft. The parietal bones of 17 rabbits were sectioned into split-thickness and full-thickness grafts. The right frontal cortex was abraded with a bur to punctate bleeding. Pairs of split-thickness (n = 48) or full-thickness (n = 20) grafts were onlayed to the burred right frontal bone and to the nonburred left frontal bone. Micro-computed tomography was used to determine graft volume immediately postoperatively and 16 weeks later. Histology, including tartrate-resistant acid phosphatase staining, was performed to quantify vascular channels and osteoclasts per high-power field 10 days postoperatively. Split-thickness graft volume decreased 58.0% when placed on the burred calvarial site, compared with grafts on the nonburred cortex (28.4%) (P = 0.01). Full-thickness grafts showed a similar trend: greater resorption (39.1%) when onlayed onto abraded calvaria compared with nonburred ectocortex (26.0%) (P = 0.11). Split-thickness graft orientation (cortical vs cancellous side in contact with the recipient site) did not affect resorption (P = 0.67). Onlay grafts placed on the burred recipient site had more vascular channels (11.8) and osteoclasts (5.7), compared with grafts over nonabraded cortex (3.4 and 4.2, respectively) (P cranial bone grafting promotes resorption, possibly by increasing vascularization and osteoclastic activity. This technique cannot be recommended.

  8. 3H-tetracycline as a proxy for 41Ca for measuring dietary perturbations of bone resorption

    International Nuclear Information System (INIS)

    Weaver, Connie; Cheong, Jennifer; Jackson, George; Elmore, David; McCabe, George; Martin, Berdine

    2007-01-01

    Our group is interested in evaluating early effects of dietary interventions on bone loss. Postmenopausal women lose bone following reduction in estrogen which leads to increased risk of fracture. Traditional means of monitoring bone loss and effectiveness of treatments include changes in bone density, which takes 6 months to years to observe effects, and changes in biochemical markers of bone turnover, which are highly variable and lack specificity. Prelabeling bone with 41 Ca and measuring urinary 41 Ca excretion with accelerator mass spectrometry provides a sensitive, specific, and rapid approach to evaluating effectiveness of treatment. To better understand 41 Ca technology as a tool for measuring effective treatments on reducing bone resorption, we perturbed bone resorption by manipulating dietary calcium in rats. We used 3 H-tetracycline ( 3 H-TC) as a proxy for 41 Ca and found that a single dose is feasible to study bone resorption. Suppression of bone resorption, as measured by urinary 3 H-TC, by dietary calcium was observed in rats stabilized after ovariectomy, but not in recently ovariectomized rats

  9. Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans

    Science.gov (United States)

    Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna

    2011-01-01

    Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823

  10. A preliminary investigation of short-term cytokine  expression in gingival crevicular fluid secondary to high-level orthodontic forces and the associated root resorption: case series analytical study

    Directory of Open Access Journals (Sweden)

    Rajiv Ahuja

    2017-08-01

    Full Text Available Abstract Background Orthodontically induced iatrogenic root resorption (OIIRR is an unavoidable inflammatory process. Several factors claimed to be related to the severity of OIIRR. Orthodontic forces cause micro-trauma to the periodontal ligament and activate a cascade of cellular events associated with local periodontal inflammation. The purpose of this split-mouth study were (1 to investigate the changes in cytokine profile in the gingival crevicular fluid (GCF secondary to heavy orthodontic forces and (2 to compare the cytokine expression between participants showing high and low root resorption. Methods Eight participants requiring maxillary first premolar extractions involved in this study. The teeth on the tested side (TS received 225 g of controlled buccal tipping force for 28 days, while the contralateral teeth act as a control (CS. GCF was collected from both TS and CS teeth at 0 h (prior to application of force and 3 h, 1 day, 3 days, 7 days and 28 days after the application of force, and analysed with multiplex bead immunoassay to determine the cytokine levels. Results Statistically significant temporal increase was found in the TS teeth for tumour necrosis factor alpha (TNF-α at 3 h and 28 days (p = 0.01. Interleukin 7 (IL-7 significantly peaked at the 28th day. Comparing cytokine profile for participants with high and low root resorption (>0.35 and <0.15 mm3, respectively, the levels of GM-CSF was significantly greater in low root resorption cases (p < 0.05. The amounts of root resorption which craters on mesial, distal surfaces and middle third region were significant in the TS teeth (p < 0.05. Conclusions IL-7 and TNF-α (pro-resorptive cytokine increased significantly secondary to a high-level of orthodontic force application. Significantly high levels of granulocyte macrophage colony-stimulating factor (anti-resorptive cytokine were detected in mild root resorption cases secondary to high

  11. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption

    International Nuclear Information System (INIS)

    Wachi, Takanori; Shuto, Takahiro; Shinohara, Yoshinori; Matono, Yoshinari; Makihira, Seicho

    2015-01-01

    Although interest in peri-implant mucositis and peri-implantitis has recently been increasing, the mechanisms driving these diseases remain unknown. Here, the effects of titanium ions on the inflammation and bone resorption around an implant were investigated. First, the accumulated amount of Ti ions released into gingival and bone tissues from an implant exposed to sodium fluoride solution was measured using inductively coupled plasma mass spectrometry. Next, the cellular responses in gingival and bone tissues to Ti ions and/or Porphyromonas gingivalis-lipopolysaccharide (P. gingivalis-LPS) were assessed using a rat model. More Ti ions were detected in the gingival tissues around an implant after treatment with sodium fluoride (pH 4.2) than in its absence, which suggests that the fluoride corroded the implant surface under salivary buffering capacity. The injection of Ti ions (9 ppm) significantly increased the mRNA expression and protein accumulation of chemokine (C–C motif) ligand 2, as well as the ratio of receptor activator of nuclear factor-κB ligand to osteoprotegerin, in rat gingival tissues exposed to P. gingivalis-LPS in a synergistic manner. In addition, the enhanced localization of toll-like receptor 4, which is an LPS receptor, was observed in gingival epithelium loaded with Ti ions (9 ppm). These data suggest that Ti ions may be partly responsible for the infiltration of monocytes and osteoclast differentiation by increasing the sensitivity of gingival epithelial cells to microorganisms in the oral cavity. Therefore, Ti ions may be involved in the deteriorating effects of peri-implant mucositis, which can develop into peri-implantitis accompanied by alveolar bone resorption

  12. [Frontier in bone biology].

    Science.gov (United States)

    Takeda, Shu

    2015-10-01

    Bone is an active organ in which bone mass is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption, i.e., coupling of bone formation and bone resorption. Recent advances in molecular bone biology uncovered the molecular mechanism of the coupling. A fundamental role of osteocyte in the maintenance of bone mass and whole body metabolism has also been revealed recently. Moreover, neurons and neuropeptides have been shown to be intimately involved in bone homeostasis though inter-organ network, in addition to "traditional" regulators of bone metabolism such as soluble factors and cytokines

  13. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    Science.gov (United States)

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  14. Quantification and visualization of alveolar bone resorption from 3D dental CT images

    International Nuclear Information System (INIS)

    Nagao, Jiro; Mori, Kensaku; Kitasaka, Takayuki; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2007-01-01

    Purpose A computer aided diagnosis (CAD) system for quantifying and visualizing alveolar bone resorption caused by periodontitis was developed based on three-dimensional (3D) image processing of dental CT images. Methods The proposed system enables visualization and quantification of resorption of alveolar bone surrounding and between the roots of teeth. It has the following functions: (1) vertical measurement of the depth of resorption surrounding the tooth in 3D images, avoiding physical obstruction; (2) quantification of the amount of resorption in the furcation area; and (3) visualization of quantification results by pseudo-color maps, graphs, and motion pictures. The resorption measurement accuracy in the area surrounding teeth was evaluated by comparing with dentist's recognition on five real patient CT images, giving average absolute difference of 0.87 mm. An artificial image with mathematical truth was also used for measurement evaluation. Results The average absolute difference was 0.36 and 0.10 mm for surrounding and furcation areas, respectively. The system provides an intuitive presentation of the measurement results. Conclusion Computer aided diagnosis of 3D dental CT scans is feasible and the technique is a promising new tool for the quantitative evaluation of periodontal bone loss. (orig.)

  15. Comparison of Bone Resorption Rates after Intraoral Block Bone and Guided Bone Regeneration Augmentation for the Reconstruction of Horizontally Deficient Maxillary Alveolar Ridges

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. Bone atrophy after tooth loss may leave insufficient bone for implant placement. We compared volumetric changes after autogenous ramus block bone grafting (RBG or guided bone regeneration (GBR in horizontally deficient maxilla before implant placement. Materials and Methods. In this retrospective study, volumetric changes at RBG or GBR graft sites were evaluated using cone-beam computed tomography. The primary outcome variable was the volumetric resorption rate. Secondary outcomes were bone gain, graft success, and implant insertion torque. Results. Twenty-four patients (28 grafted sites were included (GBR, 15; RBG, 13. One patient (RBG suffered mucosal dehiscence at the recipient site 6 weeks after surgery, which healed spontaneously. Mean volume reduction in the GBR and RBG groups was 12.48 ± 2.67% and 7.20 ± 1.40%, respectively. GBR resulted in significantly more bone resorption than RBG (P0.05. Conclusions. Both RBG and GBR hard-tissue augmentation techniques provide adequate bone graft volume and stability for implant insertion. However, GBR causes greater resorption at maxillary augmented sites than RBG, which clinicians should consider during treatment planning.

  16. Role of gastrointestinal hormones in postprandial reduction of bone resorption

    DEFF Research Database (Denmark)

    Henriksen, Dennis B; Alexandersen, Peter; Bjarnason, Nina H

    2003-01-01

    Collagen type I fragments, reflecting bone resorption, and release of gut hormones were investigated after a meal. Investigations led to a dose escalation study with glucagon like peptide-2 (GLP-2) in postmenopausal women. We found a dose-dependent effect of GLP-2 on the reduction of bone...

  17. Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation.

    Science.gov (United States)

    Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C

    2017-02-01

    Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Quantification and visualization of alveolar bone resorption from 3D dental CT images

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Jiro; Mori, Kensaku; Kitasaka, Takayuki; Suenaga, Yasuhito [Nagoya University, Graduate School of Information Science, Nagoya (Japan); Yamada, Shohzoh; Naitoh, Munetaka [Aichi-Gakuin University, School of Dentistry, Nagoya (Japan)

    2007-06-15

    Purpose A computer aided diagnosis (CAD) system for quantifying and visualizing alveolar bone resorption caused by periodontitis was developed based on three-dimensional (3D) image processing of dental CT images. Methods The proposed system enables visualization and quantification of resorption of alveolar bone surrounding and between the roots of teeth. It has the following functions: (1) vertical measurement of the depth of resorption surrounding the tooth in 3D images, avoiding physical obstruction; (2) quantification of the amount of resorption in the furcation area; and (3) visualization of quantification results by pseudo-color maps, graphs, and motion pictures. The resorption measurement accuracy in the area surrounding teeth was evaluated by comparing with dentist's recognition on five real patient CT images, giving average absolute difference of 0.87 mm. An artificial image with mathematical truth was also used for measurement evaluation. Results The average absolute difference was 0.36 and 0.10 mm for surrounding and furcation areas, respectively. The system provides an intuitive presentation of the measurement results. Conclusion Computer aided diagnosis of 3D dental CT scans is feasible and the technique is a promising new tool for the quantitative evaluation of periodontal bone loss. (orig.)

  19. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.

    Science.gov (United States)

    Florencio-Silva, Rinaldo; Sasso, Gisela Rodrigues da Silva; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  20. Bone Cells Dynamics during Peri-Implantitis: a Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Maria Helena Fernandes

    2016-09-01

    Full Text Available Objectives: The present manuscript aims a detailed characterization of the bone cells dynamics during physiological bone remodelling and, subsequently, to address the cellular and molecular mechanisms that play a fundamental role in the immune-inflammatory-induced uncoupled bone remodelling observed in peri-implantitis. Results: An intimate relationship between the immune system and bone is acknowledged to be determinant for bone tissue remodelling and integrity. Due to the close interaction of immune and bone cells, the two systems share a number of surface receptors, cytokines, signalling pathways and transcription factors that are involved in mutual regulatory mechanisms. This physiological equilibrium is disturbed in pathological conditions, as verified in peri-implantitis establishment and development. Activation of the innate and adaptive immune response, challenged by the local bacterial infection, induces the synthesis of high levels of a variety of pro- and anti-inflammatory cytokines that disturb the normal functioning of the bone cells, by uncoupling bone resorption and formation, ending up with a net alveolar bone loss and subsequent implant failure. Most data points to an immune-inflammatory induced osteoclast differentiation and function, as the major underlying mechanism to the uncoupled bone resorption to bone formation. Further, the disturbed functioning of osteoblasts, reflected by the possible expression of a fibro-osteoblastic phenotype, may also play a role. Conclusions: Alveolar bone loss is a hallmark of peri-implantitis. A great deal of data is still needed on the cellular and humoral crosstalk in the context of an integrated view of the osteoimmunologic interplay occurring in the peri-implantitis environment subjacent to the bone loss outcome.

  1. Repeated oral administration of a cathepsin K inhibitor significantly suppresses bone resorption in exercising horses with evidence of increased bone formation and maintained bone turnover.

    Science.gov (United States)

    Hussein, H; Dulin, J; Smanik, L; Drost, W T; Russell, D; Wellman, M; Bertone, A

    2017-08-01

    Our investigations evaluated the effect of VEL-0230, a highly specific irreversible inhibitor of cathepsin K (CatK). The objectives of our study were to determine whether repeated dosing of a CatK inhibitor (CatKI) produced a desired inhibition of the bone resorption biomarker (CTX-1), and document the effect of repeated dosing on bone homeostasis, structure, and dynamics of bone resorption and formation in horses. Twelve young exercising horses were randomized in a prospective, controlled clinical trial and received 4 weekly doses of a CatKI or vehicle. Baseline and poststudy nuclear scintigraphy, blood sampling and analysis of plasma bone biomarkers (CTX-1 and osteocalcin), poststudy bone fluorescent labeling, and bone biopsy were performed. Bone specimens were further processed for microcomputed tomography and bone histomorphometry. Each dose of this CatKI transiently inhibited plasma CTX-1 (reflecting inhibition of bone collagen resorption) and increased bone plasma osteocalcin concentrations, with no detectable adverse effect on normal bone turnover in the face of exercise. Bone morphology, density, and formation rate were not different between control and treated group. Further investigation of CatK inhibition in abnormal bone turnover is required in animals with bone diseases. © 2016 John Wiley & Sons Ltd.

  2. [Bone metabolism, biochemical markers of bone resorption and formation processes and interleukine 6 cytokin level during coeliac disease].

    Science.gov (United States)

    Fekih, Monia; Sahli, Hela; Ben Mustapha, Nadia; Mestiri, Imen; Fekih, Moncef; Boubaker, Jalel; Kaabachi, Naziha; Sellami, Mohamed; Kallel, Lamia; Filali, Azza

    2013-01-01

    Celiac disease (CD) is characterized by a malabsorption syndrom. The bone anomalies are one of the principal complications of this disease. The osteoporosis frequency is high: 3.4% among patients having with CD versus 0.2% in the general population. To study the bone mineral density during the CD, to compare it to a control group and to determine the anomalies of biochemical markers of bone turn over and level of interleukin 6 cytokin (IL6) in these patients. All patients with CD have a measurement of bone mineral density by dual-energy x-ray absorptiometry (DXA), a biological exam with dosing calcemia, vitamin D, parathormone (PTH), the osteoblastic bone formation markers (serum osteocalcin, ALP phosphates alkaline), bone osteoclastic activity (C Télopeptide: CTX) and of the IL6. 42 patients were included, with a median age of 33.6 years. 52. 8% of the patients had a low level of D vitamine associated to a high level of PTH. An osteoporosis was noted in 21.5% of patients. No case of osteoporosis was detected in the control group. The mean level of the CTX, ostéocalcine and the IL6 was higher among patients having an osteoporosis or ostéopenia compared to patients with normal bone (p = 0,017). The factors associated with an bone loss (osteopenia or osteoporosis) were: an age > 30 years, a weight 90 UI/ml, an hypo albuminemia < 40 g/l and a level of CTX higher than 1.2. Our study confirms the impact of the CD on the bone mineral statute. The relative risk to have an osteopenia or an osteoporosis was 5 in our series. The measurement of the osseous mineral density would be indicated among patients having a CD.

  3. Effects of Hydroxyapatite on Bone Graft Resorption in an Experimental Model of Maxillary Alveolar Arch Defects

    Directory of Open Access Journals (Sweden)

    Ozgur Pilanci

    2013-06-01

    Full Text Available Most commonly used treatments use autologous bone grafts to address bony defects in patients with cleft palate. Major disadvantages of autogenous bone grafts include donor site morbidity and resorption. Suggestions to overcome such problems include biomaterials that can be used alone or in combination with bone. We examined the effect of hydroxyapatite cement on bone graft resorption in a rabbit maxillary alveolar defect model. We divided 16 young adult albino New Zealand rabbits into two groups. A defect 1 cm wide was created in each rabbit's maxillary arch. In Group 1, the removed bone was disrupted, and the pieces were replaced in the defect. In the other group, the pieces were replaced after mixing (1:1 with hydroxyapatite cement. Quantitative computed tomographic evaluation of these grafts was performed in axial and coronal planes for each rabbit at 2 and 12 weeks. In axial images at 12 weeks, the group without cement showed mean bone resorption of 15%. In the cement group, a mean volumetric increase of 68% was seen. No resorption occurred when bone grafts were mixed with hydroxyapatite cement. [Arch Clin Exp Surg 2013; 2(3.000: 170-175

  4. Does increased local bone resorption secondary to breast and prostate cancer result in increased cartilage degradation?

    DEFF Research Database (Denmark)

    Leeming, Diana J; Byrjalsen, Inger; Qvist, Per

    2008-01-01

    BACKGROUND: Breast and prostate cancer patients often develop lesions of locally high bone turnover, when the primary tumor metastasizes to the bone causing an abnormal high bone resorption at this site. The objective of the present study was to determine whether local increased bone turnover in ...... experiments revealed that osteoclasts released CTXI fragments but not CTXII from bone specimens. The same was observed for cathepsin K. CONCLUSION: Data suggest that an uncoupling between bone resorption and cartilage degradation occurs in breast and lung cancer patient....

  5. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    Directory of Open Access Journals (Sweden)

    Rinaldo Florencio-Silva

    2015-01-01

    Full Text Available Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines and systemic (e.g., calcitonin and estrogens factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.

  6. [Calcitonin as an alternative treatment for root resorption].

    Science.gov (United States)

    Pierce, A; Berg, J O; Lindskog, S

    1989-01-01

    Inflammatory root resorption is a common finding following trauma and will cause eventual destruction of the tooth root if left untreated. This study examined the effects of intrapulpal application of calcitonin, a hormone known to inhibit osteoclastic bone resorption, on experimental inflammatory root resorption induced in monkeys. Results were histologically evaluated using a morphometric technique and revealed that calcitonin was an effective medicament for the treatment of inflammatory root resorption. It was concluded that this hormone could be a useful therapeutic adjunct in difficult cases of external root resorption.

  7. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    Science.gov (United States)

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  8. Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption

    Directory of Open Access Journals (Sweden)

    Boutin Jean A

    2010-10-01

    Full Text Available Abstract Background Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts. Methods Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours. The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue. Results Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently. Conclusions In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.

  9. Spatial control of bone formation using a porous polymer scaffold co-delivering anabolic rhBMP-2 and anti-resorptive agents

    Directory of Open Access Journals (Sweden)

    NYC Yu

    2014-01-01

    Full Text Available Current clinical delivery of recombinant human bone morphogenetic proteins (rhBMPs utilises freeze-dried collagen. Despite effective new bone generation, rhBMP via collagen can be limited by significant complications due to inflammation and uncontrolled bone formation. This study aimed to produce an alternative rhBMP local delivery system to permit more controllable and superior rhBMP-induced bone formation. Cylindrical porous poly(lactic-co-glycolic acid (PLGA scaffolds were manufactured by thermally-induced phase separation. Scaffolds were encapsulated with anabolic rhBMP-2 (20 µg ± anti-resorptive agents: zoledronic acid (5 µg ZA, ZA pre-adsorbed onto hydroxyapatite microparticles, (5 µg ZA/2 % HA or IkappaB kinase (IKK inhibitor (10 µg PS-1145. Scaffolds were inserted in a 6-mm critical-sized femoral defect in Wistar rats, and compared against rhBMP-2 via collagen. The regenerate region was examined at 6 weeks by 3D microCT and descriptive histology. MicroCT and histology revealed rhBMP-induced bone was more restricted in the PLGA scaffolds than collagen scaffolds (-92.3 % TV, p < 0.01. The regenerate formed by PLGA + rhBMP-2/ZA/HA showed comparable bone volume to rhBMP-2 via collagen, and bone mineral density was +9.1 % higher (p < 0.01. Local adjunct ZA/HA or PS-1145 significantly enhanced PLGA + rhBMP-induced bone formation by +78.2 % and +52.0 %, respectively (p ≤ 0.01. Mechanistically, MG-63 human osteoblast-like cells showed cellular invasion and proliferation within PLGA scaffolds. In conclusion, PLGA scaffolds enabled superior spatial control of rhBMP-induced bone formation over clinically-used collagen. The PLGA scaffold has the potential to avoid uncontrollable bone formation-related safety issues and to customise bone shape by scaffold design. Moreover, local treatment with anti-resorptive agents incorporated within the scaffold further augmented rhBMP-induced bone formation.

  10. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  11. Bone Density and Dental External Apical Root Resorption

    Science.gov (United States)

    Iglesias-Linares, Alejandro; Morford, Lorri Ann

    2016-01-01

    When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors and disease status all can influence a patients’ overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as is observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR). PMID:27766484

  12. Modified salicylanilide and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as novel inhibitors of osteoclast differentiation and bone resorption.

    Science.gov (United States)

    Chen, Chun-Liang; Liu, Fei-Lan; Lee, Chia-Chung; Chen, Tsung-Chih; Ahmed Ali, Ahmed Atef; Sytwu, Huey-Kang; Chang, Deh-Ming; Huang, Hsu-Shan

    2014-10-09

    Inhibition of osteoclast formation is a potential strategy to prevent inflammatory bone resorption and to treat bone diseases. In the present work, the purpose was to discover modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivatives as potential antiosteoclastogenic agents. Their inhibitory effects on RANKL-induced osteoclastogenesis from RAW264.7 cells were evaluated by TRAP stain assay. The most potent compounds, 1d and 5d, suppressed RANKL-induced osteoclast formation and TRAP activity dose-dependently. The cytotoxicity assay on RAW264.7 cells suggested that the inhibition of osteoclastic bone resorption by these compounds did not result from their cytotoxicity. Moreover, both compounds downregulated RANKL-induced NF-κB and NFATc1 in the nucleus, suppressed the expression of osteoclastogenesis-related marker genes during osteoclastogenesis, and prevented osteoclastic bone resorption but did not impair osteoblast differentiation in MC3T3-E1. Therefore, these modified salicylanilides and 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-diones could be potential lead compounds for the development of a new class of antiresorptive agents.

  13. Effect of interleukin-4 on orthodontic tooth movement and associated root resorption.

    Science.gov (United States)

    Hakami, Zaki; Kitaura, Hideki; Kimura, Keisuke; Ishida, Masahiko; Sugisawa, Haruki; Ida, Hiroto; Jafari, Saeed; Takano-Yamamoto, Teruko

    2015-02-01

    Interleukin-4 (IL-4) is a recognized immunomodulatory cytokine that regulates bone homeostasis. However, the influence of IL-4 on orthodontic tooth movement (OTM) and subsequent root resorption is still unknown. Therefore, the purpose of this study was to investigate the effect of IL-4 on tooth movement and its associated root resorption in a mouse model. The maxillary first molars of four male mice for each experimental group were subjected to mesial force by a nickel titanium coil spring for 12 days. Control mice were not given appliances and injections. Varying doses of IL-4 were injected locally, adjacent to the first molar. Two sets of experiments were designed. The first set was composed of three groups: the control, treatment with phosphate-buffered saline (PBS), or 1.5 µg/day of IL-4. The second set was composed of five groups: the control, treatment with 0 (PBS only), 0.015, 0.15, or 1.5 µg/day of IL-4. The distance of OTM was measured and tartrate-resistant acid phosphatase positive cells along the loaded alveolar bone and root surface were identified. The root resorption associated with OTM was evaluated by a scanning electron microscope. The amount of OTM and the number of osteoclasts were significantly decreased in the IL-4-treated mice. Moreover, IL-4 significantly suppressed force-induced odontoclasts and root resorption. IL-4 inhibits tooth movement and prevents root resorption in the mouse model. These results suggest that IL-4 could be used as a useful adjunct to regulate the extent of OTM and also to control root resorption. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Thymidine phosphorylase exerts complex effects on bone resorption and formation in myeloma.

    Science.gov (United States)

    Liu, Huan; Liu, Zhiqiang; Du, Juan; He, Jin; Lin, Pei; Amini, Behrang; Starbuck, Michael W; Novane, Nora; Shah, Jatin J; Davis, Richard E; Hou, Jian; Gagel, Robert F; Yang, Jing

    2016-08-24

    Myelomatous bone disease is characterized by the development of lytic bone lesions and a concomitant reduction in bone formation, leading to chronic bone pain and fractures. To understand the underlying mechanism, we investigated the contribution of myeloma-expressed thymidine phosphorylase (TP) to bone lesions. In osteoblast progenitors, TP up-regulated the methylation of RUNX2 and osterix, leading to decreased bone formation. In osteoclast progenitors, TP up-regulated the methylation of IRF8 and thereby enhanced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1 protein), leading to increased bone resorption. TP reversibly catalyzes thymidine into thymine and 2-deoxy-d-ribose (2DDR). Myeloma-secreted 2DDR bound to integrin αVβ3/α5β1 in the progenitors, activated PI3K (phosphoinositide 3-kinase)/Akt signaling, and increased DNMT3A (DNA methyltransferase 3A) expression, resulting in hypermethylation of RUNX2, osterix, and IRF8 This study elucidates an important mechanism for myeloma-induced bone lesions, suggesting that targeting TP may be a viable approach to healing resorbed bone in patients. Because TP overexpression is common in bone-metastatic tumors, our findings could have additional mechanistic implications. Copyright © 2016, American Association for the Advancement of Science.

  15. Effect of concentrated growth factor combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis

    Directory of Open Access Journals (Sweden)

    Qiang Gao

    2017-10-01

    Full Text Available Objective: To study the effect of concentrated growth factor (CGF combined with guided bone regeneration on cell proliferation and bone resorption in patients with severe periodontitis. Methods: Patients with severe periodontitis who were treated in Stomatology Department of Shenmu Hospital between May 2014 and February 2017 were selected as the research subjects and randomly divided into two groups, surgery + CGF group received concentrated growth factor combined with guided bone regeneration, and pure surgery group received guided bone regeneration. The contents of inflammatory response, cell proliferation and bone resorption markers in gingival crevicular fluid were determined 1 week after treatment. Results: 1 week after treatment, HMGB1, ICAM1, E-selectin, Smac, FasL, Caspase-8, Caspase-9, Caspase-3, RANKL and NTX contents in gingival crevicular fluid of surgery + CGF group were significantly lower than those of pure surgery group while PD-L1, hBD-3, Wnt3a, BGP and OPG contents were significantly higher than those of pure surgery group. Conclusion: Concentrated growth factor combined with guided bone regeneration for severe periodontitis can inhibit inflammatory response, apoptosis and bone resorption, which is beneficial to the reconstruction of periodontal tissue.

  16. Function of Matrix IGF-1 in Coupling Bone Resorption and Formation

    Science.gov (United States)

    Crane, Janet L.; Cao, Xu

    2013-01-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space and time dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of MSCs and HSCs and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis. PMID:24068256

  17. Function of matrix IGF-1 in coupling bone resorption and formation.

    Science.gov (United States)

    Crane, Janet L; Cao, Xu

    2014-02-01

    Balancing bone resorption and formation is the quintessential component for the prevention of osteoporosis. Signals that determine the recruitment, replication, differentiation, function, and apoptosis of osteoblasts and osteoclasts direct bone remodeling and determine whether bone tissue is gained, lost, or balanced. Therefore, understanding the signaling pathways involved in the coupling process will help develop further targets for osteoporosis therapy, by blocking bone resorption or enhancing bone formation in a space- and time-dependent manner. Insulin-like growth factor type 1 (IGF-1) has long been known to play a role in bone strength. It is one of the most abundant substances in the bone matrix, circulates systemically and is secreted locally, and has a direct relationship with bone mineral density. Recent data has helped further our understanding of the direct role of IGF-1 signaling in coupling bone remodeling which will be discussed in this review. The bone marrow microenvironment plays a critical role in the fate of mesenchymal stem cells and hematopoietic stem cells and thus how IGF-1 interacts with other factors in the microenvironment are equally important. While previous clinical trials with IGF-1 administration have been unsuccessful at enhancing bone formation, advances in basic science studies have provided insight into further mechanisms that should be considered for future trials. Additional basic science studies dissecting the regulation and the function of matrix IGF-1 in modeling and remodeling will continue to provide further insight for future directions for anabolic therapies for osteoporosis.

  18. Is there evidence that barrier membranes prevent bone resorption in autologous bone grafts during the healing period? A systematic review

    NARCIS (Netherlands)

    Gielkens, Pepijn F. M.; Bos, Ruud R. M.; Raghoebar, Gerry M.; Stegenga, Boudewijn

    2007-01-01

    Introduction: Autologous bone is considered the "reference standard" for bone-grafting procedures. A barrier membrane covering an autologous bone graft (guided bone regeneration [GBR]) is expected to prevent graft resorption. Good clinical results have been reported for GBR, although potential

  19. Immunological Reaction in TNF-α-Mediated Osteoclast Formation and Bone Resorption In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Hideki Kitaura

    2013-01-01

    Full Text Available Tumor necrosis factor-α (TNF-α is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF-α may play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteoblasts, or stromal cells. These cells express receptor activator of NF-κB ligand (RANKL to induce osteoclastogenesis, and T cells, which secrete RANKL, promote osteoclastogenesis during inflammation. Elucidating the detailed effects of TNF-α on bone metabolism may enable the identification of therapeutic targets that can efficiently suppress bone destruction in inflammatory bone diseases. TNF-α is considered to act by directly increasing RANK expression in macrophages and by increasing RANKL in stromal cells. Inflammatory cytokines such as interleukin- (IL- 12, IL-18, and interferon-γ (IFN-γ strongly inhibit osteoclast formation. IL-12, IL-18, and IFN-γ induce apoptosis in bone marrow cells treated with TNF-α  in vitro, and osteoclastogenesis is inhibited by the interactions of TNF-α-induced Fas and Fas ligand induced by IL-12, IL-18, and IFN-γ. This review describes and discusses the role of cells concerned with osteoclast formation and immunological reactions in TNF-α-mediated osteoclastogenesis in vitro and in vivo.

  20. Bone augmentation of the osteo-odonto alveolar lamina in MOOKP--will it delay laminar resorption?

    Science.gov (United States)

    Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rishi, Ekta; Rishi, Pukhraj; Rajan, Gunaseelan; Shanmugasundaram, Shanmugasundaram

    2015-07-01

    We aimed to describe a new technique and analyse the early outcomes of augmenting the canine tooth using a mandibular bone graft in an attempt to delay or retard the process of laminar resorption following the modified osteo odonto keratoprosthesis (MOOKP) procedure. This was a retrospective case series. Eyes that underwent the bone augmentation procedure between December 2012 and February 2014 were retrospectively analysed. The procedure, performed by the oromaxillofacial surgeon, involved securing a mandibular bone graft beneath the periosteum on the labial aspect of the canine tooth chosen to be harvested for the MOOKP procedure. This procedure was performed simultaneously with the Stage 1 A of the MOOKP. Three months later, the tooth was harvested and fashioned into the osteo-odonto alveolar lamina similar to the method described in the Rome-Vienna Protocol. The bone augmentation procedure was performed in 11 eyes (five SJS/ six chemical injuries). The mean follow-up after Stage 2 of MOOKP procedure in these eyes was 7.45 months (2 to 20 months). Complications noted were peripheral laminar exposure (three eyes-SJS) and bone graft exposure and necrosis in the mouth (nine-SJS). No evidence of clinical laminar resorption was noted in any of the eyes. Laminar resorption in MOOKP can lead to vision and globe threatening complications due to the consequent cylinder instability and chances of extrusion. Augmenting the bone on the labial aspect of the canine tooth might have a role to play in delaying or preventing laminar resorption.

  1. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Kayamori, Kou; Oue, Erika; Sakamoto, Kei; Harada, Kiyoshi; Yamaguchi, Akira

    2015-01-01

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced

  2. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ryosuke [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Kayamori, Kou [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Oue, Erika [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Sakamoto, Kei [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Harada, Kiyoshi [Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Akira, E-mail: akira.mpa@tmd.ac.jp [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (Japan)

    2015-03-20

    Transforming growth factor beta (TGF-β) plays a significant role in the regulation of the tumor microenvironment. To explore the role of TGF-β in oral cancer-induced bone destruction, we investigated the immunohistochemical localization of TGF-β and phosphorylated Smad2 (p-Smad2) in 12 surgical specimens of oral squamous cell carcinoma (OSCC). These studies revealed TGF-β and p-Smad2 expression in cancer cells in all tested cases. Several fibroblasts located between cancer nests and resorbing bone expressed TGF-β in 10 out of 12 cases and p-Smad2 in 11 out of 12 cases. Some osteoclasts also exhibited p ∼ Smad2 expression. The OSCC cell line, HSC3, and the bone marrow-derived fibroblastic cell line, ST2, synthesized substantial levels of TGF-β. Culture media derived from HSC3 cells could stimulate Tgf-β1 mRNA expression in ST2 cells. Recombinant TGF-β1 could stimulate osteoclast formation induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264 cells. TGF-β1 could upregulate the expression of p-Smad2 in RAW264 cells, and this action was suppressed by the addition of a neutralizing antibody against TGF-β or by SB431542. Transplantation of HSC3 cells onto the calvarial region of athymic mice caused bone destruction, associated with the expression of TGF-β and p-Smad2 in both cancer cells and stromal cells. The bone destruction was substantially inhibited by the administration of SB431542. The present study demonstrated that TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced bone destruction. - Highlights: • Cancer cell, fibroblastic cells, and osteoclasts at bone resorbing area by oral cancer exhibited TGF-β and p-Smad2. • TGF-β1 stimulated osteoclastogenesis induced by RAKL in RAW264 cell. • Xenograft model of oral cancer-induced bone resorption was substantially inhibited by SB431542. • TGF-β synthesized by both cancer cells and stromal cells participates in the OSCC-induced

  3. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts

    DEFF Research Database (Denmark)

    Zhai, Yuankun; Li, Yingying; Wang, Yanping

    2017-01-01

    Traditional Chinese medicines (TCM) have been proven to prevent osteoporosis, but their clinical applications are not widely recognized due to their complicated ingredients. Psoralidin, a prenylated coumestan, has been reported to prevent bone loss of ovariectomized rats, but detailed mechanisms...... and osteoclastic bone resorption, as demonstrated by the lower tartrate-resistant acid phosphatase activity and smaller area, with fewer resorption pits formed. Interestingly, psoralidin showed much stronger effects than coumestrol at enhancing osteoblast proliferation/differentiation or inhibiting osteoclast...... differentiation and bone resorption. Moreover, we found that both psoralidin and coumestrol suppressed COX-2 and ROS production in rat osteoblastic calvarias cells, and psoralidin showed stronger effects than coumestrol. Furthermore, we detected that by blocking estrogen receptors with ICI 182.780 (an estrogen...

  4. Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.

    Science.gov (United States)

    Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Leuci, Valeria; Todorovic, Maja; Giraudo, Lidia; Cammarata, Cristina; Dell'Aglio, Carmine; D'Ambrosio, Lorenzo; Pisacane, Alberto; Sarotto, Ivana; Miano, Sara; Ferrero, Ivana; Carnevale-Schianca, Fabrizio; Pignochino, Ymera; Sassi, Francesco; Bertotti, Andrea; Piacibello, Wanda; Fagioli, Franca; Aglietta, Massimo; Grignani, Giovanni

    2014-01-01

    Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study, we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS, including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs, autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4, a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients, we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas, including putative sCSCs, supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.

  5. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2012-06-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  6. Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton

    International Nuclear Information System (INIS)

    Shagina, N.B.; Tolstykh, E.I.; Degteva, M.O.; Anspaugh, L.R.; Napier, Bruce A.

    2012-01-01

    The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based on the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.

  7. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  8. The effects of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in osteopenia women.

    Science.gov (United States)

    Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin

    2014-03-01

    The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (ppilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (ppilates group significantly increased at immediately after exercise and during recovery after exercise (ppilates group (ppilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.

  9. Marker of Bone Resorption in Acute Response to Exogenous or Endogenous Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Vit Zikan

    2008-01-01

    Full Text Available Parathyroid hormone (PTH changes morphology of osteoclasts within minutes after its systemic administration. The aim of our study was to test in healthy men whether both exogenous and endogenous PTH could change acutely (minutes to hours the serum cross-linked C-telopeptide of type I collagen (beta CTX, which is released during osteoclastic resorption of bone. Twelve healthy men (age range 24–34 yr were each studied during 180 min on a control period, after a single subcutaneous injection of teriparatide, and after 30 min EDTA infusion to stimulate endogenous PTH secretion. The tests were started after overnight fast, 3 h after a standard calcium load. The EDTA infusion induced a significant decrease in serum ionized calcium (by 8.5% at 33 min and a significant increase in plasma PTH (by 305% at 33 min. Both the EDTA and teriparatide resulted in a significant increase in beta CTX (p < 0.001 with maximum increases of 64% and 80%, respectively. A mild, but significant decrease in beta CTX was observed during the control test period. In conclusion, single-dose teriparatide injection as well as a stimulation of endogenous PTH in healthy men results in an acute increase of the bone resorption marker.

  10. Effect of glucagon-like peptide-2 exposure on bone resorption

    DEFF Research Database (Denmark)

    Askov-Hansen, Carsten; Jeppesen, Palle B; Lund, Pernille

    2013-01-01

    In healthy subjects, subcutaneous injections of GLP-2 have been shown to elicit dose-related decrease in the bone resorption marker, carboxy-terminal telopeptide of type I collagen (CTX), and have been proposed for the treatment of osteoporosis. This study investigated the relation between GLP-2...

  11. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling.

    Science.gov (United States)

    Fernández, J R; García-Aznar, J M; Martínez, R

    2012-01-07

    We have developed a mathematical approach for modelling the piezoelectric behaviour of bone tissue in order to evaluate the electrical surface charges in bone under different mechanical conditions. This model is able to explain how bones change their curvature, where osteoblasts or osteoclasts could detect in the periosteal/endosteal surfaces the different electrical charges promoting bone formation or resorption. This mechanism also allows to understand the BMU progression in function of the electro-mechanical bone behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts

    Directory of Open Access Journals (Sweden)

    Alison B. Shupp

    2018-06-01

    Full Text Available The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.

  13. Effect of local injection of Zolena, zoledronic acid made in Iran, on orthodontic tooth movement and root and bone resorption in rats.

    Science.gov (United States)

    Seifi, Massoud; Asefi, Sohrab; Hatamifard, Ghazal; Lotfi, Ali

    2017-01-01

    Background. Anchorage control is an essential part of orthodontic treatment planning, especially in adult patients who demand a more convenient treatment. Zoledronic acid (ZA) is an effective choice to address this problem. It is the most potent member of the bisphosphonates family that has an inhibitory effect on bone resorption by suppressing osteoclast function. Therefore, ZA might be a good option for orthodontic anchorage control. The current study evaluated the effect of local administration of Zolena (ZA made in Iran) on orthodontic tooth movement (OTM) and root and bone resorption. Methods. The experimental group consisted of 30 rats in 3 subgroups (n=10). Anesthesia was induced, and one closed NiTi coil spring was installed between the first molar and central incisor unilaterally, except for the negative control group. The positive control group received vestibular injection of 0.01 mL of saline next to the maxillary first molar, and 0.01 mL of the solution was injected at the same site in the ZA group. After 21 days, the rats were sacrificed and the distance between the first and second molars was measured with a leaf gauge. Histological analysis was conducted by a blind pathologist for the number of Howship's lacunae, blood vessels, osteoclast-like cells and root resorption lacunae. Data were analyzed with ANOVA, Tukey test and t-test. Results. There were no significant differences in OTM between the force-applied groups. ZA significantly inhibited bone/root resorption and angiogenesis compared to the positive control group. Conclusion. Zolena did not decrease OTM but significantly inhibited bone and root resorption. Zolena might be less potent than its foreign counterparts.

  14. Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model

    Directory of Open Access Journals (Sweden)

    Sato T

    2015-05-01

    Full Text Available Toshimi Sato,1 Neil Alles,1,2 Masud Khan,1,3 Kenichi Nagano,1,4 Mariko Takahashi,1 Yukihiko Tamura,1 Asako Shimoda,5,6 Keiichi Ohya,1 Kazunari Akiyoshi,5,6 Kazuhiro Aoki1 1Department of Bio-Matrix (Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan; 2Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka; 3Department of Dental Pharmacology, City Dental College and Hospital, Dhaka, Bangladesh; 4Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; 5Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, 6ERATO Akiyoshi Bio-Nanotransporter Project, Japan Science and Technology Agency, Katsura Int’tech Center Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, Japan Abstract: We investigated the biological activity of W9, a bone resorption inhibitor peptide, using NanoClik nanoparticles as an injectable carrier, where acryloyl group-modified cholesterol-bearing pullulan (CHPOA nanogels were crosslinked by pentaerythritol tetra (mercaptoethyl polyoxyethylene. Thirty 5-week-old male C57BL/6J mice were fed a low calcium diet and received once-daily subcutaneous injections of the carrier alone, W9 24 mg/kg/day alone, W9 24 mg/kg/day incorporated in cholesterol bearing pullulan (CHP nanogels, or W9 (8 and 24 mg/kg/day incorporated in NanoClik nanoparticles for 4 days (n=5. Mice that received a normal calcium diet with NanoClik nanoparticle injections without W9 were used as a control group. Radiological analyses showed that administration of W9 24 mg/kg/day significantly prevented low calcium-induced reduction of bone mineral density in the long bones and lumbar vertebrae, but only when the NanoClik nanoparticles were used as a carrier. Histomorphometric analyses of the proximal tibiae revealed that W9 24 mg/kg/day incorporated in NanoClik nanoparticles prevented the increase in bone resorption indices

  15. Possible Role of Garlic Oil and Parsley Extract in Ameliorating Radiation-Induced Bone Loss in Female Rats

    International Nuclear Information System (INIS)

    Ramadan, L.; El-Sabbagh, W.; Kenawy, S.

    2011-01-01

    To Investigate the possible protective effect of garlic oil and parsley extract against bone loss resulted in female virgin rats exposed to fractionated doses of gamma-radiation (1 Gy 3 times weekly for 5 weeks). Urinary calcium (U Ca), calcium to creatinine ratio (Ca/Cr), hydroxyproline and serum phosphorus were measured as bone resorption bio markers, while serum osteocalcine (OST) and serum alkaline phosphatase (ALP) were measured as bone formation bio markers. Furthermore, nitric oxide (NO) which represents the balance in bone remodeling was measured. Malondiadehyde level (MDA) as well as superoxide dismutase activity (SOD) was measured as oxidative stress bio markers. Female irradiated rats in the present study had significant increases in both bone resorption and bone formation bio markers after 6 weeks from the last exposure to gamma-radiation. Irradiated rats also had significant decreases in plasma NO indicating imbalance in bone remodeling as well as significant increase in oxidative stress bio markers. Daily treatment with garlic oil extracted in olive oil improved all measured parameters except OST level, while the vehicle used for garlic oil (extra virgin olive oil) significantly decreased bone resorption bio markers. Parsley extract induced normalization to all bone resorption and formation parameters measured in irradiated rats. Daily administration of garlic oil and parsley extract protected the bone from degeneration induced by exposure to fractionated doses of gamma radiation.

  16. Isotopic evidence for resorption of soft tissues and bone in immobilized dogs

    International Nuclear Information System (INIS)

    Klein, L.; Player, J.S.; Heiple, K.G.; Bahniuk, E.; Goldberg, V.M.

    1982-01-01

    Various experimental methods for producing bone and ligament atrophy have yielded contradictory results. These methods include denervation, immobilization (both internal and external), and disarticulation. We studied a model of internal skeletal fixation for twelve weeks in dogs that were chronically prelabeled with 3H-tetracycline, 45Ca, and 3H-proline. Bone resorption was analyzed by the loss of 3H-tetracycline, and bone and soft-tissue mass were analyzed by the radiochemical and chemical analysis of calcium and collagen. The strength of the anterior cruciate ligament was studied in tension to failure when a fast rate of deformation was applied. Failure of the femur-ligament-tibia complex occurred through the insertion of the ligament into the tibia for both the experimental and the control limbs. Loss of collagen was greater in the tibia and femur than in the lateral meniscus and anterior cruciate ligament, and correlated with a mechanical failure via bone. No evidence for collagen replacement in atrophied tissues was found, but one-half of the resorbed calcium was conserved. The marked loss of 3H-tetracycline indicated that bone atrophy was the result of increased resorption of bone rather than decreased bone formation. Clinical Relevance: We have demonstrated significant atrophy of the soft tissues (lateral meniscus and anterior cruciate ligament) as well as of bone in immobilized joints of dogs. It is likely that the decrease in strength of the bone-ligament-bone complex is related to this atrophy of soft tissues and bone around the joint

  17. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  18. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  19. Markers in blood and saliva for prediction of orthodontically induced inflammatory root resorption: a retrospective case controlled-study

    Directory of Open Access Journals (Sweden)

    Dilara Yashin

    2017-09-01

    Full Text Available Abstract Background Hormonal and enzymatic factors may render certain individuals more susceptible to orthodontically induced inflammatory root resorption (OIIRR. The objectives of this study are (1 to identify biochemical key markers in blood and saliva that may be correlated to the trend of extensive OIIRR and (2 to utilise these markers to predict a susceptible patient-receiving orthodontic treatment. Methods Nine patients (mean age 23 + 2.9 years who had moderate to severe OIIRR that assessed via orthopantomograms and met the inclusion criteria were classified as the root resorption group (RRG. Blood chemistry was evaluated using the collection of fasting blood and unstimulated saliva samples. Multiplex enzyme-linked immunosorbent assay (ELISA arrays were used to screen blood and saliva samples for human cytokines, chemokines and several key enzymes that may play a role in root resorption following orthodontic force application. Biochemical findings from 16 matching subjects were used as the control (CG for comparative measurements. Results Patients with moderate to severe OIIRR showed a significant increase in salivary cytokines including interleukin (IL 7, IL-10, IL-12p70 and interferon-gamma (IFN-γ level as well as a significant decrease in IL-4 level. Osteocalcin and procollagen type I N-terminal peptide (P1NP appeared to be the only blood factors that showed a significant difference, more in the CG than the RRG. Conclusions Saliva might be a more valuable way of measuring changes in cytokine expression than blood secondary to orthodontic treatment. Although the increased expression of pro-inflammatory and anti-inflammatory cytokines may be determinants in the development of moderate to severe OIIRR, cytokine expression may be affected by several potential inflammations in another part of the body. Future research could investigate the cause/effect relationship of different cytokines, in a larger group of patients and at different

  20. Eubacterium brachy - Reactivity in In Vitro Bone Resorptive Bioassay,

    Science.gov (United States)

    1983-02-10

    Center Washington, D. C . 20307 If Eubacterium brachy - Reactivity in In Vitro Bone Resorptive Bioassay 1. ABSTRACT Recent studies have demonstrated an...Relative distribution of bacteria at clinically healthy and periodontally diseased sites in humans. J Clin Periodontal 5:115, 1978. 3. Evian, C ...applied foreign protein into rat gingiva. J Periodont Res 6:89, 1971. 21. Gaffer, A., Coleman, E.J., and Marcussen, H.W.: Penetration of dental plaque

  1. Effect of local administration of platelet-rich plasma and guided tissue regeneration on the level of bone resorption in early dental implant insertion

    Directory of Open Access Journals (Sweden)

    Duka Miloš

    2008-01-01

    Full Text Available Background/Aim. Osseointegration is a result of cellular migration, differentiation, bone formation, and bone remodeling on the surface of an implant. Each of these processes depends on platelets and blood coagulum. Platelet-rich plasma (PRP is used to improve osseointegration and stability of implants. The aim of the research was to test the influence that PRP and guided tissue regeneration in bone defects have on bone defect filling and the level of bone resorption in early implant insertion. Methods. This experimental study included 10 dogs. A total of 40 BCT implants were inserted, 4 in each dog (two on the left side and two on the right side, with guided tissue regeneration. Radiologic analyses were done immediately after the insertion and 10 weeks after the insertion. Bone defect filling was measured by a graduated probe 10 weeks after the implant insertion. The following protocols were tested: I - PRP in combination with bovine deproteinized bone (BDB and resorptive membrane of bovine origin (RBDM, II - BDB + RBDM, III - PRP + RBDM and IV - RBDM. Results. The applied protocols affected differently the bone defect filling and the level of bone resorption. Significantly better results (the lowest bone resorption were achieved with protocol I (PRP + BDB + RBDM in comparison with protocols III (PRP + RBDM and IV (RBDM, but not with protocol II (BDB + RBDM. On the other hand, no significant difference was found among protocols II (BDB + RBDM, III (PRP + RBDM and IV (RBDM in the level of bone tissue resorption. Conslusion. The bone defect filling was largest and the level of bone resorption was lowest in the protocol with PRP applied in combination with BDB and RBDM.

  2. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events.

    Science.gov (United States)

    Feller, Liviu; Khammissa, Razia A G; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan

    2016-01-01

    Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.

  3. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events

    Directory of Open Access Journals (Sweden)

    Liviu Feller

    2016-01-01

    Full Text Available Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.

  4. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  5. Meta-Analysis of Correlations Between Marginal Bone Resorption and High Insertion Torque of Dental Implants.

    Science.gov (United States)

    Li, Haoyan; Liang, Yongqiang; Zheng, Qiang

    2015-01-01

    To evaluate correlations between marginal bone resorption and high insertion torque value (> 50 Ncm) of dental implants and to assess the significance of immediate and early/conventional loading of implants under a certain range torque value. Specific inclusion and exclusion criteria were used to retrieve eligible articles from Ovid, PubMed, and EBSCO up to December 2013. Screening of eligible studies, quality assessment, and data extraction were conducted in duplicate. The results were expressed as random/fixed-effects models using weighted mean differences for continuous outcomes with 95% confidence intervals. Initially, 154 articles were selected (11 from Ovid, 112 from PubMed, and 31 from EBSCO). After exclusion of duplicate articles and articles that did not meet the inclusion criteria, six clinical studies were selected. Assessment of P values revealed that correlations between marginal bone resorption and high insertion torque were not statistically significant and that there was no difference between immediately versus early/conventionally loaded implants under a certain range of torque. None of the meta-analyses revealed any statistically significant differences between high insertion torque and conventional insertion torque in terms of effects on marginal bone resorption.

  6. Combined effects of soy isoflavone and fish oil on ovariectomy-induced bone loss in mice.

    Science.gov (United States)

    Uchida, Raina; Chiba, Hiroshige; Ishimi, Yoshiko; Uehara, Mariko; Suzuki, Kazuharu; Kim, Hyounju; Matsumoto, Akiyo

    2011-07-01

    Both soy isoflavone and n-3 polyunsaturated fatty acids are known to reduce the levels of bone-resorbing cytokines; however, the synergistic effects of these food ingredients have not been examined yet. This study was performed to elucidate the effect of concomitant intake of soy isoflavone and fish oil on bone mass in ovariectomized mice. Eight-week-old ddY female mice were subjected to ovariectomy (OVX) or sham surgery, and then fed an AIN-93G with safflower oil (So) as a control lipid source, isoflavone-supplemented safflower oil (So + I), fish oil instead of safflower oil (Fo) or isoflavone-supplemented fish oil (Fo + I) for 4 weeks. Femoral bone mineral density was significantly decreased by OVX; however, this decrease was inhibited by the intake of isoflavone and/or fish oil. Histomorphometric analyses showed that bone volume and trabecular thickness in the distal femoral trabecular bone were significantly lower in the So group than in the sham group, but those were restored in the Fo + I groups. The number of osteoclasts was significantly decreased by isoflavone intake. The increased rate of bone resorption after OVX was inhibited by isoflavone and/or fish oil. The serum concentration of tumor necrosis factor alpha was increased after OVX, but was significantly lower with the combination of isoflavone with fish oil than isoflavone or fish oil alone. The results of this study indicated that the intakes of soy isoflavone and/or fish oil might have ameliorating effects on bone loss due to OVX. Further, the concomitant intake of soy isoflavone and fish oil at a low dose showed better effects on cytokines related with bone resorption.

  7. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats

    Directory of Open Access Journals (Sweden)

    João Antonio Chaves de SOUZA

    2017-10-01

    Full Text Available Abstract This study aimed to characterize the dynamics of suppressor of cytokine signaling (SOCS1 expression in a rat model of lipopolysaccharide-induced periodontitis. Wistar rats in the experimental groups were injected three times/week with LPS from Escherichia coli on the palatal aspect of the first molars, and control animals were injected with vehicle (phosphate-buffered saline. Animals were sacrificed 7, 15, and 30 days after the first injection to analyze inflammation (stereometric analysis, bone loss (macroscopic analysis, gene expression (qRT-PCR, and protein expression/activation (Western blotting. The severity of inflammation and bone loss associated with LPS-induced periodontitis increased from day 7 to day 15, and it was sustained through day 30. Significant (p < 0.05 increases in SOCS1, RANKL, OPG, and IFN-γ gene expression were observed in the experimental group versus the control group at day 15. SOCS1 protein expression and STAT1 and NF-κB activation were increased throughout the 30-day experimental period. Gingival tissues affected by experimental periodontitis express SOCS1, indicating that this protein may potentially downregulate signaling events involved in inflammatory reactions and bone loss and thus may play a relevant role in the development and progression of periodontal disease.

  8. Study on bone resorption behavior of osteoclast under drug effect using {sup 41}Ca tracing

    Energy Technology Data Exchange (ETDEWEB)

    Dong Kejun [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); Lu Liyan [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); CNNC Third Qinshan Nuclear Power Co. Ltd., Haiyan 314300 (China); He Ming; Ouyang Yinggen; Xue Yan; Li Chaoli; Wu Shaoyong [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); Wang Xianggao [College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Shen Hongtao [College of Physics and Technology, Guangxi Normal University, Guilin 541004 (China); Gao Jianjun [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Wang Wei [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); China National Nuclear Corporation, Beijing 100822 (China); Chen Dafu; Xing Yonggang [Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035 (China); Jian, Yuan [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China); Jiang Shan, E-mail: jiangs@ciae.ac.cn [China Institute of Atomic Energy, P.O. Box 275(50), Beijing 102413 (China)

    2013-01-15

    The mechanisms governing calcium fluxes during bone remodeling processes in Osteoporosis (OP) patients are poorly known. Understanding the changes of Osteoclasts (OC) during this dynamic transition is important to prevent and cure OP. The exploration of long-lived {sup 41}Ca (T{sub 1/2} = 1.04 Multiplication-Sign 10{sup 5} years) tracer combined with AMS measurements leads to the possibility of monitoring the bone resorption behavior of OC in OP patients. In this work, the behavior of OC with the administration of Strontium Ranelate (SR), a drug for OP, was studied by using {sup 41}Ca labeled hydroxyapatite (HAP) to simulate the bone. AMS on the HI-13 tandem accelerator at CIAE was used to determine trace amounts of {sup 41}Ca. The results show that the technique of {sup 41}Ca tracing with AMS can be used to quantitatively monitor the behavior of OC in bone resorption under the effects of drugs. Experimental details and preliminary results will be presented.

  9. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    International Nuclear Information System (INIS)

    Gilmour, Peter S.; O'Shea, Patrick J.; Fagura, Malbinder; Pilling, James E.; Sanganee, Hitesh; Wada, Hiroki; Courtney, Paul F.; Kavanagh, Stefan; Hall, Peter A.; Escott, K. Jane

    2013-01-01

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH 1–34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis and

  10. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  11. Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer-related hypercalcemia

    International Nuclear Information System (INIS)

    Warrell, R.P. Jr.; Bockman, R.S.; Coonley, C.J.; Isaacs, M.; Staszewski, H.

    1984-01-01

    Approximately two-thirds of patients who receive the anticancer drug gallium nitrate develop mild hypocalcemia. To evaluate the mechanism of drug-induced hypocalcemia, we tested the effects of gallium nitrate upon in vitro release of 45 Ca++ from explanted fetal rat bones. The drug significantly inhibited 45 Ca++ release in response to stimulation with both parathyroid hormone and a lymphokine preparation with osteoclast activating factor activity. The inhibitory effects on bone resorption were both time- and dose-dependent. Later, in a pilot study, we treated 10 patients who had cancer-related hypercalcemia with gallium nitrate administered by continuous infusion. All patients responded by a reduction of total serum calcium to normal or subnormal concentrations (13.8 +/- 1.05 mg/dl, mean +/- SD pretreatment, to 8.03 +/- 1.03 mg/dl, mean posttreatment nadir). Our results indicate that gallium nitrate effectively treats cancer-related hypercalcemia and that it probably acts by inhibiting calcium release from bone

  12. The cell biology and role of resorptive cells in diseases: A review.

    Science.gov (United States)

    Babaji, Prashant; Devanna, Raghu; Jagtap, Kiran; Chaurasia, Vishwajit Rampratap; Jerry, Jeethu John; Choudhury, Basanta Kumar; Duhan, Dinesh

    2017-01-01

    Resorptive cells are responsible for the resorption of mineralized matrix of hard tissues. Bone-resorbing cells are called osteoclasts; however, they can resorb mineralized dental tissues or calcified cartilage and then they are called odontoclasts and chondroclasts, respectively. Resorptive cells form when mononuclear precursors derived from a monocyte-macrophage cell lineage are attracted to certain mineralized surfaces and subsequently fuse and adhere onto them for exerting their resorbing activity. These cells are responsible for degradation of calcified extracellular matrix composed of organic molecules and hydroxyapatite. The activity of these cells can be observed in both physiological and pathological processes throughout life and their activity is mainly required in bone turnover and growth, spontaneous and induced (orthodontic) tooth movement, tooth eruption, and bone fracture healing, as well as in pathological conditions such as osteoporosis, osteoarthritis, and bone metastasis. In addition, they are responsible for daily control of calcium homeostasis. Clastic cells also resorb the primary teeth for shedding before the permanent teeth erupt into the oral cavity.

  13. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2

    DEFF Research Database (Denmark)

    Henriksen, Dennis B; Alexandersen, Peter; Byrjalsen, Inger

    2004-01-01

    -CTX), a marker of bone resorption. In contrast, GLP-2 was found to have a neutral effect on bone formation, as assessed by serum osteocalcin. Since increased s-CTX levels are normally observed at night, we conducted bedtime studies in healthy postmenopausal women. The objective was to study the effect of GLP-2...... injection on bone turnover given at bedtime. A total of 81 postmenopausal women were included in two randomised placebo-controlled studies. In conclusion, we found a dose-related reduction of s-CTX after injection of GLP-2 (P ....07) by the treatment, suggestive of a stimulative effect on bone formation. An area under the curve (AUC0-10 h) analysis for s-CTX after GLP-2 injection confirmed the dose-related decrease as compared to placebo (P

  14. Effects of a Mikania laevigata extract on bone resorption and RANKL expression during experimental periodontitis in rats

    Directory of Open Access Journals (Sweden)

    Bruno B. Benatti

    2012-06-01

    Full Text Available OBJECTIVES: The Mikania laevigata extract (MLE (popularly known in Brazil as "guaco" possesses anti-inflammatory properties. In the present study we tested the effects of MLE in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying such effects. MATERIAL AND METHODS: Periodontal disease was induced by a ligature placed around the mandibular first molars of each animal. Male Wistar rats were divided into 4 groups: non-ligated animals treated with vehicle; non-ligated animals treated with MLE (10 mg/kg, daily; ligature-induced animals treated with vehicle and ligature-induced animals treated with MLE (10 mg/kg, daily. Thirty days after the induction of periodontal disease, the animals were euthanized and mandibles and gingival tissues removed for further analysis. RESULTS: Morphometric analysis of alveolar bone loss demonstrated that MLE-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-κB ligand (RANKL measured by immunohistochemistry. Moreover, gingival tissues from the MLE-treated group showed decreased neutrophil migration myeloperoxidase (MPO assay. CONCLUSIONS: These results indicate that MLE may be useful to control bone resorption during progression of experimental periodontitis in rats.

  15. High Protein Intake Improves Insulin Sensitivity but Exacerbates Bone Resorption in Immobility (WISE Study)

    Science.gov (United States)

    Heer, Martina; Smith, Scott M.; Frings-Meuthen, Petra; Zwart, Sara R.; Baecker, Natalie

    2012-01-01

    Inactivity, like bed rest (BR), causes insulin resistance (IR) and bone loss even in healthy subjects. High protein intake seems to mitigate this IR but might exacerbate bone loss. We hypothesized that high protein intake (animal:vegetable protein ratio: 60:40), isocaloric, compared to the control group plus high potassium intake would prevent IR without affecting bone turnover. After a 20-day ambulatory adaptation to controlled confinement and diet, 16 women participated in a 60-day, 6 deg head-down-tilt BR and were assigned randomly to one of the two groups. Control subjects (CON, n=8) received 1g/kg body mass/d dietary protein. Nutrition subjects (NUT, n=8) received 1.45g/kg body mass/d dietary protein plus 7.2g branched chain amino acids per day during BR. All subjects received 1670 kcal/d. Bed rest decreased glucose disposal by 35% (pprotein intake prevented insulin resistance, but exacerbated bed rest induced increase in bone resorption markers C-telopeptide (> 30%) and Ntelopeptide (>20%) (both: pprotein intake. We conclude from these results that high protein intake might positively affect glucose tolerance, but might also foster bone loss. Further long-duration studies are mandatory before high protein intake for diabetic patients, who have an increased fracture risk, might be recommended.

  16. Unprotected autogenous bone block grafts in anterior maxilla: Resorption rates and clinical outcomes

    Directory of Open Access Journals (Sweden)

    Kosanić Ivan

    2017-01-01

    Full Text Available Background/Aim. The use of autogenous bone grafts for augmentation of the resorbed alveolar ridge is still considered the gold standard in implant dentistry. The aim of this study was to analyze the resorption rate of autogenous bone block grafts from the retromolar region placed in the frontal segment of the upper jaw unprotected by barrier membranes, to assess the stability of implants placed into the grafted bone, as well as to monitor its changes during the healing period. Methods. The study included 18 patients with a total of 20 grafted sites. The residual alveolar ridge was measured before and after the augmentation and prior to implant placement. All implants were restored with provisional crowns within 48 hours after the placement. Implant stability was assessed using resonance frequency analysis. Results. The average period from ridge augmentation to reentry was 5.4 months (range 4–6 months. At reentry the healed alveolar ridge had a mean width of 6.1 ± 1.27 mm. The mean calculated width gain was 3.04 ± 1.22 mm. The overall surface resorption of block grafts was 0.68 ± 0.69 mm (18.85%. At the time of implant placement the mean value of implant stability quotient (ISQ was 71.25 ± 5.77. The lowest ISQ values were noted after three weeks of healing, followed by a gradual increase until week 12. After 12 weeks implants showed significantly higher ISQ values compared to primary stability (p < 0.05 Wilcoxon signed ranks test. During the 3-years followup period no cases of implant loss were recorded. Conclusion. Despite a significant resorption of bone grafts, it was possible to place implants in all the cases and to use the immediate loading protocol without affecting implant survival rate. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.175021

  17. Changes in markers of bone formation and resorption in a bed rest model of weightlessness

    Science.gov (United States)

    Lueken, S. A.; Arnaud, S. B.; Taylor, A. K.; Baylink, D. J.

    1993-01-01

    To study the mechanism of bone loss in physical unloading, we examined indices of bone formation and bone resorption in the serum and urine of eight healthy men during a 7 day -6 degrees head-down tilt bed rest. Prompt increases in markers of resorption--pyridinoline (PD), deoxypyridinoline (DPD), and hydroxyproline (Hyp)/g creatinine--during the first few days of inactivity were paralleled by tartrate-resistant acid phosphatase (TRAP) with significant increases in all these markers by day 4 of bed rest. An index of formation, skeletal alkaline phosphatase (SALP), did not change during bed rest and showed a moderate 15% increase 1 week after reambulation. In contrast to SALP, serum osteocalcin (OC) began increasing the day preceding the increase in Hyp, remained elevated for the duration of the bed rest, and returned to pre-bed rest values within 5 days of reambulation. Similarly, DPD increased significantly at the onset of bed rest, remained elevated for the duration of bed rest, and returned to pre-bed rest levels upon reambulation. On the other hand, the other three indices of resorption, Hyp, PD, and TRAP, remained elevated for 2 weeks after reambulation. The most sensitive indices of the levels of physical activity proved to be the noncollagenous protein, OC, and the collagen crosslinker, DPD. The bed rest values of both these markers were significantly elevated compared to both the pre-bed rest values and the post-bed rest values. The sequence of changes in the circulating markers of bone metabolism indicated that increases in serum OC are the earliest responses of bone to head-down tilt bed rest.

  18. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    International Nuclear Information System (INIS)

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R.; Jones, K.W.

    1990-01-01

    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig

  19. Effect of polygonimitin C on bone formation and resorption in human ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of polygonimitin C (PC) on bone formation and resorption in human osteoblast-like MG63 cells. Methods: MG63 cells were treated with PC at doses of 0, 20, 40 or 80 μg/mL for 48 h, with an untreated group as control. The effect of PC on alkaline phosphatase (ALP) activity in MG63 cells ...

  20. Human stem cell osteoblastogenesis mediated by novel glycogen synthase kinase 3 inhibitors induces bone formation and a unique bone turnover biomarker profile in rats

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, Peter S., E-mail: Peter.Gilmour@astrazeneca.com [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); O' Shea, Patrick J.; Fagura, Malbinder [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Pilling, James E. [Discovery Sciences, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Sanganee, Hitesh [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Wada, Hiroki [R and I IMed, AstraZeneca R and D, Molndal (Sweden); Courtney, Paul F. [DMPK, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Kavanagh, Stefan; Hall, Peter A. [Safety Assessment, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom); Escott, K. Jane [New Opportunities Innovative Medicines group, AstraZeneca R and D, Alderley Park, Cheshire SK10 4TF (United Kingdom)

    2013-10-15

    Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/μCT imaging. GSK-3 inhibitors caused β-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH{sub 1–34} or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/μCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption. - Highlights: • Wnt modulation with 3 novel GSK-3 inhibitors alters bone growth. • Human stem cell osteoblastogenesis

  1. The effect of semelil (angipars® on bone resorption and bone formation markers in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Hasani-Ranjbar Shirin

    2012-12-01

    Full Text Available Abstract Background and purpose of the study Diabetes mellitus has been recognized as a major risk factor for osteoporosis in which bone turnover is affected by different mechanisms. As the morbidity, mortality and financial cost related to osteoporosis are expected to rise in Iran in coming years, and considering the efficacy of Angipars® for improvement of different ulcers which made it a new herbal drug in diabetic foot ulcer, there is a need to evaluate the effect of this new drug on different organs including bone resorption and bone formation markers. Methods In this randomized, double- blind clinical trial, 61 diabetic patients were included. The subjects were randomly divided into intervention and control groups. Subjects of intervention group received 100 mg of Angipars® twice a day. Laboratory tests including bone resorption and bone formation markers were performed at baseline and after 3 months. Result 31 patients in study group and 30 patients in control group finished the study. The mean age of the study population and the mean disease duration was respectively 51.8 ± 6.2 and 7.5 ± 4.7 years with no significant differences between intervention and control patients. No statistically significant differences between patients and controls were observed in pyridinoline, osteocalcin, urine calcium, bone alkaline phosphatase and tumor necrosis factor (TNF-α. Only urine creatinine level significantly changed between two groups after 3 month of treatment (p-value: 0.029 Conclusion In conclusion, the findings of this study indicate that Semelil (Angipars® had no beneficial or harmful effects on bone. It might be other effects of this new component on bone turnover process which need more studies and more time to be discovered.

  2. The effect of ovalbumin on orthodontic induced root resorption.

    Science.gov (United States)

    Aghili, Hosseinagha; Ardekani, Mohammad Danesh; Meybodi, Seyed Amir Reza Fatahi; Toodehzaeim, Mohammad Hossein; Modaresi, Jalil; Mansouri, Reza; Momeni, Ehsan

    2013-09-01

    This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA), and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. In general, the differences were insignificant (P root resorption than the group in which neither force nor ovalbumin was applied (P > 0.001). Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  3. Negative feedback loop of bone resorption by NFATc1-dependent induction of Cadm1.

    Directory of Open Access Journals (Sweden)

    Shinya Nakamura

    Full Text Available Trimethylation of histone H3 lysine 4 and lysine 27 (H3K4me3 and H3K27me3 at gene promoter regions critically regulates gene expression. Key developmental genes tend to exhibit changes in histone modification patterns from the H3K4me3/H3K27me3 bivalent pattern to the H3K4me3 monovalent pattern. Using comprehensive chromatin immunoprecipitation followed by sequencing in bone marrow-derived macrophages (BMMs and mature osteoclasts, we found that cell surface adhesion molecule 1 (Cadm1 is a direct target of nuclear factor of activated T cells 1 (NFATc1 and exhibits a bivalent histone pattern in BMMs and a monovalent pattern in osteoclasts. Cadm1 expression was upregulated in BMMs by receptor activator of nuclear factor kappa B ligand (RANKL, and blocked by a calcineurin/NFATc1 inhibitor, FK506. Cadm1-deficient mice exhibited significantly reduced bone mass compared with wild-type mice, which was due to the increased osteoclast differentiation, survival and bone-resorbing activity in Cadm1-deficient osteoclasts. These results suggest that Cadm1 is a direct target of NFATc1, which is induced by RANKL through epigenetic modification, and regulates osteoclastic bone resorption in a negative feedback manner.

  4. Water extract of Acer tegmentosum reduces bone destruction by inhibiting osteoclast differentiation and function.

    Science.gov (United States)

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; An, Hyosun; Lee, Chung-Jo; Lee, Kwang Jin; Ma, Jin Yeul

    2014-04-01

    The stem of Acer tegmentosum has been widely used in Korea for the treatment of hepatic disorders. In this study, we investigated the bone protective effect of water extract of the stem of Acer tegmentosum (WEAT). We found that WEAT inhibits osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand (RANKL), an essential cytokine for osteoclast differentiation. In osteoclast precursor cells, WEAT inhibited RANKL-induced activation of JNK, NF-κB, and cAMP response element-binding protein, leading to suppression of the induction of c-Fos and nuclear factor of activated T cells cytoplasmic 1, key transcription factors for osteoclast differentiation. In addition, WEAT inhibited bone resorbing activity of mature osteoclasts. Furthermore, the oral administration of WEAT reduced RANKL-induced bone resorption and trabecular bone loss in mice. Taken together, our study demonstrates that WEAT possesses a protective effect on bone destruction by inhibiting osteoclast differentiation and function.

  5. A novel approach to inhibit bone resorption

    DEFF Research Database (Denmark)

    Panwar, Preety; Søe, Kent; Guido, Rafael VC

    2016-01-01

    BACKGROUND AND PURPOSE: Cathepsin K (CatK) is a major drug target for the treatment of osteoporosis. Potent active site-directed inhibitors have been developed and showed variable success in clinical trials. These inhibitors block the entire activity of CatK and thus may interfere with other...... pathways. The present study investigates the antiresorptive effect of an exosite inhibitor that selectively inhibits only the therapeutically relevant collagenase activity of CatK. EXPERIMENTAL APPROACH: Human osteoclasts and fibroblasts were used to analyse the effect of the exosite inhibitor, ortho......-dihydrotanshinone (DHT1), and the active site inhibitor, odanacatib (ODN), on bone resorption and TGF-ß1 degradation. Cell cultures, Western blot, light and scanning electron microscopy as well as energy dispersive X-ray spectroscopy, molecular modelling and enzymatic assays were used to evaluate the inhibitors. KEY...

  6. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    Science.gov (United States)

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Three-dimensional studies on resorption spaces and developing osteons.

    Science.gov (United States)

    Tappen, N C

    1977-07-01

    Resorption spaces and their continuations as developing osteons were traced in serial cross sections from decalcified long bones of dogs, baboons and a man, and from a human rib. Processes of formation of osteons and transverse (Volkmann's) canals can be inferred from three-dimensional studies. Deposits of new osseous tissue begin to line the walls of the spaces soon after termination of resorption. The first deposits are osteoid, usually stained very darkly by the silver nitrate procedure utilized, but a lighter osteoid zone adjacent to the canals occurs frequently. Osteoid linings continue to be produced as lamellar bone forms around them; the large canals of immature osteons usually narrow very gradually. Frequently they terminate both proximally and distally as resorption spaces, indicating that osteons often advance in opposite directions as they develop. Osteoclasts of resorption spaces tunnel preferentially into highly mineralized bone, and usually do not use previously existing canals as templates for their advance. Osteons evidently originate by localized resorption of one side of the wall of an existing vascular channel in bone, with subsequent orientation of the resorption front along the axis of the shaft. Advancing resorption spaces also apparently stimulate the formation of numerous additional transverse canal connections to neighboring longitudinal canals. Serial tracing and silver nitrate differential staining combine to reveal many of the processes of bone remodeling at work, and facilitate quantitative treatment of the data. Further uses in studies of bone tissue and associated cells are recommended.

  8. Improvement of Lumbar Bone Mass after Infliximab Therapy in Crohn’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Marina Mauro

    2007-01-01

    Full Text Available BACKGROUND: Patients with Crohn’s disease (CD have a high risk of developing osteoporosis, but the mechanisms underlying bone mass loss are unclear. Elevated proinflammatory cytokines, such as tumour necrosis factor-alpha (TNFα, have been implicated in the pathogenesis of bone resorption.

  9. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    International Nuclear Information System (INIS)

    Li Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang Leo; Li Qing; Swain, Michael

    2010-01-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  10. Tributyltin induces distinct effects on cortical and trabecular bone in female C57Bl/6J mice.

    Science.gov (United States)

    Watt, James; Baker, Amelia H; Meeks, Brett; Pajevic, Paola D; Morgan, Elise F; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2018-09-01

    The retinoid X receptors (RXR), peroxisome proliferator activated receptor gamma (PPARγ), and liver X receptors (LXR) all have been shown to regulate bone homeostasis. Tributyltin (TBT) is an environmental contaminant that is a dual RXRα/β and PPARγ agonist. TBT induces RXR, PPARγ, and LXR-mediated gene transcription and suppresses osteoblast differentiation in vitro. Bone marrow multipotent mesenchymal stromal cells derived from female C57BL/6J mice were more sensitive to suppression of osteogenesis by TBT than those derived from male mice. In vivo, oral gavage of 12 week old female, C57Bl/6J mice with 10 mg/kg TBT for 10 weeks resulted in femurs with a smaller cross-sectional area and thinner cortex. Surprisingly, TBT induced significant increases in trabecular thickness, number, and bone volume fraction. TBT treatment did not change the Rankl:Opg RNA ratio in whole bone, and histological analyses showed that osteoclasts in the trabecular space were minimally reduced. In contrast, expression of cardiotrophin-1, an osteoblastogenic cytokine secreted by osteoclasts, increased. In primary bone marrow macrophage cultures, TBT marginally inhibited the number of osteoclasts that differentiated, in spite of significantly suppressing expression of osteoclast markers Nfatc1, Acp5, and Ctsk and resorptive activity. TBT induced expression of RXR- and LXR-dependent genes in whole bone and in vitro osteoclast cultures. However, only an RXR antagonist, but not an LXR antagonist, significantly inhibited TBTs ability to suppress osteoclast differentiation. These results suggest that TBT has distinct effects on cortical versus trabecular bone, likely resulting from independent effects on osteoblast and osteoclast differentiation that are mediated through RXR. © 2018 Wiley Periodicals, Inc.

  11. Calcium intake in winter pregnancy attenuates impact of vitamin D inadequacy on urine NTX, a marker of bone resorption.

    Science.gov (United States)

    O'Brien, Eileen C; Kilbane, Mark T; McKenna, Malachi J; Segurado, Ricardo; Geraghty, Aisling A; McAuliffe, Fionnuala M

    2018-04-01

    Pregnancy is characterised by increased bone turnover, but high bone turnover with resorption exceeding formation may lead to negative maternal bone remodelling. Recent studies are conflicting regarding the effect of calcium on skeletal health in pregnancy. The aim of this study was to examine the seasonal effect of serum 25-hydroxyvitamin D (25OHD) and dietary calcium on a marker of bone resorption. This was prospective study of 205 pregnant women [two cohorts; early pregnancy at 13 weeks (n = 96), and late pregnancy at 28 weeks (n = 109)]. Serum 25OHD and urine cross-linked N-telopeptides of type I collagen (uNTX) were measured at both time points. Intakes of vitamin D and calcium were recorded using 3-day food diaries at each trimester. Compared to summer pregnancies, winter pregnancies had significantly lower 25OHD and significantly higher uNTX. Higher calcium intakes were negatively correlated with uNTX in winter, but not summer. In late pregnancy, compared to those reporting calcium intakes ≥1000 mg/day, intakes of <1000 mg/day were associated with a greater increase in uNTX in winter pregnancies than in summer (41.8 vs. 0.9%). Increasing calcium intake in winter by 200 mg/day predicted a 13.3% reduction in late pregnancy uNTX. In late pregnancy, during winter months when 25OHD is inadequate, intakes of dietary calcium <1000 mg/day were associated with significantly increased bone resorption (uNTX). Additional dietary calcium is associated with reduced bone resorption in late pregnancy, with greater effect observed in winter. Further research regarding optimal dietary calcium and 25OHD in pregnancy is required, particularly for women gestating through winter.

  12. IL-17 receptor A signaling is protective in infection-stimulated periapical bone destruction.

    Science.gov (United States)

    AlShwaimi, Emad; Berggreen, Ellen; Furusho, Hisako; Rossall, Jonathan Caleb; Dobeck, Justine; Yoganathan, Subbiah; Stashenko, Philip; Sasaki, Hajime

    2013-08-15

    IL-17 is a pleiotropic cytokine produced by Th17 T cells that induces a myriad of proinflammatory mediators. However, different models of inflammation report opposite functional roles of IL-17 signal in terms of its effects on bone destruction. In this study we determined the role of IL-17RA signal in bone resorption stimulated by dentoalveolar infections. Infrabony resorptive lesions were induced by surgical pulp exposure and microbial infection of mouse molar teeth. IL-17 was strongly induced in periapical tissues in wild-type (WT) mice by 7 d after the infection but was not expressed in uninfected mice. Dentoalveolar infections of IL-17RA knockout (KO) mice demonstrated significantly increased bone destruction and more abscess formation in the apical area compared with WT mice. Infected IL-17RA KO mice exhibited significantly increased neutrophils and macrophages compared with the WT littermates at day 21, suggesting a failure of transition from acute to chronic inflammation in the IL-17RA KO mice. The expression of IL-1 (both α and β isoforms) and MIP2 were significantly upregulated in the IL-17RA KO compared with WT mice at day 21 postinfection. The development of periapical lesions in IL-17RA KO mice was significantly attenuated by neutralization of IL-1β and MIP2. Taken together, these results demonstrate that IL-17RA signal seems to be protective against infection-induced periapical inflammation and bone destruction via suppression of neutrophil and mononuclear inflammation.

  13. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...... treatment. Histologic examination of tubular bones showed hyperostosis presumably due to prostaglandin-induced rapid formation of primitive bone. The additional finding of extensive resorption of the outer cortical surface and bone formation at the inner surface suggested a reversible phase after...

  14. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  15. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  16. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  17. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    International Nuclear Information System (INIS)

    Cannonier, Shellese A.; Sterling, Julie A.

    2015-01-01

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors

  18. The effect of ovalbumin on orthodontic induced root resorption

    Directory of Open Access Journals (Sweden)

    Hosseinagha Aghili

    2013-01-01

    Full Text Available Background: This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. Materials and Methods: A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA, and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. Results: In general, the differences were insignificant (P > 0.05. As the only exception, the group in which both ovalbumin and force were applied had significantly more root resorption than the group in which neither force nor ovalbumin was applied (P < 0.001. Conclusion: Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  19. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    Science.gov (United States)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: prestriction did not exaggerate bone resorption during HDBR.

  20. Higher bone resorption excretion in South Asian women vs. White Caucasians and increased bone loss with higher seasonal cycling of vitamin D: Results from the D-FINES cohort study.

    Science.gov (United States)

    Darling, A L; Hart, K H; Gossiel, F; Robertson, F; Hunt, J; Hill, T R; Johnsen, S; Berry, J L; Eastell, R; Vieth, R; Lanham-New, S A

    2017-05-01

    Few data exist on bone turnover in South Asian women and it is not well elucidated as to whether Western dwelling South Asian women have different bone resorption levels to that of women from European ethnic backgrounds. This study assessed bone resorption levels in UK dwelling South Asian and Caucasian women as well as evaluating whether seasonal variation in 25-hydroxyvitamin D [25(OH)D] is associated with bone resorption in either ethnic group. Data for seasonal measures of urinary N-telopeptide of collagen (uNTX) and serum 25(OH)D were analysed from n=373 women (four groups; South Asian postmenopausal n=44, South Asian premenopausal n=50, Caucasian postmenopausal n=144, Caucasian premenopausal n=135) (mean (±SD) age 48 (14) years; age range 18-79years) who participated in the longitudinal D-FINES (Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England) cohort study (2006-2007). A mixed between-within subjects ANOVA (n=192) showed a between subjects effect of the four groups (PAsian and premenopausal Asian groups. Season specific age-matched-pairs analyses showed that in winter (P=0.04) and spring (P=0.007), premenopausal Asian women had a 16 to 20nmolBCE/mmol Cr higher uNTX than premenopausal Caucasian women. The (amplitude/mesor) ratio (i.e. seasonal change) for 25(OH)D was predictive of uNTX, with estimate (SD)=0.213 (0.015) and 95% CI (0.182, 0.245; PAsian women than would be expected for their age, being greater than same-age Caucasian women, and similar to postmenopausal Asian women. This highlights potentially higher than expected bone resorption levels in premenopausal South Asian women which, if not offset by concurrent increased bone formation, may have future clinical and public health implications which warrant further investigation. Individuals with a larger seasonal change in 25(OH)D concentration showed an increased bone resorption, an association which was larger than that of the 25(OH)D yearly average, suggesting it may be as

  1. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  2. RANK, RANKL and osteoprotegerin in arthritic bone loss

    Directory of Open Access Journals (Sweden)

    M.C. Bezerra

    2005-02-01

    Full Text Available Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1, IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-ß released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.

  3. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  4. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling

    Science.gov (United States)

    Carpio, Lomeli R.; Bradley, Elizabeth W.; McGee-Lawrence, Meghan E.; Weivoda, Megan M.; Poston, Daniel D.; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L.; van Wijnen, Andre J.; Oursler, Merry Jo; Westendorf, Jennifer J.

    2017-01-01

    Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)–expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)–signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)–JAK–STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID

  5. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  6. Methotrexate Toxicity in Growing Long Bones of Young Rats: A Model for Studying Cancer Chemotherapy-Induced Bone Growth Defects in Children

    Directory of Open Access Journals (Sweden)

    Chiaming Fan

    2011-01-01

    Full Text Available The advancement and intensive use of chemotherapy in treating childhood cancers has led to a growing population of young cancer survivors who face increased bone health risks. However, the underlying mechanisms for chemotherapy-induced skeletal defects remain largely unclear. Methotrexate (MTX, the most commonly used antimetabolite in paediatric cancer treatment, is known to cause bone growth defects in children undergoing chemotherapy. Animal studies not only have confirmed the clinical observations but also have increased our understanding of the mechanisms underlying chemotherapy-induced skeletal damage. These models revealed that high-dose MTX can cause growth plate dysfunction, damage osteoprogenitor cells, suppress bone formation, and increase bone resorption and marrow adipogenesis, resulting in overall bone loss. While recent rat studies have shown that antidote folinic acid can reduce MTX damage in the growth plate and bone, future studies should investigate potential adjuvant treatments to reduce chemotherapy-induced skeletal toxicities.

  7. Beneficial role of periosteum in distraction osteogenesis of mandible. Its preservation prevents the external bone resorption

    International Nuclear Information System (INIS)

    Takeuchi, Sawako; Matsuo, Akira; Chiba, Hiroshige

    2010-01-01

    Distraction osteogenesis (DO) is a surgical process of new bone generation through the gradual extension of two segments of existing bone. DO is applied for maxillofacial surgeries to manage defects in mandibular continuity. Vertical DO with an oral device is often employed to augment the alveolar bone height for better implant anchorage for esthetic purposes or functional prosthetic requirements. To determine how the periosteum affects the vertical DO in mandibular reconstruction, we extracted the teeth and resected the alveolar parts of the mandible on both sides of dogs, along with removal of the surrounding periosteum in the right, but not left side. Three months later, box-shaped bone segments (vectors) were prepared from the resected alveolar part, and the segments were vertically elongated using a distraction device on both sides at 0.9 mm/day for one week. The extent of bone formation after distraction was determined with micro-focused computed tomography and by measuring incorporation of tetracycline and calcein with confocal laser scanning microscopy. During the initial two months after distraction, new bone formation was observed more prominently in the left side than in the right side of mandible with the periosteum. However, this difference was less clear during the bone-remodeling period. One notable change was the reduced height of the alveolar part of the right-side mandible, a sign of external bone resorption, observed in two out of three dogs at 6-month post-consolidation. These findings suggest that preservation of periosteum prevents the external bone resorption during the vertical DO of mandible. (author)

  8. Peri-Implant Crestal Bone Loss: A Putative Mechanism

    Directory of Open Access Journals (Sweden)

    Yuko Ujiie

    2012-01-01

    Full Text Available Purpose. The immunological mechanisms of peri-implant crestal bone loss have, hitherto, not been elucidated. We hypothesized that bacterial products from the microgap cause upregulation of cytokines in otherwise healthy peri-implant cells, which results in osteoclast formation and, ultimately, in bone resorption. Materials and Methods. We used RT-PCR and ELISA to assay mediators of osteoclastogenesis in rat and human macrophages (r-and hMO; bone marrow derived stromal cells (r-and hBMCs; and human gingival fibroblasts (hGF—with or without stimulation by LPS. TRAP positive multinucleate cells were assessed for their resorptive ability. Results. We show that IL-1α, IL-1β, and IL-6 were expressed by all examined cell types, and TNF-α was upregulated in hGF. Secretion of IL-1α and IL-1β proteins was stimulated in hMO by LPS, and IL-6 protein secretion was highly stimulated in hBMCs and hGF. Both LPS and RANKL stimulated macrophages to form osteoclast-like TRAP positive cells, which resorbed calcium phosphate substrates. Conclusion. Taken together, the results of our study support the hypothesis that bacterial endotoxins upregulate enhanced mediators of osteoclastogenesis in resident cells found in the healthy peri-implant compartment and that the local synergistic action of cytokines secreted by such cells results in the genesis of resorptively active osteoclasts.

  9. Cellular and Molecular Pathways Leading to External Root Resorption

    Science.gov (United States)

    Iglesias-Linares, A.; Hartsfield, J.K.

    2016-01-01

    External apical root resorption during orthodontic treatment implicates specific molecular pathways that orchestrate nonphysiologic cellular activation. To date, a substantial number of in vitro and in vivo molecular, genomic, and proteomic studies have supplied data that provide new insights into root resorption. Recent mechanisms and developments reviewed here include the role of the cellular component—specifically, the balance of CD68+, iNOS+ M1- and CD68+, CD163+ M2-like macrophages associated with root resorption and root surface repair processes linked to the expression of the M1-associated proinflammatory cytokine tumor necrosis factor, inducible nitric oxide synthase, the M1 activator interferon γ, the M2 activator interleukin 4, and M2-associated anti-inflammatory interleukin 10 and arginase I. Insights into the role of mesenchymal dental pulp cells in attenuating dentin resorption in homeostasis are also reviewed. Data on recently deciphered molecular pathways are reviewed at the level of (1) clastic cell adhesion in the external apical root resorption process and the specific role of α/β integrins, osteopontin, and related extracellular matrix proteins; (2) clastic cell fusion and activation by the RANKL/RANK/OPG and ATP-P2RX7-IL1 pathways; and (3) regulatory mechanisms of root resorption repair by cementum at the proteomic and transcriptomic levels. PMID:27811065

  10. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application.

    Science.gov (United States)

    Reichert, Christoph; Götz, Werner; Reimann, Susanne; Keilig, Ludger; Hagner, Martin; Bourauel, Christoph; Jäger, Andreas

    2013-03-01

    To develop an in vitro assay for quantitative analysis of the degradation to which a bone substitute is exposed by osteoclasts. The aim of establishing this method was to improve the predictability of carrying out tooth movements via bone substitutes and to provide a basis for verification in exemplary clinical cases. After populating a bone substitute (NanoBone®; ArtOss, Germany) with osteoclastic cells, inductively-coupled mass spectrometry was used to evaluate changing calcium levels in the culture medium as a marker of resorption activity. It was observed that calcium levels increased substantially in the culture medium with the cells populating the bone substitute. This in vitro assay is a valid method that can assist clinicians in selecting the appropriate materials for certain patients. While tooth movements occurring through this material were successful, uncertainty about the approach will remain as long-term results are not available.

  11. The Adaptive Nature of the Bone-Periodontal Ligament-Cementum Complex in a Ligature-Induced Periodontitis Rat Model

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Lee

    2013-01-01

    Full Text Available The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL, a mineral resorption indicator (TRAP, and a cell migration and adhesion molecule for tissue regeneration (fibronectin within the complex were localized and correlated with changes in PDL-space (functional space. At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+ cells decreased near the mesial alveolar bone crest (ABC but increased at the distal ABC. TRAP(+ cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations.

  12. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome

    DEFF Research Database (Denmark)

    Gottschalck, Ida B; Jeppesen, Palle B; Hartmann, Bolette

    2008-01-01

    OBJECTIVE: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome...... (SBS) and they have reduced bone mineral density (BMD). The aim of the study was to investigate the anti-resorptive effect (assessed by s-CTX) of 14 days of GLP-2 treatment in these patients and to determine whether 56 days of treatment would improve BMD. PTH secretion in response to GLP-2 was also...... in the SBS patients, and after 56 days of GLP-2 treatment there was no improvement in BMD. A significant reduction in PTH secretion in response to GLP-2 was observed only in patients with ileostomy. CONCLUSIONS: The decreased bone resorption in response to GLP-2 injections cannot be elicited in SBS patients...

  13. The potential of mangosteen (Garcinia mangostana peel extract, combined with demineralized freeze-dried bovine bone xenograft, to reduce ridge resorption and alveolar bone regeneration in preserving the tooth extraction socket

    Directory of Open Access Journals (Sweden)

    Utari Kresnoadi

    2017-01-01

    Conclusion: The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.

  14. Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin

    OpenAIRE

    Salinas-Muñoz, M.; Garrido-Flores, M.; Baeza, M.; Huamán-Chipana, P.; García-Sesnich, J.; Bologna, R.; Vernal, R.; Hernández, M.

    2017-01-01

    Objectives The aim of this study is to assess the levels and diagnostic accuracy of a set of bone resorption biomarkers, including TRAP-5, RANKL, and OPG in symptomatic and asymptomatic apical lesions and controls. Materials and methods Apical tissues from symptomatic and asymptomatic apical periodontitis patients and periodontal ligaments from healthy teeth extracted for orthodontic reasons were processed for tissue homogenization and the levels of TRAP-5, RANKL, and OPG were determined by m...

  15. Management of glucocorticoids-induced osteoporosis: role of teriparatide

    Directory of Open Access Journals (Sweden)

    Silvia Migliaccio

    2009-04-01

    Full Text Available Silvia Migliaccio1, Marina Brama1, Nazzarena Malavolta21Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy; 2Dipartimento di Medicina Interna, Policlinico S Orsola Malpighi, Bologna, ItalyAbstract: Glucocorticoids (GC-induced osteoporosis (GIOP is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34 parathyroid hormone (PTH molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34 stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34 modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.Keywords: glucocorticoids, osteoblasts, osteoclasts, osteoporosis, teriparatide

  16. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Ethanol Extract of Atractylodes macrocephala Protects Bone Loss by Inhibiting Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2013-06-01

    Full Text Available The rhizome of Atractylodes macrocephala has been used mainly in Traditional Chinese Medicine for invigorating the functions of the stomach and spleen. In the present study, we investigated the inhibitory effect of the 70% ethanol extract of the rhizome of Atractylodes macrocephala (AMEE on osteoclast differentiation. We found that AMEE inhibits osteoclast differentiation from its precursors induced by receptor activator of nuclear factor-κB ligand (RANKL, an essential cytokine required for osteoclast differentiation. AMEE attenuated RANKL-induced activation of NF-κB signaling pathway, subsequently inhibiting the induction of osteoclastogenic transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1. Consistent with the in vitro results, administration of AMEE protected RANKL-induced bone loss in mice. We also identified atractylenolide I and II as active constituents contributing to the anti-osteoclastogenic effect of AMEE. Taken together, our results demonstrate that AMEE has a protective effect on bone loss via inhibiting osteoclast differentiation and suggest that AMEE may be useful in preventing and treating various bone diseases associated with excessive bone resorption.

  18. Predictive value of ridge dimensions on autologous bone graft resorption in staged maxillary sinus augmentation surgery using Cone-Beam CT.

    NARCIS (Netherlands)

    Klijn, R.J.; Beucken, J.J.J.P van den; Bronkhorst, E.M.; Berge, S.J.; Meijer, G.J.; Jansen, J.B.M.J.

    2012-01-01

    INTRODUCTION: No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft

  19. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients

    NARCIS (Netherlands)

    Bunck, M.C.M.; Poelma, M.; Eekhoff, E.M.; Schweizer, A.; Heine, R.J.; Nijpels, G.; Foley, J.E.; Diamant, M.

    2012-01-01

    Background: Bone metabolism is a dynamic process that is influenced by food ingestion. Endogenous incretins have been shown to be important regulators of bone turnover. The aim of the present study was to assess whether a dipeptidylpeptidase (DPP)-4 inhibitor affects markers of bone resorption and

  20. Effects of clodronate on early alveolar bone remodeling and root resorption related to orthodontic forces: a histomorphometric analysis.

    Science.gov (United States)

    Choi, Josefina; Baek, Seung-Hak; Lee, Jae-Il; Chang, Young-Il

    2010-11-01

    The objective of this study was to evaluate the short-term effects of clodronate, a first-generation bisphosphonate, on early alveolar bone remodeling and root resorption related to orthodontic tooth movement. The samples consisted of 54 sex-matched Wistar rats (weight, 180-230 g) allocated to the 2.5 mmol/L clodronate, 10 mmol/L clodronate, and control groups (n = 18 for each group). After application of a nickel-titanium closed-coil spring (force, 60 g) between the maxillary central incisor and first molar, 2.5 mmol/L of clodronate, 10 mmol/L of clodronate, or saline solution was injected into the subperiosteum adjacent to the maxillary first molar every third day. All animals received tetracycline, calcein, and alizarin red by intraperitoneal injection at 1, 6, and 14 days, respectively. The amounts of tooth movement were measured at 3, 6, 9, 12, and 15 days. The animals were killed at 4, 7, and 17 days. Histomorphometric analyses of bone mineral appositional rate, labeled surface, percentage of root resorption area, and number of root resorption lacunae of the mesiobuccal root of the maxillary first molar at 4, 7, and 17 days were done. One-way analysis of variance (ANOVA) with the post-hoc test were done for statistical analyses. Rats in the 10 mmol/L clodronate group had significant decreases of tooth movement (12 and 15 days, P root resorption area and numbers of root resorption lacunae (7 day, P root resorption related to orthodontic tooth movement, patients should be informed about a possible decrease in the amount of tooth movement and a prolonged period of orthodontic treatment. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Identification of A Novel Root Resorptive Function of Osteopontin Gene

    Directory of Open Access Journals (Sweden)

    M. Seifi

    2008-12-01

    Full Text Available Objective: Osteopontin (OPN has been proposed to play a role in bone resorption. With regard to bone and cementum/dentin structural and histological similarities, it was hy-pothesized that expression of this gene might be increased in resorptive lacunae during orthodontic tooth movement.Materials and Methods: Fixed Nickel-Titanium closed coil springs (Dentaurum® capa-ble of delivering approximately 60 gf were applied for mesial movement of maxillary left first molars in 26 male 8-week-old Wistar rats. The right maxillary molar served as inter-nal control for each subject. After 21 days, the rats were sacrificed. Tissues from 13 rats were examined by histomorphometric analysis and the scratched material from resorptive lacunae on mesial sides of the roots was used for extracting messenger ribonucleic acid (mRNA in RT-PCR reactions. T-test and Wilcoxon signed-rank test served for statistical analyses.Results: Histomorphometric analysis of histologic sections revealed an increased resorbed area in test group compared to control animals (P<0.001. The integrity of mRNA con-firmed by RT-PCR for housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH. Densitometric analysis of OPN mRNA on electrophoresis gel showed an in-crease in background levels of OPN in resorptive lacunae of test group (P<0.001.Conclusion: Data indicates that in the controlled environment of this study, an increase in OPN expression is associated with root resorption induced by orthodontic tooth move-ment.

  2. Inhibitory effects on bone resorption in postmenopausal osteoporosis model mice by delivery of serum calcium decreasing factor (caldecrin) gene

    International Nuclear Information System (INIS)

    Oi, Michi; Kido, Seisui; Hasegawa, Hiroya; Fujimoto, Kengo; Tomomura, Mineko; Kanegae, Haruhide; Suda, Naoto; Tomomura, Akito

    2011-01-01

    Osteoporosis is a common condition in which decrease in the bone volume and strength occurs due to increased bone resorption. Caldecrin is a serine protease, with a molecular weight of 28kDa, and it is the causative factor of hypocalcemia frequently seen in acute pancreatitis. Recent reports have shown that caldecrin also acts to inhibit both differentiation of the osteoclasts and function of the mature osteoclasts. In this study, the osteoporosis model mice were used and bilateral ovariectomy was conducted in these mice. Effect of bone absorption was estimated after introducing genetically the pCaldecrin-IRES-hrGFP expressing vector into the femoral muscle by use of the hemagglutinating virus of Japan (HVJ)-liposomes. After the bilateral ovariectomy, serum calcium levels were raised and the bone mass of the femur was decreased. However, in the genetically introduced groups of the model mice, serum calcium levels were significantly lowered. Concomitantly, significant increase in bone density, trabecular width and number of trabecular was observed. Moreover, based on the histological findings, inhibition of bone resorption in the caldecrin-introduced osteoporosis model mice was confirmed. The present study indicates that caldecrin can be expected to become a novel cure for osteoporosis. (author)

  3. Inhibition of markers of bone resorption by consumption of vitamin D and calcium-fortified soft plain cheese by institutionalised elderly women.

    Science.gov (United States)

    Bonjour, Jean-Philippe; Benoit, Valérie; Pourchaire, Olivier; Ferry, Monique; Rousseau, Brigitte; Souberbielle, Jean-Claude

    2009-10-01

    Acceleration of bone remodelling increases the risk of fragility fractures. The objective of the present study was to explore in elderly women whether a vitamin D and Ca-fortified dairy product providing about 17-25 % of the recommended intakes in vitamin D, Ca and proteins would reduce secondary hyperparathyroidism and bone remodelling in a way that may attenuate age-related bone loss in the long term. Thirty-seven institutionalised women, aged 84.8 (sd 8.1) years, with low serum 25-hydroxyvitamin D (5.5 (sd 1.7) ng/ml) were enrolled into a multicentre open trial to consume during 1 month two servings of soft plain cheese made of semi-skimmed milk providing daily 686 kJ (164 kcal), 2.5 microg vitamin D, 302 mg Ca and 14.2 g proteins. The primary endpoint was the change in serum carboxy terminal cross-linked telopeptide of type I collagen (CTX), selected as a marker of bone resorption. Thirty-five subjects remained compliant. Mean serum changes were: 25-hydroyvitamin D, +14.5 % (P = 0.0051); parathyroid hormone (PTH), - 12.3 % (P = 0.0011); CTX, - 7.5 % (P = 0.01); tartrate-resistant acid phosphatase isoform 5b (TRAP 5b), - 9.9 % (P elderly women with vitamin D insufficiency can reduce bone resorption markers by positively influencing Ca and protein economy, as expressed by decreased PTH and increased IGF-I, respectively. The rise in the bone formation marker P1NP could be explained by a protein-mediated increase in IGF-I. Thus, such a dietary intervention might uncouple, at least transiently, bone resorption from bone formation and thereby attenuate age-related bone loss.

  4. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model

    Science.gov (United States)

    Kirschneck, Christian; Maurer, Michael; Wolf, Michael; Reicheneder, Claudia; Proff, Peter

    2017-01-01

    Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 1/2/3): (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology—(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg·kg−1 per day s.c. of L(−)-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT–qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment. PMID:28960194

  5. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuo [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Li, Xianan [Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Cheng, Liang [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Wu, Hongwei [Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410012 (China); Zhang, Can [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China); Li, Kanghua, E-mail: lkh8738@sina.com [Department of Orthopedic Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan 410008 (China)

    2015-10-30

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  6. Tenuigenin inhibits RANKL-induced osteoclastogenesis by down-regulating NF-κB activation and suppresses bone loss in vivo

    International Nuclear Information System (INIS)

    Yang, Shuo; Li, Xianan; Cheng, Liang; Wu, Hongwei; Zhang, Can; Li, Kanghua

    2015-01-01

    Tenuigenin, a major active component of polygala tenuifolia root, has been used to treat patients with insomnia, dementia, and neurosis. In this study, we aimed to investigate the effects of tenuigenin on osteoclastogenesis and clarify the possible mechanism. We showed that tenuigenin inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption without cytotoxicity, which was further demonstrated by reduced osteoclast specific gene expression such as TRAP, c-Src, ATP6v0d2, etc. Moreover, the inhibitory effect of tenuigenin was associated with impaired NF-κB activity owing to delayed degradation/regeneration of IkBa and inhibition of p65 nuclear translocation. Consistent with the in vitro results, micro-ct scanning and analysis data showed that tenuigenin suppressed RANKL-induced bone loss in an animal model. Taken together, our data demonstrate that tenuigenin inhibit osteoclast formation and bone resorption both in vitro and in vivo, and comprise a potential therapeutic alternative for osteoclast-related disorders such as osteoporosis and cancer-induced bone destruction. - Highlights: • Tenuigenin suppresses osteoclasts formation, survival and function in vitro. • Tenuigenin impairs NF-κB activation. • Tenuigenin suppresses RANKL-induced bone lose in vivo. • Tenuigenin may be used for treating osteoclast related diseases.

  7. Changes in Cytokines of the Bone Microenvironment during Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Sosnoski, D.M.; Krishnan, V.; Mastro, A.M.; Kraemer, W.J.; Dunn-Lewis, C.

    2012-01-01

    It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization. The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection with MDA-MB-231GFP human metastatic breast cancer cells, MDA-MB-231 BRMS1GFP, a metastasis suppressed variant, or PBS. Animals were euthanized (day 3, 11, 19, 27 after injection) to examine femoral cytokine levels at various stages of cancer cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may manipulate the bone microenvironment to enhance cancer cell colonization

  8. Effect of antitumour necrosis factor-alpha therapy on bone turnover in patients with active Crohn's disease: a prospective study.

    Science.gov (United States)

    Ryan, B M; Russel, M G V M; Schurgers, L; Wichers, M; Sijbrandij, J; Stockbrugger, R W; Schoon, E

    2004-10-15

    Patients with Crohn's disease are at increased risk of osteoporosis. Disease activity and circulating proinflammatory cytokines are thought to play a role in this process. Infliximab, a chimaeric antitumour necrosis factor-alpha antibody is effective in the treatment of Crohn's disease. The aim of this study was to investigate the impact of treatment with infliximab on bone turnover in Crohn's disease patients. This was a prospective trial. Twenty-four patients with active Crohn's disease were treated with infliximab (5 mg/kg). Bone markers were assayed pre- and post-treatment. Bone formation was measured using serum bone-specific alkaline phosphatase and total osteocalcin and bone resorption using serum N-telopeptide cross-linked type 1 collagen. Infliximab therapy caused a significant increase in both markers of bone formation in patients with active Crohn's disease. No significant change in the bone resorption marker serum N-telopeptide cross-linked type 1 was found. Infliximab therapy had a significant beneficial effect on bone metabolism in patients with active Crohn's disease. These findings further support the theory that active ongoing inflammation and high levels of circulating cytokines play a pivotal role in the pathogenesis of bone loss in patients with Crohn's disease.

  9. Suppressor of cytokine signaling 2 (Socs2 deletion protects bone health of mice with DSS-induced inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Ross Dobie

    2018-01-01

    Full Text Available Individuals with inflammatory bowel disease (IBD often present with poor bone health. The development of targeted therapies for this bone loss requires a fuller understanding of the underlying cellular mechanisms. Although bone loss in IBD is multifactorial, the altered sensitivity and secretion of growth hormone (GH and insulin-like growth factor-1 (IGF-1 in IBD is understood to be a critical contributing mechanism. The expression of suppressor of cytokine signaling 2 (SOCS2, a well-established negative regulator of GH signaling, is stimulated by proinflammatory cytokines. Therefore, it is likely that SOCS2 expression represents a critical mediator through which proinflammatory cytokines inhibit GH/IGF-1 signaling and decrease bone quality in IBD. Using the dextran sodium sulfate (DSS model of colitis, we reveal that endogenously elevated GH function in the Socs2−/− mouse protects the skeleton from osteopenia. Micro-computed tomography assessment of DSS-treated wild-type (WT mice revealed a worsened trabecular architecture compared to control mice. Specifically, DSS-treated WT mice had significantly decreased bone volume, trabecular thickness and trabecular number, and a resulting increase in trabecular separation. In comparison, the trabecular bone of Socs2-deficient mice was partially protected from the adverse effects of DSS. The reduction in a number of parameters, including bone volume, was less, and no changes were observed in trabecular thickness or separation. This protected phenotype was unlikely to be a consequence of improved mucosal health in the DSS-treated Socs2−/− mice but rather a result of unregulated GH signaling directly on bone. These studies indicate that the absence of SOCS2 is protective against bone loss typical of IBD. This study also provides an improved understanding of the relative effects of GH/IGF-1 signaling on bone health in experimental colitis, information that is essential before these drugs are

  10. Influence of Radix scutellariae on Th1/Th2 cytokine balance in RU486-induced abortion in mice

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xiuhui; SHI Wanyu; MA Aituan; WANG Xiaodan; ZHANG Jianlou; LI Xuezhong

    2007-01-01

    The aim of this study is to investigate the significance of Th1/Th2 cytokine balance in the uterus in the early embryo loss(or resorption),and to elucidate immunological modulation at the maternal-fetal interface with Chinese herbal medicine Radix scutellariae(Huang Qin)and its constituents(Baicalin and Baicalein).Mifepristone(RU486)was given via subcutaneous injection in the scapular area to induce abortion in mice at day 7 of gestation.The levels of uterine Thl cytokines(IFN-β,IL-2)and Th2 cytokines(IL-4,IL-10)were analyzed by enzyme-linked immunosorbent assay(ELISA),respectively.The mean values of Thl cytokines in the uterus of RU486-treated abortion mice were significantly higher(P<0.05)than that of the control mice,but no significant difference was observed regarding to the contents of Th2 cytokines of different groups(P>0.05).However,when the Radix scutellariae and its constituents were used to prevent RU486-induced abortion,the levels of IFN-γ and IL-2 decreased while that of IL-4 and IL-10 increased.The embryo loss induced by RU486 was closely related to the Th1/Th2 immune balance at the maternal-fetal interface.Radix scutellariae and its constituents have an anti-abortive effect through restoring the Th1/Th2 balance at the maternal-fetal interface.

  11. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  12. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  13. Cytokines in Gaucher disease: Role in the pathogenesis of bone ...

    African Journals Online (AJOL)

    Azza A.G. Tantawy

    2015-03-03

    Mar 3, 2015 ... The impact of therapy on bone manifestations of Gaucher disease . ... types: classical or alternative, depending on the predominant cytokine in the .... avascular necrosis, bone infarcts and localised cortical thin- ning may be ...

  14. The mode of progression of subperiosteal resorption in the hyperparathyroidism of chronic renal future

    International Nuclear Information System (INIS)

    Meema, H.E.; Oreopoulos, D.G.; Toronto Univ., Ontario

    1983-01-01

    Subperiosteal resorption in finger phalanges is usually thought to be the result of osteoclastic bone resorption on the periosteal surface of bone, progressive centripetally with creation of the serrated appearances and ''lace-like'' patterns in periosteal cortical bone. Our longitudinal microradioscopic observations in patients with secondary hyperparathyroidism of chronic renal failure have revealed evidence of another pathogenetic mechanism: by the enlargement of intracortical juxtaperiosteal resorption spaces, the remaining thin layer of bone is broken down from inside the bone, i.e., a centrifugal rather then centripetal process. (orig.)

  15. Ion transporters involved in acidification of the resorption lacuna in osteoclasts

    DEFF Research Database (Denmark)

    Henriksen, K.; Sorensen, M.G.; Jensen, V.K.

    2008-01-01

    Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process is ......, including carbonic anhydrase II, the NHEs, and potassium-chloride cotransporters, are all involved in resorption but do not seem to directly be involved in acidification of the lysosomes Udgivelsesdato: 2008/9......Osteoclasts possess a large amount of ion transporters, which participate in bone resorption; of these, the vacuolar-adenosine trisphosphatase (V-ATPase) and the chloride-proton antiporter ClC-7 acidify the resorption lacuna. However, whether other ion transporters participate in this process...

  16. Treatment with Potassium Bicarbonate Lowers Calcium Excretion and Bone Resorption in Older Men and Women

    Science.gov (United States)

    Dawson-Hughes, Bess; Harris, Susan S.; Palermo, Nancy J.; Castaneda-Sceppa, Carmen; Rasmussen, Helen M.; Dallal, Gerard E.

    2009-01-01

    Context: Bicarbonate has been implicated in bone health in older subjects on acid-producing diets in short-term studies. Objective: The objective of this study was to determine the effects of potassium bicarbonate and its components on changes in bone resorption and calcium excretion over 3 months in older men and women. Design, Participants, and Intervention: In this double-blind, controlled trial, 171 men and women age 50 and older were randomized to receive placebo or 67.5 mmol/d of potassium bicarbonate, sodium bicarbonate, or potassium chloride for 3 months. All subjects received calcium (600 mg of calcium as triphosphate) and 525 IU of vitamin D3 daily. Main Outcome Measures: Twenty-four-hour urinary N-telopeptide and calcium were measured at entry and after 3 months. Changes in these measures were compared across treatment groups in the 162 participants included in the analyses. Results: Bicarbonate affected the study outcomes, whereas potassium did not; the two bicarbonate groups and the two no bicarbonate groups were therefore combined. Subjects taking bicarbonate had significant reductions in urinary N-telopeptide and calcium excretion, when compared with subjects taking no bicarbonate (both before and after adjustment for baseline laboratory value, sex, and changes in urinary sodium and potassium; P = 0.001 for both, adjusted). Potassium supplementation did not significantly affect N-telopeptide or calcium excretion. Conclusions: Bicarbonate, but not potassium, had a favorable effect on bone resorption and calcium excretion. This suggests that increasing the alkali content of the diet may attenuate bone loss in healthy older adults. PMID:18940881

  17. Changes in Cytokines of the Bone Microenvironment during Breast Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Donna M. Sosnoski

    2012-01-01

    Full Text Available It is commonly accepted that cancer cells interact with host cells to create a microenvironment favoring malignant colonization. The complex bone microenvironment produces an ever changing array of cytokines and growth factors. In this study, we examined levels of MCP-1, IL-6, KC, MIP-2, VEGF, MIG, and eotaxin in femurs of athymic nude mice inoculated via intracardiac injection with MDA-MB-231GFP human metastatic breast cancer cells, MDA-MB-231BRMS1GFP, a metastasis suppressed variant, or PBS. Animals were euthanized (day 3, 11, 19, 27 after injection to examine femoral cytokine levels at various stages of cancer cell colonization. The epiphysis contained significantly more cytokines than the diaphysis except for MIG which was similar throughout the bone. Variation among femurs was evident within all groups. By day 27, MCP-1, MIG, VEGF and eotaxin levels were significantly greater in femurs of cancer cell-inoculated mice. These pro-osteoclastic and angiogenic cytokines may manipulate the bone microenvironment to enhance cancer cell colonization.

  18. Use of ethanol extracts of Terminalia chebula to prevent periodontal disease induced by dental plaque bacteria.

    Science.gov (United States)

    Lee, Jongsung; Nho, Youn Hwa; Yun, Seok Kyun; Hwang, Young Sun

    2017-02-16

    The fruit of the Terminalia chebula tree has been widely used for the treatment of various disorders. Its anti-diabetic, anti-mutagenic, anti-oxidant, anti-bacterial, anti-fungal, and anti-viral effects have been studied. Dental plaque bacteria (DPB) are intimately associated with gingivitis and periodontitis. In the quest for materials that will prove useful in the treatment and prevention of periodontal disease, we investigated the preventive effects of an ethanol extract of Terminalia chebula (EETC) on DPB-induced inflammation and bone resorption. The anti-bacterial effect of EETC was analyzed using the disc diffusion method. The anti-inflammatory effect of EETC was determined by molecular biological analysis of the DPB-mediated culture cells. Prevention of osteoclastic bone resorption by EETC was explored using osteoclast formation and pit formation assays. EETC suppressed the growth of oral bacteria and reduced the induction of inflammatory cytokines and proteases, abolishing the expression of PGE2 and COX-2 and inhibiting matrix damage. By stimulating the DPB-derived lipopolysaccharides, EETC inhibited both osteoclast formation in osteoclast precursors and RANKL expression in osteoblasts, thereby contributing to the prevention of bone resorption. EETC may be a beneficial supplement to help prevent DPB-mediated periodontal disease.

  19. Multicellular tumor spheroid interactions with bone cells and bone

    International Nuclear Information System (INIS)

    Wezeman, F.H.; Guzzino, K.M.; Waxler, B.

    1985-01-01

    In vitro coculture techniques were used to study HSDM1C1 murine fibrosarcoma multicellular tumor spheroid (HSDM1C1-MTS) interactions with mouse calvarial bone cells having osteoblastic characteristics and mouse bone explants. HSDM1C1-MTS attached to confluent bone cell monolayers and their attachment rate was quantified. HSDM1C1-MTS interaction with bone cells was further demonstrated by the release of 3 H-deoxyuridine from prelabeled bone cells during coculture with multicellular tumor spheroids. HSDM1C1-MTS-induced cytotoxicity was mimicked by the addition of 10(-5) M prostaglandin E2 (PGE2) to 3 H-deoxyuridine-labeled bone cells. The effects of low (10(-9) M) and high (10(-5) M) concentrations of PGE2 on bone cell proliferation were also studied. Higher concentrations of PGE2 inhibited bone cell proliferation. HSDM1C1-MTS resorbed living explants in the presence of indomethacin, suggesting that other tumor cell products may also participate in bone resorption. HSDM1C1-MTS caused direct bone resorption as measured by the significantly elevated release of 45 Ca from prelabeled, devitalized calvaria. However, the growth of a confluent bone cell layer on devitalized, 45 Ca-prelabeled calvaria resulted in a significant reduction in the amount of 45 Ca released subsequent to the seeding of HSDM1C1-MTS onto the explants. Bone cells at the bone surface may act as a barrier against invasion and tumor cell-mediated bone resorption. Violation of this cellular barrier is achieved, in part, by tumor cell products

  20. Cellular and molecular mechanisms of alcohol-induced osteopenia.

    Science.gov (United States)

    Luo, Zhenhua; Liu, Yao; Liu, Yitong; Chen, Hui; Shi, Songtao; Liu, Yi

    2017-12-01

    Alcoholic beverages are widely consumed, resulting in a staggering economic cost in different social and cultural settings. Types of alcohol consumption vary from light occasional to heavy, binge drinking, and chronic alcohol abuse at all ages. In general, heavy alcohol consumption is widely recognized as a major epidemiological risk factor for chronic diseases and is detrimental to many organs and tissues, including bones. Indeed, recent findings demonstrate that alcohol has a dose-dependent toxic effect in promoting imbalanced bone remodeling. This imbalance eventually results in osteopenia, an established risk factor for osteoporosis. Decreased bone mass and strength are major hallmarks of osteopenia, which is predominantly attributed not only to inhibition of bone synthesis but also to increased bone resorption through direct and indirect pathways. In this review, we present knowledge to elucidate the epidemiology, potential pathogenesis, and major molecular mechanisms and cellular effects that underlie alcoholism-induced bone loss in osteopenia. Novel therapeutic targets for correcting alcohol-induced osteopenia are also reviewed, such as modulation of proinflammatory cytokines and Wnt and mTOR signaling and the application of new drugs.

  1. Intercellular Communication between Keratinocytes and Fibroblasts Induces Local Osteoclast Differentiation: a Mechanism Underlying Cholesteatoma-Induced Bone Destruction.

    Science.gov (United States)

    Iwamoto, Yoriko; Nishikawa, Keizo; Imai, Ryusuke; Furuya, Masayuki; Uenaka, Maki; Ohta, Yumi; Morihana, Tetsuo; Itoi-Ochi, Saori; Penninger, Josef M; Katayama, Ichiro; Inohara, Hidenori; Ishii, Masaru

    2016-06-01

    Bone homeostasis is maintained by a balance in activity between bone-resorbing osteoclasts and bone-forming osteoblasts. Shifting the balance toward bone resorption causes osteolytic bone diseases such as rheumatoid arthritis and periodontitis. Osteoclast differentiation is regulated by receptor activator of nuclear factor κB ligand (RANKL), which, under some pathological conditions, is produced by T and B lymphocytes and synoviocytes. However, the mechanism underlying bone destruction in other diseases is little understood. Bone destruction caused by cholesteatoma, an epidermal cyst in the middle ear resulting from hyperproliferation of keratinizing squamous epithelium, can lead to lethal complications. In this study, we succeeded in generating a model for cholesteatoma, epidermal cyst-like tissue, which has the potential for inducing osteoclastogenesis in mice. Furthermore, an in vitro coculture system composed of keratinocytes, fibroblasts, and osteoclast precursors was used to demonstrate that keratinocytes stimulate osteoclast differentiation through the induction of RANKL in fibroblasts. Thus, this study demonstrates that intercellular communication between keratinocytes and fibroblasts is involved in the differentiation and function of osteoclasts, which may provide the molecular basis of a new therapeutic strategy for cholesteatoma-induced bone destruction. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae

    Directory of Open Access Journals (Sweden)

    M Krause

    2014-09-01

    Full Text Available Due to their well-established fracture risk reduction, bisphosphonates are the most frequently used therapeutic agent to treat osteoporosis. Bisphosphonates reduce fracture risk by suppressing bone resorption, but the lower bone turnover could have a negative impact on bone quality at the tissue level. Here, we directly assess the structural and mechanical characteristics of cancellous bone from the lumbar vertebrae (L5 in non-treated osteoporotic controls (n = 21, mid-term alendronate-treated osteoporotic patients (n = 6, and long-term alendronate-treated osteoporotic patients (n = 7. The strength and toughness of single trabeculae were evaluated, while the structure was characterised through measurements of microdamage accumulation, mineralisation distribution, and histological indices. The alendronate-treated cases had a reduced eroded surface (ES/BS, p < 0.001 and a higher bone mineralisation in comparison to non-treated controls (p = 0.037, which is indicative of low turnover associated with treatment. However, the amount of microdamage and the mechanical properties were similar among the control and treatment groups. As the tissue mineral density (TMD increased significantly with alendronate treatment compared to non-treated osteoporotic controls, the reduction in resorption cavities could counterbalance the higher TMD allowing the alendronate-treated bone to maintain its mechanical properties and resist microdamage accumulation. A multivariate analysis of the possible predictors supports the theory that multiple factors (e.g., body mass index, TMD, and ES/BS can impact the mechanical properties. Our results suggest that long-term alendronate treatment shows no adverse impact on mechanical cancellous bone characteristics.

  3. Systemic therapy of bone metastases

    International Nuclear Information System (INIS)

    Skripekova, A.

    2012-01-01

    Complications of bone metastases can seriously influence quality of life of the patients including of their independence in activities of daily living. Bisfosfonates are reducing skeletal morbidity in solid tumors and in multiple myeloma by 30 - 50% (1). They are not only used in active antineoplastic therapy in the prevention of skeletal complications by bone metastases but they are also significantly useful in prevention of the decrease of osseous mass by hormonal manipulation. Preclinical and in part clinical data suppose that there is some role of bisfosfonates in prevention of formation of metastases by early cancer. Denosumab is fully humanized antibody against RANKL (receptor activator of nuclear factor κ-B ligand) which is very important in pathogenesis of bone resorption induced by osteoclasts. In this work we discuss about pathological mechanisms of bone resorption in multiple myeloma and solid tumors, we resume data from randomized clinical trials and we focus on the application of anti resorption therapy in clinical practice. (author)

  4. Implant angulation: 2-year retrospective analysis on the influence of dental implant angle insertion on marginal bone resorption in maxillary and mandibular osseous onlay grafts.

    Science.gov (United States)

    Ramaglia, Luca; Toti, Paolo; Sbordone, Carolina; Guidetti, Franco; Martuscelli, Ranieri; Sbordone, Ludovico

    2015-05-01

    The purpose of this study was to determine the existence of correlations between marginal peri-implant linear bone loss and the angulation of implants in maxillary and mandibular augmented areas over the course of a 2-year survey. Dependent variables described the sample of the present retrospective chart review. By using three-dimensional radiographs, input variables, describing the implant angulation (buccal-lingual angle [φ] and mesial-distal angle [θ]) were measured; outcome variables described survival rate and marginal bone resorption (MBR) around dental implants in autogenous grafts (10 maxillae and 14 mandibles). Pairwise comparisons and linear correlation coefficient were computed. The peri-implant MBR in maxillary buccal and palatal areas appeared less intensive in the presence of an increased angulation of an implant towards the palatal side. Minor MBR was recorded around mandibular dental implants positioned at a right angle and slightly angulated towards the mesial. Resorption in buccal areas may be less intensive as the angulation of placed implants increases towards the palatal area in the maxilla, whereas for the mandible, a greater inclination towards the lingual area could be negative. In the mandibular group, when the implant was slightly angulated in the direction of the distal area, bone resorption seemed to be more marked in the buccal area. In the planning of dental implant placement in reconstructed alveolar bone with autograft, the extremely unfavourable resorption at the buccal aspect should be considered; this marginal bone loss seemed to be very sensitive to the angulation of the dental implant.

  5. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB powder for two weeks beginning on postnatal day 21 (PND21 significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5% for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT of tibia, demonstrated that bone mineral density (BMD and content (BMC were dose-dependently increased in BB-fed rats compared to controls (P<0.05. Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption.

  6. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    Science.gov (United States)

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  7. Repair of microdamage in osteonal cortical bone adjacent to bone screw.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Up to date, little is known about the repair mode of microdamage in osteonal cortical bone resulting from bone screw implantation. In this study, self-tapping titanium cortical bone screws were inserted into the tibial diaphyses of 24 adult male rabbits. The animals were sacrificed at 1 day, 2 weeks, 1 month and 2 months after surgery. Histomorphometric measurement and confocal microscopy were performed on basic fuchsin stained bone sections to examine the morphological characteristics of microdamage, bone resorption activity and spatial relationship between microdamage and bone resorption. Diffuse and linear cracks were coexisted in peri-screw bone. Intracortical bone resorption was significantly increased 2 weeks after screw installation and reach to the maximum at 1 month. There was no significant difference in bone resorption between 1-month and 2-months groups. Microdamage was significantly decreased within 1 month after surgery. Bone resorption was predisposed to occur in the region of <100 µm from the bone-screw interface, where had extensive diffuse damage mixed with linear cracks. Different patterns of resorption cavities appeared in peri-screw bone. These data suggest that 1 the complex microdamage composed of diffuse damage and linear cracks is a strong stimulator for initiating targeted bone remodeling; 2 bone resorption activities taking place on the surfaces of differently oriented Haversian and Volkmann canals work in a team for the repair of extensive microdamage; 3 targeted bone remodeling is a short-term reaction to microdamage and thereby it may not be able to remove all microdamage resulting from bone screw insertion.

  8. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Science.gov (United States)

    Thiolloy, Sophie; Edwards, James R; Fingleton, Barbara; Rifkin, Daniel B; Matrisian, Lynn M; Lynch, Conor C

    2012-01-01

    Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  9. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Directory of Open Access Journals (Sweden)

    Sophie Thiolloy

    Full Text Available Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry. Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry. Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1 the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay; and 2 that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays.Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  10. Nonsurgical management of horizontal root fracture associated external root resorption and internal root resorption

    Directory of Open Access Journals (Sweden)

    Shiraz Pasha

    2016-01-01

    Full Text Available Horizontal root fractures, which frequently affect the upper incisors, usually result from a frontal impact. As a result, combined injuries occur in dental tissues such as the pulp, dentin, cementum, periodontal ligament, and alveolar bone. Internal root canal inflammatory resorption involves a progressive loss of intraradicular dentin without adjunctive deposition of hard tissues adjacent to the resorptive sites. It is frequently associated with chronic pulpal inflammation, and bacteria might be identified from the granulation tissues when the lesion is progressive to the extent that it is identifiable with routine radiographs. With the advancement in technology, it is imperative to use modern diagnostic tools such as cone beam computed tomography and radiovisuography to diagnose and confirm the presence and extent of resorptions and fractures and their exact location. This case report presents a rare case having internal root resorption and horizontal root fracture with external inflammatory root resorption both which were treated successfully following guidelines by International Association of Dental Traumatology by nonsurgical treatment with 1 year follow-up.

  11. New mechanisms and targets in the treatment of bone fragility.

    Science.gov (United States)

    Martin, T John; Seeman, Ego

    2007-01-01

    Bone modelling and remodelling are cell-mediated processes responsible for the construction and reconstruction of the skeleton throughout life. These processes are chiefly mediated by locally generated cytokines and growth factors that regulate the differentiation, activation, work and life span of osteoblasts and osteoclasts, the cells that co-ordinate the volumes of bone resorbed and formed. In this way, the material composition and structural design of bone is regulated in accordance with its loading requirements. Abnormalities in this regulatory system compromise the material and structural determinants of bone strength producing bone fragility. Understanding the intercellular control processes that regulate bone modelling and remodelling is essential in planning therapeutic approaches to prevention and treatment of bone fragility. A great deal has been learnt in the last decade. Clinical trials carried out exclusively with drugs that inhibit bone resorption have identified the importance of reducing the rate of bone remodelling and so the progression of bone fragility to achieved fracture reductions of approx. 50%. These trials have also identified limitations that should be placed upon interpretation of bone mineral density changes in relation to treatment. New resorption inhibitors are being developed, based on mechanisms of action that are different from existing drugs. Some of these might offer resorption inhibition without reducing bone formation. More recent research has provided the first effective anabolic therapy for bone reconstruction. Daily injections of PTH (parathyroid hormone)-(1-34) have been shown in preclinical studies and in a large clinical trial to increase bone tissue mass and reduce the risk of fractures. The action of PTH differs from that of the resorption inhibitors, but whether it is more effective in fracture reduction is not known. Understanding the cellular and molecular mechanisms of PTH action, particularly its interactions with

  12. The expression of cytokines and β -defensin 2, - 3, -4 in rabbit bone tissue after hydroxyapatite (HAp), α- Tricalcium phosphate (α-TCP) and polymethylmethacrylate (PMMA) implantation

    International Nuclear Information System (INIS)

    Vamze, J; Pilmane, M; Skagers, A

    2012-01-01

    Bone loss induced by inflammation is one of the complications after biomaterial implantation. There is no much data on expression of cytokines and defensins into the bone tissue around the implants in literature. The aim of this work was to investigate the distribution and appearance of interleukin (IL)-1, IL-6, IL-8, IL-10 and (β - defensin (BD)-2, BD-3, BD-4 after the implantation of different biomaterials. Bone developing zones, signs of bone-implant contact and low expression of pro-inflammatory cytokine IL-1, IL-6 and anti-inflammatory cytokine IL-10 in experimental tissue with pure HAp and unburned HAp implants indicate a potential advantage of this material in terms of its biocompatibility over the other materials used in our study.

  13. Increased circulating rather than spinal cytokines accompany chronic pain behaviors in experimental bone cancer and arthritis

    Directory of Open Access Journals (Sweden)

    Line Pourtau

    2014-12-01

    Full Text Available Aim: Peripheral cytokines contribute to arthritis and bone cancer pain through sensory nerve actions. However, increased spinal cytokine and glial filament expression, coined neuroinflammation, has also been proposed to play a part in chronic pain. Therefore, spinal cord, dorsal root ganglia and circulating cytokines were compared in murine arthritis and bone cancer models in relationship to behavioral signs of pain. Methods: Exploratory behaviors were studied after intra-articular complete Freund's adjuvant or bone intramedullary sarcoma cell injection. Nervous tissue and blood cytokine expression were determined by real-time polymerase chain reaction (PCR and multiplex immunoassays, respectively. Results: PCR analysis did not reveal any hallmark of spinal neuroinflammation in spontaneously-behaving mice with cartilage or bone lesions. However, imposed paw stimulation during joint inflammation increased spinal interleukin-1β (IL-1β expression. Spontaneous paw guarding during rearing was displayed by animals with joint inflammation and bone destruction and was accompanied by increased circulating IL-6 and monocyte chemoattractant protein-1, respectively. In addition, dorsal root ganglia were found to constitutively express receptors for this chemotactic cytokine. Conclusion: Our findings indicate that spinal neuroinflammation is not a necessary condition for chronic pain and suggest that circulating cytokine action in dorsal root ganglia may contribute to experimental joint inflammation and bone cancer pain.

  14. THE BENEFIT OF SOY BEAN- CHOCOLATE BEVERAGE ON BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS

    OpenAIRE

    Ainun Rani, Nur; Astuti, Nurpudji; Rasyid, Haerani; Bahar, Burhanuddin

    2011-01-01

    THE BENEFIT OF SOY BEAN- CHOCOLATE BEVERAGE ON BONE RESORPTION IN POSTMENOPAUSAL WOMEN WITH OSTEOPOROSIS Nur Ainun Rani1, Nurpudji A. Taslim,1,2 Haerani Rasyid1,2, Burhanuddin Bahar3 Department of Clinical Nutrition Faculty of Medicine 1, Department of Nutrition2 Faculty of Medicine, Faculty of Public Health3, Hasanuddin University, Makassar ABSTRACT Background Soybeans and chocolate contain isoflavones, which is the active substance which is recommended as an hormone replacem...

  15. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment.

    Science.gov (United States)

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness ( P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness ( P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities.

  16. Inhibition of bone resorption by Tanshinone VI isolated from Salvia miltiorrhiza Bunge

    Directory of Open Access Journals (Sweden)

    V. Nicolin

    2010-05-01

    Full Text Available During the last decade, a more detailed knowledge of molecular mechanisms involved in osteoclastogenesis has driven research efforts in the development and screening of compound libraries of several small molecules that specifically inhibit the pathway involved in the commitment of the osteoclast precursor cells. Natural compounds that suppress osteoclast differentiation may have therapeutic value in treating osteoporosis and other bone erosive diseases such as rheumatoid arthritis or metastasis associated with bone loss. In ongoing investigation into anti-osteoporotic compounds from natural products we have analyzed the effect of Tanshinone VI on osteoclasts differentiation, using a physiologic three-dimensional osteoblast/bone marrow model of cell co-culture. Tanshinone VI is an abietane diterpene extracted from the root of Salvia miltiorrhiza Bunge (Labiatae, a Chinese traditional crude drug, ‘’Tan-Shen’’. Tashinone has been widely used in clinical practice for the prevention of cardiac diseases, arthritis and other inflammation-related disorders based on its pharmacological actions in multiple tissues. Although Tanshinone VI A has been used as a medicinal agent in the treatment of many diseases, its role in osteoclast-related bone diseases remains unknown. We showed previously that Tanshinone VI greatly inhibits osteoclast differentiation and suppresses bone resorption through disruption of the actin ring; subsequently, we intended to examine the precise inhibitory mechanism of Tanshinone VI on osteoclast differentiating factor. This study shows, for the first time, that Tanshinone VI prevents osteoclast differentiation by inhibiting RANKL expression and NFkB induction.

  17. Role of carotenoid β-cryptoxanthin in bone homeostasis

    Directory of Open Access Journals (Sweden)

    Yamaguchi Masayoshi

    2012-04-01

    Full Text Available Abstract Bone homeostasis is maintained through a balance between osteoblastic bone formation and osteoclastic bone resorption. Aging induces bone loss due to decreased osteoblastic bone formation and increased osteoclastic bone resorption. Osteoporosis with its accompanying decrease in bone mass is widely recognized as a major public health problem. Nutritional factors may play a role in the prevention of bone loss with aging. Among various carotenoids (carotene and xanthophylls including beta (β-cryptoxanthin, lutein, lycopene, β-carotene, astaxanthin, and rutin, β-cryptoxanthin, which is abundant in Satsuma mandarin orange (Citrus unshiu MARC., has been found to have a stimulatory effect on bone calcification in vitro. β-cryptoxanthin has stimulatory effects on osteoblastic bone formation and inhibitory effects on osteoclastic bone resorption in vitro, thereby increasing bone mass. β-cryptoxanthin has an effect on the gene expression of various proteins that are related osteoblastic bone formation and osteoclastic bone resororption in vitro. The intake of β-cryptoxanthin may have a preventive effect on bone loss in animal models for osteoporosis and in healthy human or postmenopausal women. Epidemiological studies suggest a potential role of β-cryptoxanthin as a sustainable nutritional approach to improving bone health of human subjects. β-Cryptoxanthin may be an osteogenic factor in preventing osteoporosis in human subjects.

  18. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice.

    Science.gov (United States)

    Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan

    2017-10-15

    The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.

  19. Using Micro-Computed Tomography to Evaluate the Dynamics of Orthodontically Induced Root Resorption Repair in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Xiaolin Xu

    Full Text Available To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force.Forces of 20 g, 50 g or 100 g were delivered to the left maxillary first molars of fifteen 10-week-old rats for 14 days. Each rat was subjected to micro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point.From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, tooth movement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized.The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position.

  20. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    Science.gov (United States)

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  1. Comparison of the effects of stimulators and inhibitors of resorption on the release of lysosomal enzymes and radioactive calcium from fetal bone in organ culture

    International Nuclear Information System (INIS)

    Eilon, G.; Raisz, L.G.

    1978-01-01

    The release of lysosomal enzymes, collagenase, and previously incorporated 45 Ca from fetal rat long bones cultured in a chemically defined medium is compared. Parathyroid hormone (PTH) and prostaglandin E 2 increased the release of β-glucuronidase, acetylglucosaminidase, and cathepsin D, but showed little effect on collagenase activity in the medium at 48 h. The dose-response relations for β-glucuronidase and 45 Ca release were similar. However, the increase in lysosomal enzyme release was proportionally greater and occurred earlier than the increase in 45 Ca release. PTH also caused a significant increase in total β-glucuronidase activity in bone plus medium. Several agents which stimulate 45 Ca release at an optimal concentration, but not at a higher concentration, including dibutyryl cAMP, isobutylmethylxanthine, and the calcium ionophore, A23187, all increased lysosomal enzyme release at the concentration which increased 45 Ca release. Three inhibitors of bone resorption (calcitonin, cortisol, and colchicine) blocked lysosomal enzyme release at the same time that 45 Ca release decreased. When the bones escaped from calcitonin inhibition, both 45 Ca and lysosomalenzyme release increased. While colchicine blocked both lysosomal enzymes and 45 CA release, it actually increased the release of bone collagenase, and together with PTH or prostaglandin E 2 caused a large increase in free collagenase activity in the medium. These data indicate that lysosomal enzyme release is closely linked to bone resorption and suggest that lysosomal enzymes may have a primary role in initiating resorption, perhaps by acting on noncollagenous matrix or tissue components before mineral removal and collagen degradation

  2. The role of the BH3-only protein Noxa in bone homeostasis.

    Science.gov (United States)

    Idrus, Erik; Nakashima, Tomoki; Wang, Ling; Hayashi, Mikihito; Okamoto, Kazuo; Kodama, Tatsuhiko; Tanaka, Nobuyuki; Taniguchi, Tadatsugu; Takayanagi, Hiroshi

    2011-07-08

    Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    Science.gov (United States)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  4. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Figeac, Florence; Andersen, Ditte C.; Nipper Nielsen, Casper A.

    2018-01-01

    /TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss....... resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E...

  5. Mechanisms of bone remodeling: implications for clinical practice.

    Science.gov (United States)

    Kenny, Anne M; Raisz, Lawrence G

    2002-01-01

    The adult skeleton undergoes continuous remodeling. The remodeling cycle involves the interaction of cells of osteoblastic and osteoclastic lineage and is regulated by both systemic hormones and local factors. In addition to the systemic calcium-regulating hormones, parathyroid hormone, 1,25-dihydroxy vitamin D and calcitonin, sex hormones play an important role. Estrogen has been identified as the major inhibitor of bone resorption in both men and women. Androgen is important not only as a source of estrogen, through the action of aromatase, but also for its direct effect in stimulating bone formation. The effects of sex hormones may be mediated by their ability to alter the secretion of local cytokines, prostaglandins and growth factors. Sex hormone action is also modulated by the level of sex hormone-binding globulin in the circulation. A more precise analysis of these effects has been made possible by the development of new methods of measuring not only bone mineral density, but also relative rates of bone formation and resorption using biochemical markers. These new approaches have allowed us to define more precisely the specific roles of androgens, estrogens and other regulatory hormones in human skeletal physiology and pathophysiology.

  6. Correlation of Vitamin D status and orthodontic-induced external apical root resorption.

    Science.gov (United States)

    Tehranchi, Azita; Sadighnia, Azin; Younessian, Farnaz; Abdi, Amir H; Shirvani, Armin

    2017-01-01

    Adequate Vitamin D is essential for dental and skeletal health in children and adult. The purpose of this study was to assess the correlation of serum Vitamin D level with external-induced apical root resorption (EARR) following fixed orthodontic treatment. In this cross-sectional study, the prevalence of Vitamin D deficiency (defined by25-hydroxyvitamin-D) was determined in 34 patients (23.5% male; age range 12-23 years; mean age 16.63 ± 2.84) treated with fixed orthodontic treatment. Root resorption of four maxillary incisors was measured using before and after periapical radiographs (136 measured teeth) by means of a design-to-purpose software to optimize data collection. Teeth with a maximum percentage of root resorption (%EARR) were indicated as representative root resorption for each patient. A multiple linear regression model and Pearson correlation coefficient were used to assess the association of Vitamin D status and observed EARR. P 0.05). This study suggests that Vitamin D level is not among the clinical variables that are potential contributors for EARR. The prevalence of Vitamin D deficiency does not differ in patients with higher EARR. These data suggest the possibility that Vitamin D insufficiency may not contribute to the development of more apical root resorption although this remains to be confirmed by further longitudinal cohort studies.

  7. 15-deoxy-δ12,14-prostaglandin j2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss.

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    Full Text Available Breast cancer is the major cause of cancer death in women worldwide. The most common site of metastasis is bone. Bone metastases obstruct the normal bone remodeling process and aberrantly enhance osteoclast-mediated bone resorption, which results in osteolytic lesions. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2 is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ that has anti-inflammatory and antitumor activity at micromolar concentrations through PPARγ-dependent and/or PPARγ-independent pathways. We investigated the inhibitory activity of 15d-PGJ2 on the bone loss that is associated with breast cancer bone metastasis and estrogen deficiency caused by cancer treatment. 15d-PGJ2 dose-dependently inhibited viability, migration, invasion, and parathyroid hormone-related protein (PTHrP production in MDA-MB-231 breast cancer cells. 15d-PGJ2 suppressed receptor activator of nuclear factor kappa-B ligand (RANKL mRNA levels and normalized osteoprotegerin (OPG mRNA levels in hFOB1.19 osteoblastic cells treated with culture medium from MDA-MB-231 cells or PTHrP, which decreased the RANKL/OPG ratio. 15d-PGJ2 blocked RANKL-induced osteoclastogenesis and inhibited the formation of resorption pits by decreasing the activities of cathepsin K and matrix metalloproteinases, which are secreted by mature osteoclasts. 15d-PGJ2 exerted its effects on breast cancer and bone cells via PPARγ-independent pathways. In Balb/c nu/nu mice that received an intracardiac injection of MDA-MB-231 cells, subcutaneously injected 15d-PGJ2 substantially decreased metastatic progression, cancer cell-mediated bone destruction in femora, tibiae, and mandibles, and serum PTHrP levels. 15d-PGJ2 prevented the destruction of femoral trabecular structures in estrogen-deprived ICR mice as measured by bone morphometric parameters and serum biochemical data. Therefore, 15d-PGJ2 may be beneficial for the prevention and treatment of breast cancer

  8. Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.

    Science.gov (United States)

    Aruwajoye, Olumide O; Kim, Harry K W; Aswath, Pranesh B

    2015-04-01

    Ischemic osteonecrosis of the femoral head (IOFH) can lead to excessive resorption of the trabecular bone and collapse of the femoral head as a structure. A well-known mineral component to trabecular bone is hydroxyapatite, which can be present in many forms due to ionic substitution, thus altering chemical composition. Unfortunately, very little is known about the chemical changes to bone apatite following IOFH. We hypothesized that the apatite composition changes in necrotic bone possibly contribute to increased osteoclast resorption and structural collapse of the femoral head. The purpose of this study was to assess the macroscopic and local phosphate composition of actively resorbed necrotic trabecular bone to isolate differences between areas of increased osteoclast resorption and normal bone formation. A piglet model of IOFH was used. Scanning electron microscopy (SEM), histology, X-ray absorbance near edge structure (XANES), and Raman spectroscopy were performed on femoral heads to characterize normal and necrotic trabecular bone. Backscattered SEM, micro-computed tomography and histology showed deformity and active resorption of necrotic bone compared to normal. XANES and Raman spectroscopy obtained from actively resorbed necrotic bone and normal bone showed increased carbonate-to-phosphate content in the necrotic bone. The changes in the apatite composition due to carbonate substitution may play a role in the increased resorption of necrotic bone due to its increase in solubility. Indeed, a better understanding of the apatite composition of necrotic bone could shed light on osteoclast activity and potentially improve therapeutic treatments that target excessive resorption of bone.

  9. Calcium-41 as a long-term biological tracer for bone resorption

    Science.gov (United States)

    Elmore, David; Bhattacharyya, Maryka H.; Sacco-Gibson, Nancy; Peterson, David P.

    1990-12-01

    The use of 41Ca (half-life 1 × 10 5 yr) as a tracer for studying calcium metabolism in living systems is compared to the shorter-lived radionuclides 45Ca (165 d) and 47Ca (45 d) and the stable isotopes 42Ca and 44Ca. The feasibility of using accelerator mass spectrometry (AMS) measurements of 41Ca for studying multi-year calcium resorption in humans was tested as part of a companion study that used 45Ca to measure the effects of dietary cadmium on calcium metabolism in dogs. It was shown that Ca resorbed from prelabeled bones correlates well with 45Ca for a period of 28 weeks. The advantage of 41Ca is that, even with a negligible radiation dose, it can be measured by AMS long after the 45Ca becomes unmeasurable.

  10. Osteoprotegerin inhibits bone resorption and prevents tumor development in a xenogenic model of Ewing's sarcoma by inhibiting RANKL

    Science.gov (United States)

    Picarda, Gaëlle; Matous, Etienne; Amiaud, Jérôme; Charrier, Céline; Lamoureux, François; Heymann, Marie-Françoise; Tirode, Franck; Pitard, Bruno; Trichet, Valérie; Heymann, Dominique; Redini, Françoise

    2013-01-01

    Ewing's sarcoma (ES) associated with high osyeolytic lesions typically arises in the bones of children and adolescents. The development of multi-disciplinary therapy has increased current long-term survival rates to greater than 50% but only 20% for high risk group patients (relapse, metastases, etc.). Among new therapeutic approaches, osteoprotegerin (OPG), an anti-bone resorption molecule may represent a promising candidate to inhibit RANKL-mediated osteolytic component of ES and consequently to limit the tumor development. Xenogenic orthotopic models of Ewing's sarcoma were induced by intra-osseous injection of human TC-71 ES cells. OPG was administered in vivo by non-viral gene transfer using an amphiphilic non ionic block copolymer. ES bearing mice were assigned to controls (no treatment, synthetic vector alone or F68/empty pcDNA3.1 plasmid) and hOPG treated groups. A substantial but not significant inhibition of tumor development was observed in the hOPG group as compared to control groups. Marked bone lesions were revealed by micro-computed tomography analyses in control groups whereas a normal bone micro-architecture was preserved in the hOPG treated group. RANKL over-expressed in ES animal model was expressed by tumor cells rather than by host cells. However, TRAIL present in the tumor microenvironment may interfere with OPG effect on tumor development and bone remodeling via RANKL inhibition. In conclusion, the use of a xenogenic model of Ewing's sarcoma allowed discriminating between the tumor and host cells responsible for the elevation of RANKL production observed in this tumor and demonstrated the relevance of blocking RANKL by OPG as a promising therapy in ES. PMID:26909278

  11. Consumption of vitamin D-and calcium-fortified soft white cheese lowers the biochemical marker of bone resorption TRAP 5b in postmenopausal women at moderate risk of osteoporosis fracture.

    Science.gov (United States)

    Bonjour, Jean-Philippe; Benoit, Valérie; Rousseau, Brigitte; Souberbielle, Jean-Claude

    2012-04-01

    The prevention of increased bone remodeling in postmenopausal women at low 10-y risk of osteoporotic fractures essentially relies on reinforcement of environmental factors known to positively influence bone health, among which nutrition plays an important role. In institutionalized women in their mid-eighties, we previously found that consumption of fortified soft plain cheese increased vitamin D, calcium, and protein intakes, reduced bone resorption biochemical markers, particularly the serum bone specific acid phosphatase tartrate resistant acid phosphatase, isoform 5b (TRAP 5b) that reflects osteoclast activity, and stimulated the serum bone anabolic factor insulin-like growth factor-I (IGF-I). Whether these effects occur in much younger women was tested in a prospective control study. Seventy-one healthy postmenopausal women aged 56.6 ± 3.9 y (mean ± SD) with low spontaneous supply of both Ca and vitamin D were randomized to consume daily (treated, n = 36) or not (controls, n = 35) two servings (2 × 100 g) of skimmed-milk, soft plain cheese for 6 wk. The vitamin D and Ca-fortified dairy product provided daily: 661 kJ, 2.5 μg vitamin D, 400 mg calcium, and 13.8 g protein. At the end of the intervention, the decrease in TRAP 5b and the increase in IGF-I were greater in the treated than in the control group (P women, consumption by healthy postmenopausal women of a vitamin D and calcium-fortified dairy product that also increases the protein intake, reduces the serum concentration of the bone resorption biomarker TRAP 5b. This response, combined with the increase in serum IGF-I, is compatible with a nutrition-induced reduction in postmenopausal bone loss rate.

  12. [Bone Cell Biology Assessed by Microscopic Approach. Bone histomorphometry of remodeling, modeling and minimodeling].

    Science.gov (United States)

    Yamamoto, Noriaki; Shimakura, Taketoshi; Takahashi, Hideaki

    2015-10-01

    Bone histomorphometry is defined as a quantitative evaluation of bone remodeling. In bone remodeling, bone resorption and bone formation are coupled with scalloped cement lines. Another mechanism of bone formation is minimodeling which bone formation and resorption are independent. The finding of minimodeling appeared in special condition with metabolic bone disease or anabolic agents. We need further study for minimodeling feature and mechanism.

  13. [Effects of shoutai pills on expression of Th1/Th2 cytokine in maternal-fetal interface and pregnancy outcome].

    Science.gov (United States)

    Lai, Maohua; You, Zhaoling; Ma, Hongxia; Lei, Lei; Lu, Fangguo; He, Dongmei; Liu, Huiping; Yin, Sheng

    2010-11-01

    To evaluate its mechanism of inducing the maternal-fetal immune tolerance by studying the effects of Shoutai pills on the expression of Th1/Th2 cytokine and pregnancy in maternal-fetal interface of mice with recurrent spontaneous abortion (RSA). The normal pregnancy and RSA model were respectively induced with CBA/J x BALB/c and CBA/J x DBA/2. The mice with RSA were randomly divided into model group and low, middle and high dose groups of Shoutai pills. The mice were killed in 14 days after administration and embryo resorption rate was counted and their decidual and placental tissues were co-cultured to detect the expressions of IL-4, IL-10, IFN-gamma and TNF-alpha with ELISA. The embryo resorption rate of the model group was significantly higher than the normal pregnancy, middle and high dose groups of Shoutai pills could decreased the embryo resorption rate of the mice with RSA (P pills could decreased the expression of IFN-gamma and TNF-alpha (P pills. Middle and high doses of Shoutai pills could increased the expression of IL-4 and IL-10 (P pills. The mechanism about Shoutai pills can change Th1 /Th2 cytokine towards Th2 bias, which induced the maternal-fetal immune tolerance.

  14. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  15. Human adipose-derived mesenchymal stem cell-conditioned media suppresses inflammatory bone loss in a lipopolysaccharide-induced murine model.

    Science.gov (United States)

    Li, Yu; Gao, Xin; Wang, Jinbing

    2018-02-01

    Conditioned media (CM) from mesenchymal stem cells (MSCs) contains various cytokines, growth factors and microRNAs, which may serve important roles in modulating the inflammatory process. However, the effect of MSC-CM on inflammatory bone loss remains unknown. The present study investigated the effects of conditioned media from human adipose-derived mesenchymal stem cells (AMSC-CM) on the prevention of lipopolysaccharide (LPS)-mediated bone loss in mice. To investigate the underlying mechanisms of this effect, the effects of AMSC-CM on serum levels of inflammation-associated cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6 and IL-10] in LPS-treated mice, in addition to their mRNA expression in LPS-treated macrophages, was investigated. Micro-computed tomography and histological analysis revealed that AMSC-CM administration effectively inhibited LPS-induced bone destruction in vivo . ELISA analysis indicated that AMSC-CM significantly reduced the serum levels of proinflammatory cytokines (TNF-α, IL-1 and IL-6) in LPS-treated mice. Furthermore, AMSC-CM treatment significantly decreased the mRNA expression levels of TNF-α, IL-1 and IL-6 in macrophages treated with LPS. These findings indicate that AMSC-CM inhibits LPS-induced bone loss by decreasing the production of proinflammatory cytokines, suggesting that the use of AMSC-CM may be a potential therapeutic strategy for the treatment of inflammatory bone loss.

  16. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    Science.gov (United States)

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation

    DEFF Research Database (Denmark)

    Thudium, Christian S; Moscatelli, Ilana; Flores, Carmen

    2014-01-01

    that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult......Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating...... osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone...

  18. O papel do Fator de Necrose Tumoral Alfa (TNF-alfa no processo de erosão óssea presente no colesteatoma adquirido da orelha média The role of Tumor Necrosis Factor -Alpha (TNF- alpha in bone resorption present in middle ear cholesteatoma

    Directory of Open Access Journals (Sweden)

    Rodrigo Faller Vitale

    2007-02-01

    Full Text Available O colesteatoma adquirido da orelha média causa erosão óssea, com altas taxas de morbidade e mortalidade. O TNF-alfa (TNF-alfa lambda uma das principais citocinas envolvidas neste processo. OBJETIVO: Avaliar o papel do TNF-alfa na reabsorsão óssea e a ação dele no colesteatoma. MATERIAL E MÉTODOS: Foi realizado um levantamento e uma revisão crítica da literatura. RESULTADOS: Todos os autores estudados concordam com a importância do TNF-alfa no processo de reabsorção óssea presente no colesteatoma e com o grau de destruição observado. Diferentes trabalhos demonstraram que o TNF-alfa é capaz de provocar erosão óssea, através de diferentes vias de ação. Ele pode estimular a diferenciação e a maturação dos osteoclastos ou, ainda, agir na matriz óssea expondo-a à ação dos osteoclastos. Existe a possibilidade de inibir a ação do TNF-alfa, diminuindo seus efeitos e prevenindo a perda óssea em doenças como a artrite reumatóide. Não existe, entretanto, trabalhos específicos em colesteatoma. Não existe consenso sobre a sua localização. Estas diferenças, provavelmente, ocorrem devido à distribuição dos receptores. CONCLUSÃO: O TNF-alfa, presente no colesteatoma promove a reabsorsão óssea, juntamente com outras citocinas (RANKL e IL-1, estando relacionado com a presença de complicações.Cholesteatoma may cause bone erosion, with high morbidity and mortality rates. Tumor Necrosis Factor -Alpha (TNF-a is one of the main cytokines involved in this process. Our goal was to evaluate the role of TNF-a in Bone Resorption and its effect on cholesteatoma. MATERIAL AND METHODS: analysis and critical literature review. RESULTS: Different studies have demonstrated that TNF-a is capable of causing bone erosion. It may stimulate the differentiation and maturation of osteoclasts or it may act on the bone matrix, exposing it to the action of the osteoclasts. It is possible to inhibit TNF-a, reducing its effects and prevent

  19. The effect of mechanical vibration on orthodontically induced root resorption.

    Science.gov (United States)

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Kalajzic, Zana; Nanda, Ravindra

    2016-09-01

    To investigate the effect of low-frequency mechanical vibration (LFMV) on orthodontically induced root resorption. Forty male CD1, 12-week-old mice were used for the study. The mice were randomly divided into five groups: group 1 (baseline)-no spring and no mechanical vibration, group 2-orthodontic spring but no vibration, group 3-orthodontic spring and 5 Hz of vibration applied to the maxillary first molar, group 4-orthodontic spring and 10 Hz of vibration applied to maxillary first molar, and group 5-orthodontic spring and 20 Hz of vibration applied to maxillary first molar. In the different experimental groups, the first molar was moved mesially for 2 weeks using a nickel-titanium coil spring delivering 10 g of force. LFMVs were applied at 5 Hz, 10 Hz, and 20 Hz. Microfocus X-ray computed tomography imaging was used to analyze root resorption. Additionally, to understand the mechanism, we applied LFMV to MC3T3 cells, and gene expression analyses were done for receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). Orthodontic tooth movement leads to decreased root volume (increased root resorption craters). Our in vivo experiments showed a trend toward increase in root volume with different frequencies of mechanical vibration. In vitro gene expression analyses showed that with 20 Hz of mechanical vibration, there was a significant decrease in RANKL and a significant increase in OPG expression. There was a trend toward decreased root resorption with different LFMVs (5 Hz, 10 Hz, and 20 Hz); however, it was not more statistically significant than the orthodontic-spring-only group.

  20. The role of active ingredients nanopowder Stichopus hermanii gel to bone resorption in tension area of orthodontic tooth movement

    Directory of Open Access Journals (Sweden)

    Noengki Prameswari

    2017-12-01

    Full Text Available Background: Orthodontic tooth movement is a continual and balanced process between bone deposition and bone resorption in pressure and tension sites. Stichopus hermanii is one of the best fishery commodities in Indonesia. It is natural and contains various active ingredients such as hyaluronic acid, chondroitin sulphate, cell growth factor, eicosa pentaenoic acid (EPA docosa hexaenoic acid (DHA and flavonoid that potentially play a role in orthodontic tooth movement. Purpose: The aim of this study was to investigate the active ingredients of nanopowder Stichopus hermanii promoting bone resorption in tension area orthodontic tooth movement. Methods: A quantitative test for active ingredients of stichopus hermanii was conducted. Thirty two male Cavia cobaya were divisibled became four groups. K (– groups as a negative control group (without treatment, K (+ groups as a positive control group which were provided with a separator rubber for orthodontic tooth movement, and P1, P2 groups, which were treated with 3% and 3.5% stichopus hermanii for orthodontic tooth movement. After treatment the cavia cobaya were sacrificed. TRAP-6 expression as a osteoclast marker was examined by means of an immunohistochemistry method. Results: A one-way Anova test confirmed that TRAP-6 expression was significantly increased with p = 0.00 (p≤0,05 in P2 compared to K (+. P2 to K (–, P2 to P1 and P1 to K (+ had no significant differences Conclusion: Nanopowder Stichopus hermanii 3.5% has an active ingredient that could increase osteoclast activity to resorb periodontal ligament and alveolar bone in tension areas of orthodontic tooth movement.

  1. Predisposing factors to severe external root resorption associated to orthodontic treatment.

    Science.gov (United States)

    Picanço, Gracemia Vasconcelos; de Freitas, Karina Maria Salvatore; Cançado, Rodrigo Hermont; Valarelli, Fabricio Pinelli; Picanço, Paulo Roberto Barroso; Feijão, Camila Pontes

    2013-01-01

    The aim of this study was to evaluate predisposing factors among patients who developed moderate or severe external root resorption (Malmgren's grades 3 and 4), on the maxillary incisors, during fixed orthodontic treatment in the permanent dentition. Ninety-nine patients who underwent orthodontic treatment with fixed edgewise appliances were selected. Patients were divided into two groups: G1 - 50 patients with no root resorption or presenting only apical irregularities (Malmgren's grades 0 and 1) at the end of the treatment, with mean initial age of 16.79 years and mean treatment time of 3.21 years; G2 - 49 patients presenting moderate or severe root resorption (Malmgren's grades 3 and 4) at the end of treatment on the maxillary incisors, with mean initial age of 19.92 years and mean treatment time of 3.98 years. Periapical radiographs and lateral cephalograms were evaluated. Factors that could influence the occurrence of severe root resorption were also recorded. Statistical analysis included chi-square tests, Fisher's exact test and independent t tests. The results demonstrated significant difference between the groups for the variables: Extractions, initial degree of root resorption, root length and crown/root ratio at the beginning, and cortical thickness of the alveolar bone. It can be concluded that: Presence of root resorption before the beginning of treatment, extractions, reduced root length, decreased crown/root ratio and thin alveolar bone represent risk factors for severe root resorption in maxillary incisors during orthodontic treatment.

  2. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    Science.gov (United States)

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Invasive cervical root resorption: Engineering the lost tissue by regeneration

    Directory of Open Access Journals (Sweden)

    Dexton Antony Johns

    2013-01-01

    Full Text Available Invasive cervical resorption (ICR is a localized resorptive process that commences on the surface of the root below the epithelial attachment and the coronal aspect of the supporting alveolar process, namely the zone of the connective tissue attachment′ early diagnosis, elimination of the resorption and restorative management are the keys to a successful outcome. Treatment done was a combined non-surgical root canal therapy, surgical treatment to expose the resorptive defect and the resorptive defect was filled up with reverse sandwich technique and finally the bony defect filled with platelet rich fibrin (PRF, hydroxylapatite and PRF membrane. Significant bone fill was obtained in our case after a 2 year follow-up period. This case report presents a treatment strategy that might improve the healing outcomes for patients with ICR.

  4. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  5. Root resorption following periodontally accelerated osteogenic orthodontics

    Directory of Open Access Journals (Sweden)

    Donald J Ferguson

    2016-01-01

    Full Text Available Background: Literature evidence suggests that root resorption, an adverse side effect of orthodontic therapy, may be decreased under conditions of alveolar osteopenia, a condition characterized by diminished bone density and created secondary to alveolar corticotomy (Cort surgery. Purpose: To compare root resorption of the maxillary central incisors following nonextraction orthodontic therapy with and without Cort surgery. Materials and Methods: The sample comprised two groups, with and without Cort and was matched by age and gender: Cort-facilitated nonextraction orthodontics with 27 subjects, 53 central incisors of mean age 24.8 ± 10.2 years, and conventional (Conv nonextraction orthodontics with 27 subjects, 54 incisors with mean age of 19.6 ± 8.8 years. All periapical radiographs were taken with the paralleling technique; total tooth lengths of the right and left central incisors were measured by projecting and enlarging the periapical radiographs exactly 8 times. Results: t-tests revealed a significant decrease in treatment time in the Cort group (6.3 ± 8.0 vs. 17.4 ± 20.2 months, P = 0.000. Pretreatment root lengths were not significantly different (P = 0.11, but Conv had significantly shorter roots at posttreatment when compared with Cort (P = 0.03. Significant root resorption (P < 0.01 occurred in both Cort (0.3 mm and Conv (0.7 mm, but the increment of change was significantly greater in Conv (P < 0.03. The variable SNA increased significantly in the Cort (P = 0.001 group and decreased significantly in the Conv group (P < 0.001. Conclusions: Based on the conditions of this study, it may be concluded that Cort-facilitated nonextraction orthodontic therapy results in less root resorption and enhanced alveolar support within a significantly reduced clinical service delivery time frame. Rapid orthodontic treatment and reduced apical root resorption are probably due to the transient osteopenia induced by the Cort surgery and inspired by

  6. The effect of budesonide on orthodontic induced root resorption.

    Science.gov (United States)

    Aghili, Hosseinagha; Meybodi, Seyed Amir Reza Fatahi; Ardekani, Mohammed Danesh; Bemanianashkezari, Mohammad Hassan; Modaresi, Jalil; Masomi, Yousef; Moghadam, Mahdjoube Goldani

    2015-01-01

    The aim of this study was to evaluate the hypothesis that budesonide increases the susceptibility of teeth to root resorption during the course of orthodontic treatment. A randomized controlled trial design (animal study) was employed. Budesonide was administered in test group for 14 days during which orthodontic force was applied to upper right molar. Afterwards, root resorption was measured on mesio-cervical and disto-apical parts of the mesial root on transverse histological sections. ANOVA and Bonfferoni tests were used. Statistical significance was considered to be P ≤ 0.05. In general, the subgroups in which the force was applied showed significantly greater root resorption. Where force was applied there was no significant difference, whether budesonide was administered or not. While where there was no force, a group who received budesonide showed significantly greater root resorption than the other, unless at the coronal level where the difference was not significant. Within the limitations of this study, it seems budesonide could increase root resorption, but in the presence of orthodontic force this effect is negligible.

  7. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    Science.gov (United States)

    2015-12-01

    E Production of Osteoblasts, and Attenuates the Inflammatory Bone Loss Induced by Lipopolysaccharide. ISRN Pharmacol, 2012. 2012: p. 439860. 17...Kobayashi M, Watanabe K, Yokoyama S, et al. Capsaicin, a TRPV1 Ligand, Suppresses Bone Resorption by Inhibit- ing the Prostaglandin E Production of...example, mechanoreceptors in the skin respond to bending and stretching and can provide information about touch. Pacini’s corpuscle consists of onion like

  8. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    International Nuclear Information System (INIS)

    Pilmane, M; Salms, G; Salma, I; Skagers, A; Locs, J; Loca, D; Berzina-Cimdina, L

    2011-01-01

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNFα), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  9. Time-dependent cytokine expression in bone of experimental animals after hydroxyapatite (Hap) implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pilmane, M [Riga Stradins University, Institute of Anatomy and Anthropology, Dzirciema 16, LV-1007, Riga (Latvia); Salms, G; Salma, I; Skagers, A [Riga Stradins University, Department of Oral and Maxillofacial Surgery, Dzirciema 20. LV-1007, Riga (Latvia); Locs, J; Loca, D; Berzina-Cimdina, L, E-mail: pilmane@latnet.lv [Riga Technical University, Riga Biomaterials innovation and development centre, Pulka 3/3, LV-1007, Riga (Latvia)

    2011-06-23

    Proinflammatory cytokines mediate bone loss around the implants in patients with peri-implant disease. However, there is no complete data about the expression of cytokines into the bone around the implants. The aim of this work was to investigate the distribution and appearance of inflammatory cytokines and anti-inflammatory proteins in the bone of jaw of experimental rabbits in different time periods after HAp implantation. Material was obtained from 8 rabbits in lower jaw 6 and 8 months after HAp implants were placed. Tissues were processed for immunohistochemical detection of tumor necrosis factor alfa (TNF{alpha}), Interleukin 1, 6, 8, 10 (IL-1, IL-6, IL-8, IL-10) and defensin 2. Results demonstrated practically unchanged expression of IL-6 and IL-10 between both - experimental and control side 6 months after implantation, while IL-1 and IL-8 notably increased in control side. IL-1 and IL-10 expression did not change in either the experimental side nor the controle side after 8 months HAP implantation, but IL-6 and IL-8 demonstrated a decrease in the control sites. Only IL-8 was elevated with time in experimental sites, while IL-10 showed individual variations in 2 cases.

  10. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  11. Increased physical activity ameliorates high fat diet-induced bone resorption in mice

    Science.gov (United States)

    It has been recognized that mechanical stresses associated with physical activity (PA) have beneficial effects on increasing bone mineral density (BMD) and improving bone quality. On the other hand, high fat diet (HFD) and obesity increase bone marrow adiposity leading to increased excretion of pro-...

  12. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    Science.gov (United States)

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  13. Association between root resorption incident to orthodontic treatment and treatment factors.

    Science.gov (United States)

    Motokawa, Masahide; Sasamoto, Tomoko; Kaku, Masato; Kawata, Toshitsugu; Matsuda, Yayoi; Terao, Akiko; Tanne, Kazuo

    2012-06-01

    The purpose of this study was to clarify the prevalence and degree of root resorption induced by orthodontic treatment in association with treatment factors. The files of 243 patients (72 males and 171 females) aged 9-51 years were randomly selected from subjects treated with multi-bracket appliances. The severity of root resorption was classified into five categories on radiographs taken before and after treatment. The subjects were divided into extraction (n = 113 patients, 2805 teeth) and non-extraction (n = 130 patients, 3616 teeth) groups and surgical (n = 56 patients, 1503 teeth) and non-surgical treatment (n = 187 patients, 4918 teeth) groups. These subjects were also divided into two or three groups based on the duration of multiloop edgewise archwire (MEAW) treatment, elastic use, and total treatment time: 0 month (T1; n = 184 patients, 4831 teeth), range 1-6 months (T2; n = 37 patients, 994 teeth), more than 6 months (T3; n = 22 patients, 596 teeth); range 0-6 months (n = 114 patients, 3016 teeth) more than 6 months (n = 129 patients, 3405 teeth); range 1-30 months (n = 148 patients, 3913 teeth) and more than 30 months (n = 95 patients, 2508 teeth). The prevalence of overall and severe root resorption evaluated by the number of subjects and teeth was compared with a chi-square test. A Student's t-test for unpaired data was used to determine any statistically significant differences. The prevalence of severe root resorption based on the number of teeth was significantly higher in the group with extractions (P root resorption (P root resorption was not significantly different between the subjects treated with or without surgery, but there was a significant increase when treatment time was prolonged (P root movement of the upper central incisors and the distance from their root apices to the cortical bone surface (P root resorption. These results indicate that orthodontic treatment with extractions, long-term use of a MEAW appliance and elastics, treatment

  14. Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

    Directory of Open Access Journals (Sweden)

    Fabrizio Accardi

    2015-01-01

    Full Text Available Multiple myeloma (MM is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB ligand (RANKL or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.

  15. In vitro and in vivo evaluation of carbonate apatite-collagen scaffolds with some cytokines for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Sherman Salim

    2015-01-01

    Results and Conclusion: By histological observation and measurement of bone area ratio, CA-CS with cytokines showed higher bone formation ability (bFGF/CA-CS: 50.7 ± 7.3%, rh-BMP2/CA-CS: 54.2 ± 5.0% than other groups. From the limited results of this study, it is suggested that CA collagen scaffolds with some cytokines may become an attractive scaffold for bone regeneration.

  16. Beneficial effects of cytokine induced hyperlipidemia.

    Science.gov (United States)

    Feingold, K R; Hardardóttir, I; Grunfeld, C

    1998-01-01

    Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and

  17. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  18. [Bone Cell Biology Assessed by Microscopic Approach. Response to mechanical stress by osteocyte network].

    Science.gov (United States)

    Komori, Toshihisa

    2015-10-01

    Osteocytes were considered to be involved in the response to mechanical stress from their network structure. However, it was difficult to prove the function because of the lack of animal models for a long time. Recently, the function of osteocytes was clarified using various knockout and transgenic mice. Osteocyte death causes bone remodeling, which is a repair process induced by osteocyte necrosis but not by the loss of the function of live osteocytes. The osteocyte network mildly inhibits bone formation and mildly stimulates bone resorption in physiological condition. In unloaded condition, it strongly inhibits bone formation and strongly stimulates bone resorption, at least in part, through the induction of Sost in osteocytes and Rankl in osteoblasts.

  19. Osteoprotegerin in bone metastases: mathematical solution to the puzzle.

    Directory of Open Access Journals (Sweden)

    Marc D Ryser

    Full Text Available Bone is a common site for cancer metastasis. To create space for their growth, cancer cells stimulate bone resorbing osteoclasts. Cytokine RANKL is a key osteoclast activator, while osteoprotegerin (OPG is a RANKL decoy receptor and an inhibitor of osteoclastogenesis. Consistently, systemic application of OPG decreases metastatic tumor burden in bone. However, OPG produced locally by cancer cells was shown to enhance osteolysis and tumor growth. We propose that OPG produced by cancer cells causes a local reduction in RANKL levels, inducing a steeper RANKL gradient away from the tumor and towards the bone tissue, resulting in faster resorption and tumor expansion. We tested this hypothesis using a mathematical model of nonlinear partial differential equations describing the spatial dynamics of OPG, RANKL, PTHrP, osteoclasts, tumor and bone mass. We demonstrate that at lower expression rates, tumor-derived OPG enhances the chemotactic RANKL gradient and osteolysis, whereas at higher expression rates OPG broadly inhibits RANKL and decreases osteolysis and tumor burden. Moreover, tumor expression of a soluble mediator inducing RANKL in the host tissue, such as PTHrP, is important for correct orientation of the RANKL gradient. A meta-analysis of OPG, RANKL and PTHrP expression in normal prostate, carcinoma and metastatic tissues demonstrated an increase in expression of OPG, but not RANKL, in metastatic prostate cancer, and positive correlation between OPG and PTHrP in metastatic prostate cancer. The proposed mechanism highlights the importance of the spatial distribution of receptors, decoys and ligands, and can be applied to other systems involving regulation of spatially anisotropic processes.

  20. Frequency of the external resorptions of root apex

    Directory of Open Access Journals (Sweden)

    Opačić-Galić Vanja

    2004-01-01

    Full Text Available Root resorptions present a significant problem in endodontic therapy of the affected teeth and in dentistry in general. The objective of this study was to analyze, based on epidemiological and statistical research, the frequency of clinical incidence of pathological root resorptions in everyday practice related to localization, type of tooth, age and sex of patients. Radiographie documentation of patients treated from 1997 till 2002 at the Department of Conservative Dentistry and Endodontics, Faculty of Stomatology in Belgrade, was used as baseline for this study. Retroalveolar radiographs of teeth with visible signs of resorptions were singled out from 15654 patients' clinical records used for this study. The external resorptions were shown as radiolucent areas localized on various outer root surfaces, followed by significant or less significant resorption of lamina dura and alveolar bone. Out of all teeth analyzed in this study, 594 (3.79% showed some kind of resorption. The external resorptions were found to be more present in the upper jaw (55.10% and molars (50.30% than in the lower jaw (44.90% and single root teeth (49.70%, but in both cases without significant statistical differences. The most frequent localization of resorptions was root apex (82.44%. In regard to age, the most frequent resorptions were recorded in patients aged between 21 and 30 years (28.40%, and the lowest incidence was found in the youngest population (5.51%. The results also showed that resorptions were more frequent among the female population (59.04% than among the male population (40.96%. Based on these results, we may conclude that the external root resorptions are not a frequent clinical phenomenon. Proper and early diagnostics of such tissue pathology is one of the basic prerequisites for successful endodontic therapy of the affected root.

  1. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  2. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    Directory of Open Access Journals (Sweden)

    Paula Cabrini Scheibel

    2014-10-01

    Full Text Available OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI and external apical root resorption (EARR after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1 and after 12 months of treatment (T2. ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157. CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction.

  3. Analysis of correlation between initial alveolar bone density and apical root resorption after 12 months of orthodontic treatment without extraction

    Science.gov (United States)

    Scheibel, Paula Cabrini; Ramos, Adilson Luiz; Iwaki, Lilian Cristina Vessoni; Micheletti, Kelly Regina

    2014-01-01

    OBJECTIVE: The aim of the present study was to investigate the correlation between initial alveolar bone density of upper central incisors (ABD-UI) and external apical root resorption (EARR) after 12 months of orthodontic movement in cases without extraction. METHODS: A total of 47 orthodontic patients 11 years old or older were submitted to periapical radiography of upper incisors prior to treatment (T1) and after 12 months of treatment (T2). ABD-UI and EARR were measured by means of densitometry. RESULTS: No statistically significant correlation was found between initial ABD-UI and EARR at T2 (r = 0.149; p = 0.157). CONCLUSION: Based on the present findings, alveolar density assessed through periapical radiography is not predictive of root resorption after 12 months of orthodontic treatment in cases without extraction. PMID:25715722

  4. The Effect of Ovariectomy and Orchiectomy on Orthodontic Tooth Movement and Root Resorption in Wistar Rats.

    Science.gov (United States)

    Seifi, Massoud; Ezzati, Baharak; Saedi, Sara; Hedayati, Mehdi

    2015-12-01

    Root resorption (RR) after orthodontic tooth movement (OTM) is known as a multifactorial complication of orthodontic treatments. Hormonal deficiencies and their effect on bone turnover are reported to have influences on the rate of tooth movement and root resorption. This study was designed to evaluate the effect of female and male steroid sex hormones on tooth movement and root resorption. Orthodontic appliances were placed on the right maxillary first molars of 10 ovariectomized female and 10 orchiectomized male Wistar rats as experimental groups and 10 female and 10 male healthy Wistar rats as control groups. NiTi closed-coil springs (9mm, Medium, 011"×.030", Ortho Technology(®); Tampa, Florida) were placed between the right incisors and the first right maxillary molars to induce tipping movement in the first molars with the application of a 60g force. After 21 days, the rats were sacrificed and tooth movement was measured by using a digital caliper (Guanglu, China). Orthodontic induced root resorption (OIRR) was assessed by histomorphometric analysis after hematoxylin and eosin staining of sections of the mesial root. The rate of tooth movement was significantly higher in all female rats, with the root resorption being lower in the experimental group. The rate of tooth movement in experimental male rats was significantly higher than the control group (p= 0.001) and the rate of root resorption was significantly lower in the experimental group (p= 0.001). It seems that alterations in plasma levels of estrogen, progesterone, and testosterone hormones can influence the rate of OTM and RR. The acceleration in tooth movement increased OTM and decreased RR.

  5. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  6. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Wang

    Full Text Available BACKGROUND: Osteoarthritis (OA is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA would help in our understanding of its process and underlying mechanism. OBJECTIVE: To explore whether injection of monosodium iodoacetate (MIA into the upper compartment of rat TMJ could induce OA-like lesions. METHODS: Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. RESULTS: The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. CONCLUSIONS: Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.

  7. Orthopantomographic study of the alveolar bone level on periodontal disease

    International Nuclear Information System (INIS)

    Lee, Ki Sik; You, Dong Soo

    1972-01-01

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  8. Orthopantomographic study of the alveolar bone level on periodontal disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sik; You, Dong Soo [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    The author had measured the alveolar bone level of periodontal disease on 50 cases of orthopantomogram to detect the degree of alveolar bone resorption of both sexes of Korean. The results were obtained as follows; 1. Alveolar bone resorption of mesial and distal portion was similar in same patient. 2. The order of alveolar bone resorption was mandibular anterior region, posterior region, canine and premolar region of both jaws. 3. The degree of alveolar bone destruction was severe in shorter root length than longer one. 4. The degree of alveolar bone resorption was severe in fourth decades.

  9. Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation.

    Science.gov (United States)

    McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth

    2015-07-01

    Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. © 2015. Published by The Company of Biologists Ltd.

  10. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdiet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  11. The estrogen-related receptors (ERRs): potential targets against bone loss.

    Science.gov (United States)

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  12. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  13. Cytokines and VEGF Induction in Orthodontic Movement in Animal Models

    Directory of Open Access Journals (Sweden)

    M. Di Domenico

    2012-01-01

    Full Text Available Orthodontics is a branch of dentistry that aims at the resolution of dental malocclusions. The specialist carries out the treatment using intraoral or extraoral orthodontic appliances that require forces of a given load level to obtain a tooth movement in a certain direction in dental arches. Orthodontic tooth movement is dependent on efficient remodeling of periodontal ligament and alveolar bone, correlated with several biological and mechanical responses of the tissues surrounding the teeth. A periodontal ligament placed under pressure will result in bone resorption whereas a periodontal ligament under tension results in bone formation. In the primary stage of the application of orthodontic forces, an acute inflammation occurs in periodontium. Several proinflammatory cytokines are produced by immune-competent cells migrating by means of dilated capillaries. In this paper we summarize, also through the utilization of animal models, the role of some of these molecules, namely, interleukin-1β and vascular endothelial growth factor, that are some proliferation markers of osteoclasts and osteoblasts, and the macrophage colony stimulating factor.

  14. Effects of pulpectomy on the amount of root resorption during orthodontic tooth movement.

    Science.gov (United States)

    Kaku, Masato; Sumi, Hiromi; Shikata, Hanaka; Kojima, Shunichi; Motokawa, Masahide; Fujita, Tadashi; Tanimoto, Kotaro; Tanne, Kazuo

    2014-03-01

    Previous studies have revealed that orthodontic force affects dental pulp via the rupture of blood vessels and vacuolization of pulp tissues. We hypothesized that pulp tissues express inflammatory cytokines and regulators of odontoclast differentiation after excess orthodontic force. The purpose of this study was to investigate the effects of tensile force in human pulp cells and to measure inflammatory root resorption during tooth movement in pulpless rat teeth. After cyclic tensile force application in human pulp cells, gene expression and protein concentration of macrophage colony-stimulating factor, receptor activator of nuclear factor kappa-B ligand, interleukin-1 beta, and tumor necrosis factor alpha were determined by real-time polymerase chain reaction and enzyme-linked immunoassay. Moreover, the role of the stretch-activated channel was evaluated by gadolinium (Gd(3+)) treatment. The upper right first molars of 7-week Wistar rats were subjected to pulpectomy and root canal filling followed by mesial movement for 6 months. The expression of cytokine messenger RNAs and proteins in the experimental group peaked with loading at 10-kPa tensile force after 48 hours (P root resorption was significantly larger in the control teeth than the pulpectomized teeth (P root resorption during tooth movement. It also suggests that root canal treatment is effective for progressive severe inflammatory root resorption during tooth movement. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  16. A digital subtraction radiography based tool for periodontal bone resorption analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schiabel, Homero; Rodrigues, Eveline B., E-mail: homero@sc.usp.br [University of Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Dept. of Electrical Engineering; Rubira-Bullen, Izabel R.F. [University of Sao Paulo (USP), Bauru, SP (Brazil). Bauru Dentistry School

    2011-07-01

    The aim of this paper was to describe an aided diagnosis scheme for periodontal bone resorption so that the dentist can make an early diagnosis of the periodontal disease and establish the best treatment plan to increase the success of healing. Three ways of displaying the results are provided: qualitative, simple quantitative and colored-percentage quantitative views. A total of 72 pairs of in vitro radiographic images were used. The main procedure registers the images perspective projection aimed to align them in rotation and translation, and is followed by the application of a contrast correction technique. The results from the subtraction were evaluated firstly by the comparison between the actual and the digital sizes corresponding to the holes made by drills in phantoms. The mean error was 4.2%. The method was also applied to actual tooth radiographic images and could detect clearly the effect of treatment of periodontal diseases. It is dependent on the reproducibility of the process of radiographs acquisition and digitization, but the calculated mean error allows to conclude its better efficacy compared to usual procedures in this field. (author)

  17. A digital subtraction radiography based tool for periodontal bone resorption analysis

    International Nuclear Information System (INIS)

    Schiabel, Homero; Rodrigues, Eveline B.; Rubira-Bullen, Izabel R.F.

    2011-01-01

    The aim of this paper was to describe an aided diagnosis scheme for periodontal bone resorption so that the dentist can make an early diagnosis of the periodontal disease and establish the best treatment plan to increase the success of healing. Three ways of displaying the results are provided: qualitative, simple quantitative and colored-percentage quantitative views. A total of 72 pairs of in vitro radiographic images were used. The main procedure registers the images perspective projection aimed to align them in rotation and translation, and is followed by the application of a contrast correction technique. The results from the subtraction were evaluated firstly by the comparison between the actual and the digital sizes corresponding to the holes made by drills in phantoms. The mean error was 4.2%. The method was also applied to actual tooth radiographic images and could detect clearly the effect of treatment of periodontal diseases. It is dependent on the reproducibility of the process of radiographs acquisition and digitization, but the calculated mean error allows to conclude its better efficacy compared to usual procedures in this field. (author)

  18. Health of periodontal tissues and resorption status after orthodontic treatment of impacted maxillary canines.

    Science.gov (United States)

    Oz, A Z; Ciger, S

    2018-03-01

    The aim of the present study was to evaluate the changes of incisor root resorption associated with impacted maxillary canines and health of periodontal tissues around maxillary canines erupted with orthodontic treatment. Twenty patients with a unilateral palatally impacted maxillary canine were included in the study. Cone-beam computed tomography images taken before and after orthodontic treatment were compared with the contralateral canines serving as control teeth. Root resorption was present in 10% of central and 40% of lateral incisors before treatment. After treatment, the incidence of resorption decreased. The thickness of the buccal bone surrounding the impacted canines was similar to that surrounding the contralateral canines, except in the apical area. Periodontal pocket depth and alveolar bone loss were greater for the impacted canine teeth than for the contralateral canines. Incisor root resorption associated with impacted canine teeth showed signs of repair after orthodontic treatment. Slight differences related to periodontal health were found between the previously impacted teeth and contralateral canine teeth.

  19. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats.

    Science.gov (United States)

    Kirschneck, Christian; Wolf, Michael; Reicheneder, Claudia; Wahlmann, Ulrich; Proff, Peter; Roemer, Piero

    2014-12-05

    The anchorage mechanisms currently used in orthodontic treatment have various disadvantages. The objective of this study was to determine the applicability of the osteoporosis medication strontium ranelate in pharmacologically induced orthodontic tooth anchorage. In 48 male Wistar rats, a constant orthodontic force of 0.25 N was reciprocally applied to the upper first molar and the incisors by means of a Sentalloy(®) closed coil spring for two to four weeks. 50% of the animals received strontium ranelate at a daily oral dosage of 900 mg per kilogramme of body weight. Bioavailability was determined by blood analyses. The extent of tooth movement was measured both optometrically and cephalometrically (CBCT). Relative alveolar gene expression of osteoclastic markers and OPG-RANKL was assessed by qRT-PCR and root resorption area and osteoclastic activity were determined in TRAP-stained histologic sections of the alveolar process. Compared to controls, the animals treated with strontium ranelate showed up to 40% less tooth movement after four weeks of orthodontic treatment. Gene expression and histologic analyses showed significantly less osteoclastic activity and a significantly smaller root resorption area. Blood analyses confirmed sufficient bioavailability of strontium ranelate. Because of its pharmacologic effects on bone metabolism, strontium ranelate significantly reduced tooth movement and root resorption in orthodontic treatment of rats. Strontium ranelate may be a viable agent for inducing tooth anchorage and reducing undesired root resorption in orthodontic treatment. Patients under medication of strontium ranelate have to expect prolonged orthodontic treatment times. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events

    OpenAIRE

    Feller, Liviu; Khammissa, Razia A. G.; Thomadakis, George; Fourie, Jeanine; Lemmer, Johan

    2016-01-01

    Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resor...

  1. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption.

    Science.gov (United States)

    Wisitrasameewong, W; Kajiya, M; Movila, A; Rittling, S; Ishii, T; Suzuki, M; Matsuda, S; Mazda, Y; Torruella, M R; Azuma, M M; Egashira, K; Freire, M O; Sasaki, H; Wang, C Y; Han, X; Taubman, M A; Kawai, T

    2017-06-01

    Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Pasteurella pneumotropica ( Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor-α, interleukin-1β, and RANKL in the gingival tissue compared with the control site without ligature ( P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti- Pp IgG antibody nor in vitro anti- Pp T

  2. Effects of calcitonin on orthodontic tooth movement and associated root resorption in rats.

    Science.gov (United States)

    Guan, Ling; Lin, Suai; Yan, Weijun; Chen, Lei; Wang, Xiaofeng

    2017-11-01

    Our main aim was to evaluate the effects of calcitonin (CT) on orthodontic tooth movement (OTM) and orthodontic root resorption in a rat model. Eighty male Wistar rats were randomly divided into five groups. Rats in the negative control group were not given any appliances or injections. All the remaining rats were used to establish a model of OTM. The positive control group were then injected with normal saline, while rats in the three experimental groups were injected with 0.2 IU, 1 IU or 5 IU/kg/day CT. Nickel-titanium closed-coil springs were used to deliver an initial 50 g mesial force to the left maxillary first molar for 14 days in rats in the positive control group and the experimental groups. Each group was randomly subdivided into two groups, one for analysis of tooth movement, tissue changes and tartrate-resistant acid phosphatase (TRAP)-positive cells in alveolar bone, the other to examine root resorption by scanning electron microscopy. The OTM distance, the number of force-induced osteoclasts and root resorption areas were significantly decreased in CT-injected rats in a dose-dependent manner. Administration of CT reduces the root resorption area and may therefore be effective as a novel adjunctive orthodontic approach to diminish undesired tooth movement via enhancing anchorage or preventing relapse after OTM.

  3. The carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen in serum as a marker of bone resorption

    DEFF Research Database (Denmark)

    Hassager, C; Jensen, L T; Pødenphant, J

    1994-01-01

    Carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) in serum has recently been proposed as a new biochemical marker of bone resorption. In the present study we compared serum ICTP with radiopharmaceutical and histomorphometric measurements of bone turnover...... in postmenopausal women with mild osteoporosis, and assessed the effect of hormone replacement therapy (HRT) (2 mg 17 beta-estradiol plus 1 mg norethisterone daily) and anabolic steroid therapy (50 mg nandrolone decanoate (ND) i.m. every 3 weeks) on serum ICTP in two double-blind placebo-controlled studies with 55...... to 75-year-old women. Serum ICTP measured by radioimmunoassay (RIA) correlated significantly with the 24-hour whole body retention of 99m-technetium diphosphonate (Rho = 0.47, P

  4. [Clinical usefulness of bone turnover markers in the management of osteoporosis].

    Science.gov (United States)

    Yano, Shozo

    2013-09-01

    Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.

  5. Glucocorticoid Signaling and Bone Biology.

    Science.gov (United States)

    Komori, T

    2016-11-01

    Since glucocorticoids remain an effective therapeutic option for the treatment of many inflammatory and autoimmune diseases, glucocorticoid-induced osteoporosis is the most common form of secondary osteoporosis. Fractures may occur in as many as 30-50% of patients receiving chronic glucocorticoid therapy. Under physiological conditions, glucocorticoids are required for normal bone development due to their regulation of osteoblast differentiation, possibly via the Wnt/β-catenin pathway and TSC22D3. However, serum levels of endogenous corticosterone are elevated in aged mice and glucocorticoids exert negative effects on the survival of osteoblasts and osteocytes as well as angiogenesis. Glucocorticoid treatments impair bone formation and enhance bone resorption. Excess glucocorticoids induce osteoblast and osteocyte apoptosis by increasing pro-apoptotic molecules, reactive oxygen species, and endoplasmic reticulum stress and suppressing the Wnt/β-catenin pathway. Autophagy protects osteocytes from glucocorticoid-induced apoptosis, but passed some threshold, the process of autophagy leads the cells to apoptosis. Excess glucocorticoids impair osteoblastogenesis by inducing Wnt antagonists, including Dkk1, Sost, and sFRP-1. However, the findings are controversial and the involvement of Wnt antagonists requires further study. Excess glucocorticoids reduce the phosphorylation of Akt and GSK3β, which enhances the degradation of β-catenin. Excess glucocorticoids have been shown to modulate the expression of miRNAs, including miR-29a, miR-34a-5p, and miR-199a-5p, which regulate the proliferation and differentiation of osteoblast lineage cells. Excess glucocorticoids also enhance bone resorption by reducing OPG expression, increasing Rankl expression and reactive oxygen species, and prolonging the life span of osteoclasts; however, they also suppress the bone-degrading capacity of osteoclasts by disturbing the organization of the cytoskeleton. © Georg Thieme Verlag KG

  6. Melatonin: Bone Metabolism in Oral Cavity

    Directory of Open Access Journals (Sweden)

    Fanny López-Martínez

    2012-01-01

    Full Text Available Throughout life, bone tissue undergoes a continuous process of resorption and formation. Melatonin, with its antioxidant properties and its ability to detoxify free radicals, as suggested by Conconi et al. (2000 may interfere in the osteoclast function and thereby inhibit bone resorption, as suggested by Schroeder et al. (1981. Inhibition of bone resorption may be enhanced by a reaction of indoleamine in osteoclastogenesis. That it has been observed melatonin, at pharmacological doses, decrease bone mass resorption by suppressing through down regulation of the RANK-L, as suggested by Penarrocha Diago et al. (2005 and Steflik et al. (1994. These data point an osteogenic effect towards that may be of melatonin of clinical importance, as it could be used as a therapeutic agent in situations in which would be advantageous bone formation, such as in the treatment of fractures or osteoporosis or their use as, a bioactive surface on implant as suggested by Lissoni et al. (1991.

  7. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis.

    Directory of Open Access Journals (Sweden)

    Lihui Li

    Full Text Available This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1 control group, (2 sham-operated group, (3 OVX (Ovariectomy group, (4 DES-OVX (Diethylstilbestrol-OVX group, and (5 Ex-OVX (Exercise-OVX group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%, total resorption surface (TRS%, trabecular formation surface (TFS%, mineralization rate (MAR, bone cortex mineralization rate (mAR, and osteoid seam width (OSW were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2, interleukin-6 (IL-6, and cyclooxygenase-2 (Cox-2 were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2, calcitonin (CT, osteocalcin (BGP, and parathyroid hormone (PTH were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.

  8. Treatment of root fracture with accompanying resorption using cermet cement.

    Science.gov (United States)

    Lui, J L

    1992-02-01

    A method of treating an apical root fracture with accompanying resorption at the junction of the fracture fragments using glass-cermet cement is described. Endodontically, the material had previously been used for repair of lateral resorptive root defects and retrograde root fillings. Complete bone regeneration was observed three years post-operatively following treatment of the root fracture in the conventional manner. The various advantages of glass-cermet cement as a root filling material used in the technique described are discussed.

  9. The biodegradation of hydroxyapatite bone graft substitutes in vivo.

    Science.gov (United States)

    Rumpel, E; Wolf, E; Kauschke, E; Bienengräber, V; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are osteoconductive and serve as structural scaffolds for the deposition of new bone. Generally, scaffold materials should be degradable as they affect the mechanical properties of the reconstructed bone negatively. Degradation by osteoclasts during the bone remodelling process is desirable but often does not take place. In the current study we analysed by light microscopy the degradation of two granular HA implants in critically sized defects in the mandibula of Goettingen mini-pigs five weeks after implantation. Bio-Oss consists of sintered bovine bone and NanoBone is a synthetic HA produced in a sol-gel process in the presence of SiO2. We found that both biomaterials were degraded by osteoclasts with ruffled borders and acid phosphatase activity. The osteoclasts created resorption lacunae and resorptive trails and contained mineral particles. Frequently, resorption surfaces were in direct contact with bone formative surfaces on one granule. Granules, especially of NanoBone, were also covered by osteoclasts if located in vascularised connective tissue distant from bone tissue. However, this usually occurred without the creation of resorption lacunae. The former defect margins consisted of newly formed bone often without remnants of bone substitutes. Our results show that the degradation of both biomaterials corresponds to the natural bone degradation processes and suggest the possibility of complete resorption during bone remodelling.

  10. Relationship of cytokines and bone metabolic markers to osteoporosis in aged males

    International Nuclear Information System (INIS)

    Luo Nanping; Hu Chengjin; Li Jinhua; Chen Yingjian; Wang Ruishan; Yin Qiuxia

    2003-01-01

    Objective: To observe the relationship of cytokines and bone metabolic markers to osteoporosis in aged men. Methods: Serum interleukin-4 (IL-4), IL-6, IL-10, bone glaprotein (BGP), testosterone (T), alkaline phosphatase (AKP), Ca and bone density of aged men with osteoporosis or bone mass loss were assessed and compared with those of middle-aged and aged healthy men. Results: The levels of serum IL-4 and IL-6 increased with severity of osteoporosis and the differences were significant compared with normal controls (P<0.05, P<0.01). The levels of IL-10, BGP, AKP and T decreased at different degrees and also had significant differences compared with normal controls (P<0.05). Bone density of aged men with osteoporosis and bone mass loss was lower than that of middle-aged healthy men (P<0.01), and bone density of aged men with osteoporosis was apparently lower than that of men with bone mass loss (P<0.05). Conclusions: From bone mass loss to osteoporosis, the deteriorating process presents as bone absorption increasing and osteogenesis decreasing. IL-4, IL-6 and IL-10 and other bone metabolic markers may play a role in diagnosis of osteoporosis

  11. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over.

    Science.gov (United States)

    Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim

    2018-03-21

    Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.

  12. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    Science.gov (United States)

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome.

    Science.gov (United States)

    Wang, Liping; Guo, Tian-Zhi; Hou, Saiyun; Wei, Tzuping; Li, Wen-Wu; Shi, Xiaoyou; Clark, J David; Kingery, Wade S

    2016-10-01

    Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenesis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that antiresorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously, we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS, and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, postfracture cutaneous cytokine upregulation, and adaptive immune responses in this CRPS model. Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by microcomputed tomography, and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed, and skin cytokine (tumor necrosis factor, interleukin [IL]-1, IL-6) and nerve growth factor (NGF) levels were determined by enzyme immunoassay. Skin and sciatic nerve immunoglobulin levels were determined by enzyme immunoassay. Rats with tibia fractures developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression and trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by microcomputed tomography, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression, and elevated immunocomplex deposition in skin and nerve

  14. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke.

    Science.gov (United States)

    Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua

    2012-06-19

    Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  15. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  16. Caspase‐8 regulates the expression of pro‐ and anti‐inflammatory cytokines in human bone marrow‐derived mesenchymal stromal cells

    Science.gov (United States)

    Moen, Siv H.; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N.; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J.; Sponaas, Anne‐Marit

    2016-01-01

    Abstract Introduction Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll‐like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase‐8 is involved in activation of NF‐kB downstream of TLRs in immune cells. Here we investigated the role of caspase‐8 in regulating TLR‐induced cytokine production from human bone marrow‐derived mesenchymal stromal cells (hBMSCs). Methods Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase‐8 were silenced using siRNA. Caspase‐8 was also inhibited using a caspase‐8 inhibitor, z‐IEDT. Results We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro‐inflammatory cytokines in a TLR‐dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti‐inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase‐8 was involved in the induction of IL‐ IL‐1β, IL‐6, CXCL10, and in the inhibition of HGF and TGFβ. Conclusion Caspase‐8 appears to modulate hBMSCs into gaining a pro‐inflammatory phenotype. Therefore, inhibiting caspase‐8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders. PMID:27621815

  17. Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue

    Science.gov (United States)

    Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.

    2015-01-01

    Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for

  18. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice.

    Science.gov (United States)

    Tousen, Yuko; Matsumoto, Yu; Matsumoto, Chiho; Nishide, Yoriko; Nagahata, Yuya; Kobayashi, Isao; Ishimi, Yoshiko

    2016-07-01

    Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice.

  19. Osseointegration of hydroxyapatite and remodeling-resorption of tricalciumphosphate ceramics.

    Science.gov (United States)

    Draenert, Miriam; Draenert, Alice; Draenert, Klaus

    2013-04-01

    Cancellous bone defects surrounded by still intact bone structures never heal. Ceramics offer a solution providing osteoconductive scaffolds. The purpose of the study is to evaluate whether structured β-TCP and HA implants can reconstruct cancellous bone defects, which role micro- and macro-porosity, stiffness and surface area play; finally the indication for both materials based on its resorbability. 10 German Shepard dogs were operated on both tibial heads implanting shell-like fully interconnected ceramic cylinders, using a wet grinding hollow drill coated with diamonds. β-TCP was compared with HA. A polychromatic sequential labelling with 4 different fluorochromes controlled bone formation dynamics. Non-decalcifying histology after perfusion fixation and vessel casting was performed. μ-CT was combined with high resolution microradiography and histology on thin ground crossections. The stages after 6 weeks, 2, 3, 4 months and 15 months were evaluated. In spite of osseointegration of HA and β-TCP, the osseointegration of both materials was completely different. Both shell-like bone void fillers were osseointegrated in a sandwich-like manner. HA yielded primarily a reinforcement of the recipient's cancellous-bone bed and full osseointegration after 4 months, whereas β-TCP-implants were fully osseointegrated after 6 weeks. HA did not show signs of resorption. The resorption of the β-TCP resulted during remodelling. The final stage showed restitution "ad integrum" of the β-TCP defects with a physiological architecture, whereas HA was integrated in the cancellous bone construction providing 600 μm measuring macropores showing osteoinductive properties. Copyright © 2013 Wiley Periodicals, Inc.

  20. Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.

    Science.gov (United States)

    Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T

    1997-09-01

    Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.

  1. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian, E-mail: liujianhq@sina.com

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  2. Congenital adrenal hyperplasia: a case report with premature teeth exfoliation and bone resorption.

    Science.gov (United States)

    Angelopoulou, Matina V; Kontogiorgos, Elias; Emmanouil, Dimitris

    2015-06-01

    Congenital adrenal hyperplasia (CAH) is an inherited autosomal recessive disorder characterized by insufficient production of cortisol. The aim of this case report was to present a child with CAH, premature exfoliation of primary teeth and accelerated eruption of his permanent teeth related to bone resorption. A 4.5-year-old Caucasian boy with CAH and long-term administration of glucocorticoids was referred for dental restoration. Clinical examination revealed primary molars with worn stainless steel crowns, severe attrition of the upper canines, and absence of the upper incisors. Before the completion of treatment, abnormal mobility of the first upper primary molars and the lower incisors was detected, and a few days later the teeth exfoliated prematurely. Histologic examination revealed normal tooth structure. Alkaline phosphatase and blood cells values were normal. Eruption of the permanent dentition was also accelerated. Tooth mobility was noticed in the permanent teeth as soon as they erupted, along with bone destruction. Examination revealed an elevated level of receptor activator of nuclear factor-κB ligand and lower-than-normal osteoprotegerin and vitamin D levels. The patient was treated with vitamin D supplements, and his teeth have been stable ever since. CAH is a serious chronic disorder appearing in children with accelerated dental development and possibly premature loss of primary teeth. Copyright © 2015 by the American Academy of Pediatrics.

  3. A new condyle implant design concept for an alloplastic temporomandibular joint in bone resorption cases.

    Science.gov (United States)

    Ramos, António; Mesnard, Michel

    2016-10-01

    The purpose of this article is to present and evaluate an innovative intramedullary implant concept developed for total alloplastic reconstruction in bone resorption cases. The main goal of this innovative concept is to avoid the main problems experienced with temporomandibular (TMJ) devices on the market, associated with bone fixation and changes in kinematics. A three-dimensional finite element model was developed based on computed tomography (CT) scan images, before and after implantation of the innovative implant concept. To validate the numerical model, a clean cadaveric condyle was instrumented with four rosettes and loaded before and after implantation with the innovative concept TMJ implant. The experimental results validate the numerical models comparing the intact and implanted condyles, as they present good correlation. They show that the most critical region is around rosette #1, with an increase in strains in the proximal region of the condyle of 140%. The maximum principal strain and stress generated with the implant is less than 2200 με and 75 MPa in the posterior region of the cortical bone. Shortly after insertion of this press-fit implant, stress and strain results appear to be within the normal limits and show some similarities with the intact condyle. If these responses do not change over time, the screw fixation used at present could be avoided or replaced. This solution reduces bone resection and lessens surgical damage to the muscles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of Transforming Growth Factor- β1 Expression in Resorptive Lacunae following Orthodontic Tooth Movement in An Animal Model

    Science.gov (United States)

    Seifi, Massoud; Kazemi, Bahram; Kabiri, Sattar; Badiee, Mohammadreza

    2017-01-01

    Objective Root resorption is a complication of orthodontic treatment and till date, there is a dearth of information regarding this issue. The aim of this study was to determine whether the expression of transforming growth factor-β1 (TGF-β1, an inflammatory cytokine) is related to orthodontic force. Moreover, if associated, the expression level may be helpful in differential diagnosis, control and ultimate treatment of the disease. Materials and Methods In this experimental study, a total of 24 eight-week-old male Wistar rats were selected randomly. On day 0, an orthodontic appliance, which consisted of a closed coil spring, was ligated to the upper right first molar and incisor. The upper left first molar in these animals was not placed under orthodontic force, thus serving as the control group. On day 21, after anesthesia, the animals were sacrificed. The rats were then divided into two equal groups where the first group was subjected to histological evaluation and the second group to reverse transcriptase-polymerase chain reaction (RT-PCR). Orthodontic tooth movement was measured in both groups to determine the influence of the applied force. Results Statistical analysis of data showed a significant root resorption between the experimental group and control group (Porthodontic force and orthodontic induced inflammatory root resorption. In addition, no relationship is likely to exist between root resorption and TGF-β1 expression in the resorptive lacunae. PMID:28670520

  5. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model.

    Science.gov (United States)

    Kirschneck, Christian; Fanghänel, Jochen; Wahlmann, Ulrich; Wolf, Michael; Roldán, J Camilo; Proff, Peter

    2017-03-01

    Many adult orthodontic patients suffer from chronic periodontitis with recurrent episodes of active periodontal inflammation. As their number is steadily increasing, orthodontists are more and more frequently challenged by respective treatment considerations. However, little is currently known regarding interactive effects on undesired dental root resorption (DRR), tooth movement velocity, periodontal bone loss and the underlying cellular and tissue reactions. A total of 63 male Fischer344 rats were used in three consecutive experiments employing 21 animals each (A/B/C), randomly assigned to 3 experimental groups (n=7, 1/2/3), respectively: (A) CBCT; (B) histology/serology; (C) RT-qPCR-(1) control; (2) orthodontic tooth movement (OTM) of the first/second upper left molars (NiTi coil spring, 0.25N); (3) OTM with experimentally induced periodontitis (cervical silk ligature). After 14days of OTM, we quantified blood leukocyte level, DRR, osteoclast activity and relative gene expression of inflammatory and osteoclast marker genes within the dental-periodontal tissue as well as tooth movement velocity and periodontal bone loss after 14 and 28 days. The experimentally induced periodontal bone loss was significantly increased by concurrent orthodontic force application. Periodontal inflammation during OTM on the other hand significantly augmented the extent of DRR, relative expression of inflammatory/osteoclast marker genes, blood leukocyte level and periodontal osteoclast activity. In addition, contrary to previous studies, we observed a significant increase in tooth movement velocity. Although accelerated tooth movement would be favourable for orthodontic treatment, our results suggest that orthodontic interventions should only be performed after successful systematic periodontal therapy and paused in case of recurrent active inflammation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Andreassen, Kim V; Thudium, Christian S

    2012-01-01

    Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium wa...... dependent and independent of their resorptive activity, secrete factors stimulating osteoblastic bone formation.......Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium...... release. The osteoblastic cell line 2T3 was treated with 50% of CM or non-CM for 12days. Bone formation was assessed by Alizarin Red extraction. CM from mature osteoclasts induced bone formation, while CM from macrophages did not. Non-resorbing osteoclasts generated from osteopetrosis patients showed...

  7. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    International Nuclear Information System (INIS)

    Kwon, Jong Won; Kang, Heung Sik; Hong, Sung Hwan

    2010-01-01

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices

  8. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won [Samsung Medical Center, Sungkyunkwan University, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-10-15

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

  9. Cancer-induced bone loss and associated pain-related behavior is reduced by risedronate but not its phosphonocarboxylate analog NE-10790

    DEFF Research Database (Denmark)

    Hald, Andreas; Hansen, Rikke Rie; Thomsen, Mette W

    2009-01-01

    Prostate, breast and lung cancers readily develop bone metastases which lead to fractures, hypercalcemia and pain. Malignant growth in the bones depends on osteoclast-mediated bone resorption and in this regard bisphosphonate compounds, which have high-bone affinity and inhibit osteoclast activit...

  10. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    Energy Technology Data Exchange (ETDEWEB)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan, E-mail: tikoo.k@gmail.com

    2013-04-15

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP.

  11. Alleviating anastrozole induced bone toxicity by selenium nanoparticles in SD rats

    International Nuclear Information System (INIS)

    Vekariya, Kiritkumar K.; Kaur, Jasmine; Tikoo, Kulbhushan

    2013-01-01

    Aromatase inhibitors like anastrozole play an undisputed key role in the treatment of breast cancer, but on the other hand, various side effects like osteoporosis and increased risk of bone fracture accompany the chronic administration of these drugs. Here we show for the first time that selenium nanoparticles, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone. Selenium nanoparticles at a dose of 5 μg/ml significantly reduced the cell death caused by anastrozole (1 μM) in HOS (human osteoblast) cells. In addition, our results also highlighted that in female SD rat model, SeNPs (0.25, 0.5, 1 mg/kg/day) significantly prevented the decrease in bone density and increase in biochemical markers of bone resorption induced by anastrozole (0.2 mg/kg/day) treatment. Histopathological examination of the femurs of SeNP treated group revealed ossification, mineralization, calcified cartilaginous deposits and a marginal osteoclastic activity, all of which indicate a marked restorative action, suggesting the protective action of the SeNPs. Interestingly, SeNPs (1 mg/kg/day) also exhibited protective effect in ovariectomized rat model, by preventing osteoporosis, which signifies that bone loss due to estrogen deficiency can be effectively overcome by using SeNPs. - Highlights: ► SeNPs significantly reduce bone toxicity in anastrozole treated rats. ► SeNPs successfully prevented osteoporosis in ovariectomized rats. ► SeNP treatment lowered the levels of TRAP and increased the levels of ALKP

  12. Otosclerosis: Temporal Bone Pathology.

    Science.gov (United States)

    Quesnel, Alicia M; Ishai, Reuven; McKenna, Michael J

    2018-04-01

    Otosclerosis is pathologically characterized by abnormal bony remodeling, which includes bone resorption, new bone deposition, and vascular proliferation in the temporal bone. Sensorineural hearing loss in otosclerosis is associated with extension of otosclerosis to the cochlear endosteum and deposition of collagen throughout the spiral ligament. Persistent or recurrent conductive hearing loss after stapedectomy has been associated with incomplete footplate fenestration, poor incus-prosthesis connection, and incus resorption in temporal bone specimens. Human temporal bone pathology has helped to define the role of computed tomography imaging for otosclerosis, confirming that computed tomography is highly sensitive for diagnosis, yet limited in assessing cochlear endosteal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  14. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    Science.gov (United States)

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    Full Text Available Nuclear accidents and terrorism presents a serious threat for mass casualty. While bone-marrow transplantation might mitigate hematopoietic syndrome, currently there are no approved medical countermeasures to alleviate radiation-induced gastrointestinal syndrome (RIGS, resulting from direct cytocidal effects on intestinal stem cells (ISC and crypt stromal cells. We examined whether bone marrow-derived adherent stromal cell transplantation (BMSCT could restitute irradiated intestinal stem cells niche and mitigate radiation-induced gastrointestinal syndrome.Autologous bone marrow was cultured in mesenchymal basal medium and adherent cells were harvested for transplantation to C57Bl6 mice, 24 and 72 hours after lethal whole body irradiation (10.4 Gy or abdominal irradiation (16-20 Gy in a single fraction. Mesenchymal, endothelial and myeloid population were characterized by flow cytometry. Intestinal crypt regeneration and absorptive function was assessed by histopathology and xylose absorption assay, respectively. In contrast to 100% mortality in irradiated controls, BMSCT mitigated RIGS and rescued mice from radiation lethality after 18 Gy of abdominal irradiation or 10.4 Gy whole body irradiation with 100% survival (p<0.0007 and p<0.0009 respectively beyond 25 days. Transplantation of enriched myeloid and non-myeloid fractions failed to improve survival. BMASCT induced ISC regeneration, restitution of the ISC niche and xylose absorption. Serum levels of intestinal radioprotective factors, such as, R-Spondin1, KGF, PDGF and FGF2, and anti-inflammatory cytokines were elevated, while inflammatory cytokines were down regulated.Mitigation of lethal intestinal injury, following high doses of irradiation, can be achieved by intravenous transplantation of marrow-derived stromal cells, including mesenchymal, endothelial and macrophage cell population. BMASCT increases blood levels of intestinal growth factors and induces regeneration of the irradiated

  16. Estrogen-Related Receptors and the control of bone cell fate.

    Science.gov (United States)

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2016-09-05

    Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    International Nuclear Information System (INIS)

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-01-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered) ). Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research highlights: → 3-Day imatinib treatment. → Causes growth plate anomalies in young rats. → Causes biomechanical changes and significant bone loss at distal trabecular bone. → Results in loss of osteoclasts at osteochondral junction.

  18. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D

    International Nuclear Information System (INIS)

    Engstroem, Annette; Skerving, Staffan; Lidfeldt, Jonas; Burgaz, Ann; Lundh, Thomas; Samsioe, Goeran; Vahter, Marie; Akesson, Agneta

    2009-01-01

    Cadmium is a widespread environmental pollutant, which is associated with increased risk of osteoporosis. It has been proposed that cadmium's toxic effect on bone is exerted via impaired activation of vitamin D, secondary to the kidney effects. To test this, we assessed the association of cadmium-induced bone and kidney effects with serum 1,25-dihydroxyvitamin D (1,25(OH) 2 D); measured by enzyme immunoassay. For the assessment, we selected 85 postmenopausal women, based on low (0.14-0.39 μg/L) or high (0.66-2.1 μg/L) urinary cadmium, within a cross-sectional population-based women's health survey in Southern Sweden. We also measured 25-hydroxy vitamin D, cadmium in blood, bone mineral density and several markers of bone remodeling and kidney effects. Although there were clear differences in both kidney and bone effect markers between women with low and high cadmium exposure, the 1,25(OH) 2 D concentrations were not significantly different (median, 111 pmol/L (5-95th percentile, 67-170 pmol/L) in low- and 125 pmol/L (66-200 pmol/L) in high-cadmium groups; p=0.08). Also, there was no association between 1,25(OH) 2 D and markers of bone or kidney effects. It is concluded that the low levels of cadmium exposure present in the studied women, although high enough to be associated with lower bone mineral density and increased bone resorption, were not associated with lower serum concentrations of 1,25(OH) 2 D. Hence, decreased circulating levels of 1,25(OH) 2 D are unlikely to be the proposed link between cadmium-induced effects on kidney and bone

  19. In vitro and in vivo biological responses to a novel radiopacifying agent for bone cement

    Science.gov (United States)

    Wang, J.S; Diaz, J; Sabokbar, A; Athanasou, N; Kjellson, F; Tanner, K.E; McCarthy, I.D; Lidgren, L

    2005-01-01

    Iodixanol (IDX) and iohexol (IHX) have been investigated as possible radiopacification agents for polymethylmethacrylate (PMMA) bone cement, to replace the currently used barium sulphate and zirconia. IDX and IHX are both water-soluble iodine-based contrast media and for the last 20 years have been used extensively in clinical diagnostic procedures such as contrast media enhanced computed tomography, angiography and urography. One of the major reasons to remove the current radiopacifying agents is their well-documented cytotoxicity and their potential to increase bone resorption. Using in vitro bone resorption assays, the effect of PMMA particles plus IDX or IHX to induce osteoclast formation and lacunar resorption on dentine slices has been investigated. These responses have been compared with the in vitro response to PMMA particles containing the conventional radiopacifying agents, that is, barium sulphate and zirconia. In parallel, the in vivo reaction, in terms of new bone formation, to particles of these materials has been tested using a bone harvest chamber in rabbit tibiae. In vitro cell culture showed that PMMA containing IHX resulted in significantly less bone resorption than PMMA containing the conventional opacifiers. In vivo testing, however, showed no significant differences between the amounts of new bone formed around cement samples containing the two iodine-based opacifying agents in particulate form, although both led to fewer inflammatory cells than particles of PMMA containing zirconia. Our results suggest that a non-ionic radiopacifier could be considered as an alternative to the conventional radiopacifying agents used in biomaterials in orthopaedic surgery. PMID:16849166

  20. Remodeling of the Mandibular Bone Induced by Overdentures Supported by Different Numbers of Implants.

    Science.gov (United States)

    Li, Kai; Xin, Haitao; Zhao, Yanfang; Zhang, Zhiyuan; Wu, Yulu

    2016-05-01

    The objective of this study was to investigate the process of mandibular bone remodeling induced by implant-supported overdentures. computed tomography (CT) images were collected from edentulous patients to reconstruct the geometry of the mandibular bone and overdentures supported by implants. Based on the theory of strain energy density (SED), bone remodeling models were established using the user material subroutine (UMAT) in abaqus. The stress distribution in the mandible and bone density change was investigated to determine the effect of implant number on the remodeling of the mandibular bone. The results indicated that the areas where high Mises stress values were observed were mainly situated around the implants. The stress was concentrated in the distal neck region of the distal-most implants. With an increased number of implants, the biting force applied on the dentures was almost all taken up by implants. The stress and bone density in peri-implant bone increased. When the stress reached the threshold of remodeling, the bone density began to decrease. In the posterior mandible area, the stress was well distributed but increased with decreased implant numbers. Changes in bone density were not observed in this area. The computational results were consistent with the clinical data. The results demonstrate that the risk of bone resorption around the distal-most implants increases with increased numbers of implants and that the occlusal force applied to overdentures should be adjusted to be distributed more in the distal areas of the mandible.

  1. Advances in the biology of bone metastasis: how the skeleton affects tumor behavior.

    Science.gov (United States)

    Sterling, Julie A; Edwards, James R; Martin, T John; Mundy, Gregory R

    2011-01-01

    It is increasingly evident that the microenvironment of bone can influence the cancer phenotype in many ways that favor growth in bone. The ability of cancer cells to adhere to bone matrix and to promote osteoclast formation are key requirements for the establishment and growth of bone metastases. Several cytokine products of breast cancers (e.g. PTHrP, IL-11, IL-8) have been shown to act upon host cells of the bone microenvironment to promote osteoclast formation, allowing for excessive bone resorption. The increased release of matrix-derived growth factors, especially TGF-β, acts back upon the tumor to facilitate further tumor expansion and enhance cytokine production, and also upon osteoblasts to suppress bone formation. This provides a self-perpetuating cycle of bone loss and tumor growth within the skeleton. Other contributing factors favoring tumor metastasis and colonization in bone include the unique structure and stiffness of skeletal tissue, along with the diverse cellular composition of the marrow environment (e.g. bone cells, stromal fibroblasts, immune cells), any of which can contribute to the phenotypic changes that can take place in metastatic deposits that favor their survival. Additionally, it is also apparent that breast cancer cells begin to express different bone specific proteins as well as proteins important for normal breast development and lactation that allow them to grow in bone and stimulate bone destruction. Taken together, these continually emerging areas of study suggest new potential pathways important in the pathogenesis of bone metastasis and potential areas for targeting therapeutics. Copyright © 2010. Published by Elsevier Inc.

  2. Effect of epimedium pubescen flavonoid on bone mineral status and bone turnover in male rats chronically exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Gao Shu-guang

    2012-06-01

    Full Text Available Abstract Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF. However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC, bone mineral density (BMD, bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption, affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface, and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.

  3. Methanol Extract of Euchelus asper Prevents Bone Resorption in Ovariectomised Mice Model

    Directory of Open Access Journals (Sweden)

    Babita Balakrishnan

    2014-01-01

    Full Text Available Marine molluscs are widely distributed throughout the world and many bioactive compounds exhibiting antiviral, antitumor, antileukemic, and antibacterial activity have been reported worldwide. The present study was designed to investigate the beneficial effect of methanol extract of Euchelus asper (EAME on estrogen deficiency induced osteoporosis in ovariectomised mice model. Forty-two female Swiss albino mice were randomly assigned into Sham operated (Sham group and six ovariectomised (OVX subgroups such as OVX with vehicle (OVX; OVX with estradiol (2 mg/kg/day; OVX with EAME of graded doses (25, 50, 100, and 200 mg/kg/day. Bone turnover markers like serum alkaline phosphatase (ALP, serum acid phosphatase (ACP, serum calcium, and histological investigations of tibia and uterus were analysed. Metaphyseal DNA content of the femur bone was also studied. Antiosteoclastogenic activity of EAME was examined. Administration of EAME was able to reduce the increased bone turnover markers in the ovariectomised mice. Histomorphometric analysis revealed an increase in bone trabeculation and restoration of trabecular separation by EAME treatment. Metaphyseal DNA content of the femur of the OVX mice was increased by EAME administration. EAME also showed a potent antiosteoclastogenic behaviour. Thus, the present study reveals that EAME was able to successfully reduce the estrogen deficiency induced bone loss.

  4. New treatment of periodontal diseases by using NF-kappaB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing.

    Science.gov (United States)

    Shimizu, Hideo; Nakagami, Hironori; Morita, Shosuke; Tsukamoto, Ikuyo; Osako, Mariana Kiomy; Nakagami, Futoshi; Shimosato, Takashi; Minobe, Noriko; Morishita, Ryuichi

    2009-09-01

    Nuclear factor-kappa B (NF-kappaB) is involved in osteoclast differentiation and activation. Thus, the blockade of the NF-kappaB pathway might be a novel therapeutic strategy for treating bone metabolic diseases. Periodontitis is subgingival inflammation caused by bacterial infection; this disease also is thought to be a chronic focal point responsible for systemic diseases. In this study, NF-kappaB decoy oligodeoxynucleotides (ODNs) were topically applied for experimental periodontitis in a debris-accumulation model and wound healing in a bone-defect model of beagle dogs to investigate the effect of decoy ODN on bone metabolism. Application of NF-kappaB decoy ODN significantly reduced interleukin-6 activity in crevicular fluid and improved alveolar bone loss in the analysis of dental radiographs and DEXA. Direct measurement of exposed root that lost alveolar bone support revealed that NF-kappaB decoy treatment dramatically protected bone from loss. In a bone-defect model, NF-kappaB decoy ODN promoted the healing process as compared with control scrambled decoy in micro-CT analysis. Overall, inhibition of NF-kappaB by decoy strategy prevented the progression of bone loss in periodontitis and promoted the wound healing in bone defects through the inhibition of osteoclastic bone resorption. Targeting of NF-kappaB might be a potential therapy in various bone metabolic diseases.

  5. Laminar resorption in modified osteo-odonto-keratoprosthesis procedure: a cause for concern.

    Science.gov (United States)

    Iyer, Geetha; Srinivasan, Bhaskar; Agarwal, Shweta; Rachapalle, Sudhir Reddi

    2014-08-01

    To analyze the cases of lamina resorption following the modified osteo-odonto-keratoprosthesis (MOOKP) procedure. Retrospective case series. Case records of 18 eyes (20 laminae) of 17 patients who showed evidence of lamina resorption out of the 85 eyes (87 laminae) of 82 patients that underwent MOOKP procedure between March 2003 and March 2013 were analyzed. Of the 17 patients (20 laminae), 1 underwent MOOKP procedure following multiple graft failures, 6 (7 laminae) belonged to the chemical injury group, and 10 (12 laminae) to the Stevens-Johnson syndrome (SJS) group. Resorption was noted in 20 out of 87 laminae (22.98%). The need for removal of lamina/extrusion was noted in 3 out of the 7 laminae in the chemical injury group and 8 out of the 12 laminae in the SJS group. The mean duration to the first sign suggestive of resorption among patients of SJS was 36.7 months and among patients of chemical injury was 43 months. Vitritis was the presenting feature (7 of 20 laminae, 35%) indicative of early resorption, and the occurrence of the same in eyes with lamina resorption was noted to be statistically significant in comparison to controls (P<.001). Sixteen out of 20 laminae showed evidence of resorption superiorly. Vitritis was the most common presenting feature of lamina resorption and could be an indicator of lamina resorption. Resorption of the laminae was noted to occur along the aspect with thinner bone support in all eyes. Incidence of severe resorption with extrusion of cylinder/requiring lamina removal was noted to be higher among patients with SJS. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    International Nuclear Information System (INIS)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun; Chung, Won-Yoon

    2014-01-01

    acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice

  7. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    acid inhibited RANKL-induced osteoclastogenesis in bone marrow macrophages. • Betulinic acid decreased bone resorption by suppressing osteoclast activity. • Orally administered betulinic acid inhibited cancer-associated bone diseases in mice.

  8. High-dose therapy improved the bone remodelling compartment canopy and bone formation in multiple myeloma

    DEFF Research Database (Denmark)

    Hinge, Maja; Delaissé, Jean-Marie; Plesner, Torben

    2015-01-01

    transplantation, and from 20 control patients with monoclonal gammopathy of undetermined significance were histomorphometrically investigated. This investigation confirmed that MM patients exhibited uncoupled bone formation to resorption and reduced canopy coverage. More importantly, this study revealed......Bone loss in multiple myeloma (MM) is caused by an uncoupling of bone formation to resorption trigged by malignant plasma cells. Increasing evidence indicates that the bone remodelling compartment (BRC) canopy, which normally covers the remodelling sites, is important for coupled bone remodelling....... Loss of this canopy has been associated with bone loss. This study addresses whether the bone remodelling in MM is improved by high-dose therapy. Bone marrow biopsies obtained from 20 MM patients, before and after first-line treatment with high-dose melphalan followed by autologous stem cell...

  9. Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis.

    Science.gov (United States)

    Ikić Matijašević, M; Flegar, D; Kovačić, N; Katavić, V; Kelava, T; Šućur, A; Ivčević, S; Cvija, H; Lazić Mosler, E; Kalajzić, I; Marušić, A; Grčević, D

    2016-12-01

    Our study aimed to determine the functional activity of different osteoclast progenitor (OCP) subpopulations and signals important for their migration to bone lesions, causing local and systemic bone resorption during the course of collagen-induced arthritis in C57BL/6 mice. Arthritis was induced with chicken type II collagen (CII), and assessed by clinical scoring and detection of anti-CII antibodies. We observed decreased trabecular bone volume of axial and appendicular skeleton by histomorphometry and micro-computed tomography as well as decreased bone formation and increased bone resorption rate in arthritic mice in vivo. In the affected joints, bone loss was accompanied with severe osteitis and bone marrow hypercellularity, coinciding with the areas of active osteoclasts and bone erosions. Flow cytometry analysis showed increased frequency of putative OCP cells (CD3 - B220 - NK1.1 - CD11b -/lo CD117 + CD115 + for bone marrow and CD3 - B220 - NK1.1 - CD11b + CD115 + Gr-1 + for peripheral haematopoietic tissues), which exhibited enhanced differentiation potential in vitro. Moreover, the total CD11b + population was expanded in arthritic mice as well as CD11b + F4/80 + macrophage, CD11b + NK1.1 + natural killer cell and CD11b + CD11c + myeloid dendritic cell populations in both bone marrow and peripheral blood. In addition, arthritic mice had increased expression of tumour necrosis factor-α, interleukin-6, CC chemokine ligand-2 (Ccl2) and Ccl5, with increased migration and differentiation of circulatory OCPs in response to CCL2 and, particularly, CCL5 signals. Our study characterized the frequency and functional properties of OCPs under inflammatory conditions associated with arthritis, which may help to clarify crucial molecular signals provided by immune cells to mediate systemically enhanced osteoresorption. © 2016 British Society for Immunology.

  10. A role for PERK in the mechanism underlying fluoride-induced bone turnover

    International Nuclear Information System (INIS)

    Sun, Fei; Li, Xining; Yang, Chen; Lv, Peng; Li, Guangsheng; Xu, Hui

    2014-01-01

    While it has been well-documented that excessive fluoride exposure caused the skeletal disease and osteoblasts played a critical role in the advanced skeletal fluorosis, the underlying mechanism that mediated these effects remain poorly understood. The present study was undertaken to examine the effect of fluoride on bone of rats and MC3T3-E1 cells in vitro. Herein we found pathological features of high bone turnover in fluoride-treated rats, which was supported by an increase of osteogenic and osteoclastogenic genes expression in different stages of fluoride exposure. The skeletal toxicity of fluoride was accompanied by activation of endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR). A novel finding of this study was that expression of PKR-like endoplasmic reticulum kinase (PERK) was the same trend with receptor activator for nuclear factor-κ B ligand (RANKL), and NF-E2 p45-related factor 2 (Nrf2) was the same trend with Runt-related transcription factor 2 (Runx2) in bones of rats exposed to varied fluoride condition. Based on these data, we hypothesized that up-regulation of PERK probably played a role in mediating bone turnover induced by fluoride. Action of fluoride on MC3T3-E1 cells differentiation was demonstrated through analysis of alkaline phosphatase (ALP) activity and mineralized nodules formation. Meantime, an increase of binding immunoglobulin protein (BiP) expression indicated the active ER stress in cells exposed to various dose of fluoride. Blocking PERK expression using siRNA showed the obvious decrease of osteogenic and osteoclastogenic factors expression in MC3T3-E1 cells exposed to certain dose of fluoride that could positively stimulate osteoblastic viability. In conclusion these findings underscore the importance of PERK in modulating fluoride induced bone formation and bone resorption. Understanding the link between PERK and bone turnover could probe into the mechanism underlying different bone lesion of

  11. Denosumab for bone diseases: translating bone biology into targeted therapy.

    Science.gov (United States)

    Tsourdi, Elena; Rachner, Tilman D; Rauner, Martina; Hamann, Christine; Hofbauer, Lorenz C

    2011-12-01

    Signalling of receptor activator of nuclear factor-κB (RANK) ligand (RANKL) through RANK is a critical pathway to regulate the differentiation and activity of osteoclasts and, hence, a master regulator of bone resorption. Increased RANKL activity has been demonstrated in diseases characterised by excessive bone loss such as osteoporosis, rheumatoid arthritis and osteolytic bone metastases. The development and approval of denosumab, a fully MAB against RANKL, has heralded a new era in the treatment of bone diseases by providing a potent, targeted and reversible inhibitor of bone resorption. This article summarises the molecular and cellular biology of the RANKL/RANK system and critically reviews preclinical and clinical studies that have established denosumab as a promising novel therapy for metabolic and malignant bone diseases. We will discuss the potential indications for denosumab along with a critical review of safety and analyse its potential within the concert of established therapies.

  12. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  13. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    I-Ping Chen

    2014-12-01

    Full Text Available More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.

  14. Comparisons of orthodontic root resorption under heavy and jiggling reciprocating forces during experimental tooth movement in a rat model.

    Science.gov (United States)

    Hikida, Takuji; Yamaguchi, Masaru; Shimizu, Mami; Kikuta, Jun; Yoshino, Tomokazu; Kasai, Kazutaka

    2016-07-01

    Root mobility due to reciprocating movement of the tooth (jiggling) may exacerbate orthodontic root resorption (ORR). "Jiggling" describes mesiodistal or buccolingual movement of the roots of the teeth during orthodontic treatment. In the present study, buccolingual movement is described as "jiggling." We aimed to investigate the relationship between ORR and jiggling and to test for positive cell expression in odontoclasts in resorbed roots during experimental tooth movement (jiggling) in vivo. Male Wistar rats were divided into control, heavy force (HF), optimal force (OF), and jiggling force (JF) groups. The expression levels of cathepsin K, matrix metalloproteinase (MMP)-9 protein, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant 1 (CINC-1; an IL-8-related protein in rodents), receptor activator of nuclear factor κB ligand (RANKL), and osteoprotegerin protein in the dental root were determined using immunohistochemistry. On day 21, a greater number of root resorption lacunae, which contained multinucleated odontoclasts, were observed in the palatal roots of rats in the JF group than in rats from other groups. Furthermore, there was a significant increase in the numbers of cathepsin K-positive and MMP-9-positive odontoclasts in the JF group on day 21. Immunoreactivities for IL-6, CINC-1, and RANKL were stronger in resorbed roots exposed to jiggling than in the other groups on day 21. Negative reactivity was observed in the controls. These results suggest that jiggling may induce ORR via inflammatory cytokine production during orthodontic tooth movement, and that jiggling may be a risk factor for ORR.

  15. Osteoclasts prefer aged bone

    DEFF Research Database (Denmark)

    Henriksen, K; Leeming, Diana Julie; Byrjalsen, I

    2007-01-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling...... of aged bones....

  16. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-01-01

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-κB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory (i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6) and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min -1 , the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of 137 Cs γ rays (10 mGy min -1 ). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or 137 Cs γ rays, delivered at 10 mGy min -1 , was similar. Although statistically significant levels of NF-κB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p -1 induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  17. Cathepsin K expression and activity in canine osteosarcoma.

    Science.gov (United States)

    Schmit, J M; Pondenis, H C; Barger, A M; Borst, L B; Garrett, L D; Wypij, J M; Neumann, Z L; Fan, T M

    2012-01-01

    Cathepsin K (CatK) is a lysosomal protease with collagenolytic activity, and its secretion by osteoclasts is responsible for degrading organic bone matrix. People with pathologic bone resorption have higher circulating CatK concentrations. Canine osteosarcoma (OS) cells will possess CatK, and its secretion will be cytokine inducible. Circulating CatK concentrations will be increased in dogs with OS, and will be a surrogate marker of bone resorption. Fifty-one dogs with appendicular OS and 18 age- and weight-matched healthy control dogs. In a prospective study, expressions of CatK mRNA and protein were investigated in OS cells. The inducible secretion and proteolytic activity of CatK from OS cells was assessed in vitro. Serum CatK concentrations were quantified in normal dogs and dogs with OS and its utility as a bone resorption marker was evaluated in dogs with OS treated with palliative radiation and antiresorptive agents. Canine OS cells contain preformed CatK within cytoplasmic vesicles. In OS cells, TGFβ1 induced the secretion of CatK, which degraded bone-derived type I collagen in vitro. CatK concentrations were higher in dogs with OS than healthy dogs (11.3 ± 5.2 pmol/L versus 8.1 ± 5.0 pmol/L, P = .03). In a subset of dogs with OS, pretreatment CatK concentrations gradually decreased after palliative radiation and antiresorptive treatment, from 9.3 ± 3.2 pmol/L to 5.0 ± 3.1 pmol/L, P = .03. Canine OS is associated with pathologic bone resorption, and CatK inhibitors might aid in the management of canine OS-related malignant osteolysis. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  18. Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone

    NARCIS (Netherlands)

    Tami, A.E.; Leitner, M.M.; Baucke, M.G.; Mueller, T.L.; Lenthe, van G.H.; Müller, R.; Ito, K.

    2009-01-01

    In osteoporotic bones, resorption exceeds formation during the remodelling phase of bone turnover. As a consequence, decreased bone volume and bone contact result in the peri-implant region. This may subsequently lead to loss of fixation. In this study we investigated whether the presence of

  19. Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid.

    Science.gov (United States)

    Sirisoontorn, Irin; Hotokezaka, Hitoshi; Hashimoto, Megumi; Gonzales, Carmen; Luppanapornlarp, Suwannee; Darendeliler, M Ali; Yoshida, Noriaki

    2012-05-01

    The effect of zoledronic acid, a potent and novel bisphosphonate, on tooth movement and orthodontically induced root resorption in osteoporotic animals systemically treated with zoledronic acid as similarly used in postmenopausal patients has not been elucidated. Therefore, this study was undertaken. Fifteen 10-week-old female Wistar rats were divided into 3 groups: ovariectomy, ovariectomy + zoledronic acid, and control. Only the ovariectomy and ovariectomy + zoledronic acid groups underwent ovariectomies. Two weeks after the ovariectomy, zoledronic acid was administered only to the ovariectomy + zoledronic acid group. Four weeks after the ovariectomy, 25-g nickel-titanium closed-coil springs were applied to observe tooth movement and orthodontically induced root resorption. There were significant differences in the amounts of tooth movement and orthodontically induced root resorption between the ovariectomy and the control groups, and also between the ovariectomy and the ovariectomy + zoledronic acid groups. There was no statistically significant difference in tooth movement and orthodontically induced root resorption between the ovariectomy + zoledronic acid and the control groups. Zoledronic acid inhibited significantly more tooth movement and significantly reduced the severity of orthodontically induced root resorption in the ovariectomized rats. The ovariectomy + zoledronic acid group showed almost the same results as did the control group in both tooth movement and orthodontically induced root resorption. Zoledronic acid inhibits excessive orthodontic tooth movement and also reduces the risk of severe orthodontically induced root resorption in ovariectomized rats. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  20. Zoledronate induces apoptosis in cells from fibro-cellular membrane of unicameral bone cyst (UBC).

    Science.gov (United States)

    Yu, John; Chang, Seong-Sil; Suratwala, Sanjeev; Chung, Woo-Sik; Abdelmessieh, Peter; Lee, Hahn-Jun; Yang, Jay; Lee, Francis Young-In

    2005-09-01

    Unicameral bone cyst (UBC) is a benign cystic lesion in children which is prone to fracture. Various treatments are available, but recurrence after different types of percutaneous injection therapy can cause bone destruction and pathologic fracture. The potential therapeutic effects of anti-resorptive agents, such as bisphosphonates, have not been investigated for UBC. The objective of this study was to characterize the cells from the fibro-cellular membrane of unicameral bone cyst (UBC cells) and to determine whether zoledronate, a nitrogen-containing bisphosphonate, could induce apoptosis in UBC cells. Flow cytometry and immunoblotting were performed in order to determine whether zoledronate induced apoptosis. Cells derived from normal human trabecular bones were used as controls against UBC cells to compare the effect of zoledronate in inducing apoptosis. Immunohisto/cytochemistry (IHC/ICC) and mini-array analyses were performed on tissues and cultured cells. Isolated peripheral blood mononuclear cells were incubated with conditioned media from the UBC cells to determine whether they are capable of inducing osteoclastogenesis. UBC membrane is composed of cells staining positively with CD68, SDF-1, STRO-1 and RANKL, but in vitro cells showed no staining with antibodies to CD68 and STRO-1, suggesting that there was a clonal selection of stromal cells during cell culture. UBC cells also express RUNX2 (runt-related transcription factor-2, core binding factor-1), a key transcription factor for osteoblastic differentiation. In addition, media collected from UBC cells induced a generation of multi-nucleated osteoclast-like cells of peripheral blood mononuclear cells. Zoledronate induced apoptosis of UBC cells in a dose-dependent manner. Apoptosis was evidenced by induction of the active cleaved form of caspase-3. The baseline apoptotic fractions were similar in UBC cells and trabecular bone cells. However, in the overall apoptotic fractions in this study, trabecular

  1. Physical properties of root cementum: part 20. Effect of fluoride on orthodontically induced root resorption with light and heavy orthodontic forces for 4 weeks: a microcomputed tomography study.

    Science.gov (United States)

    Karadeniz, Ersan Ilsay; Gonzales, Carmen; Nebioglu-Dalci, Oyku; Dwarte, Dennis; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2011-11-01

    The major side effect of orthodontic treatment is orthodontically induced inflammatory root resorption. Fluoride was previously shown to reduce the volume of the root resorption craters in rats. However, the effect of fluoride on orthodontically induced inflammatory root resorption in humans has not yet been investigated. The aim of this study was to investigate the effect of high and low amounts of fluoride intake from birth on orthodontically induced inflammatory root resorption under light (25 g) and heavy (225 g) force applications. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from 2 cities in Turkey with high and low fluoride concentrations in the public water of ≥ 2 and ≤ 0.05 ppm, respectively. The patients were randomly separated into 4 groups of 12 each: group 1, high fluoride intake and heavy force; group 2, low fluoride intake and heavy force; group 3, high fluoride intake and light force; and group 4, low fluoride intake and light force. Light or heavy buccal tipping orthodontic forces were applied on the maxillary first premolars for 28 days. At day 28, the teeth were extracted, and the samples were analyzed with microcomputed tomography. Fluoride reduced the volume of root resorption craters in all groups; however, this effect was significantly different with high force application (P = 0.015). It was also found that light forces caused less root resorption than heavy forces. There was no statistical difference in the amount of root resorption observed on root surfaces (buccal, lingual, mesial, and distal) in all groups. However, the middle third of the roots showed the least root resorption. With high fluoride intake and heavy force application, less root resorption was found in all root surfaces and root thirds. Fluoride may reduce the volume of root resorption craters. This effect is significant with heavy force applications (P root showed significantly greater root

  2. Effects of Bone Marrow Mesenchymal Stem Cells-Conditioned Medium on Tibial Partial Osteotomy Model of Fracture Healing in Hypothyroidism Rats

    Science.gov (United States)

    Sefati, Niloofar; Norouzian, Mohsen; Abbaszadeh, Hojjat-Allah; Abdollahifar, Mohammad-Amin; Amini, Abdollah; Bagheri, Mohammad; Aryan, Arefeh; Fadaei Fathabady, Fatemeh

    2018-03-01

    Hypothyroidism is associated with dysfunction of the bone turnover with reduced osteoblastic bone formation and osteoclastic bone resorption. Mesenchyme stem cells (MSCs) secrete various factors and cytokines that may stimulate bone regeneration. The aim of this study was to determine the effects of MSCs-conditioned medium (CM) in hypothyroidism male rats after inducing bone defect. : In this study, 24 male rats were randomly assigned to three groups: (I) hypothyroidism+bone defect (HYPO), (II) hypothyroidism+bone defect+CM (HYPO+CM), and (III) no hypothyroidism+bone defect (control). Four weeks after surgery, the right tibia was removed, and immediately, biomechanical and histological examinations were performed. The results showed a significant reduction in bending stiffness (32.64±3.99), maximum force (14.63±1.89), high stress load (7.59±2.31), and energy absorption (12.68±2.12) at the osteotomy site in hypothyroidism rats in comparison to the control and hypothyroidism+condition medium groups (P<0.05). There was also a significant decrease in the trabecular bone volume (3.86±3.88) and the number of osteocytes (5800±859.8) at the osteotomy site in hypothyroidism rats compared to the control and hypothyroidism+condition medium groups (P<0.01 and P<0.02, respectively). The present study suggests that the use of the CM can improve the fracture regeneration and accelerates bone healing at the osteotomy site in hypothyroidism rats.

  3. Therapeutic effects of combined cytokines on hematopoietic injuries induced by 4.5 Gy γ-rays irradiation in beagles

    International Nuclear Information System (INIS)

    Zhao Jianzhi; Li Ming; Xing Shuang; Hu Zhiqing; Xiong Guolin; Xie Ling; Ou Hongling; Huang Haixiao; Zhao Zhenhu; Wang Ning; Wang Jinxiang; Miao Jingcheng; Zhu Nankang; Zhang Xueguang; Cong Yuwen; Zhang Ri; Luo Qingliang

    2010-01-01

    Objective: To observe the therapeutic effects of combined cytokines on hematopoietic injuries induced by 4.5 Gy 60 Co γ-rays irradiation in beagles, and to provide experimental evidences for the clinical treatment of extremely severe myeloid acute radiation sickness (ARS). Methods: 16 beagles were given 4.5 Gy 60 Co γ-rays total body irradiation, and then randomly assigned into irradiation control group, supportive care group and cytokines group. In addition to supportive care, recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human interleukin-11 (rhIL-11) and recombinant human interleukin-2 (rhIL-2) were administered subcutaneouly to dogs in cytokines group. Peripheral blood hemogram was examined once every two days. Bone marrow and peripheral blood were collected to proceed colony cultivation 4 d pre-irradiation and 1 and 45 d post-irradiation. Conventional histopathological sections sternum were prepared to observe the histomorphology changes. Results: After irradiation, the population of all kinds of cells in peripheral blood declined sharply. WBC nadir was elevated (1.04 x 10 9 /L, but 0.28 x 10 9 /L and 0.68 x 10 9 /L for the irradiation control group and the supportive care group separately), the duration of thrombocytopenia was shortened (24 days, but 33 days for the supportive care group) and red blood cell counts were maintained in the range of normal values after cytokines treatment in combination. The colony forming efficiency of haemopoietic stem cells (HSCs) in bone marrow and peripheral blood decreased obviously 1 d post irradiation, but recovered to the level of that before irradiation 45 d post irradiation after supportive care and cytokines treatment. Hematopoietic cells disappeared in bone marrow of animals in irradiation control group, but hematopoietic functions were recovered after cytokines were administrated. Conclusions: RhG-CSF, rhIL-11 and rhIL-2 used in combination could elevate WBC nadir, accelerate the

  4. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  5. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Science.gov (United States)

    SCHWARTZ, João Paulo; RAVELI, Taísa Boamorte; ALMEIDA, Kélei Cristina de Mathias; SCHWARTZ-FILHO, Humberto Osvaldo; RAVELI, Dirceu Barnabé

    2015-01-01

    Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT). Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years) with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0) and after Herbst treatment (T1). All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%. Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders. Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance. PMID:26537718

  6. Cone beam computed tomography study of apical root resorption induced by Herbst appliance

    Directory of Open Access Journals (Sweden)

    João Paulo SCHWARTZ

    2015-10-01

    Full Text Available Objective This study evaluated the frequency of root resorption during the orthodontic treatment with Herbst appliance by Cone Beam Computed Tomography (CBCT.Material and Methods The sample comprised 23 patients (11 men, 12 women; mean ages 15.76±1.75 years with Class II division 1 malocclusion, treated with Herbst appliance. CBCT was obtained before treatment (T0 and after Herbst treatment (T1. All the dental roots, except third molars, were evaluated, and apical root resorption was determined using the axial guided navigation method. Paired t-tests and Wilcoxon T Test were used to compare the dependent samples in parametric and nonparametric cases, respectively. Chi-Square Test with Yates’ correction was used to evaluate the relationship between apical root resorption and gender. Results were considered at a significance level of 5%.Results Apical resorption was detected by CBCT in 57.96% of 980 roots that underwent Herbst appliance treatment. All patients had minimal resorption and there was no statistical significance between the genders.Conclusion CBCT three-dimensional evaluation showed association between Herbst appliance and minimal apical root resorption, mostly in the anchoring teeth, without clinical significance.

  7. Sodium and bone health

    DEFF Research Database (Denmark)

    Teucher, B.; Dainty, J. R.; Spinks, C. A.

    2008-01-01

    High salt intake is a well-recognized risk factor for osteoporosis because it induces calciuria, but the effects of salt on calcium metabolism and the potential impact on bone health in postmenopausal women have not been fully characterized. This study investigated adaptive mechanisms in response.......9 Versus 11.2 g) diets, reflecting lower and upper intakes in post men opausal women consuming a Western-style diet, were provided. Stable isotope labeling techniques were used to measure calcium absorption and excretion, compartmental modeling was undertaken to estimate bone calcium balance......, and biomarkers of bone formation and resorption were measured in blood and urine. Moderately high salt intake (11.2 g/d) elicited a significant increase in urinary calcium excretion (p = 0.0008) and significantly affected bone calcium balance with the high calcium diet 0.024). Efficiency of calcium absorption...

  8. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2004-06-15

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  9. Effect of irradiation on the temporomandibular joint in streptozotocin-induced diabetic rat

    International Nuclear Information System (INIS)

    Ahn, Ki Dong; Hwang, Eui Hwan; Lee, Sang Rae

    2004-01-01

    To investigate the histopathological changes in the temporomandibular joint in streptozotocin-induced diabetic rat following irradiation. Sprague-Dawley rats weighing about 250 gm were divided into three groups: control, diabetic, and diabetic-irradiated groups. Diabetes mellitus was induced in the rats by injecting streptozotocin. Rats in the control group were injected with citrate buffer only. After 5 days, the head and neck region of the rats in diabetic-irradiated group were irradiated with single absorbed dose of 10 Gy. The rats were killed at 1, 3, 7, 14, 21, and 28 days after irradiation. The specimen including the temporomandibular joint were sectioned and observed using a histopathological method. In the diabetic group, severe bone resorption in the mandibular condyle was observed throughout the period of experiment. Necrosis of bone marrow and trabeculae was observed at 28 days after diabetic state. Atrophy and fibrosis in the retrodiscal tissue was gradually progressed during the time of the experiment. In the diabetic-irradiated group, severe bone resorption in the mandibular condyle was observed during the early experimental phases, but regeneration of bone marrow was initiated at 14 days after diabetic state and irradiation. Also, calcification of abnormal trabeculae was observed at 28 days after diabetic state and irradiation. The retrodiscal tissue was degenerated in the early experimental phases, but it had been gradually regenerated during the experimental time. This experiment suggests that bone resorption and degeneration in the mandibular condyle are caused by the induction of diabetes, and abnormal bone formation is induced after irradiation in diabetic state.

  10. In vitro and in vivo investigation of bisphosphonate-loaded hydroxyapatite particles for peri-implant bone augmentation.

    Science.gov (United States)

    Kettenberger, Ulrike; Luginbuehl, Vera; Procter, Philip; Pioletti, Dominique P

    2017-07-01

    Locally applied bisphosphonates, such as zoledronate, have been shown in several studies to inhibit peri-implant bone resorption and recently to enhance peri-implant bone formation. Studies have also demonstrated positive effects of hydroxyapatite (HA) particles on peri-implant bone regeneration and an enhancement of the anti-resorptive effect of bisphosphonates in the presence of calcium. In the present study, both hydroxyapatite nanoparticles (nHA) and zoledronate were combined to achieve a strong reinforcing effect on peri-implant bone. The nHA-zoledronate combination was first investigated in vitro with a pre-osteoclastic cell assay (RAW 264.7) and then in vivo in a rat model of postmenopausal osteoporosis. The in vitro study confirmed that the inhibitory effect of zoledronate on murine osteoclast precursor cells was enhanced by loading the drug on nHA. For the in vivo investigation, either zoledronate-loaded or pure nHA were integrated in hyaluronic acid hydrogel. The gels were injected in screw holes that had been predrilled in rat femoral condyles before the insertion of miniature screws. Micro-CT-based dynamic histomorphometry and histology revealed an unexpected rapid mineralization of the hydrogel in vivo through formation of granules, which served as scaffold for new bone formation. The delivery of zoledronate-loaded nHA further inhibited a degradation of the mineralized hydrogel as well as a resorption of the peri-implant bone as effectively as unbound zoledronate. Hyaluronic acid with zoledronate-loaded nHA, thanks to its dual effect on inducing a rapid mineralization and preventing resorption, is a promising versatile material for bone repair and augmentation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. A Comparison between the Effects of Aerobic Dance Training on Mini-Trampoline and Hard Wooden Surface on Bone Resorption, Health-Related Physical Fitness, Balance, and Foot Plantar Pressure in Thai Working Women.

    Science.gov (United States)

    Sukkeaw, Wittawat; Kritpet, Thanomwong; Bunyaratavej, Narong

    2015-09-01

    To compare the effects of aerobic dance training on mini-trampoline and hard wooden surface on bone resorption, health-related physical fitness, balance, and foot plantar pressure in Thai working women. Sixty-three volunteered females aged 35-45 years old participated in the study and were divided into 3 groups: A) aerobic dance on mini-trampoline (21 females), B) aerobic dance on hard wooden surface (21 females), and C) control group (21 females). All subjects in the aerobic dance groups wore heart rate monitors during exercise. Aerobic dance worked out 3 times a week, 40 minutes a day for 12 weeks. The intensity was set at 60-80% of the maximum heart rate. The control group engaged in routine physical activity. The collected data were bone formation (N-terminal propeptine of procollagen type I: P1NP) bone resorption (Telopeptide cross linked: β-CrossLaps) health-related physical fitness, balance, and foot plantar pressure. The obtained data from pre- and post trainings were compared and analyzed by paired samples t-test and one way analysis of covariance. The significant difference was at 0.05 level. After the 12-week training, the biochemical bone markers of both mini-trampoline and hard wooden surface aerobic dance training subjects decreased in bone resorption (β-CrossLaps) but increased in boneformation (P1NP). Health-related physical fitness, balance, and foot plantar pressure were not only better when comparing to the pre-test result but also significantly different when comparing to the control group (p trampoline showed that leg muscular strength, balance and foot plantar pressure were significantly better than the aerobic dance on hard wooden surface (p trampoline and hard wooden surface had positive effects on biochemical bone markers. However, the aerobic dance on mini-trampoline had more leg muscular strength and balance including less foot plantar pressure. It is considered to be an appropriate exercise programs in working women.

  12. Twenty Years of Research on Cytokine-Induced Sickness Behavior*

    Science.gov (United States)

    Dantzer, Robert; Kelley, Keith W.

    2007-01-01

    Cytokine-induced sickness behavior was recognized within a few years of the cloning and expression of interferon-α, IL-1 and IL-2, which occurred around the time that the first issue of Brain, Behavior, and Immunity was published in 1987. Phase I clinical trials established that injection of recombinant cytokines into cancer patients led to a variety of psychological disturbances. It was subsequently shown that physiological concentrations of proinflammatory cytokines that occur after infection act in the brain to induce common symptoms of sickness, such as loss of appetite, sleepiness, withdrawal from normal social activities, fever, aching joints and fatigue. This syndrome was defined as sickness behavior and is now recognized to be part of a motivational system that reorganizes the organism's priorities to facilitate recovery from the infection. Cytokines convey to the brain that an infection has occurred in the periphery, and this action of cytokines can occur via the traditional endocrine route via the blood or by direct neural transmission via the afferent vagus nerve. The finding that sickness behavior occurs in all mammals and birds indicates that communication between the immune system and brain has been evolutionarily conserved and forms an important physiological adaptive response that favors survival of the organism during infections. The fact that cytokines act in the brain to induce physiological adaptations that promote survival has led to the hypothesis that inappropriate, prolonged activation of the innate immune system may be involved in a number of pathological disturbances in the brain, ranging from Alzheimers' disease to stroke. Conversely, the newly-defined role of cytokines in a wide variety of systemic co-morbid conditions, ranging from chronic heart failure to obesity, may begin to explain changes in the mental state of these subjects. Indeed, the newest findings of cytokine actions in the brain offer some of the first clues about the

  13. Root resorption

    DEFF Research Database (Denmark)

    Kjaer, Inger

    2014-01-01

    Introduction: This paper summarizes the different conditions, which have a well-known influence on the resorption of tooth roots, exemplified by trauma and orthodontic treatment. The concept of the paper is to summarize and explain symptoms and signs of importance for avoiding resorption during...... orthodontic treatment. The Hypothesis: The hypothesis in this paper is that three different tissue layers covering the root in the so-called periroot sheet can explain signs and symptoms of importance for avoiding root resorption during orthodontic treatment. These different tissue layers are; outermost...... processes provoked by trauma and orthodontic pressure. Inflammatory reactions are followed by resorptive processes in the periroot sheet and along the root surface. Evaluation of the Hypothesis: Different morphologies in the dentition are signs of abnormal epithelium or an abnormal mesodermal layer. It has...

  14. Dynamic alterations of bone marrow cytokine landscape of myelodysplastic syndromes patients treated with 5-azacytidine

    Czech Academy of Sciences Publication Activity Database

    Moudra, A.; Hubackova, Sona; Machalova, V.; Vančurová, M.; Bartek, J.; Reinis, M.; Hodny, Z.; Jonasova, A.

    2016-01-01

    Roč. 5, č. 10 (2016), č. článku e1183860. ISSN 2162-402X Institutional support: RVO:86652036 Keywords : 5-azacytidine * DNA damage * cytokines * bone marrow plasma Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  15. Astronaut Bones: Stable Calcium Isotopes in Urine as a Biomarker of Bone Mineral Balance

    Science.gov (United States)

    Skulan, J.; Gordon, G. W.; Romaniello, S. J.; Anbar, A. D.; Smith, S. M.; Zwart, S.

    2016-12-01

    Bone loss is a common health concern, in conditions ranging from osteoporosis to cancer. Bone loss due to unloading is also an important health issue for astronauts. We demonstrate stable calcium isotopes, a tool developed in geochemistry, are capable of detecting real-time quantitative changes in net bone mineral balance (BMB) using serum and urine [1]. We validated this technique by comparing with DEXA and biomarker data in subjects during bed rest, a ground-based analog of space flight effects [2-4]. We now apply this tool to assess changes in astronauts' BMB before, during and after 4-6 month space missions. There is stable isotope fractionation asymmetry between bone formation and resorption. During bone formation there is a mass-dependent preference for "lighter" calcium isotopes to be removed from serum and incorporated into bone mineral. During bone resorption, there is no measurable isotopic discrimination between serum and bone. Hence, when bone formation rates exceed that of resorption, serum and urine become isotopically "heavy" due to the sequestration of "light" calcium in bone. Conversely, when bone resorption exceeds bone formation, serum and urine become isotopically "light" due to the release of the sequestered light calcium from bone. We measured Ca isotopes in urine of thirty International Space Station astronauts. Average Ca isotope values in astronauts' urine shift isotopically lighter during microgravity, consistent with negative net BMB. Within a month of return to Earth, astronauts returned to within error of their δ44Ca value prior to departure. Urine samples from astronauts testing bone loss countermeasures showed bisphosphonates provide a viable pharmacological countermeasure. Some, but not all, individuals appear able to resist bone loss through diet and intensive resistive exercise alone. This is a promising new technique for monitoring BMB in astronauts, and hopefully someday on the way to/from Mars, this also has important clinical

  16. Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption.

    Science.gov (United States)

    Pereira, S; Lavado, N; Nogueira, L; Lopez, M; Abreu, J; Silva, H

    2014-10-01

    Orthodontic-induced external apical root resorption (EARR) is a complex phenotype determined by poorly defined mechanical and patient intrinsic factors. The aim of this work was to construct a multifactorial integrative model, including clinical and genetic susceptibility factors, to analyze the risk of developing this common orthodontic complication. This retrospective study included 195 orthodontic patients. Using a multiple-linear regression model, where the dependent variable was the maximum% of root resorption (%EARRmax) for each patient, we assessed the contribution of nine clinical variables and four polymorphisms of genes involved in bone and tooth root remodeling (rs1718119 from P2RX7, rs1143634 from IL1B, rs3102735 from TNFRSF11B, encoding OPG, and rs1805034 from TNFRSF11A, encoding RANK). Clinical and genetic variables explained 30% of%EARRmax variability. The variables with the most significant unique contribution to the model were: gender (P < 0.05), treatment duration (P < 0.001), premolar extractions (P < 0.01), Hyrax appliance (P < 0.001) and GG genotype of rs1718119 from P2RX7 gene (P < 0.01). Age, overjet, tongue thrust, skeletal class II and the other polymorphisms made minor contributions. This study highlights the P2RX7 gene as a possible factor of susceptibility to EARR. A more extensive genetic profile may improve this model. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model

    Science.gov (United States)

    Kwak, Jinny; Zara, Janette N.; Chiang, Michael; Ngo, Richard; Shen, Jia; James, Aaron W.; Le, Khoi M.; Moon, Crystal; Zhang, Xinli; Gou, Zhongru; Ting, Kang

    2013-01-01

    Over 10 million Americans have osteoporosis, and is the predominant cause of fractures in the elderly. Treatment of fractures in the setting of osteoporosis is complicated by a suboptimal bone regenerative response due to a decline in the number of osteoblasts, their function, and survival. Consequently, an osteogenic therapeutic to prevent and treat fractures in patients with osteoporosis is needed. Nel-like molecule-1 (NELL-1), a novel osteoinductive growth factor, has been shown to promote bone regeneration. In this study, we aim to demonstrate the capacity of recombinant NELL-1 to prevent ovariectomy (OVX)-induced osteoporosis in a senile rat model. Ten-month-old female Sprague-Dawley rats underwent either sham surgery or OVX. Subsequently, 50 μL of 600 μg/mL NELL-1 lyophilized onto a 0–50-μm tricalcium phosphate (TCP) carrier was injected into the femoral bone marrow cavity while phosphate-buffered saline (PBS) control was injected into the contralateral femur. Our microcomputed tomography results showed that OVX+PBS/TCP control femurs showed a continuous decrease in the bone volume (BV) and bone mineral density (BMD) from 2 to 8 weeks post-OVX. In contrast, OVX+NELL-1/TCP femurs showed resistance to OVX-induced bone resorption showing BV and BMD levels similar to that of SHAM femurs at 8 weeks post-OVX. Histology showed increased endosteal-woven bone, as well as decreased adipocytes in the bone marrow of NELL-1-treated femurs compared to control. NELL-1-treated femurs also showed increased immunostaining for bone differentiation markers osteopontin and osteocalcin. These findings were validated in vitro, in which addition of NELL-1 in OVX bone marrow stem cells resulted in increased osteogenic differentiation. Thus, NELL-1 effectively enhances in situ osteogenesis in the bone marrow, making it potentially useful in the prevention and treatment of osteoporotic fractures. PMID:23083222

  18. External cervical resorption: diagnostic and treatment tips

    Directory of Open Access Journals (Sweden)

    Alberto Consolaro

    Full Text Available ABSTRACT External cervical resorption is caused, almost exclusively, by dental trauma - especially those characterized by concussion - and is a dental disease to be diagnosed and treated accurately by endodontists. However, the vast majority of the cases is initially diagnosed by an orthodontist, due to the imaging possibilities in standardized documentations. Among the causes of external cervical resorption, it is common to mistakenly attribute it to orthodontic treatment, traumatic occlusion or even to chronic inflammatory periodontal disease. External cervical resorption is associated to dental trauma in several situations mentioned in this paper. In old cases, and eventually still nowadays, it may have been induced by internal tooth bleaching, which is increasingly less frequent in endodontically treated teeth. There are some tips to be followed and some care that must be taken during the diagnosis and treatment of external cervical resorption clinical cases. The present study lists foundations that will allow the professional to perform safely and accurately in each specific case. Some of these tips and care measures are of orthodontic nature.

  19. Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis.

    Science.gov (United States)

    Armour, K J; Armour, K E; van't Hof, R J; Reid, D M; Wei, X Q; Liew, F Y; Ralston, S H

    2001-12-01

    Osteoporosis is a major clinical problem in chronic inflammatory diseases such as rheumatoid arthritis. The mechanism of bone loss in this condition remains unclear, but previous studies have indicated that depressed bone formation plays a causal role. Since cytokine-induced nitric oxide (NO) production has been shown to inhibit osteoblast growth and differentiation in vitro, this study was undertaken to investigate the role of the inducible NO synthase (iNOS) pathway in the pathogenesis of inflammation-mediated osteoporosis (IMO) by studying mice with targeted inactivation of the iNOS gene (iNOS knockout [iNOS KO] mice). IMO was induced in wild-type (WT) and iNOS KO mice by subcutaneous injections of magnesium silicate. The skeletal response was assessed at the tibial metaphysis by measurements of bone mineral density (BMD), using peripheral quantitative computed tomography, by bone histomorphometry, and by measurements of bone cell apoptosis. NO production increased 2.5-fold (P < 0.005) in WT mice with IMO, but did not change significantly in iNOS KO mice. Total BMD values decreased by a mean +/- SEM of 14.4+/-2.0% in WT mice with IMO, compared with a decrease of 8.6+/-1.2% in iNOS KO mice with IMO (P < 0.01). Histomorphometric analysis confirmed that trabecular bone volume was lower in WT mice with IMO compared with iNOS KO mice with IMO (16.2+/-1.5% versus 23.4+/-2.6%; P < 0.05) and showed that IMO was associated with reduced bone formation and a 320% increase in osteoblast apoptosis (P < 0.005) in WT mice. In contrast, iNOS KO mice with IMO showed less inhibition of bone formation than WT mice and showed no significant increase in osteoblast apoptosis. Inducible NOS-mediated osteoblast apoptosis and depressed bone formation play important roles in the pathogenesis of IMO.

  20. Bone resorptive activity in symptomatic and asymptomatic apical lesions of endodontic origin.

    Science.gov (United States)

    Salinas-Muñoz, M; Garrido-Flores, M; Baeza, M; Huamán-Chipana, P; García-Sesnich, J; Bologna, R; Vernal, R; Hernández, M

    2017-11-01

    The aim of this study is to assess the levels and diagnostic accuracy of a set of bone resorption biomarkers, including TRAP-5, RANKL, and OPG in symptomatic and asymptomatic apical lesions and controls. Apical tissues from symptomatic and asymptomatic apical periodontitis patients and periodontal ligaments from healthy teeth extracted for orthodontic reasons were processed for tissue homogenization and the levels of TRAP-5, RANKL, and OPG were determined by multiplex assay. Marker levels were analyzed by Kruskal Wallis test, and diagnostic accuracy was analyzed with ROC curves. Higher levels of RANKL, OPG, and RANKL/OPG ratio were determined in both types of apical lesions compared to healthy periodontal ligament, whereas higher TRAP-5 levels were found only in symptomatic apical lesions (p apical lesions versus healthy controls (AUC = 0.69, p asymptomatic apical periodontitis (AUC = 0.71, p Apical lesions showed higher RANKL and OPG levels than healthy tissues. TRAP-5 levels were the highest in symptomatic apical lesions, suggesting that these represent a progressive state, and showed diagnostic potential. Clinically symptomatic apical periodontitis might represent biologically progressive apical lesions based on TRAP5 levels. TRAP5 has diagnostic potential to identify these lesions, representing a candidate prognostic biomarker.

  1. Cytokines, growth, and environment factors in bone marrow plasma of acute lymphoblastic leukemia pediatric patients

    Czech Academy of Sciences Publication Activity Database

    Kováč, M.; Vášková, M.; Petráčková, Denisa; Pelková, V.; Mejstříková, E.; Kalina, T.; Žaliová, M.

    2014-01-01

    Roč. 25, č. 1 (2014), s. 8-13 ISSN 1148-5493 R&D Projects: GA MZd NR9531 Institutional support: RVO:61388971 Keywords : pediatric acute lymphoblastic leukemia * bone marrow plasma * cytokine Subject RIV: CE - Biochemistry Impact factor: 1.960, year: 2014

  2. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Ding, Ming; Overgaard, Søren

    2015-01-01

    Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss...... in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research........ Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6mg/kg/day, 5 times weekly) for 7months. At 7months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed...

  3. [Bone remodeling and modeling/mini-modeling.

    Science.gov (United States)

    Hasegawa, Tomoka; Amizuka, Norio

    Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.

  4. Conservative Management of Invasive Cervical Resorption: A Case Report

    Directory of Open Access Journals (Sweden)

    Farhan Raza Khan

    2013-01-01

    Full Text Available Invasive cervical resorption is a condition that affects the root surface area below the epithelial attachment. Multiple treatment modalities are advocated, involving exposure of the invasive defect, removal of the granulation tissue and sealing with various restorative materials. This report demonstrates conservative treatment of a patient presenting with peri-apical periodontitis in upper right central and lateral incisors, along with Class II invasive resorption defect cervically on the mesial aspect of the central incisor, as a result of trauma. As the patient was not willing for any surgical intervention, only ortho-grade root canal treatment was carried out in both teeth, with Calcium hydroxide as intra-canal medicament. At three year follow-up, the patient remains asymptomatic demonstrating radiographic evidence of infilling of defect with bone-like tissue.Within the limitations of this report, it was seen that this conservative method for halting the progression of invasive cervical resorption could be under taken in patients who are un-willing for surgical intervention or in whom surgery is contra-indicated.

  5. Estrogen directly attenuates human osteoclastogenesis, but has no effect on resorption by mature osteoclasts

    DEFF Research Database (Denmark)

    Sørensen, M G; Henriksen, K; Dziegiel, Morten Hanefeld

    2006-01-01

    + monocytes were cultured in the presence of M-CSF and RANKL to induce osteoclast differentiation. Addition of 0.1-10 nM 17beta-estradiol to differentiating osteoclasts resulted in a dose-dependent reduction in tartrate resistant acid phosphatase (TRACP) activity reaching 60% at 0.1 nM. In addition, 17beta-estradiol...... inhibited bone resorption, as measured by the release of the C-terminal crosslinked telopeptide (CTX), by 60% at 0.1 nM, but had no effect on the overall cell viability. In contrast to the results obtained with differentiating osteoclasts, addition of 17beta-estradiol (0.001-10 nM) to mature osteoclasts did...

  6. Expression of RANKL/OPG during bone remodeling in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H., E-mail: tnk@ymghp.jp [Department of Orthopedic Surgery, Yamaguchi Grand Medical Center, 77 Ohsaki, Hofu, Yamaguchi 747-8511 (Japan); Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); Mine, T. [Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Ogasa, H. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Taguchi, T. [Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Liang, C.T. [Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224 (United States); National Health Research Institutes, Taipei 115, Taiwan (China)

    2011-08-12

    Highlights: {yields} This is the first study to determine the relationship between osteogenic differentiation and RANKL/OPG expression during bone remodeling in vivo. {yields} The OPG expression peak occurred during the bone formation phase, whereas the marked elevation of RANKL expression was observed during the bone resorption phase. {yields} Histological analysis showed that RANKL/OPG immunoreactivity was predominantly associated with bone marrow cells in the marrow cavity. {yields} The present study confirmed that RANKL/OPG are key factors linking bone formation to resorption during the bone remodeling process. -- Abstract: The interaction between receptor activator of nuclear factor {kappa}B ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation. Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen {alpha}1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The

  7. Expression of RANKL/OPG during bone remodeling in vivo

    International Nuclear Information System (INIS)

    Tanaka, H.; Mine, T.; Ogasa, H.; Taguchi, T.; Liang, C.T.

    2011-01-01

    Highlights: → This is the first study to determine the relationship between osteogenic differentiation and RANKL/OPG expression during bone remodeling in vivo. → The OPG expression peak occurred during the bone formation phase, whereas the marked elevation of RANKL expression was observed during the bone resorption phase. → Histological analysis showed that RANKL/OPG immunoreactivity was predominantly associated with bone marrow cells in the marrow cavity. → The present study confirmed that RANKL/OPG are key factors linking bone formation to resorption during the bone remodeling process. -- Abstract: The interaction between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation. Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen α1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The expression of bone formation

  8. A novel use of 3D printing model demonstrates the effects of deteriorated trabecular bone structure on bone stiffness and strength.

    Science.gov (United States)

    Barak, Meir Max; Black, Margaret Arielle

    2018-02-01

    Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Calcium homestasis markers of bone metabolism in feline hyperthyroidism - A review

    OpenAIRE

    Cardoso, M. J L; Muniz, L. M R [UNESP; Gasparini, T. J.; Melussi, M.

    2007-01-01

    Hyperthyroidism is the most frequent endocrine disease in old-aged cats. It is a illness provoked by the excess of circulating thyroid hormones. Hyperthyroidism causes alteration in bone metabolism with predominance of activity resorption. The evaluation of bone metabolism can be made by measuring serum and urinary markers of bone metabolism or bone mineral densitometry. Osteoblasts are responsible cells for bone formation while the osteoclasts are for resorption. In physiological situation o...

  10. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Nagaya, Yoshiaki; Asai, Hayato; Hussein, Mohamed Hamed; Suzuki, Mieko; Kato, Shin; Saitoh, Shinji; Asai, Kiyofumi

    2013-01-01

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N G -monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for IAE

  11. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  12. Effects of Cinnamoyloxy-mammeisin from Geopropolis on Osteoclast Differentiation and Porphyromonas gingivalis-Induced Periodontitis.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Ramos-Junior, Erivan Schnaider; Franchin, Marcelo; Taira, Thaise Mayumi; Beutler, John A; Franco, Gilson Cesar Nobre; Ikegaki, Masaharu; de Alencar, Severino Matias; Fukada, Sandra Yasuyo; Rosalen, Pedro Luiz

    2017-06-23

    Bone-loss-related diseases such as rheumatoid arthritis, osteomyelitis, osteoporosis, and periodontitis are associated with high rates of morbidity worldwide. These disorders are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. In this context, we evaluated the effect of cinnamoyloxy-mammeisin (CNM), an anti-inflammatory coumarin found in Melipona scutellaris geopropolis, on key targets related to bone remodeling. In the present study we investigated the in vitro effects of CNM on osteoclast differentiation and M-CSF+RANKL-induced osteoclastogenic marker expression. Additionally, the interference of CNM treatment on osteoclast activity was evaluated by zymography and resorption area. Finally, we assessed the capacity of the compound to mitigate alveolar bone loss in vivo in experimental murine periodontitis induced by Porphyromonas gingivalis. We observed that treatment with CNM impaired osteoclast differentiation, as evidenced by a reduced number of tartrate-resistant acid-phosphatase-positive multinucleated cells (TRAP+) as well as the expression of osteoclastogenic markers upon M-CSF+RANKL-induced stimulation. Similarly, we observed reduced gelatinolytic and resorption capacity in M-CSF+RANKL-induced cells in vitro. Lastly, CNM attenuated alveolar bone loss in an experimental murine periodontitis model. These findings indicate that CNM may be considered a promising treatment for bone loss diseases.

  13. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus.

    Directory of Open Access Journals (Sweden)

    Masuma Khatun

    Full Text Available Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs and endometrial fibroblasts (eSFs.The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS-induced state.Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF-A, stromal cell-derived factor-1 alpha (SDF-1α, interleukin-1 receptor antagonist (IL-1RA, IL-6, interferon-gamma inducible protein (IP-10, monocyte chemoattractant protein (MCP-1, macrophage inflammatory protein (MIP1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs.Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed

  14. Prevention of inflammation-mediated bone loss in murine and canine periodontal disease via recruitment of regulatory lymphocytes.

    Science.gov (United States)

    Glowacki, Andrew J; Yoshizawa, Sayuri; Jhunjhunwala, Siddharth; Vieira, Andreia E; Garlet, Gustavo P; Sfeir, Charles; Little, Steven R

    2013-11-12

    The hallmark of periodontal disease is the progressive destruction of gingival soft tissue and alveolar bone, which is initiated by inflammation in response to an invasive and persistent bacterial insult. In recent years, it has become apparent that this tissue destruction is associated with a decrease in local regulatory processes, including a decrease of forkhead box P3-expressing regulatory lymphocytes. Accordingly, we developed a controlled release system capable of generating a steady release of a known chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22), composed of a degradable polymer with a proven track record of clinical translation, poly(lactic-co-glycolic) acid. We have previously shown that this sustained presentation of CCL22 from a point source effectively recruits regulatory T cells (Tregs) to the site of injection. Following administration of the Treg-recruiting formulation to the gingivae in murine experimental periodontitis, we observed increases in hallmark Treg-associated anti-inflammatory molecules, a decrease of proinflammatory cytokines, and a marked reduction in alveolar bone resorption. Furthermore, application of the Treg-recruiting formulation (fabricated with human CCL22) in ligature-induced periodontitis in beagle dogs leads to reduced clinical measures of inflammation and less alveolar bone loss under severe inflammatory conditions in the presence of a diverse periodontopathogen milieu.

  15. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Manzanares-Céspedes, Maria Cristina; Sevilla, Pablo; Nart, José; Manzanares, Norberto; Manero, José M.; Gil, Francisco Javier; Boyd, Steven K.; Rodríguez, Daniel

    2016-01-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  16. Evaluation of bone loss in antibacterial coated dental implants: An experimental study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria [Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby (Denmark); Manzanares-Céspedes, Maria Cristina [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Sevilla, Pablo [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), Barcelona (Spain); Nart, José [Department of Periodontology, School of Dentistry, Universitat Internacional de Catalunya, Sant Cugat (Spain); Manzanares, Norberto [Unidad de Anatomía y Embriología Humana, Faculty of Dentistry, University of Barcelona, Barcelona (Spain); Manero, José M. [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain); Gil, Francisco Javier [Universitat Internacional de Catalunya, Sant Cugat (Spain); Boyd, Steven K. [McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta (Canada); Rodríguez, Daniel, E-mail: daniel.rodriguez.rius@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Dept. Materials Science and Metallurgical Engineering, Technical University of Catalonia (UPC-BarcelonaTECH), Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), UPC-BarcelonaTECH, Barcelona (Spain)

    2016-12-01

    The aim of this study was to evaluate the in vivo effect of antibacterial modified dental implants in the first stages of peri-implantitis. Thirty dental implants were inserted in the mandibular premolar sites of 5 beagle dogs. Sites were randomly assigned to Ti (untreated implants, 10 units), Ti-Ag (silver electrodeposition treatment, 10 units), and Ti-TSP (silanization treatment, 10 units). Coated implants were characterized by scanning electron microscopy, interferometry and X-ray photoelectron spectroscopy. Two months after implant insertion, experimental peri-implantitis was initiated by ligature placement. Ligatures were removed 2 months later, and plaque formation was allowed for 2 additional months. Clinical and radiographic analyses were performed during the study. Implant-tissue samples were prepared for micro computed tomography, backscattered scanning electron microscopy, histomorphometric and histological analyses and ion release measurements. X-ray, SEM and histology images showed that vertical bone resorption in treated implants was lower than in the control group (P < 0.05). This effect is likely due to the capacity of the treatments to reduce bacteria colonization on the implant surface. Histological analysis suggested an increase of peri-implant bone formation on silanized implants. However, the short post-ligature period was not enough to detect differences in clinical parameters among implant groups. Within the limits of this study, antibacterial surface treatments have a positive effect against bone resorption induced by peri-implantitis. - Highlights: • Dental implants were modified with two antibacterial treatments, silver and TESPSA silanization. • Performance of the modified dental implants was studied in vivo. • Treated implants showed less peri-implant bone resorption. • Decrease in bone resorption was attributed to the antibacterial surface treatments. • Silane treatment enhanced bone regeneration around dental implants.

  17. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Caiazza, S.; Falcinelli, G.; Pintucci, S. (Istituto Superiore di Sanita, Rome (Italy))

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized.

  18. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized

  19. Osteoclasts from patients with autosomal dominant osteopetrosis type I caused by a T253I mutation in low-density lipoprotein receptor-related protein 5 are normal in vitro, but have decreased resorption capacity in vivo

    DEFF Research Database (Denmark)

    Henriksen, Kim; Gram, Jeppe; Høegh-Andersen, Pernille

    2005-01-01

    of osteoclast markers, morphology, and localization of proteins involved in bone resorption, such as ClC-7 and cathepsin K. The ability to resorb bone was also normal. In vivo, we compared the bone resorption and bone formation response to T3 in ADOI patients and age- and sex-matched controls. We found...

  20. DON-induced changes in bone homeostasis in mink dams

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2017-09-01

    Full Text Available Introduction: The aim of the study was to investigate the mechanical and geometric properties as well as bone tissue and mineral density of long bones in mink dams exposed to deoxynivalenol (DON since one day after mating, throughout gestation (ca. 46 d and lactation to pelt harvesting. Material and Methods: Thirty clinically healthy multiparous minks (Neovison vison of the standard dark brown type were used. After the mating, the minks were randomly assigned into two equal groups: nontreated control group and DON group fed wheat contaminated naturally with DON at a concentration of 1.1 mg·kg-1 of feed. Results: The final body weight and weight and length of the femur did not differ between the groups. However, DON contamination decreased mechanical endurance of the femur. Furthermore, DON reduced the mean relative wall thickness and vertical wall thickness of the femur, while vertical cortical index, midshaft volume, and cross-sectional moment of inertia increased. Finally, DON contamination did not alter bone tissue density, bone mineral density, or bone mineral content, but decreased the values of all investigated structural and material properties. Conclusion: DON at applied concentration probably intensified the process of endosteal resorption, which was the main reason for bone wall thinning and the weakening of the whole bone.

  1. Chronic exposure to low concentrations of strontium 90 affects bone physiology but not the hematopoietic system in mice.

    Science.gov (United States)

    Synhaeve, Nicholas; Wade-Gueye, Ndéye Marième; Musilli, Stefania; Stefani, Johanna; Grandcolas, Line; Gruel, Gaëtan; Souidi, Maâmar; Dublineau, Isabelle; Bertho, Jean-Marc

    2014-01-01

    The aim of this work was to delineate the effects of chronic ingestion of strontium 90 ((90) Sr) at low concentrations on the hematopoiesis and the bone physiology. A mouse model was used for that purpose. Parent animals ingested water containing 20 kBq l(-1) of (90) Sr two weeks before mating. Offspring were then continuously contaminated with (90) Sr through placental transfer during fetal life, through lactation after birth and through drinking water after weaning. At various ages between birth and 20 weeks, animals were tested for hematopoietic parameters such as blood cell counts, colony forming cells in spleen and bone marrow and cytokine concentrations in the plasma. However, we did not find any modification in (90) Sr ingesting animals as compared with control animals. By contrast, the analysis of bone physiology showed a modification of gene expression towards bone resorption. This was confirmed by an increase in C-telopeptide of collagen in the plasma of (90) Sr ingesting animals as compared with control animals. This modification in bone metabolism was not linked to a modification of the phosphocalcic homeostasis, as measured by calcium, phosphorus, vitamin D and parathyroid hormone in the blood. Overall these results suggest that the chronic ingestion of (90) Sr at low concentration in the long term may induce modifications in bone metabolism but not in hematopoiesis. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Locally delivered ethyl-2,5-dihydroxybenzoate using 3D printed bone implant for promotion of bone regeneration in a osteoporotic animal model

    Directory of Open Access Journals (Sweden)

    B-J Kwon

    2018-01-01

    Full Text Available Osteoporosis is a disease characterized by low bone mass, most commonly caused by an increase in bone resorption that is not matched by sufficient bone formation. The most common complications of postmenopausal osteoporosis are bone-related defects and fractures. Fracture healing is a multifactorial bone regeneration process, influenced by both biological and mechanical factors related to age, osteoporosis and stability of the osteosynthesis. During the treatment of bone defects in osteoporotic conditions, imbalanced bone remodeling is the leading cause for implant failure. To overcome these problems, ethyl-2,5-dihydroxybenzoate (E-2,5-DHB, a drug that promotes bone formation and inhibits bone resorption, was used. E-2,5-DHB-incorporating titanium (Ti implants using poly(lactic-co-glycolic acid (PLGA coating for local delivery of E-2,5-DHB were developed and the effects on bone healing of femoral defects were evaluated in an osteoporotic model. The release of E-2,5-DHB resulted in decreased bone resorption and increased bone formation around the implant. Thus, it was confirmed that, in the osteoporotic model, bone healing was increased and implant fixation was enhanced. These results suggested that E-2,5-DHB-coated Ti implants have great potential as an ultimate local drug delivery system for bone tissue scaffolds.

  3. Aconitum pseudo-laeve var. erectum Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclastogenesis via the c-Fos/nuclear Factor of Activated T-Cells, Cytoplasmic 1 Signaling Pathway and Prevents Lipopolysaccharide-Induced Bone Loss in Mice

    Directory of Open Access Journals (Sweden)

    Jong Min Baek

    2014-08-01

    Full Text Available Aconitum pseudo-laeve var. erectum (APE has been widely shown in herbal medicine to have a therapeutic effect on inflammatory conditions. However, there has been no evidence on whether the extract of APE is involved in the biological bone metabolism process, particularly osteoclast-mediated bone resorption. In this study, we confirmed that the administration of APE could restore normal skeletal conditions in a murine model of lipopolysaccharide (LPS-induced bone loss via a decrease in the receptor activator of nuclear factor kappa-B ligand (RANKL/osteoprotegerin (OPG ratio and osteoclast number. We then investigated the effect of APE on the RANKL-induced formation and function of osteoclasts to elucidate its underlying molecular mechanisms. APE suppressed the formation of tartrate-resistant acid phosphatase (TRAP-positive cells, as well as the bone-resorbing activity of mature osteoclasts. Furthermore, APE attenuated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1 and c-Fos without affecting any early signal pathway of osteoclastogenesis. Subsequently, APE significantly downregulated the expression of various genes exclusively expressed in osteoclasts. These results demonstrate that APE restores LPS-induced bone loss through a decrease of the serum RANKL/OPG ratio, and inhibits osteoclast differentiation and function, suggesting the promise of APE as a potential cure for various osteoclast-associated bone diseases.

  4. Lipoxins and aspirin-triggered lipoxin alleviate bone cancer pain in association with suppressing expression of spinal proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Hu Shan

    2012-12-01

    Full Text Available Abstract Background The neuroinflammatory responses in the spinal cord following bone cancer development have been shown to play an important role in cancer-induced bone pain (CIBP. Lipoxins (LXs, endogenous lipoxygenase-derived eicosanoids, represent a unique class of lipid mediators that possess a wide spectrum of anti-inflammatory and pro-resolving actions. In this study, we investigated the effects of intrathecal injection with lipoxin and related analogues on CIBP in rats. Methods The CIBP model was induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Mechanical thresholds were determined by measuring the paw withdrawal threshold to probing with a series of calibrated von Frey filaments. Lipoxins and analogues were administered by intrathecal (i.t. or intravenous (i.v. injection. The protein level of LXA4 receptor (ALX was tested by western blot. The localization of lipoxin receptor in spinal cord was assessed by fluorescent immunohistochemistry. Real-time PCR was carried out for detecting the expression of pro-inflammatory cytokines. Results Our results demonstrated that: 1 i.t. injection with the same dose (0.3 nmol of lipoxin A4 (LXA4, lipoxin B4 (LXB4 or aspirin-triggered-15-epi-lipoxin A4 (ATL could alleviate the mechanical allodynia in CIBP on day 7 after surgery. ATL showed a longer effect than the others and the effect lasted for 6 hours. ATL administered through i.v. injection could also attenuate the allodynia in cancer rats. 2 The results from western blot indicate that there is no difference in the expression of ALX among the naive, sham or cancer groups. 3 Immunohistochemistry showed that the lipoxin receptor (ALX-like immunoreactive substance was distributed in the spinal cord, mainly co-localized with astrocytes, rarely co-localized with neurons, and never co-localized with microglia. 4 Real-time PCR analysis revealed that, compared with vehicle, i.t. injection with ATL could significantly

  5. Geraniin suppresses RANKL-induced osteoclastogenesis in vitro and ameliorates wear particle-induced osteolysis in mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fei; Zhai, Zanjing; Jiang, Chuan; Liu, Xuqiang; Li, Haowei; Qu, Xinhua [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Ouyang, Zhengxiao [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013 (China); Fan, Qiming; Tang, Tingting [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qin, An, E-mail: dr.qinan@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Gu, Dongyun, E-mail: dongyungu@gmail.com [Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education of PR China (China); School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China)

    2015-01-01

    Wear particle-induced osteolysis and subsequent aseptic loosening remains the most common complication that limits the longevity of prostheses. Wear particle-induced osteoclastogenesis is known to be responsible for extensive bone erosion that leads to prosthesis failure. Thus, inhibition of osteoclastic bone resorption may serve as a therapeutic strategy for the treatment of wear particle induced osteolysis. In this study, we demonstrated for the first time that geraniin, an active natural compound derived from Geranium thunbergii, ameliorated particle-induced osteolysis in a Ti particle-induced mouse calvaria model in vivo. We also investigated the mechanism by which geraniin exerts inhibitory effects on osteoclasts. Geraniin inhibited RANKL-induced osteoclastogenesis in a dose-dependent manner, evidenced by reduced osteoclast formation and suppressed osteoclast specific gene expression. Specially, geraniin inhibited actin ring formation and bone resorption in vitro. Further molecular investigation demonstrated geraniin impaired osteoclast differentiation via the inhibition of the RANKL-induced NF-κB and ERK signaling pathways, as well as suppressed the expression of key osteoclast transcriptional factors NFATc1 and c-Fos. Collectively, our data suggested that geraniin exerts inhibitory effects on osteoclast differentiation in vitro and suppresses Ti particle-induced osteolysis in vivo. Geraniin is therefore a potential natural compound for the treatment of wear particle induced osteolysis in prostheses failure. - Highlights: • Geraniin suppresses osteoclasts formation and function in vitro. • Geraniin impairs RANKL-induced nuclear factor-κB and ERK signaling pathway. • Geraniin suppresses osteolysis in vivo. • Geraniin may be used for treating osteoclast related diseases.

  6. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (Pdietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  7. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    Science.gov (United States)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  8. An insight in to Paget′s disease of bone

    Directory of Open Access Journals (Sweden)

    Robin Sabharwal

    2014-01-01

    Full Text Available Paget′s disease of bone (PDB is a common disorder which may affect one or many bones. Although many patients are asymptomatic, a variety of symptoms and complications may occur. PDB is a focal disorder of bone turnover characterized by excessive bone resorption coupled with bone formation. PDB begins with a period of increased osteoclastic activity and bone resorption, followed by increased osteoblast production of woven bone that is poorly mineralized. In the final phase of the disease process, dense cortical and trabecular bone deposition predominates, but the bone is sclerotic and poorly organized and lacks the structural integrity and strength of normal bone. This article briefly reviews the etiopathogenesis, clinical radiographic and histological features of Paget′s disease.

  9. Systemic effects of fluoxetine on the amount of tooth movement, root resorption, and alveolar bone remodeling during orthodontic force application in rat

    Directory of Open Access Journals (Sweden)

    Mehdi Rafiei

    2015-01-01

    Full Text Available Background: Antidepressant drugs such as fluoxetine are of the most commonly used drugs among the public. These drugs may impact the regulation of bone cell functioning, and thus affect orthodontic tooth movement. The aim of this study was to determine the effect of fluoxetine on tooth movements during orthodontic treatment in rats. Materials and Methods: In this study, 30 male rats were randomly assigned into two groups and injected with fluoxetine 10 mg/kg (experimental group and normal saline (control group for a period of 1-month intraperitoneally 5 times/week. Then, the rats were anesthetized and a nickel-titanium closed-coil spring was placed between the left maxillary first molar and left maxillary central incisors of all samples, and then fluoxetine (experimental group and normal saline (control group were injected for another 3 weeks by the same method. After measuring tooth movements, rats were sacrificed, and histomorphometric analyses were conducted and the obtained data were statistically analyzed using independent t-test and the significance was set at 0.05. Results: Following the fluoxetine injection, the mean amount of tooth movements in the experimental group was reduced compared to the control group, which was not statistically significant (P = 0.14. There was no significant difference between the two groups regarding bone apposition rate (P = 0.83, external root resorption rate (P = 0.1, and mean number of root resorption lacunae (P = 0.16. Conclusion: Within the limitations of this study, systemic use of fluoxetine may cause insignificant reduction of tooth movement rate in rats; however, this subject needs more evaluations.

  10. A New Insight to Bone Turnover: Role of -3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Naroa Kajarabille

    2013-01-01

    Full Text Available Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA, especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κβ (RANK, a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health.

  11. Bone mineral density and metabolic indices in hyperthyroidism.

    Science.gov (United States)

    Al-Nuaim, A; El-Desouki, M; Sulimani, R; Mohammadiah, M

    1991-09-01

    Hyperthyroidism can alter bone metabolism by increasing both bone resorption and formation. The increase in bone resorption predominates, leading to a decrease in bone mass. To assess the effect of hyperthyroidism on bone and mineral metabolism, we measured bone density using single photon absorptiometry in 30 untreated hyperthyroid patients. Patients were categorized into three groups based on sex and alkaline phosphatase levels: 44 sex- and age-matched subjects were used as controls. Bone densities were significanlty lower in all patient groups compared with controls. Alkaline phosphatase was found to be a useful marker for assessing severity of bone disease in hyperthyroid patients as there is significant bone density among patients with higher alkaline phosphatase value. Hyperthyroidism should be considered in the differential diagnosis of unexplained alkaline phophatase activity.

  12. [Root resorption and orthodontic treatment].

    Science.gov (United States)

    Sebbar, M; Bourzgui, F

    2011-09-01

    The aim of our study was to investigate the prevalence of root resorption during and at the end of orthodontic treatment and to assess its relationship with age, sex and treatment with or without extractions. Our study included 82 patients (51 women and 31 men) aged between 6 and 38 years, who received orthodontic treatment. Evaluation of root resorption was performed on panoramics at the beginning and at the end of orthodontic treatment. All the teeth were observed. The degree of root resorption was increased respectively by the standards in four ordinal levels (4). Data analysis was performed by Epi Info 6.0. Root resorption was present in all the teeth and maxillary incisors are the most affected. The correlation between age and root resorption was significant (p = 0.008). Women were more affected by resorption (P = 0.002). Patients treated with extraction showed more root resorption (p = 0.12). Our results suggest that orthodontic treatment is involved in the development of root resorption. The most often teeth resorbed are maxillary incisors. Age, sex and orthodontic extractions can be considered as risk factors for root resorption.

  13. Does methamphetamine affect bone metabolism?

    International Nuclear Information System (INIS)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-01-01

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10 mg/kg METH groups (n = 6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5 mg/kg METH showed an increased locomotor activity, whereas those receiving 10 mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5 mg/kg METH group, but not in the 10 mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5 mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10 mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that

  14. Does methamphetamine affect bone metabolism?

    Science.gov (United States)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-05-07

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might

  15. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L. [Department of Hematology, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai Xuhui District Central Hospital, Shanghai (China)

    2015-01-20

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS.

  16. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    International Nuclear Information System (INIS)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L.

    2015-01-01

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS

  17. Dynamic alterations of bone marrow cytokine landscape of myelodysplastic syndromes patients treated with 5-azacytidine

    Czech Academy of Sciences Publication Activity Database

    Moudrá, Alena; Hubáčková, Soňa; Machalová, Veronika; Vančurová, Markéta; Bartek, Jiří; Reiniš, Milan; Hodný, Zdeněk; Jonasova, A.

    2016-01-01

    Roč. 5, č. 10 (2016), č. článku e1183860. ISSN 2162-402X R&D Projects: GA MZd NT14174 Institutional support: RVO:68378050 Keywords : 5-azacyatidine * bone marrow plasma * cytokines * DNA damage * inflammation * myelodysplastic syndromes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.719, year: 2016

  18. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    Science.gov (United States)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  19. miR-218 is involved in the negative regulation of osteoclastogenesis and bone resorption by partial suppression of p38MAPK-c-Fos-NFATc1 signaling: Potential role for osteopenic diseases.

    Science.gov (United States)

    Qu, Bo; Xia, Xun; Yan, Ming; Gong, Kai; Deng, Shaolin; Huang, Gang; Ma, Zehui; Pan, Xianming

    2015-10-15

    The increased osteoclastic activity accounts for pathological bone loss in diseases including osteoporosis. MicroRNAs are widely accepted to be involved in the regulation of osteopenic diseases. Recently, the low expression of miR-218 was demonstrated in CD14(+) peripheral blood mononuclear cells (PBMCs) from patients with postmenopausal osteoporosis. However, its role and the underlying mechanism in osteoporosis are still undefined. Here, an obvious decrease in miR-218 expression was observed during osteoclastogenesis under receptor activator of nuclear factor κB ligand (RANKL) stimulation, in both osteoclast precursors of bone marrow macrophages (BMMs) and RAW 264.7. Further analysis confirmed that overexpression of miR-218 obviously attenuated the formation of multinuclear mature osteoclasts, concomitant with the decrease in Trap and Cathepsin K levels, both the master regulators of osteoclastogenesis. Moreover, miR-218 up-regulation dramatically inhibited osteoclast precursor migration, actin ring formation and bone resorption. Mechanism assay demonstrated that miR-218 overexpression attenuated the expression of p38MAPK, c-Fos and NFATc1 signaling molecules. Following preconditioning with P79350, an agonist of p38MAPK, the inhibitor effect of miR-218 on osteoclastogenesis and bone-resorbing activity was strikingly ameliorated. Together, this study revealed a crucial role of miR-218 as a negative regulator for osteoclastogenesis and bone resorption by suppressing the p38MAPK-c-Fos-NFATc1 pathway. Accordingly, this research will provide a promising therapeutic agent against osteopenic diseases including osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Calcium and Bone Turnover Markers in Acromegaly: A Prospective, Controlled Study.

    Science.gov (United States)

    Constantin, Tina; Tangpricha, Vin; Shah, Reshma; Oyesiku, Nelson M; Ioachimescu, Octavian C; Ritchie, James; Ioachimescu, Adriana G

    2017-07-01

    Acromegaly has been associated with calcium-phosphate and bone turnover alterations. Controlled studies of these interactions are sparse. To evaluate calcium and bone metabolism in active and treated acromegaly. We conducted a controlled, prospective study at a tertiary referral center. We studied 22 patients with acromegaly referred for surgical or medical therapy (ACM) and 22 with nonfunctioning pituitary adenomas referred for surgery (control). Calcium (serum and urine), phosphorus, parathyroid hormone (PTH), 25-hydroxy- and 1,25-dihydroxy-vitamin D, bone turnover markers [serum C-terminal telopeptide of type 1 collagen (CTX) and procollagen type 1 N-terminal propeptide (P1NP)], and cytokines [receptor activator of nuclear factor κB ligand (RANK-L) and osteoprotegerin (OPG)] at baseline and 3 to 6 months after treatment. At baseline, the ACM group had lower PTH levels than controls (36.3 ± 13.9 pg/mL vs 56.0 ± 19.9 pg/mL) and higher phosphorus (4.34 ± 0.71 mg/dL vs 3.55 ± 0.50 mg/dL) (P acromegaly, serum calcium (9.52 ± 0.43 mg/dL to 9.26 ± 0.28 mg/dL), phosphorus (4.34 ± 0.71 mg/dL to 3.90 ± 0.80 mg/dL), and CTX (0.91 ± 0.75 ng/mL to 0.63 ± 0.68 ng/mL) decreased, while PTH increased (36.3 ± 13.9 pg/mL to 48.9 ± 16.7 pg/mL) (P Acromegaly patients exhibited PTH-independent calcium-phosphate alterations and enhanced coupled bone formation and resorption. Within 6 months of treatment, bone resorption decreased, whereas RANK-L/OPG changes were inconsistent. Copyright © 2017 Endocrine Society

  1. Effect of bone marrow-derived CD11b(+)F4/80 (+) immature dendritic cells on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis.

    Science.gov (United States)

    Fu, Jingjing; Zhang, Lingling; Song, Shanshan; Sheng, Kangliang; Li, Ying; Li, Peipei; Song, Shasha; Wang, Qingtong; Chu, Jianhong; Wei, Wei

    2014-05-01

    To explore the effect of bone marrow-derived CD11b(+)F4/80(+) immature dendritic cells (BM CD11b(+)F4/80(+)iDC) on the balance between pro-inflammatory and anti-inflammatory cytokines in DBA/1 mice with collagen-induced arthritis (CIA). BM CD11b(+)F4/80(+)iDC were induced with rmGM-CSF and rmIL-4, and were identified by the expressions of toll-like receptor 2 (TLR-2), indoleamine 2,3-deoxygenase (IDO), interleukin (IL)-10, transforming growth factor (TGF)-β1 and mixed leukocyte reaction (MLR). CIA was established in DBA/1 mice by immunization with type II collagen. CIA mice were injected intravenously with BM CD11b(+)F4/80(+)iDC three times after immunization. The effect of BM CD11b(+)F4/80(+)iDC on CIA was evaluated by the arthritis index, joint histopathology, body weight, thymus index, thymocytes proliferation, IL-1β, tumor necrosis factor (TNF)-α, IL-17, IL-10 and TGF-β1 levels. BM CD11b(+)F4/80(+)iDC induced with rmGM-CSF and rmIL-4 expressed high levels of TLR-2, IDO, IL-10 and TGF-β1. Infusion of BM CD11b(+)F4/80(+)iDC in CIA mice significantly reduced the arthritis index and pathological scores of joints, recovered the weight, decreased the thymus index and inhibited thymocyte proliferation. Levels of IL-1β, TNF-α and IL-17 were decreased in BM CD11b(+)F4/80(+)iDC-treated mice. BM CD11b(+)F4/80(+)iDC can be induced successfully with rmGM-CSF and rmIL-4. BM CD11b(+)F4/80(+)iDC treatment can ameliorate the development and severity of CIA by regulating the balance between pro-inflammatory cytokines and anti-inflammatory cytokines.

  2. Fisetin Inhibits Hyperglycemia-Induced Proinflammatory Cytokine Production by Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Hye Joo Kim

    2012-01-01

    Full Text Available Diabetes is characterized by a proinflammatory state, and several inflammatory processes have been associated with both type 1 and type 2 diabetes and the resulting complications. High glucose levels induce the release of proinflammatory cytokines. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Cotinus coggygria, and is also widely distributed in fruits and vegetables. Fisetin is known to exert anti-inflammatory effects via inhibition of the NF-κB signaling pathway. In this study, we analyzed the effects of fisetin on proinflammatory cytokine secretion and epigenetic regulation, in human monocytes cultured under hyperglycemic conditions. Human monocytic (THP-1 cells were cultured under control (14.5 mmol/L mannitol, normoglycemic (NG, 5.5 mmol/L glucose, or hyperglycemic (HG, 20 mmol/L glucose conditions, in the absence or presence of fisetin. Fisetin was added (3–10 μM for 48 h. While the HG condition significantly induced histone acetylation, NF-κB activation, and proinflammatory cytokine (IL-6 and TNF-α release from THP-1 cells, fisetin suppressed NF-κB activity and cytokine release. Fisetin treatment also significantly reduced CBP/p300 gene expression, as well as the levels of acetylation and HAT activity of the CBP/p300 protein, which is a known NF-κB coactivator. These results suggest that fisetin inhibits HG-induced cytokine production in monocytes, through epigenetic changes involving NF-κB. We therefore propose that fisetin supplementation be considered for diabetes prevention.

  3. Release of lead from bone in pregnancy and lactation

    International Nuclear Information System (INIS)

    Manton, W.I.; Angle, C.R.; Stanek, K.L.; Kuntzelman, D.; Reese, Y.R.; Kuehnemann, T.J.

    2003-01-01

    Concentrations and isotope ratios of lead in blood, urine, 24-h duplicate diets, and hand wipes were measured for 12 women from the second trimester of pregnancy until at least 8 months after delivery. Six bottle fed and six breast fed their infants. One bottle feeder fell pregnant for a second time, as did a breast feeder, and each was followed semicontinuously for totals of 44 and 54 months, respectively. Bone resorption rather than dietary absorption controls changes in blood lead, but in pregnancy the resorption of trabecular and cortical bone are decoupled. In early pregnancy, only trabecular bone (presumably of low lead content) is resorbed, causing blood leads to fall more than expected from hemodilution alone. In late pregnancy, the sites of resorption move to cortical bone of higher lead content and blood leads rise. In bottle feeders, the cortical bone contribution ceases immediately after delivery, but any tendency for blood leads to fall may be compensated by the effect of hemoconcentration produced by the postpartum loss of plasma volume. In lactation, the whole skeleton undergoes resorption and the blood leads of nursing mothers continue to rise, reaching a maximum 6-8 months after delivery. Blood leads fall from pregnancy to pregnancy, implying that the greatest risk of lead toxicity lies with first pregnancies

  4. Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells.

    Science.gov (United States)

    Delk, Nikki A; Farach-Carson, Mary C

    2012-04-01

    Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.

  5. Addition of exogenous cytokines in mixed lymphocyte culture for selecting related donors for bone marrow transplantation

    Directory of Open Access Journals (Sweden)

    Jeane Eliete Laguila Visentainer

    Full Text Available CONTEXT: Mixed lymphocyte culturing has led to conflicting opinions regarding the selection of donors for bone marrow transplantation. The association between a positive mixed lymphocyte culture and the development of graft-versus-host disease (GVHD is unclear. The use of exogenous cytokines in mixed lymphocyte cultures could be an alternative for increasing the sensitivity of culture tests. OBJECTIVE: To increase the sensitivity of mixed lymphocyte cultures between donor and recipient human leukocyte antigen (HLA identical siblings, using exogenous cytokines, in order to predict post-transplantation GVHD and/or rejection. TYPE OF STUDY: Prospective study. SETTING: Bone Marrow Transplantation Unit, Universidade Estadual de Campinas. PARTICIPANTS: Seventeen patients with hematological malignancies and their respective donors selected for bone marrow transplantation procedures. PROCEDURES: Standard and modified mixed lymphocyte culturing by cytokine supplementation was carried out using donor and recipient cells typed for HLA. MAIN MEASUREMENTS: Autologous and allogenic responses in mixed lymphocyte cultures after the addition of IL-4 or IL-2. RESULTS: In comparison with the standard method, average responses in the modified mixed lymphocyte cultures increased by a factor of 2.0 using IL-4 (p < 0.001 and 6.4 using IL-2 (p < 0.001, for autologous donor culture responses. For donor-versus-recipient culture responses, the increase was by a factor of 1.9 using IL-4 (p < 0.001 and 4.1 using IL-2 (p < 0.001. For donor-versus-unrelated culture responses, no significant increase was observed using IL-4, and a mean response inhibition of 20% was observed using IL-2 (p < 0.001. Neither of the cytokines produced a significant difference in the unrelated control versus recipient cell responses. CONCLUSION: IL-4 supplementation was the best for increasing the mixed lymphocyte culture sensitivity. However, IL-4 also increased autologous responses, albeit less

  6. Physiological and pathophysiological bone turnover - role of the immune system.

    Science.gov (United States)

    Weitzmann, M Neale; Ofotokun, Ighovwerha

    2016-09-01

    Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno-skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures.

  7. Effect of angiotensin II receptor blocker, olmesartan, on turnover of bone metabolism in bedridden elderly hypertensive women with disuse syndrome.

    Science.gov (United States)

    Aoki, Motokuni; Kawahata, Hirohisa; Sotobayashi, Daisuke; Yu, Hisahiro; Moriguchi, Atsushi; Nakagami, Hironori; Ogihara, Toshio; Morishita, Ryuichi

    2015-08-01

    Although recent studies suggest that several antihypertensive drugs could reduce the risk of bone fracture, it is still unclear how these drugs act on bone remodeling, especially in elderly women with severe osteoporosis with disuse syndrome. In the present study, we investigated the effects of a calcium channel blocker (CCB) and an angiotensin II receptor blocker (ARB) on bone metabolism in elderly bedridden women with hypertension and disuse syndrome. Elderly bedridden women (aged >75 years) receiving antihypertensive therapy treated with CCB were recruited in the present study. The participants were divided into two groups--CCB group and ARB group--and followed up to 12 months. Markers of bone resorption were markedly increased, suggesting accelerated bone resorption in the participants of the present study. In the follow-up period, the patients treated with a CCB showed a significant decrease in bone mineral density in a time-dependent manner, accompanied by a significant increase in bone resorption markers, whereas treatment with olmesartan inhibited bone loss, associated with attenuation of increased bone resorption markers. Bone mineral density of femoral neck in the CCB group was significantly lower than that in the ARB group at 6 months. The present study showed inhibitory effects of an ARB on bone resorption in hypertensive patients with accelerated bone resorption, such as elderly bedridden women, and indicated an important role of the renin-angiotensin system in bone metabolism. In elderly hypertensive patients, ARB might be expected to have additional beneficial potential to maintain bone health in bedridden patients. © 2014 Japan Geriatrics Society.

  8. [Comparison of root resorption between self-ligating and conventional brackets using cone-beam CT].

    Science.gov (United States)

    Liu, Yun; Guo, Hong-ming

    2016-04-01

    To analyze the differences of root resorption between passive self-ligating and conventional brackets, and to determine the relationship between passive self-ligating brackets and root resorption. Fifty patients were randomly divided into 2 groups using passive self-ligating brackets or conventional straight wire brackets (0.022 system), respectively. Cone-beam CT was taken before and after treatment. The amount of external apical root resorption of maxillary incisors was measured on CBCT images. Student's t test was performed to analyze the differences of root apical resorption between the 2 groups with SPSS17.0 software package. No significant difference(P> 0.05) in root resorption of maxillary incisors was found between passive self-ligating brackets and conventional brackets. Passive self-ligating brackets and conventional brackets can cause root resorption, but the difference was not significant. Passive self-ligating brackets do not induce more root resorption.

  9. Effect of hormone replacement therapy on the bone mass and urinary excretion of pyridinium cross-links

    OpenAIRE

    Pardini,Dolores Perovano; Sabino,Anibal Tagliaferri; Meneses,Ana Maria; Kasamatsu,Teresa; Vieira,José Gilberto Henriques

    2000-01-01

    CONTEXT: The menopause accelerates bone loss and is associated with an increased bone turnover. Bone formation may be evaluated by several biochemical markers. However, the establishment of an accurate marker for bone resorption has been more difficult to achieve. OBJECTIVE: To study the effect of hormone replacement therapy (HRT) on bone mass and on the markers of bone resorption: urinary excretion of pyridinoline and deoxypyridinoline. DESIGN: Cohort correlational study. SETTING: Academic...

  10. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  11. Age-related changes in bone in the dog: calcium homeostasis

    International Nuclear Information System (INIS)

    Williams, E.A.; Kelly, P.J.

    1984-01-01

    To explore the changes in the relationship between skeletal and Ca 2+ homeostasis with age, a study was made of 50 dogs divided into four age groups. The skeletal uptake of 85 Sr decreased markedly with age, and the immunoreactive parathyroid hormone (iPTH) level increased. There was a significant correlation between iPTH value and the calculated short-term exchange of Ca in bone. Bone formation and bone resorption decreased with age except that in the oldest group of dogs the resorption increased. The authors suggest that in aging dogs the skeletal exchange of Ca falls to a very low level that decreases the immediate effect of PTH and thus leads to a chronic net increase in circulating PTH. Concomitant with this is an increase in osteoclastic bone resorption and, over a long time, loss of skeletal mass

  12. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.

    Science.gov (United States)

    Aquino-Martínez, Rubén; Angelo, Alcira P; Pujol, Francesc Ventura

    2017-11-16

    Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC) recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca 2+ -containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO 4 ) on MSC migration. In addition, to evaluate the influence of CaSO 4 on MSC differentiation and the potential molecular mechanisms involved. A circular calvarial bone defect (5 mm diameter) was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO 4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO 4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO 4 treatment was also evaluated by qPCR. CaSO 4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO 4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO 4 -containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO 4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO 4 effects on MSC migration. Specific CaSO 4 concentrations induce bone regeneration of calvarial defects in part by acting on the host's undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO 4 regulates BMP-2-induced MSC migration by differentially activating the PI3

  13. Radiation-induced bone neoplasma in facial cranium

    Energy Technology Data Exchange (ETDEWEB)

    Zomer-Drozda, J; Buraczewska-Lipinska, H; Buraczewski, J [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    Radiation-induced bone neoplasms in the region of facial cranium account for about 40% of all radiation-induced tumours of bones, although the number of cases with lesions irradiated in this area is proportionally much lower than the number of cases treated with radiotherapy in other parts of the body. Four personal cases of radiation-induced tumours with complicated course are reported. Attention is called to the value of radiological investigations in the diagnosis of bone diseases and in differential diagnosis of radiation-induced tumours of bones.

  14. Rationale for the evaluation of trabecular bone turnover

    International Nuclear Information System (INIS)

    Kimmel, D.B.; Jee, W.S.S.

    1976-01-01

    A procedure for the morphometric evaluation of trabecular bone is identified. Its scrupulous use allows total identification of bone formation and resorption rates, items necessary for the direct histologic analysis of bone turnover

  15. High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis.

    Science.gov (United States)

    Loredo-Pérez, Aleyda A; Montalvo-Blanco, Carlos E; Hernández-González, Luis I; Anaya-Reyes, Maricruz; Fernández Del Valle-Laisequilla, Cecilia; Reyes-García, Juan G; Acosta-González, Rosa I; Martínez-Martínez, Arisai; Villarreal-Salcido, Jaira C; Vargas-Muñoz, Virginia M; Muñoz-Islas, Enriqueta; Ramírez-Rosas, Martha B; Jiménez-Andrade, Juan M

    2016-05-01

    Our aim was to quantify nociceptive spontaneous behaviors, knee edema, proinflammatory cytokines, bone density, and microarchitecture in high-fat diet (HFD)-fed mice with unilateral knee arthritis. ICR male mice were fed either standard diet (SD) or HFD starting at 3 weeks old. At 17 weeks, HFD and SD mice received intra-articular injections either with Complete Freund's Adjuvant (CFA) or saline into the right knee joint every 7 days for 4 weeks. Spontaneous pain-like behaviors and knee edema were assessed for 26 days. At day 26 post-first CFA injection, serum levels of IL-1β, IL-6, and RANKL were measured by ELISA, and microcomputed tomography analysis of knee joints was performed. HFD-fed mice injected with CFA showed greater spontaneous pain-like behaviors of the affected extremity as well as a decrease in the weight-bearing index compared to SD-fed mice injected with CFA. Knee edema was not significantly different between diets. HFD significantly exacerbated arthritis-induced bone loss at the distal femoral metaphysis but had no effect on femoral diaphyseal cortical bone. HFD did not modify serum levels of proinflammatory cytokines. HFD exacerbates pain-like behaviors and significantly increases the magnitude of periarticular trabecular bone loss in a murine model of unilateral arthritis. © 2016 The Obesity Society.

  16. Inhibition of osteoclastogenesis by RNA interference targeting RANK

    Directory of Open Access Journals (Sweden)

    Ma Ruofan

    2012-08-01

    Full Text Available Abstract Background Osteoclasts and osteoblasts regulate bone resorption and formation to allow bone remodeling and homeostasis. The balance between bone resorption and formation is disturbed by abnormal recruitment of osteoclasts. Osteoclast differentiation is dependent on the receptor activator of nuclear factor NF-kappa B (RANK ligand (RANKL as well as the macrophage colony-stimulating factor (M-CSF. The RANKL/RANK system and RANK signaling induce osteoclast formation mediated by various cytokines. The RANK/RANKL pathway has been primarily implicated in metabolic, degenerative and neoplastic bone disorders or osteolysis. The central role of RANK/RANKL interaction in osteoclastogenesis makes RANK an attractive target for potential therapies in treatment of osteolysis. The purpose of this study was to assess the effect of inhibition of RANK expression in mouse bone marrow macrophages on osteoclast differentiation and bone resorption. Methods Three pairs of short hairpin RNAs (shRNA targeting RANK were designed and synthesized. The optimal shRNA was selected among three pairs of shRNAs by RANK expression analyzed by Western blot and Real-time PCR. We investigated suppression of osteoclastogenesis of mouse bone marrow macrophages (BMMs using the optimal shRNA by targeting RANK. Results Among the three shRANKs examined, shRANK-3 significantly suppressed [88.3%] the RANK expression (p Conclusions These findings suggest that retrovirus-mediated shRNA targeting RANK inhibits osteoclast differentiation and osteolysis. It may appear an attractive target for preventing osteolysis in humans with a potential clinical application.

  17. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  18. Open bite as a risk factor for orthodontic root resorption.

    Science.gov (United States)

    Motokawa, Masahide; Terao, Akiko; Kaku, Masato; Kawata, Toshitsugu; Gonzales, Carmen; Darendeliler, M Ali; Tanne, Kazuo

    2013-12-01

    The purpose of the present study was to clarify the prevalence and degree of root resorption induced by orthodontic treatment in patients with and without open bite. One hundred and eleven patients treated with multibracket appliances were retrospectively selected from the patients and divided into non-open bite (NOB) and open bite (OB) groups. The severity of root resorption and the root shape were classified into five groups on periapical radiographs before and after treatment. Moreover, only in the OB group, all teeth were sub-divided into functional and hypofunctional ones that are occluding and non-occluding. As the results of multiple linear regression analysis of patient characteristics and clinical variables with the number of overall root resorption, the independent variables that were found to contribute significantly to root resorption were bite and abnormal root shape. The prevalences of root resorption evaluated in the number of patients were significantly higher in OB group than in NOB group, and those in the number of teeth were significantly higher in OB group than in NOB group, in particular anterior and premolar teeth. The prevalence of resorbed teeth with abnormal root shapes was also significantly higher in OB group than in NOB group. On the other hand, in OB group, the prevalences of root resorption and teeth with abnormal root shape were significantly greater in hypofunctional teeth than in normal functional teeth. There are more teeth with root resorption and abnormal root shape in open bite cases than in normal bite cases, and more teeth with abnormal root shapes and root resorption in hypofunctional teeth than in functional teeth.

  19. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    International Nuclear Information System (INIS)

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-01-01

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  20. Bone loss in limbs with decreased or absent sensation: Ten year follow-up of the hands in leprosy

    International Nuclear Information System (INIS)

    MacMoran, J.W.; Brand, P.W.

    1987-01-01

    Three hundred and sixty-seven patients with insensitive hands have been studied by correlating radiologic findings with occupational and medical history in order to better define causal factors in bone resorption. This study indicates that nonspecific infection and trauma are the reasons for bone resorption in 98% of cases. The role of intermittent pressure seems to be in soft tissue breakdown, which then allows bone to become infected. Bone resorption can be arrested at any stage of the disease by appropriate therapy of splinting and control of infection. (orig.)

  1. Extrinsic Mechanisms Involved in Age-Related Defective Bone Formation

    DEFF Research Database (Denmark)

    Trinquier, Anne Marie-Pierre Emilie; Kassem, Moustapha

    2011-01-01

    Context: Age-related bone loss is associated with progressive changes in bone remodeling characterized by decreased bone formation relative to bone resorption. Both trabecular and periosteal bone formation decline with age in both sexes, which contributes to bone fragility and increased risk of f...

  2. Bone Canopies in Pediatric Renal Osteodystrophy

    DEFF Research Database (Denmark)

    Pereira, Renata C; Levin Andersen, Thomas; Friedman, Peter A

    2016-01-01

    Pediatric renal osteodystrophy (ROD) is characterized by changes in bone turnover, mineralization, and volume that are brought about by alterations in bone resorption and formation. The resorptive and formative surfaces on the cancellous bone are separated from the marrow cavity by canopies...... and their association with biochemical and bone histomorphometric parameters in 106 pediatric chronic kidney disease (CKD) patients (stage 2-5) across the spectrum of ROD. Canopies in CKD patients often appeared as thickened multilayered canopies, similar to previous reports in patients with primary hyperparathyroidism....... This finding contrasts with the thin appearance reported in healthy individuals with normal kidney function. Furthermore, canopies in pediatric CKD patients showed immunoreactivity to the PTH receptor (PTHR1) as well as to the receptor activator of nuclear factor kappa-B ligand (RANKL). The number of surfaces...

  3. A study of changes in bone metabolism in cases of gender identity disorder.

    Science.gov (United States)

    Miyajima, Tsuyoshi; Kim, Yoon Taek; Oda, Hiromi

    2012-07-01

    The aim of this study was to determine the effect of increasing estrogen and decreasing androgen in males and increasing androgen and decreasing estrogen in females on bone metabolism in patients with gender identity disorder (GID). We measured and examined bone mineral density (BMD) and bone metabolism markers retrospectively in GID patients who were treated in our hospital. In addition, we studied the effects of treatment on those who had osteoporosis. Patients who underwent a change from male to female (MtF) showed inhibition of bone resorption and increased L2-4 BMD whereas those who underwent a change from female to male (FtM) had increased bone resorption and decreased L2-4 BMD. Six months after administration of risedronate to FtM patients with osteoporosis, L2-4 BMD increased and bone resorption markers decreased. These results indicate that estrogen is an important element with regard to bone metabolism in males.

  4. Pro-Inflammatory Cytokine TNF-α Attenuates BMP9-Induced Osteo/ Odontoblastic Differentiation of the Stem Cells of Dental Apical Papilla (SCAPs

    Directory of Open Access Journals (Sweden)

    Feilong Wang

    2017-03-01

    Full Text Available Background/Aims: Periapical periodontitis is a common oral disease caused by bacterial invasion of the tooth pulp, which usually leads to local release of pro-inflammatory cytokines and osteolytic lesion. This study is intended to examine the effect of TNF-α on BMP9-induced osteogenic differentiation of the stem cells of dental apical papilla (SCAPs. Methods: Rat model of periapical periodontitis was established. TNF-α expression was assessed. Osteogenic markers and ectopic bone formation in iSCAPs were analyzed upon BMP9 and TNF-α treatment. Results: Periapical periodontitis was successfully established in rat immature permanent teeth with periapical lesions, in which TNF-α was shown to release during the inflammatory phase. BMP9-induced alkaline phosphatase activity, the expression of osteocalcin and osteopontin, and matrix mineralization in iSCAPs were inhibited by TNF-α in a dose-dependent fashion, although increased AdBMP9 partially overcame TNF-α inhibition. Furthermore, high concentration of TNF-α effectively inhibited BMP9-induced ectopic bone formation in vivo. Conclusion: TNF-α plays an important role in periapical bone defect during the inflammatory phase and inhibits BMP9-induced osteoblastic differentiation of iSCAPs, which can be partially reversed by high levels of BMP9. Therefore, BMP9 may be further explored as a potent osteogenic factor to improve osteo/odontogenic differentiation in tooth regeneration in chronic inflammation conditions.

  5. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Science.gov (United States)

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  6. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  7. ASSESSMENT OF ROOT RESORPTION DEGREE OF INCISORS AFTER ORTHODONTIC TREATMENT IN ADULTS

    Directory of Open Access Journals (Sweden)

    I. Luchian

    2012-03-01

    Full Text Available The main iatrogenic effects associated with orthodontic treatment refer to: influence of orthodontic rings on the periodontal tissue; gum retractions; the effect of the orthodontic treatment on dental root (root resorption; the effect of the orthodontic treatment on alveolar bone height; mobility and pain associated with orthodontic treatment. AIM of the study: To assess the degree of root resorption of incisors, after orthodontic treatment, on a group of 48 adults with dental-maxillary abnormalities. Materials and method: The study included 48 young adult patients, 35 women and 13 men aged 18 to 30 years, who had received fixed orthodontic treatment. To assess the degree of root resorption (changes at root level and apical contour length, apical radiographies were taken in the maxillary incisors and jaw both at the beginning and end of the orthodontic treatment. Results: Out of the 239 incisors examined at the beginning of orthodontic treatment, 163 showed code 0, meaning 88.1%, and 50 showed a slight squash apex (code 1, respectively 10.9%. Only 1% of all incisors assessed presented mild and severe root resorption. Conclusions: The results of the study show that, generally, an adult orthodontic treatment, applied for functional and aesthetic objectives, may have clinically acceptable iatrogenic effects.

  8. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin; vanʼt Hof, Rob; Ahmed, Syed Faisal; Hansen, Axel Kornerup; Holm, Thomas L

    2015-02-01

    Osteoporosis and fractures are common complications of inflammatory bowel disease. The pathogenesis is multifactorial and has been partly attributed to intestinal inflammation. The aim of this study was to evaluate bone status and assess the association between bone loss and gut inflammation in an experimental colitis model. Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P < 0.001). The trabecular bone structure was also changed in PAC IL-10 k.o. mice, whereas no differences in cortical bone geometry were observed. The trabecular thickness was inversely correlated with serum levels of CTX (r = -0.93, P = 0.006). Moreover, numerous inflammatory mediators, including RANKL and osteoprotegerin, were significantly increased in the colon of PAC IL-10 k.o. mice. PAC IL-10 k.o. mice develop bone loss and changed trabecular structure, as a result of increased bone resorption. Thus, the PAC IL-10 k.o. model could be a useful experimental model in preclinical research of inflammatory bowel disease-associated bone loss.

  9. Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides

    International Nuclear Information System (INIS)

    Plitnick, L.M.; Loveless, S.E.; Ladics, G.S.; Holsapple, M.P.; Smialowicz, R.J.; Woolhiser, M.R.; Anderson, P.K.; Smith, C.; Selgrade, M.J.K.

    2003-01-01

    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hypersensitivity involves CD4+ cells. By virtue of their induction of cytokines typical of CD4+ T-helper type 2 (Th2) cells--interleukin (IL)-4, 10, and 13--respiratory sensitizers may be identified and differentiated from contact sensitizers which induce Th1 cytokines (IL-2 and IFN-γ). Our previous work suggested that the ribonuclease protection assay (RPA) was useful in identifying the respiratory sensitizer, trimellitic anhydride (TMA), based on quantitative differences in Th2 cytokine mRNA as compared to the contact sensitizer dinitrochlorobenzene (DNCB). Therefore, the purpose of the studies described in this report was to expand the chemicals tested in the RPA. To this end, four acid anhydrides with known respiratory sensitization potential, TMA, maleic anhydride (MA), phthalic anhydride (PA) and hexahydrophthalic anhydride (HHPA), were tested. Although previously determined to induce immunologically equivalent responses in a local lymph node assay (LLNA), the initial dose chosen (2.5%) failed to induce Th2 cytokine mRNA expression. To determine if the lack of cytokine expression was related to dose, LLNAs were conducted at higher doses for each of the anhydrides. The highest doses evaluated (four- to six-fold higher than those used in the initial RPA) gave equivalent proliferative responses for the various anhydrides and were used for subsequent RPA testing. At these higher doses, significant increases in Th2 versus Th1 cytokine mRNA were observed for all anhydrides tested. These results suggest that the RPA has the potential to serve as a screen for the detection of LMW airway sensitizing chemicals. However, the basis for selecting immunologically equivalent doses may require some modification

  10. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    International Nuclear Information System (INIS)

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-01-01

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases

  11. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  12. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    Science.gov (United States)

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  13. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  14. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  15. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  16. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  17. Relative accretion of /sup 99m/Tc-polyphosphate by forming and resorbing bone systems in rats: its significance in the pathologic basis of bone scanning

    International Nuclear Information System (INIS)

    Garcia, D.A.; Tow, D.E.; Kapur, K.K.; Wells, H.

    1976-01-01

    The relative roles of osteogenesis and osteolysis in the production of positive radionuclide images of skeletal lesions were investigated. The uptake of /sup 99m/Tc-polyphosphate (Tc-PP) by each process was measured in an animal model that permitted bone formation and resorption to be studied independently. Ten rats received intramuscular implants of bone-forming demineralized matrix (DM) and resorbing devitalized bone (DV). Radiographs and Tc-PP scintiscans were made each week thereafter. At 6 to 10 weeks, the implants and normal bone samples were removed, counted for /sup 99m/Tc, and examined histologically. The uptake of Tc-PP by DM implants was first detected on images made 3 weeks after implantation, and by DV implants, 1 to 2 weeks later. Serial radiography showed progressive calcification of DM and resorption of DV implants. Microscopic examinations of undecalcified sections, stained with a modified Goldner preparation, revealed vital-bone formation in the DM implants and osteoclastic resorption in the DV. Activity counts per gram of DM and DV implants were, respectively, 200 percent and 90 percent that of normal bone. Since only the bone-forming system (DM) accumulated Tc-PP at greater than normal concentrations, this study indicates that positive bone images of osteolytic lesions solely reflect compensatory osteogenic responses

  18. Cellular and Molecular Mechanisms of Bone Remodeling*

    OpenAIRE

    Raggatt, Liza J.; Partridge, Nicola C.

    2010-01-01

    Physiological bone remodeling is a highly coordinated process responsible for bone resorption and formation and is necessary to repair damaged bone and to maintain mineral homeostasis. In addition to the traditional bone cells (osteoclasts, osteoblasts, and osteocytes) that are necessary for bone remodeling, several immune cells have also been implicated in bone disease. This minireview discusses physiological bone remodeling, outlining the traditional bone biology dogma in light of emerging ...

  19. Understanding coupling between bone resorption and formation

    DEFF Research Database (Denmark)

    Andersen, Thomas Levin; Abdelgawad, Mohamed Essameldim; Kristensen, Helene Bjørg

    2013-01-01

    these lacunae for bone formation. These cells, called herein reversal cells, cover >80% of the eroded surfaces, but their nature is not identified, and it is not known whether malfunction of these cells may contribute to bone loss in diseases such as postmenopausal osteoporosis. Herein, we combined...... histomorphometry and IHC on human iliac biopsy specimens, and showed that reversal cells are immunoreactive for factors typically expressed by osteoblasts, but not for monocytic markers. Furthermore, a subpopulation of reversal cells showed several distinctive characteristics suggestive of an arrested...

  20. The relationship between low bone mass and metabolic syndrome in Korean women.

    Science.gov (United States)

    Hwang, D-K; Choi, H-J

    2010-03-01

    We examined the relationship between low bond mass and metabolic syndrome in 2,475 Korean women. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome. Moreover, age and weight adjusted vertebral BMD was significantly decreased with additional components of the metabolic syndrome. Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and metabolic syndrome. It has been suggested that proinflammatory cytokines and low-grade systemic inflammation activate bone resorption and may lead to reduced bone mineral density (BMD). The objective of this study was to determine the relationship between low bone mass and metabolic syndrome in Korean women. This is a cross-sectional study of 2,548 women aged 18 years and over who had visited the Health Promotion Center. Physical examination and laboratory tests were performed. Vertebral BMD was measured using dual-energy X-ray absorptiometry. Metabolic syndrome was defined by National Cholesterol Education Program-Adult Treatment Panel III criteria. Among 2,475 women, 511 (21.0%) women had metabolic syndrome. Women with abdominal obesity or hypertriglyceridemia had significantly lower vertebral BMD than women without respective components after adjustment for age, weight, and height. After adjustment for all covariates, mean vertebral BMD was significantly lower in women with metabolic syndrome (p = 0.031). Moreover, age- and weight-adjusted vertebral BMD were significantly decreased with additional components of the metabolic syndrome (p = 0.004). These findings suggest that metabolic syndrome might be another risk factor for osteoporosis and related fractures.

  1. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-κB signaling in cultured astrocytes

    International Nuclear Information System (INIS)

    Kakita, Hiroki; Aoyama, Mineyoshi; Hussein, Mohamed Hamed; Kato, Shin; Suzuki, Satoshi; Ito, Tetsuya; Togari, Hajime; Asai, Kiyofumi

    2009-01-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1β, tumor necrosis factor-α and interferon-γ, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol: APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-κB inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-κB p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-κB signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.

  2. Soluble Factors from Biofilms of Wound Pathogens Modulate Human Bone Marrow-derived Stromal Cell Differentiation, Migration, Angiogenesis, and Cytokine Secretion

    Science.gov (United States)

    2015-03-28

    Island, NY) supple- mented with 10% fetal bovine serum (FBS) and 10 U peni - cillin mL−1 and streptomycin 10 μg mL−1 at 37°C in 5 % CO2. For all studies...average, the exposure to BCM re- duced the migration capacity by > 6 fold compared to the untreated growth control (Figure 4E). hBMSCs enhance the... enhanced release of factors promoting bone resorption [24]. Prior to the current study, the ef- fect of biofilms on hBMSCs had not been studied. The

  3. Effects of transforming growth factor beta 1 on the regulation of osteoclastic development and function

    International Nuclear Information System (INIS)

    Hattersley, G.; Chambers, T.J.

    1991-01-01

    Transforming growth factor (TGF) beta 1 is a multifunctional cytokine with powerful effects on osteoblastic cells. Its role in the regulation of osteoclast generation and function, however, is unclear. It has been reported both to stimulate and to inhibit resorption in organ culture and to inhibit multinuclear cell formation in bone marrow cultures. We tested the effects of TGF-beta 1 on bone resorption by osteoclasts isolated from neonatal rat long bones. We found potent stimulation of osteoclastic bone resorption, mediated by osteoblastic cells, with an EC50 of 10 pg/ml, considerably lower than that of well-documented osteotropic hormones. Stimulation was not mediated by Swiss mouse 3T3 cells, a nonosteoblastic cell line. TGF-beta 1 strongly inhibited the generation of calcitonin receptor (CTR)-positive cells in mouse bone marrow cultures, but as for isolated osteoclasts, bone resorption per CTR-positive cell was increased. The inhibition of CTR-positive cell formation was associated with suppression of maturation of other bone marrow derivatives and may be related more to the known ability of TGF-beta 1 to suppress the proliferation of primitive hematopoietic cells than to a specific role of TGF-beta 1 in osteoclast generation

  4. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration

    Directory of Open Access Journals (Sweden)

    Rubén Aquino-Martínez

    2017-11-01

    Full Text Available Abstract Background Osteoinduction and subsequent bone formation rely on efficient mesenchymal stem cell (MSC recruitment. It is also known that migration is induced by gradients of growth factors and cytokines. Degradation of Ca2+-containing biomaterials mimics the bone remodeling compartment producing a localized calcium-rich osteoinductive microenvironment. The aim of our study was to determine the effect of calcium sulfate (CaSO4 on MSC migration. In addition, to evaluate the influence of CaSO4 on MSC differentiation and the potential molecular mechanisms involved. Methods A circular calvarial bone defect (5 mm diameter was created in the parietal bone of 35 Balb-C mice. We prepared and implanted a cell-free agarose/gelatin scaffold alone or in combination with different CaSO4 concentrations into the bone defects. After 7 weeks, we determined the new bone regenerated by micro-CT and histological analysis. In vitro, we evaluated the CaSO4 effects on MSC migration by both wound healing and agarose spot assays. Osteoblastic gene expression after BMP-2 and CaSO4 treatment was also evaluated by qPCR. Results CaSO4 increased MSC migration and bone formation in a concentration-dependent manner. Micro-CT analysis showed that the addition of CaSO4 significantly enhanced bone regeneration compared to the scaffold alone. The histological evaluation confirmed an increased number of endogenous cells recruited into the cell-free CaSO4-containing scaffolds. Furthermore, MSC migration in vitro and active AKT levels were attenuated when CaSO4 and BMP-2 were in combination. Addition of LY294002 and Wortmannin abrogated the CaSO4 effects on MSC migration. Conclusions Specific CaSO4 concentrations induce bone regeneration of calvarial defects in part by acting on the host’s undifferentiated MSCs and promoting their migration. Progenitor cell recruitment is followed by a gradual increment in osteoblast gene expression. Moreover, CaSO4 regulates BMP-2-induced

  5. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures

    Directory of Open Access Journals (Sweden)

    Schwarze Per E

    2006-06-01

    Full Text Available Abstract Background Particles are known to induce both cytokine release (MIP-2, TNF-α, a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr, with a relatively equal size distribution (≤ 10 μm, but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm and larger quartz (≤ 10 μm in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm. The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm was more potent than the corresponding hornfels (≤ 10 μm and quartz (≤ 2 μm to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses

  6. Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model.

    Science.gov (United States)

    Perosky, Joseph E; Khoury, Basma M; Jenks, Terese N; Ward, Ferrous S; Cortright, Kai; Meyer, Bethany; Barton, David K; Sinder, Benjamin P; Marini, Joan C; Caird, Michelle S; Kozloff, Kenneth M

    2016-12-01

    Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.

    Directory of Open Access Journals (Sweden)

    Bas ten Harkel

    Full Text Available Foreign body multinucleated giant cells (FBGCs and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP and dendritic cell-specific transmembrane protein (DC-STAMP. However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2, carbonic anhydrase 2 (CAII, chloride channel 7 (CIC7, and vacuolar-type H+-ATPase (v-ATPase, in contrast the matrix degrading

  8. Bone Tumor Environment as a Potential Therapeutic Target in Ewing Sarcoma.

    Science.gov (United States)

    Redini, Françoise; Heymann, Dominique

    2015-01-01

    Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, Ewing sarcoma is an aggressive, rapidly fatal malignancy that mainly develops not only in osseous sites (85%) but also in extra-skeletal soft tissue. It spreads naturally to the lungs, bones, and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases) tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption are responsible for the clinical features of bone tumors, including pain, vertebral collapse, and spinal cord compression. Based on the "vicious cycle" concept of tumor cells and bone resorbing cells, drugs, which target osteoclasts, may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable "niche" for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates or drugs blocking the pro-resorbing cytokine receptor activator of NF-kappa B ligand. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  9. TBTC induces adipocyte differentiation in human bone marrow long term culture

    International Nuclear Information System (INIS)

    Carfi, M.; Croera, C.; Ferrario, D.; Campi, V.; Bowe, G.; Pieters, R.; Gribaldo, L.

    2008-01-01

    Organotins are widely used in agriculture and the chemical industry, causing persistent and widespread pollution. Organotins may affect the brain, liver and immune system and eventually human health. Recently, it has been shown that tri-butyltin (TBT) interacts with nuclear receptors PPARγ (peroxisome proliferator-activated receptor γ) and RXR (retinoid x receptor) leading to adipocyte differentiation in the 3T3 cell line. Since adipocytes are known to influence haematopoiesis, for instance through the expression of cytokines and adhesion molecules, it was considered of interest to further study the adipocyte-stimulating effect of TBTC in human bone marrow cultures. Nile Red spectrofluorimetric analysis showed a significant increase of adipocytes in TBTC-treated cultures after 14 days of long term culture. Real-time PCR and Western blot analysis confirmed the high expression of the specific adipocyte differentiation marker aP2 (adipocyte-specific fatty acid binding protein). PPARγ, but not RXR, mRNA was increased after 24 h and 48 h exposure. TBTC also induced a decrease in a number of chemokines, interleukins, and growth factors. Also the expression of leptin, a hormone involved in haematopoiesis, was down regulated by TBTC treatment. It therefore appears that TBTC induced adipocyte differentiation, whilst reducing a number of haematopoietic factors. This study indicates that TBTC may interfere in the haematopoietic process through an alteration of the stromal layer and cytokine homeostasis

  10. Effect of LED-mediated-photobiomodulation therapy on orthodontic tooth movement and root resorption in rats.

    Science.gov (United States)

    Ekizer, Abdullah; Uysal, Tancan; Güray, Enis; Akkuş, Derya

    2015-02-01

    The aim of this experimental study was to evaluate the effects of light-emitting diode-mediated-photobiomodulation therapy (LPT), on the rate of orthodontic tooth movement (TM) and orthodontically induced root resorption, in rats. Twenty male 12-week-old Wistar rats were separated into two groups (control and LPT) and 50 cN of force was applied between maxillary left molar and incisor with a coil spring. In the treatment group, LPT was applied with an energy density of 20 mW/cm(2) over a period of 10 consecutive days directly over the movement of the first molar teeth area. The distance between the teeth was measured with a digital caliper on days 0 (T0), 10 (T1), and 21 (T2) on dental cast models. The surface area of root resorption lacunae was measured histomorphometrically using digital photomicrographs. Mann-Whitney U and Wilcoxon tests were used for statistical evaluation at p root resorption, expressed as a percentage, showed that the average relative root resorption affecting the maxillary molars on the TM side was 0.098 ± 0.066 in the LPT group and 0.494 ± 0.224 in the control group. Statistically significant inhibition of root resorption with LPT was determined (p orthodontic tooth movement and inhibitory effects on orthodontically induced resorptive activity.

  11. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    Science.gov (United States)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  12. The Effect of Root Coating with Titanium on Prevention of Root Resorption in Avulsed Teeth: An Animal Study

    Science.gov (United States)

    Heydari, Azar; Tahmasbi, Soodeh; Badiee, Mohammadreza; Izadi, SeyedSadra; Mashhadi Abbas, Fatemeh; Mokhtari, Sepideh

    2016-01-01

    Introduction: Tooth avulsion is a real dental emergency. If immediate replantation is not performed, the avulsed tooth may be lost due to inflammatory or replacement resorption. This animal study aimed to evaluate the bone response to the titanium coating of the root surface as an artificial barrier, and prevention of resorption of avulsed teeth. Methods and Materials: This experimental study was conducted on four male dogs. The dogs were randomly divided into two groups for assessment at two and eight weeks. Four teeth were extracted in each animal. The root surfaces of the test group were coated with a titanium layer using the Electron Beam Deposition system. After 24 h, replantation of the teeth was performed. Two animals were sacrificed after two weeks and the remaining dogs were killed after eight weeks. The presence of inflammation, inflammatory resorption, replacement resorption, periodontal regeneration, periapical granuloma and ankylosis were evaluated through histological analyses. Results: Inflammatory root resorption was not present in any tooth except one tooth in the coated group after eight weeks. Replacement resorption was noted just in three of the non-coated teeth after two weeks and two teeth after eight weeks. The McNemar's test revealed that the frequency of replacement resorption in the non-coated group was significantly higher than the coated group (P=0.031). Conclusion: Based on the results of this study, it seems that coating the root surfaces of avulsed teeth with titanium may control the replacement root resorption. PMID:27790261

  13. Hypercalcaemia in patients with breast cancer: Patterns and ...

    African Journals Online (AJOL)

    hypercalcaemia at cancer diagnosis or during cancer treatment. About 25 % of the hypercalcaemic ... The main mechanism of hypercalcaemia in these patients involves pathological bone resorption through secretion of cytokines such as ...

  14. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    Science.gov (United States)

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

  15. Anti-osteopontin monoclonal antibody prevents ovariectomy-induced osteoporosis in mice by promotion of osteoclast apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); Dai, Jianxin [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); National Engineering Research Center for Antibody Medicine and Shanghai Key Lab. of Cell Engineering and Antibody, 399 Libing Road, Shanghai 201203 (China); Wang, Huaqing [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); Wei, Huafeng [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); Zhao, Jian [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); National Engineering Research Center for Antibody Medicine and Shanghai Key Lab. of Cell Engineering and Antibody, 399 Libing Road, Shanghai 201203 (China); Guo, Yajun, E-mail: yguo_smmu@163.com [International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433 (China); PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing (China); National Engineering Research Center for Antibody Medicine and Shanghai Key Lab. of Cell Engineering and Antibody, 399 Libing Road, Shanghai 201203 (China); and others

    2014-09-26

    Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorption through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases.

  16. The use of bone turnover markers in chronic kidney disease-mineral and bone disorders.

    Science.gov (United States)

    Chiang, Cherie

    2017-03-01

    Bone turnover markers assist in fracture risk prediction, management and monitoring of osteoporosis in patients without chronic kidney disease (CKD). The use in CKD-mineral bone disorder (MBD) has been limited as many of these markers and breakdown products are renally excreted, including the most commonly used and well standardized procollagen type I N propeptide and C-terminal cross-linking telopeptide of type I collagen. Of the markers unaffected by renal function, bone specific alkaline phosphatase is associated with mortality and fracture rate in CKD subjects and is now available on several automated analysers. When used in combination with PTH, bone specific alkaline phosphatase as a bone formation marker correlated well with bone biopsy histomorphometry in predicting adynamic bone disease. Tartrate-resistant acid phosphatase 5b is a resorption marker that is under development for automation. Both high and low bone turnover in CKD-MBD patients are associated with increased fracture and mortality risk. Bone biopsy as the gold standard to differentiate between adynamic bone disease and osteitis fibrosa is limited by availability and cost. Appropriate use of bone turnover markers is vital in the decision to commence anti-resorptive agents, and to monitor efficacy in order to avoid over suppression of bone turnover, which may lead to stress fractures. Further efforts are required to develop markers unaffected by renal function with standardized cut-off values and fracture as well as vascular calcification end-points. © 2017 Asian Pacific Society of Nephrology.

  17. Anti-osteopontin monoclonal antibody prevents ovariectomy-induced osteoporosis in mice by promotion of osteoclast apoptosis

    International Nuclear Information System (INIS)

    Zhang, Bo; Dai, Jianxin; Wang, Huaqing; Wei, Huafeng; Zhao, Jian; Guo, Yajun

    2014-01-01

    Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorption through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases

  18. Low bone turnover phenotype in Rett syndrome

    DEFF Research Database (Denmark)

    Roende, Gitte; Petersen, Janne; Ravn, Kirstine

    2014-01-01

    Background:Patients with Rett syndrome (RTT) are at risk of having low bone mass and low-energy fractures.Methods:We characterised bone metabolism by both bone formation and resorption markers in blood in a RTT population of 61 girls and women and 122 well-matched healthy controls. Levels of N-te...

  19. Imaging appearance of bone and joint in long-term dialysis recipients

    International Nuclear Information System (INIS)

    Liu Jiayi; Wang Wu; Hong Wen; Huang Zhenguo; Ren An; Zhang Xuezhe

    2009-01-01

    Objective: To analyze the MRI characters of hemodialysis-related osteoarthropathy in long-term dialysis recipients, and to evaluate the diagnostic value of X-ray, CT, and MRI on hemodialysis-related osteoarthropathy. Methods: The shoulders, hips, wrists and lumbar' vertebraes of 32 patients underwent X-ray and CT examinations. Twenty-six of them received MRI examinations. Results: In X-ray of 32 patients, 28 appeared osteoporosis, 11 showed bone resorption, 6 had cystic lesions, 11 had bone sclerosis, 1 had joint swelling, and 19 had soft tissue calcification. In CT of 32 patients, 32 appeared osteoporosis, 9 showed bone resorption, 12 had cystic lesions, 11 had bone sclerosis, 3 had joint swelling, and 19 had soft tissue calcification. In MRI of 26 patients, 6 appeared osteoporosis, 2 showed bone resorption, 14 showed cystic lesions, 5 had bone sclerosis, 15 had joint swelling, and 1 showed soft tissue calcification. Conclusions: X-rays plain film is the first choice for the diagnosis of hemodialysis-related osteopathy, and MRI is the first choice for the diagnosis of hemodialysis-related arthropathy. CT and MRI is pretty useful in the diagnosis of hemodialysis-related osteoarthropathy. (authors)

  20. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    Science.gov (United States)

    Suttorp, Christiaan M.; Xie, Rui; Lundvig, Ditte M. S.; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C.; Wagener, Frank A. D. T. G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, “fast” and “slow” tooth movers during orthodontic treatment. PMID:27486402

  1. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats.

    Science.gov (United States)

    Suttorp, Christiaan M; Xie, Rui; Lundvig, Ditte M S; Kuijpers-Jagtman, Anne Marie; Uijttenboogaart, Jasper Tom; Van Rheden, René; Maltha, Jaap C; Wagener, Frank A D T G

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalinization. Heme oxygenase-1 (HO-1) forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-1 products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Nickel-Titanium coil spring, providing a continuous orthodontic force of 10 cN. The contralateral side served as control. After 6, 12, 72, 96, and 120 h groups of rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in mononuclear cells within the PDL at both the apposition- and resorption side. Shortly after placement of the orthodontic appliance HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 h. Some osteoclasts were also HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of tissue protecting- and osteoclast activating genes in the PDL determine the level of bone resorption and hyalinization and, subsequently, "fast" and "slow" tooth movers during orthodontic treatment.

  2. Doxorubicin-mediated bone loss in breast cancer bone metastases is driven by an interplay between oxidative stress and induction of TGFβ.

    Directory of Open Access Journals (Sweden)

    Tapasi Rana

    Full Text Available Breast cancer patients, who are already at increased risk of developing bone metastases and osteolytic bone damage, are often treated with doxorubicin. Unfortunately, doxorubicin has been reported to induce damage to bone. Moreover, we have previously reported that doxorubicin treatment increases circulating levels of TGFβ in murine pre-clinical models. TGFβ has been implicated in promoting osteolytic bone damage, a consequence of increased osteoclast-mediated resorption and suppression of osteoblast differentiation. Therefore, we hypothesized that in a preclinical breast cancer bone metastasis model, administration of doxorubicin would accelerate bone loss in a TGFβ-mediated manner. Administration of doxorubicin to 4T1 tumor-bearing mice produced an eightfold increase in osteolytic lesion areas compared untreated tumor-bearing mice (P = 0.002 and an almost 50% decrease in trabecular bone volume expressed in BV/TV (P = 0.0005, both of which were rescued by anti-TGFβ antibody (1D11. Doxorubicin, which is a known inducer of oxidative stress, decreased osteoblast survival and differentiation, which was rescued by N-acetyl cysteine (NAC. Furthermore, doxorubicin treatment decreased Cu-ZnSOD (SOD1 expression and enzyme activity in vitro, and treatment with anti-TGFβ antibody was able to rescue both. In conclusion, a combination therapy using doxorubicin and anti-TGFβ antibody might be beneficial for preventing therapy-related bone loss in cancer patients.

  3. A Dual-Action Armed Replicating Adenovirus for the Treatment of Osteoblastic Bone Metastases of Prostate Cancer

    Science.gov (United States)

    2007-03-01

    that bone metastases of prostate cancer have an extensive bone resorptive component mediated by osteoclasts: resorption of the bone matrix provides...enhances protection by parenteral Mycobac- 795 terium bovis BCG immunization against pulmonary tuberculosis. 796 Infection and Immunity, 74, 4634–4643. 797...oncolysis; replicating adeno- virus; TIMP-2; tumor growth ABBReviATionS MMP matrix metalloproteinase TIMP-2 tissue inhibitor of metalloproteinases-2

  4. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    Science.gov (United States)

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  5. Prevention and Treatment of Bone Metastases in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ripamonti Carla

    2013-09-01

    Full Text Available In breast cancer patients, bone is the most common site of metastases. Medical therapies are the basic therapy to prevent distant metastases and recurrence and to cure them. Radiotherapy has a primary role in pain relief, recalcification and stabilization of the bone, as well as the reduction of the risk of complications (e.g., bone fractures, spinal cord compression. Bisphosphonates, as potent inhibitors of osteoclastic-mediated bone resorption are a well-established, standard-of-care treatment option to reduce the frequency, severity and time of onset of the skeletal related events in breast cancer patients with bone metastases. Moreover bisphosphonates prevent cancer treatment-induced bone loss. Recent data shows the anti-tumor activity of bisphosphonates, in particular, in postmenopausal women and in older premenopausal women with hormone-sensitive disease treated with ovarian suppression. Pain is the most frequent symptom reported in patients with bone metastases, and its prevention and treatment must be considered at any stage of the disease. The prevention and treatment of bone metastases in breast cancer must consider an integrated multidisciplinary approach.

  6. Gut microbiota induce IGF-1 and promote bone formation and growth

    Science.gov (United States)

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  7. Effects of diabetes on tooth movement and root resorption after orthodontic force application in rats.

    Science.gov (United States)

    Arita, K; Hotokezaka, H; Hashimoto, M; Nakano-Tajima, T; Kurohama, T; Kondo, T; Darendeliler, M A; Yoshida, N

    2016-05-01

    To investigate the effects of diabetes on orthodontic tooth movement and orthodontically induced root resorption in rats. Twenty-three 10-week-old male Sprague-Dawley rats divided into control (n = 7), diabetes (n = 9), and diabetes + insulin (n = 7) groups. Diabetes was induced by administering a single intraperitoneal injection of streptozotocin. Rats with a blood glucose level exceeding 250 mg/dl were assigned to the diabetes group. Insulin was administered daily to the diabetes + insulin group. A nickel-titanium closed-coil spring of 10 g was applied for 2 weeks to the maxillary left first molar in all rats to induce mesial tooth movement. Tooth movement was measured using microcomputed tomography images. To determine the quantity of root resorption, the mesial surfaces of the mesial and distal roots of the first molar were analyzed using both scanning electron microscopy and scanning laser microscopy. After 2 weeks, the amount of tooth movement in the diabetic rats was lower than that in the control rats. Root resorption was also significantly lower in the diabetic rats. These responses of the rats caused by diabetes were mostly diminished by insulin administration. Diabetes significantly reduced orthodontic tooth movement and orthodontically induced root resorption in rats. The regulation of blood glucose level through insulin administration largely reduced these abnormal responses to orthodontic force application. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma

    DEFF Research Database (Denmark)

    Abildgaard, Niels; Brixen, K; Eriksen, E.F

    2004-01-01

    BACKGROUND AND OBJECTIVES: Bone lesions often occur in multiple myeloma (MM), but no tests have proven useful in identifying patients with increased risk. Bone marker assays and bone densitometry are non-invasive methods that can be used repeatedly at low cost. This study was performed to evaluate...... 6 weeks, DEXA-scans performed every 3 months, and skeletal radiographs were done every 6 months as well as when indicated. RESULTS: Serum ICTP and urinary NTx were predictive of progressive bone events. Markers of bone formation, bone mineral density assessments, and M component measurements were...... changes, and our data do not support routine use of sequential DEXA-scans. However, lumbar DEXA-scans at diagnosis can identify patients with increased risk of early vertebral collapses. Sequential analyses of serum ICTP and urinary NTx are useful for monitoring bone damage....

  9. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2011-01-01

    Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health.

  10. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis

    Directory of Open Access Journals (Sweden)

    Logan Richard M

    2010-03-01

    Full Text Available Abstract Background Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown. Therefore, the aim of the present study was to characterise the expression of pro-inflammatory cytokines in the gastrointestinal tract using a rat model of fractionated radiotherapy-induced toxicity. Methods Thirty six female Dark Agouti rats were randomly assigned into groups and received 2.5 Gys abdominal radiotherapy three times a week over six weeks. Real time PCR was conducted to determine the relative change in mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF in the jejunum and colon. Protein expression of IL-1β, IL-6 and TNF in the intestinal epithelium was investigated using qualitative immunohistochemistry. Results Radiotherapy-induced sub-acute damage was associated with significantly upregulated IL-1β, IL-6 and TNF mRNA levels in the jejunum and colon. The majority of pro-inflammatory cytokine protein expression in the jejunum and colon exhibited minimal change following fractionated radiotherapy. Conclusions Pro-inflammatory cytokines play a key role in radiotherapy-induced gastrointestinal mucositis in the sub-acute onset setting.

  11. Pre-existing Periapical Inflammatory Condition Exacerbates Tooth Extraction–induced BRONJ Lesions in Mice

    Science.gov (United States)

    Song, Minju; Alshaikh, Abdullah; Kim, Terresa; Kim, Sol; Dang, Michelle; Mehrazarin, Shebli; Shin, Ki-Hyuk; Kang, Mo; Park, No-Hee; Kim, Reuben H.

    2016-01-01

    Introduction Surgical interventions such as tooth extraction increase a chance of developing osteonecrosis of the jaw (ONJ) in patients receiving bisphosphonates (BPs) for treatment of bone-related diseases. Tooth extraction is often performed to eliminate pre-existing pathological inflammatory conditions that make the tooth unsalvageable; however, the role of such conditions on bisphosphonate-related ONJ (BRONJ) development following tooth extraction is not clearly defined. Here, we examined the effects of periapical periodontitis on tooth extraction-induced BRONJ development in mice. Methods Periapical periodontitis was induced by exposing the pulp of the maxillary first molar for 3 weeks in C57/BL6 mice that were intravenously administered with BP. The same tooth was extracted, and after 3 additional weeks, the mice were harvested for histological, histomorphometric, and histochemical staining analyses. Results Pulp exposure induced periapical radiolucency as demonstrated by increased inflammatory cells, TRAP+ osteoclasts, and bone resorption. When BP was administered, pulp exposure did not induce apical bone resorption despite the presence of inflammatory cells and TRAP+ osteoclasts. While tooth extraction alone induced BRONJ lesions, pulp exposure further increased tooth extraction-induced BRONJ development as demonstrated by the presence of more bone necrosis. Conclusion Our study demonstrates that pre-existing pathological inflammatory condition such as periapical periodontitis is a predisposing factor that may exacerbate BRONJ development following tooth extraction. Our study further provides a clinical implication whereby periapical periodontitis should be controlled before performing tooth extraction in BP-users in order to reduce the risk of developing BRONJ. PMID:27637460

  12. Role of periodontal pathogenic bacteria in RANKL-mediated bone destruction in periodontal disease.

    Science.gov (United States)

    Kajiya, Mikihito; Giro, Gabriela; Taubman, Martin A; Han, Xiaozhe; Mayer, Marcia P A; Kawai, Toshihisa

    2010-11-08

    Accumulated lines of evidence suggest that hyperimmune responses to periodontal bacteria result in the destruction of periodontal connective tissue and alveolar bone. The etiological roles of periodontal bacteria in the onset and progression of periodontal disease (PD) are well documented. However, the mechanism underlying the engagement of periodontal bacteria in RANKL-mediated alveolar bone resorption remains unclear. Therefore, this review article addresses three critical subjects. First, we discuss earlier studies of immune intervention, ultimately leading to the identification of bacteria-reactive lymphocytes as the cellular source of osteoclast-induction factor lymphokine (now called RANKL) in the context of periodontal bone resorption. Next, we consider (1) the effects of periodontal bacteria on RANKL production from a variety of adaptive immune effector cells, as well as fibroblasts, in inflamed periodontal tissue and (2) the bifunctional roles (upregulation vs. downregulation) of LPS produced from periodontal bacteria in a RANKL-induced osteoclast-signal pathway. Future studies in these two areas could lead to new therapeutic approaches for the management of PD by down-modulating RANKL production and/or RANKL-mediated osteoclastogenesis in the context of host immune responses against periodontal pathogenic bacteria.

  13. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu-Ching [Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan (China); Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Ho, Heng-Chien; Lee, Miau-Rong [Department of Biochemistry, China Medical University, Taichung 404, Taiwan (China); Lai, Kuang-Chi [Department of Surgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan (China); School of Medicine, China Medical University, Taichung 404, Taiwan (China); Yeh, Chung-Min; Lin, Yueh-Min [Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan (China); Ho, Tin-Yun [School of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Hsiang, Chien-Yun, E-mail: cyhsiang@mail.cmu.edu.tw [Department of Microbiology, China Medical University, Taichung 404, Taiwan (China); Chung, Jing-Gung, E-mail: jgchung@mail.cmu.edu.tw [Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan (China); Department of Biotechnology, Asia University, Taichung 413, Taiwan (China)

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2 h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.

  14. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    International Nuclear Information System (INIS)

    Liu, Yu-Ching; Ho, Heng-Chien; Lee, Miau-Rong; Lai, Kuang-Chi; Yeh, Chung-Min; Lin, Yueh-Min; Ho, Tin-Yun; Hsiang, Chien-Yun; Chung, Jing-Gung

    2012-01-01

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2 h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.

  15. Postirradiation bone marrow damage in chickens

    International Nuclear Information System (INIS)

    Skardova, I.; Ojeda, F.

    1994-01-01

    The frequency of bone marrow damage induced by the continuous gamma irradiation was studied. Effect of dose rate and level of cumulated doses of radiation was evaluated in clinical and hematological examinations and bone marrow damage was determined by chromosome aberrations in anaphase. The regulative ability of hematopoiesis of many cytokines are discussed. Positive regulators are inducers of cell proliferation, and negative regulators are inducers of apoptosis /programmed cell death/. Birds corresponding with similarities in thymus-T and bursal-B cells appear to be an interesting model for studying the possible participation of apoptosis in radiation disease. Our recent experimental studies continue to progress in this direction. (author) 17 refs.; 3 figs.; 2 tabs

  16. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur ( 35 S) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia

  17. Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin?

    Science.gov (United States)

    Roth, Robert A; Maiuri, Ashley R; Ganey, Patricia E

    2017-02-01

    Idiosyncratic drug-induced liver injury continues to be a human health problem in part because drugs that cause these reactions are not identified in current preclinical testing and because progress in prevention is hampered by incomplete knowledge of mechanisms that underlie these adverse responses. Several hypotheses involving adaptive immune responses, inflammatory stress, inability to adapt to stress, and multiple, concurrent factors have been proposed. Yet much remains unknown about how drugs interact with the liver to effect death of hepatocytes. Evidence supporting hypotheses implicating adaptive or innate immune responses in afflicted patients has begun to emerge and is bolstered by results obtained in experimental animal models and in vitro systems. A commonality in adaptive and innate immunity is the production of cytokines, including interferon-γ (IFNγ). IFNγ initiates cell signaling pathways that culminate in cell death or inhibition of proliferative repair. Tumor necrosis factor-α, another cytokine prominent in immune responses, can also promote cell death. Furthermore, tumor necrosis factor-α interacts with IFNγ, leading to enhanced cellular responses to each cytokine. In this short review, we propose that the interaction of drugs with these cytokines contributes to idiosyncratic drug-induced liver injury, and mechanisms by which this could occur are discussed. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kirsi Alestalo

    Full Text Available Acute myocardial infarction (AMI launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI.Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection.Twenty-six patients (control group, n = 12; BMMNC group, n = 14 from the previously reported FINCELL study (n = 80 were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall's tau, control 0.6; BMMNC 0.7. At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall's tau, control 0.3; BMMNC 0.7.BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI.

  19. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone...... diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...

  20. The relevance of cytokines in the radiation-induced lung reaction. Experimental basis and clinical significance

    International Nuclear Information System (INIS)

    Ruebe, C.E.; Ruebe, C.; Rodemann, H.P.

    2004-01-01

    Methods: published data on radiation-induced cytokine expression from experimental and clinical studies are reviewed. Results and conclusion: the major pro-inflammatory cytokines in the radiation response of the lung include tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6). Transforming growth factor-β (TGF-β) appears to be of particular importance in the development of lung fibrosis. First approaches with radioprotective agents and gene therapy to modify radiation-induced cytokine expression have been investigated for prevention of late effects of irradiation lung damage in animal experiments. Preliminary data of clinical studies suggest that elevated plasma TGF-β-levels during radiotherapy may predict the development of symptomatic radiation pneumonitis. The biological impacts of endogenous radiation-induced cytokine production by tumor cells in respect of tumor behavior, potential damage to normal tissue, and clinical status of the host still need to be determined more precisely. (orig.)

  1. Cytokines as endogenous pyrogens.

    Science.gov (United States)

    Dinarello, C A

    1999-03-01

    Cytokines are pleiotropic molecules mediating several pathologic processes. Long before the discovery of cytokines as immune system growth factors or as bone marrow stimulants, investigators learned a great deal about cytokines when they studied them as the endogenous mediators of fever. The terms "granulocytic" or "endogenous pyrogen" were used to describe substances with the biologic property of fever induction. Today, we recognize that pyrogenicity is a fundamental biologic property of several cytokines and hence the clinically recognizeable property of fever links host perturbations during disease with fundamental perturbations in cell biology. In this review, the discoveries made on endogenous pyrogens are revisited, with insights into the importance of the earlier work to the present-day understanding of cytokines in health and in disease.

  2. Disorders of Bone Mineral Density and Secondary Osteoporosis in Pathology of Hepatobiliary System and Gastrointestinal Tract: at the Crossing of Problems

    Directory of Open Access Journals (Sweden)

    I.Yu. Golovach

    2012-08-01

    Full Text Available This review article covers the issues of development of osteoporosis and disorders of bone mineral density in patients with various gastroenterological and hepatobiliary diseases. The article emphasized that the osteoporosis may be associated with many somatic diseases, especially of the digestive tract. Such situation requires participation of therapeutists and gastroenterologists in rehabilitation health care programs. According to the practical guidelines of the World Organization of Gastroenterology (OMGE, 2004 list of chronic diseases of the digestive system triggering the dangerous development of osteoporosis includes short bowel syndrome, postgastrectomy syndrome, inflammatory bowel disease, celiac disease, cholestatic liver disease, as well as glucocorticoid-induced osteoporosis. The etiology and pathogenesis of lower bone mineral density in patients with chronic diseases of the digestive system include, besides population-based risk factors, processes associated with disorders of vitamin D conversion, which leads to reduction of the absorption of calcium, magnesium and phosphorus in the intestine and increase of their excretion by the kidneys. Hypocalcemia results in activation of the parathyroid glands and secondary hyperparathyroidism, and against the background of chronic inflammation increases the activity of cytokines, in particular tumor necrosis factor α and interleukins-1, -6, having bone resorptive action. The main risk factors for osteoporosis for various diseases associated with the peculiarities of the digestive tract’ disease were identified.

  3. Root resorption after orthodontic treatment: a review.

    Science.gov (United States)

    Jatania, Archana; Shivalinga, B M; Kiran, Jyothi

    2012-01-01

    Root resorption that occurs in permanent teeth is an unwanted process and is considered pathologic. Although apical root resorption occurs in individuals who have never experienced orthodontic tooth movement, the incidence among treated individuals is seen to be significantly higher. Some resorption occurs in most orthodontic patients, but because of repair the changes are difficult to detect with radiographic examination and therefore are clinically insignificant. This article gives a review of the various types of root resorption, the etiological factors, the biology and the identification of root resorption.

  4. Ossicular bone modeling in acute otitis media

    DEFF Research Database (Denmark)

    Salomonsen, Rasmus Lysholdt; Hermansson, Ann; Cayé-Thomasen, Per

    2010-01-01

    A number of middle ear diseases are associated with pathologic bone modeling, either formative or resorptive. As such, the pathogenesis of a sclerotic mastoid has been controversial for decades. Experimental studies on acute middle ear infection have shown progressive osteoneogenesis in the bone ...

  5. Coordination of early cellular reactions during activation of bone resorption in the rat mandible periosteum: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bassam Hassan

    2017-10-01

    Full Text Available The activation step of bone remodeling remains poorly characterized. Activation comprises determination of the site to be remodeled, osteoclast precursor recruitment, their migration to the site of remodeling, and differentiation. These actions involve different compartments and cell types. The aim of this study was to investigate events and cell types involved during activation. We used a bone remodeling model in rats where extractions of the upper jaw molars initiate remodeling of the antagonist lower jaw (mandible cortex along the periosteum. In this model osteoclastic resorption peaks 4 days after extractions. We previously reported that mast cell activation in the periosteum fibrous compartment is an early event of activation, associated with recruitment of circulating monocyte osteoclast precursors. By using immunohistochemistry, we observed 9 hours after induction a spatially oriented expression of InterCellular Adhesion Molecule-1 in the vessels that was inhibited by antagonists of histamine receptors 1 and 2. It was followed at 12 hours by the recruitment of ED1+ monocytes. In parallel, at 9 hours, Vascular Cellular Adhesion Molecule-1+ fibroblast-like cells scattered in the fibrous compartment of the periosteum between the vessels and the osteogenic compartment increased; these cells may be implicated in osteoclast precursor migration. Receptor Activator of NF KappaB Ligand+ cells increased at 12 hours in the osteogenic compartment and reached a peak at 18 hours. At 24 hours the numbers of osteogenic cells and subjacent osteocytes expressing semaphorin 3a, a repulsive for osteoclast precursors, decreased before returning to baseline at 48 hours. These data show that during activation the two periosteum compartments and several cell types are coordinated to recruit and guide osteoclast precursors towards the bone surface. Keywords: Biological sciences, Cell biology, Physiology, Dentistry

  6. Insulin induces suppressor of cytokine signaling-3 tyrosine phosphorylation through janus-activated kinase

    NARCIS (Netherlands)

    Peraldi, P; Filloux, C; Emanuelli, B; Hilton, DJ; Van Obberghen, E

    2001-01-01

    Suppressor of cytokine signaling (SOCS) proteins were originally described as cytokine-induced molecules involved in negative feedback loops. We have shown that SOCS-3 is also a component of the insulin signaling network (1), Indeed, insulin leads to SOCS-3 expression in 3T3-L1 adipocytes. Once

  7. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  8. TRAF family member-associated NF-κB activator (TANK) induced by RANKL negatively regulates osteoclasts survival and function.

    Science.gov (United States)

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.

  9. Cytokine accumulation in osteitis fibrosa of renal osteodystrophy

    Directory of Open Access Journals (Sweden)

    Duarte M.E.L.

    2002-01-01

    Full Text Available Bone marrow fibrosis occurs in association with a number of pathological states. Despite the extensive fibrosis that sometimes characterizes renal osteodystrophy, little is known about the factors that contribute to marrow accumulation of fibrous tissue. Because circulating cytokines are elevated in uremia, possibly in response to elevated parathyroid hormone levels, we have examined bone biopsies from 21 patients with end-stage renal disease and secondary hyperparathyroidism. Bone sections were stained with antibodies to human interleukin-1alpha (IL-1alpha, IL-6, IL-11, tumor necrosis factor-alpha (TNF-alpha and transforming growth factor-ß (TGF-ß using an undecalcified plastic embedding method. Intense staining for IL-1alpha, IL-6, TNF-alpha and TGF-ß was evident within the fibrotic tissue of the bone marrow while minimal IL-11 was detected. The extent of cytokine deposition corresponded to the severity of fibrosis, suggesting their possible involvement in the local regulation of the fibrotic response. Because immunoreactive TGF-ß and IL-6 were also detected in osteoblasts and osteocytes, we conclude that selective cytokine accumulation may have a role in modulating bone and marrow cell function in parathyroid-mediated uremic bone disease.

  10. Low dose transdermal estradiol induces breast density and heterogeneity changes comparable to those of raloxifene

    DEFF Research Database (Denmark)

    Nielsen, Mads; Raundahl, Jakob; Pettersen, Paola

    2009-01-01

    Objective: To investigate whether transdermal low dose estradiol treatment induces changes in mammographic density or heterogeneity compared to raloxifene. Secondarily, if these changes relate to changes in bone formation/resorption markers, and if these findings indicate elevation of breast canc...

  11. Du-Zhong (Eucommia ulmoides Oliv.) Cortex Extract Alleviates Lead Acetate-Induced Bone Loss in Rats.

    Science.gov (United States)

    Qi, Shanshan; Zheng, Hongxing; Chen, Chen; Jiang, Hai

    2018-05-09

    The purpose of this study was to evaluate the protective effect of Du-Zhong cortex extract (DZCE) on lead acetate-induced bone loss in rats. Forty female Sprague-Dawley rats were randomly divided into four groups: group I (control) was provided with distilled water. Group II (PbAc) received 500 ppm lead acetate in drinking water for 60 days. Group III (PbAc+DZCE) received 500 ppm lead acetate in drinking water, and given intragastric DZCE (100 mg/kg body weight) for 60 days. Group IV (DZCE) was given intragastric DZCE (100 mg/kg body weight) for 60 days. The bone mineral density, serum biochemical markers, bone histomorphology, and bone marrow adipocyte parameters were analyzed using dual-energy X-ray absorptiometry, biochemistry, histomorphometry, and histopathology, respectively. The results showed that the lumbar spine and femur bone mineral density was significantly decreased in PbAc group compared with the control (P  0.05, vs. control and DZCE group). Serum calcium and serum phosphorus in the PbAc+DZCE group were greater than that in the PbAc group (P control group (P control, and DZCE groups (P > 0.05). Serum OPG and OPG/RANKL ration were significantly higher in the PbAc+DZCE group than that in the PbAc group (P control group, but those were restored in the PbAc+DZCE groups. The bone marrow adipocyte number, percent adipocyte volume per tissue volume (AV/TV), and mean adipocyte diameter were significantly increased in the PbAc group compared to the control (P control group were not significant. The results above indicate that the Du-Zhong cortex extract has protective effects on both stimulation of bone formation and suppression of bone resorption in lead-exposed rats, therefore, Du-Zhong cortex extract has the potential to prevent or treat osteoporosis resulting from lead expose.

  12. Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: Comparison of bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Kyuhong

    2018-01-15

    Inhalation of polyhexamethylene guanidine (PHMG) causes irreversible pulmonary injury, such as pulmonary fibrosis. However, the mechanism underlying PHMG-induced lung injury is unclear. In this study, we compared the difference in time-dependent lung injury between PHMG- and bleomycin (BLM)-treated mice and determined cytokines involved in inducing lung injury by performing cytokine antibody array analysis. Mice were treated once with 1.8mg/kg BLM or 1.2mg/kg PHMG through intratracheal instillation and were sacrificed on days 7 and 28. Bronchoalveolar lavage fluid (BALF) analysis showed that the number of neutrophils was significantly higher in PHMG-treated mice than in BLM-treated mice on day 7. Histopathological analysis showed inflammatory cell infiltration and fibrosis mainly in the terminal bronchioles and alveoli in the lungs of PHMG- and BLM-treated mice. However, continuous macrophage infiltration in the alveolar space and bronchioloalveolar epithelial hyperplasia (BEH) were only observed in PHMG-treated mice. Cytokine antibody array analysis showed that 15 and eight cytokines were upregulated in PHMG- and BLM-treated mice, respectively, on day 7. On day 28, 13 and five cytokines were upregulated in PHMG and BLM-treated mice, respectively. In addition, the expressed cytokines between days 7 and 28 in BLM-treated mice were clearly different, but were similar in PHMG-treated mice. Consequently, between PHMG- and BLM-treated mice, we observed differences in the expression patterns and types of cytokines. These differences are considered to be a result of the inflammatory processes induced by both substances, which may mainly involve macrophage infiltration. Therefore, continuous induction of the inflammatory response by PHMG may play an important role in the development of pulmonary fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines.

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Son

    Full Text Available Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs. ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  14. Spontaneous and cytokine induced basophil adhesion evaluated by microtiter assay

    DEFF Research Database (Denmark)

    Quan, Sha; Poulsen, Lars K; Reimert, Claus Michael

    2002-01-01

    We have developed a microtiter assay for evaluating basophil spontaneous adhesion to extracellular matrix (ECM) proteins exemplified by fibronectin and cytokine induced basophil adhesion to bovine serum albumin (BSA). The percentage of basophils adhering to either ECM or BSA was quantified...

  15. Lithium chloride attenuates root resorption during orthodontic tooth movement in rats.

    Science.gov (United States)

    Wang, Yu; Gao, Shang; Jiang, Huan; Lin, Peng; Bao, Xingfu; Zhang, Zhimin; Hu, Min

    2014-02-01

    Root resorption is a common side effect of orthodontic treatment. In the current study, lithium chloride (LiCl), a Wnt signaling activator, was examined to determine its effect on root resorption. In total, 10 Sprague Dawley rats were randomly allocated into the experimental group (EG) and control group (CG). Each group consisted of five subjects. By using closed nickel-titanium coil springs, a 50-g force was applied between the upper incisors and the maxillary right first molars in order to mimic orthodontic biomechanics in the EG and CG for 14 days. During the 14 days, the EG rats were gavage-fed 200 mg/kg LiCl every 48 h. Next, digital radiographs were captured using a micro-computational tomography scanner. The movement of the maxillary first molars and the root resorption area ratio were measured electronically on the digital radiographs. The outcomes were analyzed using ANOVA. Following 14 days of experimental force application, all rats had spaces of varying sizes between the first and second right maxillary molars. The average distance measured in the CG was slightly higher than in the EG, however, the difference was not found to be statistically significant (P=0.224). Root resorption craters were observed in the groups following the experiment. Rough cementum areas were observed on the mesial surface of the distobuccal and distopalatal roots. The mean root resorption area ratio of CG was significantly greater than EG (Porthodontically induce root resorption during orthodontic tooth movement. The effect of LiCl on tooth movement is insignificant.

  16. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  17. Instructions for producing a mouse model of glucocorticoid-induced osteoporosis

    DEFF Research Database (Denmark)

    Thiele, S.; Baschant, U.; Rauch, A.

    2014-01-01

    Glucocorticoids are effective drugs used for the treatment of inflammatory diseases such as rheumatoid arthritis or asthma. Furthermore, they regulate various physiological processes, including bone remodeling. However, long-term high- and even low-dose glucocorticoid use is associated...... with a compromised bone quality and an increased fracture risk. At the cellular level, glucocorticoids suppress bone formation and stimulate bone resorption, which leads to loss of bone mass. To investigate the underlying mechanisms and new therapeutic strategies, the in vivo model for glucocorticoid-induced bone...... loss is widely used. This protocol outlines the common procedure that is currently used for the induction of bone loss in mice using glucocorticoids. It further provides useful hints and highlights possible pitfalls to take into account before starting an experiment....

  18. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  19. Regional Aggressive Root Resorption Caused by Neuronal Virus Infection

    Directory of Open Access Journals (Sweden)

    Inger Kjær

    2012-01-01

    Full Text Available During orthodontic treatment, root resorption can occur unexplainably. No clear distinction has been made between resorption located within specific regions and resorption occurring generally in the dentition. The purpose is to present cases with idiopathic (of unknown origin root resorption occurring regionally. Two cases of female patients, 26 and 28 years old, referred with aggressive root resorption were investigated clinically and radiographically. Anamnestic information revealed severe virus diseases during childhood, meningitis in one case and whooping cough in the other. One of the patients was treated with dental implants. Virus spreading along nerve paths is a possible explanation for the unexpected resorptions. In both cases, the resorptions began cervically. The extent of the resorption processes in the dentition followed the virus infected nerve paths and the resorption process stopped when reaching regions that were innervated differently and not infected by virus. In one case, histological examination revealed multinuclear dentinoclasts. The pattern of resorption in the two cases indicates that innervation is a factor, which under normal conditions may protect the root surface against resorption. Therefore, the normal nerve pattern is important for diagnostics and for predicting the course of severe unexpected root resorption.

  20. Nitrogen-containing bisphosphonate, YM529/ONO-5920 (a novel minodronic acid), inhibits RANKL expression in a cultured bone marrow stromal cell line ST2

    International Nuclear Information System (INIS)

    Nishida, Shozo; Tsubaki, Masanobu; Hoshino, Mayumi; Namimatsu, Ayumi; Uji, Hiromi; Yoshioka, Shohei; Tanimori, Yoshihiro; Yanae, Masashi; Iwaki, Masahiro; Irimajiri, Kiyohiro

    2005-01-01

    Increase in bone resorption by osteoclasts can cause metabolic bone diseases, such as osteoporosis. Recent attention has been paid to the receptor activator of the NF-κB ligand (RANKL), an accelerator of osteoclast differentiation. RANKL is expressed on the bone marrow-derived stromal cell membrane and induces the differentiation of osteoclasts by binding to RANK expressed on the osteoclast precursor cell membrane. Since the inhibition of RANKL expression can lead to the inhibition of osteoclastic bone resorption, the clinical application of RANKL inhibition could be expected to have a major effect on metabolic bone disease therapy. In this study, we investigated whether or not YM529/ONO-5920, a nitrogen-containing bisphosphonate (a novel minodronic acid), inhibits RANKL expression in a bone marrow-derived stromal cell line (ST2 cells). Reverse transcription-polymerase chain reaction revealed that the administration of YM529/ONO-5920 to ST2 cells inhibited RANKL mRNA expression and reduced RANKL proteins as assessed by Western blot analysis. The inhibition of RANKL mRNA expression was reversed when geranylgeranyl pyrophosphate (GGPP), an intermediate in the mevalonate pathway, was used in combination. Furthermore, YM529/ONO-5920 reduced phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), and similarly, U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, inhibited RANKL expression. Pretreatment with GGPP reversed the YM529/ONO-5920-induced decrease in phosphorylation of ERK. Furthermore, YM529/ONO-5920 decreased TRAP-positive cells in co-culture of ST2 cells and an osteoclast cell line, C7 cells, and this decrease was inhibited by pretreatment with GGPP. This indicates that YM529/ONO-5920 inhibits GGPP biosynthesis in the mevalonate pathway and then signal transduction in the Ras-mitogen-activated protein kinase pathway, thereby inhibiting RANKL expression on ST2 cells. These results suggest a newly elucidated action of bisphosphonates in