WorldWideScience

Sample records for cytokine-associated neutrophil extracellular

  1. Neutrophil Extracellular Traps and Microcrystals

    Science.gov (United States)

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed. PMID:28373994

  2. Neutrophil Extracellular Traps and Microcrystals.

    Science.gov (United States)

    Rada, Balázs

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1-100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  3. Neutrophil Extracellular Traps and Microcrystals

    Directory of Open Access Journals (Sweden)

    Balázs Rada

    2017-01-01

    Full Text Available Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  4. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  5. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

    Science.gov (United States)

    Gorgojo, Juan; Scharrig, Emilia; Gómez, Ricardo M.; Harvill, Eric T.; Rodríguez, Maria Eugenia

    2017-01-01

    B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts. PMID:28095485

  6. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those...... originally described in vitro. Citrullination of histones by peptidyl arginine deiminase 4 (PAD4) is central for NET formation in vivo. NETs may spur formation of autoantibodies and may also serve as scaffolds for thrombosis, thereby providing a link among infection, autoimmunity, and thrombosis...

  7. Metabolic requirements for neutrophil extracellular traps formation

    Science.gov (United States)

    Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Moreno-Altamirano, María Maximina Bertha; López-Villegas, Edgar Oliver; Sánchez-García, Francisco Javier

    2015-01-01

    As part of the innate immune response, neutrophils are at the forefront of defence against infection, resolution of inflammation and wound healing. They are the most abundant leucocytes in the peripheral blood, have a short lifespan and an estimated turnover of 1010 to 1011 cells per day. Neutrophils efficiently clear microbial infections by phagocytosis and by oxygen-dependent and oxygen-independent mechanisms. In 2004, a new neutrophil anti-microbial mechanism was described, the release of neutrophil extracellular traps (NETs) composed of DNA, histones and anti-microbial peptides. Several microorganisms, bacterial products, as well as pharmacological stimuli such as PMA, were shown to induce NETs. Neutrophils contain relatively few mitochondria, and derive most of their energy from glycolysis. In this scenario we aimed to analyse some of the metabolic requirements for NET formation. Here it is shown that NETs formation is strictly dependent on glucose and to a lesser extent on glutamine, that Glut-1, glucose uptake, and glycolysis rate increase upon PMA stimulation, and that NET formation is inhibited by the glycolysis inhibitor, 2-deoxy-glucose, and to a lesser extent by the ATP synthase inhibitor oligomycin. Moreover, when neutrophils were exposed to PMA in glucose-free medium for 3 hr, they lost their characteristic polymorphic nuclei but did not release NETs. However, if glucose (but not pyruvate) was added at this time, NET release took place within minutes, suggesting that NET formation could be metabolically divided into two phases; the first, independent from exogenous glucose (chromatin decondensation) and, the second (NET release), strictly dependent on exogenous glucose and glycolysis. PMID:25545227

  8. Neutrophil extracellular traps in tissue pathology.

    Science.gov (United States)

    Nakazawa, Daigo; Kumar, Santosh; Desai, Jyaysi; Anders, Hans-Joachim

    2017-03-01

    Neutrophil extracellular traps (NETs) are innate immune systems against invading pathogens. NETs are characterized as released DNA mixed with cytoplasmic antimicrobial proteins such as myeloperoxidase, proteinase3 and neutrophil elastase. While NETs are thought to have an important role in host defense, recent work has suggested that NETs contribute to tissue injury in non-infectious disease states. Uncontrolled NET formation in autoimmune diseases, metabolic disorders, cancers and thrombotic diseases can exacerbate a disease or even be a major initiator of tissue injury. But spotting NETs in tissues is not easy. Here we review the available histopathological evidence on the presence of NETs in a variety of diseases. We discuss technical difficulties and potential sources of misinterpretation while trying to detect NETs in tissue samples.

  9. Neutrophils cast extracellular traps in response to protozoan parasites.

    Science.gov (United States)

    Abi Abdallah, Delbert S; Denkers, Eric Y

    2012-01-01

    Release of extracellular traps by neutrophils is a now well-established phenomenon that contributes to the innate response to extracellular bacterial and fungal pathogens. The importance of NETs during protozoan infection has been less explored, but recent findings suggest an emerging role for release of neutrophil-derived extracellular DNA in response to this class of microbial pathogens. The present review summarizes findings to date regarding elicitation of NETs by Toxoplasma gondii, Plasmodium falciparum, Eimeria bovis, and Leishmania spp.

  10. Cryptococcus Neoformans Modulates Extracellular Killing by Neutrophils

    OpenAIRE

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L; Schey, Kevin L.; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in...

  11. Cryptococcus neoformans modulates extracellular killing by neutrophils.

    Science.gov (United States)

    Qureshi, Asfia; Grey, Angus; Rose, Kristie L; Schey, Kevin L; Del Poeta, Maurizio

    2011-01-01

    We recently established a key role for host sphingomyelin synthase (SMS) in regulating the killing activity of neutrophils against Cryptococcus neoformans. In this paper, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and natural killer (NK) cells (Tgε26 mice). To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike Candida albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. We monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the conditioned medium and found that pre-incubation with live but not "heat-killed" fungal cells significantly inhibits further killing activity of the medium. We then studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization tissue imaging in infected lung we found that similar to previous observations in the isogenic wild-type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells, but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  12. Cryptococcus neoformans modulates extracellular killing by neutrophils

    Directory of Open Access Journals (Sweden)

    Asfia eQureshi

    2011-09-01

    Full Text Available We recently established a key role for host sphingomyelin synthase (SMS in the regulation of the killing activity of neutrophils against Cryptococcus neoformans. In this work, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and NK cells (Tgε26 mice. To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike C. albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. Next, we monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the medium and found that pre-incubation with live but not heat-killed fungal cells significantly inhibits further killing activity of the medium. We next studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization (MALDI tissue imaging in infected lung we found that similarly to previous observations in the isogenic wild type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  13. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps.

    Science.gov (United States)

    Jenne, Craig N; Wong, Connie H Y; Zemp, Franz J; McDonald, Braedon; Rahman, Masmudur M; Forsyth, Peter A; McFadden, Grant; Kubes, Paul

    2013-02-13

    Neutrophils mediate bacterial clearance through various mechanisms, including the release of mesh-like DNA structures or neutrophil extracellular traps (NETs) that capture bacteria. Although neutrophils are also recruited to sites of viral infection, their role in antiviral innate immunity is less clear. We show that systemic administration of virus analogs or poxvirus infection induces neutrophil recruitment to the liver microvasculature and the release of NETs that protect host cells from virus infection. After systemic intravenous poxvirus challenge, mice exhibit thrombocytopenia and the recruitment of both neutrophils and platelets to the liver vasculature. Circulating platelets interact with, roll along, and adhere to the surface of adherent neutrophils, forming large, dynamic aggregates. These interactions facilitate the release of NETs within the liver vasculature that are able to protect host cells from poxvirus infection. These findings highlight the role of NETs and early tissue-wide responses in preventing viral infection.

  14. Neutrophil extracellular traps (NETs) and infection-related vascular dysfunction.

    Science.gov (United States)

    Gardiner, Elizabeth E; Andrews, Robert K

    2012-11-01

    The innate immune system orchestrated by leukocytes primarily neutrophils, serves to remove dead and dying host cells and to provide protection against invasion by pathogens. Failure of this system results in the onset of sepsis leading to grave consequences for the host. Together with mechanical methods to physically isolate and remove the pathogen, neutrophils also release an important set of proinflammatory biological modulators that mediate recruitment of additional cells to a site of infection and amplify the innate protective response. Additionally, neutrophils release highly charged mixtures of DNA and nuclear proteins named neutrophil extracellular traps (NETs). These electrostatically-charged adhesive networks trigger intrinsic coagulation, limit dispersion and entrap the pathogens. NETs also contain the neutrophil secretary granule-derived serine proteases, neutrophil elastase and cathepsin G, known to regulate the reactivity of both neutrophils and platelets. Since the characterization of NETs in 2004, new studies of their functional effect in vivo continue to expand upon unexpected extracellular roles for DNA, and in doing so renew attention to the haemostatic role of the leukocyte. This review will provide a basic description of NETs and examine current knowledge of this important system of defense, including recent work illustrating a role for NETs in activation of thrombosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Neutrophil extracellular traps in dermatology: Caught in the NET.

    Science.gov (United States)

    Hoffmann, Jochen H O; Enk, Alexander H

    2016-10-01

    Neutrophil, or polymorphonuclear granulocytes (PMN) constitute the most abundant type of leucocytes in peripheral human blood. One of the major advances in the last decade was the discovery of neutrophil extracellular trap (NET) formation: a process by which neutrophils externalize web-like chromatin strands decorated with antimicrobial peptides. These structures were soon implicated in immune defense and auto-immunity alike and now link neutrophils to the pathogenesis of a variety of diseases of dermatological relevance. Currently, NET formation is mainly subdivided into suicidal and vital NETosis. Controversy exists regarding the capacity of NETs to kill pathogens, and little is known about the way NETs are formed in vivo. Here, we discuss the current terminology, methods for NET quantification, pathways leading to NET formation, and the role of NETs in systemic and cutaneous immune defense and auto-immunity, with a focus on psoriasis and systemic lupus erythematosus.

  16. Killing by neutrophil extracellular traps: fact or folklore?

    Science.gov (United States)

    Menegazzi, Renzo; Decleva, Eva; Dri, Pietro

    2012-02-02

    Neutrophil extracellular traps (NETs) are DNA structures released by dying neutrophils and claimed to constitute a new microbicidal mechanism. Killing by NET-forming cells is ascribed to these structures because it is prevented by preincubation with DNase, which has been shown to dismantle NETs, before addition of the target microorganisms. Curiously, the possibility that the microorganisms ensnared in NETs are alive has not been considered. Using Staphylococcus aureus and Candida albicans blastospores, we demonstrate that the microorganisms captured by NETs and thought to be killed are alive because they are released and recovered in cell medium by incubation with DNase. It is concluded that NETs entrap but do not kill microbes.

  17. P-selectin promotes neutrophil extracellular trap formation in mice.

    Science.gov (United States)

    Etulain, Julia; Martinod, Kimberly; Wong, Siu Ling; Cifuni, Stephen M; Schattner, Mirta; Wagner, Denisa D

    2015-07-01

    Neutrophil extracellular traps (NETs) can be released in the vasculature. In addition to trapping microbes, they promote inflammatory and thrombotic diseases. Considering that P-selectin induces prothrombotic and proinflammatory signaling, we studied the role of this selectin in NET formation. NET formation (NETosis) was induced by thrombin-activated platelets rosetting with neutrophils and was inhibited by anti-P-selectin aptamer or anti-P-selectin glycoprotein ligand-1 (PSGL-1) inhibitory antibody but was not induced by platelets from P-selectin(-/-) mice. Moreover, NETosis was also promoted by P-selectin-immunoglobulin fusion protein but not by control immunoglobulin. We isolated neutrophils from mice engineered to overproduce soluble P-selectin (P-selectin(ΔCT/ΔCT) mice). Although the levels of circulating DNA and nucleosomes (indicative of spontaneous NETosis) were normal in these mice, basal neutrophil histone citrullination and presence of P-selectin on circulating neutrophils were elevated. NET formation after stimulation with platelet activating factor, ionomycin, or phorbol 12-myristate 13-acetate was significantly enhanced, indicating that the P-selectin(ΔCT/ΔCT) neutrophils were primed for NETosis. In summary, P-selectin, cellular or soluble, through binding to PSGL-1, promotes NETosis, suggesting that this pathway is a potential therapeutic target for NET-related diseases.

  18. Human neutrophils produce extracellular traps against Paracoccidioides brasiliensis.

    Science.gov (United States)

    Mejía, Susana P; Cano, Luz E; López, Juan A; Hernandez, Orville; González, Ángel

    2015-05-01

    Neutrophils play an important role as effector cells and contribute to the resistance of the host against microbial pathogens. Neutrophils are able to produce extracellular traps (NETs) in response to medically important fungi, including Aspergillus spp., Candida albicans and Cryptococcus gattii. However, NET production in response to Paracoccidioides brasiliensis has yet to be studied. We have demonstrated that human neutrophils produce NETs against both conidia and yeasts of P. brasiliensis. Although the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) did not alter NET production against conidia, it partially suppressed NET formation against P. brasiliensis yeasts. Cytochalasin D or IFN-γ did not affect the production of NETs against the fungus. Additionally, a mutant strain of P. brasiliensis with reduced expression of an alternative oxidase induced significantly higher levels of NETs in comparison with the WT strain. Finally, c.f.u. quantification of P. brasiliensis showed no significant differences when neutrophils were treated with DPI, DNase I or cytochalasin D as compared with untreated cells. These data establish that NET formation by human neutrophils appears to be either dependent or independent of reactive oxygen species production, correlating with the fungal morphotype used for stimulation. However, this mechanism was ineffective in killing the fungus.

  19. Neutrophil Extracellular Traps in Periodontitis: A Web of Intrigue.

    Science.gov (United States)

    White, P C; Chicca, I J; Cooper, P R; Milward, M R; Chapple, I L C

    2016-01-01

    Neutrophil extracellular traps (NETs) represent a novel paradigm in neutrophil-mediated immunity. NETs are believed to constitute a highly conserved antimicrobial strategy comprising decondensed nuclear DNA and associated histones that are extruded into the extracellular space. Associated with the web-like strands of DNA is an array of antimicrobial peptides (AMPs), which facilitate the extracellular destruction of microorganisms that become entrapped within the NETs. NETs can be released by cells that remain viable or following a unique form of programmed cell death known as NETosis, which is dependent on the production of reactive oxygen species (ROS) and the decondensing of the nuclear DNA catalyzed by peptidyl arginine deiminase-4. NETs are produced in response to a range of pathogens, including bacteria, viruses, fungi, and protozoa, as well as host-derived mediators. NET release is, however, not without cost, as the concomitant release of cytotoxic molecules can also cause host tissue damage. This is evidenced by a number of immune-mediated diseases, in which excess or dysfunctional NET production, bacterial NET evasion, and decreased NET removal are associated with disease pathogenesis. Periodontitis is the most prevalent infectious-inflammatory disease of humans, characterized by a dysregulated neutrophilic response to specific bacterial species within the subgingival plaque biofilm. Neutrophils are the predominant inflammatory cell involved in periodontitis and have previously been found to exhibit hyperactivity and hyperreactivity in terms of ROS production in chronic periodontitis patients. However, the contribution of ROS-dependent NET formation to periodontal health or disease remains unclear. In this focused review, we discuss the mechanisms, stimuli, and requirements for NET production; the ability of NET-DNA and NET-associated AMPs to entrap and kill pathogens; and the potential immunogenicity of NETs in disease. We also speculate on the potential

  20. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview

    Science.gov (United States)

    Delgado-Rizo, Vidal; Martínez-Guzmán, Marco A.; Iñiguez-Gutierrez, Liliana; García-Orozco, Alejandra; Alvarado-Navarro, Anabell; Fafutis-Morris, Mary

    2017-01-01

    In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of

  1. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Giselle A Funchal

    Full Text Available Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.

  2. Autophagy is induced by anti-neutrophil cytoplasmic Abs and promotes neutrophil extracellular traps formation.

    Science.gov (United States)

    Sha, Li-Li; Wang, Huan; Wang, Chen; Peng, Hong-Ying; Chen, Min; Zhao, Ming-Hui

    2016-11-01

    Dysregulated neutrophil extracellular traps (NETs) formation contributes to the pathogenesis of anti-neutrophil cytoplasmic Ab (ANCA)-associated vasculitis (AAV). Increasing evidence indicates that autophagy is involved in the process of NETs formation. In this study, we aimed to investigate whether ANCA could induce autophagy in the process of NETs formation. Autophagy was detected using live cell imaging, microtubule-associated protein light chain 3B (LC3B) accumulation and Western blotting. The results showed that autophagy vacuolization was detected in neutrophils treated with ANCA-positive IgG by live cell imaging. This effect was enhanced by rapamycin, the autophagy inducer, and weakened by 3-methyladenine (3-MA), the autophagy inhibitor. In line with these results, the autophagy marker, LC3B, showed a punctate distribution pattern in the neutrophils stimulated with ANCA-positive IgG. In the presence of rapamycin, LC3B accumulation was further increased; however, this effect was attenuated by 3-MA. Moreover, incubated with ANCA-positive IgG, the NETosis rate significantly increased compared with the unstimulated group. And, the rate significantly increased or decreased in the neutrophils pretreated with rapamycin or 3-MA, respectively, as compared with the cells incubated with ANCA-positive IgG. Overall, this study demonstrates that autophagy is induced by ANCA and promotes ANCA-induced NETs formation.

  3. Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation.

    Science.gov (United States)

    Okubo, Koshu; Kamiya, Mako; Urano, Yasuteru; Nishi, Hiroshi; Herter, Jan M; Mayadas, Tanya; Hirohama, Daigoro; Suzuki, Kazuo; Kawakami, Hiroshi; Tanaka, Mototsugu; Kurosawa, Miho; Kagaya, Shinji; Hishikawa, Keiichi; Nangaku, Masaomi; Fujita, Toshiro; Hayashi, Matsuhiko; Hirahashi, Junichi

    2016-08-01

    Neutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs), which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases.

  4. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.

    Directory of Open Access Journals (Sweden)

    Andrea Seper

    Full Text Available The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.

  5. Yersinia enterocolitica-mediated degradation of neutrophil extracellular traps (NETs).

    Science.gov (United States)

    Möllerherm, Helene; Neumann, Ariane; Schilcher, Katrin; Blodkamp, Stefanie; Zeitouni, Nathalie E; Dersch, Petra; Lüthje, Petra; Naim, Hassan Y; Zinkernagel, Annelies S; von Köckritz-Blickwede, Maren

    2015-12-01

    Neutrophil extracellular trap (NET) formation is described as a tool of the innate host defence to fight against invading pathogens. Fibre-like DNA structures associated with proteins such as histones, cell-specific enzymes and antimicrobial peptides are released, thereby entrapping invading pathogens. It has been reported that several bacteria are able to degrade NETs by nucleases and thus evade the NET-mediated entrapment. Here we studied the ability of three different Yersinia serotypes to induce and degrade NETs. We found that the common Yersinia enterocolitica serotypes O:3, O:8 and O:9 were able to induce NETs in human blood-derived neutrophils during the first hour of co-incubation. At later time points, the NET amount was reduced, suggesting that degradation of NETs has occurred. This was confirmed by NET degradation assays with phorbol-myristate-acetate-pre-stimulated neutrophils. In addition, we found that the Yersinia supernatants were able to degrade purified plasmid DNA. The absence of Ca(2+) and Mg(2+) ions, but not that of a protease inhibitor cocktail, completely abolished NET degradation. We therefore postulate that Y. enterocolitica produces Ca(2+)/Mg(2+)-dependent NET-degrading nucleases as shown for some Gram-positive pathogens.

  6. Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation

    Directory of Open Access Journals (Sweden)

    Koshu Okubo

    2016-08-01

    Full Text Available Neutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs, which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases.

  7. Vitamin C: A Novel Regulator of Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Ramesh Natarajan

    2013-08-01

    Full Text Available Introduction: Neutrophil extracellular trap (NET formation was recently identified as a novel mechanism to kill pathogens. However, excessive NET formation in sepsis can injure host tissues. We have recently shown that parenteral vitamin C (VitC is protective in sepsis. Whether VitC alters NETosis is unknown. Methods: We used Gulo−/− mice as they lack the ability to synthesize VitC. Sepsis was induced by intraperitoneal infusion of a fecal stem solution (abdominal peritonitis, FIP. Some VitC deficient Gulo−/− mice received an infusion of ascorbic acid (AscA, 200 mg/kg 30 min after induction of FIP. NETosis was assessed histologically and by quantification for circulating free DNA (cf-DNA in serum. Autophagy, histone citrullination, endoplasmic reticulum (ER stress, NFκB activation and apoptosis were investigated in peritoneal PMNs. Results: Sepsis produced significant NETs in the lungs of VitC deficient Gulo−/− mice and increased circulating cf-DNA. This was attenuated in the VitC sufficient Gulo−/− mice and in VitC deficient Gulo−/− mice infused with AscA. Polymorphonuclear neutrophils (PMNs from VitC deficient Gulo−/− mice demonstrated increased activation of ER stress, autophagy, histone citrullination, and NFκB activation, while apoptosis was inhibited. VitC also significantly attenuated PMA induced NETosis in PMNs from healthy human volunteers.

  8. Neutrophil extracellular traps involvement in corneal fungal infection

    Science.gov (United States)

    Zhao, Yingying; Zhang, Fan; Wan, Ting; Fan, Fangli; Xie, Xin; Lin, Zhenyun

    2016-01-01

    Purpose Neutrophils release neutrophil extracellular traps (NETs) when defending against invading microorganisms. We investigated the existence of NETs in fungal keratitis. Methods Fourteen patients with unilateral fungal keratitis were included. Detailed information about each patient was recorded, including (1) patient history (onset of symptoms and previous therapy), (2) ocular examination findings by slit-lamp biomicroscopy, (3) laboratory findings from direct smear examination and culture of corneal scrapings, (4) NET formation, and (5) treatment strategy and prognosis. Immunofluorescence staining was used to evaluate the existence of NETs on corneal scrapings. The relationship between the quantification of NETs and the clinical character of the fungal keratitis was identified. Results NETs were identified in all 14 patients. Patients with a higher grade of NET formation and fewer fungal hyphae always showed a good treatment response and a short course of infection. NETs were consistently found mixed with fungal hyphae in the corneal scrapings from infected patients. No statistical significance was found between the grade of NETs formed and the course of infection before presentation, and no relationship between the quantification of NETs and the size of the ulcer was found. Conclusions The results suggest that NETs are involved in fungal keratitis. The number of NETs in infected corneas may provide a tool for evaluating the prognosis for fungal keratitis. PMID:27559290

  9. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing

    NARCIS (Netherlands)

    Van Avondt, Kristof; van der Linden, Maarten; Naccache, Paul H; Egan, David A; Meyaard, Linde

    2016-01-01

    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at m

  10. Extracellular acidosis promotes neutrophil transdifferentiation to MHC class II-expressing cells.

    Science.gov (United States)

    Pliyev, Boris K; Sumarokov, Alexander B; Buriachkovskaia, Lyudmila I; Menshikov, Mikhail

    2011-01-01

    Inflammation in peripheral tissues is usually associated with local acidosis. In the present study, we demonstrate that extracellular acidification enhances GM-CSF- and IFN-γ-induced expression of HLA-DR, CD80 and CD86 in human neutrophils (neutrophil transdifferentiation), and potentiates antigen-capturing capacities (both endocytosis and phagocytosis) of the transdifferentiated cells. Furthermore, in acidic conditions the transdifferentiated neutrophils have stronger antigen-presenting capacity, inducing more intense proliferation of autologous T lymphocytes in the presence of staphylococcal enterotoxin A. Thus, extracellular acidosis can represent a factor that promotes neutrophil transdifferentiation and potentiates the functional abilities of the transdifferentiated cells in inflammatory foci in vivo.

  11. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions.

    Directory of Open Access Journals (Sweden)

    Shannan Cao

    Full Text Available In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions.

  12. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases.

    Science.gov (United States)

    Grayson, Peter C; Kaplan, Mariana J

    2016-02-01

    The putative role of neutrophils in host defense against pathogens is a well-recognized aspect of neutrophil function. The discovery of neutrophil extracellular traps has expanded the known range of neutrophil defense mechanisms and catalyzed a discipline of research focused upon ways in which neutrophils can shape the immunologic landscape of certain autoimmune diseases, including systemic lupus erythematosus. Enhanced neutrophil extracellular trap formation and impaired neutrophil extracellular trap clearance may contribute to immunogenicity in systemic lupus erythematosus and other autoimmune diseases by promoting the externalization of modified autoantigens, inducing synthesis of type I IFNs, stimulating the inflammasome, and activating both the classic and alternative pathways of the complement system. Vasculopathy is a central feature of many autoimmune diseases, and neutrophil extracellular traps may contribute directly to endothelial cell dysfunction, atherosclerotic plaque burden, and thrombosis. The elucidation of the subcellular events of neutrophil extracellular trap formation may generate novel, therapeutic strategies that target the innate immune system in autoimmune and vascular diseases.

  13. The role for neutrophil extracellular traps in cystic fibrosis autoimmunity

    Science.gov (United States)

    Skopelja, Sladjana; Hamilton, B. JoNell; Jones, Jonathan D.; Yang, Mei-Ling; Mamula, Mark; Ashare, Alix; Gifford, Alex H.; Rigby, William F.C.

    2016-01-01

    While respiratory failure in cystic fibrosis (CF) frequently associates with chronic infection by Pseudomonas aeruginosa, no single factor predicts the extent of lung damage in CF. To elucidate other causes, we studied the autoantibody profile in CF and rheumatoid arthritis (RA) patients, given the similar association of airway inflammation and autoimmunity in RA. Even though we observed that bactericidal permeability-increasing protein (BPI), carbamylated proteins, and citrullinated proteins all localized to the neutrophil extracellular traps (NETs), which are implicated in the development of autoimmunity, our study demonstrates striking autoantibody specificity in CF. Particularly, CF patients developed anti-BPI autoantibodies but hardly any anti-citrullinated protein autoantibodies (ACPA). In contrast, ACPA-positive RA patients exhibited no reactivity with BPI. Interestingly, anti-carbamylated protein autoantibodies (ACarPA) were found in both cohorts but did not cross-react with BPI. Contrary to ACPA and ACarPA, anti-BPI autoantibodies recognized the BPI C-terminus in the absence of posttranslational modifications. In fact, we discovered that P. aeruginosa–mediated NET formation results in BPI cleavage by P. aeruginosa elastase, which suggests a novel mechanism in the development of autoimmunity to BPI. In accordance with this model, autoantibodies associated with presence of P. aeruginosa on sputum culture. Finally, our results provide a role for autoimmunity in CF disease severity, as autoantibody levels associate with diminished lung function. PMID:27777975

  14. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps.

    Science.gov (United States)

    Ávila, Eva E; Salaiza, Norma; Pulido, Julieta; Rodríguez, Mayra C; Díaz-Godínez, César; Laclette, Juan P; Becker, Ingeborg; Carrero, Julio C

    2016-01-01

    Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica.

  15. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps

    Science.gov (United States)

    Ávila, Eva E.; Rodríguez, Mayra C.; Díaz-Godínez, César; Laclette, Juan P.; Becker, Ingeborg; Carrero, Julio C.

    2016-01-01

    Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica. PMID:27415627

  16. Nuclease Expression by Staphylococcus aureus Facilitates Escape from Neutrophil Extracellular Traps

    OpenAIRE

    Berends, Evelien T.M.; Horswill, Alexander R.; Haste, Nina M.; Monestier, Marc; Nizet, Victor; von Köckritz-Blickwede, Maren

    2010-01-01

    Neutrophils are key effectors of the host innate immune response against bacterial infection. Staphylococcus aureus is a preeminent human pathogen, with an ability to produce systemic infections even in previously healthy individuals, thereby reflecting a resistance to effective neutrophil clearance. The recent discovery of neutrophil extracellular traps (NETs) has opened a novel dimension in our understanding of how these specialized leukocytes kill pathogens. NETs consist of a nuclear DNA b...

  17. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    Science.gov (United States)

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  18. DNA is an antimicrobial component of neutrophil extracellular traps.

    Directory of Open Access Journals (Sweden)

    Tyler W R Halverson

    2015-01-01

    Full Text Available Neutrophil extracellular traps (NETs comprise an ejected lattice of chromatin enmeshed with granular and nuclear proteins that are capable of capturing and killing microbial invaders. Although widely employed to combat infection, the antimicrobial mechanism of NETs remains enigmatic. Efforts to elucidate the bactericidal component of NETs have focused on the role of NET-bound proteins including histones, calprotectin and cathepsin G protease; however, exogenous and microbial derived deoxyribonuclease (DNase remains the most potent inhibitor of NET function. DNA possesses a rapid bactericidal activity due to its ability to sequester surface bound cations, disrupt membrane integrity and lyse bacterial cells. Here we demonstrate that direct contact and the phosphodiester backbone are required for the cation chelating, antimicrobial property of DNA. By treating NETs with excess cations or phosphatase enzyme, the antimicrobial activity of NETs is neutralized, but NET structure, including the localization and function of NET-bound proteins, is maintained. Using intravital microscopy, we visualized NET-like structures in the skin of a mouse during infection with Pseudomonas aeruginosa. Relative to other bacteria, P. aeruginosa is a weak inducer of NETosis and is more resistant to NETs. During NET exposure, we demonstrate that P. aeruginosa responds by inducing the expression of surface modifications to defend against DNA-induced membrane destabilization and NET-mediated killing. Further, we show induction of this bacterial response to NETs is largely due to the bacterial detection of DNA. Therefore, we conclude that the DNA backbone contributes both to the antibacterial nature of NETs and as a signal perceived by microbes to elicit host-resistance strategies.

  19. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Stevens, Jacqueline S; Apicella, Michael A; Criss, Alison K

    2015-07-15

    Acute gonorrhea is characterized by neutrophilic inflammation that is insufficient to clear Neisseria gonorrhoeae. Activated neutrophils release extracellular traps (NETs), which are composed of chromatin and decorated with antimicrobial proteins. The N. gonorrhoeae NG0969 open reading frame contains a gene (nuc) that encodes a putatively secreted thermonuclease (Nuc) that contributes to biofilm remodeling. Here, we report that Nuc degrades NETs to help N. gonorrhoeae resist killing by neutrophils. Primary human neutrophils released NETs after exposure to N. gonorrhoeae, but NET integrity declined over time with Nuc-containing bacteria. Recombinant Nuc and conditioned medium from Nuc-containing N. gonorrhoeae degraded human neutrophil DNA and NETs. NETs were found to have antimicrobial activity against N. gonorrhoeae, and Nuc expression enhanced N. gonorrhoeae survival in the presence of neutrophils that released NETs. We propose that Nuc enables N. gonorrhoeae to escape trapping and killing by NETs during symptomatic infection, highlighting Nuc as a multifunctional virulence factor for N. gonorrhoeae.

  20. DNase expression allows the pathogen group A streptococcus to escape killing in neutrophil extracellular traps

    OpenAIRE

    Buchanan, John T; Simpson, Amelia J; Aziz, Ramy K.; Liu, George Y.; Kristian, Sascha A.; Kotb, Malak; Feramisco, James; Nizet, Victor

    2006-01-01

    The innate immune response plays a crucial role in satisfactory host resolution of bacterial infection. In response to chemotactic signals, neutrophils are early responding cells that migrate in large numbers to sites of infection. The recent discovery of secreted neutrophil extracellular traps (NETs) composed of DNA and histones opened a novel dimension in our understanding of the microbial killing capacity of these specialized leukocytes. M1 serotype strains of the pathogen Group A Streptoc...

  1. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on neutrophil migration and extracellular trap formation

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2016-11-01

    Full Text Available Background: Aggressive periodontitis is associated with the presence of Aggregatibacter actinomycetemcomitans, a leukotoxin (Ltx-producing periodontal pathogen. Ltx has the ability to lyse white blood cells including neutrophils. Objectives: This study was aimed at investigating the interactions between neutrophils and Ltx with regard to the chemotactic properties of Ltx and the release of neutrophil extracellular traps (NETs. Methods: Neutrophils from healthy blood donors were isolated and incubated for 30 min and 3 h with increasing concentrations of Ltx (1, 10, and 100 ng/mL as well as with A. actinomycetemcomitans strains (NCTC 9710 and HK 1651 producing different levels of Ltx. Formation of NETs and cell lysis were assessed by microscopy, fluorescence-based assays, and measurement of released lactate dehydrogenase. Neutrophil migration in response to different Ltx gradients was monitored by real-time video microscopy, and image analysis was performed using ImageJ software. Results: Although Ltx (10 and 100 ng/mL and the leukotoxic A. actinomycetemcomitans strain HK 1651 lysed some neutrophils, other cells were still capable of performing NETosis in a concentration-dependent manner. Low doses of Ltx and the weakly leukotoxic strain NCTC 9710 did not lead to neutrophil lysis, but did induce some NETosis. Furthermore, all three concentrations of Ltx enhanced random neutrophil movement; however, low directional accuracy was observed compared with the positive control (fMLP. Conclusions: The results indicate that Ltx acts both as a neutrophil activator and also causes cell death. In addition, Ltx directly induces NETosis in neutrophils prior to cell lysis. In future studies, the underlying pathways involved in Ltx-meditated neutrophil activation and NETosis need to be investigated further.

  2. Effects of Aggregatibacter actinomycetemcomitans leukotoxin on neutrophil migration and extracellular trap formation

    Science.gov (United States)

    Hirschfeld, Josefine; Roberts, Helen M.; Chapple, Iain L. C.; Parčina, Marijo; Jepsen, Søren; Johansson, Anders; Claesson, Rolf

    2016-01-01

    Background Aggressive periodontitis is associated with the presence of Aggregatibacter actinomycetemcomitans, a leukotoxin (Ltx)-producing periodontal pathogen. Ltx has the ability to lyse white blood cells including neutrophils. Objectives This study was aimed at investigating the interactions between neutrophils and Ltx with regard to the chemotactic properties of Ltx and the release of neutrophil extracellular traps (NETs). Methods Neutrophils from healthy blood donors were isolated and incubated for 30 min and 3 h with increasing concentrations of Ltx (1, 10, and 100 ng/mL) as well as with A. actinomycetemcomitans strains (NCTC 9710 and HK 1651) producing different levels of Ltx. Formation of NETs and cell lysis were assessed by microscopy, fluorescence-based assays, and measurement of released lactate dehydrogenase. Neutrophil migration in response to different Ltx gradients was monitored by real-time video microscopy, and image analysis was performed using ImageJ software. Results Although Ltx (10 and 100 ng/mL) and the leukotoxic A. actinomycetemcomitans strain HK 1651 lysed some neutrophils, other cells were still capable of performing NETosis in a concentration-dependent manner. Low doses of Ltx and the weakly leukotoxic strain NCTC 9710 did not lead to neutrophil lysis, but did induce some NETosis. Furthermore, all three concentrations of Ltx enhanced random neutrophil movement; however, low directional accuracy was observed compared with the positive control (fMLP). Conclusions The results indicate that Ltx acts both as a neutrophil activator and also causes cell death. In addition, Ltx directly induces NETosis in neutrophils prior to cell lysis. In future studies, the underlying pathways involved in Ltx-meditated neutrophil activation and NETosis need to be investigated further. PMID:27834173

  3. Superoxide Induces Neutrophil Extracellular Trap Formation in a TLR-4 and NOX-Dependent Mechanism

    Science.gov (United States)

    Al-Khafaji, Ahmed B; Tohme, Samer; Yazdani, Hamza Obaid; Miller, David; Huang, Hai; Tsung, Allan

    2016-01-01

    Neutrophils constitute the early innate immune response to perceived infectious and sterile threats. Neutrophil extracellular traps (NETs) are a novel mechanism to counter pathogenic invasion and sequelae of ischemia, including cell death and oxidative stress. Superoxide is a radical intermediate of oxygen metabolism produced by parenchymal and nonparenchymal hepatic cells, and is a hallmark of oxidative stress after liver ischemia-reperfusion (I/R). While extracellular superoxide recruits neutrophils to the liver and initiates sterile inflammatory injury, it is unknown whether superoxide induces the formation of NETs. We hypothesize that superoxide induces NET formation through a signaling cascade involving Toll-like receptor 4 (TLR-4) and neutrophil NADPH oxidase (NOX). We treated neutrophils with extracellular superoxide and observed NET DNA release, histone H3 citrullination and increased levels of MPO-DNA complexes occurring in a TLR-4–dependent manner. Inhibition of superoxide generation by allopurinol and inhibition of NOX by diphenyleneiodonium prevented NET formation. When mice were subjected to warm liver I/R, we found significant NET formation associated with liver necrosis and increased serum ALT in TLR-4 WT but not TLR-4 KO mice. To reduce circulating superoxide, we pretreated mice undergoing I/R with allopurinol and N-acetylcysteine, which resulted in decreased NETs and ameliorated liver injury. Our study demonstrates a requirement for TLR-4 and NOX in superoxide-induced NETs, and suggests involvement of superoxide-induced NETs in pathophysiologic settings. PMID:27453505

  4. Influence of complement on neutrophil extracellular trap release induced by bacteria

    DEFF Research Database (Denmark)

    Palmer, Lisa Joanne; Damgaard, Christian; Holmstrup, Palle;

    2016-01-01

    Background and Objectives Neutrophil extracellular trap (NET) release has generally been studied in the absence of serum, or at low concentrations of untreated or heat-inactivated serum. The influence of serum complement on NET release therefore remains unclear. We examined the DNA release induce...

  5. The effect of clindamycin and amoxicillin on neutrophil extracellular trap (NET) release.

    Science.gov (United States)

    Bystrzycka, Weronika; Moskalik, Aneta; Sieczkowska, Sandra; Manda-Handzlik, Aneta; Demkow, Urszula; Ciepiela, Olga

    2016-01-01

    Neutrophil extracellular traps (NETs) are threads of nuclear DNA complexed with antimicrobial proteins released by neutrophils to extracellular matrix to bind, immobilise, and kill different pathogens. NET formation is triggered by different physiological and non-physiological stimulants. It is also suggested that antibiotics could be non-physiological compounds that influence NET release. The aim of the study was to investigate the effect of clindamycin and amoxicillin on NET release and the phagocyte function of neutrophils. Neutrophils isolated from healthy donors by density centrifugation method were incubated with amoxicillin or clindamycin for two hours, and then NET release was stimulated with phorbol 12-myristate 13-acetate (PMA). After three hours of incubation with PMA NETs were quantified as amount of extracellular DNA by fluorometry and visualised by immunofluorescent microscopy. The percent of phagocyting cells was measured by flow cytometry. We showed that amoxicillin induces NET formation (increase of extracellular DNA fluorescence, p = 0.03), while clindamycin had no influence on NET release (p > 0.05), as confirmed by quantitative measurement and fluorescent microscopy. Regarding phagocyte function, both antibiotics increased bacterial uptake (43.3% and 61.6% median increase for amoxicillin and clindamycin, respectively). We concluded that the ability of antibiotics to modulate NET release depends on the antibiotic used and is not associated with their ability to influence phagocytosis.

  6. Carp neutrophilic granulocyes form extracellular traps via ROS-dependent and independent pathways

    NARCIS (Netherlands)

    Pijanowski, L.; Golbach, L.A.; Kolaczkowska, E.; Scheer, M.H.; Verburg-van Kemenade, B.M.L.; Chadzinska, M.K.

    2013-01-01

    Neutrophil extracellular traps (NETs) have recently been described as an important innate defense mechanism that leads to immobilization and killing of invading pathogens. NETs have been identified in several species, but the mechanisms involved in NET formation and their role in infection have not

  7. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases?

    Institute of Scientific and Technical Information of China (English)

    Ashish N Rao; Nayef M Kazzaz; Jason S Knight

    2015-01-01

    Thrombotic events,both arterial and venous,are a major health concern worldwide. Further,autoimmune diseases,such as systemic lupus erythematosus,anti-neutrophil cytoplasmic antibody(ANCA)-associated vasculitis,and antiphospholipid syndrome,predispose to thrombosis,and thereby push the risk for these morbid events even higher. In recent years,neutrophils have been identified as important players in both arterial and venous thrombosis. Specifically,chromatin-based structures called neutrophil extracellular traps(NETs) play a key role in activating the coagulation cascade,recruiting platelets,and serving as scaffolding upon which the thrombus can be assembled. At the same time,neutrophils and NETs are emerging as important mediators of pathogenic inflammation in the aforementioned autoimmune diseases. Here,we first review the general role of NETs in thrombosis. We then posit that exaggerated NET release contributes to the prothrombotic diatheses of systemic lupus erythematosus,ANCA-associated vasculitis,and antiphospholipid syndrome.

  8. Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections.

    Science.gov (United States)

    Yu, Yanbao; Kwon, Keehwan; Tsitrin, Tamara; Bekele, Shiferaw; Sikorski, Patricia; Nelson, Karen E; Pieper, Rembert

    2017-01-01

    Neutrophils have an important role in the antimicrobial defense and resolution of urinary tract infections (UTIs). Our research suggests that a mechanism known as neutrophil extracellular trap (NET) formation is a defense strategy to combat pathogens that have invaded the urinary tract. A set of human urine specimens with very high neutrophil counts had microscopic evidence of cellular aggregation and lysis. Deoxyribonuclease I (DNase) treatment resulted in disaggregation of such structures, release of DNA fragments and a proteome enriched in histones and azurophilic granule effectors whose quantitative composition was similar to that of previously described in vitro-formed NETs. The effector proteins were further enriched in DNA-protein complexes isolated in native PAGE gels. Immunofluorescence microscopy revealed a flattened morphology of neutrophils associated with decondensed chromatin, remnants of granules in the cell periphery, and myeloperoxidase co-localized with extracellular DNA, features consistent with early-phase NETs. Nuclear staining revealed that a considerable fraction of bacterial cells in these structures were dead. The proteomes of two pathogens, Staphylococcus aureus and Escherichia coli, were indicative of adaptive responses to early-phase NETs, specifically the release of virulence factors and arrest of ribosomal protein synthesis. Finally, we discovered patterns of proteolysis consistent with widespread cleavage of proteins by neutrophil elastase, proteinase 3 and cathepsin G and evidence of citrullination in many nuclear proteins.

  9. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation.

    Science.gov (United States)

    Rossaint, Jan; Herter, Jan M; Van Aken, Hugo; Napirei, Markus; Döring, Yvonne; Weber, Christian; Soehnlein, Oliver; Zarbock, Alexander

    2014-04-17

    There is emerging evidence that neutrophil extracellular traps (NETs) play important roles in inflammatory processes. Here we report that neutrophils have to be simultaneously activated by integrin-mediated outside-in- and G-protein-coupled receptor (GPCR) signaling to induce NET formation in acute lung injury (ALI), which is associated with a high mortality rate in critically ill patients. NETs consist of decondensed chromatin decorated with granular and cytosolic proteins and they can trap extracellular pathogens. The prerequisite for NET formation is the activation of neutrophils and the release of their DNA. In a neutrophil- and platelet-dependent mouse model of ventilator-induced lung injury (VILI), NETs were found in the lung microvasculature, and circulating NET components increased in the plasma. In this model, blocking integrin-mediated outside-in or either GPCR-signaling or heteromerization of platelet chemokines decreased NET formation and lung injury. Targeting NET components by DNAse1 application or neutrophil elastase-deficient mice protected mice from ALI, whereas DNase1(-/-)/Trap1(m/m) mice had an aggravated ALI, suggesting that NETs directly influence the severity of ALI. These data suggest that NETs form in the lungs during VILI, contribute to the disease process, and thus may be a promising new direction for the treatment of ALI.

  10. Characterization of Early-Phase Neutrophil Extracellular Traps in Urinary Tract Infections

    Science.gov (United States)

    Yu, Yanbao; Kwon, Keehwan; Tsitrin, Tamara; Sikorski, Patricia; Nelson, Karen E.; Pieper, Rembert

    2017-01-01

    Neutrophils have an important role in the antimicrobial defense and resolution of urinary tract infections (UTIs). Our research suggests that a mechanism known as neutrophil extracellular trap (NET) formation is a defense strategy to combat pathogens that have invaded the urinary tract. A set of human urine specimens with very high neutrophil counts had microscopic evidence of cellular aggregation and lysis. Deoxyribonuclease I (DNase) treatment resulted in disaggregation of such structures, release of DNA fragments and a proteome enriched in histones and azurophilic granule effectors whose quantitative composition was similar to that of previously described in vitro-formed NETs. The effector proteins were further enriched in DNA-protein complexes isolated in native PAGE gels. Immunofluorescence microscopy revealed a flattened morphology of neutrophils associated with decondensed chromatin, remnants of granules in the cell periphery, and myeloperoxidase co-localized with extracellular DNA, features consistent with early-phase NETs. Nuclear staining revealed that a considerable fraction of bacterial cells in these structures were dead. The proteomes of two pathogens, Staphylococcus aureus and Escherichia coli, were indicative of adaptive responses to early-phase NETs, specifically the release of virulence factors and arrest of ribosomal protein synthesis. Finally, we discovered patterns of proteolysis consistent with widespread cleavage of proteins by neutrophil elastase, proteinase 3 and cathepsin G and evidence of citrullination in many nuclear proteins. PMID:28129394

  11. Carp neutrophilic granulocytes form extracellular traps via ROS-dependent and independent pathways.

    Science.gov (United States)

    Pijanowski, L; Golbach, L; Kolaczkowska, E; Scheer, M; Verburg-van Kemenade, B M L; Chadzinska, M

    2013-05-01

    Neutrophil extracellular traps (NETs) have recently been described as an important innate defense mechanism that leads to immobilization and killing of invading pathogens. NETs have been identified in several species, but the mechanisms involved in NET formation and their role in infection have not been well determined yet. Here we show that upon in vitro stimulation with different immunostimulants of bacterial, fungal or viral origin, carp neutrophilic granulocytes rapidly release NET structures. We analyzed the composition of these structures and the kinetics of their formation by confocal microscopy, by quantifying the levels of extracellular DNA and the release of enzymes originating from neutrophilic granules: myeloperoxidase, neutrophil elastase and matrix metalloproteinase 9 (MMP-9). Profiles of NET release by carp neutrophils as well as their enzyme composition are stimulus- and time-dependent. This study moreover provides evidence for a stimulus-dependent selective requirement of reactive oxygen species in the process of NET formation. Collectively the results support an evolutionary conserved and strictly regulated mechanism of NET formation in teleost fish.

  12. Streptococcus suis Serotype 2 Biofilms Inhibit the Formation of Neutrophil Extracellular Traps

    Science.gov (United States)

    Ma, Fang; Yi, Li; Yu, Ningwei; Wang, Guangyu; Ma, Zhe; Lin, Huixing; Fan, Hongjie

    2017-01-01

    Invasive infections caused by Streptococcus suis serotype 2 (SS2) has emerged as a clinical problem in recent years. Neutrophil extracellular traps (NETs) are an important mechanism for the trapping and killing of pathogens that are resistant to phagocytosis. Biofilm formation can protect bacteria from being killed by phagocytes. Until now, there have only been a few studies that focused on the interactions between bacterial biofilms and NETs. SS2 in both a biofilm state and a planktonic cell state were incubated with phagocytes and NETs, and bacterial survival was assessed. DNase I and cytochalasin B were used to degrade NET DNA or suppress phagocytosis, respectively. Extracellular DNA was stained with impermeable fluorescent dye to quantify NET formation. Biofilm formation increased up to 6-fold in the presence of neutrophils, and biofilms were identified in murine tissue. Both planktonic and biofilm cells induced neutrophils chemotaxis to the infection site, with neutrophils increasing by 85.1 and 73.8%, respectively. The bacteria in biofilms were not phagocytized. The bactericidal efficacy of NETs on the biofilms and planktonic cells were equal; however, the biofilm extracellular matrix can inhibit NET release. Although biofilms inhibit NETs release, NETs appear to be an important mechanism to eliminate SS2 biofilms. This knowledge advances the understanding of biofilms and may aid in the development of treatments for persistent infections with a biofilm component. PMID:28373968

  13. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

    DEFF Research Database (Denmark)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G

    2016-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymor......Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages......), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide...

  14. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity

    Science.gov (United States)

    Carmona-Rivera, Carmelo; Purmalek, Monica M.; Moore, Erica; Waldman, Meryl; Walter, Peter J.; Garraffo, H. Martin; Phillips, Karran A.; Preston, Kenzie L.; Graf, Jonathan; Grayson, Peter C.

    2017-01-01

    Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study’s objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage. PMID:28194438

  15. A role for muscarinic receptors in neutrophil extracellular trap formation and levamisole-induced autoimmunity.

    Science.gov (United States)

    Carmona-Rivera, Carmelo; Purmalek, Monica M; Moore, Erica; Waldman, Meryl; Walter, Peter J; Garraffo, H Martin; Phillips, Karran A; Preston, Kenzie L; Graf, Jonathan; Kaplan, Mariana J; Grayson, Peter C

    2017-02-09

    Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study's objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage.

  16. Iron-chelating agent, deferasirox, inhibits neutrophil activation and extracellular trap formation.

    Science.gov (United States)

    Kono, Mari; Saigo, Katsuyasu; Yamamoto, Shiori; Shirai, Kohei; Iwamoto, Shuta; Uematsu, Tomoko; Takahashi, Takayuki; Imoto, Shion; Hashimoto, Makoto; Minami, Yosuke; Wada, Atsushi; Takenokuchi, Mariko; Kawano, Seiji

    2016-10-01

    Iron-chelating agents, which are frequently prescribed to transfusion-dependent patients, have various useful biological effects in addition to chelation. Reactive oxygen species (ROS) produced by neutrophils can cause pulmonary endothelial cell damage, which can lead to acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits phorbol myristate acetate (PMA) or formyl-methionyl-leucyl-phenylalanine (fMLP)-induced ROS production in neutrophils, in vitro. Here, we investigate whether DFS inhibits vacuolization in neutrophils and neutrophil extracellular trap (NET) formation. Human neutrophils were incubated with DFS and stimulated with PMA or fMLP. Human neutrophils were separated from heparinized peripheral blood using density gradient centrifugation, and subsequently incubated with DFS. After 10 minutes, neutrophils were stimulated by PMA or fMLP. Vacuole formation was observed by electron microscopy. For observing NET formations using microscopes, immunohistological analyses using citrullinated histone H3 and myeloperoxidase antibodies, and SYTOX Green (an impermeable DNA detection dye) staining, were conducted. NET formation was measured as the quantity of double-stranded DNA (dsDNA), using the AccuBlue Broad Range dsDNA Quantitation Kit. DFS (50 μmol/L) inhibited vacuole formation in the cytoplasm and NET formation. Additionally, 5-100 μmol/L concentration of DFS inhibited the release of dsDNA in a dose-independent manner. We demonstrate that DFS inhibits not only ROS production but also vacuolization and NET formation in neutrophils. These results suggest the possibility of protective effects of DFS against NET-related adverse effects, including ALI and thrombosis.

  17. Neutrophil extracellular traps (NETs) and the role of platelets in infection.

    Science.gov (United States)

    Andrews, Robert K; Arthur, Jane F; Gardiner, Elizabeth E

    2014-10-01

    In addition to playing a central role in normal haemostasis, platelets make important contributions to host inflammatory and immune responses to injury or infection. Under pathophysiological conditions where platelet function is not tightly controlled, platelets also play critical roles in pathogenic processes underlying cardiovascular disease, uncontrolled inflammation, coagulopathy and in tumour metastasis. Neutrophil extracellular traps (NETs) are webs of histone-modified nuclear material extruded from activated neutrophils during inflammatory responses and these degranulation events can be directly triggered by platelet/neutrophil engagement. Emerging research describes how NETs influence platelet function, particularly in the setting of infection and inflammation. Especially intriguing is the potential for platelet-driven coagulation to be modulated by NETs in plasma and interstitial spaces. These findings also reveal new perspectives related to improved therapy for venous thrombosis.

  18. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG.

    Science.gov (United States)

    Contis-Montes de Oca, A; Carrasco-Yépez, M; Campos-Rodríguez, R; Pacheco-Yépez, J; Bonilla-Lemus, P; Pérez-López, J; Rojas-Hernández, S

    2016-08-01

    Naegleria fowleri infects humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N. fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. NETs are composed of nuclear DNA combined with histones and antibacterial proteins, and these structures are released from the cell to direct its antimicrobial attack. In this work, we evaluate the capacity of N. fowleri to induce the liberation of NETs by human PMN cells. Neutrophils were cocultured with unopsonized or IgG-opsonized N. fowleri trophozoites. DNA, histone, myeloperoxidase (MPO) and neutrophil elastase (NE) were stained, and the formation of NETs was evaluated by confocal microscopy and by quantifying the levels of extracellular DNA. Our results showed N. fowleri induce the liberation of NETs including release of MPO and NE by human PMN cells as exposure interaction time is increased, but N. fowleri trophozoites evaded killing. However, when trophozoites were opsonized, they were susceptible to the neutrophils activity. Therefore, our study suggests that antibody-mediated PMNs activation through NET formation may be crucial for antimicrobial responses against N. fowleri.

  19. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation

    Institute of Scientific and Technical Information of China (English)

    Quinten Remijsen; Peter Vandenabeele; Tom Vanden Berghe; Ellen Wirawan; Bob Asselbergh; Eef Parthoens; Riet De Rycke; Sam Noppen; Michel Delforge; Jean Willems

    2011-01-01

    Neutrophil extracellular traps(NETs)are extracellular chromatin structures that can trap and degrade microbes.They arise from neutrophils that have activated a cell death program called NET cell death,or NETosis.Activation of NETosis has been shown to involve NADPH oxidase activity,disintegration of the nuclear envelope and most granule membranes,decondensation of nuclear chromatin and formation of NETs.We report that in phorbol myristate acetate(PMA)-stimulated neutrophils,intracellular chromatin decondensation and NET formation follow autophagy and superoxide production,both of which arerequired to mediate PMA-induced NETosis and occur independently of each other.Neutrophils from patients with chronic granulomatous disease,which lack NADPH oxidase activity,still exhibit PMA-induced autophagy.Conversely,PMA-induced NADPH oxidase activity is not affected by pharmacological inhibition of autophagy.Interestingly,inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation,which is essential for NETosis and NET formation,and results in cell death characterized by hallmarks of apoptosis.These results indicate that apoptosis might function as a backup program for NETosis when autophagy or NADPH oxidase activity is prevented.

  20. Neutrophil extracellular traps in the intestinal mucosa of Eimeria-infected animals

    Institute of Scientific and Technical Information of China (English)

    Tamara Mu?oz-Caro; Liliana Machado Ribeiro da Silva; Zaída Rentería-Solis; Anja Taubert; Carlos Hermosilla

    2016-01-01

    Objective:To investigate the presence of neutrophil extracellular traps(NETs) in vivo by analysing intestinal sections from experimentally Eimeria bovis-and naturally Eimeria arloingi-infected animals.Methods:Intestinal samples of Eimeria arloingi-and Eimeria bovis-infected animals were analysed by using immunohistochemical and fluorescence approach by using monoclonal antibodies.Results:Classical NET components were confirmed by co-localization of extracellular DNA being decorated with neutrophil elastase and histones in Eimeria-infected tissue samples.Here,extrusion of NETs was exclusively detected in intestinal polymorphonuclear neutrophils infiltrating Eimeria-infected sites.In vivo NETs were either found in close proximity or in direct contact to different Eimeria stages suggesting a stage-independent process.NETs were also found within the gut lumen driven by polymorphonuclear neutrophils that were contacting released oocysts.Conclusions:We postulate that NETs might play an important role in innate defence reactions in coccidiosis therefore significantly altering the outcome of infection.

  1. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    OpenAIRE

    Hermann, M.; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-01-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (m...

  2. The selective estrogen receptor modulator raloxifene inhibits neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Roxana Flores

    2016-12-01

    Full Text Available Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effect on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA, a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs. Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Like raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation but not reactive oxygen species (ROS production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus (MRSA. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.

  3. Ligation of Signal Inhibitory Receptor on Leukocytes-1 Suppresses the Release of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus

    OpenAIRE

    Kristof Van Avondt; Ruth Fritsch-Stork; Derksen, Ronald H W M; Linde Meyaard

    2013-01-01

    Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leuk...

  4. Integrin-dependent cell adhesion to neutrophil extracellular traps through engagement of fibronectin in neutrophil-like cells

    Science.gov (United States)

    Monti, Marcello; Iommelli, Francesca; De Rosa, Viviana; Carriero, Maria Vincenza; Miceli, Roberta; Camerlingo, Rosa; Di Minno, Giovanni; Del Vecchio, Silvana

    2017-01-01

    Neutrophil extracellular traps (NETs), originally recognized as a host defense mechanism, were reported to promote thrombosis and metastatic dissemination of cancer cells. Here we tested the role of integrins α5β1 and ανβ3 in the adhesion of cancer cells to NETs. Neutrophil-like cells stimulated with calcium ionophore (A23187) were used as a stable source of cell-free NETs-enriched suspensions. Using NETs as an adhesion substrate, two human K562 cell lines, differentially expressing α5β1 and ανβ3 integrins, were subjected to adhesion assays in the presence or absence of DNAse 1, blocking antibodies against α5β1 or ανβ3, alone or in combination with DNAse 1, and Proteinase K. As expected DNAse 1 treatment strongly inhibited adhesion of both cell lines to NETs. An equivalent significant reduction of cell adhesion to NETs was obtained after treatment of cells with blocking antibodies against α5β1 or ανβ3 indicating that both integrins were able to mediate cell adhesion to NETs. Furthermore, the combination of DNAse 1 and anti-integrin antibody treatment almost completely blocked cell adhesion. Western blot analysis and immunoprecipitation experiments showed a dose-dependent increase of fibronectin levels in samples from stimulated neutrophil-like cells and a direct or indirect interaction of fibronectin with histone H3. Finally, co-immunolocalization studies with confocal microscopy showed that fibronectin and citrullinated histone H3 co-localize inside the web-structure of NETs. In conclusion, our study showed that α5β1 and ανβ3 integrins mediate cell adhesion to NETs by binding to their common substrate fibronectin. Therefore, in addition to mechanical trapping and aspecific adsorption of different cell types driven by DNA/histone complexes, NETs may provide specific binding sites for integrin-mediated cell adhesion of neutrophils, platelets, endothelial and cancer cells thus promoting intimate interactions among these cells. PMID:28166238

  5. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  6. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  7. Mechanism of interferon-gamma production by monocytes stimulated with myeloperoxidase and neutrophil extracellular traps.

    Science.gov (United States)

    Yamaguchi, Rui; Kawata, Jin; Yamamoto, Toshitaka; Ishimaru, Yasuji; Sakamoto, Arisa; Ono, Tomomichi; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-08-01

    Neutrophil extracellular traps (NETs) have an important role in antimicrobial innate immunity and release substances that may modulate the immune response. We investigated the effects of soluble factors from NETs and neutrophil granule proteins on human monocyte function by using the Transwell system to prevent cell-cell contact. NET formation was induced by exposing human neutrophils to phorbol myristate acetate (PMA). When monocytes were incubated with PMA alone, expression of interleukin (IL)-4, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha mRNA was upregulated, but IL-10, IL-12, and interferon (IFN)-gamma mRNA were not detected. Incubation of monocytes with NETs enhanced the expression of IL-10 and IFN-gamma mRNA, but not IL-12 mRNA. Myeloperoxidase stimulated IFN-gamma production by monocytes in a dose-dependent manner. Both a nuclear factor-kappaB inhibitor (PDTC) and an intracellular calcium antagonist (TMB-8) prevented upregulation of IFN-gamma production. Neither a combined p38alpha and p38beta inhibitor (SB203580) nor an extracellular signal-regulated kinase inhibitor (PD98059) suppressed IFN-gamma production. Interestingly, a combined p38gamma and p38delta inhibitor (BIRB796) significantly decreased IFN-gamma production. These findings suggest that myeloperoxidase induces IFN-gamma production by monocytes via p38gamma/delta mitogen-activated protein kinase.

  8. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model.

    Directory of Open Access Journals (Sweden)

    Koji Tanaka

    Full Text Available Neutrophil extracellular traps (NETs represent extracellular microbial trapping and killing. Recently, it has been implicated in thrombogenesis, autoimmune disease, and cancer progression. The aim of this study was to characterize NETs in various organs of a murine sepsis model in vivo and to investigate their associations with platelets, leukocytes, or vascular endothelium. NETs were classified as two distinct forms; cell-free NETs that were released away from neutrophils and anchored NETs that were anchored to neutrophils. Circulating cell-free NETs were characterized as fragmented or cotton-like structures, while anchored NETs were characterized as linear, reticular, membranous, or spot-like structures. In septic mice, both anchored and cell-free NETs were significantly increased in postcapillary venules of the cecum and hepatic sinusoids with increased leukocyte-endothelial interactions. NETs were also observed in both alveolar space and pulmonary capillaries of the lung. The interactions of NETs with platelet aggregates, leukocyte-platelet aggregates or vascular endothelium of arterioles and venules were observed in the microcirculation of septic mice. Microvessel occlusions which may be caused by platelet aggregates or leukocyte-platelet aggregates and heterogeneously decreased blood flow were also observed in septic mice. NETs appeared to be associated with the formation of platelet aggregates or leukocyte-platelet aggregates. These observational findings may suggest the adverse effect of intravascular NETs on the host during a sepsis.

  9. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Constantin F Urban

    2009-10-01

    Full Text Available Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs. NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo.

  10. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition.

    Directory of Open Access Journals (Sweden)

    Ravi S Keshari

    Full Text Available Neutrophils (PMNs and cytokines have a critical role to play in host defense and systemic inflammatory response syndrome (SIRS. Neutrophil extracellular traps (NETs have been shown to extracellularly kill pathogens, and inflammatory potential of NETs has been shown. Microbial killing inside the phagosomes or by NETs is mediated by reactive oxygen and nitrogen species (ROS/RNS. The present study was undertaken to assess circulating NETs contents and frequency of NETs generation by isolated PMNs from SIRS patients. These patients displayed significant augmentation in the circulating myeloperoxidase (MPO activity and DNA content, while PMA stimulated PMNs from these patients, generated more free radicals and NETs. Plasma obtained from SIRS patients, if added to the PMNs isolated from healthy subjects, enhanced NETs release and free radical formation. Expressions of inflammatory cytokines (IL-1β, TNFα and IL-8 in the PMNs as well as their circulating levels were significantly augmented in SIRS subjects. Treatment of neutrophils from healthy subjects with TNFα, IL-1β, or IL-8 enhanced free radicals generation and NETs formation, which was mediated through the activation of NADPH oxidase and MPO. Pre-incubation of plasma from SIRS with TNFα, IL-1β, or IL-8 antibodies reduced the NETs release. Role of IL-1β, TNFα and IL-8 thus seems to be involved in the enhanced release of NETs in SIRS subjects.

  11. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans.

    Science.gov (United States)

    Urban, Constantin F; Ermert, David; Schmid, Monika; Abu-Abed, Ulrike; Goosmann, Christian; Nacken, Wolfgang; Brinkmann, Volker; Jungblut, Peter R; Zychlinsky, Arturo

    2009-10-01

    Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo.

  12. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition.

    Directory of Open Access Journals (Sweden)

    Alex Hopke

    2016-05-01

    Full Text Available Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog.

  13. An improved strategy to recover large fragments of functional human neutrophil extracellular traps

    Directory of Open Access Journals (Sweden)

    Lorena eBarrientos

    2013-06-01

    Full Text Available Netosis is a recently described neutrophil function that leads to the release of neutrophil extracellular traps (NETs in response to various stimuli. NETs are filaments of decondensed chromatin associated with granular proteins. In addition to their role against microorganisms, NETs have been implicated in autoimmunity, thrombosis and tissue injury. Access to a standardized source of isolated NETs is needed to better analyze the roles of NETs. The aim of this study was to develop a procedure yielding soluble, well-characterized NET preparations from fresh human neutrophils. The calcium ionophore A23187 was chosen to induce netosis, and the restriction enzyme Alu I was used to prepare large NET fragments. DNA and proteins were detected by electrophoresis and specific labeling. Some NET proteins (histone 3, lactoferrin were quantified by western blotting, and dsDNA was quantified by immunofluorescence. Co-existence of dsDNA and neutrophil proteins confirmed the quality of the NET preparations. Their biological activity was checked by measuring elastase activity and bacterial killing against various strains. Interindividual differences in histone 3, lactoferrin, elastase and dsDNA relative contents were observed in isolated NETs. However, the reproducibility of NET preparation and characterization was validated, suggesting that this interindividual variability was rather related to donor variation than to technical bias. This standardized protocol is suitable for producing, isolating and quantifying functional NETs that could serve as a tool for studying NET effects on immune cells and tissues.

  14. An improved strategy to recover large fragments of functional human neutrophil extracellular traps.

    Science.gov (United States)

    Barrientos, Lorena; Marin-Esteban, Viviana; de Chaisemartin, Luc; Le-Moal, Vanessa Lievin; Sandré, Catherine; Bianchini, Elsa; Nicolas, Valerie; Pallardy, Marc; Chollet-Martin, Sylvie

    2013-01-01

    Netosis is a recently described neutrophil function that leads to the release of neutrophil extracellular traps (NETs) in response to various stimuli. NETs are filaments of decondensed chromatin associated with granular proteins. In addition to their role against microorganisms, NETs have been implicated in autoimmunity, thrombosis, and tissue injury. Access to a standardized source of isolated NETs is needed to better analyze the roles of NETs. The aim of this study was to develop a procedure yielding soluble, well-characterized NET preparations from fresh human neutrophils. The calcium ionophore A23187 was chosen to induce netosis, and the restriction enzyme AluI was used to prepare large NET fragments. DNA and proteins were detected by electrophoresis and specific labeling. Some NET proteins [histone 3, lactoferrin (LF)] were quantified by western blotting, and double-stranded DNA (dsDNA) was quantified by immunofluorescence. Co-existence of dsDNA and neutrophil proteins confirmed the quality of the NET preparations. Their biological activity was checked by measuring elastase (ELA) activity and bacterial killing against various strains. Interindividual differences in histone 3, LF, ELA, and dsDNA relative contents were observed in isolated NETs. However, the reproducibility of NET preparation and characterization was validated, suggesting that this interindividual variability was rather related to donor variation than to technical bias. This standardized protocol is suitable for producing, isolating, and quantifying functional NETs that could serve as a tool for studying NET effects on immune cells and tissues.

  15. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones.

    Directory of Open Access Journals (Sweden)

    Mona Saffarzadeh

    Full Text Available Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET. These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction.

  16. The effects of extracellular matrix proteins on neutrophil-endothelial interaction--a roadway to multiple therapeutic opportunities.

    Science.gov (United States)

    Padmanabhan, Jagannath; Gonzalez, Anjelica L

    2012-06-01

    Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized.

  17. The expanding world of extracellular traps: not only neutrophils but much more

    Directory of Open Access Journals (Sweden)

    Oliver eGoldmann

    2013-01-01

    Full Text Available The release of extracellular traps (ETs is a recently described mechanism of innate immune response to infection. Although ETs have been intensely investigated in the context of neutrophil antimicrobial effector mechanisms, these structures can also be released by other immune cells such as mast cells, eosinophils and macrophages. The different ETs have several features in common, no matter from what type of cells they originated. Thus, all ETs comprise a DNA backbone with embedded antimicrobial peptides, proteases and histones. However, they also exhibit remarkable individual differences such as the subcellular compartments from where the DNA backbone originates (e.g. nucleus, mitochondria, the proportion of responding cells within the pool as well as the molecular mechanism underlying the ETs formation. This review summarizes the knowledge accumulated in recent years regarding the expanding and complex world of ETs and their role in the immune function with a particular focus on immune cells apart from neutrophils.

  18. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies

    Science.gov (United States)

    Marder, Wendy; Knight, Jason S; Kaplan, Mariana J; Somers, Emily C; Zhang, Xu; O'Dell, Alexander A; Padmanabhan, Vasantha; Lieberman, Richard W

    2016-01-01

    Objective Systemic lupus erythematosus (SLE) is associated with increased risk of adverse pregnancy outcomes, including pre-eclampsia, particularly in association with antiphospholipid antibody syndrome (APS). While significant placental abnormalities are expected in pre-eclampsia, less is known about how lupus activity and APS in pregnancy affect the placenta. We describe placental pathology from a population of lupus pregnancies, several of which were complicated by APS-related thromboses, in which pre-eclampsia and other complications developed. We performed standard histopathological placental review and quantified neutrophils and neutrophil extracellular traps (NETs) in the intervillous space, given the recognised association of NETs with lupus, APS and pre-eclampsia. Methods Pre-eclampsia, SLE and control placentas were scored for histological features, and neutrophils were quantified on H&E and immunohistochemical staining for the granular protein myeloperoxidase. NETs were identified by extracellular myeloperoxidase staining in the setting of decondensed nuclei. Non-parametric analysis was used to evaluate differences in netting and intact neutrophils between groups, with Kruskal–Wallis testing for associations between histological findings and neutrophils. Results Placentas were evaluated from 35 pregnancies: 10 controls, 11 pre-eclampsia, 4 SLE+pre-eclampsia and 10 SLE, including one complicated by catastrophic APS and one complicated by hepatic and splenic vein thromboses during pregnancy. Intrauterine growth restriction and oligohydramnios were observed in lupus cases but not controls. Significantly more NETs were found infiltrating placental intervillous spaces in pre-eclampsia, SLE+pre-eclampsia and all 10 SLE non-pre-eclampsia cases. The ratio of NETs to total neutrophils was significantly increased in all case groups compared with controls. When present, NETs were associated with maternal vasculitis, laminar decidual necrosis, maternal

  19. Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase.

    Directory of Open Access Journals (Sweden)

    Balázs Rada

    Full Text Available Beyond intracellular killing, a novel neutrophil-based antimicrobial mechanism has been recently discovered: entrapment and killing by neutrophil extracellular traps (NETs. NETs consist of extruded nuclear DNA webs decorated with granule proteins. Although NET formation is an important innate immune mechanism, uncontrolled NET release damages host tissues and has been linked to several diseases including cystic fibrosis (CF. The major CF airway pathogen Pseudomonas aeruginosa establishes chronic infection. Pseudomonas imbedded within biofilms is protected against the immune system, but maintains chronic inflammation that worsens disease symptoms. Aberrant NET release from recruited neutrophils was found in CF, but the underlying mechanisms remain unclear. One of the most important Pseudomonas virulence factors is pyocyanin, a redox-active pigment that has been associated with diminished lung function in CF. Here we show that pyocyanin promotes NET formation in a time- and dose-dependent manner. Most CF Pseudomonas clinical isolates tested produce pyocyanin in vitro. Pyocyanin-derived reactive oxygen species are required for its NET release. Inhibitor experiments demonstrated involvement of Jun N-terminal Kinase (JNK and phosphatidylinositol 3-Kinase (PI3K in pyocyanin-induced NET formation. Pyocyanin-induced NETs also require the NADPH oxidase because NET release in chronic granulomatous disease neutrophils was greatly reduced. Comparison of neutrophils from gp91phox- and p47phox-deficient patients revealed that pyocyanin-triggered NET formation is proportional to their residual superoxide production. Our studies identify pyocyanin as the first secreted bacterial toxin that enhances NET formation. The involvement of NADPH oxidase in pyocyanin-induced NET formation represents a novel mechanism of pyocyanin toxicity.

  20. Neutrophil extracellular traps form a barrier between necrotic and viable areas in acute abdominal inflammation

    Directory of Open Access Journals (Sweden)

    Rostyslav Bilyy

    2016-10-01

    Full Text Available Neutrophils form neutrophil extracellular traps (NETs of decondensed DNA and histones that trap and immobilize particulate matter and microbial pathogens like bacteria. NET aggregates reportedly surround and isolate large objects like monosodium urate (MSU crystals, which cannot be sufficiently cleared from tissues. In the setting of acute necrotizing pancreatitis massive tissue necrosis occurs, which is organized as pancreatic pseudocysts. In contrast to regular cysts, these pseudocysts are not surrounded by epithelial layers. We hypothesize that, instead, the necrotic areas observed in necrotizing pancreatitis are isolated from the surrounding healthy tissues by aggregated NETs. These may form an alternative, putatively transient barrier separating necrotic areas from viable tissue. To test this hypothesis, we investigated histological samples from the necropsy material of internal organs of two patients with necrotizing pancreatitis and peritonitis accompanied by multiple organ failure. Tissues including the inflammatory zone were stained with H&E and evaluated for signs of inflammation. Infiltrating neutrophils and NETs were detected by immunohistochemistry for DNA, neutrophil elastase, and citrullinated histone H3. Interestingly, in severely affected areas of pancreatic necrosis or peritonitis, chromatin stained positive for neutrophil elastase and citrullinated histone H3, and may, therefore, be considered NET-derived. These NET structures formed a layer which separated the necrotic core from the areas of viable tissue remains. A condensed layer of aggregated NETs thus spatially shields and isolates the site of necrosis, thereby limiting the spread of necrosis-associated proinflammatory mediators. We propose that necrotic debris may initiate and/or facilitate the formation of the NET-based surrogate barrier.

  1. Identification and characterization of neutrophil extracellular trap shapes in flow cytometry

    Science.gov (United States)

    Ginley, Brandon; Emmons, Tiffany; Sasankan, Prabhu; Urban, Constantin; Segal, Brahm H.; Sarder, Pinaki

    2017-03-01

    Neutrophil extracellular trap (NET) formation is an alternate immunologic weapon used mainly by neutrophils. Chromatin backbones fused with proteins derived from granules are shot like projectiles onto foreign invaders. It is thought that this mechanism is highly anti-microbial, aids in preventing bacterial dissemination, is used to break down structures several sizes larger than neutrophils themselves, and may have several more uses yet unknown. NETs have been implied to be involved in a wide array of systemic host immune defenses, including sepsis, autoimmune diseases, and cancer. Existing methods used to visually quantify NETotic versus non-NETotic shapes are extremely time-consuming and subject to user bias. These limitations are obstacles to developing NETs as prognostic biomarkers and therapeutic targets. We propose an automated pipeline for quantitatively detecting neutrophil and NET shapes captured using a flow cytometry-imaging system. Our method uses contrast limited adaptive histogram equalization to improve signal intensity in dimly illuminated NETs. From the contrast improved image, fixed value thresholding is applied to convert the image to binary. Feature extraction is performed on the resulting binary image, by calculating region properties of the resulting foreground structures. Classification of the resulting features is performed using Support Vector Machine. Our method classifies NETs from neutrophils without traps at 0.97/0.96 sensitivity/specificity on n = 387 images, and is 1500X faster than manual classification, per sample. Our method can be extended to rapidly analyze whole-slide immunofluorescence tissue images for NET classification, and has potential to streamline the quantification of NETs for patients with diseases associated with cancer and autoimmunity.

  2. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A.

    Directory of Open Access Journals (Sweden)

    Anurag Kumar Gupta

    Full Text Available Excessive or aberrant generation of neutrophil extracellular traps (NETs has recently become implicated in the underlying aetiology of a number of human pathologies including preeclampsia, systemic lupus erythromatosus, rheumatoid arthritis, auto-antibody induced small vessel vasculitis, coagulopathies such as deep vein thrombosis or pulmonary complications. These results imply that effective pharmacological therapeutic strategies will need to be developed to counter overt NETosis in these and other inflammatory disorders. As calcium flux is implicated in the generation of reactive oxygen species and histone citrullination, two key events in NETosis, we analysed the roles of both extra- and intracellular calcium pools and their modulation by pharmacological agents in the NETotic process in detail. Interleukin-8 (IL-8 was used as a physiological stimulus of NETosis. Our data demonstrate that efficient induction of NETosis requires mobilisation of both extracellular and intracellular calcium pools. Since modulation of the calcineurin pathway by cyclosporine A has been described in neutrophils, we investigated its influence on NETosis. Our data indicate that IL-8 induced NETosis is reduced by ascomycin and cyclosporine A, antagonists of the calcineurin pathway, but not following treatment with rapamycin, which utilizes the mTOR pathway. The action of the G protein coupled receptor phospholipase C pathway appears to be essential for the induction of NETs by IL-8, as NETosis was diminished by treatment with either pertussis toxin, a G-protein inhibitor, the phospholipase C inhibitor, U73122, or staurosporine, an inhibitor of protein kinase C. The data regarding the calcineurin antagonists, ascomycin and cyclosporine A, open the possibility to therapeutically suppress or modulate NETosis. They also provide new insight into the mechanism whereby such immune suppressive drugs render transplant patients susceptible to opportunistic fungal infections.

  3. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    Science.gov (United States)

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  4. Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti.

    Directory of Open Access Journals (Sweden)

    Tamara Muñoz Caro

    Full Text Available Besnoitia besnoiti infection in cattle is an important emerging protozoan disease in Europe causing economic losses and severe clinical signs, such as generalized dermatitis, orchitis, and vulvitis in affected animals. Neutrophil extracellular trap (NET formation was recently demonstrated as an important effector mechanism of PMN acting against several invading pathogens. In the present study, interactions of bovine PMN with tachyzoites of B. besnoiti were investigated in this respect in vitro. For the demonstration and quantification of NETs, extracellular DNA was stained by Sytox Orange or Pico Green. Fluorescent illustrations as well as scanning electron microscopy analyses (SEM showed PMN-promoted NET formation rapidly being induced upon contact with B. besnoiti tachyzoites. Co-localization of extracellular DNA with histones, neutrophil elastase (NE and myeloperoxidase (MPO in parasite entrapping structures confirmed the classical characteristics of NET. Exposure of PMN to viable, UV attenuated and dead tachyzoites showed a significant induction of NET formation, but even tachyzoite homogenates significantly promoted NETs when compared to negative controls. NETs were abolished by DNase treatment and were reduced after PMN preincubation with NADPH oxidase-, NE- and MPO-inhibitors. Tachyzoite-triggered NET formation led to parasite entrapment as quantitative assays indicated that about one third of tachyzoites were immobilized in NETs. In consequence, tachyzoites were hampered from active invasion of host cells. Thus, transfer of tachyzoites, previously being confronted with PMN, to adequate host cells resulted in significantly reduced infection rates when compared to PMN-free infection controls. To our knowledge, we here report for the first time B. besnoiti-induced NET formation. Our results indicate that PMN-triggered extracellular traps may represent an important effector mechanism of the host early innate immune response against B

  5. Canine Neutrophil Extracellular Traps Release Induced by the Apicomplexan Parasite Neospora caninum In Vitro

    Science.gov (United States)

    Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Yang, Zhengtao; Zhang, Xichen

    2016-01-01

    Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum) plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs) formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM). Visualization of DNA decorated with H3, neutrophil elastase (NE), and myeloperoxidase (MPO) within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine polymorphonuclear neutrophils (PMN). In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2, and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection. PMID:27843440

  6. Canine Neutrophil Extracellular Traps Release Induced by the Apicomplexan Parasite Neospora caninum In Vitro.

    Science.gov (United States)

    Wei, Zhengkai; Hermosilla, Carlos; Taubert, Anja; He, Xuexiu; Wang, Xiaocen; Gong, Pengtao; Li, Jianhua; Yang, Zhengtao; Zhang, Xichen

    2016-01-01

    Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum) plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs) formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM). Visualization of DNA decorated with H3, neutrophil elastase (NE), and myeloperoxidase (MPO) within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay(®) kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine polymorphonuclear neutrophils (PMN). In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2, and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  7. Induction of Neutrophil Extracellular Traps in Shiga Toxin-Associated Hemolytic Uremic Syndrome.

    Science.gov (United States)

    Ramos, Maria Victoria; Mejias, Maria Pilar; Sabbione, Florencia; Fernandez-Brando, Romina Jimena; Santiago, Adriana Patricia; Amaral, Maria Marta; Exeni, Ramon; Trevani, Analia Silvina; Palermo, Marina Sandra

    2016-01-01

    Hemolytic uremic syndrome (HUS), a vascular disease characterized by hemolytic anemia, thrombocytopenia, and acute renal failure, is caused by enterohemorrhagic Shiga toxin (Stx)-producing bacteria, which mainly affect children. Besides Stx, the inflammatory response mediated by neutrophils (PMN) is essential to HUS evolution. PMN can release neutrophil extracellular traps (NET) composed of DNA, histones, and other proteins. Since NET are involved in infectious and inflammatory diseases, the aim of this work was to investigate the contribution of NET to HUS. Plasma from HUS patients contained increased levels of circulating free-DNA and nucleosomes in comparison to plasma from healthy children. Neutrophils from HUS patients exhibited a greater capacity to undergo spontaneous NETosis. NET activated human glomerular endothelial cells, stimulating secretion of the proinflammatory cytokines IL-6 and IL-8. Stx induced PMN activation as judged by its ability to trigger reactive oxygen species production, increase CD11b and CD66b expression, and induce NETosis in PMN from healthy donors. During HUS, NET can contribute to the inflammatory response and thrombosis in the microvasculature and thus to renal failure. Intervention strategies to inhibit inflammatory mechanisms mediated by PMN, such as NETosis, could have a potential therapeutic impact towards amelioration of the severity of HUS.

  8. Abundant neutrophil extracellular traps in thrombus of patient with microscopic polyangiitis

    Directory of Open Access Journals (Sweden)

    Daigo eNakazawa

    2012-11-01

    Full Text Available This is a case study of a patient diagnosed with microscopic polyangiitis (MPA and complicated with deep vein thrombosis (DVT, who died of respiratory failure despite treatment. Autopsy revealed severe crescentic glomerulonephritis and massive alveolar hemorrhage. The thrombus contained abundant neutrophils. Although it is reported that patients with ANCA-associated vasculitis (AAV have an increased risk of DVT, it remains elusive why they are prone to thrombosis. A recent study has demonstrated the presence of neutrophil extracellular traps (NETs, a newly recognized mode of neutrophil cell-death, in glomerular crescents of MPA patients. Interestingly, NETs were identified in the thrombus as well as in the glomerular crescents in the present case. When compared to other thrombi unrelated to MPA, the amount of NETs was significantly greater in the MPA patient. On the other hand, NETs are critically involved in thrombogenesis because histones within NETs can bind platelets and blood coagulants. Although this is important in regard to containment of microbes within NETs, excessive NETs could cause thrombosis. The collective findings suggest the possibility that thrombosis could be critically associated with MPA via NETs, and that NETs could be a therapeutic target in MPA patients.

  9. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps.

    Science.gov (United States)

    Raftery, Martin J; Lalwani, Pritesh; Krautkrӓmer, Ellen; Peters, Thorsten; Scharffetter-Kochanek, Karin; Krüger, Renate; Hofmann, Jörg; Seeger, Karl; Krüger, Detlev H; Schönrich, Günther

    2014-06-30

    Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin-mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage.

  10. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    Science.gov (United States)

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system.

  11. Rab27a is essential for the formation of neutrophil extracellular traps (NETs in neutrophil-like differentiated HL60 cells.

    Directory of Open Access Journals (Sweden)

    Tatsumi Kawakami

    Full Text Available Neutrophils play a crucial role in host defence. In response to a variety of inflammatory stimulation, they form neutrophil extracellular traps (NETs. NETs are extracellular structures composed of chromatin fibers decorated with antimicrobial proteins and developing studies indicate that NETs contribute to extracellular microbial killing. While the intracellular signaling pathways that regulate NET formation remain largely unknown, there is growing evidence that generation of reactive oxygen species (ROS is a key event for NET formation. The Rab family small GTPase Rab27a is an important component of the secretory machinery of azurophilic granules in neutrophils. However, the precise mechanism of NET formation and whether or not Rab27a contributes to this process are unknown. Using neutrophil-like differentiated HL60 cells, we show here that Rab27a plays an essential role in both phorbol myristate acetate (PMA- and Candida albicans-induced NET formation by regulating ROS production. Rab27a-knockdown inhibited ROS-positive phagosome formation during complement-mediated phagocytosis. To investigate the role of Rab27a in neutrophil function in detail, both primary human neutrophils and neutrophil-like differentiated HL60 cells were treated with PMA, and NET formation process was assessed by measurement of release of histone H3 into the medium, citrullination of the arginine in position 3 of histone H4 and chase of the nuclear change of the living cells in the co-existence of both cell-permeable and -impermeable nuclear indicators. PMA-induced NET formation occured sequentially in both neutrophil-like differentiated HL60 cells and primary neutrophils, and Rab27a-knockdown clearly inhibited NET formation in association with reduced ROS production. We also found that serum-treated Candida albicans triggers NET formation in a ROS-dependent manner, and that Rab27a-knockdown inhibits this process as well. Our findings demonstrate that Rab27a plays an

  12. Extracellular fibrils of pathogenic yeast Cryptococcus gattii are important for ecological niche, murine virulence and human neutrophil interactions.

    Directory of Open Access Journals (Sweden)

    Deborah J Springer

    Full Text Available Cryptococcus gattii, an emerging fungal pathogen of humans and animals, is found on a variety of trees in tropical and temperate regions. The ecological niche and virulence of this yeast remain poorly defined. We used Arabidopsis thaliana plants and plant-derived substrates to model C. gattii in its natural habitat. Yeast cells readily colonized scratch-wounded plant leaves and formed distinctive extracellular fibrils (40-100 nm diameter x500-3000 nm length. Extracellular fibrils were observed on live plants and plant-derived substrates by scanning electron microscopy (SEM and by high voltage- EM (HVEM. Only encapsulated yeast cells formed extracellular fibrils as a capsule-deficient C. gattii mutant completely lacked fibrils. Cells deficient in environmental sensing only formed disorganized extracellular fibrils as apparent from experiments with a C. gattii STE12alpha mutant. C. gattii cells with extracellular fibrils were more virulent in murine model of pulmonary and systemic cryptococcosis than cells lacking fibrils. C. gattii cells with extracellular fibrils were also significantly more resistant to killing by human polymorphonuclear neutrophils (PMN in vitro even though these PMN produced elaborate neutrophil extracellular traps (NETs. These observations suggest that extracellular fibril formation could be a structural adaptation of C. gattii for cell-to-cell, cell-to-substrate and/or cell-to- phagocyte communications. Such ecological adaptation of C. gattii could play roles in enhanced virulence in mammalian hosts at least initially via inhibition of host PMN- mediated killing.

  13. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals.

    Science.gov (United States)

    Sil, Payel; Hayes, Craig P; Reaves, Barbara J; Breen, Patrick; Quinn, Shannon; Sokolove, Jeremy; Rada, Balázs

    2017-01-01

    Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.

  14. Are Neutrophil Extracellular Traps Playing a Role in the Parasite Control in Active American Tegumentary Leishmaniasis Lesions?

    Science.gov (United States)

    Morgado, Fernanda Nazaré; Nascimento, Michelle T C; Saraiva, Elvira M; de Oliveira-Ribeiro, Carla; Madeira, Maria de Fátima; da Costa-Santos, Marcela; Vasconcellos, Erica C F; Pimentel, Maria Ines F; Rosandiski Lyra, Marcelo; Schubach, Armando de Oliveira; Conceição-Silva, Fátima

    2015-01-01

    Neutrophil extracellular traps (NETs) have been described as a network of extracellular fibers composed by DNA, histones and various proteins/enzymes. Studies have demonstrated that NETs could be responsible for the trapping and elimination of a variety of infectious agents. In order to verify the presence of NETs in American tegumentary leishmaniasis (ATL) and their relationship with the presence of amastigotes we evaluated active cutaneous lesions of 35 patients before treatment by the detection of parasites, neutrophils (neutrophil elastase) and histones through immunohistochemistry and confocal immunofluorescence. Intact neutrophils could be detected in all ATL lesions. NETs were present in 27 patients (median 1.1; range from 0.1 to 23.5/mm2) with lesion duration ranging from one to seven months. NETs were in close proximity with neutrophils (r = 0.586; p = 0.0001) and amastigotes (r = 0.710; p = 0.0001). Two patterns of NET formation were detected: small homogeneously distributed networks observed in all lesions; and large structures that could be visualized at a lower magnification in lesions presenting at least 20% of neutrophils. Lesions presenting the larger NET formation showed high parasite detection. A correlation between NET size and the number of intact amastigotes was observed (p=0.02). As we detected an association between NET and amastigotes, our results suggest that neutrophil migration and NET formation could be stimulated and maintained by stimuli derived from the parasite burden/parasite antigen in the extracellular environment. The observation of areas containing only antigens not intermingled with NETs (elastase and histone) suggests that the involvement of these structures in the control of parasite burden is a dynamic process in which the formation of NETs is exhausted with the destruction of the parasites. Since NETs were also associated with granulomas, this trapping would favor the activity of macrophages in order to control the parasite

  15. Regulation of the arachidonic acid-stimulated respiratory burst in neutrophils by intra- cellular and extracellular calcium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The respiratory burst is an important physiological function ofthe neutrophils in killing the bacteria invading in human body. We used chemiluminescence method to measure the exogenous arachidonic acid-stimulated respiratory burst, and measured the cytosolic free calcium concentration in neutrophils by the fluorescence method. It was found that, on one hand, the arachidonic acid-stimulated respiratory burst was enhanced by elevating the cytosolic free calcium concentration in neutrophils with a potent endomembrane Ca2+-ATPase inhibitor, Thapsgargin; on the other hand, chelating the intracellular or extracellular calcium by EGTA or BAPTA inhibited the respiratory burst. Results showed that calcium plays an important regulatory role in the signaling pathway involved in the exogenous arachidonic acid-stimulated respiratory burst of neutrophils.

  16. Probing Intracellular Element Concentration Changes during Neutrophil Extracellular Trap Formation Using Synchrotron Radiation Based X-Ray Fluorescence

    Science.gov (United States)

    Niemiec, Maria J.; Laforce, Brecht; Garrevoet, Jan; Vergucht, Eva; De Rycke, Riet; Cloetens, Peter; Urban, Constantin F.; Vincze, Laszlo

    2016-01-01

    High pressure frozen (HPF), cryo-substituted microtome sections of 2 μm thickness containing human neutrophils (white blood cells) were analyzed using synchrotron radiation based X-ray fluorescence (SR nano-XRF) at a spatial resolution of 50 nm. Besides neutrophils from a control culture, we also analyzed neutrophils stimulated for 1–2 h with phorbol myristate acetate (PMA), a substance inducing the formation of so-called Neutrophil Extracellular Traps (or NETs), a defense system again pathogens possibly involving proteins with metal chelating properties. In order to gain insight in metal transport during this process, precise local evaluation of elemental content was performed reaching limits of detection (LODs) of 1 ppb. Mean weight fractions within entire neutrophils, their nuclei and cytoplasms were determined for the three main elements P, S and Cl, but also for the 12 following trace elements: K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr and Pb. Statistical analysis, including linear regression provided objective analysis and a measure for concentration changes. The nearly linear Ca and Cl concentration changes in neutrophils could be explained by already known phenomena such as the induction of Ca channels and the uptake of Cl under activation of NET forming neutrophils. Linear concentration changes were also found for P, S, K, Mn, Fe, Co and Se. The observed linear concentration increase for Mn could be related to scavenging of this metal from the pathogen by means of the neutrophil protein calprotectin, whereas the concentration increase of Se may be related to its antioxidant function protecting neutrophils from the reactive oxygen species they produce against pathogens. We emphasize synchrotron radiation based nanoscopic X-ray fluorescence as an enabling analytical technique to study changing (trace) element concentrations throughout cellular processes, provided accurate sample preparation and data-analysis. PMID:27812122

  17. Different virulence of candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of DNase

    Science.gov (United States)

    Zhang, Xiaohuan; Zhao, Sainan; Sun, Luping; Li, Wenqing; Wei, Qiao; Ashman, Robert B; Hu, Yan

    2017-01-01

    Candida albicans is an important opportunistic fungus causing both disseminated and local infections. The discovery of neutrophil extracellular traps (NETs) has presented a new strategy to kill microorganisms in host’s innate immune response. Although it has been reported that NETs can trap and kill both yeast and hyphal forms of C. albicans, the mechanism by which C. albicans escape from NETs has not been fully understood. In this study, the ability of two strains of C. albicans SC5314 and 3683 to escape NETs-mediated killing was compared. It was found that SC5314 induced higher levels of reactive oxygen species (ROS) and expressions of Rac1/2 and more NETs formation by neutrophils, and also generated more deoxyribonucleases (DNase) than 3683 did. However, resistance to neutrophils killing was greater in SC5314 than that of 3683. When extracellular traps were degraded by exogenous DNase I or catalase, and neutrophil phagocytic activity blocked by cytochalasin D, the killing capacity of neutrophils co-cultured with either C. albicans SC5314 or 3683 was significantly decreased. This study indicates that C. albicans can escape from the trapping and killing of NETs by secreting DNase, which offers further insights into the basis for differences in virulence of different strains of C. albicans. PMID:28123633

  18. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing.

    Science.gov (United States)

    Van Avondt, Kristof; van der Linden, Maarten; Naccache, Paul H; Egan, David A; Meyaard, Linde

    2016-05-01

    In response to microbial invasion, neutrophils release neutrophil extracellular traps (NETs) to trap and kill extracellular microbes. Alternatively, NET formation can result in tissue damage in inflammatory conditions and may perpetuate autoimmune disease. Intervention strategies that are aimed at modifying pathogenic NET formation should ideally preserve other neutrophil antimicrobial functions. We now show that signal inhibitory receptor on leukocytes-1 (SIRL-1) attenuates NET release by human neutrophils in response to distinct triggers, including opsonized Staphylococcus aureus and inflammatory danger signals. NET release has different kinetics depending on the stimulus, and rapid NET formation is independent of NADPH oxidase activity. In line with this, we show that NET release and reactive oxygen species production upon challenge with opsonized S. aureus require different signaling events. Importantly, engagement of SIRL-1 does not affect bacterially induced production of reactive oxygen species, and intracellular bacterial killing by neutrophils remains intact. Thus, our studies define SIRL-1 as an intervention point of benefit to suppress NET formation in disease while preserving intracellular antimicrobial defense.

  19. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells.

    Science.gov (United States)

    Barrientos, Lorena; Bignon, Alexandre; Gueguen, Claire; de Chaisemartin, Luc; Gorges, Roseline; Sandré, Catherine; Mascarell, Laurent; Balabanian, Karl; Kerdine-Römer, Saadia; Pallardy, Marc; Marin-Esteban, Viviana; Chollet-Martin, Sylvie

    2014-12-01

    Polymorphonuclear neutrophils (PMN) play a central role in inflammation and participate in its control, notably by modulating dendritic cell (DC) functions via soluble mediators or cell-cell contacts. Neutrophil extracellular traps (NETs) released by PMN could play a role in this context. To evaluate NET effects on DC maturation, we developed a model based on monocyte-derived DC (moDC) and calibrated NETs isolated from fresh human PMN. We found that isolated NETs alone had no discernable effect on moDC. In contrast, they downregulated LPS-induced moDC maturation, as shown by decreased surface expression of HLA-DR, CD80, CD83, and CD86, and by downregulated cytokine production (TNF-α, IL-6, IL-12, IL-23), with no increase in the expression of tolerogenic DC genes. Moreover, the presence of NETs during moDC maturation diminished the capacity of these moDC to induce T lymphocyte proliferation in both autologous and allogeneic conditions, and modulated CD4(+) T lymphocyte polarization by promoting the production of Th2 cytokines (IL-5 and IL-13) and reducing that of Th1 and Th17 cytokines (IFN-γ and IL-17). Interestingly, the expression and activities of the lymphoid chemokine receptors CCR7 and CXCR4 on moDC were not altered when moDC matured in the presence of NETs. Together, these findings reveal a new role for NETs in adaptive immune responses, modulating some moDC functions and thereby participating in the control of inflammation.

  20. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout.

    Directory of Open Access Journals (Sweden)

    Ioannis Mitroulis

    Full Text Available BACKGROUND: Gout is a prevalent inflammatory arthritis affecting 1-2% of adults characterized by activation of innate immune cells by monosodium urate (MSU crystals resulting in the secretion of interleukin-1β (IL-1β. Since neutrophils play a major role in gout we sought to determine whether their activation may involve the formation of proinflammatory neutrophil extracellular traps (NETs in relation to autophagy and IL-1β. METHODOLOGY/PRINCIPAL FINDINGS: Synovial fluid neutrophils from six patients with gout crisis and peripheral blood neutrophils from six patients with acute gout and six control subjects were isolated. MSU crystals, as well as synovial fluid or serum obtained from patients with acute gout, were used for the treatment of control neutrophils. NET formation was assessed using immunofluorescence microscopy. MSU crystals or synovial fluid or serum from patients induced NET formation in control neutrophils. Importantly, NET production was observed in neutrophils isolated from synovial fluid or peripheral blood from patients with acute gout. NETs contained the alarmin high mobility group box 1 (HMGB1 supporting their pro-inflammatory potential. Inhibition of phosphatidylinositol 3-kinase signaling or phagolysosomal fusion prevented NET formation, implicating autophagy in this process. NET formation was driven at least in part by IL-1β as demonstrated by experiments involving IL-1β and its inhibitor anakinra. CONCLUSIONS/SIGNIFICANCE: These findings document for the first time that activation of neutrophils in gout is associated with the formation of proinflammatory NETs and links this process to both autophagy and IL-1β. Modulation of the autophagic machinery may represent an additional therapeutic study in crystalline arthritides.

  1. The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps.

    Directory of Open Access Journals (Sweden)

    Mark J Lee

    2015-10-01

    Full Text Available Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG, an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.

  2. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease.

    Science.gov (United States)

    Leffler, Jonatan; Martin, Myriam; Gullstrand, Birgitta; Tydén, Helena; Lood, Christian; Truedsson, Lennart; Bengtsson, Anders A; Blom, Anna M

    2012-04-01

    Ongoing inflammation including activation of the complement system is a hallmark of systemic lupus erythematosus (SLE). Antimicrobial neutrophil extracellular traps (NETs) are composed of secreted chromatin that may act as a source of autoantigens typical for SLE. In this study, we investigated how complement interacts with NETs and how NET degradation is affected by complement in SLE patients. We found that sera from a subset of patients with active SLE had a reduced ability to degrade in vitro-generated NETs, which was mostly restored when these patients were in remission. Patients that failed to degrade NETs had a more active disease and they also displayed lower levels of complement proteins C4 and C3 in blood. We discovered that NETs activated complement in vitro and that deposited C1q inhibited NET degradation including a direct inhibition of DNase-I by C1q. Complement deposition on NETs may facilitate autoantibody production, and indeed, Abs against NETs and NET epitopes were more pronounced in patients with impaired ability to degrade NETs. NET-bound autoantibodies inhibited degradation but also further increased C1q deposition, potentially exacerbating the disease. Thus, NETs are a potent complement activator, and this interaction may play an important role in SLE. Targeting complement with inhibitors or by removing complement activators such as NETs could be beneficial for patients with SLE.

  3. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes

    Directory of Open Access Journals (Sweden)

    Ákos M. Lőrincz

    2014-12-01

    Full Text Available Aim: To carry out a systematic study on the effect of different storage conditions on the number as well as the physical and functional properties of antibacterial extracellular vesicles (EVs derived from human neutrophilic granulocytes. Methods: Production of EVs with antibacterial properties was initiated by opsonized Zymosan A particles. The number of released fluorescent EVs was determined by flow cytometry following careful calibration. Physical properties and size of EVs were investigated by flow cytometry, dynamic light scattering and electron microscopy. Functional properties of EVs were tested by bacterial survival assay. Results: Storage at +20°C or +4°C resulted in a significant decrease of EV number and antibacterial effect after 1 day. Storage at −20°C did not influence the EV number up to 28 days, but induced a shift in EV size and almost complete loss of antibacterial function by 28 days. Storage at −80°C had no significant effect either on EV number or size and allowed partial preservation of the antibacterial function up to 28 days. Snap-freezing did not improve the results, whereas the widely used cryoprotectants induced EV lysis. Conclusion: Storage significantly alters both the physical and functional properties of EVs even if the number of EVs stays constant. If storage is needed, EVs should be kept at −80°C, preferably not longer than 7 days. For functional tests, freshly prepared EVs are recommended.

  4. Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways.

    Science.gov (United States)

    Martínez, Diego; Vermeulen, Mónica; Trevani, Analía; Ceballos, Ana; Sabatté, Juan; Gamberale, Romina; Alvarez, María Eugenia; Salamone, Gabriela; Tanos, Tamara; Coso, Omar A; Geffner, Jorge

    2006-01-15

    Inflammation in peripheral tissues is usually associated with the development of local acidosis; however, there are few studies aimed at analyzing the influence of acidosis on immune cells. We have shown previously that extracellular acidosis triggers human neutrophil activation, inducing a transient increase in intracellular Ca2+ concentration, a shape change response, the up-regulation of CD18 expression, and a delay of apoptosis. In this study, we analyzed the signaling pathways responsible for neutrophil activation. We found that acidosis triggers the phosphorylation of Akt (the main downstream target of PI3K) and ERK MAPK, but not that of p38 and JNK MAPK. No degradation of IkappaB was observed, supporting the hypothesis that NF-kappaB is not activated under acidosis. Inhibition of PI3K by wortmannin or LY294002 markedly decreased the shape change response and the induction of Ca2+ transients triggered by acidosis, whereas the inhibition of MEK by PD98059 or U0126 significantly inhibited the shape change response without affecting the induction of Ca2+ transients. We also found that acidosis not only induces a shape change response and the induction of Ca2+ transients in human neutrophils but also stimulates the endocytosis of FITC-OVA and FITC-dextran. Stimulation of endocytosis was partially prevented by inhibitors of PI3K and MEK. Together, our results support the notion that the stimulation of human neutrophils by extracellular acidosis is dependent on the activation of PI3K/Akt and ERK pathways. Of note, using mouse peritoneal neutrophils we observed that the enhancement of endocytosis induced by acidosis was associated with an improved ability to present extracellular Ags through a MHC class I-restricted pathway.

  5. Novel role of the antimicrobial peptide LL-37 in the protection of neutrophil extracellular traps against degradation by bacterial nucleases

    OpenAIRE

    Neumann, Ariane; Völlger, Lena; Berends, Evelien T.M.; Molhoek, E. Margo; Stapels, Daphne A.C.; Midon, Marika; Friães, Ana; Pingoud, Alfred; Rooijakkers, Suzan H. M.; Richard L Gallo; Mörgelin, Matthias; Nizet, Victor; Naim, Hassan Y; von Köckritz-Blickwede, Maren

    2014-01-01

    Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defense mechanism. These NETs consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs), which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within the NETs is still unknown, since LL-37 loses its antimicrobial activity when bound to DNA in the NETs.

  6. The architecture of neutrophil extracellular traps investigated by atomic force microscopy

    Science.gov (United States)

    Pires, Ricardo H.; Felix, Stephan B.; Delcea, Mihaela

    2016-07-01

    Neutrophils are immune cells that engage in a suicidal pathway leading to the release of partially decondensed chromatin, or neutrophil extracellular traps (NETs). NETs behave as a double edged sword; they can bind to pathogens thereby ensnaring them and limiting their spread during infection; however, they may bind to host circulating materials and trigger thrombotic events, and are associated with autoimmune disorders. Despite the fundamental role of NETs as part of an immune system response, there is currently a very poor understanding of how their nanoscale properties are reflected in their macroscopic impact. In this work, using a combination of fluorescence and atomic force microscopy, we show that NETs appear as a branching filament network that results in a substantially organized porous structure with openings with 0.03 +/- 0.04 μm2 on average and thus in the size range of small pathogens. Topological profiles typically up to 3 +/- 1 nm in height are compatible with a ``beads on a string'' model of nucleosome chromatin. Typical branch lengths of 153 +/- 103 nm appearing as rigid rods and height profiles of naked DNA in NETs of 1.2 +/- 0.5 nm are indicative of extensive DNA supercoiling throughout NETs. The presence of DNA duplexes could also be inferred from force spectroscopy and the occurrence of force plateaus that ranged from ~65 pN to 300 pN. Proteolytic digestion of NETs resulted in widespread disassembly of the network structure and considerable loss of mechanical properties. Our results suggest that the underlying structure of NETs is considerably organized and that part of its protein content plays an important role in maintaining its mesh architecture. We anticipate that NETs may work as microscopic mechanical sieves with elastic properties that stem from their DNA-protein composition, which is able to segregate particles also as a result of their size. Such a behavior may explain their participation in capturing pathogens and their association

  7. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms.

    Science.gov (United States)

    Hermann, M; Jaconi, M E; Dahlgren, C; Waldvogel, F A; Stendahl, O; Lew, D P

    1990-09-01

    The activation patterns of surface adherent neutrophils are modulated via interaction of extracellular matrix proteins with neutrophil integrins. To evaluate neutrophil bactericidal activity, Staphylococcus aureus adherent to biological surfaces were incubated with neutrophils and serum, and the survival of surface bacteria was determined. When compared to albumin-coated surfaces, the bactericidal activity of neutrophils adherent to purified human extracellular matrix was markedly enhanced (mean survival: 34.2% +/- 9.0% of albumin, P less than 0.0001) despite similar efficient ingestion of extracellular bacteria. Enhancement of killing was observed when surfaces were coated with purified constituents of extracellular matrix, i.e., fibronectin, fibrinogen, laminin, vitronectin, or type IV collagen. In addition to matrix proteins, the tetrapeptide RGDS (the sequence recognized by integrins) crosslinked to surface bound albumin was also active (survival: 74.5% +/- 5.5% of albumin, P less than 0.02), and fibronectin-increased killing was inhibited by soluble RGDS. Chemiluminescence measurements and experiments with CGD neutrophils revealed that both oxygen-dependent and -independent bactericidal mechanisms are involved. In conclusion, matrix proteins enhance intracellular bactericidal activity of adherent neutrophils, presumably by integrin recognition of RGDS-containing ligands. These results indicate a role for extracellular matrix proteins in the enhancement of the host defense against pyogenic infections.

  8. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation.

    Directory of Open Access Journals (Sweden)

    Astrid Obermayer

    Full Text Available Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs. These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in 'beads-on-a-string' conformation. New information is also presented on the abundance and location of neutrophil elastase (NE and citrullinated histone H3 (citH3. NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii release of 'beads-on-a-string' DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to

  9. Canine neutrophil extracellular traps release induced by the apicomplexan parasite Neospora Caninum in vitro

    Directory of Open Access Journals (Sweden)

    Zhengkai Wei

    2016-10-01

    Full Text Available Neosporosis is considered as one of the main causes of abortion and severe economic losses in dairy industry. The Canis genus serving as one of the confirmed definitive hosts of the apicomplexan parasite Neospora caninum (N. caninum plays a critical role in its life cycle. However, the effects of N. caninum on its definitive hosts of neutrophils extracellular traps (NETs formation remain unclear. In the present study, N. caninum tachyzoite-induced canine NETs formation was observed by scanning electron microscopy (SEM. Visualization of DNA decorated with H3, NE and MPO within N. caninum tachyzoite-induced NETs were examined using fluorescence confocal microscopy analyses. Furthermore, the formation of canine NETs was quantified using Sytox Green staining, and the LDH levels in supernatants were examined by an LDH Cytotoxicity Assay® kit. The results clearly showed that NETs-like structures were induced by N. caninum tachyzoites, and the major components within these structures induced by N. caninum tachyzoite were further confirmed by fluorescence confocal microscopy visualization. These results suggest that N. caninum tachyzoites strongly induced NETs formation in canine PMN. In functional inhibition assays, the blockings of NADPH oxidase, NE, MPO, SOCE, ERK 1/2 and p38 MAPK signaling pathways significantly inhibited N. caninum tachyzoite-induced NETs formation, which suggests that N. caninum tachyzoite-induced NETs formation is a NADPH oxidase-, NE-, MPO-, SOCE-, ERK 1/2- and p38 MAPK-dependent cell death process. To our knowledge, this study is the first to report the formation of NETs in canine PMN against N. caninum infection.

  10. Automatic determination of NET (neutrophil extracellular traps) coverage in fluorescent microscopy images.

    Science.gov (United States)

    Coelho, Luis Pedro; Pato, Catarina; Friães, Ana; Neumann, Ariane; von Köckritz-Blickwede, Maren; Ramirez, Mário; Carriço, João André

    2015-07-15

    Neutrophil extracellular traps (NETs) are believed to be essential in controlling several bacterial pathogens. Quantification of NETs in vitro is an important tool in studies aiming to clarify the biological and chemical factors contributing to NET production, stabilization and degradation. This estimation can be performed on the basis of fluorescent microscopy images using appropriate labelings. In this context, it is desirable to automate the analysis to eliminate both the tedious process of manual annotation and possible operator-specific biases. We propose a framework for the automated determination of NET content, based on visually annotated images which are used to train a supervised machine-learning method. We derive several methods in this framework. The best results are obtained by combining these into a single prediction. The overall Q(2) of the combined method is 93%. By having two experts label part of the image set, we were able to compare the performance of the algorithms to the human interoperator variability. We find that the two operators exhibited a very high correlation on their overall assessment of the NET coverage area in the images (R(2) is 97%), although there were consistent differences in labeling at pixel level (Q(2), which unlike R(2) does not correct for additive and multiplicative biases, was only 89%). Open source software (under the MIT license) is available at https://github.com/luispedro/Coelho2015_NetsDetermination for both reproducibility and application to new data. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Response of Neutrophils to Extracellular Haemoglobin and LTA in Human Blood System

    Directory of Open Access Journals (Sweden)

    Sae-Kyung Lee

    2015-03-01

    Interpretation: metHb and metHb + LTA complex are ligands of TLR2, inducing an unconventional TLR signalling pathway. Neutrophils are a highly sensitive cell type to metHb + LTA complex. During a haemolytic infection, white blood cells in the vicinity crosstalk to modulate neutrophil TLR-signalling induced by metHb and LTA.

  12. Dexamethasone Inhibits S. aureus-Induced Neutrophil Extracellular Pathogen-Killing Mechanism, Possibly through Toll-Like Receptor Regulation.

    Science.gov (United States)

    Wan, Ting; Zhao, Yingying; Fan, Fangli; Hu, Renjian; Jin, Xiuming

    2017-01-01

    Neutrophils release neutrophil extracellular traps (NETs) in a pathogen-killing process called NETosis. Excessive NETs formation, however, is implicated in disease pathogenesis. Therefore, to understand how NETosis is regulated, we examined the effect of dexamethasone (DXM), an anti-inflammatory drug, on this process and the role of toll-like receptors (TLRs). We stimulated human neutrophils with phorbol 12-myristate 13-acetate (PMA) or Staphylococcus aureus (S. aureus) and quantified NETs formation. We also examined the effect of DXM on the bactericidal effect of NETs and the role of reactive oxygen species (ROS) and nuclear factor (NF)-κB in DXM-regulated NETosis. DXM significantly inhibited S. aureus-induced NETosis and extracellular bacterial killing. ROS production and NF-κB activation were not involved in DXM-regulated NETosis. TLR2 and TLR4, but not TLR5 or TLR6, modified S. aureus-induced NETs formation. Neither DXM nor TLRs were involved in PMA-induced NETosis. Furthermore, TLR2 and TLR4 agonists rescued DXM-inhibited NETosis, and neither TLR2 nor TLR4 antagonists could further inhibit NETosis reduction induced by DXM, indicating that DXM may inhibit NETosis by regulating TLR2 and TLR4. In conclusion, the mechanisms of S. aureus- and PMA-induced NETosis are different. DXM decreases NETs formation independently of oxidant production and NF-κB phosphorylation and possibly via a TLR-dependent mechanism.

  13. Low-Frequency Electromagnetic Field Exposure Enhances Extracellular Trap Formation by Human Neutrophils through the NADPH Pathway.

    Science.gov (United States)

    Golbach, Lieke A; Scheer, Marleen H; Cuppen, Jan J M; Savelkoul, Huub; Verburg-van Kemenade, B M Lidy

    2015-01-01

    Low-frequency (LF) electromagnetic fields (EMFs) are abundantly present in modern society, and the potential biological consequences of exposure to these fields are under intense debate. Immune cells are suggested as possible target cells, though a clear mechanism is lacking. Considering their crucial role in innate immune activation, we selected an ex vivo exposure set-up with human neutrophils to investigate a possible correlation between neutrophil extracellular trap (NET) formation and LF EMF exposure. Our study shows that formation of NETs is enhanced by LF EMF exposure. Enhanced NET formation leads to increased antimicrobial properties as well as damage to surrounding cells. We found that LF-EMF-induced NET formation is dependent on the NADPH oxidase pathway and production of reactive oxygen species. Additionally, LF EMF exposure does not influence autophagy and PAD4 activity. Our study provides a mechanism by which exposure to LF EMFs could influence the innate immune system.

  14. Nonencapsulated Streptococcus pneumoniae resists extracellular human neutrophil elastase- and cathepsin G-mediated killing

    NARCIS (Netherlands)

    Windt, D. van der; Bootsma, H.J.; Burghout, P.; Gaast-de Jongh, C.E. van der; Hermans, P.W.M.; Flier, M. van der

    2012-01-01

    Although the Streptococcus pneumoniae polysaccharide capsule is an important virulence factor, ~ 15% of carriage isolates are nonencapsulated. Nonencapsulated S. pneumoniae are a cause of mucosal infections. Recent studies have shown that neutrophils kill S. pneumoniae predominately through neutroph

  15. Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress.

    Science.gov (United States)

    Miramón, Pedro; Dunker, Christine; Windecker, Hanna; Bohovych, Iryna M; Brown, Alistair J P; Kurzai, Oliver; Hube, Bernhard

    2012-01-01

    Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2) renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS). We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1Δ/Δ mutant, unable to detoxify NO•, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1Δ/Δ mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal response to all

  16. Selected mucolytic, anti-inflammatory and cardiovascular drugs change the ability of neutrophils to form extracellular traps (NETs).

    Science.gov (United States)

    Zawrotniak, Marcin; Kozik, Andrzej; Rapala-Kozik, Maria

    2015-01-01

    Neutrophils form the first line of host defense against infections that combat pathogens using two major mechanisms, the phagocytosis or the release of neutrophil extracellular traps (NETs). The netosis (NET formation) exerts additional, unfavorable effects on the fitness of host cells and is also involved at the sites of lung infection, increasing the mucus viscosity and in the circulatory system where it can influence the intravascular clot formation. Although molecular mechanisms underlying the netosis are still incompletely understood, a role of NADPH oxidase that activates the production of reactive oxygen species (ROS) during the initiation of NETs has been well documented. Since several commonly used drugs can affects the netosis, our current study was aimed to determine the effects of selected mucolytic, anti-inflammatory and cardiovascular drugs on NET formation, with a special emphasis on ROS production and NADPH oxidase activity. The treatment of neutrophils with N-acetylcysteine, ketoprofen and ethamsylate reduced the production of ROS by these cells in a dose-dependent manner. NET formation was also modulated by selected drugs. N-acetylcysteine inhibited the netosis but in the presence of H2O2 this neutrophil ability was restored, indicating that N-acetylcysteine may influence the NET formation by modulating ROS productivity. The administration of ethamsylate led to a significant reduction in NET formation and this effect was not restored by H2O2 or S. aureus, suggesting the unexpected additional side effects of this drug. Ketoprofen seemed to promote ROS-independent NET release, simultaneously inhibiting ROS production. The results, obtained in this study strongly suggest that the therapeutic strategies applied in many neutrophil-mediated diseases should take into account the NET-associated effects.

  17. Group B Streptococcus Induces Neutrophil Recruitment to Gestational Tissues and Elaboration of Extracellular Traps and Nutritional Immunity

    Science.gov (United States)

    Kothary, Vishesh; Doster, Ryan S.; Rogers, Lisa M.; Kirk, Leslie A.; Boyd, Kelli L.; Romano-Keeler, Joann; Haley, Kathryn P.; Manning, Shannon D.; Aronoff, David M.; Gaddy, Jennifer A.

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a gram-positive bacterial pathogen associated with infection during pregnancy and is a major cause of morbidity and mortality in neonates. Infection of the extraplacental membranes surrounding the developing fetus, a condition known as chorioamnionitis, is characterized histopathologically by profound infiltration of polymorphonuclear cells (PMNs, neutrophils) and greatly increases the risk for preterm labor, stillbirth, or neonatal GBS infection. The advent of animal models of chorioamnionitis provides a powerful tool to study host-pathogen relationships in vivo and ex vivo. The purpose of this study was to evaluate the innate immune response elicited by GBS and evaluate how antimicrobial strategies elaborated by these innate immune cells affect bacteria. Our work using a mouse model of GBS ascending vaginal infection during pregnancy reveals that clinically isolated GBS has the capacity to invade reproductive tissues and elicit host immune responses including infiltration of PMNs within the choriodecidua and placenta during infection, mirroring the human condition. Upon interacting with GBS, murine neutrophils elaborate DNA-containing extracellular traps, which immobilize GBS and are studded with antimicrobial molecules including lactoferrin. Exposure of GBS to holo- or apo-forms of lactoferrin reveals that the iron-sequestration activity of lactoferrin represses GBS growth and viability in a dose-dependent manner. Together, these data indicate that the mouse model of ascending infection is a useful tool to recapitulate human models of GBS infection during pregnancy. Furthermore, this work reveals that neutrophil extracellular traps ensnare GBS and repress bacterial growth via deposition of antimicrobial molecules, which drive nutritional immunity via metal sequestration strategies. PMID:28217556

  18. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    Science.gov (United States)

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  19. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    Directory of Open Access Journals (Sweden)

    Sandra Bruns

    2010-04-01

    Full Text Available Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A

  20. Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA

    Science.gov (United States)

    Aimanianda, Vishukumar; Nietzsche, Sandor; Thywißen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A.; Gunzer, Matthias

    2010-01-01

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  1. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury

    NARCIS (Netherlands)

    Bastian, Okan W.; Koenderman, Leo; Alblas, Jacqueline; Leenen, Luke P H; Blokhuis, Taco J.

    2016-01-01

    The role of inflammatory cells in bone regeneration remains unclear. We hypothesize that leukocytes contribute to fracture healing by rapidly synthesizing an "emergency extracellular matrix (ECM)" before stromal cells infiltrate the fracture hematoma (FH) and synthesize the eventual collagenous bone

  2. IgA Complexes in Plasma and Synovial Fluid of Patients with Rheumatoid Arthritis Induce Neutrophil Extracellular Traps via FcαRI.

    Science.gov (United States)

    Aleyd, Esil; Al, Marjon; Tuk, Cornelis W; van der Laken, Conny J; van Egmond, Marjolein

    2016-12-15

    Autoantibodies, including rheumatoid factor (RF), are an important characteristic of rheumatoid arthritis (RA). Interestingly, several studies reported a correlation between the presence of IgA autoantibodies and worse disease course. We demonstrated previously that triggering the IgA Fc receptor (FcαRI) on neutrophils results in neutrophil recruitment and the release of neutrophil extracellular traps (NETs). Because this can lead to tissue damage, we investigated whether IgA immune complexes in plasma and synovial fluid of RA patients activate neutrophils. RF isotypes were measured with ELISA, and immune complexes were precipitated using polyethylene glycol 6000. Isolated neutrophils were incubated with immune complexes, and activation and release of NETs were determined in the presence or absence of FcαRI-blocking Abs. Plasma and SF of RA patients contained IgM, IgG, and IgA RFs. Patient plasma IgA RF and IgM RF showed a strong correlation. No uptake of IgM and minimal endocytosis of IgG immune complexes by neutrophils was observed, in contrast to avid uptake of IgA complexes. Incubation of neutrophils with immune complexes resulted in the production of reactive oxygen species, as well as the release of NETs, lactoferrin, and chemotactic stimuli. Importantly, activation of neutrophils was reduced when FcαRI was blocked. Neutrophils were activated by IgA immune complexes, which suggests that neutrophils play a role in inducing joint damage in RA patients who have IgA autoantibody complexes, thereby increasing the severity of disease. Blocking FcαRI inhibited neutrophil activation and, as such, may represent an additional attractive novel therapeutic strategy for the treatment of RA.

  3. 中性粒细胞网的研究进展%Research progress on neutrophil extracellular traps

    Institute of Scientific and Technical Information of China (English)

    赵赛男; 李文卿

    2011-01-01

    中性粒细胞通过吞噬、脱颗粒和形成中性粒细胞网(NET)等方式抵抗微生物感染。自NET被发现后,研究者们即从一个全新的视角来诠释固有免疫控制和杀伤微生物的机制。本文就NET的结构、形成和在疾病中的作用以及微生物逃逸NET的作用作一综述。%It is believed that neutrophils have three major strategies to resist microbian infection, including phagocytosis, degranulation, and neutrophil extracellular traps (NET) formation. The discovery of NET introduces a brand-new perspective for the researchers from which they make analysis of the mechanism of innate immune system trapping and killing microorganisms. The thesis aims to give a review of NET's structure and formation, as well as the faction in disease and the escape of microorganisms from NET.

  4. Neutrophil Extracellular Traps Identification in Tegumentary Lesions of Patients with Paracoccidioidomycosis and Different Patterns of NETs Generation In Vitro.

    Directory of Open Access Journals (Sweden)

    Amanda Manoel Della Coletta

    Full Text Available Paracoccidioidomycosis (PCM is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii. Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs, which is composed of nuclear (decondensed DNA and histones and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18 and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM.

  5. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR.

    Science.gov (United States)

    Young, Robert L; Malcolm, Kenneth C; Kret, Jennifer E; Caceres, Silvia M; Poch, Katie R; Nichols, David P; Taylor-Cousar, Jennifer L; Saavedra, Milene T; Randell, Scott H; Vasil, Michael L; Burns, Jane L; Moskowitz, Samuel M; Nick, Jerry A

    2011-01-01

    The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by

  6. Neutrophil extracellular trap (NET-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR.

    Directory of Open Access Journals (Sweden)

    Robert L Young

    Full Text Available The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs, extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET

  7. Phenol-Soluble Modulin α Peptide Toxins from Aggressive Staphylococcus aureus Induce Rapid Formation of Neutrophil Extracellular Traps through a Reactive Oxygen Species-Independent Pathway

    Science.gov (United States)

    Björnsdottir, Halla; Dahlstrand Rudin, Agnes; Klose, Felix P.; Elmwall, Jonas; Welin, Amanda; Stylianou, Marios; Christenson, Karin; Urban, Constantin F.; Forsman, Huamei; Dahlgren, Claes; Karlsson, Anna; Bylund, Johan

    2017-01-01

    Neutrophils have the ability to capture and kill microbes extracellularly through the formation of neutrophil extracellular traps (NETs). These are DNA and protein structures that neutrophils release extracellularly and are believed to function as a defense mechanism against microbes. The classic NET formation process, triggered by, e.g., bacteria, fungi, or by direct stimulation of protein kinase C through phorbol myristate acetate, is an active process that takes several hours and relies on the production of reactive oxygen species (ROS) that are further modified by myeloperoxidase (MPO). We show here that NET-like structures can also be formed by neutrophils after interaction with phenol-soluble modulin α (PSMα) that are cytotoxic membrane-disturbing peptides, secreted from community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The PSMα-induced NETs contained the typical protein markers and were able to capture microbes. The PSMα-induced NET structures were disintegrated upon prolonged exposure to DNase-positive S. aureus but not on exposure to DNase-negative Candida albicans. Opposed to classic NETosis, PSMα-triggered NET formation occurred very rapidly, independently of ROS or MPO, and was also manifest at 4°C. These data indicate that rapid NETs release may result from cytotoxic membrane disturbance by PSMα peptides, a process that may be of importance for CA-MRSA virulence. PMID:28337204

  8. Differential clearance mechanisms, neutrophil extracellular trap degradation and phagocytosis, are operative in systemic lupus erythematosus patients with distinct autoantibody specificities.

    Science.gov (United States)

    Chauhan, Sudhir Kumar; Rai, Richa; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta

    2015-12-01

    Systemic lupus erythematosus (SLE) patients are generally presented with autoantibodies against either dsDNA or RNA-associated antigens (also known as extractable nuclear antigens, ENA) or both. However, the mechanisms and processes that lead to this distinctive autoantibody profile are not well understood. Defects in clearance mechanism i.e. phagocytosis may lead to enhanced microbial and cellular debris of immunogenic potential. In addition to defective phagocytosis, impaired neutrophil extracellular trap (NET) degradation has been recently reported in SLE patients. However, the extent to which both these clearance processes (NET-degradation and phagocytosis) are operative in serologically distinguished subsets of SLE patients is not established. Therefore, in this report, we evaluated NET-degradation and phagocytosis efficiency among SLE patients with different autoantibody specificities. SLE patients were classified into three subsets based on their autoantibody profile (anti-dsDNA, anti-ENA or both) as determined by ELISA. NET-degradation by SLE and control sera was assessed by sytox orange-based fluorescence assay. Neutrophil-mediated phagocytosis in the presence of SLE and control sera was determined by flowcytometry. The segregation of SLE patients revealed significant differences in NET-degradation and phagocytosis in SLE patients with autoantibodies against dsDNA and ENA. We report that NET-degradation efficiency was significantly impaired in SLE patients with anti-dsDNA autoantibodies and not in those with anti-ENA autoantibodies. In contrast to NET-degradation, neutrophil-mediated phagocytosis was impaired in all three subsets independent of autoantibody specificity. These observations suggest that varying clearance mechanisms are operative in SLE subsets with anti-dsDNA or anti-ENA autoantibodies. The results outlined in this manuscript also suggest that sub-grouping of SLE patients could be useful in delineating the molecular and pathological

  9. Comparative Genomic Analysis of Neutrophilic Iron(II Oxidizer Genomes for Candidate Genes in Extracellular Electron Transfer

    Directory of Open Access Journals (Sweden)

    Shaomei He

    2017-08-01

    Full Text Available Extracellular electron transfer (EET is recognized as a key biochemical process in circumneutral pH Fe(II-oxidizing bacteria (FeOB. In this study, we searched for candidate EET genes in 73 neutrophilic FeOB genomes, among which 43 genomes are complete or close-to-complete and the rest have estimated genome completeness ranging from 5 to 91%. These neutrophilic FeOB span members of the microaerophilic, anaerobic phototrophic, and anaerobic nitrate-reducing FeOB groups. We found that many microaerophilic and several anaerobic FeOB possess homologs of Cyc2, an outer membrane cytochrome c originally identified in Acidithiobacillus ferrooxidans. The “porin-cytochrome c complex” (PCC gene clusters homologous to MtoAB/PioAB are present in eight FeOB, accounting for 19% of complete and close-to-complete genomes examined, whereas PCC genes homologous to OmbB-OmaB-OmcB in Geobacter sulfurreducens are absent. Further, we discovered gene clusters that may potentially encode two novel PCC types. First, a cluster (tentatively named “PCC3” encodes a porin, an extracellular and a periplasmic cytochrome c with remarkably large numbers of heme-binding motifs. Second, a cluster (tentatively named “PCC4” encodes a porin and three periplasmic multiheme cytochromes c. A conserved inner membrane protein (IMP encoded in PCC3 and PCC4 gene clusters might be responsible for translocating electrons across the inner membrane. Other bacteria possessing PCC3 and PCC4 are mostly Proteobacteria isolated from environments with a potential niche for Fe(II oxidation. In addition to cytochrome c, multicopper oxidase (MCO genes potentially involved in Fe(II oxidation were also identified. Notably, candidate EET genes were not found in some FeOB, especially the anaerobic ones, probably suggesting EET genes or Fe(II oxidation mechanisms are different from the searched models. Overall, based on current EET models, the search extends our understanding of bacterial EET and

  10. Antibodies mediate formation of neutrophil extracellular traps in the middle ear and facilitate secondary pneumococcal otitis media.

    Science.gov (United States)

    Short, Kirsty R; von Köckritz-Blickwede, Maren; Langereis, Jeroen D; Chew, Keng Yih; Job, Emma R; Armitage, Charles W; Hatcher, Brandon; Fujihashi, Kohtaro; Reading, Patrick C; Hermans, Peter W; Wijburg, Odilia L; Diavatopoulos, Dimitri A

    2014-01-01

    Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease.

  11. “The NET outcome”: are neutrophil extracellular traps of any relevance to the pathophysiology of autoimmune disorders in childhood?

    Directory of Open Access Journals (Sweden)

    Stavros Giaglis

    2016-09-01

    Full Text Available Neutrophil extracellular trap (NET formation represents a form of cell death distinct from apoptosis or necrosis, by which invading pathogens are simultaneously entangled and potentially eliminated. Increased NET formation is observed in systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, antineutrophil cytoplasmic antibody (ANCA-associated and small vessel vasculitis (SVV, antiphospholipid antibody syndrome (APS and psoriasis. NETs contribute to the pathogenesis of autoimmunity by exposing cryptic autoepitopes, which may facilitate the generation of autoantibodies, induce the production of interferons and activate the complement cascade. In SLE, augmented disease activity and renal disease are associated with increased NET formation, so that NETs could serve as a marker for the monitoring of disease activity. NETs can additionally cause endothelial cell damage and death and stimulate inflammation in atheromatous plaques, adding to the accelerated atherosclerosis witnessed in autoimmune disease. Since NETs induce production of interferons, assessing the extent of NET formation might facilitate the prediction of IFN-alpha levels and identification of SLE patients with presumably better responses to anti-IFN-alpha therapies or other novel therapeutic concepts, such as N-acetyl-cysteine and inhibitors of DNase 1, and peptidylarginine deiminase 4 (PAD4, which also target NETs. In summary, the study of NETs provides a novel approach to the understanding of autoimmune disease pathogenesis and opens new vistas in the development of sensitive disease markers and therapies.

  12. “The NET Outcome”: Are Neutrophil Extracellular Traps of Any Relevance to the Pathophysiology of Autoimmune Disorders in Childhood?

    Science.gov (United States)

    Giaglis, Stavros; Hahn, Sinuhe; Hasler, Paul

    2016-01-01

    Neutrophil extracellular trap (NET) formation represents a form of cell death distinct from apoptosis or necrosis, by which invading pathogens are simultaneously entangled and potentially eliminated. Increased NET formation is observed in systemic lupus erythematosus (SLE), rheumatoid arthritis, antineutrophil cytoplasmic antibody-associated small vessel vasculitis, antiphospholipid antibody syndrome (APS), and psoriasis. NETs contribute to the pathogenesis of autoimmunity by exposing cryptic autoepitopes, which may facilitate the generation of autoantibodies, induce the production of interferons, and activate the complement cascade. In SLE, augmented disease activity and renal disease are associated with increased NET formation, so that NETs could serve as a marker for the monitoring of disease activity. NETs can additionally cause endothelial cell damage and death and stimulate inflammation in atheromatous plaques, adding to the accelerated atherosclerosis witnessed in autoimmune disease. Since NETs induce production of interferons, assessing the extent of NET formation might facilitate the prediction of IFN-alpha levels and identification of SLE patients with presumably better responses to anti-IFN-alpha therapies or other novel therapeutic concepts, such as N-acetyl-cysteine and inhibitors of DNase 1 and peptidylarginine deiminase 4 (PAD4), which also target NETs. In summary, the study of NETs provides a novel approach to the understanding of autoimmune disease pathogenesis in childhood and opens new vistas in the development of sensitive disease markers and targeted therapies. PMID:27679792

  13. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes.

    Science.gov (United States)

    Kraaij, Tineke; Tengström, Fredrik C; Kamerling, Sylvia W A; Pusey, Charles D; Scherer, H Ulrich; Toes, Rene E M; Rabelink, Ton J; van Kooten, Cees; Teng, Y K Onno

    2016-06-01

    A newly-described first-line immune defence mechanism of neutrophils is the release of neutrophil extracellular traps (NETs). Immune complexes (ICxs) induce low level NET release. As such, the in vitro quantification of NETs is challenging with current methodologies. In order to investigate the role of NET release in ICx-mediated autoimmune diseases, we developed a highly sensitive and automated method for quantification of NETs. After labelling human neutrophils with PKH26 and extracellular DNA with Sytox green, cells are fixed and automatically imaged with 3-dimensional confocal laser scanning microscopy (3D-CLSM). NET release is then quantified with digital image analysis whereby the NET amount (Sytox green area) is corrected for the number of imaged neutrophils (PKH26 area). A high sensitivity of the assay is achieved by a) significantly augmenting the area of the well imaged (11%) as compared to conventional assays (0.5%) and b) using a 3D imaging technique for optimal capture of NETs, which are topologically superimposed on neutrophils. In this assay, we confirmed low levels of NET release upon human ICx stimulation which were positive for citrullinated histones and neutrophil elastase. In contrast to PMA-induced NET release, ICx-induced NET release was unchanged when co-incubated with diphenyleneiodonium (DPI). We were able to quantify NET release upon stimulation with serum from RA and SLE patients, which was not observed with normal human serum. To our knowledge, this is the first semi-automated assay capable of sensitive detection and quantification of NET release at a low threshold by using 3D CLSM. The assay is applicable in a high-throughput manner and allows the in vitro analysis of NET release in ICx-mediated autoimmune diseases.

  14. T Cell-Independent Mechanisms Associated with Neutrophil Extracellular Trap Formation and Selective Autophagy in IL-17A-Mediated Epidermal Hyperplasia.

    Science.gov (United States)

    Suzuki, Erika; Maverakis, Emanual; Sarin, Ritu; Bouchareychas, Laura; Kuchroo, Vijay K; Nestle, Frank O; Adamopoulos, Iannis E

    2016-12-01

    IL-17A has been strongly associated with epidermal hyperplasia in many cutaneous disorders. However, because IL-17A is mainly produced by αβ and γδT cells in response to IL-23, the role of T cells and IL-23 has overshadowed any IL-17A-independent actions. In this article, we report that IL-17A gene transfer induces epidermal hyperplasia in Il23r(-/-)Rag1(-/-)- and Tcrδ-deficient mice, which can be prevented by neutrophil depletion. Moreover, adoptive transfer of CD11b(+)Gr-1(hi) cells, after IL-17A gene transfer, was sufficient to phenocopy the disease. We further show that the IL-17A-induced pathology was prevented in transgenic mice with impaired neutrophil extracellular trap formation and/or neutrophils with conditional deletion of the master regulator of selective autophagy, Wdfy3. Our data demonstrate a novel T cell-independent mechanism that is associated with neutrophil extracellular trap formation and selective autophagy in IL-17A-mediated epidermal hyperplasia. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells.

    Science.gov (United States)

    Marin-Esteban, Viviana; Turbica, Isabelle; Dufour, Guillaume; Semiramoth, Nicolas; Gleizes, Aude; Gorges, Roseline; Beau, Isabelle; Servin, Alain L; Lievin-Le Moal, Vanessa; Sandré, Catherine; Chollet-Martin, Sylvie

    2012-05-01

    We recently documented the neutrophil response to enterovirulent diffusely adherent Escherichia coli expressing Afa/Dr fimbriae (Afa/Dr DAEC), using the human myeloid cell line PLB-985 differentiated into fully mature neutrophils. Upon activation, particularly during infections, neutrophils release neutrophil extracellular traps (NETs), composed of a nuclear DNA backbone associated with antimicrobial peptides, histones, and proteases, which entrap and kill pathogens. Here, using fluorescence microscopy and field emission scanning electron microscopy, we observed NET production by PLB-985 cells infected with the Afa/Dr wild-type (WT) E. coli strain C1845. We found that these NETs were able to capture, immobilize, and kill WT C1845 bacteria. We also developed a coculture model of human enterocyte-like Caco-2/TC7 cells and PLB-985 cells previously treated with WT C1845 and found, for the first time, that the F-actin cytoskeleton of enterocyte-like cells is damaged in the presence of bacterium-induced NETs and that this deleterious effect is prevented by inhibition of protease release. These findings provide new insights into the neutrophil response to bacterial infection via the production of bactericidal NETs and suggest that NETs may damage the intestinal epithelium, particularly in situations such as inflammatory bowel diseases.

  16. In vivo induction of cutaneous inflammation results in the accumulation of extracellular trap-forming neutrophils expressing RORγt and IL-17.

    Science.gov (United States)

    Keijsers, Romy R M C; Hendriks, Anke G M; van Erp, Piet E J; van Cranenbroek, Bram; van de Kerkhof, Peter C M; Koenen, Hans J P M; Joosten, Irma

    2014-05-01

    Clinical trials successfully using antibodies targeting IL-17 in psoriasis support the importance of IL-17 in the pathophysiology of this disease. However, there is a debate concerning the source and dynamics of IL-17 production in inflamed skin. Here we characterized IL-17-producing immune cells over time, using two established in vivo models of human skin inflammation that share many histological features with psoriasis, i.e., leukotriene B4 application and tape-stripping. Both treatments revealed a clear influx of neutrophils and T cells. Staining for IL-17 revealed that the majority of IL-17 was expressed by neutrophils and mast cells, in both models. Neutrophils, but not mast cells, coexpressed the IL-17-associated transcription factor RORγt and were able to form extracellular traps. While the presence of mast cells remained steady during the skin inflammatory process, the presence of neutrophils was clearly dynamic in time. Therefore, it is attractive to hypothesize that IL-17+/RORγt+ neutrophils contribute to human skin inflammation in vivo and possibly to the pathogenesis of skin diseases such as psoriasis. Surprisingly, T cells represented a minority of the IL-17-expressing cell population. These observations challenge the classical opinion that IL-17 is predominantly associated with T cells in skin inflammation.

  17. Neutrophil biology

    OpenAIRE

    Kobayashi, Yoshiro

    2015-01-01

    Neutrophil extracellular traps (NETs) are involved in bacterial killing as well as autoimmunity, because NETs contain proteases, bactericidal peptides, DNA and ribonucleoprotein. NETs are formed via a novel type of cell death called NETosis. NETosis is distinct from apoptosis, but it resembles necrosis in that both membranes are not intact so that they allow intracellular proteins to leak outside of the cells. Removal of NETs and neutrophils undergoing NETosis by phagocytes and its subsequent...

  18. Anti-Citrullinated Protein Antibodies Are Associated With Neutrophil Extracellular Traps in the Sputum in Relatives of Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Demoruelle, M Kristen; Harrall, Kylie K; Ho, Linh; Purmalek, Monica M; Seto, Nickie L; Rothfuss, Heather M; Weisman, Michael H; Solomon, Joshua J; Fischer, Aryeh; Okamoto, Yuko; Kelmenson, Lindsay B; Parish, Mark C; Feser, Marie; Fleischer, Chelsie; Anderson, Courtney; Mahler, Michael; Norris, Jill M; Kaplan, Mariana J; Cherrington, Brian D; Holers, V Michael; Deane, Kevin D

    2017-06-01

    Studies suggest that rheumatoid arthritis (RA)-related autoimmunity is initiated at a mucosal site. However, the factors associated with the mucosal generation of this autoimmunity are unknown, especially in individuals who are at risk of future RA. Therefore, we tested anti-cyclic citrullinated peptide (anti-CCP) antibodies in the sputum of RA-free first-degree relatives (FDRs) of RA patients and patients with classifiable RA. We evaluated induced sputum and serum samples from 67 FDRs and 20 RA patients for IgA anti-CCP and IgG anti-CCP, with cutoff levels for positivity determined in a control population. Sputum was also evaluated for cell counts, neutrophil extracellular traps (NETs) using sandwich enzyme-linked immunosorbent assays for protein/nucleic acid complexes, and total citrulline. Sputum was positive for IgA and/or IgG anti-CCP in 14 of 20 RA patients (70%) and 17 of 67 FDRs (25%), including a portion of FDRs who were serum anti-CCP negative. In the FDRs, elevations of sputum IgA and IgG anti-CCP were associated with elevated sputum cell counts and NET levels. IgA anti-CCP was associated with ever smoking and with elevated sputum citrulline levels. Anti-CCP is elevated in the sputum of FDRs, including seronegative FDRs, suggesting that the lung may be a site of anti-CCP generation in this population. The association of anti-CCP with elevated cell counts and NET levels in FDRs supports a hypothesis that local airway inflammation and NET formation may drive anti-CCP production in the lung and may promote the early stages of RA development. Longitudinal studies are needed to follow the evolution of these processes relative to the development of systemic autoimmunity and articular RA. © 2017, American College of Rheumatology.

  19. Extracellular ATP induces spikes in cytosolic free Ca(2+) but not in NADPH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca(2+) concentration, we simultaneously measured Ca(2+) oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  20. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...

  1. 中性粒细胞胞外诱捕网的研究进展%Current research development of neutrophil extracellular traps

    Institute of Scientific and Technical Information of China (English)

    张晓兰; 宋英莉; 朱辉

    2012-01-01

    中性粒细胞是体内固有免疫系统的主要成员之一,通过杀伤外来病原体来保护宿主.除了能够吞噬消灭病原体以外,中性粒细胞也能通过一种由颗粒蛋白和DNA构成的称作中性粒细胞胞外诱捕网(NETs)的结构来捕获病原体.总结近年来关于NETs的结构、产生及其生物学特性的研究进展,并设想NETs可能成为炎症和相关疾病治疗中新的研究靶点.%Neutrophils are one of the main players in the innate immune system and actively contribute to host defense by killing pathogens.Added to their ability to eliminate microorganisms by phagocytosis,neutrophils can also kill microbes by capturing them in extracellular structures consisting of granule proteins and DNA called neutrophil extracellular traps (NETs).This review summarizes the recent advancements regarding the structure,production and biological relevance of NETs.Moreover,NETs might represent a therapeutic target in inflammation and host disorders.

  2. Extracellular ATP induces spikes in cytosolic free Ca2+ but not in NADH oxidase activity in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Olsen, Lars Folke; Hallett, Maurice B.

    2011-01-01

    In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast...... that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes...

  3. Research Progress of Neutrophil Extracellular Traps%中性粒细胞外网状陷阱的研究现状

    Institute of Scientific and Technical Information of China (English)

    赫嘉惠; 仲娇月; 李彩莹(综述); 赵德超(审校)

    2016-01-01

    Neutrophils are immune cells which are abundant in the human body playing a vital role in host immune defense,serving as the first line of the host defense against infection.The traditional cognition of neutrophils is more focused on its role in innate immunity.Research found that neutrophils are closely associ-ated with inflammatory immunity defense.And in recent years neutrophils were found to have another way to kill pathogens in addition to its traditional mechanisms-neutrophil extracellular traps(NETs) different from chemotaxis,phagocytosis and direct sterilization methods.Several studies have confirmed that NETs play a dual-directional regulation role on the body′s immune system.%中性粒细胞是人体内含量丰富的免疫细胞,在机体的免疫防御中占有举足轻重的地位,在机体感染的初期防御中扮演着第一道防线的重要角色。传统对中性粒细胞的认知,多集中于其在固有免疫中的作用。但研究发现,中性粒细胞与炎症免疫防御密切相关。并于近年发现了除其通过趋化、吞噬及直接杀菌方式来杀灭病原菌的传统机制外的另一种死亡方式———中性粒细胞外网状陷阱( NETs)。并证实NETs对机体免疫机制的影响起双向调节作用。

  4. A Metabolic Shift toward Pentose Phosphate Pathway Is Necessary for Amyloid Fibril- and Phorbol 12-Myristate 13-Acetate-induced Neutrophil Extracellular Trap (NET) Formation.

    Science.gov (United States)

    Azevedo, Estefania P; Rochael, Natalia C; Guimarães-Costa, Anderson B; de Souza-Vieira, Thiago S; Ganilho, Juliana; Saraiva, Elvira M; Palhano, Fernando L; Foguel, Debora

    2015-09-01

    Neutrophils are the main defense cells of the innate immune system. Upon stimulation, neutrophils release their chromosomal DNA to trap and kill microorganisms and inhibit their dissemination. These chromatin traps are termed neutrophil extracellular traps (NETs) and are decorated with granular and cytoplasm proteins. NET release can be induced by several microorganism membrane components, phorbol 12-myristate 13-acetate as well as by amyloid fibrils, insoluble proteinaceous molecules associated with more than 40 different pathologies among other stimuli. The intracellular signaling involved in NET formation is complex and remains unclear for most tested stimuli. Herein we demonstrate that a metabolic shift toward the pentose phosphate pathway (PPP) is necessary for NET release because glucose-6-phosphate dehydrogenase (G6PD), an important enzyme from PPP, fuels NADPH oxidase with NADPH to produce superoxide and thus induce NETs. In addition, we observed that mitochondrial reactive oxygen species, which are NADPH-independent, are not effective in producing NETs. These data shed new light on how the PPP and glucose metabolism contributes to NET formation.

  5. Myeloperoxidase associated with neutrophil extracellular traps is active and mediates bacterial killing in the presence of hydrogen peroxide.

    Science.gov (United States)

    Parker, Heather; Albrett, Amelia M; Kettle, Anthony J; Winterbourn, Christine C

    2012-03-01

    A variety of inflammatory stimuli induces NETs. These structures consist of a network of chromatin strands associated with predominately granule proteins, including MPO. NETs exhibit antimicrobial activity, which is proposed to augment the more-established mechanism of phagosomal killing. They may also be detrimental to the host in situations such as chronic inflammation or severe sepsis. The objective of this study was to establish whether MPO associated with NETs is active and able to kill bacteria. Neutrophils were stimulated with PMA to release NETs. Peroxidase activity measurements were performed and showed that enzymatically active MPO was released from the neutrophils, 2-4 h after stimulation, concomitant with NET formation. Approximately 30% of the total cellular MPO was released, with the majority bound to the NETs. The bound enzyme retained its activity. Staphylococcus aureus were not killed when added to preformed NETs under our assay conditions. However, addition of H(2)O(2) to the bacteria in the presence of NETs resulted in MPO-dependent killing, which was observed with NETs in situ and with NETs when they were removed from the neutrophils by limited DNase digestion. Our results show that the enzymatic activity of MPO on NETs could contribute to antimicrobial activity or tissue injury when NETs are released from neutrophils at sites of infection or inflammation.

  6. Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro

    DEFF Research Database (Denmark)

    Jaeger, K E; Kharazmi, A; Høiby, N

    1991-01-01

    on neutrophils. The inhibitory effect was concentration dependent and was abolished by heat treatment of the enzyme at 100 degrees C. Since monocytes are one of the important cells of the host defence system the inhibition of the function of these cells may contribute to the pathogenesis of infections caused...... concentrations of this lipase preparation were preincubated with human peripheral blood neutrophils and monocytes. The chemotaxis and chemiluminescence of these cells were then determined. It was shown that lipase inhibited the monocyte chemotaxis and chemiluminescence, whereas it had no or very little effect...... chromatography revealed spherical particles with diameters ranging from 5 to 20 nm. Biochemical characterization and SDS polyacrylamide gel electrophoresis suggested that these particles consisted of protein and carbohydrate including lipopolysaccharide with the major enzyme activity being lipase. Various...

  7. Neutrophils, from marrow to microbes

    DEFF Research Database (Denmark)

    Borregaard, Niels

    2010-01-01

    . Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill...... microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms....

  8. The effects of hypochlorous acid and neutrophil proteases on the structure and function of extracellular superoxide dismutase

    DEFF Research Database (Denmark)

    Morales, Karla; Olesen, Mads Nikolaj; Poulsen, Ebbe Toftgaard;

    2015-01-01

    environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N......-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have...

  9. Collaborative interactions between neutrophil elastase and metalloproteinases in extracellular matrix degradation in three-dimensional collagen gels

    Directory of Open Access Journals (Sweden)

    Ertl Ronald F

    2001-09-01

    Full Text Available Abstract Background Extended culture of monocytes and fibroblasts in three-dimensional collagen gels leads to degradation of the gels (see linked study in this issue, "Fibroblasts and monocytes contract and degrade three-dimensional collagen gels in extended co-culture". The current study, therefore, was designed to evaluate production of matrix-degrading metalloproteinases by these cells in co-culture and to determine if neutrophil elastase could collaborate in the activation of these enzymes. Since co-cultures produce prostaglandin E2 (PGE2, the role of PGE2 in this process was also evaluated. Methods Blood monocytes from healthy donors and human fetal lung fibroblasts were cast into type I collagen gels and maintained in floating cultures for three weeks. Matrix metalloproteinases (MMPs were assessed by gelatin zymography (MMPs 2 and 9 and immunoblotting (MMPs 1 and 3. The role of PGE2 was explored by direct quantification, and by the addition of exogenous indomethacin and/or PGE2. Results Gelatin zymography and immunoblots revealed that MMPs 1, 2, 3 and 9 were induced by co-cultures of fibroblasts and monocytes. Neutrophil elastase added to the medium resulted in marked conversion of latent MMPs to lower molecular weight forms consistent with active MMPs, and was associated with augmentation of both contraction and degradation (P 2 appeared to decrease both MMP production and activation. Conclusion The current study demonstrates that interactions between monocytes and fibroblasts can mediate tissue remodeling.

  10. Activation of extracellular signal-regulated kinases, NF-kappa B, and cyclic adenosine 5'-monophosphate response element-binding protein in lung neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia.

    Science.gov (United States)

    Abraham, E; Arcaroli, J; Shenkar, R

    2001-01-01

    Acute lung injury is frequently associated with sepsis or blood loss and is characterized by a proinflammatory response and infiltration of activated neutrophils into the lungs. Hemorrhage or endotoxemia result in activation of cAMP response element-binding protein (CREB) and NF-kappa B in lung neutrophils as well as increased expression of proinflammatory cytokines, such as TNF-alpha and macrophage-inflammatory peptide-2, by these cells. Activation of the extracellular regulated kinase (ERK) pathway occurs in stress responses and is involved in CREB activation. In the present experiments, hemorrhage or endotoxemia produced increased activation of mitogen-activated protein kinase kinase (MEK)1/2 and ERK2 (p42), but not of ERK1 (p44), in lung neutrophils. ERK1, ERK2, and MEK1/2 were not activated in peripheral blood neutrophils after hemorrhage or endotoxemia. Inhibition of xanthine oxidase led to further increase in the activation of MEK1/2 and ERK2 in lung neutrophils after hemorrhage, but not after endotoxemia. Alpha-adrenergic blockade before hemorrhage resulted in increased activation in lung neutrophils of MEK1/2, ERK1, ERK2, and CREB, but decreased activation of NF-kappa B. In contrast, alpha-adrenergic blockade before endotoxemia was associated with decreased activation of MEK1/2, ERK2, and CREB, but increased activation of NF-kappa B. Beta-adrenergic blockade before hemorrhage did not alter MEK1/2 or ERK1 activation in lung neutrophils, but decreased activation of ERK2 and CREB, while increasing activation of NF-kappa B. Beta-adrenergic inhibition before endotoxemia did not affect activation of MEK1/2, ERK1, ERK2, CREB, or NF-kappa B. These data indicate that the pathways leading to lung neutrophil activation after hemorrhage are different from those induced by endotoxemia.

  11. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Bjoern F Kraemer

    2011-11-01

    Full Text Available Human β-defensins (hBD are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus, forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of β-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET formation by target polymorphonuclear leukocytes (PMNs, which is a novel antimicrobial function of β-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria.

  12. Peroxiredoxin-glutaredoxin and catalase promote resistance of nontypeable Haemophilus influenzae 86-028NP to oxidants and survival within neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Pang, Bing; Armbruster, Chelsie E; Murrah, Kyle A; Perez, Antonia C; Swords, W Edward

    2015-01-01

    Nontypeable Haemophilus influenzae (NTHI) is a common commensal and opportunistic pathogen of the human airways. For example, NTHI is a leading cause of otitis media and is the most common cause of airway infections associated with chronic obstructive pulmonary disease (COPD). These infections are often chronic/recurrent in nature and involve bacterial persistence within biofilm communities that are highly resistant to host clearance. Our previous work has shown that NTHI within biofilms has increased expression of factors associated with oxidative stress responses. The goal of this study was to define the roles of catalase (encoded by hktE) and a bifunctional peroxiredoxin-glutaredoxin (encoded by pdgX) in resistance of NTHI to oxidants and persistence in vivo. Isogenic NTHI strain 86-028NP mutants lacking hktE and pdgX had increased susceptibility to peroxide. Moreover, these strains had persistence defects in the chinchilla infection model for otitis media, as well as in a murine model for COPD. Additional work showed that pdgX and hktE were important determinants of NTHI survival within neutrophil extracellular traps (NETs), which we have shown to be an integral part of NTHI biofilms in vivo. Based on these data, we conclude that catalase and peroxiredoxin-glutaredoxin are determinants of bacterial persistence during chronic/recurrent NTHI infections that promote bacterial survival within NETs.

  13. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media--a potential treatment target.

    Directory of Open Access Journals (Sweden)

    Ruth B Thornton

    Full Text Available BACKGROUND: Bacteria persist within biofilms on the middle ear mucosa of children with recurrent and chronic otitis media however the mechanisms by which these develop remain to be elucidated. Biopsies can be difficult to obtain from children and their small size limits analysis. METHODS: In this study we aimed to investigate biofilm presence in middle ear effusion (MEE from children with recurrent acute otitis media (rAOM and to determine if these may represent infectious reservoirs similarly to those on the mucosa. We examined this through culture, viability staining and fluorescent in situ hybridisation (FISH to determine bacterial species present. Most MEEs had live bacteria present using viability staining (32/36 and all effusions had bacteria present using the universal FISH probe (26/26. Of these, 70% contained 2 or more otopathogenic species. Extensive DNA stranding was also present. This DNA was largely host derived, representing neutrophil extracellular traps (NETs within which live bacteria in biofilm formations were present. When treated with the recombinant human deoxyribonuclease 1, Dornase alfa, these strands were observed to fragment. CONCLUSIONS: Bacterial biofilms, composed of multiple live otopathogenic species can be demonstrated in the MEEs of children with rAOM and that these contain extensive DNA stranding from NETs. The NETs contribute to the viscosity of the effusion, potentially contributing to its failure to clear as well as biofilm development. Our data indicates that Dornase alfa can fragment these strands and may play a role in future chronic OM treatment.

  14. 中性粒细胞胞外诱捕网蛋白质的免疫原性%Immunogenicity of proteins derived from neutrophil extracellular traps

    Institute of Scientific and Technical Information of China (English)

    周剑涛; 梅雨珍; 丁海峰

    2014-01-01

    Neutrophil extracellular traps (NETs) are composed of DNA and antimicrobial proteins. These components have diverse functions and subcellular distributions in live cells, which are redistributed and extruded from neutrophils by a death program termed NETosis. Both exuberant NETosis and impaired clearance of NETs have been implicated in the organ damage of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Felty's syndrome (FS), small vessel vasculitis (SVV), and so on. NETs may represent an important source of neoantigens, where posttranslational modifications and proteolytic cleavage of proteins externalized in the NETs, or abnormal conformation of drug-induced NETs, could promote the generation of autoantibodies in patients with autoimmune diseases. In short, NETs may provide a unique, stimulatory microenvironment that can break normal immune tolerance, and thereby predispose to autoimmunity.%中性粒细胞胞外诱捕网(NETs)由DNA和抗菌蛋白质组成。在活细胞内,这些组分分布于亚细胞并发挥不同的功能。但是,在NETosis期,这些组分重新分布并从中性粒细胞内挤压出来。NETosis过分强盛和NETs清除受损,与自身免疫性疾病的器官损害有关,如系统性红斑狼疮(SLE)、类风湿性关节炎(RA)、Felty's综合征(FS)和小血管炎(SVV)等。NETs可能是体内新抗原的重要来源,蛋白质翻译后的修饰与水解,或药物诱导NETs构象异常能促进自身免疫性疾病患者产生自身抗体。总之, NETs可能提供了一个独特的具有破坏正常免疫耐受,引起自身免疫性的微环境。

  15. In vivo and in vitro studies on the roles of neutrophil extracellular traps during secondary pneumococcal pneumonia after primary pulmonary influenza infection

    Directory of Open Access Journals (Sweden)

    Anandi eNarayana Moorthy

    2013-03-01

    Full Text Available Seasonal influenza virus infections may lead to debilitating disease, and account for significant fatalities annually worldwide. Most of these deaths are attributed to the complications of secondary bacterial pneumonia. Evidence is accumulating to support the notion that neutrophil extracellular traps (NETs harbor several antibacterial proteins, and trap and kill bacteria. We have previously demonstrated the induction of NETs that contribute to lung tissue injury in severe influenza pneumonia. However, the role of these NETs in secondary bacterial pneumonia is unclear. In this study, we explored whether NETs induced during pulmonary influenza infection have functional significance against infections with Streptococcus pneumoniae and other bacterial and fungal species. Our findings revealed that NETs do not participate in killing of Streptococcus pneumoniae in vivo and in vitro. Dual viral and bacterial infection elevated the bacterial load compared to animals infected with bacteria alone. Concurrently, enhanced lung pathogenesis was observed in dual-infected mice compared to those challenged with influenza virus or bacteria alone. The intensified NETs in dual-infected mice often appeared as clusters that were frequently filled with partially degraded DNA, as evidenced by punctate histone protein staining. The severe pulmonary pathology and excessive NETs generation in dual infection correlated with exaggerated inflammation and damage to the alveolar-capillary barrier. NETs stimulation in vitro did not significantly alter the gene expression of several antimicrobial proteins, and these NETs did not exhibit any bactericidal activity. Fungicidal activity against Candida albicans was observed at similar levels both in presence or absence of NETs. These results substantiate that the NETs released by primary influenza infection do not protect against secondary bacterial infection, but may compromise lung function.

  16. Neutrophil biology: an update

    OpenAIRE

    Kobayashi, Yoshiro

    2015-01-01

    Neutrophil extracellular traps (NETs) are involved in bacterial killing as well as autoimmunity, because NETs contain proteases, bactericidal peptides, DNA and ribonucleoprotein. NETs are formed via a novel type of cell death called NETosis. NETosis is distinct from apoptosis, but it resembles necrosis in that both membranes are not intact so that they allow intracellular proteins to leak outside of the cells. Removal of NETs and neutrophils undergoing NETosis by phagocytes and its subsequent...

  17. Neutrophils, from marrow to microbes

    DEFF Research Database (Denmark)

    Borregaard, Niels

    2010-01-01

    . Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill......Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage...... microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms....

  18. Myeloperoxidase Stimulates Neutrophil Degranulation.

    Science.gov (United States)

    Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M

    2016-08-01

    Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation.

  19. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection

    Science.gov (United States)

    Clark, Heather L.; Jhingran, Anupam; Sun, Yan; Vareechon, Chairut; Carrion, Steven de Jesus; Skaar, Eric P.; Chazin, Walter J.; Calera, Jose Antonio; Hohl, Tobias M.; Pearlman, Eric

    2015-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9, is an abundant neutrophil protein which possesses anti-microbial activity primarily due to its ability to chelate zinc and manganese. In the current study, we showed that neutrophils from calprotectin-deficient S100A9 −/− mice have an impaired ability to inhibit Aspergillus fumigatus hyphal growth in vitro, and in infected corneas in a murine model of fungal keratitis; however, the ability to inhibit hyphal growth was restored in S100A9−/− mice by injecting recombinant calprotectin. Further, using recombinant calprotectin with mutations in either the Zn and Mn binding sites or the Mn binding site alone, we show that both zinc and manganese binding are necessary for calprotectin’s anti-hyphal activity. In contrast to hyphae, we found no role for neutrophil calprotectin in uptake or killing of intracellular A. fumigatus conidia either in vitro, or in a murine model of pulmonary aspergillosis. We also found that an A. fumigatus ΔzafA mutant, which demonstrates deficient zinc transport, exhibits impaired growth in infected corneas and following incubation with neutrophils or calprotectin in vitro as compared to wild-type. Collectively, these studies demonstrate a novel stage - specific susceptibility of A. fumigatus to zinc and manganese chelation by neutrophil-derived calprotectin. PMID:26582948

  20. Zinc and Manganese Chelation by Neutrophil S100A8/A9 (Calprotectin) Limits Extracellular Aspergillus fumigatus Hyphal Growth and Corneal Infection.

    Science.gov (United States)

    Clark, Heather L; Jhingran, Anupam; Sun, Yan; Vareechon, Chairut; de Jesus Carrion, Steven; Skaar, Eric P; Chazin, Walter J; Calera, José Antonio; Hohl, Tobias M; Pearlman, Eric

    2016-01-01

    Calprotectin, a heterodimer of S100A8 and S100A9, is an abundant neutrophil protein that possesses antimicrobial activity primarily because of its ability to chelate zinc and manganese. In the current study, we showed that neutrophils from calprotectin-deficient S100A9(-/-) mice have an impaired ability to inhibit Aspergillus fumigatus hyphal growth in vitro and in infected corneas in a murine model of fungal keratitis; however, the ability to inhibit hyphal growth was restored in S100A9(-/-) mice by injecting recombinant calprotectin. Furthermore, using recombinant calprotectin with mutations in either the Zn and Mn binding sites or the Mn binding site alone, we show that both zinc and manganese binding are necessary for calprotectin's antihyphal activity. In contrast to hyphae, we found no role for neutrophil calprotectin in uptake or killing of intracellular A. fumigatus conidia either in vitro or in a murine model of pulmonary aspergillosis. We also found that an A. fumigatus ∆zafA mutant, which demonstrates deficient zinc transport, exhibits impaired growth in infected corneas and following incubation with neutrophils or calprotectin in vitro as compared with wild-type. Collectively, these studies demonstrate a novel stage-specific susceptibility of A. fumigatus to zinc and manganese chelation by neutrophil-derived calprotectin.

  1. 中性粒细胞杀灭病原体的新途径:胞外诱捕网%A new strategy for eliminating invading microbes by neutrophil: extracellular traps

    Institute of Scientific and Technical Information of China (English)

    吴腾飞; 陈福广; 黄清华; 陈伟; 邓旭明; 张巧灵; 刘波

    2013-01-01

    中性粒细胞是天然免疫系统中到达感染部位并清除微生物的第一道免疫防线的主要成员之一.已证实中性粒细胞存在3种杀灭微生物的途径:吞噬清除病原体、分泌抗微生物蛋白颗粒和新近发现的中性粒细胞诱捕网(neutrophil extracellular traps,NETs).NETs由解聚的染色体网状结构和镶嵌其中的抗微生物颗粒蛋白组成,绑定并杀灭多种微生物,包括细菌、真菌、寄生虫和病毒.中性粒细胞通过释放DNA网状结构,形成抗微生物感染的物理屏障和支架结构,限制病原的活动范围,增强抗微生物蛋白的协同作用,并减少对宿主的组织损伤.%Neutrphils as main members in the innate immune response are recruited to infection sites and form the first line of defense. Neutrophils have bee proved to employ three major antimicrobial strategies: engulfment and subsequent elimination of microbes, releasing antimicrobial molecules, and the recently described release of neutrophil extracellular traps (NETs). NETs are composed of decondensed chromatin and antimicrobial proteins, which bind and kill a variety of microbes including bacteria, parasites and fungi. The web-like NETS structure may contribute to microbial containment by forming a physical barrier and a scaffold, to enhance antimicrobial synergy while minimizing damage to host tissues.

  2. Fungal and bacterial killing by neutrophils.

    Science.gov (United States)

    Ermert, David; Zychlinsky, Arturo; Urban, Constantin

    2009-01-01

    Neutrophils are professional phagocytes of the innate immune system that are essential to control bacterial and fungal infections. These cells engulf and kill invading microbes. Additionally, activated neutrophils are able to release neutrophil extracellular traps (NETs). These fibers consist of chromatin decorated with antimicrobial proteins to trap and kill microbes. Appropriate quantitative methods are required to understand the nature of interactions of neutrophils with pathogens. Here we present assays to measure killing mediated by phagocytosis, by NETs, by a combination of both, and by granular extract. As examples, we use Candida albicans for fungal and Shigella flexneri for bacterial pathogens.

  3. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  4. Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment.

    Science.gov (United States)

    García-Mendoza, María G; Inman, David R; Ponik, Suzanne M; Jeffery, Justin J; Sheerar, Dagna S; Van Doorn, Rachel R; Keely, Patricia J

    2016-05-11

    High mammographic density has been correlated with a 4-fold to 6-fold increased risk of developing breast cancer, and is associated with increased stromal deposition of extracellular matrix proteins, including collagen I. The molecular and cellular mechanisms responsible for high breast tissue density are not completely understood. We previously described accelerated tumor formation and metastases in a transgenic mouse model of collagen-dense mammary tumors (type I collagen-α1 (Col1α1)(tm1Jae) and mouse mammary tumor virus - polyoma virus middle T antigen (MMTV-PyVT)) compared to wild-type mice. Using ELISA cytokine arrays and multi-color flow cytometry analysis, we studied cytokine signals and the non-malignant, immune cells in the collagen-dense tumor microenvironment that may promote accelerated tumor progression and metastasis. Collagen-dense tumors did not show any alteration in immune cell populations at late stages. The cytokine signals in the mammary tumor microenvironment were clearly different between wild-type and collagen-dense tumors. Cytokines associated with neutrophil signaling, such as granulocyte monocyte-colony stimulated factor (GM-CSF), were increased in collagen-dense tumors. Depleting neutrophils with anti-Ly6G (1A8) significantly reduced the number of tumors, and blocked metastasis in over 80 % of mice with collagen-dense tumors, but did not impact tumor growth or metastasis in wild-type mice. Our study suggests that tumor progression in a collagen-dense microenvironment is mechanistically different, with pro-tumor neutrophils, compared to a non-dense microenvironment.

  5. IL-1α-induced microvascular endothelial cells promote neutrophil killing by increasing MMP-9 concentration and lysozyme activity.

    Science.gov (United States)

    Liu, Xiaoye; Dong, Hong; Wang, Mingming; Gao, Ying; Zhang, Tao; Hu, Ge; Duan, Huiqing; Mu, Xiang

    2016-02-01

    The recruitment of neutrophils by endothelial cells during infection has been extensively studied, but little is known about the regulation of neutrophils activity by endothelial cells. To examine the role of microvascular endothelial cells in neutrophil killing, we established a transmigration model using rat intestinal microvascular endothelial cells (RIMVECs) and measured the extracellular and intracellular killing of Escherichia coli, Lactobacillus acidophilus, and Staphylococcus aureus by transendothelial neutrophils. We observed that blood neutrophils engulfed bacteria but did not kill them, and lipopolysaccharide- or hemolysin-injured RIMVECs inhibited the extracellular and intracellular bactericidal activity of transendothelial neutrophils. In comparison, interleukin-1α-induced RIMVECs promoted the extracellular and intracellular killing activity of transendothelial neutrophils and significantly increased MMP-9 concentration and lysozyme activity in transendothelial neutrophils (p neutrophils and bacterial toxin damage of endothelial cells led to reduction in bactericidal activity of transendothelial neutrophils. These findings offered new insight into the role of endothelial cells in the bactericidal activity of neutrophils.

  6. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    BACKGROUND: The etiology of the inflammatory bowel diseases, including ulcerative colitis (UC), remains incompletely explained. We hypothesized that an analysis of the UC colon proteome could reveal novel insights into the disease etiology. METHODS: Mucosal colon biopsies were taken by endoscopy...

  7. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  8. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  9. Proteases, neutrophils, and periodontitis: the NET effect.

    Science.gov (United States)

    Nauseef, William M

    2014-10-01

    Neutrophils exert potent antimicrobial activities in their role as first-line cellular defenders against infection. The synergistic and collective actions of oxidants and granule proteins, including serine proteases, support the microbial killing in phagosomes, where most neutrophil-mediated antimicrobial action occurs. In addition to phagocytosis, specific stimuli prompt neutrophils to extrude a matrix of DNA, histones, and granule proteins to produce neutrophil extracellular traps (NETs), which can trap microbes. Mice lacking the serine proteases necessary for NET production are more susceptible to infection, an observation suggesting that functional NETs are required for host protection. In this issue of the JCI, Sørensen and colleagues characterize neutrophils from a patient with Papillon-Lefèvre syndrome. The patient has an inactivating mutation in the gene encoding dipeptidyl peptidase I, resulting in neutrophils lacking elastase, a serine protease required for NET production. Despite the inability to form NETS, neutrophils from this patient killed pathogens in vitro, and the patient did not exhibit evidence of an increased propensity toward bacterial infections. Together, these results suggest that proteases in human neutrophils are dispensable for protection against bacterial infection and that the ability to generate NETs in vitro does not compromise host defense.

  10. Ascorbate recycling in human neutrophils: Induction by bacteria

    OpenAIRE

    Wang, Yaohui; Russo, Thomas A.; Kwon, Oran; Chanock, Stephen; Rumsey, Steven C.; Levine, Mark

    1997-01-01

    Ascorbate (vitamin C) recycling occurs when extracellular ascorbate is oxidized, transported as dehydroascorbic acid, and reduced intracellularly to ascorbate. We investigated microorganism induction of ascorbate recycling in human neutrophils and in microorganisms themselves. Ascorbate recycling was determined by measuring intracellular ascorbate accumulation. Ascorbate recycling in neutrophils was induced by both Gram-positive and Gram-negative pathogenic bacteria, and the fungal pathogen C...

  11. NET amyloidogenic backbone in human activated neutrophils.

    Science.gov (United States)

    Pulze, L; Bassani, B; Gini, E; D'Antona, P; Grimaldi, A; Luini, A; Marino, F; Noonan, D M; Tettamanti, G; Valvassori, R; de Eguileor, M

    2016-03-01

    Activated human neutrophils produce a fibrillar DNA network [neutrophil extracellular traps (NETs)] for entrapping and killing bacteria, fungi, protozoa and viruses. Our results suggest that the neutrophil extracellular traps show a resistant amyloidogenic backbone utilized for addressing reputed proteins and DNA against the non-self. The formation of amyloid fibrils in neutrophils is regulated by the imbalance of reactive oxygen species (ROS) in the cytoplasm. The intensity and source of the ROS signal is determinant for promoting stress-associated responses such as amyloidogenesis and closely related events: autophagy, exosome release, activation of the adrenocorticotrophin hormone/α-melanocyte-stimulating hormone (ACTH/α-MSH) loop and synthesis of specific cytokines. These interconnected responses in human activated neutrophils, that have been evaluated from a morphofunctional and quantitative viewpoint, represent primitive, but potent, innate defence mechanisms. In invertebrates, circulating phagocytic immune cells, when activated, show responses similar to those described previously for activated human neutrophils. Invertebrate cells within endoplasmic reticulum cisternae produce a fibrillar material which is then assembled into an amyloidogenic scaffold utilized to convey melanin close to the invader. These findings, in consideration to the critical role played by NET in the development of several pathologies, could explain the structural resistance of these scaffolds and could provide the basis for developing new diagnostic and therapeutic approaches in immunomediated diseases in which the innate branch of the immune system has a pivotal role.

  12. Store-operated calcium signaling in neutrophils.

    Science.gov (United States)

    Clemens, Regina A; Lowell, Clifford A

    2015-10-01

    Calcium signals in neutrophils are initiated by a variety of cell-surface receptors, including formyl peptide and other GPCRs, FcRs, and integrins. The predominant pathway by which calcium enters immune cells is termed SOCE, whereby plasma membrane CRAC channels allow influx of extracellular calcium into the cytoplasm when intracellular ER stores are depleted. The identification of 2 key families of SOCE regulators, STIM calcium "sensors" and ORAI calcium channels, has allowed for genetic manipulation of SOCE pathways and provided valuable insight into the molecular mechanism of calcium signaling in immune cells, including neutrophils. This review focuses on our current knowledge of the molecules involved in neutrophil SOCE and how study of these molecules has further informed our understanding of the role of calcium signaling in neutrophil activation.

  13. Sexy again: the renaissance of neutrophils in psoriasis.

    Science.gov (United States)

    Schön, Michael P; Broekaert, Sigrid M C; Erpenbeck, Luise

    2017-04-01

    Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Neutrophils at work

    DEFF Research Database (Denmark)

    Nauseef, William M; Borregaard, Niels

    2014-01-01

    blood to tissues in models of blood-borne infections versus bacterial invasion through epithelial linings. We examine data on novel aspects of the activation of NADPH oxidase and the heterogeneity of phagosomes and, finally, consider the importance of two neutrophil-derived biological agents: neutrophil......In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from...

  15. Granulopoiesis and granules of human neutrophils

    DEFF Research Database (Denmark)

    Cowland, Jack B; Borregaard, Niels

    2016-01-01

    Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed...... with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address...... issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules...

  16. Isolation of Mouse Neutrophils.

    Science.gov (United States)

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E; Lionakis, Michail S

    2015-08-03

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments.

  17. THE ROLE OF CHLORIDE ANION AND CFTR IN KILLING OF PSEUDOMONAS AERUGINOSA BY NORMAL AND CF NEUTROPHILS

    OpenAIRE

    Richard G. Painter; Bonvillain, Ryan W.; Vincent G Valentine; Lombard, Gisele A.; LaPlace, Stephanie G.; Nauseef, William M.; Wang, Guoshun

    2008-01-01

    Chloride anion is essential for myeloperoxidase to produce hypochlorous acid (HOCl) in neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. Howe...

  18. Neutrophilic dermatoses in children.

    Science.gov (United States)

    Berk, David R; Bayliss, Susan J

    2008-01-01

    The neutrophilic dermatoses are rare disorders, especially in children, and are characterized by neutrophilic infiltrates in the skin and less commonly in extracutaneous tissue. The neutrophilic dermatoses share similar clinical appearances and associated conditions, including inflammatory bowel disease, malignancies, and medications. Overlap forms of disease demonstrating features of multiple neutrophilic dermatoses may be seen. The manuscript attempts to provide an up-to-date review of (i) classical neutrophilic dermatoses, focusing on distinctive features in children and (ii) neutrophilic dermatoses which may largely be pediatric or genodermatosis-associated (Majeed, SAPHO [synovitis, severe acne, sterile palmoplantar pustulosis, hyperostosis, and osteitis] syndrome, PAPA (pyogenic sterile arthritis, pyoderma gangrenosum, and acne), PFAPA (periodic fever with aphthous stomatitis, pharyngitis, and cervical adenopathy), and other periodic fever syndromes, and congenital erosive and vesicular dermatosis healing with reticulated supple scarring).

  19. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    Directory of Open Access Journals (Sweden)

    Ritankar Majumdar

    2016-01-01

    Full Text Available Leukotriene B4 (LTB4 is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.

  20. Measurement of neutrophil membrane CD64 and HLA-Dr in a patient with abdominal sepsis.

    NARCIS (Netherlands)

    Meer, W. van der; Scott, C.S.; Verlaat, C.; Klein Gunnewiek, J.M.T.; Warris, A.

    2006-01-01

    A patient with abdominal sepsis, had both intra and extracellular bacteria in a blood smear, and high levels of neutrophil membrane CD64 and HLA-Dr. Intracellular bacteria are only observed in the terminal phase of a sepsis. Our patient recovered, suggesting that a high expression of neutrophil CD64

  1. Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Directory of Open Access Journals (Sweden)

    Endalew Yizengaw

    2016-11-01

    Full Text Available Immunologically, active visceral leishmaniasis (VL is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood.In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites.Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL.

  2. Neutrophil Integrins and Matrix Ligands and NET Release

    Directory of Open Access Journals (Sweden)

    Jonathan S. Reichner

    2016-09-01

    Full Text Available Neutrophils are motile and responsive to tissue injury and infection. As neutrophils emigrate from the bloodstream and migrate towards a site of affliction, they encounter the tissue extracellular matrix (ECM and thereby engage integrins. Our laboratory studies the neutrophilic response to the fungal pathogen Candida albicans either in the filamentous state of the microbe or to the purified pathogen-associated molecular pattern, β-glucan. We have gained an appreciation for the role of integrins in regulating the neutrophil anti-Candida response and how the presence or absence of ECM can drive experimental outcome. The β2 integrin CR3 (Complement Receptor 3; αMβ2; Mac-1; CD11b/CD18 plays an important role in fungal recognition by its ability to bind β-glucan at a unique lectin-like domain. The presence of ECM differentially regulates essential neutrophil anti-fungal functions including chemotaxis, respiratory burst, homotypic aggregation, and the release of neutrophil extracellular traps (NETosis. We have shown that NET release to C. albicans hyphae or immobilized β-glucan occurs rapidly and without the requirement for respiratory burst on ECM. This is in contrast to the more frequently reported mechanisms of NETosis to other pathogens without the context of ECM which occur after a prolonged lag period and require respiratory burst. As expected for an ECM-dependent phenotype, NETosis and other neutrophil functions are dependent on specific β1 integrins. The focus of this review is the role of ECM ligation by neutrophil integrins as it pertains to host defense functions with an emphasis on lessons we have learned studying the anti-Candida response of human neutrophils.

  3. Ultrastructural observation of human neutrophils during apoptotic cell death triggered by Entamoeba histolytica.

    Science.gov (United States)

    Sim, Seobo; Kim, Kyeong Ah; Yong, Tai-Soon; Park, Soon-Jung; Im, Kyung-il; Shin, Myeong Heon

    2004-12-01

    Neutrophils are important effector cells against protozoan extracellular parasite Entamoeba histolytica, which causes amoebic colitis and liver abscess in human beings. Apoptotic cell death of neutrophils is an important event in the resolution of inflammation and parasite's survival in vivo. This study was undertaken to investigate the ultrastructural aspects of apoptotic cells during neutrophil death triggered by Entamoeba histolytica. Isolated human neutrophils from the peripheral blood were incubated with or without live trophozoites of E. histolytica and examined by transmission electron microscopy (TEM). Neutrophils incubated with E. histolytica were observed to show apoptotic characteristics, such as compaction of the nuclear chromatin and swelling of the nuclear envelop. In contrast, neutrophils incubated in the absence of the amoeba had many protrusions of irregular cell surfaces and heterogenous nuclear chromatin. Therefore, it is suggested that Entamoeba-induced neutrophil apoptosis contribute to prevent unwanted tissue inflammation and damage in the amoeba-invaded lesions in vivo.

  4. Mycobacterium abscessus induces a limited pattern of neutrophil activation that promotes pathogen survival.

    Directory of Open Access Journals (Sweden)

    Kenneth C Malcolm

    Full Text Available Mycobacterium abscessus is a rapidly growing mycobacterium increasingly detected in the neutrophil-rich environment of inflamed tissues, including the cystic fibrosis airway. Studies of the immune reaction to M. abscessus have focused primarily on macrophages and epithelial cells, but little is known regarding the neutrophil response despite the predominantly neutrophillic inflammation typical of these infections. In the current study, human neutrophils released less superoxide anion in response to M. abscessus than to Staphylococcus aureus, a pathogen that shares common sites of infection. Exposure to M. abscessus induced neutrophil-specific chemokine and proinflammatory cytokine genes. Although secretion of these protein products was confirmed, the quantity of cytokines released, and both the number and level of gene induction, was reduced compared to S. aureus. Neutrophils mediated killing of M. abscessus, but phagocytosis was reduced when compared to S. aureus, and extracellular DNA was detected in response to both bacteria, consistent with extracellular trap formation. In addition, M. abscessus did not alter cell death compared to unstimulated cells, while S. aureus enhanced necrosis and inhibited apoptosis. However, neutrophils augment M. abscessus biofilm formation. The response of neutrophils to M. abscessus suggests that the mycobacterium exploits neutrophil-rich settings to promote its survival and that the overall neutrophil response was reduced compared to S. aureus. These studies add to our understanding of M. abscessus virulence and suggest potential targets of therapy.

  5. Hawthorn extract inhibits human isolated neutrophil functions.

    Science.gov (United States)

    Dalli, Ernesto; Milara, Javier; Cortijo, Julio; Morcillo, Esteban J; Cosín-Sales, Juan; Sotillo, José Francisco

    2008-06-01

    Hawthorn extract is a popular herbal medicine given as adjunctive treatment for chronic heart failure. In contrast to the cardiac properties of hawthorn extract, its anti-inflammatory effect has been scarcely investigated. This study examines the effects of a dry extract of leaves and flowers of Crataegus laevigata on various functional outputs of human neutrophils in vitro. Incubation of human neutrophils obtained from peripheral blood of healthy donors with C. laevigata extract (0.75-250 microg/ml) inhibited N-formyl-Met-Leu-Phe (FMLP)-induced superoxide anion generation, elastase release and chemotactic migration with potency values of 43.6, 21.9, and 31.6 microg/ml, respectively. By contrast, serum-opsonized zymosan-induced phagocytosis was unaltered by plant extract. C. laevigata extract (125 microg/ml) reduced FMLP-induced leukotriene B(4) production and lipopolysaccharide-induced generation of tumour necrosis factor-alpha and interleukin-8. Extract inhibited FMLP-induced intracellular calcium signal with potency of 17.4 microg/ml. Extract also markedly inhibited the extracellular calcium entry into calcium-depleted neutrophils, and the thapsigargin-induced intracellular calcium response. In conclusion, C. laevigata extract inhibited various functional outputs of activated human neutrophils which may be relevant to the pathophysiology of cardiac failure.

  6. Neutrophils and intracellular pathogens: beyond phagocytosis and killing.

    Science.gov (United States)

    Appelberg, Rui

    2007-02-01

    Neutrophils are not simply scavenging phagocytes that clear extracellular spaces of rapidly proliferating microbes; they are also active in the control of infections by intracellular pathogens. Several mechanisms for nonphagocytic roles of neutrophils in protective immunity have been put forth over the years but further evidence has recently been accumulating at an increasing pace. In this review, I present the evidence that suggests neutrophils are involved in pathogen shuttling into the lymphoid tissues, in antigen presentation, and in early T cell recruitment and initiation of granuloma organization. Also, a clearer view on the antimicrobial molecules that can be acquired by macrophages to enhance their antimicrobial activity is now emerging. Finally, neutrophils can adversely affect immunity against certain parasites by causing immune deviation.

  7. Activation of the neutrophil NADPH oxidase by Aspergillus fumigatus.

    Science.gov (United States)

    Boyle, Keith B; Stephens, Len R; Hawkins, Phillip T

    2012-12-01

    Upon infection of the respiratory system with the fungus Aspergillus fumigatus various leukoctytes, in particular neutrophils, are recruited to the lung to mount an immune response. Neutrophils respond by both phagocytosing conidia and mediating extracellular killing of germinated, invasive hyphae. Of paramount importance to an appropriate immune response is the neutrophil NADPH oxidase enzyme, which mediates the production of various reactive oxygen species (ROS). This is evidenced by the acute sensitivity of both oxidase-deficient humans and mice to invasive aspergillosis. Herein we briefly review the mechanisms and functions of oxidase activation and discuss our recent work identifying at least some of the important players in hyphal-induced oxidase activation and neutrophil function. Among these we define the phosphoinositide 3-kinase enzyme and the regulatory protein Vav to be of critical importance and allude to a kinase-independent role for Syk.

  8. Matters of life and death. How neutrophils die or survive along NET release and is "NETosis" = necroptosis?

    Science.gov (United States)

    Desai, Jyaysi; Mulay, Shrikant R; Nakazawa, Daigo; Anders, Hans-Joachim

    2016-06-01

    Neutrophil extracellular trap (NET) formation is a hallmark of many disorders that involve neutrophil recruitment, tissue damage, and inflammation. As NET formation is often associated with neutrophil death, the term "NETosis" has become popular. Upon discovery that neutrophils may survive NET release, apparent misnomers, such as "vital NETosis," have been proposed. Meanwhile, it has become obvious that certain stimuli can trigger neutrophil necroptosis, a process associated with NET-like chromatin release. Here, we discuss the relationship between NET release and neutrophil death in view highlighting that many assays used in the field do not properly distinguish between the two. An updated nomenclature is needed replacing the term "NETosis" to meet the growing variety of settings leading to chromatin release with and without neutrophil death. Dissecting which triggers of NET release involve which signaling pathway will help to define drugable molecular targets that inhibit NET release and/or neutrophil necrosis in specific disorders.

  9. Neutrophil recruitment to the brain in mouse and human ischemic stroke.

    Science.gov (United States)

    Perez-de-Puig, Isabel; Miró-Mur, Francesc; Ferrer-Ferrer, Maura; Gelpi, Ellen; Pedragosa, Jordi; Justicia, Carles; Urra, Xabier; Chamorro, Angel; Planas, Anna M

    2015-02-01

    Neutrophils are rapidly recruited in response to local tissue infection or inflammation. Stroke triggers a strong inflammatory reaction but the relevance of neutrophils in the ischemic brain is not fully understood, particularly in the absence of reperfusion. We investigated brain neutrophil recruitment in two murine models of permanent ischemia induced by either cauterization of the distal portion of the middle cerebral artery (c-MCAo) or intraluminal MCA occlusion (il-MCAo), and three fatal cases of human ischemic stroke. Flow cytometry analyses revealed progressive neutrophil recruitment after c-MCAo, lesser neutrophil recruitment following il-MCAo, and absence of neutrophils after sham operation. Confocal microscopy identified neutrophils in the leptomeninges from 6 h after the occlusion, in the cortical basal lamina and cortical Virchow-Robin spaces from 15 h, and also in the cortical brain parenchyma at 24 h. Neutrophils showed signs of activation including histone-3 citrullination, chromatin decondensation, and extracellular projection of DNA and histones suggestive of extracellular trap formation. Perivascular neutrophils were identified within the entire cortical infarction following c-MCAo. After il-MCAo, neutrophils prevailed in the margins but not the center of the cortical infarct, and were intraluminal and less abundant in the striatum. The lack of collaterals to the striatum and a collapsed pial anastomotic network due to brain edema in large hemispheric infarctions could impair neutrophil trafficking in this model. Neutrophil extravasation at the leptomeninges was also detected in the human tissue. We concluded that neutrophils extravasate from the leptomeningeal vessels and can eventually reach the brain in experimental animal models and humans with prolonged arterial occlusion.

  10. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  11. The lipooligosaccharide-modifying enzyme LptA enhances gonococcal defence against human neutrophils.

    Science.gov (United States)

    Handing, Jonathan W; Criss, Alison K

    2015-06-01

    Infection with Neisseria gonorrhoeae (Gc) is marked by an influx of neutrophils to the site of infection. Despite a robust immune response, viable Gc can be recovered from neutrophil-rich gonorrhoeal secretions. Gc enzymatically modifies the lipid A portion of lipooligosaccharide by the addition of phosphoethanolamine to the phosphate group at the 4' position. Loss of lipooligosaccharide phosphoethanolamine transferase A (LptA), the enzyme catalysing this reaction, increases bacterial sensitivity to killing by human complement and cationic antimicrobial peptides. Here, we investigated the importance of LptA for interactions between Gc and human neutrophils. We found that lptA mutant Gc was significantly more sensitive to killing by human neutrophils. Three mechanisms underlie the increased sensitivity of lptA mutant Gc to neutrophils. (i) lptA mutant Gc is more likely to reside in mature phagolysosomes than LptA-expressing bacteria. (ii) lptA mutant Gc is more sensitive to killing by components found in neutrophil granules, including CAP37/azurocidin, human neutrophil peptide 1 and the serine protease cathepsin G. (iii) lptA mutant Gc is more susceptible to killing by antimicrobial components that are exocytosed from neutrophils, including those decorating neutrophil extracellular traps. By increasing the resistance of Gc to the bactericidal activity of neutrophils, LptA-catalysed modification of lipooligosaccharide enhances survival of Gc from the human inflammatory response during acute gonorrhoea.

  12. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration.

    Science.gov (United States)

    Alvarez-Maqueda, Moisés; El Bekay, Rajaa; Monteseirín, Javier; Alba, Gonzalo; Chacón, Pedro; Vega, Antonio; Santa María, Consuelo; Tejedo, Juan R; Martín-Nieto, José; Bedoya, Francisco J; Pintado, Elisabeth; Sobrino, Francisco

    2004-02-01

    Hyperhomocysteinaemia has recently been recognized as a risk factor of cardiovascular disease. However, the action mechanisms of homocysteine (Hcy) are not well understood. Given that Hcy may be involved in the recruitment of monocytes and neutrophils to the vascular wall, we have investigated the role of Hcy in essential functions of human neutrophils. We show that Hcy increased superoxide anion (O2*-) release by neutrophils to the extracellular medium, and that this effect was inhibited by superoxide dismutase and diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase activity. The enzyme from rat peritoneal macrophages displayed a similar response. These effects were accompanied by a time-dependent increased translocation of p47phox and p67phox subunits of NADPH oxidase to the plasma membrane. We also show that Hcy increased intracellular H2O2 production by neutrophils, that Hcy enhanced the activation and phosphorylation of mitogen-activated protein kinases (MAPKs), specifically p38-MAPK and ERK1/2, and that the migration of neutrophils was increased by Hcy. Present results are the first evidence that Hcy enhances the oxidative stress of neutrophils, and underscore the potential role of phagocytic cells in vascular wall injury through O2*- release in hyperhomocysteinaemia conditions.

  13. Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation.

    Science.gov (United States)

    Ramadass, Mahalakshmi; Catz, Sergio D

    2016-09-01

    Neutrophils constitute the first line of cellular defense against invading microorganisms and modulate the subsequent innate and adaptive immune responses. In order to execute a rapid and precise response to infections, neutrophils rely on preformed effector molecules stored in a variety of intracellular granules. Neutrophil granules contain microbicidal factors, the membrane-bound components of the respiratory burst oxidase, membrane-bound adhesion molecules, and receptors that facilitate the execution of all neutrophil functions including adhesion, transmigration, phagocytosis, degranulation, and neutrophil extracellular trap formation. The rapid mobilization of intracellular organelles is regulated by vesicular trafficking mechanisms controlled by effector molecules that include small GTPases and their interacting proteins. In this review, we focus on recent discoveries of mechanistic processes that are at center stage of the regulation of neutrophil function, highlighting the discrete and selective pathways controlled by trafficking modulators. In particular, we describe novel pathways controlled by the Rab27a effectors JFC1 and Munc13-4 in the regulation of degranulation, reactive oxygen species and neutrophil extracellular trap production, and endolysosomal signaling. Finally, we discuss the importance of understanding these molecular mechanisms in order to design novel approaches to modulate neutrophil-mediated inflammatory processes in a targeted fashion.

  14. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    Science.gov (United States)

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing.

    Science.gov (United States)

    Ruchaud-Sparagano, Marie-Hélène; Mills, Ross; Scott, Jonathan; Simpson, A John

    2014-10-01

    Monophosphoryl lipid A (MPLA) is a lipopolysaccharides (LPS) derivative associated with neutrophil-dependent anti-inflammatory outcomes in animal models of sepsis. Little is known about the effect of MPLA on neutrophil function. This study sought to test the hypothesis that MPLA would reduce release of cytotoxic mediators from neutrophils without impairing bacterial clearance. Neutrophils were isolated from whole blood of healthy volunteers. The effects of MPLA and LPS on autologous serum-opsonised Pseudomonas aeruginosa killing by neutrophils and phagocytosis of autologous serum-opsonised zymosan were examined. Neutrophil oxidative burst, chemotaxis, enzyme and cytokine release as well as Toll-like receptor 4 (TLR4) expression were assessed following exposure to LPS or MPLA. LPS, but not MPLA, induced significant release of superoxide and myeloperoxidase from neutrophils. However, MPLA did not impair neutrophil capacity to ingest microbial particles and kill P. aeruginosa efficiently. MPLA was directly chemotactic for neutrophils, involving TLR4, p38 mitogen-activated protein kinase and tyrosine and alkaline phosphatases. LPS, but not MPLA, impaired N-formyl-methionyl-leucyl phenylalanine-directed migration of neutrophils, increased surface expression of TLR4, increased interleukin-8 release and strongly activated the myeloid differentiation primary response 88 pathway. Phosphoinositide 3-kinase inhibition significantly augmented IL-8 release from MPLA-treated neutrophils. The addition of MPLA to LPS-preincubated neutrophils led to a significant reduction in LPS-mediated superoxide release and TLR4 surface expression. Collectively, these findings suggest that MPLA directs efficient chemotaxis and bacterial killing in human neutrophils without inducing extracellular release of cytotoxic mediators and suggest that MPLA warrants further attention as a potential therapeutic in human sepsis.

  16. Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children

    Science.gov (United States)

    Feintuch, Catherine Manix; Saidi, Alex; Seydel, Karl; Chen, Grace; Goldman-Yassen, Adam; Mita-Mendoza, Neida K.; Kim, Ryung S.; Frenette, Paul S.; Taylor, Terrie

    2016-01-01

    ABSTRACT Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor

  17. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Catherine W M Ong

    2015-05-01

    Full Text Available Pulmonary cavities, the hallmark of tuberculosis (TB, are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8 secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  18. Entamoeba histolytica induces human neutrophils to form NETs.

    Science.gov (United States)

    Ventura-Juarez, J; Campos-Esparza, Mr; Pacheco-Yepez, J; López-Blanco, J A; Adabache-Ortíz, A; Silva-Briano, M; Campos-Rodríguez, R

    2016-08-01

    Entamoeba histolytica invades the intestine and other organs during the pathogenesis of amoebiasis. In the early stages, the host organism responds with an inflammatory infiltrate composed mostly of neutrophils. It has been reported that these immune cells, activated by E. histolytica, exert a protective role by releasing proteolytic enzymes and generating reactive oxygen/nitrogen species (ROS/RNS) and antimicrobial peptides. It is now known that neutrophils also produce neutrophil extracellular traps (NETs), which are able to damage and kill pathogens. Studies have shown that intracellular protozoan pathogens, including Toxoplasma gondi, Plasmodium falciparum and Leishmania spp, induce neutrophils to release NETs and are damaged by them. However, the action of this mechanism has not been explored in relation to E. histolytica trophozoites. Through scanning electron, epifluorescence microscopy and viability assays, we show for first time that during in vitro interaction with E. histolytica trophozoites, human neutrophils released NETs that covered amoebas and reduced amoebic viability. These NETs presented histones, myeloperoxidase and decondensed chromatin. The results suggest that NETs participate in the elimination of the parasite.

  19. Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill Leishmania amazonensis Parasites.

    Science.gov (United States)

    Tavares, Natália; Afonso, Lilian; Suarez, Martha; Ampuero, Mariana; Prates, Deboraci Brito; Araújo-Santos, Théo; Barral-Netto, Manoel; DosReis, George A; Borges, Valéria Matos; Brodskyn, Cláudia

    2016-02-15

    Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.

  20. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Directory of Open Access Journals (Sweden)

    Irundika H K Dias

    Full Text Available The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. - by the nicotinamide adenine dinucleotide (NADPH oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2, a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH/oxidised glutathione (GSSG ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC, and modifier (GCLM subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  1. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Science.gov (United States)

    Dias, Irundika H K; Chapple, Ian L C; Milward, Mike; Grant, Melissa M; Hill, Eric; Brown, James; Griffiths, Helen R

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. -) by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. -) production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  2. Human neutrophil alloantigens systems

    Directory of Open Access Journals (Sweden)

    Elyse Moritz

    2009-09-01

    Full Text Available Neutrophil alloantigens are involved in a variety of clinical conditions including immune neutropenias, transfusion-related acute lung injury (TRALI, refractoriness to granulocyte transfusions and febrile transfusion reactions. In the last decade, considerable progress has been made in the characterization of the implicated antigens. Currently, seven antigens are assigned to five human neutrophil antigen (HNA systems. The HNA-1a, HNA-1b and HNA-1c antigens have been identified as polymorphic forms of the neutrophil Fcγ receptor IIIb (CD16b, encoded by three alleles. Recently, the primary structure of the HNA-2a antigen was elucidated and the HNA-2a-bearing glycoprotein was identified as a member of the Ly-6/uPAR superfamily, which has been clustered as CD177. The HNA-3a antigen is located on a 70-95 kDa glycoprotein; however, its molecular basis is still unknown. Finally, the HNA-4a and HNA-5a antigens were found to be caused by single nucleotide mutations in the αM (CD11b and αL (CD11a subunits of the leucocyte adhesion molecules (β2 integrins. Molecular and biochemical characterization of neutrophil antigenshave expanded our diagnostic tools by the introduction of genotyping techniques and immunoassays for antibody identification. Further studies in the field of neutrophil immunology will facilitate the prevention and management of transfusion reactions and immune diseases caused by neutrophil antibodies.Os aloantígenos de neutrófilos estão associados a várias condições clínicas como neutropenias imunes, insuficiência pulmonar relacionada à transfusão (TRALI, refratariedade à transfusão de granulócitos, e reações transfusionais febris. Na última década, foi observado considerável progresso na caracterização dos aloantígenos envolvidos nestas condições clínicas. Atualmente sete antígenos estão incluídos em cinco sistemas de antígenos de neutrófilo humano (HNA. Os antígenos HNA-1a, HNA-1b e HNA-1c foram

  3. Immunosenescence of Polymorphonuclear Neutrophils

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2010-01-01

    Full Text Available All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies between in vivo and in vitro results, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems.

  4. Occupational Neutrophilic Asthma

    Directory of Open Access Journals (Sweden)

    Richard Leigh

    1999-01-01

    Full Text Available Occupational asthma is typically associated with an eosinophilic bronchitis. The case of a 41-year-old woman who developed symptoms of asthma after occupational exposure to metal working fluids is reported. The diagnosis of asthma was confirmed by an forced expiratory volume in 1 s (FEV1 of 1.7 (59% predicted, with 11% reversibility after inhaled bronchodilator and a provocation concentration of methacholine to cause a fall in FEV1 of 20% (PC20 of 0.4 mg/mL. Induced sputum examination showed a marked neutrophilia. Over the next six months, serial sputum analyses confirmed the presence of a marked sterile neutrophilic bronchitis during periods of occupational exposure to metal working fluids, which resolved when the patient was away from work and recurred when she returned to work. The sputum findings were mirrored by corresponding changes in spirometry and PC20 methacholine. The findings indicate the occurrence of occupational asthma associated with an intense, sterile neutrophilic bronchitis after exposure to metal working fluids.

  5. Human neutrophil antimicrobial activity.

    Science.gov (United States)

    Thomas, E L; Lehrer, R I; Rest, R F

    1988-01-01

    Polymorphonuclear neutrophilic leukocytes (PMNs) take up opsonized microorganisms into phagosomes that fuse with secretory granules in the PMN cytoplasm to form phagolysosomes. Killing and digestion of microorganisms take place within phagolysosomes. Antimicrobial activities in phagolysosomes are divided into two classes. Oxygen (O2)-dependent mechanisms are expressed when PMNs undergo the "respiratory burst." An NADPH oxidase in the phagolysosome membrane is activated and reduces O2 to superoxide (O2-). O2 reduction is the first step in a series of reactions that produce toxic oxidants. For example, .O2- dismutases to hydrogen peroxide (H2O2), and the azurophil granule enzyme myeloperoxidase catalyzes the oxidation of Cl- by H2O2 to yield hypochlorous acid (HOCl). The reaction of HOCl with ammonia and amines modulates the toxicity of this oxidant. O2-independent antimicrobial mechanisms include the activities of lysosomal proteases, other hydrolytic enzymes, and proteins and peptides that bind to microorganisms and disrupt essential processes or structural components. For example, the bactericidal/permeability-increasing protein, cathepsin G, and the defensins are released into phagolysosomes from the azurophil granules. Proposed mechanisms of action of neutrophil antimicrobial agents, their range of microbial targets, and their possible interactions within phagolysosomes are discussed.

  6. Human Neutrophils Kill Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Bacillus anthracis spores cause natural infections and are used as biological weapons. Inhalation infection with B. anthracis, the etiological agent of anthrax, is almost always lethal, yet cutaneous infections usually remain localized and resolve spontaneously. Neutrophils are typically recruited to cutaneous but seldom to other forms of anthrax infections, raising the possibility that neutrophils kill B. anthracis. In this study we infected human neutrophils with either spores or vegetative bacteria of a wild-type strain, or strains, expressing only one of the two major virulence factors. The human neutrophils engulfed B. anthracis spores, which germinated intracellularly and were then efficiently killed. Interestingly, neutrophil killing was independent of reactive oxygen species production. We fractionated a human neutrophil granule extract by high-performance liquid chromatography and identified alpha-defensins as the component responsible for B. anthracis killing. These data suggest that the timely recruitment of neutrophils can control cutaneous infections and possibly other forms of B. anthracis infections, and that alpha-defensins play an important role in the potent anti-B. anthracis activity of neutrophils.

  7. Human neutrophils kill Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Anne Mayer-Scholl

    2005-11-01

    Full Text Available Bacillus anthracis spores cause natural infections and are used as biological weapons. Inhalation infection with B. anthracis, the etiological agent of anthrax, is almost always lethal, yet cutaneous infections usually remain localized and resolve spontaneously. Neutrophils are typically recruited to cutaneous but seldom to other forms of anthrax infections, raising the possibility that neutrophils kill B. anthracis. In this study we infected human neutrophils with either spores or vegetative bacteria of a wild-type strain, or strains, expressing only one of the two major virulence factors. The human neutrophils engulfed B. anthracis spores, which germinated intracellularly and were then efficiently killed. Interestingly, neutrophil killing was independent of reactive oxygen species production. We fractionated a human neutrophil granule extract by high-performance liquid chromatography and identified alpha-defensins as the component responsible for B. anthracis killing. These data suggest that the timely recruitment of neutrophils can control cutaneous infections and possibly other forms of B. anthracis infections, and that alpha-defensins play an important role in the potent anti-B. anthracis activity of neutrophils.

  8. Human neutrophils kill Bacillus anthracis.

    Science.gov (United States)

    Mayer-Scholl, Anne; Hurwitz, Robert; Brinkmann, Volker; Schmid, Monika; Jungblut, Peter; Weinrauch, Yvette; Zychlinsky, Arturo

    2005-11-01

    Bacillus anthracis spores cause natural infections and are used as biological weapons. Inhalation infection with B. anthracis, the etiological agent of anthrax, is almost always lethal, yet cutaneous infections usually remain localized and resolve spontaneously. Neutrophils are typically recruited to cutaneous but seldom to other forms of anthrax infections, raising the possibility that neutrophils kill B. anthracis. In this study we infected human neutrophils with either spores or vegetative bacteria of a wild-type strain, or strains, expressing only one of the two major virulence factors. The human neutrophils engulfed B. anthracis spores, which germinated intracellularly and were then efficiently killed. Interestingly, neutrophil killing was independent of reactive oxygen species production. We fractionated a human neutrophil granule extract by high-performance liquid chromatography and identified alpha-defensins as the component responsible for B. anthracis killing. These data suggest that the timely recruitment of neutrophils can control cutaneous infections and possibly other forms of B. anthracis infections, and that alpha-defensins play an important role in the potent anti-B. anthracis activity of neutrophils.

  9. Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury.

    Science.gov (United States)

    Chaturvedi, Swasti; Yuen, Darren A; Bajwa, Amandeep; Huang, Yi-Wei; Sokollik, Christiane; Huang, Liping; Lam, Grace Y; Tole, Soumitra; Liu, Guang-Ying; Pan, Jerry; Chan, Lauren; Sokolskyy, Yaro; Puthia, Manoj; Godaly, Gabriela; John, Rohan; Wang, Changsen; Lee, Warren L; Brumell, John H; Okusa, Mark D; Robinson, Lisa A

    2013-07-01

    Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.

  10. Ménage-à-trois: The ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs

    Directory of Open Access Journals (Sweden)

    Christian Maueröder

    2016-12-01

    Full Text Available In this study we identified and characterized the potential of a high ratio of bicarbonate to CO2 and a moderately alkaline pH to render neutrophils prone to undergo neutrophil extracellular trap (NET formation. Both experimental settings increased the rate of spontaneous NET release and potentiated the NET-inducing capacity of phorbol esters (PMA, ionomycin, monosodium urate and LPS. In contrast, an acidic environment impaired neutrophil extracellular trap formation both spontaneous and induced. Our findings indicate that intracellular alkalinization of neutrophils in response to an alkaline environment leads to an increase of intracellular calcium and neutrophil activation. We further found that the anion channel blocker DIDS strongly reduced NET formation induced by bicarbonate. This finding suggests that the effects observed are due to a molecular program that renders neutrophils susceptible to neutrophil extracellular trap formation. Inflammatory foci are characterized by an acidic environment. Our data indicates that NET formation is favored by the higher pH at the border regions of inflamed areas. Moreover our findings highlight the necessity for strict pH control during assays of neutrophil extracellular trap formation.

  11. MUNC13-4 protein regulates the oxidative response and is essential for phagosomal maturation and bacterial killing in neutrophils.

    Science.gov (United States)

    Monfregola, Jlenia; Johnson, Jennifer Linda; Meijler, Michael M; Napolitano, Gennaro; Catz, Sergio Daniel

    2012-12-28

    Neutrophils use diverse mechanisms to kill pathogens including phagocytosis, exocytosis, generation of reactive oxygen species (ROS), and neutrophil extracellular traps. These mechanisms rely on their ability to mobilize intracellular organelles and to deliver granular cargoes to specific cellular compartments or into the extracellular milieu, but the molecular mechanisms regulating vesicular trafficking in neutrophils are not well understood. MUNC13-4 is a RAB27A effector that coordinates exocytosis in hematopoietic cells, and its deficiency is associated with the human immunodeficiency familial hemophagocytic lymphohistiocytosis type 3. In this work, we have established an essential role for MUNC13-4 in selective vesicular trafficking, phagosomal maturation, and intracellular bacterial killing in neutrophils. Using neutrophils from munc13-4 knock-out (KO) mice, we show that MUNC13-4 is necessary for the regulation of p22(phox)-expressing granule trafficking to the plasma membrane and regulates extracellular ROS production. MUNC13-4 was also essential for the regulation of intracellular ROS production induced by Pseudomonas aeruginosa despite normal trafficking of p22(phox)-expressing vesicles toward the phagosome. Importantly, in the absence of MUNC13-4, phagosomal maturation was impaired as observed by the defective delivery of azurophilic granules and multivesicular bodies to the phagosome. Significantly, this mechanism was intact in RAB27A KO neutrophils. Intracellular bacterial killing was markedly impaired in MUNC13-4 KO neutrophils. MUNC13-4-deficient cells showed a significant increase in neutrophil extracellular trap formation but were unable to compensate for the impaired bacterial killing. Altogether, these findings characterize novel functions of MUNC13-4 in the innate immune response of the neutrophil and have direct implications for the understanding of immunodeficiencies in patients with MUNC13-4 deficiency.

  12. Neutrophil Functions in Periodontal Homeostasis

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    2016-01-01

    Full Text Available Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed.

  13. Neutrophilic dermatosis of dorsal hands

    Directory of Open Access Journals (Sweden)

    S Kaur

    2015-01-01

    Full Text Available Sweet′s syndrome is characterized by erythematous tender nodules and plaques over face and extremities. Fever, leukocytosis with neutrophilia, and a neutrophilic infiltrate in the dermis are characteristic features. Neutrophilic dermatosis of dorsal hands is a rare localized variant of Sweet′s syndrome occurring predominantly over dorsa of hands. Various degrees of vascular damage may be observed on histopathology of these lesions. Both Sweet′s syndrome and its dorsal hand variant have been reported in association with malignancies, inflammatory bowel diseases, and drugs. We report a patient with neutrophilic dermatoses of dorsal hands associated with erythema nodosum. He showed an excellent response to corticosteroids and dapsone.

  14. Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.

    Science.gov (United States)

    Gazendam, Roel P; van Hamme, John L; Tool, Anton T J; Hoogenboezem, Mark; van den Berg, J Merlijn; Prins, Jan M; Vitkov, Ljubomir; van de Veerdonk, Frank L; van den Berg, Timo K; Roos, Dirk; Kuijpers, Taco W

    2016-02-01

    Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood. In this work, we have studied in detail which neutrophil functions, including neutrophil extracellular trap (NET) formation, are involved in the killing of Aspergillus fumigatus conidia and hyphae, using neutrophils from patients with well-defined genetic immunodeficiencies. Recognition of conidia involves integrin CD11b/CD18 (and not dectin-1), which triggers a PI3K-dependent nonoxidative intracellular mechanism of killing. When the conidia escape from early killing and germinate, the extracellular destruction of the Aspergillus hyphae needs opsonization by Abs and involves predominantly recognition via Fcγ receptors, signaling via Syk, PI3K, and protein kinase C to trigger the production of toxic reactive oxygen metabolites by the NADPH oxidase and myeloperoxidase. A. fumigatus induces NET formation; however, NETs did not contribute to A. fumigatus killing. Thus, our findings reveal distinct killing mechanisms of Aspergillus conidia and hyphae by human neutrophils, leading to a comprehensive insight in the innate antifungal response.

  15. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  16. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils.

    Science.gov (United States)

    Painter, Richard G; Bonvillain, Ryan W; Valentine, Vincent G; Lombard, Gisele A; LaPlace, Stephanie G; Nauseef, William M; Wang, Guoshun

    2008-06-01

    Chloride anion is essential for myeloperoxidase (MPO) to produce hypochlorous acid (HOCl) in polymorphonuclear neutrophils (PMNs). To define whether chloride availability to PMNs affects their HOCl production and microbicidal capacity, we examined how extracellular chloride concentration affects killing of Pseudomonas aeruginosa (PsA) by normal neutrophils. PMN-mediated bacterial killing was strongly dependent on extracellular chloride concentration. Neutrophils in a chloride-deficient medium killed PsA poorly. However, as the chloride level was raised, the killing efficiency increased in a dose-dependent manner. By using specific inhibitors to selectively block NADPH oxidase, MPO, and cystic fibrosis transmembrane conductance regulator (CFTR) functions, neutrophil-mediated killing of PsA could be attributed to three distinct mechanisms: CFTR-dependent and oxidant-dependent; chloride-dependent but not CFTR- and oxidant-dependent; and independent of any of the tested factors. Therefore, chloride anion is involved in oxidant- and nonoxidant-mediated bacterial killing. We previously reported that neutrophils from CF patients are defective in chlorination of ingested bacteria, suggesting that the chloride channel defect might impair the MPO-hydrogen peroxide-chloride microbicidal function. Here, we compared the competence of killing PsA by neutrophils from normal donors and CF patients. The data demonstrate that the killing rate by CF neutrophils was significantly lower than that by normal neutrophils. CF neutrophils in a chloride-deficient environment had only one-third of the bactericidal capacity of normal neutrophils in a physiological chloride environment. These results suggest that CFTR-dependent chloride anion transport contributes significantly to killing PsA by normal neutrophils and when defective as in CF, may compromise the ability to clear PsA.

  17. Serine protease inhibitor 6-deficient mice have increased neutrophil immunity to Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Manling; Liu, Ni; Park, Sun-Mi; Wang, Yue; Byrne, Susan; Murmann, Andrea E; Bahr, Scott; Peter, Marcus E; Olson, Steven T; Belaaouaj, Abderrazzaq; Ashton-Rickardt, Philip G

    2007-10-01

    Inflammation is a localized, protective response to trauma or microbial invasion that destroys the injurious agent and the injured tissue. Neutrophil elastase (NE), a serine protease stored in the azurophil granules of polymorphonuclear neutrophils, digests microbes after phagocytosis. NE can also digest microbes extracellularly but is associated with tissue damage and inflammatory disease. In this study, we show that polymorphonuclear neutrophils from mice deficient in serine protease inhibitor 6, a weak intracellular NE inhibitor, had increased susceptibility to self-inflicted lysis because of increased NE activity. The resulting transient increase in local extracellular NE activity was within a narrow range that resulted in the clearance of Pseudomonas aeruginosa but did not damage the lung. Therefore, deficiency in a weak intracellular inhibitor of NE results in an acute inflammatory response that protects from P. aeruginosa but does not cause lung disease.

  18. DNase I inhibits a late phase of reactive oxygen species production in neutrophils.

    Science.gov (United States)

    Munafo, Daniela B; Johnson, Jennifer L; Brzezinska, Agnieszka A; Ellis, Beverly A; Wood, Malcolm R; Catz, Sergio D

    2009-01-01

    Neutrophils kill bacteria on extracellular complexes of DNA fibers and bactericidal proteins known as neutrophil extracellular traps (NETs). The NET composition and the bactericidal mechanisms they use are not fully understood. Here, we show that treatment with deoxyribonuclease (DNase I) impairs a late oxidative response elicited by Gram-positive and Gram-negative bacteria and also by phorbol ester. Isoluminol-dependent chemiluminescence elicited by opsonized Listeria monocytogenes-stimulated neutrophils was inhibited by DNase I, and the DNase inhibitory effect was also evident when phagocytosis was blocked, suggesting that DNase inhibits an extracellular mechanism of reactive oxygen species (ROS) generation. The DNase inhibitory effect was independent of actin polymerization. Phagocytosis and cell viability were not impaired by DNase I. Immunofluorescence analysis shows that myeloperoxidase is present on NETs. Furthermore, granular proteins were detected in NETs from Rab27a-deficient neutrophils which have deficient exocytosis, suggesting that exocytosis and granular protein distribution on NETs proceed by independent mechanisms. NADPH oxidase subunits were also detected on NETs, and the detection of extracellular trap-associated NADPH oxidase subunits was abolished by treatment with DNase I and dependent on cell stimulation. In vitro analyses demonstrate that MPO and NADPH oxidase activity are not directly inhibited by DNase I, suggesting that its effect on ROS production depends on NET disassembly. Altogether, our data suggest that inhibition of ROS production by microorganism-derived DNase would contribute to their ability to evade killing.

  19. Mechanisms of Degranulation in Neutrophils

    Directory of Open Access Journals (Sweden)

    Lacy Paige

    2006-09-01

    Full Text Available Abstract Neutrophils are critical inflammatory cells that cause tissue damage in a range of diseases and disorders. Being bone marrow-derived white blood cells, they migrate from the bloodstream to sites of tissue inflammation in response to chemotactic signals and induce inflammation by undergoing receptor-mediated respiratory burst and degranulation. Degranulation from neutrophils has been implicated as a major causative factor in pulmonary disorders, including severe asphyxic episodes of asthma. However, the mechanisms that control neutrophil degranulation are not well understood. Recent observations indicate that granule release from neutrophils depends on activation of intracellular signalling pathways, including β-arrestins, the Rho guanosine triphosphatase Rac2, soluble NSF attachment protein (SNAP receptors, the src family of tyrosine kinases, and the tyrosine phosphatase MEG2. Some of these observations suggest that degranulation from neutrophils is selective and depends on nonredundant signalling pathways. This review focuses on new findings from the literature on the mechanisms that control the release of granule-derived mediators from neutrophils.

  20. AUTOINFLAMMATORY PUSTULAR NEUTROPHILIC DISEASES

    Science.gov (United States)

    Naik, Haley B.; Cowen, Edward W.

    2013-01-01

    SYNOPSIS The inflammatory pustular dermatoses constitute a spectrum of non-infectious conditions ranging from localized involvement to generalized disease with associated acute systemic inflammation and multi-organ involvement. Despite the variability in extent and severity of cutaneous presentation, each of these diseases is characterized by non-infectious neutrophilic intra-epidermal microabscesses. Many share systemic findings including fever, elevated inflammatory markers, inflammatory bowel disease and/or osteoarticular involvement, suggesting potential common pathogenic links (Figure 1). The recent discoveries of several genes responsible for heritable pustular diseases have revealed a distinct link between pustular skin disease and regulation of innate immunity. These genetic advances have led to a deeper exploration of common pathways in pustular skin disease and offer the potential for a new era of biologic therapy which targets these shared pathways. This chapter provides a new categorization of inflammatory pustular dermatoses in the context of recent genetic and biologic insights. We will discuss recently-described monogenic diseases with pustular phenotypes, including deficiency of IL-1 receptor antagonist (DIRA), deficiency of the IL-36 receptor antagonist (DITRA), CARD14-associated pustular psoriasis (CAMPS), and pyogenic arthritis, pyoderma gangrenosum, acne (PAPA). We will then discuss how these new genetic advancements may inform how we view previously described pustular diseases, including pustular psoriasis and its clinical variants, with a focus on historical classification by clinical phenotype. PMID:23827244

  1. Streptolysin O Rapidly Impairs Neutrophil Oxidative Burst and Antibacterial Responses to Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Satoshi Uchiyama

    2016-11-01

    Full Text Available Group A Streptococcus (GAS causes a wide range of human infections, ranging from simple pharyngitis to life-threatening necrotizing fasciitis and toxic shock syndrome. A globally disseminated clone of M1T1 GAS has been associated with an increase in severe, invasive GAS infections in recent decades. The secreted GAS pore-forming toxin streptolysin O (SLO, which induces eukaryotic cell lysis in a cholesterol-dependent manner, is highly upregulated in the GAS M1T1 clone during bloodstream dissemination. SLO is known to promote GAS resistance to phagocytic clearance by neutrophils, a critical first element of host defense against invasive bacterial infection. Here we examine the role of SLO in modulating specific neutrophil functions during their early interaction with GAS. We find that SLO at subcytotoxic concentrations and time points is necessary and sufficient to suppress neutrophil oxidative burst, in a manner reversed by free cholesterol and anti-SLO blocking antibodies. In addition, SLO at subcytotoxic concentrations blocked neutrophil degranulation, interleukin-8 secretion and responsiveness, and elaboration of DNA-based neutrophil extracellular traps (NETs, cumulatively supporting a key role for SLO in GAS resistance to immediate neutrophil killing. A non-toxic SLO derivate elicits protective immunity against lethal GAS challenge in a murine infection model. We conclude that SLO exerts a novel cytotoxic-independent function at early stages of invasive infections (< 30 min, contributing to GAS escape from neutrophil clearance.

  2. Warifteine, an Alkaloid Purified from Cissampelos sympodialis, Inhibits Neutrophil Migration In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Thaline F. A. Lima

    2014-01-01

    Full Text Available Cissampelos sympodialis Eichl is a plant from the Northeast and Southeast of Brazil. Its root infusion is popularly used for treatment of inflammatory and allergic diseases. We investigated whether warifteine, its main alkaloid, would have anti-inflammatory effect due to a blockage of neutrophil function. In vivo warifteine treatment inhibited casein-induced neutrophil migration to the peritoneal cavity but did not inhibit neutrophil mobilization from the bone marrow. Analysis of the direct effect of warifteine upon neutrophil adherence and migration in vitro demonstrated that the alkaloid decreased cell adhesion to P and E-selectin-transfected cells. In addition, fLMP-induced neutrophil migration in a transwell system was blocked by warifteine; this effect was mimicked by cAMP mimetic/inducing substances, and warifteine increased intracellular cAMP levels in neutrophils. The production of DNA extracellular traps (NETs was also blocked by warifteine but there was no alteration on PMA-induced oxidative burst or LPS-stimulated TNFα secretion. Taken together, our data indicate that the alkaloid warifteine is a potent anti-inflammatory substance and that it has an effect on neutrophil migration through a decrease in both cell adhesion and migration.

  3. Rapid Sequestration of Leishmania mexicana by Neutrophils Contributes to the Development of Chronic Lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin P Hurrell

    2015-05-01

    Full Text Available The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.

  4. Warifteine, an Alkaloid Purified from Cissampelos sympodialis, Inhibits Neutrophil Migration In Vitro and In Vivo

    Science.gov (United States)

    Lima, Thaline F. A.; Rocha, Juliana D. B.; Guimarães-Costa, Anderson B.; Barbosa-Filho, José M.; Decoté-Ricardo, Débora; Saraiva, Elvira M.; Arruda, Luciana B.; Piuvezam, Marcia R.; Peçanha, Ligia M. T.

    2014-01-01

    Cissampelos sympodialis Eichl is a plant from the Northeast and Southeast of Brazil. Its root infusion is popularly used for treatment of inflammatory and allergic diseases. We investigated whether warifteine, its main alkaloid, would have anti-inflammatory effect due to a blockage of neutrophil function. In vivo warifteine treatment inhibited casein-induced neutrophil migration to the peritoneal cavity but did not inhibit neutrophil mobilization from the bone marrow. Analysis of the direct effect of warifteine upon neutrophil adherence and migration in vitro demonstrated that the alkaloid decreased cell adhesion to P and E-selectin-transfected cells. In addition, fLMP-induced neutrophil migration in a transwell system was blocked by warifteine; this effect was mimicked by cAMP mimetic/inducing substances, and warifteine increased intracellular cAMP levels in neutrophils. The production of DNA extracellular traps (NETs) was also blocked by warifteine but there was no alteration on PMA-induced oxidative burst or LPS-stimulated TNFα secretion. Taken together, our data indicate that the alkaloid warifteine is a potent anti-inflammatory substance and that it has an effect on neutrophil migration through a decrease in both cell adhesion and migration. PMID:24995347

  5. Modulation of γδ T cell activation by neutrophil elastase.

    Science.gov (United States)

    Towstyka, Nadia Yasmín; Shiromizu, Carolina Maiumi; Keitelman, Irene; Sabbione, Florencia; Salamone, Gabriela Verónica; Geffner, Jorge Raúl; Trevani, Analía Silvina; Jancic, Carolina Cristina

    2017-09-09

    γδ T cells are non-conventional, innate-like T cells, characterized by a restricted TCR repertoire. They participate in protective immunity response against extracellular and intracellular pathogens, tumor surveillance, modulation of innate and adaptive immune responses, tissue healing, epithelial cell maintenance, and regulation of physiological organ function. In this study, we investigated the role of neutrophils during the activation of human blood γδ T cells through CD3 molecules. We found that the up-regulation of CD69 expression, and the production of IFN-γ and TNF-α induced by anti-CD3 antibodies were potentiated by neutrophils. We found that inhibition of caspase-1 and neutralization of IL-18 did not affect neutrophil-mediated modulation. By contrast, the treatment with serine proteases inhibitors prevented the potentiation of γδ T cell activation induced by neutrophils. Moreover, the addition of elastase to γδ T cell culture increased their stimulation, and the treatment of neutrophils with elastase inhibitor prevented the effect of neutrophils on γδ T cell activation. Furthermore, we demonstrated that the effect of elastase on γδ T cells was mediated through the proteases-activated receptor, PAR1, since the inhibition of this receptor with a specific antagonist, RWJ56110, abrogated the effect of neutrophils on γδ T cell activation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  7. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  8. Multicenter Systems Analysis of Human Blood Reveals Immature Neutrophils in Males and During Pregnancy

    Science.gov (United States)

    Blazkova, Jana; Gupta, Sarthak; Liu, Yudong; Gaudilliere, Brice; Ganio, Edward A.; Bolen, Christopher R.; Saar-Dover, Ron; Fragiadakis, Gabriela K.; Angst, Martin S.; Hasni, Sarfaraz; Aghaeepour, Nima; Stevenson, David; Baldwin, Nicole; Anguiano, Esperanza; Chaussabel, Damien; Altman, Matthew C.; Kaplan, Mariana J.; Davis, Mark M.

    2017-01-01

    Despite clear differences in immune system responses and in the prevalence of autoimmune diseases between males and females, there is little understanding of the processes involved. In this study, we identified a gene signature of immature-like neutrophils, characterized by the overexpression of genes encoding for several granule-containing proteins, which was found at higher levels (up to 3-fold) in young (20–30 y old) but not older (60 to >89 y old) males compared with females. Functional and phenotypic characterization of peripheral blood neutrophils revealed more mature and responsive neutrophils in young females, which also exhibited an elevated capacity in neutrophil extracellular trap formation at baseline and upon microbial or sterile autoimmune stimuli. The expression levels of the immature-like neutrophil signature increased linearly with pregnancy, an immune state of increased susceptibility to certain infections. Using mass cytometry, we also find increased frequencies of immature forms of neutrophils in the blood of women during late pregnancy. Thus, our findings show novel sex differences in innate immunity and identify a common neutrophil signature in males and in pregnant women. PMID:28179497

  9. A Morphological and Cytochemical Study of the Interaction between Paracoccidiodes brasiliensis and Neutrophils

    Science.gov (United States)

    Dias, Maria Fernanda R. G.; Filgueira, Absalom L.; de Souza, Wanderley

    2004-04-01

    Paracoccidioidomycosis is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. It is the most prevalent systemic mycosis of Latin America and 80% of the reported cases are from Brazil. Because of the great number of neutrophils found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. Scanning and transmission electron microscopy of thin sections showed that the neutrophils ingest yeast cells through a typical phagocytic process with the formation of pseudopodes. The pseudopodes even disrupt the connection established between the mother and the bud cells. Neutrophils also associate to each other, forming a kind of extracellular vacuole where large yeast cells are encapsulated. Cytochemical studies showed that once P. brasiliensis attaches to the neutrophil surface, it triggers a respiratory burst with release of oxygen-derived products. Attachment also triggers neutrophils' degranulation, with release of endogenous peroxidase localized in cytoplasmic granules. Together, these processes lead to killing of both ingested and extracellular P. brasiliensis.

  10. Extracellular entrapment and degradation of single-walled carbon nanotubes

    Science.gov (United States)

    Farrera, Consol; Bhattacharya, Kunal; Lazzaretto, Beatrice; Andón, Fernando T.; Hultenby, Kjell; Kotchey, Gregg P.; Star, Alexander; Fadeel, Bengt

    2014-05-01

    Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials. Electronic supplementary information (ESI) available: Suppl. Fig. 1 - length distribution of SWCNTs; suppl. Fig. 2 - characterization of pristine vs. oxidized SWCNTs; suppl. Fig. 3 - endotoxin evaluation; suppl. Fig. 4 - NET characterization; suppl. Fig. 5 - UV-Vis/NIR analysis of biodegradation of oxidized SWCNTs; suppl. Fig. 6 - cytotoxicity of partially degraded SWCNTs. See DOI: 10.1039/c3nr06047k

  11. Myeloperoxidase attracts neutrophils by physical forces

    NARCIS (Netherlands)

    Klinke, Anna; Nussbaum, Claudia; Kubala, Lukas; Friedrichs, Kai; Rudolph, Tanja K.; Rudolph, Volker; Paust, Hans-Joachim; Schroeder, Christine; Benten, Daniel; Lau, Denise; Szocs, Katalin; Furtmueller, Paul G.; Heeringa, Peter; Sydow, Karsten; Duchstein, Hans-Juergen; Ehmke, Heimo; Schumacher, Udo; Meinertz, Thomas; Sperandio, Markus; Baldus, Stephan

    2011-01-01

    Recruitment of polymorphonuclear neutrophils (PMNs) remains a paramount prerequisite in innate immune defense and a critical cofounder in inflammatory vascular disease. Neutrophil recruitment comprises a cascade of concerted events allowing for capture, adhesion and extravasation of the leukocyte.

  12. Functional neutrophils from human ES cells

    OpenAIRE

    Sweeney, Colin L; Malech, Harry L.

    2009-01-01

    In this issue of Blood, Yokoyama and colleagues demonstrate in vitro differentiation of hESCs into mature neutrophils with functional capabilities (chemotaxis, phagocytosis, microbicidal oxidase activity, and bacterial killing) approaching or equal to that of normal peripheral blood neutrophils.

  13. Attachment and ingestion of gonococci human neutrophils.

    Science.gov (United States)

    Dilworth, J A; Hendley, J O; Mandell, G L

    1975-03-01

    Previous studies have indirectly shown that type 1 gonococci are more resistant to phagocytosis by human neutrophils (PMN) than type 3 gonococci. Using phase contrast, fluorescent, and light microscopy, we directly quantitated PMN-gonococcal interaction, with emphasis on separating ingestion from attachment. PMN monolayers were incubated on slides with type 1 or type 3 gonococcal fluorescent antibody (FA). After methanol fixation, the FA-stained gonococci associated with PMN were cointed. Since the live PMN excludes FA, the FA-stained gonococci represent only extracellular gonococci. Methylene blue was then added to the smae slide to stain both ingested and surface attached gonococci. Using these methods, intracellular and extracellular cell-associated gonococci were quantitated under varying conditions. The numbers of methylene blue-stained cell-associated gonococci that were ingested were: with normal serum, 3.7 plus or minus 4.1 per cent for type 1 and 56.2 plus or minus 3.7 percent for type 3 (P smaller than 0.001); with heat-inactivated serum, 1.0 plus or minus 3.0 per cent for type 1 and 52.6 plus or minus 3.7 per cent for type 3 (P smaller than 0.001); with higher-titer anti-gonococcal antibody serum, 4.8 plus or minus 4.3 percent for type 1 and 64.0 plus or minus 1.6 per cent for type 3 (P smaller than 0.001). Thus, most type 3 organisms were ingested, but most type 1 gonococci were bound on the PMN surface.

  14. Apoptotic neutrophils containing Staphylococcus epidermidis stimulate macrophages to release the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6.

    Science.gov (United States)

    Wilsson, Asa; Lind, Sara; Ohman, Lena; Nilsdotter-Augustinsson, Asa; Lundqvist-Setterud, Helen

    2008-06-01

    Staphylococcus epidermidis infections are usually nosocomial and involve colonization of biomaterials. The immune defense system cannot efficiently control the bacteria during these infections, which often results in protracted chronic inflammation, in which a key event is disturbed removal of neutrophils by tissue macrophages. While ingesting uninfected apoptotic neutrophils, macrophages release anti-inflammatory cytokines that lead to resolution of inflammation. In clinical studies, we have previously found elevated levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in synovial fluid from prostheses infected with coagulase negative staphylococci. We show that macrophages phagocytosing apoptotic neutrophils containing S. epidermidis released TNF-alpha and interleukin-6, whereas macrophages phagocytosing spontaneously apoptotic neutrophils did not. This difference was not due to dissimilar phagocytic capacities, because macrophages ingested both types of neutrophils to the same extent. The activation was induced mainly by the apoptotic neutrophils themselves, not by the few remaining extracellular bacteria. Macrophages were not activated by apoptotic neutrophils that contained paraformaldehyde-killed S. epidermidis. Proinflammatory reactions induced by clearance of apoptotic neutrophils containing S. epidermidis might represent an important mechanism to combat the infective agent. This activation of macrophages may contribute to the development of chronic inflammation instead of inflammation resolution.

  15. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  16. Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin.

    Science.gov (United States)

    Galkina, Svetlana I; Sud'ina, Galina F; Klein, Thomas

    2006-08-01

    Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na(+) and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl(-) efflux through chloride channels and Na(+) influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

  17. Capability of Neutrophils to Form NETs Is Not Directly Influenced by a CMA-Targeting Peptide

    Science.gov (United States)

    Maueröder, Christian; Schall, Nicolas; Meyer, Frédéric; Mahajan, Aparna; Garnier, Benjamin; Hahn, Jonas; Kienhöfer, Deborah; Hoffmann, Markus H.; Muller, Sylviane

    2017-01-01

    During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases. Autophagy is a complex and finely regulated mechanism involved in the cell survival/death balance that may be connected to NET formation. To shed some light on the connection between autophagy and NET formation, we designed a number of experiments in human neutrophils and both in normal and lupus-prone MRL/lpr mice to determine whether the synthetic peptide P140, which is capable of selectively modulating chaperone-mediated autophagy (CMA) in lymphocytes, could alter NET formation. P140/Lupuzor™ is currently being evaluated in phase III clinical trials involving SLE patients. Overall our in vitro and in vivo studies established that P140 does not influence NET formation, cytokine/chemokine production, or CMA in neutrophils. Thus, the beneficial effect of P140/Lupuzor™ in SLE is apparently not directly related to modulation of neutrophil function. PMID:28191006

  18. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function.

    Science.gov (United States)

    Yona, Simon; Lin, Hsi-Hsien; Dri, Pietro; Davies, John Q; Hayhoe, Richard P G; Lewis, Sion M; Heinsbroek, Sigrid E M; Brown, K Alun; Perretti, Mauro; Hamann, Jörg; Treacher, David F; Gordon, Siamon; Stacey, Martin

    2008-03-01

    At present, approximately 150 different members of the adhesion-G protein-coupled receptor (GPCR) family have been identified in metazoans. Surprisingly, very little is known about their function, although they all possess large extracellular domains coupled to a seven-transmembrane domain, suggesting a potential role in cell adhesion and signaling. Here, we demonstrate how the human-restricted adhesion-GPCR, EMR2 (epidermal growth factor-like module-containing mucin-like hormone receptor), regulates neutrophil responses by potentiating the effects of a number of proinflammatory mediators and show that the transmembrane region is critical for adhesion-GPCR function. Using an anti-EMR2 antibody, ligation of EMR2 increases neutrophil adhesion and migration, and augments superoxide production and proteolytic enzyme degranulation. On neutrophil activation, EMR2 is rapidly translocated to membrane ruffles and the leading edge of the cell. Further supporting the role in neutrophil activation, EMR2 expression on circulating neutrophils is significantly increased in patients with systemic inflammation. These data illustrate a definitive function for a human adhesion-GPCR within the innate immune system and suggest an important role in potentiating the inflammatory response. Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function.

  19. Surfactant protein A regulates IgG-mediated phagocytosis in inflammatory neutrophils.

    Science.gov (United States)

    Wofford, Jessica A; Wright, Jo Rae

    2007-12-01

    Surfactant proteins (SP)-A and SP-D have been shown to affect the functions of a variety of innate immune cells and to interact with various immune proteins such as complement and immunoglobulins. The goal of the current study is to test the hypothesis that SP-A regulates IgG-mediated phagocytosis by neutrophils, which are major effector cells of the innate immune response that remove invading pathogens by phagocytosis and by extracellular killing mediated by reactive oxygen and nitrogen. We have previously shown that SP-A stimulates chemotaxis by inflammatory, but not peripheral, neutrophils. To evaluate the ability of SP-A to modulate IgG-mediated phagocytosis, polystyrene beads were coated with BSA and treated with anti-BSA IgG. SP-A significantly and specifically enhanced IgG-mediated phagocytosis by inflammatory neutrophils, but it had no effect on beads not treated with IgG. SP-A bound to IgG-coated beads and enhanced their uptake via direct interactions with the beads as well as direct interactions with the neutrophils. SP-A did not affect reactive oxygen production or binding of IgG to neutrophils and had modest effects on polymerization of actin. These data suggest that SP-A plays an important role in mediating the phagocytic response of neutrophils to IgG-opsonized particles.

  20. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.

    Science.gov (United States)

    Yoo, Dae-goon; Floyd, Madison; Winn, Matthew; Moskowitz, Samuel M; Rada, Balázs

    2014-08-01

    Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways.

  1. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions.

    Science.gov (United States)

    Woloszynek, Josh C; Hu, Ying; Pham, Christine T N

    2012-10-05

    Neutrophil serine proteases play an important role in inflammation by modulating neutrophil effector functions. We have previously shown that neutrophils deficient in the serine proteases cathepsin G and neutrophil elastase (CG/NE neutrophils) exhibit severe defects in chemokine CXCL2 release and reactive oxygen species (ROS) production when activated on immobilized immune complex. Exogenously added active CG rescues these defects, but the mechanism remains undefined. Using a protease-based proteomic approach, we found that, in vitro, the addition of exogenous CG to immune complex-stimulated CG/NE neutrophils led to a decrease in the level of cell-associated annexin A1 (AnxA1) and cathelin-related antimicrobial peptide (CRAMP), both known inflammatory mediators. We further confirmed that, in vivo, CG was required for the extracellular release of AnxA1 and CRAMP in a subcutaneous air pouch model. In vitro, CG efficiently cleaved AnxA1, releasing the active N-terminal peptide Ac2-26, and processed CRAMP in limited fashion. Ac2-26 and CRAMP peptides enhanced the release of CXCL2 by CG/NE neutrophils in a dose-dependent manner via formyl peptide receptor (FPR) stimulation. Blockade of FPRs by an antagonist, Boc2 (t-Boc-Phe-d-Leu-Phe-d-Leu-Phe), abrogates CXCL2 release, whereas addition of FPR agonists, fMLF and F2L, relieves Boc2 inhibition. Furthermore, the addition of active CG, but not inactive CG, also relieves Boc2 inhibition. These findings suggest that CG modulates neutrophil effector functions partly by controlling the release (and proteolysis) of FPR agonists. Unexpectedly, we found that mature CRAMP, but not Ac2-26, induced ROS production through an FPR-independent pathway.

  2. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP.

    Science.gov (United States)

    Karmakar, Mausita; Katsnelson, Michael A; Dubyak, George R; Pearlman, Eric

    2016-02-15

    Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X7R, which leads to ATP-induced loss of intracellular K(+), NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X7R activation caused a sustained increase in intracellular [Ca(2+)], which is indicative of P2X7R channel opening. Although there are multiple polymorphic variants of P2X7R, we found that neutrophils from multiple donors express P2X7R, but with differential efficacies in ATP-induced increase in cytosolic [Ca(2+)]. Neutrophils were also the predominant P2X7R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X7R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X7R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact.

  3. IFN-gamma is produced by polymorphonuclear neutrophils in human uterine endometrium and by cultured peripheral blood polymorphonuclear neutrophils.

    Science.gov (United States)

    Yeaman, G R; Collins, J E; Currie, J K; Guyre, P M; Wira, C R; Fanger, M W

    1998-05-15

    Cytokines present in the human uterus play an important role both in modulating immune responses to infectious challenge and in the establishment and maintenance of pregnancy. In particular, successful implantation and pregnancy is thought to require the establishment of a Th2 environment, while Th1 cytokines are associated with pregnancy loss and infertility. On the other hand, a Th1 response appears to be required for the resolution of acute infection. Using novel confocal microscopic analysis of fresh sections of human tissue, we have investigated the production of IFN-gamma, a Th1 cytokine, in human endometria. Extracellular IFN-gamma, mostly associated with matrix components, was located immediately beneath the luminal epithelium and along the glandular epithelium proximal to the lumen. As evidenced by intracellular staining, IFN-gamma is produced by both stromal cells and intraepithelial lymphocytes through all stages of the menstrual cycle. Surprisingly, the stromal cell containing intracellular IFN-gamma was identified as a polymorphonuclear neutrophil on the basis of its reactivity with a panel of mAbs and its nuclear morphology. We further found that polymorphonuclear neutrophils isolated from normal donors produce IFN-gamma in response to stimulation with LPS, IL-12, and TNF-alpha. Taken together, these findings suggest that polymorphonuclear neutrophils are capable of producing IFN-gamma both in vitro and in vivo, indicating that their role in shaping immune responses may be more extensive than previously thought. Furthermore, these studies strongly suggest that polymorphonuclear neutrophils play an important role in determining immune responsiveness within the female reproductive tract.

  4. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Clemmensen, Stine N; Dahl, Sara L

    2014-01-01

    Papillon-Lefèvre syndrome (PLS) results from mutations that inactivate cysteine protease cathepsin C (CTSC), which processes a variety of serine proteases considered essential for antimicrobial defense. Despite serine protease-deficient immune cell populations, PLS patients do not exhibit marked...... localize to azurophil granules, including the major serine proteases, elastase, cathepsin G, and proteinase 3, were absent. Accordingly, neutrophils from this patient were incapable of producing neutrophil extracellular traps (NETs) in response to ROS and were unable to process endogenous cathelicidin h......CAP-18 into the antibacterial peptide LL-37 in response to ionomycin. In immature myeloid cells from patient bone marrow, biosynthesis of CTSC and neutrophil serine proteases appeared normal along with initial processing and sorting to cellular storage. In contrast, these proteins were completely absent...

  5. The bactericidal effects of the respiratory burst and the myeloperoxidase system isolated in neutrophil cytoplasts.

    Science.gov (United States)

    Odell, E W; Segal, A W

    1988-10-07

    Neutrophil polymorphonuclear leucocytes kill bacteria by oxygen-dependent and oxygen-independent mechanisms. Many potentially toxic mechanisms have been described, but the complexity of the phagosomal environment and the synergy between oxidative and non-oxidative systems hamper the investigation of individual bactericidal mechanism in whole cells. Neutrophil cytoplasts are greatly depleted of granule proteins and permit the investigation of the bactericidal effects of the respiratory burst in isolation. In this study they have been used to examine the role of the respiratory burst and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus. Cytoplasts generated oxygen radicals at comparable rates to human neutrophils and phagocytosed but did not kill S. aureus. The selective reconstitution of the myeloperoxidase-hydrogen peroxide-halide system by coating bacteria with myeloperoxidase conferred on cytoplasts the ability to kill intracellular bacteria. However, extracellular killing by diffusible bactericidal factors was not detected in this system.

  6. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection

    Science.gov (United States)

    Scordo, Julia M.; Arcos, Jesús; Kelley, Holden V.; Diangelo, Lauren; Sasindran, Smitha J.; Youngmin, Ellie; Wewers, Mark D.; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B.

    2017-01-01

    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis (M.tb) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site. PMID:28373877

  7. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  8. Activation of Neutrophils by Nanoparticles

    Directory of Open Access Journals (Sweden)

    David M. Goncalves

    2011-01-01

    Full Text Available The use of nanoparticles (NPs has increased in the past few years in various fields, including defence, aerospace, electronics, biology, medicine, and so forth. and in applications such as diagnostic technology, bioimaging, and drug/gene delivery. Thus, human exposure to NPs and nanomaterials is unavoidable and will certainly expand in the future resulting in a growing interest in nanotoxicology, the study of toxicity of nanomaterials. A number of studies have reported the effects of NPs in respect to pulmonary inflammation by investigating in vitro activation of pulmonary cells with NPs and in vivo in a variety of models in which neutrophils appear to be the predominant leukocyte cell type in lungs and in bronchoalveolar lavages following inhalation or intratracheal instillation of NPs. Despite the fact that several studies have reported an increased number of neutrophils, the literature dealing with the direct activation of neutrophils by a given NP is poorly documented. This paper will summarize the current literature in this latter area of research and will end with a perspective view in which our laboratory will be involved in the following years.

  9. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  10. Targeting Neutrophils to Prevent Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome in Mice

    Science.gov (United States)

    Soeiro-Pereira, Paulo V.; Gomes, Eliane; Neto, Antonio Condino; D' Império Lima, Maria R.; Alvarez, José M.; Portugal, Silvia; Epiphanio, Sabrina

    2016-01-01

    Malaria remains one of the greatest burdens to global health, causing nearly 500,000 deaths in 2014. When manifesting in the lungs, severe malaria causes acute lung injury/acute respiratory distress syndrome (ALI/ARDS). We have previously shown that a proportion of DBA/2 mice infected with Plasmodium berghei ANKA (PbA) develop ALI/ARDS and that these mice recapitulate various aspects of the human syndrome, such as pulmonary edema, hemorrhaging, pleural effusion and hypoxemia. Herein, we investigated the role of neutrophils in the pathogenesis of malaria-associated ALI/ARDS. Mice developing ALI/ARDS showed greater neutrophil accumulation in the lungs compared with mice that did not develop pulmonary complications. In addition, mice with ALI/ARDS produced more neutrophil-attracting chemokines, myeloperoxidase and reactive oxygen species. We also observed that the parasites Plasmodium falciparum and PbA induced the formation of neutrophil extracellular traps (NETs) ex vivo, which were associated with inflammation and tissue injury. The depletion of neutrophils, treatment with AMD3100 (a CXCR4 antagonist), Pulmozyme (human recombinant DNase) or Sivelestat (inhibitor of neutrophil elastase) decreased the development of malaria-associated ALI/ARDS and significantly increased mouse survival. This study implicates neutrophils and NETs in the genesis of experimentally induced malaria-associated ALI/ARDS and proposes a new therapeutic approach to improve the prognosis of severe malaria. PMID:27926944

  11. Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase.

    Science.gov (United States)

    Rossi, Alessandra; Lord, Janet M

    2013-12-01

    Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1-10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.

  12. Flow Cytometric Evaluation of Human Neutrophil Apoptosis During Nitric Oxide Generation In Vitro: The Role of Exogenous Antioxidants

    Directory of Open Access Journals (Sweden)

    Zofia Sulowska

    2005-01-01

    in vitro. The effect of exogenous supply of NO donors such as SNP, SIN-1, and GEA-3162 on the course of human neutrophil apoptosis and the role of extracellular antioxidants in this process was investigated. Isolated from peripheral blood, neutrophils were cultured in the presence or absence of NO donor compounds and antioxidants for 8, 12, and 20 hours. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V protein binding to the cell surface. Exposure of human neutrophils to GEA-3162 and SIN-1 significantly accelerates and enhances their apoptosis in vitro in a time-dependent fashion. In the presence of SNP, intensification of apoptosis has not been revealed until 12 hours after the culture. The inhibition of GEA-3162- and SIN-1-mediated neutrophil apoptosis by superoxide dismutase (SOD but not by catalase (CAT was observed. Our results show that SOD and CAT can protect neutrophils against NO-donors-induced apoptosis and suggest that the interaction of NO and oxygen metabolites signals may determine the destructive or protective role of NO donor compounds during apoptotic neutrophil death.

  13. Relationship of phosphatidylinositol bisphosphate hydrolysis to calcium mobilization and functional activation in fluoride-treated neutrophils.

    OpenAIRE

    English, D.; Debono, D J; Gabig, T G

    1987-01-01

    Sodium fluoride (20 mM) effected rapid hydrolysis of phosphatidylinositol bisphosphate (PIP2) in human neutrophils. Intracellular free Ca2+ levels increased after PIP2 hydrolysis but before respiratory burst activation. Both the increase in intracellular free Ca2+ levels and the extent of functional activation were dependent on the availability of extracellular Ca2+. The rate of F(-)-stimulated PIP2 hydrolysis, however, was not affected when the rise in cytosolic Ca2+ was severely limited by ...

  14. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  15. [Ambiguity role of neutrophils in oncogenesis].

    Science.gov (United States)

    Mal'tseva, V N; Safronova, V G

    2009-01-01

    The review is focused on the participation of polymorphonuclear granulocytes (neutrophils) in development and spreading of a tumor. We consider both the well known functions of neutrophils (degranulation, production of reactive oxygen species (ROS)) and the recently shown one (presentation of an antigene). The special attention is focused on the ambiguity of the neutrophil role in oncogenesis. The dominant view is that neutrophils display exclusively antitumor properties. The update information testifies about protumoral activity of neutrophils: they migrate to a tumor and promote angiogenesis and metastasis at late stages of the tumor. It is interesting that certain components of neutrophil cytotoxic arsenal (ROS, cytokines, specific enzymes) participate both in antitumoral defenses of an organism and protumoral activity.

  16. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the natural occurring R213G substitution

    DEFF Research Database (Denmark)

    Gottfredsen, Randi Heidemann; Goldstrohm, David; Hartney, John

    2014-01-01

    Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages...

  17. Relationship of phosphatidylinositol bisphosphate hydrolysis to calcium mobilization and functional activation in fluoride-treated neutrophils.

    Science.gov (United States)

    English, D; Debono, D J; Gabig, T G

    1987-07-01

    Sodium fluoride (20 mM) effected rapid hydrolysis of phosphatidylinositol bisphosphate (PIP2) in human neutrophils. Intracellular free Ca2+ levels increased after PIP2 hydrolysis but before respiratory burst activation. Both the increase in intracellular free Ca2+ levels and the extent of functional activation were dependent on the availability of extracellular Ca2+. The rate of F(-)-stimulated PIP2 hydrolysis, however, was not affected when the rise in cytosolic Ca2+ was severely limited by depletion of extracellular Ca2+. Fluoride caused the specific hydrolysis of PIP2 in isolated neutrophil plasma membranes. This effect occurred in the presence of low levels of available Ca2+ and was accompanied by the release of inositol phosphates. We conclude that PIP2 hydrolysis is an early event in the response of neutrophils to F-. This response is not Ca2+-regulated but may lead to an influx of Ca2+ from the extracellular medium. Activation of a PIP2-specific phospholipase independent of a change in cytosolic free Ca2+ levels may be the initial event in the stimulus-response pathway triggered by fluoride.

  18. CFTR targeting during activation of human neutrophils.

    Science.gov (United States)

    Ng, Hang Pong; Valentine, Vincent G; Wang, Guoshun

    2016-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.

  19. Elevated mean neutrophil volume represents altered neutrophil composition and reflects damage after myocardial infarction

    NARCIS (Netherlands)

    van Hout, G. P J; van Solinge, W. W.; Gijsberts, C. M.; Teuben, M. P J; Leliefeld, P. H C; Heeres, M.; Nijhoff, F.; de Jong, S.|info:eu-repo/dai/nl/341696706; Bosch, L.; de Jager, S. C A; Huisman, A.|info:eu-repo/dai/nl/255170653; Stella, P. R.|info:eu-repo/dai/nl/304814717; Pasterkamp, G.|info:eu-repo/dai/nl/138488304; Koenderman, L. J.|info:eu-repo/dai/nl/074929798; Hoefer, I. E.|info:eu-repo/dai/nl/267105649

    2015-01-01

    Myocardial infarction (MI) induces an inflammatory response in which neutrophils fulfill a prominent role. Mean neutrophil volume (MNV) represents the average size of the circulating neutrophil population. Our goal was to determine the effect of MI on MNV and investigate the mechanisms behind MNV

  20. Neonatal Sepsis and Neutrophil Insufficiencies

    Science.gov (United States)

    Melvan, John Nicholas; Bagby, Gregory J.; Welsh, David A.; Nelson, Steve; Zhang, Ping

    2011-01-01

    Sepsis has continuously been a leading cause of neonatal morbidity and mortality despite current advances in chemotherapy and patient intensive care facilities. Neonates are at high risk for developing bacterial infections due to quantitative and qualitative insufficiencies of innate immunity, particularly granulocyte lineage development and response to infection. Although antibiotics remain the mainstay of treatment, adjuvant therapies enhancing immune function have shown promise in treating sepsis in neonates. This chapter reviews current strategies for the clinical management of neonatal sepsis and analyzes mechanisms underlying insufficiencies of neutrophil defense in neonates with emphasis on new directions for adjuvant therapy development. PMID:20521927

  1. Modulation of polymorphonuclear neutrophil functions by astrocytes

    Directory of Open Access Journals (Sweden)

    Xie Luokun

    2010-09-01

    Full Text Available Abstract Background Neuroinflammation is a complex process involving cells from the immune system and the central nerve system (CNS. Polymorphonuclear neutrophils (PMN are the most abundant class of white blood cells, and typically the first type of leukocyte recruited to sites of inflammation. In the CNS, astrocytes are the most abundant glial cell population and participate in the local innate immune response triggered by a variety of insults. In the present study, we investigated the impacts of astrocytes on PMN function. Methods Primary astrocyte cultures were derived from postnatal C57BL/6 mice and primary neutrophils were isolated from 8 to 12 weeks old C57BL/6 mice. PMNs respiratory burst was analyzed by H2DCFDA assay. For phagocytosis assay, neutrophils were incubated with FITC-labeled E. coli and the phagocytosis of E coli was determined by flow cytometer. PMNs degranulation was determined by myeloperoxidase assay. Cytokine expression was determined by real-time PCR. To determine the involvement of different signaling pathway, protein lysates were prepared and western blots were conducted to assess the activation of Akt, Erk1/2, and p38. Results Using ex vivo neutrophils and primary astrocyte cultures, our study demonstrated that astrocytes differentially regulate neutrophil functions, depending upon whether the interactions between the two cell types are direct or indirect. Upon direct cell-cell contact, astrocytes attenuate neutrophil apoptosis, respiratory bust, and degranulation, while enhancing neutrophil phagocytic capability and pro-inflammatory cytokine expression. Through indirect interaction with neutrophils, astrocytes attenuate apoptosis and enhance necrosis in neutrophils, augment neutrophil phagocytosis and respiratory burst, and inhibit neutrophil degranulation. In addition, astrocytes could augment Akt, Erk1/2, and p38 activation in neutrophils. Conclusions Astrocytes differentially regulate neutrophil functions through

  2. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  3. Neutrophils are immuno-modulatory in rhinovirus infections

    NARCIS (Netherlands)

    Tang, Francesca; Hansbro, Philip; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Background: Neutrophils are important in controlling bacterial infections however; their role in viral infections remains unclear. Previously, we found that neutrophils respond to viral mimetics but not replication competent rhinovirus (RV). Aim: To investigate if neutrophils are activated when expo

  4. Neutrophils are immuno-modulatory in rhinovirus infections

    NARCIS (Netherlands)

    Tang, Francesca; Hansbro, Philip; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Background: Neutrophils are important in controlling bacterial infections however; their role in viral infections remains unclear. Previously, we found that neutrophils respond to viral mimetics but not replication competent rhinovirus (RV). Aim: To investigate if neutrophils are activated when

  5. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos.

    Science.gov (United States)

    Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  6. Modulation and Apoptosis of Neutrophil Granulocytes by Extracorporeal Photopheresis in the Treatment of Chronic Graft-Versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Cindy Franklin

    Full Text Available Chronic graft-versus-host disease (cGVHD is a common side effect of allogeneic stem cell transplantation and a major cause of morbidity and mortality in affected patients. Especially skin, eyes and oral mucosa are affected. This can lead to pain and functional impairment. Extracorporeal photopheresis (ECP is an effective immunomodulatory therapy with minimal side effects but its mode of action is still largely unknown. The objective of the present study was to examine the effects of ECP on neutrophil granulocytes in patients with cGVHD. Analysis of leukocytes from cGVHD patients obtained from the ECP device during treatment showed that neutrophil granulocytes account for the majority of cells treated during ECP. Neutrophils from healthy donors treated in vitro with 8-methoxypsoralen and UVA light as well as neutrophils from buffy coats of patients with cGVHD treated by ECP showed increased apoptosis and decreased half-life. In remaining non-apoptotic cells chemoirradiation resulted in loss of activation markers and reduced effector functions. This was accompanied by an increase in extracellular arginase-1 activity. Additional comparison of neutrophils isolated from blood of cGVHD patients before and 24h after ECP revealed a decreased half-life and reduction of effector functions of post-ECP neutrophils ex vivo. These observations strongly suggest that ECP induces both apoptosis and physiological changes in neutrophils and that these changes also take place in vivo. This study is the first to show that ECP modulates apoptosis and inflammatory activity in neutrophil granulocytes, indicating that neutrophils may significantly contribute to the overall immunomodulatory effects attributed to this treatment.

  7. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney. The availability of the cloned CaR enabled the development of DNA and antibody probes for identifying the CaR's mRNA and protein, respectively, within these and other tissues. It also permitted the identification of human diseases resulting from inactivating or activating mutations of the CaR gene and the subsequent generation of mice with targeted disruption of the CaR gene. The characteristic alterations in parathyroid and renal function in these patients and in the mice with "knockout" of the CaR gene have provided valuable information on the CaR's physiological roles in these tissues participating in mineral ion homeostasis. Nevertheless, relatively little is known about how the CaR regulates other tissues involved in systemic Ca(o)(2+) homeostasis, particularly bone and intestine. Moreover, there is evidence that additional Ca(o)(2+) sensors may exist in bone cells that mediate some or even all of the known effects of Ca(o)(2+) on these cells. Even more remains to be learned about the CaR's function in the rapidly growing list of cells that express it but are uninvolved in systemic Ca(o)(2+) metabolism. Available data suggest that the receptor serves numerous roles outside of systemic mineral ion homeostasis, ranging from the regulation of hormonal secretion and the activities of various ion channels to the longer term control of gene expression, programmed cell death (apoptosis), and cellular proliferation. In some cases, the CaR on these "nonhomeostatic" cells responds to local changes in Ca(o)(2+) taking place within compartments of the extracellular fluid (ECF) that communicate with the outside environment (e.g., the gastrointestinal tract). In others

  8. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen

    2013-12-01

    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  9. Neutrophil granules in health and disease

    DEFF Research Database (Denmark)

    Häger, M; Cowland, J B; Borregaard, N

    2010-01-01

    Neutrophil granules store proteins that are critically important for the neutrophil to move from the vascular bed to tissues and to kill microorganisms. This is illustrated in nature when individual proteins are deleted due to inherited mutations of their cognate genes, and such deficiencies resu...

  10. Evasion of Neutrophil Killing by Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Will A. McGuinness

    2016-03-01

    Full Text Available Staphylococcus aureus causes many types of infections, ranging from self-resolving skin infections to severe or fatal pneumonia. Human innate immune cells, called polymorphonuclear leukocytes (PMNs or neutrophils, are essential for defense against S. aureus infections. Neutrophils are the most prominent cell type of the innate immune system and are capable of producing non-specific antimicrobial molecules that are effective at eliminating bacteria. Although significant progress has been made over the past few decades, our knowledge of S. aureus-host innate immune system interactions is incomplete. Most notably, S. aureus has the capacity to produce numerous molecules that are directed to protect the bacterium from neutrophils. Here we review in brief the role played by neutrophils in defense against S. aureus infection, and correspondingly, highlight selected S. aureus molecules that target key neutrophil functions.

  11. 3D Neutrophil Tractions in Changing Microenvironments

    Science.gov (United States)

    Toyjanova, Jennet; Flores, Estefany; Reichner, Jonathan; Franck, Christian

    2012-02-01

    Neutrophils are well-known as first responders to defend the body against life threatening bacterial diseases, infections and inflammation. The mechanical properties and the local topography of the surrounding microenvironment play a significant role in the regulating neutrophil behavior including cell adhesion, migration and generation of tractions. In navigating to the site of infection, neutrophils are exposed to changing microenvironments that differ in their composition, structure and mechanical properties. Our goal is to investigate neutrophil behavior, specifically migration and cellular tractions in a well-controlled 3D in vitro system. By utilizing an interchangeable 2D-3D sandwich gel structure system with tunable mechanical properties neutrophil migration and cell tractions can be computed as a function of gel stiffness and geometric dimensionality.

  12. Regulators and Effectors of Arf GTPases in Neutrophils.

    Science.gov (United States)

    Gamara, Jouda; Chouinard, François; Davis, Lynn; Aoudjit, Fawzi; Bourgoin, Sylvain G

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.

  13. Regulators and Effectors of Arf GTPases in Neutrophils

    Directory of Open Access Journals (Sweden)

    Jouda Gamara

    2015-01-01

    Full Text Available Polymorphonuclear neutrophils (PMNs are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs and GTPase activating proteins (GAPs as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.

  14. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Linda M Bradley

    Full Text Available The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88⁻/⁻ airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.

  15. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Candida albicans escapes from mouse neutrophils.

    Science.gov (United States)

    Ermert, David; Niemiec, Maria J; Röhm, Marc; Glenthøj, Andreas; Borregaard, Niels; Urban, Constantin F

    2013-08-01

    Candida albicans, the most commonly isolated human fungal pathogen, is able to grow as budding yeasts or filamentous forms, such as hyphae. The ability to switch morphology has been attributed a crucial role for the pathogenesis of C. albicans. To mimic disseminated candidiasis in humans, the mouse is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed that murine neutrophils exhibited a significantly lower ability to kill C. albicans than their human counterparts. Strikingly, C. albicans yeast cells formed germ tubes upon internalization by murine neutrophils, eventually rupturing the neutrophil membrane and thereby, killing the phagocyte. On the contrary, growth and subsequent escape of C. albicans are blocked inside human neutrophils. According to our findings, this blockage in human neutrophils might be a result of higher levels of MPO activity and the presence of α-defensins. We therefore outline differences in antifungal immune defense between humans and mouse strains, which facilitates a more accurate interpretation of in vivo results.

  17. Functional differentiation of normal human neutrophils.

    Science.gov (United States)

    Glasser, L; Fiederlein, R L

    1987-03-01

    In the past differentiation of human neutrophils has been defined by morphology, cytochemistry, or surface markers. In our experiments we have sequenced the various events that occur during the functional differentiation of the normal human neutrophil and have also examined some of the functional properties in relationship to surface markers and biochemical events. Granulocytes were obtained from the bone marrow and blood of hematologically normal individuals. Cells were separated into different stages of maturation by their physical properties using counterflow centrifugal elutriation and density gradient separation. Three cell fractions were obtained that were enriched for either immature myeloid cells, band neutrophils, or segmented neutrophils. Since the enriched fractions were not entirely pure, methodologies for functional assays were chosen that allowed cytologic evaluation of the functional capacity of each cell type. The criteria used to classify the stages of differentiation included both morphology by light microscopy and DNA labeling with tritiated thymidine. Various neutrophilic properties were studied: Fc receptors, complement receptors (CR1, CR3), phagocytosis of both live and dead opsonized Staphylococcus aureus, microbial killing of S aureus, NBT dye reduction after cellular stimulation with endotoxin, and chemotaxis. Our results indicate that the functional properties of the neutrophil appear in a distinct order. The sequence for the functional differentiation of the human neutrophil appears to be the following: Fc receptors----immune phagocytosis----complement receptors----oxygen-independent microbial killing----oxygen-dependent microbial killing----chemotaxis.

  18. Circulating Extracellular microRNA in Systemic Autoimmunity

    DEFF Research Database (Denmark)

    Heegaard, Niels H. H.; Carlsen, Anting Liu; Skovgaard, Kerstin

    2015-01-01

    killer cells, neutrophil granulocytes, and monocyte-macrophages. Exploratory studies (only validated in a few cases) also show that specific profiles of circulating miRNAs are associated with different systemic autoimmune diseases including systemic lupus erythematosus (SLE), systemic sclerosis......, and rheumatoid arthritis. Even though the link between cellular alterations and extracellular profiles is still unpredictable, the data suggest that circulating miRNAs in autoimmunity may become diagnostically useful. Here, we review important circulating miRNAs in animal models of inflammation and in systemic...

  19. Neutrophil granules in health and disease

    DEFF Research Database (Denmark)

    Häger, M; Cowland, J B; Borregaard, N

    2010-01-01

    Neutrophil granules store proteins that are critically important for the neutrophil to move from the vascular bed to tissues and to kill microorganisms. This is illustrated in nature when individual proteins are deleted due to inherited mutations of their cognate genes, and such deficiencies result...... in the conditions leucocyte adhesion deficiency and chronic granulomatous disease. The granules of the neutrophil have traditionally been divided into two or three major types but are instead a continuum where several subtypes can be identified with differences in protein content and propensity for mobilization...

  20. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major

    Science.gov (United States)

    Ricci-Azevedo, Rafael; Oliveira, Aline Ferreira; Conrado, Marina C. A. V.; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina

    2016-01-01

    ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an

  1. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major.

    Science.gov (United States)

    Ricci-Azevedo, Rafael; Oliveira, Aline Ferreira; Conrado, Marina C A V; Carvalho, Fernanda Caroline; Roque-Barreira, Maria Cristina

    2016-04-01

    ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an

  2. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major.

    Directory of Open Access Journals (Sweden)

    Rafael Ricci-Azevedo

    2016-04-01

    Full Text Available ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1 immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS, form neutrophil extracellular traps (NETs and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF and interleukin-1beta (IL-1β release; otherwise, transforming growth factor-beta (TGF-β production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be

  3. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  4. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils.

    Science.gov (United States)

    Creed, T Michael; Tandon, Shweta; Ward, Richard A; McLeish, Kenneth R

    2017-06-21

    Neutrophil generation of reactive oxygen species (ROS) is enhanced by exposure to pro-inflammatory agents in a process termed priming. Priming is depending on exocytosis of neutrophil granules and p47(phox) phosphorylation-dependent translocation of cytosolic NADPH oxidase components. Clathrin-mediated endocytosis was recently reported to be necessary for priming, but the mechanism linking endocytosis to priming was not identified. The present study examined the hypothesis that endocytosis regulates neutrophil priming by controlling granule exocytosis. Clathrin-mediated endocytosis by isolated human neutrophils was inhibited by chlorpromazine, monodansylcadaverine, and sucrose. Exocytosis of granule subsets was measured as release of granule components by ELISA or chemiluminescence. ROS generation was measured as extracellular release of superoxide as reduction of ferrocytochrome c. p38 MAPK activation and p47(phox) phosphorylation were measured by immunoblot analysis. Statistical analysis was performed using a one-way ANOVA with the Tukey-Kramer multiple-comparison test. Inhibition of endocytosis prevented priming of superoxide release by TNFα and inhibited TNFα stimulation and priming of exocytosis of all four granule subsets. Inhibition of endocytosis did not reduce TNFα-stimulated p38 MAPK activation or p47(phox) phosphorylation. Inhibition of NADPH oxidase activity blocked TNFα stimulation of secretory vesicle and gelatinase granule exocytosis. Endocytosis is linked to priming of respiratory burst activity through ROS-mediated control of granule exocytosis.

  5. A review of the proposed role of neutrophils in rodent amebic liver abscess models

    Science.gov (United States)

    Campos-Rodríguez, Rafael; Gutiérrez-Meza, Manuel; Jarillo-Luna, Rosa Adriana; Drago-Serrano, María Elisa; Abarca-Rojano, Edgar; Ventura-Juárez, Javier; Cárdenas-Jaramillo, Luz María; Pacheco-Yepez, Judith

    2016-01-01

    Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA). Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters). Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl) and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO) enzymes, and the formation of neutrophil extracellular traps (NETs). On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response. PMID:26880421

  6. A review of the proposed role of neutrophils in rodent amebic liver abscess models

    Directory of Open Access Journals (Sweden)

    Campos-Rodríguez Rafael

    2016-01-01

    Full Text Available Host invasion by Entamoeba histolytica, the pathogenic agent of amebiasis, can lead to the development of amebic liver abscess (ALA. Due to the difficulty of exploring host and amebic factors involved in the pathogenesis of ALA in humans, most studies have been conducted with animal models (e.g., mice, gerbils, and hamsters. Histopathological findings reveal that the chronic phase of ALA in humans corresponds to lytic or liquefactive necrosis, whereas in rodent models there is granulomatous inflammation. However, the use of animal models has provided important information on molecules and mechanisms of the host/parasite interaction. Hence, the present review discusses the possible role of neutrophils in the effector immune response in ALA in rodents. Properly activated neutrophils are probably successful in eliminating amebas through oxidative and non-oxidative mechanisms, including neutrophil degranulation, the generation of free radicals (O2−, H2O2, HOCl and peroxynitrite, the activation of NADPH-oxidase and myeloperoxidase (MPO enzymes, and the formation of neutrophil extracellular traps (NETs. On the other hand, if amebas are not eliminated in the early stages of infection, they trigger a prolonged and exaggerated inflammatory response that apparently causes ALAs. Genetic differences in animals and humans are likely to be key to a successful host immune response.

  7. Synergistic protection against hyperoxia-induced lung injury by neutrophils blockade and EC-SOD overexpression

    Directory of Open Access Journals (Sweden)

    Min Jae H

    2012-07-01

    Full Text Available Abstract Background Oxygen may damage the lung directly via generation of reactive oxygen species (ROS or indirectly via the recruitment of inflammatory cells, especially neutrophils. Overexpression of extracellular superoxide dismutase (EC-SOD has been shown to protect the lung against hyperoxia in the newborn mouse model. The CXC-chemokine receptor antagonist (Antileukinate successfully inhibits neutrophil influx into the lung following a variety of pulmonary insults. In this study, we tested the hypothesis that the combined strategy of overexpression of EC-SOD and inhibiting neutrophil influx would reduce the inflammatory response and oxidative stress in the lung after acute hyperoxic exposure more efficiently than either single intervention. Methods Neonate transgenic (Tg (with an extra copy of hEC-SOD and wild type (WT were exposed to acute hyperoxia (95% FiO2 for 7 days and compared to matched room air groups. Inflammatory markers (myeloperoxidase, albumin, number of inflammatory cells, oxidative markers (8-isoprostane, ratio of reduced/oxidized glutathione, and histopathology were examined in groups exposed to room air or hyperoxia. During the exposure, some mice received a daily intraperitoneal injection of Antileukinate. Results Antileukinate-treated Tg mice had significantly decreased pulmonary inflammation and oxidative stress compared to Antileukinate-treated WT mice (p p  Conclusion Combined strategy of EC-SOD and neutrophil influx blockade may have a therapeutic benefit in protecting the lung against acute hyperoxic injury.

  8. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    Science.gov (United States)

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  9. Pleiotropic regulations of neutrophil receptors response to sepsis.

    Science.gov (United States)

    Zhang, Huafeng; Sun, Bingwei

    2017-03-01

    Sepsis is a complex clinical condition that causes a high mortality rate worldwide. Numerous studies on the pathophysiology of sepsis have revealed an imbalance in the inflammatory network, thus leading to tissue damage, organ failure, and ultimately death. The impairment of neu-trophil migration is associated with the outcome of sepsis. Literature review was performed on the roles of neutrophil recruitment and neutrophil receptors as pleiotropic regulators during sepsis. Additionally, we systematically classify neutrophil receptors with regard to the neutrophil response during sepsis and discuss the clinical implications of these receptors for the treatment of sepsis. Increasing evidence suggests that there is significant dysfunction in neutrophil recruitment during sepsis, characterized by the failure to migrate to the site of infection. Neutrophil receptors, as pleiotropic regulators, play important roles in the neutrophil response during sepsis. Neutrophil receptors play key roles in chemotactic neutrophil migration and may prove to be suitable targets in future pharmacological therapies for sepsis.

  10. Low concentrations of human neutrophil peptide ameliorate experimental murine colitis.

    Science.gov (United States)

    Maeda, Takuro; Sakiyama, Toshio; Kanmura, Shuji; Hashimoto, Shinichi; Ibusuki, Kazunari; Tanoue, Shiroh; Komaki, Yuga; Arima, Shiho; Nasu, Yuichiro; Sasaki, Fumisato; Taguchi, Hiroki; Numata, Masatsugu; Uto, Hirofumi; Tsubouchi, Hirohito; Ido, Akio

    2016-12-01

    Human neutrophil peptides (HNPs) not only have antimicrobial properties, but also exert multiple immunomodulatory effects depending on the concentration used. We have previously demonstrated that the intraperitoneal administration of high-dose HNP-1 (100 µg/day) aggravates murine dextran sulfate sodium (DSS)-induced colitis, suggesting a potential pro-inflammatory role for HNPs at high concentrations. However, the role of low physiological concentrations of HNPs in the intestinal tract remains largely unknown. The aim of this study was to examine the effects of low concentrations of HNPs on intestinal inflammation. We first examined the effects of the mild transgenic overexpression of HNP-1 in DSS-induced colitis. HNP-1 transgenic mice have plasma HNP-1 levels similar to the physiological concentrations in human plasma. Compared to wild-type mice treated with DSS, HNP-1 transgenic mice treated with DSS had significantly lower clinical and histological scores, and lower colonic mRNA levels of pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor (TNF)-α. We then injected low-dose HNP-1 (5 µg/day) or phosphate-buffered saline (PBS) intraperitoneally into C57BL/6N and BALB/c mice administered DSS. The HNP-1-treated mice exhibited significantly milder colitis with reduced expression levels of pro-inflammatory cytokines compared with the PBS-treated mice. Finally, we examined the in vitro effects of HNP-1 on the expression of cytokines associated with macrophage activation. Low physiological concentrations of HNP-1 did not significantly affect the expression levels of IL-1β, TNF-α, IL-6 or IL-10 in colonic lamina propria mononuclear cells activated with heat-killed Escherichia coli, suggesting that the anti-inflammatory effects of HNP-1 on murine colitis may not be exerted by direct action on intestinal macrophages. Collectively, our data demonstrated a biphasic dose-dependent effect of HNP-1 on DSS-induced colitis: an

  11. Neutrophil-mediated phagocytosis of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Jos A.G. Van Strijp

    2014-09-01

    Full Text Available For invading staphylococci, phagocytosis an killing bij human neutrophils is the biggest threat. Neutrophils are the only cells that can effectively kill staphylococci by engulfment and subsequent bombardment with proteases, amidases, antimicrobial peptides and proteins in concert with reactive oxygen species that are generated during the metabolic burst.Both complement and antibodies are crucial for effective uptake and neutrophil activation. S. aureus is not an innocent bystander in this process. It actively secretes several proteins to impair every single step in this process from receptor modulation, to complement inhibition to neutrophil lysis to protease, antimicrobial peptide inhibition and resistance to reactive oxygen species. For the design of future novel antimicrobial strategies: therapeutic antibodies, vaccines, novel antibiotics, all this should be taken into account. Still the best way to treat diseases is to help to enhance the natural defence mechanism that are already in place.

  12. Clinical Microfluidics for Neutrophil Genomics and Proteomics

    OpenAIRE

    2010-01-01

    Neutrophils play critical roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood and develop ‘on-chip’ processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Lastly, we implement this tool as part of a near patient blood processing system within a multi-center clinical study of...

  13. Neutrophils in asthma--a review.

    Science.gov (United States)

    Ciepiela, Olga; Ostafin, Magdalena; Demkow, Urszula

    2015-04-01

    Asthma is a chronic inflammatory disease, with an array of cells involved in the pathogenesis of the disease. The role of neutrophils in the development of bronchial asthma is found to be complex, as they may trigger activation of immunocompetent cells and are a potent source of free oxygen radicals and enzymes participating in airway remodeling. The review highlights the role of neutrophils in bronchial asthma.

  14. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    Internet site(s) Penn Medicine News Site: ▪ http://www.uphs.upenn.edu/news/News_Releases/2016/07/eruslanov/ Technologies or techniques Nothing to...determine whether the tumor microenvironment stimu- lates trafficking of neutrophils, resting PBNs were assayed for tran- swell migration in the presence of...Ray, Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning

  15. Subproteome analysis of the neutrophil cytoskeleton

    OpenAIRE

    Xu, Ping; Crawford, Mark; Way, Michael; Godovac-Zimmermann, Jasminka; Segal, Anthony W.; Radulovic, Marko

    2009-01-01

    Neutrophils play a key role in the early host-defense mechanisms due to their capacity to migrate into inflamed tissues and phagocytose microorganisms. The cytoskeleton has an essential role in these neutrophil functions, however, its composition is still poorly understood. We separately analyzed different cytoskeletal compartments: cytosolic skeleton, phagosome membrane skeleton, and plasma membrane skeleton. Using a proteomic approach, 138 nonredundant proteins were identified. Proteins not...

  16. Photothermal image cytometry of human neutrophils

    Science.gov (United States)

    Lapotko, Dmitry

    2001-07-01

    Photothermal imaging, when being applied to the study of living cells, provides morpho-functional information about the cell populations. In technical terms, the method is complementary to optical microscopy. The photothermal method was used for cell imaging and quantitative studies. Preliminary results of the studies on living human neutrophils are presented. Differences between normal and pathological neutrophil populations from blood of healthy donors and patients with saracoidosis and pleuritis are demonstrated.

  17. Neutrophil Responses to Sterile Implant Materials

    OpenAIRE

    Siddharth Jhunjhunwala; Stephanie Aresta-DaSilva; Katherine Tang; David Alvarez; Webber, Matthew J.; Tang, Benjamin C.; Lavin, Danya M.; Omid Veiseh; Doloff, Joshua C; Suman Bose; Arturo Vegas; Minglin Ma; Gaurav Sahay; Alan Chiu; Andrew Bader

    2015-01-01

    In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcap...

  18. Blood neutrophil bactericidal activity against methicillin-resistant and methicillin-sensitive Staphylococcus aureus during cardiac surgery.

    Science.gov (United States)

    Mekontso-Dessap, Armand; Honoré, Stéphanie; Kirsch, Matthias; Plonquet, Anne; Fernandez, Eric; Touqui, Lhousseine; Farcet, Jean-Pierre; Soussy, Claude-James; Loisance, Daniel; Delclaux, Christophe

    2005-08-01

    Whether methicillin-resistant Staphylococcus aureus (MRSA) constitutes per se an independent risk factor for morbidity and mortality after surgery as compared with methicillin-sensitive Staphylococcus aureus (MSSA) remains a subject of debate. The aim of this study was to assess whether innate defenses against MRSA and MSSA strains are similarly impaired after cardiac surgery. Both intracellular (isolated neutrophil functions) and extracellular (plasma) defenses of 12 patients undergoing scheduled cardiac surgery were evaluated preoperatively (day 0) and postoperatively (day 3) against two MSSA strains with a low level of catalase secretion and two MRSA strains with a high level of catalase secretion, inasmuch as SA killing by neutrophils relies on oxygen-dependent mechanisms. After surgery, an increase in plasma concentration of IL-10, an anti-inflammatory cytokine able to inhibit reactive oxygen species secretion and bactericidal activity of neutrophils, was evidenced. Despite the fact that univariate analysis suggested a specific impairment of neutrophil functions against MRSA strains, two-way repeated-measures ANOVA failed to demonstrate that the effect of S. aureus phenotype was significant. On the other hand, an increase in type-II secretory phospholipase A2 activity, a circulating enzyme involved in SA lysis, was evidenced and was associated with an enhancement of extracellular defenses (bactericidal activity of plasma) against MRSA. Overall, cardiac surgery and S. aureus phenotype had a significant effect on plasma bactericidal activity. Cardiac surgery was characterized by enhanced antibacterial defenses of plasma, whereas neutrophil killing properties were reduced. The overall effect of S. aureus phenotype on neutrophil functions did not seem significant.

  19. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Science.gov (United States)

    Warren, Eric; Teskey, Garrett; Venketaraman, Vishwanath

    2017-01-01

    Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb) infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs), which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB) due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV) infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB) due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG, vaccine against

  20. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  1. Evidence of eosinophil extracellular trap cell death in COPD: does it represent the trigger that switches on the disease?

    Science.gov (United States)

    Uribe Echevarría, Loli; Leimgruber, Carolina; García González, Jorge; Nevado, Alberto; Álvarez, Ruth; García, Luciana N; Quintar, Amado A; Maldonado, Cristina A

    2017-01-01

    In spite of the numerous studies on chronic obstructive pulmonary disease (COPD), the cellular and molecular basis of the disease’s development remain unclear. Neutrophils and eosinophils are known to be key players in COPD. Recently, neutrophil extracellular trap cell death (NETosis), a mechanism due to decondensation and extrusion of chromatin to form extracellular traps, has been demonstrated in COPD. However, there is limited knowledge about eosinophil extracellular trap cell death (EETosis) and its role in the pathogenesis of COPD. The aim of this study was to evaluate EETosis in stable COPD. Induced sputum obtained from healthy smokers and low exacerbation risk COPD A or B group patients or high exacerbation risk COPD C or D group patients were included. Samples were examined using electron microscopy and immunofluorescence. Healthy smokers (n=10) and COPD A (n=19) group exhibited neutrophilic or paucigranulocytic phenotypes, with NETosis being absent in these patients. In contrast, COPD B (n=29), with eosinophilic or mixed phenotypes, showed EETosis and incipient NETosis. COPD C (n=18) and COPD D groups (n=13) were differentiated from low exacerbation rate-COPD group by the abundant cellular debris, with COPD C group having an eosinophilic pattern and numerous cells undergoing EETosis. A hallmark of this group was the abundant released membranes that often appeared phagocytosed by neutrophils, which coincidentally exhibited early NETosis changes. The COPD D group included patients with a neutrophilic or mixed pattern, with abundant neutrophil extracellular trap-derived material. This study is the first to demonstrate EETosis at different stages of stable COPD. The results suggest a role for eosinophils in COPD pathophysiology, especially at the beginning and during the persistence of the disease, regardless of whether the patient quit smoking, with EETosis debris probably triggering uncontrolled NETosis. The main target of these findings should be young

  2. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J;

    1997-01-01

    of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer......) inhibitor of elastase, in an animal model of acute lung inflammatory disease [11-14]. This inhibitor was previously selected from a hybrid library of randomized DNA and a small-molecule irreversible inhibitor of elastase (a valine diphenyl ester phosphonate, Fig. 1), by the blended SELEX process [15]. We...

  3. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease.

    Science.gov (United States)

    Alfakry, Hatem; Malle, Ernst; Koyani, Chintan N; Pussinen, Pirkko J; Sorsa, Timo

    2016-01-01

    Cardiovascular diseases are chronic inflammatory diseases that affect a large segment of society. Coronary heart disease (CHD), the most common cardiovascular disease, progresses over several years and affects millions of people worldwide. Chronic infections may contribute to the systemic inflammation and enhance the risk for CHD. Periodontitis is one of the most common chronic infections that affects up to 50% of the adult population. Under inflammatory conditions the activation of endogenous degradation pathways mediated by immune responses leads to the release of destructive cellular molecules from both resident and immigrant cells. Matrix metalloproteinases (MMPs) and their regulators can activate each other and play an important role in immune response via degrading extracellular matrix components and modulating cytokines and chemokines. The action of MMPs is required for immigrant cell recruitment at the site of inflammation. Stimulated neutrophils represent the major pathogen-fighting immune cells that upregulate expression of several proteinases and oxidative enzymes, which can degrade extracellular matrix components (e.g. MMP-8, MMP-9 and neutrophil elastase). The activity of MMPs is regulated by endogenous inhibitors and/or candidate MMPs (e.g. MMP-7). The balance between MMPs and their inhibitors is thought to mirror the proteolytic burden. Thus, neutrophil-derived biomarkers, including myeloperoxidase, may activate proteolytic destructive cascades that are involved in subsequent immune-pathological events associated with both periodontitis and CHD. Here, we review the existing studies on the contribution of MMPs and their regulators to the infection-related pathology. Also, we discuss the possible proteolytic involvement and role of neutrophil-derived enzymes as an etiological link between chronic periodontitis and CHD.

  4. Neutrophils in Cancer: Two Sides of the Same Coin

    Directory of Open Access Journals (Sweden)

    Eileen Uribe-Querol

    2015-01-01

    Full Text Available Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  5. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  6. The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing

    Science.gov (United States)

    Zinkernagel, Annelies S.; Timmer, Anjuli M.; Pence, Morgan A.; Locke, Jeffrey B.; Buchanan, John T.; Turner, Claire E.; Mishalian, Inbal; Sriskandan, Shiranee; Hanski, Emanuel; Nizet, Victor

    2009-01-01

    SUMMARY Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (Cepl) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection. PMID:18692776

  7. Involvement of pentraxin-3 in anti-neutrophil cytoplasmic antibody production induced by aluminum salt adjuvant.

    Science.gov (United States)

    Nagai, Kei; Aratani, Yasuaki; Shibuya, Akira; Yamagata, Kunihiro

    2017-01-01

    Pentraxin 3 (PTX3) is a multifunctional soluble factor. PTX3 can be involved in the regulation of vasculitis and is expressed in the cytoplasm of neutrophils. As anti-neutrophil cytoplasmic antibody (ANCA) is recognised as a cause of vasculitis, we aimed to discover the role of PTX3 in ANCA production in vivo. To this end, we used aluminum salt (alum), which induces neutrophil extracellular traps, as an adjuvant for producing anti-myeloperoxidase-ANCA (MPO-ANCA). Specifically, we intraperitoneally injected alum and recombinant MPO (rMPO) into MPO-deficient mice and then measured the concentration of anti-MPO IgG in their blood. To show the involvement of extracellular PTX3 in this model, we assessed PTX3 protein content and host double-stranded DNA levels in the mice's peritoneal fluid after alum injection. In addition, we simultaneously administered recombinant PTX3, rMPO and alum to MPO-deficient mice to assess the function of PTX3 in producing anti-MPO IgG in vivo. Anti-MPO IgG was produced by the alum + rMPO immunisation model in MPO-deficient but not wildtype mice. Injection of alum induced extracellular PTX3 as well as double-stranded DNA and dead cells in MPO-deficient mice. Simultaneous injection of recombinant PTX3 with rMPO and alum attenuated the production of anti-MPO IgG in MPO-deficient mice. Our current findings provide evidence that PTX3 attenuates the production of murine MPO-ANCA.

  8. Participation of dectin-1 receptor on NETs release against Paracoccidioides brasiliensis: Role on extracellular killing.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; Dias-Melicio, Luciane Alarcão; Fernandes, Reginaldo Keller; de Almeida Balderramas, Helanderson; Rodrigues, Daniela Ramos; Ximenes, Valdecir Farias; de Campos Soares, Ângela Maria Victoriano

    2016-02-01

    Paracoccidioides brasiliensis is a dimorphic fungus from the Paracoccidioides genus, which is the causative agent of paracoccidioidomycosis, a chronic, subacute or acute mycosis, with visceral and cutaneous involvement. This disease that is acquired through inhalation primarily attacks the lungs but, can spread to other organs. Phagocytic cells as neutrophils play an important role during innate immune response against this fungus, but studies on antifungal activities of these cells are scarce. In addition to their ability to eliminate pathogens by phagocytosis and antimicrobial secretions, neutrophils can trap and kill microorganisms by release of extracellular structures composed by DNA and antimicrobial proteins, called neutrophil extracellular traps (NETs). Here, we provide evidence that P. brasiliensis virulent strain (P. brasiliensis 18) induces NETs release. These structures were well evidenced by scanning electron microscopy, and specific NETs compounds such as histone, elastase and DNA were shown by confocal microscopy. In addition, we have shown that dectin-1 receptor is the main PRR to which fungus binds to induce NETS release. Fungi were ensnared by NETs, denoting the role of these structures in confining the fungus, avoiding dissemination. NETs were also shown to be involved in fungus killing, since fungicidal activity detected before and mainly after neutrophils activation with TNF-α, IFN-γ and GM-CSF was significantly inhibited by cocultures treatment with DNAse.

  9. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  10. Activated human neutrophil response to perfluorocarbon nanobubbles: oxygen-dependent and -independent cytotoxic responses.

    Science.gov (United States)

    Hwang, Tsong-Long; Fang, Chia-Lang; Al-Suwayeh, Saleh A; Yang, Li-Jia; Fang, Jia-You

    2011-06-10

    Nanobubbles, a type of nanoparticles with acoustically active properties, are being utilized as diagnostic and therapeutic nanoparticles to better understand, detect, and treat human diseases. The objective of this work was to prepare different nanobubble formulations and investigate their physicochemical characteristics and toxic responses to N-formyl-methionyl-leucyl-phenylalanine (fMLP)-activated human neutrophils. The nanobubbles were prepared using perfluoropentane and coconut oil as the respective core and shell, with soybean phosphatidylcholine (SPC) and/or cationic surfactants as the interfacial layers. The cytotoxic effect of the nanobubbles on neutrophils was determined by extracellular O₂(.)⁻ release, intracellular reactive oxygen species (ROS), lactate dehydrogenase (LDH), and elastase release. Particle sizes of the nanobubbles with different percentages of perfluorocarbon, oil, and surfactants in ranged 186-432 nm. The nanobubbles were demonstrated to inhibit the generation of superoxide and intracellular ROS. The cytotoxicity of nanobubbles may be mainly associated with membrane damage, as indicated by the high LDH leakage. Systems with Forestall (FE), a cationic surfactant, or higher SPC contents exhibited the greatest LDH release by 3-fold compared to the control. The further addition of an oil component reduced the cytotoxicity induced by the nanobubbles. Exposure to most of the nanobubble formulations upregulated elastase release by activated neutrophils. Contrary to this result, stearylamine (SA)-containing systems slightly but significantly suppressed elastase release. FE and SA in a free form caused stronger responses by neutrophils than when they were incorporated into nanobubbles. In summary, exposure to nanobubbles resulted in a formulation-dependent toxicity toward human neutrophils that was associated with both oxygen-dependent and -independent pathways. Clinicians should therefore exercise caution when using nanobubbles in patients

  11. M1 Protein Allows Group A Streptococcal Survival in Phagocyte Extracellular Traps through Cathelicidin Inhibition

    OpenAIRE

    Lauth, Xavier; von Köckritz-Blickwede, Maren; McNamara, Case W; Myskowski, Sandra; Zinkernagel, Annelies S.; Beall, Bernard; Ghosh, Partho; Richard L Gallo; Nizet, Victor

    2009-01-01

    M1 protein contributes to Group A Streptococcus (GAS) systemic virulence by interfering with phagocytosis and through proinflammatory activities when released from the cell surface. Here we identify a novel role of M1 protein in the stimulation of neutrophil and mast cell extracellular trap formation, yet also subsequent survival of the pathogen within these DNA-based innate defense structures. Targeted mutagenesis and heterologous expression studies demonstrate M1 protein promotes resistance...

  12. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil respiratory burst

    Indian Academy of Sciences (India)

    David Alan Thompson; Bruce D Hammock

    2007-03-01

    The leukotoxins [9(10)- and 12(13)-EpOME] are produced by activated inflammatory leukocytes such as neutrophils. High EpOME levels are observed in disorders such as acute respiratory distress syndrome and in patients with extensive burns. Although the physiological significance of the EpOMEs remains poorly understood, in some systems, the EpOMEs act as a protoxin, with their corresponding epoxide hydrolase metabolites, 9,10- and 12,13-DiHOME, specifically exerting toxicity. Both the EpOMEs and the DiHOMEs were also recently shown to have neutrophil chemotactic activity. We evaluated whether the neutrophil respiratory burst, a surge of oxidant production thought to play an important role in limiting certain bacterial and fungal infections, is modulated by members of the EpOME metabolic pathway. We present evidence that the DiHOMEs suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation.

  13. Phagocytosis and intracellular killing of Candida albicans by murine polymorphonuclear neutrophils.

    Science.gov (United States)

    Vonk, Alieke G; Netea, Mihai G; Kullberg, Bart Jan

    2012-01-01

    Polymorphonuclear neutrophils (PMNs) are important phagocytes in the control of Candida infections. The phagocytic contribution of PMNs to host defence can by assessed by various methods, such as microbiological assays. However, assessment and definition of intracellular killing capacity can be a source of considerable confusion. A comparison of the growth of Candida in the presence of PMN with the growth of Candida in phagocyte-free suspensions may lead to an overestimation of killing capacity because PMNs can use both intracellular and extracellular killing mechanisms. Here, we describe the use of an adherent monolayer of exudate peritoneal PMNs that is used to differentiate between the process of phagocytosis and intracellular killing.

  14. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    -470.[12]Ye, Z. H., Sun, D. Y., Guo, J. F., Preliminary study on wheat cell wall calmodulin, Chin. Sci. Bull. (in Chinese), 1988.33(8): 624-626.[13]Li. J. X., Liu. J. W., Sun. D. Y., Immunoelectron microscopic localization of calmodulin in maize root cell, Cell Res., 1993,3: 11-19.[14]Li. J. X.. Sun. D. Y., Comparative studies on immunoreactivity of antibodies against plant and animal calmodulin, Acta Botanica Sinica (in Chinese), 1992, 34(4): 257-263.[15]Ye. Z. H.. Guo. J. F., Sun, D. Y., Studies on the cell wall calmodulin and calmodulin-binding protein of wheat etiolated coleoptiles, Acta Phytophysiologica Sinica (in Chinese), 1989, 15(3): 223-229.[16]Remgard. P.. Ekstrom. P. A. R., Ekstrom, A. et al., Calmodulin and in vitro regenerating frog sciatic herves: release and extracellular effects, European J. Neuroscience, 1995, 7: 1386-1392.[17]Cheung. M. Z., Duo, H. Y., Cheung, G. I., Localization of calmodulin in rabbit pancreas, Chinese J. of Experimental and Clinical Immunology (in Chinese), 1992, 4(6): 13-15.[18]Dawson, R. A., Mac Neil. S., Mitogenis role for extracellular calmodulin-like activity in normal human umbilical vein endothelial cells, Br. J. Haematol., 1992, 82: 151-160.[19]Goberdhan, N. J., Dawson, R. A., Freedlander, E. et al., Calmodulin-like protein as an extracellular mitogen for the keranocyte. Br. J. Dermatol., 1993, 129: 678-688.[20]Woodward, B. J., Lenton, E. A., Mac Neil, S., Requirement of preimplantation human embryos for extracellular calmodulin for development, Human Repro, 1993, 8(2): 272-276.[21]Houston. D. S.. Carson, C., Esmon, C. T., Endothelial cell and extracellular calmodulin inhibited monocyte tumor necrosis factor release and augment neutrophil elastase, The J. of Biol. Chem., 1997, 272(18): 11778-11785.[22]Li, H. B.. Cheng, G., Sun, D. Y., The effects of extracellular calmodulin on the cell proliferation of suspension cultured cell. Chin. Sci. Bull. (in Chinese), 1992, 37(19): 1804

  15. Extracellular Matrix Proteins

    Directory of Open Access Journals (Sweden)

    Linda Christian Carrijo-Carvalho

    2012-01-01

    Full Text Available Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.

  16. Clinical microfluidics for neutrophil genomics and proteomics.

    Science.gov (United States)

    Kotz, Kenneth T; Xiao, Wenzong; Miller-Graziano, Carol; Qian, Wei-Jun; Russom, Aman; Warner, Elizabeth A; Moldawer, Lyle L; De, Asit; Bankey, Paul E; Petritis, Brianne O; Camp, David G; Rosenbach, Alan E; Goverman, Jeremy; Fagan, Shawn P; Brownstein, Bernard H; Irimia, Daniel; Xu, Weihong; Wilhelmy, Julie; Mindrinos, Michael N; Smith, Richard D; Davis, Ronald W; Tompkins, Ronald G; Toner, Mehmet

    2010-09-01

    Neutrophils have key roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood with 'on-chip' processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Last, we implement this tool as part of a near-patient blood processing system within a multi-center clinical study of the immune response to severe trauma and burn injury. The preliminary results from a small cohort of subjects in our study and healthy controls show a unique time-dependent gene expression pattern clearly demonstrating the ability of this tool to discriminate temporal transcriptional events of neutrophils within a clinical setting.

  17. Major neutrophil functions subverted by Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2016-03-01

    Full Text Available Polymorphonuclear leukocytes (neutrophils constitute an integrated component of the innate host defense in the gingival sulcus/periodontal pocket. However, the keystone periodontal pathogen Porphyromonas gingivalis has in the course of evolution developed a number of capacities to subvert this defense to its own advantage. The present review describes the major mechanisms that P. gingivalis uses to subvert neutrophil homeostasis, such as impaired recruitment and chemotaxis, resistance to granule-derived antimicrobial agents and to the oxidative burst, inhibition of phagocytic killing while promoting a nutritionally favorable inflammatory response, and delay of neutrophil apoptosis. Studies in animal models have shown that at least some of these mechanisms promote the dysbiotic transformation of the periodontal polymicrobial community, thereby leading to inflammation and bone loss. It is apparent that neutrophil–P. gingivalis interactions and subversion of innate immunity are key contributing factors to the pathogenesis of periodontal disease.

  18. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Ultrastructural location of enzymes in peripheral blood neutrophils and in cerebrospinal fluid neutrophils in neuroinfections].

    Science.gov (United States)

    Skotarczak, B

    1993-01-01

    Using cytochemical methods the location and activity were determined of alkaline phosphatase, ATP-ase and succinate dehydrogenase as representative enzymes for the metabolic processes in neutrophils isolated from blood and cerebrospinal fluid (CSF) of patients with meningococcal meningoencephalitis as compared with peripheral blood neutrophils in a control group. The study showed presence of phosphatase on the membranes of many intracellular structures. The activity of the enzymes was higher than in the control group in the membranes of neutrophils in blood and CSF. This is explained as an effect of action of the chemotactic factor on the cell membrane and activation of the cell to movements and phagocytosis. ATP-ase activity in peripheral blood neutrophils in controls was found in all membranous structures in the cell. However, in peripheral blood neutrophils and CSF neutrophils in the acute stage of the disease the active enzyme was noted, in the first place, in cell membranes and digesting vacuoles, which reflected probably the direction of metabolic processes for phagocytosis and destroying of bacteria. The activity of succinate dehydrogenase was found in mitochondrial membranes. Peripheral blood and CSF neutrophils showed a high activity of the enzyme. In the CSF cells in acute phase atypical sites of succinate dehydrogenase activity were noted, which was explained as a sign of cell destruction.

  1. Activation of phagocytic cells by Staphylococcus epidermidis biofilms: effects of extracellular matrix proteins and the bacterial stress protein GroEL on netosis and MRP-14 release.

    Science.gov (United States)

    Dapunt, Ulrike; Gaida, Matthias M; Meyle, Eva; Prior, Birgit; Hänsch, Gertrud M

    2016-07-01

    The recognition and phagocytosis of free-swimming (planktonic) bacteria by polymorphonuclear neutrophils have been investigated in depth. However, less is known about the neutrophil response towards bacterial biofilms. Our previous work demonstrated that neutrophils recognize activating entities within the extracellular polymeric substance (EPS) of biofilms (the bacterial heat shock protein GroEL) and that this process does not require opsonization. Aim of this study was to evaluate the release of DNA by neutrophils in response to biofilms, as well as the release of the inflammatory cytokine MRP-14. Neutrophils were stimulated with Staphylococcus epidermidis biofilms, planktonic bacteria, extracted EPS and GroEL. Release of DNA and of MRP-14 was evaluated. Furthermore, tissue samples from patients suffering from biofilm infections were collected and evaluated by histology. MRP-14 concentration in blood samples was measured. We were able to show that biofilms, the EPS and GroEL induce DNA release. MRP-14 was only released after stimulation with EPS, not GroEL. Histology of tissue samples revealed MRP-14 positive cells in association with neutrophil infiltration and MRP-14 concentration was elevated in blood samples of patients suffering from biofilm infections. Our data demonstrate that neutrophil-activating entities are present in the EPS and that GroEL induces DNA release by neutrophils.

  2. Anti-neutrophil cytoplasm autoantibodies (ANCA) in autoimmune liver diseases

    NARCIS (Netherlands)

    Roozendaal, C.; Kallenberg, Cees

    1999-01-01

    Anti-neutrophil cytoplasm antibodies (ANCA) are autoantibodies directed against cytoplasmic constituents of neutrophil granulocytes and monocytes. ANCA have been detected in serum from patients with inflammatory bowel diseases (mainly ulcerative colitis) and autoimmune mediated liver diseases (mainl

  3. Neutrophils: important contributors to tumor progression and metastasis.

    Science.gov (United States)

    Swierczak, Agnieszka; Mouchemore, Kellie A; Hamilton, John A; Anderson, Robin L

    2015-12-01

    The presence of neutrophils in tumors has traditionally been considered to be indicative of a failed immune response against cancers. However, there is now evidence showing that neutrophils can promote tumor growth, and increasingly, the data support an active role for neutrophils in tumor progression to distant metastasis. Neutrophils have been implicated in promoting metastasis in cancer patients, where neutrophil numbers and neutrophil-related factors and functions have been associated with progressive disease. Nevertheless, the role of neutrophils in tumors, both at the primary and secondary sites, remains controversial, with some studies reporting their anti-tumor functions. This review will focus on the data demonstrating a role for neutrophils in both tumor growth and metastasis and will attempt to clarify the discrepancies in the literature.

  4. Phagocytosis and Killing of Staphylococcus aureus by Human Neutrophils

    OpenAIRE

    Lu, Thea; Porter, Adeline R.; Kennedy, Adam D.; Kobayashi, Scott D.; Frank R DeLeo

    2014-01-01

    Neutrophils are essential for host defense against Staphylococcus aureus infections. Although significant progress has been made, our understanding of neutrophil interactions with S. aureus remains incomplete. To provide a more comprehensive view of this process, we investigated phagocytosis and killing of S. aureus by human neutrophils using varied assay conditions in vitro. A greater percentage of bacteria were internalized by adherent neutrophils compared to those in suspension, and unexpe...

  5. Yersinia pseudotuberculosis is resistant to killing by human neutrophils.

    Science.gov (United States)

    Laws, Thomas R; Davey, Martin S; Green, Christopher; Cooper, Ian A M; Titball, Richard W; Lukaszewski, Roman A

    2011-06-01

    The interaction between human neutrophils and the Gram negative gastrointestinal pathogen Yersinia pseudotuberculosis was investigated in vitro. Despite the wealth of data describing how Yersinia can affect the function of neutrophils, there are no published studies describing if neutrophil cells can affect the viability of Y. pseudotuberculosis. The wild-type IP32953 strain of Y. pseudotuberculosis was found to be resistant to killing by human neutrophils. Confocal examination and flow-cytometric analysis of this interaction revealed that bacteria were taken up.

  6. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    OpenAIRE

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neut...

  7. The Molecular Mechanisms of Glucocorticoids-Mediated Neutrophil Survival

    OpenAIRE

    2011-01-01

    Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted ...

  8. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  9. Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Sarah A C Falcão

    2015-03-01

    Full Text Available BACKGROUND: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. METHODS AND FINDINGS: Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. CONCLUSIONS: We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.

  10. Labeling of rabbit neutrophils with (/sup 111/In)oxine

    Energy Technology Data Exchange (ETDEWEB)

    Lane, T.A. (Veterans Administration Medical Center, San Diego, CA (USA). Dept. of Pathology); Bergum, P.W.; Lichter, J.P.; Spragg, R.G. (California Univ., San Diego, La Jolla (USA). School of Medicine)

    1982-06-25

    The successful labeling of rabbit peripheral blood neutrophils with (/sup 111/In)oxine is reported here. Standard techniques for preparation of rabbit neutrophils, while acceptable for maintenance of in vitro function, rendered the neutrophils ineffective for in vivo use after labeling with /sup 111/In. Specifically, rabbit neutrophils were sensitive to the use of hypotonic shock for red cell elimination, centrifugation into a button during preparation, and the presence of oxine during chemotaxis in vitro. Using a carefully modified method of neutrophil preparation and labeling, it was found that /sup 111/In-labeled rabbit neutrophils retained normal in vitro function, including chemotaxis. In addition, using this method, 34% +- 5% of labeled neutrophils were recoverable in peripheral blood 5 min after intravenous injection. The half-life of circulating radiolabeled neutrophils was 5.6 +- 2 h. Continuous external imaging of radiolabeled neutrophils after intravenous injection showed initial lung uptake, followed by rapid clearance of radioactivity in the lungs (50% clearance in 10.5 +- 3.3 min.). Hepatic radioactivity was maximal by 30 min after injection and thereafter slowly declined. Finally, it was found that /sup 111/In-labeled rabbit neutrophils migrated to sites of artificially induced inflammation. These findings indicate that /sup 111/In-labeled rabbit neutrophils, if prepared under optimal conditions, should provide a useful tool for investigating the fate of neutrophils in experimental inflammatory conditions in this animal.

  11. Ranitidine improves postoperative monocyte and neutrophil function

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Nielsen, H; Jensen, S;

    1994-01-01

    BACKGROUND: The histamine H2-receptor antagonist ranitidine hydrochloride has been shown to improve trauma-, blood transfusion-, and sepsis-induced immunosuppression. OBJECTIVE: To evaluate the effect of ranitidine on postoperative impairment in monocyte and neutrophil function. METHODS: Twenty...... difference (P detected. There were no infectious complications in ranitidine-treated patients. CONCLUSION: These results support previous studies...

  12. Neutrophilic dermatoses and inflammatory bowel diseases.

    Science.gov (United States)

    Marzano, A V; Menicanti, C; Crosti, C; Trevisan, V

    2013-04-01

    Pyoderma gangrenosum (PG) and Sweet's Syndrome (SS) are inflammatory skin diseases caused by the accumulation of neutrophils in the skin and, rarely, in internal organs, which led to coining the term of neutrophilic dermatoses (ND) to define these conditions. Recently, ND have been included among the autoinflammatory diseases, which are forms due to mutations of genes regulating the innate immune responses. Both PG and SS are frequently associated with inflammatory bowel diseases (IBD), a group of chronic intestinal disorders which comprises ulcerative colitis and Crohn's disease and whose pathogenesis involves both the innate and adaptive immunity in genetically prone individuals. Patients with IBD develop PG in 1-3% of cases, while SS is rarer. PG presents with deep erythematous-to-violaceous painful ulcers with undermined borders, but bullous, pustular, and vegetative variants can also occur. SS, also known as acute febrile neutrophilic dermatosis, is characterized by the abrupt onset of fever, peripheral neutrophilia, tender erythematous skin lesions and a diffuse neutrophilic dermal infiltrate. In this review that will be focused on PG and SS, we will describe also the aseptic abscesses syndrome, a new entity within the spectrum of ND which frequently occurs in association with IBD and is characterized by deep abscesses mainly involving the spleen and skin and by polymorphic cutaneous manifestations including PG- and SS-like lesions.

  13. Electronic cigarette exposure triggers neutrophil inflammatory responses.

    Science.gov (United States)

    Higham, Andrew; Rattray, Nicholas J W; Dewhurst, Jennifer A; Trivedi, Drupad K; Fowler, Stephen J; Goodacre, Royston; Singh, Dave

    2016-05-17

    The use of electronic cigarettes (e-cigs) is increasing and there is widespread perception that e-cigs are safe. E-cigs contain harmful chemicals; more research is needed to evaluate the safety of e-cig use. Our aim was to investigate the effects of e-cigs on the inflammatory response of human neutrophils. Neutrophils were exposed to e-cig vapour extract (ECVE) and the expression of CD11b and CD66b was measured by flow cytometry and MMP-9 and CXCL8 by ELISA. We also measured the activity of neutrophil elastase (NE) and MMP-9, along with the activation of inflammatory signalling pathways. Finally we analysed the biochemical composition of ECVE by ultra-high performance liquid chromatography mass spectrometry. ECVE caused an increase in the expression of CD11b and CD66b, and increased the release of MMP-9 and CXCL8. Furthermore, there was an increase in NE and MMP-9 activity and an increase in p38 MAPK activation. We also identified several harmful chemicals in ECVE, including known carcinogens. ECVE causes a pro-inflammatory response from human neutrophils. This raises concerns over the safety of e-cig use.

  14. Autophagy regulation in macrophages and neutrophils.

    Science.gov (United States)

    Mihalache, Cristina C; Simon, Hans-Uwe

    2012-07-01

    Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Accumulating evidence exists that autophagy also plays a major role in immunity and inflammation. Specifically, it appears that autophagy protects against infections and inflammation. Here, we review recent work performed in macrophages and neutrophils, which both represent critical phagocytes in mammalians. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Modulation of neutrophil apoptosis by antimicrobial peptides.

    Science.gov (United States)

    Nagaoka, Isao; Suzuki, Kaori; Niyonsaba, François; Tamura, Hiroshi; Hirata, Michimasa

    2012-01-01

    Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. Human antimicrobial peptides, α-defensins (human neutrophil peptides, HNPs), human β-defensins (hBDs), and cathelicidin (LL-37) not only exhibit potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also function as immunomodulatory molecules by inducing cytokine and chemokine production, and inflammatory and immune cell activation. Neutrophil is a critical effector cell in host defense against microbial infection, and its lifespan is regulated by various pathogen- and host-derived substances. Here, we provided the evidence that HNP-1, hBD-3, and LL-37 cannot only destroy bacteria but also potently modulate (suppress) neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/-2, the downregulation of tBid (an proapoptotic protein) and upregulation of Bcl-xL (an antiapoptotic protein), and the inhibition of mitochondrial membrane potential change and caspase 3 activity, possibly via the actions on the distinct receptors, the P2Y6 nucleotide receptor, the chemokine receptor CCR6, and the low-affinity formyl-peptide receptor FPRL1/the nucleotide receptor P2X7, respectively. Suppression of neutrophil apoptosis results in the prolongation of their lifespan and may be advantageous for the host defense against bacterial invasion.

  16. Ranitidine improves postoperative monocyte and neutrophil function

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Nielsen, H; Jensen, S

    1994-01-01

    BACKGROUND: The histamine H2-receptor antagonist ranitidine hydrochloride has been shown to improve trauma-, blood transfusion-, and sepsis-induced immunosuppression. OBJECTIVE: To evaluate the effect of ranitidine on postoperative impairment in monocyte and neutrophil function. METHODS: Twenty...... difference (P detected. There were no infectious complications in ranitidine-treated patients. CONCLUSION: These results support previous studies...

  17. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent of the e...

  18. Circulating platelet-neutrophil complexes are important for subsequent neutrophil activation and migration.

    Science.gov (United States)

    Kornerup, Kristin N; Salmon, Gary P; Pitchford, Simon C; Liu, Wai L; Page, Clive P

    2010-09-01

    Previous studies in our laboratory have shown that platelets are essential for the migration of eosinophils into the lungs of allergic mice, and that this is dependent on the functional expression of platelet P-selectin. We sought to investigate whether the same is true for nonallergic, acute inflammatory stimuli administered to distinct anatomic compartments. Neutrophil trafficking was induced in two models, namely zymosan-induced peritonitis and LPS-induced lung inflammation, and the platelet dependence of these responses investigated utilizing mice rendered thrombocytopenic. The relative contribution of selectins was also investigated. The results presented herein clearly show that platelet depletion (>90%) significantly inhibits neutrophil recruitment in both models. In addition, we show that P-selectin glycoprotein ligand-1, but not P-selectin, is essential for neutrophil recruitment in mice in vivo, thus suggesting the existence of different regulatory mechanisms for the recruitment of leukocyte subsets in response to allergic and nonallergic stimuli. Further studies in human blood demonstrate that low-dose prothrombotic and pro-inflammatory stimuli (CCL17 or CCL22) synergize to induce platelet and neutrophil activation, as well as the formation of platelet-neutrophil conjugates. We conclude that adhesion between platelets and neutrophils in vivo is an important event in acute inflammatory responses. Targeting this interaction may be a successful strategy for inflammatory conditions where current therapy fails to provide adequate treatment.

  19. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Science.gov (United States)

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-06-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  20. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Tuan Minh Tran

    2016-06-01

    Full Text Available Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  1. Punicic acid a conjugated linolenic acid inhibits TNFalpha-induced neutrophil hyperactivation and protects from experimental colon inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Tarek Boussetta

    Full Text Available BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO. The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.

  2. Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease

    Science.gov (United States)

    Medeiros, Nayara I.; Fares, Rafaelle C. G.; Franco, Eliza P.; Sousa, Giovane R.; Mattos, Rafael T.; Chaves, Ana T.; Nunes, Maria do Carmo P.; Dutra, Walderez O.; Correa-Oliveira, Rodrigo; Rocha, Manoel O. C.; Gomes, Juliana A. S.

    2017-01-01

    Dilated cardiomyopathy, the most severe manifestation in chronic phase of Chagas disease, affects about 30% of patients and is characterized by myocardial dysfunction and interstitial fibrosis due to extracellular matrix (ECM) remodeling. ECM remodeling is regulated by proteolytic enzymes such as matrix metalloproteinases (MMPs) and cytokines produced by immune cells, including phagocytes. We evaluated by flow cytometry the expression of MMP-2, MMP-9, IL-1β, TNF-α, TGF-β and IL-10 by neutrophils and monocytes from patients with indeterminate (IND) and cardiac (CARD) clinical forms of Chagas disease and non-infected individuals (NI), before and after in vitro stimulation with Trypanosoma cruzi antigens. Our results showed an important contribution of neutrophils for MMPs production, while monocytes seemed to be involved in cytokine production. The results showed that neutrophils and monocytes from IND and CARD patients had higher intracellular levels of MMP-2 and MMP-9 than NI individuals. On the other hand, T. cruzi derived-antigens promote a differential expression of MMP-2 and MMP-9 in patients with Chagas disease and may regulate MMPs expression in neutrophils and monocytes, mainly when a cardiac alteration is not present. Our data also showed that in the presence of T. cruzi derived-antigens the production of cytokines by neutrophils and monocytes, but mainly by monocytes, may be intensified. Correlation analysis demonstrated that MMP-2 had a positive correlation with IL-10 and a negative correlation with IL-1β, whereas MMP-9 showed a negative correlation with IL-10. We also observed that IND patients presented a greater percentage of high producer cells of regulatory molecules when compared to CARD patients, indicating a different pattern in the immune response. Our data suggest that MMPs and cytokines produced by neutrophils and monocytes are important contributors for cardiac remodeling and may be an interesting target for new biomarker research. PMID

  3. Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways.

    Science.gov (United States)

    Lin, Y; Jia, R; Liu, Y; Gao, Y; Zeng, X; Kou, J; Yu, B

    2014-12-01

    Diosgenin possesses anti-inflammatory and anticancer properties. Activated neutrophils produce high concentrations of the superoxide anion which is involved in the pathophysiology of inflammation-related diseases and cancer. In the present study, the inhibitory effect and possible mechanisms of diosgenin on superoxide generation were investigated in mouse bone marrow neutrophils. Diosgenin potently and concentration-dependently inhibited the extracellular and intracellular superoxide anion generation in Formyl-Met-Leu-Phe (FMLP)- activated neutrophils, with IC50 values of 0.50 ± 0.08 μM and 0.66 ± 0.13 μM, respectively. Such inhibition was not mediated by scavenging the superoxide anion or by a cytotoxic effect. Diosgenin inhibited the phosphorylation of p47phox and membrane translocation of p47phox and p67phox, and thus blocking the assembly of nicotinamide adenine dinucleotide phosphate oxidase. Moreover, cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were also effectively increased by diosgenin. It attenuated FMLP-induced increase of phosphorylation of cytosolic phospholipase A (cPLA2), p21-activated kinase (PAK), Akt, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK). Our data indicate that diosgenin exhibits inhibitory effects on superoxide anion production through the blockade of cAMP, PKA, cPLA2, PAK, Akt and MAPKs signaling pathways. The results may explain the clinical implications of diosgenin in the treatment of inflammation-related disorders.

  4. Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets.

    Science.gov (United States)

    Etulain, Julia; Negrotto, Soledad; Carestia, Agostina; Pozner, Roberto Gabriel; Romaniuk, María Albertina; D'Atri, Lina Paola; Klement, Giannoula Lakka; Schattner, Mirta

    2012-01-01

    Acidosis is one of the hallmarks of tissue injury such as trauma, infection, inflammation, and tumour growth. Although platelets participate in the pathophysiology of all these processes, the impact of acidosis on platelet biology has not been studied outside of the quality control of laboratory aggregation assays or platelet transfusion optimization. Herein, we evaluate the effect of physiologically relevant changes in extracellular acidosis on the biological function of platelets, placing particular emphasis on haemostatic and secretory functions. Platelet haemostatic responses such as adhesion, spreading, activation of αIIbβ3 integrin, ATP release, aggregation, thromboxane B2 generation, clot retraction and procoagulant activity including phosphatidilserine exposure and microparticle formation, showed a statistically significant inhibition of thrombin-induced changes at pH of 7.0 and 6.5 compared to the physiological pH (7.4). The release of alpha granule content was differentially regulated by acidosis. At low pH, thrombin or collagen-induced secretion of vascular endothelial growth factor and endostatin were dramatically reduced. The release of von Willebrand factor and stromal derived factor-1α followed a similar, albeit less dramatic pattern. In contrast, the induction of CD40L was not changed by low pH, and P-selectin exposure was significantly increased. While the generation of mixed platelet-leukocyte aggregates and the increased chemotaxis of neutrophils mediated by platelets were further augmented under acidic conditions in a P-selectin dependent manner, the increased neutrophil survival was independent of P-selectin expression. In conclusion, our results indicate that extracellular acidosis downregulates most of the haemostatic platelet functions, and promotes those involved in amplifying the neutrophil-mediated inflammatory response.

  5. Neutropenic Mice Provide Insight into the Role of Skin-Infiltrating Neutrophils in the Host Protective Immunity against Filarial Infective Larvae

    Science.gov (United States)

    Pionnier, Nicolas; Brotin, Emilie; Karadjian, Gregory; Hemon, Patrice; Gaudin-Nomé, Françoise; Vallarino-Lhermitte, Nathaly; Nieguitsila, Adélaïde; Fercoq, Frédéric; Aknin, Marie-Laure; Marin-Esteban, Viviana; Chollet-Martin, Sylvie; Schlecht-Louf, Géraldine

    2016-01-01

    Our knowledge and control of the pathogenesis induced by the filariae remain limited due to experimental obstacles presented by parasitic nematode biology and the lack of selective prophylactic or curative drugs. Here we thought to investigate the role of neutrophils in the host innate immune response to the infection caused by the Litomosoides sigmodontis murine model of human filariasis using mice harboring a gain-of-function mutation of the chemokine receptor CXCR4 and characterized by a profound blood neutropenia (Cxcr4+/1013). We provided manifold evidence emphasizing the major role of neutrophils in the control of the early stages of infection occurring in the skin. Firstly, we uncovered that the filarial parasitic success was dramatically decreased in Cxcr4+/1013 mice upon subcutaneous delivery of the infective stages of filariae (infective larvae, L3). This protection was linked to a larger number of neutrophils constitutively present in the skin of the mutant mice herein characterized as compared to wild type (wt) mice. Indeed, the parasitic success in Cxcr4+/1013 mice was normalized either upon depleting neutrophils, including the pool in the skin, or bypassing the skin via the intravenous infection of L3. Second, extending these observations to wt mice we found that subcutaneous delivery of L3 elicited an increase of neutrophils in the skin. Finally, living L3 larvae were able to promote in both wt and mutant mice, an oxidative burst response and the release of neutrophil extracellular traps (NET). This response of neutrophils, which is adapted to the large size of the L3 infective stages, likely directly contributes to the anti-parasitic strategies implemented by the host. Collectively, our results are demonstrating the contribution of neutrophils in early anti-filarial host responses through their capacity to undertake different anti-filarial strategies such as oxidative burst, degranulation and NETosis. PMID:27111140

  6. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2011-04-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  7. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2012-02-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  8. Escape of Mycobacterium tuberculosis from oxidative killing by neutrophils.

    Science.gov (United States)

    Corleis, Björn; Korbel, Daniel; Wilson, Robert; Bylund, Johan; Chee, Ronnie; Schaible, Ulrich E

    2012-07-01

    Neutrophils enter sites of infection, where they can eliminate pathogenic bacteria in an oxidative manner. Despite their predominance in active tuberculosis lesions, the function of neutrophils in this important human infection is still highly controversial. We observed that virulent Mycobacterium tuberculosis survived inside human neutrophils despite prompt activation of these defence cells' microbicidal effectors. Survival of M. tuberculosis was accompanied by necrotic cell death of infected neutrophils. Necrotic cell death entirely depended on radical oxygen species production since chronic granulomatous disease neutrophils were protected from M. tuberculosis-triggered necrosis. More, importantly, the M. tuberculosis ΔRD1 mutant failed to induce neutrophil necrosis rendering this strain susceptible to radical oxygen species-mediated killing. We conclude that this virulence function is instrumental for M. tuberculosis to escape killing by neutrophils and contributes to pathogenesis in tuberculosis.

  9. Phagocytosis and killing of Streptococcus suis by porcine neutrophils.

    Science.gov (United States)

    Chabot-Roy, Geneviève; Willson, Philip; Segura, Mariela; Lacouture, Sonia; Gottschalk, Marcelo

    2006-07-01

    Streptococcus suis serotype 2 is an important swine pathogen responsible for diverse infections, mainly meningitis. Virulence factors and the pathogenesis of infection are not well understood. Neutrophils may play an important role in the pathogenesis of infection given that infiltration by neutrophils and mononuclear cells are frequently observed in lesions caused by S. suis. The objective of this work was to study the interactions between S. suis serotype 2 and porcine neutrophils. Results showed that suilysin is toxic to neutrophils and this could help S. suis evade innate immunity. Moreover, suilysin appears to affect complement-dependent killing by decreasing the opsonization of S. suis and the bactericidal capacity of neutrophils. Our results confirm that capsule polysaccharide protects S. suis against killing and phagocytosis by neutrophils. We also showed that the presence of specific IgG against S. suis serotype 2 promoted killing by neutrophils, indicating that the induction of a strong humoral response is beneficial for clearance of this pathogen.

  10. Periodontal Ligament Stem Cells Regulate Apoptosis of Neutrophils

    Science.gov (United States)

    Wang, Qing; Ding, Gang; Xu, Xin

    2017-01-01

    Abstract Periodontal ligament stem cells (PDLSCs) are promising cell resource for the cell-based therapy for periodontitis and regeneration of bio-root. In this study, we investigated the effect of PDLSCs on neutrophil, a critical constituent of innate immunity, and the underlying mechanisms. The effect of PDLSCs on the proliferation and apoptosis of resting neutrophils and IL-8 activated neutrophils was tested under cell-cell contact culture and Transwell culture, with or without anti-IL-6 neutralizing antibody. We found that PDLSCs could promote the proliferation and reduce the apoptosis of neutrophils whether under cell-cell contact or Transwell culture. Anti-IL-6 antibody reduced PDLSCs-mediated inhibition of neutrophil apoptosis. IL-6 at the concentration of 10ng/ml and 20ng/ml could inhibit neutrophil apoptosis statistically. Collectively, PDLSCs could reduce the apoptosis of neutrophils via IL-6.

  11. Induction of autoimmune disease by radiation exposure. Analysis of molecular structure of myeloperoxidase in neutrophil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo; Okawara, Akiko; Ohashi, Yuko; Hashimoto, Yuki [National Inst. of Infectious Diseases, Tokyo (Japan)

    2000-02-01

    Recently, antineutrophil cytoplasmic antibody (ANCA) that is one of autoimmune antibodies has been paid attention since the antibody was found in patients with articular rheumatism. Molecular structure of myeloperoxidase (MPO), which has been regarded as the antigen of ANCA was investigated in this study. Peripheral neutrophil was exposed to {gamma}-ray at 10 and 30 Gy followed by addition of cytochalasin B. The extracellular and intracellular activities of MPO were determined to estimate the effects of the radiation. Moreover, MPO released to the culture medium was purified from the crude extract of the medium and investigated by Western blot analysis to confirm the occurrence of molecular cleavage in MPO. The releasing activity of MPO was decreased by {gamma}-ray exposure at a dose ranging from 0.1 to 1.0 Gy and it tended to increase with 10 or 30 Gy. On the other hand, the activity of the released enzyme was increased by exposure at 0.1-3.0 Gy and became the normal level with 10 or 30 Gy. There were no changes in the SDS-PAGE pattern for the proteins from neutrophils. Western blotting revealed that 30 kDa fragment was included in the proteins released from neutrophils exposed to 0.1-0.3 Gy. The evidence that a low dose exposure induced such fragmentation of MPO molecule would be utilized to evaluate the effects of low-dose radiation. These results suggested that the MPO molecule fragmented by radiation exposure is highly reactive with the autoantibody in neutrophils, but correlation between MPO and its ANCA- related autoimmune disease has not yet demonstrated. (M.N.)

  12. Induction of autoimmune diseases by radiation exposure. Changes in molecular structures of neutrophil myeloperoxidase

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo; Ogawara, Akiko; Hashimoto, Yuki; Yamagoe, Satoshi; Borregaad, Niels; Mizuno, Satoshi [National Inst. of Health, Tokyo (Japan)

    1999-02-01

    It has been suggested that functional abnormalities of leucocyte induced by radiation exposure might be related to development of autoimmune diseases. The authors demonstrated that fragmentation of MPO, a lysozyme enzyme of neutrophil caused by high dose exposure resulted in a lowering of its activity and an enhancement of its degradation. It was assumed that release of MPO fragment, 30 kDa might be involved in development of autoimmune diseases. In this study, 4 peptides in neutrophil; defensin 3, hCAP-18, FMLP-R and CD35 were selected as the indicators for activation of neutrophils and the effects of {gamma}-ray exposure on their mRNA expressions were investigated. A suspension of neutrophils from healthy peripheral blood were exposed to {gamma}-ray at 0, 10 or 30 Gy and incubated after addition of cytochalasin B and FMLP for 10 min to release MPO. The activities of MPO in the cell and in the extracellular fluid were assayed with tetramethylbenzidine as the substrate. The MPO activity released from the neutrophils was significantly increased by {gamma}-ray exposure at 10 or 30 Gy. The increase was slightly higher for exposure at 10 Gy than that at 30 Gy. Next, the effects of exposure were investigated on mRNA expressions of 4 different peptides of neutrophil. From the exposed cells, whole RNA were extracted by AGPC method and used as a primer to produce the respective cDNAs and mRNA assay was conducted by PCR method. The exposure to {gamma}-ray at 10 Gy increased mRNA expressions of all four peptides. The increase was marked for CD35, moderate for defensin 3 and hCAP-18, and slight for FMLP-R. These results indicate that MPO fragments can be produced through radiation exposure as well as heat treatment. Therefore, it was suggested that anti-MPO antibody, MPO-ANCA might be produced by MPO fragments produced by radiation and/or lymphatic functional disorders. (M.N.)

  13. Force-dependent calcium signaling and its pathway of human neutrophils on P-selectin in flow.

    Science.gov (United States)

    Huang, Bing; Ling, Yingchen; Lin, Jiangguo; Du, Xin; Fang, Ying; Wu, Jianhua

    2017-02-01

    P-selectin engagement of P-selectin glycoprotein ligand-1 (PSGL-1) causes circulating leukocytes to roll on and adhere to the vascular surface, and mediates intracellular calcium flux, a key but unclear event for subsequent arresting firmly at and migrating into the infection or injured tissue. Using a parallel plate flow chamber technique and intracellular calcium ion detector (Fluo-4 AM), the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin in the absence of chemokines at various wall shear stresses was investigated here in real time by fluorescence microscopy. The results demonstrated that P-selectin engagement of PSGL-1 induced the intracellular calcium flux of firmly adhered neutrophils in flow, increasing P-selectin concentration enhanced cellular calcium signaling, and, force triggered, enhanced and quickened the cytoplasmic calcium bursting of neutrophils on immobilized P-selectin. This P-selectin-induced calcium signaling should come from intracellular calcium release rather than extracellular calcium influx, and be along the mechano-chemical signal pathway involving the cytoskeleton, moesin and Spleen tyrosine kinase (Syk). These results provide a novel insight into the mechano-chemical regulation mechanism for P-selectin-induced calcium signaling of neutrophils in flow.

  14. Multiple Phenotypic Changes Define Neutrophil Priming

    Science.gov (United States)

    Miralda, Irina; Uriarte, Silvia M.; McLeish, Kenneth R.

    2017-01-01

    Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses. PMID:28611952

  15. Neutrophil myeloperoxidase destruction by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hanker, J.; Giammara, B.; Strauss, G.

    1988-01-01

    The peroxidase activity of enriched leukocyte preparations on coverslips was determined cytochemically with a newly developed method. The techniques utilizes diaminobenzidine medium and cupric nitrate intensification and is suitable for analysis with light microscopy, SEM, and TEM. Blood specimens from control individuals were studied with and without in vitro UV irradiation and compared with those from psoriasis patients exposed therapeutically to various types of UV in phototherapy. All UV irradiated samples showed diminished neutrophil myeloperoxidase (MP) activity although that of the principal eosinophil peroxidase was unaffected. The SEMs supported the contention that decreased neutrophil MP activity might be related to UV induced degranulation. It is believed to be possible, eventually, to equate the observed MP degranulation effect after UV irradiation with diminished ability to fight bacterial infections.

  16. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V.; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A.; Nourshargh, Sussan

    2015-01-01

    Summary Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  17. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic.

  18. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    Science.gov (United States)

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  19. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    Science.gov (United States)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  20. Transcriptome kinetics of circulating neutrophils during human experimental endotoxemia.

    Directory of Open Access Journals (Sweden)

    Stan de Kleijn

    Full Text Available Polymorphonuclear cells (neutrophils play an important role in the systemic inflammatory response syndrome and the development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage. Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n = 4 administered a single dose of endotoxin (LPS, 2 ng/kg iv. In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNFα, G-CSF and GM-CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in signaling of TNFα and IL-1α and IL-1β. The transcriptome profile of inflammatory activated neutrophils in vivo reflects extended survival and regulation of inflammatory responses. These changes in neutrophil transcriptome suggest a combination of early activation of circulating neutrophils by TNFα and G-CSF and a mobilization of young neutrophils from the bone marrow.

  1. Phagocytosis and killing of Staphylococcus aureus by human neutrophils.

    Science.gov (United States)

    Lu, Thea; Porter, Adeline R; Kennedy, Adam D; Kobayashi, Scott D; DeLeo, Frank R

    2014-01-01

    Neutrophils are essential for host defense against Staphylococcus aureus infections. Although significant progress has been made, our understanding of neutrophil interactions with S. aureus remains incomplete. To provide a more comprehensive view of this process, we investigated phagocytosis and killing of S. aureus by human neutrophils using varied assay conditions in vitro. A greater percentage of bacteria were internalized by adherent neutrophils compared to those in suspension, and, unexpectedly, uptake of S. aureus by adherent neutrophils occurred efficiently in the absence of opsonins. An antibody specific for S. aureus promoted uptake of unopsonized bacteria in suspension, but had little or no capacity to enhance phagocytosis of S. aureus opsonized with normal human serum or by adherent neutrophils. Collectively, these results indicate that assay conditions can have a significant influence on the phagocytosis and killing of S. aureus by neutrophils. More importantly, the results suggest a vaccine approach directed to enhance opsonophagocytosis alone is not sufficient to promote increased killing of S. aureus by human neutrophils. With the emergence and reemergence of antibiotic-resistant microorganisms, establishing parameters that are optimal for studying neutrophil-S. aureus interactions will pave the way towards developing immune-directed strategies for anti-staphylococcal therapies.

  2. Leukotriene C4 production by murine mast cells: evidence of a role for extracellular leukotriene A4.

    Science.gov (United States)

    Dahinden, C A; Clancy, R M; Gross, M; Chiller, J M; Hugli, T E

    1985-10-01

    The glutathione-containing leukotriene C4 (LTC4) is a major mediator of smooth muscle contraction and is released by mast cells when antigen interacts with cell-bound IgE. Antigen-stimulated mast cells undergo phospholipase activation. We report a pathway of LTC4 production by mast cells that does not require phospholipase activation but depends on the interaction of activated neutrophils with unstimulated mast cells, using as an intermediate extracellular leukotriene A4 (LTA4). The epoxide LTA4 is released by neutrophils and, together with leukotriene B4 and 5-hydroxyeicosatetraenoic acid, constitutes the major lipoxygenase metabolites found in supernatants of stimulated neutrophils. Five minutes after activation of neutrophils by calcium ionophore A23187 we measured 136 pmol of extracellular LTA4 per 10(7) neutrophils (range 40-300, n = 7) by trapping the epoxide with alcohols. Therefore, we conclude that LTA4 is not just an intracellular leukotriene precursor but is released as a lipoxygenase metabolite. LTA4 is known to be stabilized by albumin and is efficiently converted by mast cells into LTC4 even at low LTA4 concentrations. The LTA4 complexed to albumin is converted into LTC4 rapidly and completely within 10-15 min. More than 50% of the LTA4 presented to mast cells is metabolized to LTC4 at concentrations of LTA4 between 0.2 and 2 nmol of LTA4 per 10(7) mast cells. This observation establishes a potential physiologic role for extracellular LTA4. Therefore, interactions between various cell types that release or utilize LTA4 may provide an important metabolic pathway for the production of leukotrienes.

  3. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  4. Expression of LSLCL, a new C-type lectin, is closely restricted, in bone marrow, to immature neutrophils.

    Science.gov (United States)

    Perrin, C; Bayle, J; Bannwarth, S; Michiels, J F; Heudier, P; Lefebvre, J C; Giordanengo, V

    2001-12-01

    In vitro, LSLCL is expressed by numerous myeloid, promyelocytic, and T or B lymphoblastoid cell lines. In vivo, LSLCL is strongly expressed in bone marrow and only faintly in lymphoid organs. We show here that, in bone marrow, LSLCL is detected: (i) concentrated in the cytoplasm of immature neutrophils but not in myeloblasts nor in mature neutrophils, (ii) in extracellular bone marrow fluid. Besides, numerous cDNAs, similar to LSLCL (identity of 93-99%), are found in 'expressed sequence tags' databases from various origins, mostly fetal and undifferentiated tumour tissues. Since LSLCL and various closely related cDNAs are expressed at definite stages of cellular maturation processes, we hypothesize that this class of proteins could play an important role in the control of cellular differentiation.

  5. Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro

    Directory of Open Access Journals (Sweden)

    Sophia C. Dudte

    2017-08-01

    Full Text Available Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10–15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1 determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2 examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3 determining the activation phenotype of Y. pestis-infected neutrophils, and (4 characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of

  6. Neutrophils and macrophages: The main partners of phagocyte cell systems

    Directory of Open Access Journals (Sweden)

    Manuel T. Silva

    2012-07-01

    Full Text Available Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the Mononuclear Phagocyte System (MPS, grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, M. T. Silva recently proposed the creation of a Myeloid Phagocyte System (MYPS that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.

  7. Advanced Role of Neutrophils in Common Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Jinping Liu

    2017-01-01

    Full Text Available Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD, pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.

  8. Fcγ and Complement Receptors and Complement Proteins in Neutrophil Activation in Rheumatoid Arthritis: Contribution to Pathogenesis and Progression and Modulation by Natural Products

    Directory of Open Access Journals (Sweden)

    Adriana Balbina Paoliello-Paschoalato

    2015-01-01

    Full Text Available Rheumatoid arthritis (RA is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS, cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs. In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i the participation of Fcγ and complement receptors in mediating the effector functions of neutrophils in RA; (ii the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation.

  9. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL-C3G complex and activating Rap1 at the leading edge.

    Science.gov (United States)

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V; Kenis, Paul J A; Wang, Fei

    2011-07-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell-extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon G(i)-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL-C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells.

  10. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge

    Science.gov (United States)

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei

    2011-01-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423

  11. Mechanism of neutrophil recruitment to the lung after pulmonary contusion.

    Science.gov (United States)

    Hoth, J Jason; Wells, Jonathan D; Hiltbold, Elizabeth M; McCall, Charles E; Yoza, Barbara K

    2011-06-01

    Blunt chest trauma resulting in pulmonary contusion is a common but poorly understood injury. We previously demonstrated that lung contusion activates localized and systemic innate immune mechanisms and recruits neutrophils to the injured lung. We hypothesized that the innate immune and inflammatory activation of neutrophils may figure prominently in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated postinjury lung function and pulmonary neutrophil recruitment. Comparisons were made between injured mice with and without neutrophil depletion. We further examined the role of chemokines and adhesion receptors in neutrophil recruitment to the injured lung. We found that lung injury and resultant physiological dysfunction after contusion were dependent on the presence of neutrophils in the alveolar space. We show that CXCL1, CXCL2/3, and CXCR2 are involved in neutrophil recruitment to the lung after injury and that intercellular adhesion molecule 1 is locally expressed and actively participates in this process. Injured gp91-deficient mice showed improved lung function, indicating that oxidant production by neutrophil NADPH oxidase mediates lung dysfunction after contusion. These data suggest that both neutrophil presence and function are required for lung injury after lung contusion.

  12. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus

    Science.gov (United States)

    Guerra, Fermin E.; Borgogna, Timothy R.; Patel, Delisha M.; Sward, Eli W.; Voyich, Jovanka M.

    2017-01-01

    Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions. PMID:28713774

  13. Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro.

    Science.gov (United States)

    Tamarozzi, F; Wright, H L; Johnston, K L; Edwards, S W; Turner, J D; Taylor, M J

    2014-10-01

    The host inflammatory response to the Onchocerca volvulus endosymbiont, Wolbachia, is a major contributing factor in the development of chronic pathology in humans (onchocerciasis/river blindness). Recently, the toll-like pattern recognition receptor motif of the major inflammatory ligands of filarial Wolbachia, membrane-associated diacylated lipoproteins, was functionally defined in murine models of pathology, including mediation of neutrophil recruitment to the cornea. However, the extent to which human neutrophils can be activated in response to this Wolbachia pattern recognition motif is not known. Therefore, the responses of purified peripheral blood human neutrophils to a synthetic N-terminal diacylated lipopeptide (WoLP) of filarial Wolbachia peptidoglycan-associated lipoprotein (PAL) were characterized. WoLP exposure led to a dose-dependent activation of healthy, human neutrophils that included gross morphological alterations and modulation of surface expressed integrins involved in tethering, rolling and extravasation. WoLP exposure induced chemotaxis but not chemokinesis of neutrophils, and secretion of the major neutrophil chemokine, interleukin 8. WoLP also induced and primed the respiratory burst, and enhanced neutrophil survival by delay of apoptosis. These results indicate that the major inflammatory motif of filarial Wolbachia lipoproteins directly activates human neutrophils in vitro and promotes a molecular pathway by which human neutrophils are recruited to sites of Onchocerca parasitism.

  14. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  15. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils

    DEFF Research Database (Denmark)

    Volck, B; Price, P A; Johansen, J S;

    1998-01-01

    YKL-40, also called human cartilage glycoprotein-39 (HC gp-39), is a member of family 18 glycosyl hydrolases. YKL-40 is secreted by chondrocytes, synovial cells, and macrophages, and recently it has been reported that YKL-40 has a role as an autoantigen in rheumatoid arthritis (RA). The function...... of YKL-40 is unknown, but the pattern of its expression in normal and disease states suggests that it could function in remodeling or degradation of the extracellular matrix. High levels of YKL-40 are found in synovial fluid from patients with active RA. Neutrophils are abundant in synovial fluid...

  16. Polymorphonuclear neutrophils: an effective antimicrobial force.

    Science.gov (United States)

    Sawyer, D W; Donowitz, G R; Mandell, G L

    1989-01-01

    The production and deployment of polymorphonuclear neutrophils (PMNs) are under close regulation. PMNs interact through cytokines with a number of cell types, including macrophages, lymphocytes, and endothelial cells. PMNs are guided by bacterial products and cytokines to target sites, where microbes are recognized and killed. Killing occurs through oxygen-dependent and oxygen-independent mechanisms. The frequent and severe infections seen in patients with defects (either congenital or acquired) in PMN function demonstrate the importance of PMNs in host defense against infection. PMNs are potent inflammatory cells and can exacerbate disease states such as myocardial ischemia, gram-negative bacterial sepsis, and the adult respiratory distress syndrome.

  17. Gβ1 is required for neutrophil migration in zebrafish.

    Science.gov (United States)

    Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang

    2017-08-01

    Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A novel immune-modulatory role of neutrophils in viral infections

    NARCIS (Netherlands)

    Tang, F.S.; Hansbro, P.M.; Burgess, J.K.; Baines, K.J.; Oliver, B.G.

    2015-01-01

    Rationale: Rhinovirus (RV) is the major precipitant of asthma exacerbations. Whilst neutrophilic lung inflammation occurs during such infections, its role remains unclear. Neutrophilic inflammation is associated with increased asthma severity and steroid refractory disease. Neutrophils are vital for

  19. Hidden truth of circulating neutrophils (polymorphonuclear neutrophil function in periodontally healthy smoker subjects

    Directory of Open Access Journals (Sweden)

    Chitra Agarwal

    2016-01-01

    Full Text Available Context: Tobacco smoking is considered to be a major risk factor associated with periodontal disease. Smoking exerts a major effect on the protective elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Aims: The aim of the present study was to assess viability and phagocytic function of neutrophils in circulating blood of the smokers and nonsmokers who are periodontally healthy. Settings and Design: Two hundred subjects in the mean range of 20–30 years of age were included in the study population. It was a retrospective study carried out for 6 months. Materials and Methods: Two hundred subjects were divided into four groups: 50 nonsmokers, 50 light smokers (15 cigarettes/day. Full mouth plaque index, sulcus bleeding index, and probing depths were measured. Percentage viability of circulating neutrophils and average number of phagocytosed Candida albicans were recorded. Statistical Analysis Used: Means and standard deviations were calculated from data obtained within the groups. Comparison between the smokers and nonsmokers was performed by Kruskal–Wallis ANOVA analysis. Comparison between smoker groups was performed using Mann–Whitney–Wilcoxon test. Results: Percentage viability of neutrophils was significantly less in heavy smokers (66.9 ± 4.0, moderate (76.6 ± 4.2, light smokers (83.1 ± 2.5 as compared to nonsmokers (92.3 ± 2.6 (P < 0.01. The ability of neutrophils to phagocytose, i.e., mean particle number was significantly less in light smokers (3.5 ± 0.5, moderate smokers (2.3 ± 0.5, and heavy smokers (1.4 ± 0.5 compared to nonsmokers (4.9 ± 0.7 (P < 0.01 with evidence of dose-response effect. Conclusions: Smoking significantly affects neutrophils viability and phagocytic function in periodontally healthy population.

  20. Resistance of Neisseria gonorrhoeae to neutrophils

    Directory of Open Access Journals (Sweden)

    M. Brittany eJohnson

    2011-04-01

    Full Text Available Infection with the human-specific bacterial pathogen Neisseria gonorrhoeae triggers a potent, local inflammatory response driven by polymorphonuclear leukocytes (neutrophils or PMNs. PMNs are terminally differentiated phagocytic cells that are a vital component of the host innate immune response and are the first responders to bacterial and fungal infections. PMNs possess a diverse arsenal of components to combat microorganisms, including the production of reactive oxygen species and release of degradative enzymes and antimicrobial peptides. Despite numerous PMNs at the site of gonococcal infection, N. gonorrhoeae can be cultured from the PMN-rich exudates of individuals with acute gonorrhea, indicating that some bacteria resist killing by neutrophils. The contribution of PMNs to gonorrheal pathogenesis has been modeled in vivo by human male urethral challenge and murine female genital inoculation and in vitro using isolated primary PMNs or PMN-derived cell lines. These systems reveal that some gonococci survive and replicate within PMNs and suggest that gonococci defend themselves against PMNs in two ways: they express virulence factors that defend against PMNs’ oxidative and non-oxidative antimicrobial components, and they modulate the ability of PMNs to phagocytose gonococci and to release antimicrobial components. In this review, we will highlight the varied and complementary approaches used by N. gonorrhoeae to resist clearance by human PMNs, with an emphasis on gonococcal gene products that modulate bacterial-PMN interactions. Understanding how some gonococci survive exposure to PMNs will help guide future initiatives for combating gonorrheal disease.

  1. Quercetin inhibits degranulation and superoxide generation in PMA stimulated neutrophils

    OpenAIRE

    2012-01-01

    Activated neutrophils represent the main source of myeloperoxidase (MPO), superoxide (SO) and subsequently derived oxygen metabolites. They have important microbicidal activities, however in inflammatory conditions they may secondarily attack surrounding tissues. Overproduction of reactive oxygen species, prolonged or excessive liberation of MPO and other effective yet also toxic substances from neutrophils may participate in disturbed apoptosis, intensify the inflammatory processes and resul...

  2. Synchronisation of glycolytic oscillations in a suspension of human neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Poulsen, Allan K.; Olsen, Lars Folke

    Neutrophils are known to be able to synchronize their production of superoxide. We show that glycolysis is also synchronized in human neutrophils being in suspension and suggest that oscillations in glycolysis are driving the pulsatile production of superoxide. The synchronising agent remains so...

  3. Intracellular localization of VAMP-1 protein in human neutrophils.

    Science.gov (United States)

    Nabokina, S M

    2001-02-01

    We studied the intracellular localization of vesicle-associated membrane protein VAMP-1 in human neutrophils. VAMP-1 was associated with membranes of gelatinase and specific secretory granules rapidly mobilized during exocytosis. VAMP-1 probably acts as a component of the SNARE complex during exocytosis of gelatinase and specific granules in human neutrophils.

  4. Synchronisation of glycolytic oscillations in a suspension of human neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Poulsen, Allan K.; Olsen, Lars Folke

    Neutrophils are known to be able to synchronize their production of superoxide. We show that glycolysis is also synchronized in human neutrophils being in suspension and suggest that oscillations in glycolysis are driving the pulsatile production of superoxide. The synchronising agent remains so...

  5. Influence of recombinant bovine gamma interferon on neutrophil function

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, M.J.

    1987-01-01

    To determine the role of cytokines in enhancing neutrophil function, peripheral blood neutrophils from healthy cattle were preincubated with recombinant bovine gamma interferon (rboIFN-gamma). Pretreatment of neutrophils with rboIFN-gamma activated neutrophils to have enhanced antibody-dependent (ADCC) and -independent (AINC) cytotoxicity and impaired random migration. Neutrophil ingestion, superoxide anion production, and iodination activity were not consistently affected by rboIFN-gamma pretreatment. In order to better understand the activation process, the molecular events involved in the enhancement of neutrophil cytotoxicity and the inhibition random migration were investigated. Both RNA and protein syntheses by neutrophils were required for the enhancement of AINC activity and the inhibition of random migration, but were not required for the enhancement of ADCC by rboIFN-gamma. Specifically, rbo-IFN-gamma treatment of neutrophils enhanced the expression of two major proteins of molecular mass 60,000 and 94,000 as determined by SDS-polyacrylamide, linear-gradient gel electrophoresis and /sup 35/S-fluorography.

  6. Early diagnostic method for sepsis based on neutrophil MR imaging

    Directory of Open Access Journals (Sweden)

    Shanhua Han

    2015-06-01

    Conclusion: Mouse and human neutrophils could be more effectively labelled by Mannan-coated SPION in vitro than Feridex. Sepsis analog neutrophils labelled by Mannan-coated SPIONs could be efficiently detected on MR images, which may serve as an early diagnostic method for sepsis.

  7. The Role of Neutrophil Collagenase in Endotoxic Acute Lung Injury

    Institute of Scientific and Technical Information of China (English)

    徐涛; 曾邦雄; 李兴旺

    2004-01-01

    The aim of this study was to determine the role of neutrophil collagenase in the pathogenesis of acute lung injury induced by endotoxin. 28 Sprague-Dawley were randomized into control group and LPS-enduced groups. Samples of left lung were obtained in 2 h (group L1 ), 6 h (group L2), 12 h (group L3 ) after intravenous LPS. Immunohistochemsitry was employed for detection of expression of neutrophil collagenase. Pathological scores, lung wet/dry weight ratio and the number of neutrophils were measured. The results showed that the concentration of neutrophil collagenase in LPS-enduced groups (group L1, L2, L3 ) were significantly higher than that of control group (P<0.01). Pathological scores, lung wet/dry weight ratio and the number of neutrophils in LPS-enduced groups (group L1, L2, L3 ) were also significantly higher than that of control group (P<0.01).Moreover, among group L1, L2 and L3, there were significant correlations in concentration of neutrophil collagenase and pathological scores, lung wet/dry weight ratio, the number of neutrophils (P<0.05). The present study showed that neutrophil collagenase play an important role in the pathogenesis and progress of endotoxic acute lung injury.

  8. Intergrin-dependent neutrophil migration in the injured mouse cornea

    Science.gov (United States)

    As an early responder to an inflammatory stimulus, neutrophils must exit the vasculature and migrate through the extravascular tissue to the site of insult, which is often remote from the point of extravasation. Following a central epithelial corneal abrasion, neutrophils recruited from the peripher...

  9. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process.

    Science.gov (United States)

    Jones, G S; Amirault, H J; Andersen, B R

    1990-09-01

    To determine the role of oxygen radicals in the killing of Mycobacterium tuberculosis by neutrophils, the effects of free-radical inhibitors and enzymes, catalase, superoxide dismutase, taurine, deferoxamine, and histidine were evaluated. Changes in the viability of M. tuberculosis were determined by agar plate colony counts and a radiometric assay. No impairment in killing was seen with any of the inhibitors or enzymes. Patients with chronic granulomatous disease (CGD) have a defect in the NADPH oxidase pathway, causing their neutrophils to be unable to generate oxygen radicals. If these radicals are involved in killing, then CGD neutrophils should be less effective killers of M. tuberculosis than normal neutrophils. There was no evidence by either measure of M. tuberculosis viability that CGD neutrophils were less bactericidal than normal neutrophils. Killing by normal neutrophils was also effective in the absence of serum. These results lead to the conclusion that the mechanism by which M. tuberculosis is killed by neutrophils is independent of the oxygen metabolic burst.

  10. A novel immune regulatory function of neutrophils in rhinovirus infections

    NARCIS (Netherlands)

    Tang, Francesca; Hansbro, Phil; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Rationale: Rhinovirus (RV) is a major precipitant of asthma exacerbations. During lung infections there is elevated neutrophilic inflammation which is associated with more severe asthma symptoms. Previously, we found that neutrophils respond to viral mimetics but not live RV. Here we investigated if

  11. Activation of the Small GTPase Rap1 in Human Neutrophils

    NARCIS (Netherlands)

    M'Rabet, Laura; Coffer, P.J.; Zwartkruis, G.J.T.; Franke, Barbara; Segal, Anthony W.; Koenderman, L.; Bos, J.L.

    2002-01-01

    The small GTPase Rap1 is highly expressed in human neutrophils, but its function is largely unknown. Using the Rap1- binding domain of RalGDS (RalGDS-RBD) as an activationspecific probe for Rap1, we have investigated the regulation of Rap1 activity in primary human neutrophils. We found that a varie

  12. A novel immune regulatory function of neutrophils in rhinovirus infections

    NARCIS (Netherlands)

    Tang, Francesca; Hansbro, Phil; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Rationale: Rhinovirus (RV) is a major precipitant of asthma exacerbations. During lung infections there is elevated neutrophilic inflammation which is associated with more severe asthma symptoms. Previously, we found that neutrophils respond to viral mimetics but not live RV. Here we investigated if

  13. Factor H Binds to Extracellular DNA Traps Released from Human Blood Monocytes in Response to Candida albicans

    Science.gov (United States)

    Halder, Luke D.; Abdelfatah, Mahmoud A.; Jo, Emeraldo A. H.; Jacobsen, Ilse D.; Westermann, Martin; Beyersdorf, Niklas; Lorkowski, Stefan; Zipfel, Peter F.; Skerka, Christine

    2017-01-01

    Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation. PMID:28133459

  14. Cytotoxicity towards human endothelial cells, induced by neutrophil myeloperoxidase: protection by ceftazidime

    Directory of Open Access Journals (Sweden)

    M. Mathy-Hartert

    1995-01-01

    Full Text Available We investigated the effects of the antibiotic ceftazidime (CAZ on the cytolytic action of the neutrophil myeloperoxidase–hydrogen peroxide–chloride anion system (MPO/H2O2/Cl−. In this system, myeloperoxidase catalyses the conversion of H2O2 and CI− to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC were capable of taking up active MPO. In presence of H2O2 (10−4 M, this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of 51Cr from HUVEC and expressed as an index of cytotoxicity (IC. Dose dependent protection was obtained for CAZ concentrations ranging from 10−5 to 10−3 M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H2O2, but when cytolysis was achieved with H2O2 or O2− generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H2O2 was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon. So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.

  15. A novel neutrophil derived inflammatory biomarker of pulmonary exacerbation in cystic fibrosis.

    LENUS (Irish Health Repository)

    2012-02-01

    BACKGROUND: The focus of this study was to characterize a novel biomarker for cystic fibrosis (CF) that could reflect exacerbations of the disease and could be useful for therapeutic stratification of patients, or for testing of potential drug treatments. This study focused exclusively on a protein complex containing alpha-1 antitrypsin and CD16b (AAT:CD16b) which is released into the bloodstream from membranes of pro-inflammatory primed neutrophils. METHODS: Neutrophil membrane expression and extracellular levels of AAT and CD16b were quantified by flow cytometry, Western blot analysis and by 2D-PAGE. Interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and AAT:CD16b complex were quantified in CF plasma (n=38), samples post antibiotic treatment for 14days (n=10), chronic obstructive pulmonary disease (n=10), AAT deficient (n=10) and healthy control (n=14) plasma samples by ELISA. RESULTS: Cell priming with IL-8 and TNF-alpha caused release of the AAT:CD16b complex from the neutrophil cell membrane. Circulating plasma levels of IL-8, TNF-alpha and AAT:CD16b complex were significantly higher in patients with CF than in the other patient groups or healthy controls (P<0.05). Antibiotic treatment of pulmonary exacerbation in patients with CF led to decreased plasma protein concentrations of AAT:CD16b complex with a significant correlation with improved FEV1 (r=0.81, P=0.003). CONCLUSION: The results of this study have shown that levels of AAT:CD16b complex present in plasma correlate to the inflammatory status of patients. The AAT:CD16b biomarker may become a useful addition to the clinical diagnosis of exacerbations in CF.

  16. Enzyme-activatable imaging probe reveals enhanced neutrophil elastase activity in tumors following photodynamic therapy.

    Science.gov (United States)

    Mitra, Soumya; Modi, Kshitij D; Foster, Thomas H

    2013-10-01

    We demonstrate the use of an enzyme-activatable fluorogenic probe, Neutrophil Elastase 680 FAST (NE680), for in vivo imaging of neutrophil elastase (NE) activity in tumors subjected to photodynamic therapy (PDT). NE protease activity was assayed in SCC VII and EMT6 tumors established in C3H and BALB/c mice, respectively. Four nanomoles of NE680 was injected intravenously immediately following PDT irradiation. 5 h following administration of NE680, whole-mouse fluorescence imaging was performed. At this time point, levels of NE680 fluorescence were at least threefold greater in irradiated versus unirradiated SCC VII and EMT6 tumors sensitized with Photofrin. To compare possible photosensitizer-specific differences in therapy-induced elastase activity, EMT6 tumors were also subjected to 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH)-PDT. NE levels measured in HPPH-PDT-treated tumors were twofold higher than in unirradiated controls. Ex vivo labeling of host cells using fluorophore-conjugated antibodies and confocal imaging were used to visualize Gr1+ cells in Photofrin-PDT-treated EMT6 tumors. These data were compared with recently reported analysis of Gr1+ cell accumulation in EMT6 tumors subjected to HPPH-PDT. The population density of infiltrating Gr1+ cells in treated versus unirradiated drug-only control tumors suggests that the differential in NE680 fold enhancement observed in Photofrin versus HPPH treatment may be attributed to the significantly increased inflammatory response induced by Photofrin-PDT. The in vivo imaging of NE680, which is a fluorescent reporter of NE extracellular release caused by neutrophil activation, demonstrates that PDT results in increased NE levels in treated tumors, and the accumulation of the cleaved probe tracks qualitatively with the intratumor Gr1+ cell population.

  17. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained consider

  18. Reverse Migration of Neutrophils: Where, When, How, and Why?

    Science.gov (United States)

    Nourshargh, Sussan; Renshaw, Stephen A; Imhof, Beat A

    2016-05-01

    Neutrophil migration to injured and pathogen-infected tissues is a fundamental component of innate immunity. An array of cellular and molecular events mediate this response to collectively guide neutrophils out of the vasculature and towards the core of the ensuing inflammatory reaction where they exert effector functions. Advances in imaging modalities have revealed that neutrophils can also exhibit motility away from sites of inflammation and injury, although it is unclear under what circumstances this reverse migration is a physiological protective response, and when it has pathophysiological relevance. Here we review different types of neutrophil reverse migration and discuss the current understanding of the associated mechanisms. In this context we propose clarifications to the existing terminology used to describe the many facets of neutrophil reverse migration.

  19. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious

    Science.gov (United States)

    Sônego, Fabiane; Castanheira, Fernanda Vargas e Silva; Ferreira, Raphael Gomes; Kanashiro, Alexandre; Leite, Caio Abner Vitorino Gonçalves; Nascimento, Daniele Carvalho; Colón, David Fernando; Borges, Vanessa de Fátima; Alves-Filho, José Carlos; Cunha, Fernando Queiróz

    2016-01-01

    Sepsis, an overwhelming inflammatory response syndrome secondary to infection, is one of the costliest and deadliest medical conditions worldwide. Neutrophils are classically considered to be essential players in the host defense against invading pathogens. However, several investigations have shown that impairment of neutrophil migration to the site of infection, also referred to as neutrophil paralysis, occurs during severe sepsis, resulting in an inability of the host to contain and eliminate the infection. On the other hand, the neutrophil antibacterial arsenal contributes to tissue damage and the development of organ dysfunction during sepsis. In this review, we provide an overview of the main events in which neutrophils play a beneficial or deleterious role in the outcome of sepsis. PMID:27199981

  20. Toll-like receptor responses in IRAK-4-deficient neutrophils.

    Science.gov (United States)

    van Bruggen, Robin; Drewniak, Agata; Tool, Anton T J; Jansen, Machiel; van Houdt, Michel; Geissler, Judy; van den Berg, Timo K; Chapel, Helen; Kuijpers, Taco W

    2010-01-01

    Human neutrophils were found to express all known Toll-like receptors (TLRs) except TLR3 and TLR7. IRAK-4-deficient neutrophils were tested for their responsiveness to various TLR ligands. Essentially all TLR responses in neutrophils, including the induction of reactive oxygen species generation, adhesion, chemotaxis and IL-8 secretion, were found to be dependent on IRAK-4. Surprisingly, the reactivity towards certain established TLR ligands, imiquimod and ODN-CpG, was unaffected by IRAK-4 deficiency, demonstrating their activity is independent of TLR. TLR-4-dependent signaling in neutrophils was totally dependent on IRAK-4 without any major TRIF-mediated contribution. We did not observe any defects in killing capacity of IRAK-4-deficient neutrophils for Staphylococcus aureus, Escherichia coli and Candida albicans, suggesting that microbial killing is primarily TLR independent.

  1. Olfactomedin 4 defines a subset of human neutrophils

    DEFF Research Database (Denmark)

    Clemmensen, Stine N; Bohr, Christina T; Rørvig, Sara;

    2012-01-01

    OLFM4 was identified initially as a gene highly induced in myeloid stem cells by G-CSF treatment. A bioinformatics method using a global meta-analysis of microarray data predicted that OLFM4 would be associated with specific granules in human neutrophils. Subcellular fractionation of peripheral...... blood neutrophils demonstrated complete colocalization of OLFM4 with the specific granule protein NGAL, and stimulation of neutrophils with PMA resulted in corelease of NGAL and OLFM4, proving that OLFM4 is a genuine constituent of neutrophil-specific granules. In accordance with this, OLFM4 mRNA peaked...... at the MY/MM stage of maturation. OLFM4 was, however, present in only 20-25% of peripheral blood neutrophils, as determined by immunocytochemistry and flow cytometry, whereas mRNA for OLFM4 was present in all MY/MM, indicating post-transcriptional regulation as a basis for the heterogeneous expression...

  2. Molecular and functional characterization of the voltage-gated proton channel in zebrafish neutrophils.

    Science.gov (United States)

    Ratanayotha, Adisorn; Kawai, Takafumi; Higashijima, Shin-Ichi; Okamura, Yasushi

    2017-08-01

    Voltage-gated proton channels (Hv1/VSOP) are expressed in various cells types, including phagocytes, and are involved in diverse physiological processes. Although hvcn1, the gene encoding Hv1, has been identified across a wide range of species, most of the knowledge about its physiological function and expression profile is limited to mammals. In this study, we investigated the basic properties of DrHv1, the Hv1 ortholog in zebrafish (Danio rerio) which is an excellent animal model owing to the transparency, as well as its functional expression in native cells. Electrophysiological analysis using a heterologous expression system confirmed the properties of a voltage-gated proton channel are conserved in DrHv1 with differences in threshold and activation kinetics as compared to mouse (Mus musculus) Hv1 (mHv1). RT-PCR analysis revealed that hvcn1 is expressed in zebrafish neutrophils, as is the case in mammals. Subsequent electrophysiological analysis confirmed the functional expression of DrHv1 in zebrafish neutrophils, which suggests Hv1 function in phagocytes is conserved among vertebrates. We also found that DrHv1 is comparatively resistant to extracellular Zn(2+), which is a potent inhibitor of mammalian Hv1, and this phenomenon appears to reflect variation in the Zn(2+)-coordinating residue (histidine) within the extracellular linker region in mammalian Hv1. Notably, the serum Zn(2+) concentration is much higher in zebrafish than in mouse, raising the possibility that Zn(2+) sensitivity was acquired in accordance with a change in the serum Zn(2+) concentration. This study highlights the biological variation and importance of Hv1 in different animal species. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  3. Cyclin-dependent kinase 9 activity regulates neutrophil spontaneous apoptosis.

    Directory of Open Access Journals (Sweden)

    Keqing Wang

    Full Text Available Neutrophils are the most abundant leukocyte and play a central role in the immune defense against rapidly dividing bacteria. However, they are also the shortest lived cell in the blood with a lifespan in the circulation of 5.4 days. The mechanisms underlying their short lifespan and spontaneous entry into apoptosis are poorly understood. Recently, the broad range cyclin-dependent kinase (CDK inhibitor R-roscovitine was shown to increase neutrophil apoptosis, implicating CDKs in the regulation of neutrophil lifespan. To determine which CDKs were involved in regulating neutrophil lifespan we first examined CDK expression in human neutrophils and found that only three CDKs: CDK5, CDK7 and CDK9 were expressed in these cells. The use of CDK inhibitors with differing selectivity towards the various CDKs suggested that CDK9 activity regulates neutrophil lifespan. Furthermore CDK9 activity and the expression of its activating partner cyclin T1 both declined as neutrophils aged and entered apoptosis spontaneously. CDK9 is a component of the P-TEFb complex involved in transcriptional regulation and its inhibition will preferentially affect proteins with short half-lives. Treatment of neutrophils with flavopiridol, a potent CDK9 inhibitor, increased apoptosis and caused a rapid decline in the level of the anti-apoptotic protein Mcl-1, whilst Bcl2A was unaffected. We propose that CDK9 activity is a key regulator of neutrophil lifespan, preventing apoptosis by maintaining levels of short lived anti-apoptotic proteins such as Mcl-1. Furthermore, as inappropriate inhibition of neutrophil apoptosis contributes to chronic inflammatory diseases such as Rheumatoid Arthritis, CDK9 represents a novel therapeutic target in such diseases.

  4. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-08-23

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  5. Modulation of neutrophil function by the tripeptide feG

    Directory of Open Access Journals (Sweden)

    Davison Joseph S

    2003-03-01

    Full Text Available Abstract Background Neutrophils are critical in the defense against potentially harmful microorganisms, but their excessive and inappropriate activation can contribute significantly to tissue damage and a worsening pathology. Through the release of endocrine factors submandibular glands contribute to achieving a balance in neutrophil function by modulating the state of activation and migratory potential of circulating neutrophils. A putative hormonal candidate for these effects on neutrophils was identified as a heptapeptide named submandibular gland peptide T (SGP-T; sequence = TDIFEGG. Since the tripeptide FEG, derived from SGP-T, and its D-amino acid analogue feG had similar inhibitory effects on inflammatory reactions, we investigated the effects of feG on human and rat neutrophil function. Results With human neutrophils feG had no discernible effect on oxidative burst or phagocytosis, but in picomolar amounts it reduced PAF-induced neutrophil movement and adhesion, and the binding of CD11b by 34% and that of CD16b close to control values. In the rat feG (10-11M reduced the binding of CD11b and CD16 antibodies to PAF-stimulated circulating neutrophils by 35% and 43%, respectively, and at 100 micrograms/kilograms intraperitoneally feG reduced neutrophil in vivo migration by 40%. With ovalbumin-sensitized rats that were challenged with antigen, feG inhibited binding of antibodies against CD16b but not CD11b, on peritoneal leukocytes. Conclusions The inhibitory effect of feG on neutrophil movement may be mediated by alterations in the co-stimulatory molecules CD11b and CD16.

  6. Structural divergence of GPI-80 in activated human neutrophils.

    Science.gov (United States)

    Nitto, Takeaki; Takeda, Yuji; Yoshitake, Hiroshi; Sendo, Fujiro; Araki, Yoshihiko

    2007-07-27

    GPI-80 is a glycosylphosphatidylinositol (GPI)-anchored protein that is mainly expressed in human neutrophils. Previous studies using 3H9, a monoclonal antibody (mAb) against GPI-80, suggested that GPI-80 regulates leukocyte adherence and migration through Mac-1. GPI-80, which is anchored at the plasma membrane in resting neutrophils, moves into the pseudopodia and is released from activated human neutrophils. Here, we demonstrate that neutrophil activation affects GPI-80 dynamics using a new anti-GPI-80 mAb, designated 4D4, which is directed against the form of GPI-80 found on resting human neutrophils. Similar to 3H9, 4D4 influences Mac-1-dependent neutrophil adhesion. Treatment of purified GPI-80 with periodic acid and trypsin indicated that 3H9 and 4D4 recognize peptide and carbohydrate moieties, respectively. Stimulation with fMLP decreased the binding of 4D4 to GPI-80 on the neutrophil surface but increased the overall expression of GPI-80, as visualized by the 3H9 signal. Confocal laser microscopy revealed the 4D4 signal mainly on cell bodies and at a low level on pseudopodia during migration toward increasing concentrations of fMLP, whereas the 3H9 signal was observed in both areas. In addition, soluble GPI-80 released from activated neutrophils did not bind 4D4. These results suggest that there are two populations of GPI-80 that differ in the ability to bind 4D4. The 4D4-recognized form may regulate Mac-1-dependent neutrophil adhesion, and may subsequently be converted to a 4D4-unrecognized form during neutrophil activation.

  7. Neutrophils activate macrophages for intracellular killing of Leishmania major through recruitment of TLR4 by neutrophil elastase.

    Science.gov (United States)

    Ribeiro-Gomes, Flavia L; Moniz-de-Souza, Maria Carolina A; Alexandre-Moreira, Magna S; Dias, Wagner B; Lopes, Marcela F; Nunes, Marise P; Lungarella, Giuseppe; DosReis, George A

    2007-09-15

    We investigated the role of neutrophil elastase (NE) in interactions between murine inflammatory neutrophils and macrophages infected with the parasite Leishmania major. A blocker peptide specific for NE prevented the neutrophils from inducing microbicidal activity in macrophages. Inflammatory neutrophils from mutant pallid mice were defective in the spontaneous release of NE, failed to induce microbicidal activity in wild-type macrophages, and failed to reduce parasite loads upon transfer in vivo. Conversely, purified NE activated macrophages and induced microbicidal activity dependent on secretion of TNF-alpha. Induction of macrophage microbicidal activity by either neutrophils or purified NE required TLR4 expression by macrophages. Injection of purified NE shortly after infection in vivo reduced the burden of L. major in draining lymph nodes of TLR4-sufficient, but not TLR4-deficient mice. These results indicate that NE plays a previously unrecognized protective role in host responses to L. major infection.

  8. Inhibition of pre-B cell colony-enhancing factor (PBEF/NAMPT/visfatin) decreases the ability of human neutrophils to generate reactive oxidants but does not impair bacterial killing.

    Science.gov (United States)

    Roberts, Kate J; Cross, Andrew; Vasieva, Olga; Moots, Robert J; Edwards, Steven W

    2013-09-01

    NAMPT, also known as PBEF and visfatin, can act extracellularly as a cytokine-like molecule or intracellularly as a NAMPT, regulating NAD biosynthesis in the NAD salvage pathway. Inhibitors of NAMPT have anti-inflammatory and anticancer activity and are finding use as therapeutic agents. In view of the importance of NAD metabolism in neutrophil function, we determined the effects of NAMPT inhibition on a variety of neutrophil functions associated with their role in host protection against infections. Incubation of human neutrophils with the NAMPT inhibitor APO866 decreased neutrophil NAD(P)/H levels in a dose- and time-dependent manner but without a concomitant change in cell viability. NAMPT inhibition did not affect the expression of a number of cell-surface receptors involved in adhesion and opsono-phagocytosis, but the respiratory burst was decreased significantly. Whereas opsono-phagocytosis of Staphylococcus aureus was unaffected by NAMPT inhibition, intraphagosomal oxidant production was decreased. However, the killing efficiency of neutrophils was unaffected. These data indicate that therapeutic NAMPT inhibition is unlikely to have deleterious effects on host protection against infections, in spite of this ability to down-regulate neutrophil respiratory burst activity significantly.

  9. [Neutrophils and monocytes in gingival epithelium

    Science.gov (United States)

    Meng, H X; Zheng, L P

    1994-06-01

    Neutrophils and monocytes of gingival epithellium in health gingiva(H),marginal gingivitis(MG),juvenile periodontitis(JP),adult periodontitis(AP) and subgingival bacteria were quantitated and analyzed,The results showed that the numbers of PMN within either pocket epithelium or oral gingival epithelium in JP were significantly lower than in AP and G.The amounts of PMN in AP were much larger than other three groups.Positive correlation between the number of PMN in sulcular pocket epitelium and the motile bacteri of subgingival plaque was demonstrated by correlation analysis.Monocytes mainly presented in deep pocket and junctional epithelum which were stained by NAE method,however very few Langhans cells were seen in these areas.

  10. Chronic neutrophilic leukemia: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Menezes J

    2015-09-01

    Full Text Available Juliane Menezes, Juan Cruz Cigudosa Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre – CNIO, Madrid, SpainAbstract: Chronic neutrophilic leukemia (CNL is a rare myeloproliferative neoplasm (MPN that includes only 150 patients described to date meeting the latest World Health Organization (WHO criteria and the recently reported CSF3R mutations. The diagnosis is based on morphological criteria of granulocytic cells and the exclusion of genetic drivers that are known to occur in others MPNs, such as BCR-ABL1, PDGFRA/B, or FGFR1 rearrangements. However, this scenario changed with the identification of oncogenic mutations in the CSF3R gene in approximately 83% of WHO-defined and no monoclonal gammopathy-associated CNL patients. CSF3R T618I is a highly specific molecular marker for CNL that is sensitive to inhibition in vitro and in vivo by currently approved protein kinase inhibitors. In addition to CSF3R mutations, other genetic alterations have been found, notably mutations in SETBP1, which may be used as prognostic markers to guide therapeutic decisions. These findings will help to understand the pathogenesis of CNL and greatly impact the clinical management of this disease. In this review, we discuss the new genetic alterations recently found in CNL and the clinical perspectives in its diagnosis and treatment. Fortunately, since the diagnosis of CNL is not based on exclusion anymore, the molecular characterization of the CSF3R gene must be included in the WHO criteria for CNL diagnosis. Keywords: CSF3R, SETBP1, CNL, neutrophilic, WHO, PTK inhibitors

  11. On the maturation rate of the neutrophil.

    Science.gov (United States)

    Zajicek, G; Shohat, M; Polliack, A

    1984-05-01

    Fifty-three maturing bone marrow cells of the granulocyte cell series stained with Giemsa stain and magnified 1,000 times were scanned by a "computerized microscope" consisting of a LSI-11/23 microprocessor and a black-and-white video camera attached to a "frame grabber ." Each sampled cell was digitized into 70 X 70 pixels, each pixel representing 0.04 micron of the real image. The pixel gray values ranged between 0 and 255. Zero stood for white, 255 represented black, while the numbers in between stood for the various shades of gray. The cells represented six different stages of granulocytic maturation: myeloblast, promyelocyte, myelocyte, metamyelocyte , band form, and polymorphonuclear granulocyte. A discriminant analysis program selected 19 features best distinguishing between the six different cell types and computed five canonical discriminant functions defining a Space in which maturation was studied. In the Space, distance between two cells serves as a measure of similarity. The closer two cells are, the more similar they are and vice versa. This measure was applied here to express the degree of similarity between the neutrophil maturation classes, and since they represent states in the neutrophil life history, it is applicable also as a yardstick for the quantitation of differentiation. In the Space, the life history of a cell is represented by a trajectory originating in the myeloblast and terminating in the granulocyte state. Displacement along the trajectory represents cell maturation that is expressed relatively to the least differentiated state of the myeloblast. The further a cell from this state the more mature it is. The same yardstick also serves for differentiation rate estimates represented in the Space by displacement velocities that are derived from the known "transit times" of a cell in each state. The methodology is also applied for cell production estimates. Unlike other "computerized microscopes" serving for cell classification, the

  12. Effect of local immunization of the mammary gland on phagocytosis and intracellular kill of Staphylococcus aureus by polymorphonuclear neutrophils.

    Science.gov (United States)

    Guidry, A J; Paape, M J; Pearson, R E; Williams, W F

    1980-09-01

    Four cows in the latter part of their 2nd, 3rd, or 4th lactations were immunized by multiple intramammary infusions of heat-killed Staphylococcus aureus in 2 quarters. The direct bactericidal effects of milk whey from the immunized and control quarters, before and after immunization, and the ability of these whey to support phagocytosis and intracellular kill were determined by incubating live S aureus with polymorphonuclear neutrophils isolated from milk. Immunoglobulins (Ig) were determined by single radial immunodiffusion. One immunized and 1 control quarter in each cow were challenge exposed with live S aureus and the courses of the infections were determined for 2 weeks. There were significant cow differences in all Ig classes and in percentage of phagocytosis. Immunization resulted in a significant increase in IgA, IgG2, and IgM in the immunized quarters. Whey collected from immunized quarters supported phagocytosis of S aureus by isolated milk polymorphonuclear neutrophils significantly greater than did whey from control quarters. Extracellular live S aureus in the incubation medium was decreased by 59% in whey collected after immunization from immunized quarters. This decrease in extracellular S aureus was associated with a concomitant increase in total intracellular S aureus. However, intracellular live organisms showed no change. This lack of change indicated that the additional S aureus that were phagocytosed were killed. Direct bactericidal effects of whey were not observed. Intracellular live S aureus was not significantly correlated with any of the variables measured.

  13. Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Sunish eMohanan

    2013-03-01

    Full Text Available PAD4-mediated hypercitrullination of histone H4 arginine 3 (H4R3 has been previously found to promote the formation of Neutrophil Extracellular Traps (NET in inflamed tissues and the resulting histone H4 citrulline 3 (H4Cit3 modification is thought to play a key role in extracellular trap (ET formation by promoting chromatin decondensation. In addition to neutrophils, macrophages have also recently been found to generate functional extracellular traps (METs. However, a role for PADs in ET formation in macrophages has not been previously described. Transcripts for PAD2 and PAD4 are found in mature macrophages and these cells can be induced to citrullinate proteins, thus raising the possibility that PADs may play a direct role in ET formation in macrophages via histone hypercitrullination. In breast and visceral white adipose tissue from obese patients, infiltrating macrophages are often seen to surround dead adipocytes forming characteristic crown-like structures (CLS and the presence of these lesions is associated with increased levels of inflammatory mediators. In light of these observations, we have initiated studies to test whether PADs are expressed in CLS macrophages and whether these macrophages might form METs. Our preliminary findings show that PAD2 (and to a lesser extent, PAD4 is expressed in both in the macrophage cell line (RAW 264.7 and in CLS lesions. Additionally, we provide evidence that macrophage-derived extracellular histones are seen around presumptive macrophages within CLS lesions and that these histones contain the H4Cit3 modification. These initial findings support our hypothesis that obesity-induced adipose tissue inflammation promotes the formation of METs within CLS lesions via PAD-mediated histone hypercitrullination. Subsequent studies are underway to further validate these findings and to investigate the role in PAD-mediated MET formation in CLS function in the mammary gland.

  14. Antimicrobial activity of mast cells: Role and relevance of extracellular DNA traps

    Directory of Open Access Journals (Sweden)

    Helene Möllerherm

    2016-07-01

    Full Text Available Mast cells (MCs have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? In the first place, MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators such as TNF-α. Moreover, various studies exhibit that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms including MCET-formation similar to that of professional phagocytes. The actual literature leads to the suggestion that MCET-formation is not the result of passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with special focus on MCETs and their role and relevance during infection and inflammation.

  15. Leukotriene B4 mediates neutrophil migration induced by heme.

    Science.gov (United States)

    Monteiro, Ana Paula T; Pinheiro, Carla S; Luna-Gomes, Tatiana; Alves, Liliane R; Maya-Monteiro, Clarissa M; Porto, Barbara N; Barja-Fidalgo, Christina; Benjamim, Claudia F; Peters-Golden, Marc; Bandeira-Melo, Christianne; Bozza, Marcelo T; Canetti, Claudio

    2011-06-01

    High concentrations of free heme found during hemolytic events or cell damage leads to inflammation, characterized by neutrophil recruitment and production of reactive oxygen species, through mechanisms not yet elucidated. In this study, we provide evidence that heme-induced neutrophilic inflammation depends on endogenous activity of the macrophage-derived lipid mediator leukotriene B(4) (LTB(4)). In vivo, heme-induced neutrophil recruitment into the peritoneal cavity of mice was attenuated by pretreatment with 5-lipoxygenase (5-LO) inhibitors and leukotriene B(4) receptor 1 (BLT1) receptor antagonists as well as in 5-LO knockout (5-LO(-/-)) mice. Heme administration in vivo increased peritoneal levels of LTB(4) prior to and during neutrophil recruitment. Evidence that LTB(4) was synthesized by resident macrophages, but not mast cells, included the following: 1) immuno-localization of heme-induced LTB(4) was compartmentalized exclusively within lipid bodies of resident macrophages; 2) an increase in the macrophage population enhanced heme-induced neutrophil migration; 3) depletion of resident mast cells did not affect heme-induced LTB(4) production or neutrophil influx; 4) increased levels of LTB(4) were found in heme-stimulated peritoneal cavities displaying increased macrophage numbers; and 5) in vitro, heme was able to activate directly macrophages to synthesize LTB(4). Our findings uncover a crucial role of LTB(4) in neutrophil migration induced by heme and suggest that beneficial therapeutic outcomes could be achieved by targeting the 5-LO pathway in the treatment of inflammation associated with hemolytic processes.

  16. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Science.gov (United States)

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  17. Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis.

    Science.gov (United States)

    Rahman, Milladur; Gustafsson, David; Wang, Yongzhi; Thorlacius, Henrik; Braun, Oscar Ö

    2014-01-01

    Abstract Platelets play an important role in abdominal sepsis and P2Y12 receptor antagonists have been reported to exert anti-inflammatory effects. Herein, we assessed the impact of platelet inhibition with the P2Y12 receptor antagonist ticagrelor on pulmonary neutrophil recruitment and tissue damage in a model of abdominal sepsis. Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were treated with ticagrelor (100 mg/kg) or vehicle prior to CLP induction. Edema formation and bronchoalveolar neutrophils as well as lung damage were quantified. Flow cytometry was used to determine expression of platelet-neutrophil aggregates, neutrophil activation and CD40L expression on platelets. CLP-induced pulmonary infiltration of neutrophils at 24 hours was reduced by 50% in ticagrelor-treated animals. Moreover, ticagrelor abolished CLP-provoked lung edema and decreased lung damage score by 41%. Notably, ticagrelor completely inhibited formation of platelet-neutrophil aggregates and markedly reduced thrombocytopenia in CLP animals. In addition, ticagrelor reduced platelet shedding of CD40L in septic mice. Our data indicate that ticagrelor can reduce CLP-induced pulmonary neutrophil recruitment and lung damage suggesting a potential role for platelet antagonists, such as ticagrelor, in the management of patients with abdominal sepsis.

  18. Age associated variations in human neutrophil and sperm functioning

    Institute of Scientific and Technical Information of China (English)

    Kaveri Purandhar; Sriram Seshadri

    2013-01-01

    Objective: To determine the functional and biochemical variations in sperm and the neutrophil with the progression of age. Methods: Ninety healthy male subjects were selected in the age group 26-40 for the collection of semen and blood samples were collected. Basic semen analysis, hematogram, differential count serum analysis, seminal plasma and serum biochemistry was performed. Mitochondrial isolation from sperm and neutrophil was done to ascertain mitochondrial markers. Results: Our data shows a significant age-dependent reduction in the levels of mitochondrial Superoxide Dismutase (SOD) and Catalase (CAT) in sperm and the neutrophil. The functional attributes of sperm and neutrophil did not show any specific trend.Conclusion:The decreasing trend of the mitochondrial antioxidants enzymes in the sperm and the neutrophil is an indicative of the reduction in the functioning of sperm and the neutrophil. The antioxidants enzymes of sperm and neutrophil shows similar declining trend with the progression of age suggesting its possible role as a prognostic marker for age related deformities and even in male fertility.

  19. Regulation of circulating neutrophil numbers under homeostasis and in disease.

    Science.gov (United States)

    Strydom, Natasha; Rankin, Sara M

    2013-01-01

    Neutrophils are the most abundant circulating leukocyte and play a fundamental role in the innate immune response. Patients with neutropenia, leukocyte adhesion deficiency syndrome or chronic granulomatous disease are particularly prone to bacterial and fungal infection. However, the highly destructive capacity of these cells also increases the potential for neutrophil damage to healthy tissues, as seen in a number of inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease. The homeostatic control of circulating neutrophil levels is thus critical, as an imbalance can result in overwhelming infection or inappropriate inflammatory states. Neutrophil homeostasis is maintained by a fine balance between granulopoiesis in the bone marrow, retention in and release from the bone marrow and clearance and destruction. This review discusses the molecular mechanisms regulating neutrophil mobilization from the bone marrow, with emphasis on the antagonistic roles of the CXCR4 (C-X-C motif receptor 4)/CXCL12 (C-X-C motif ligand 12) and CXCR2/ELR+ (Glu-Leu-Arg) CXC chemokine signaling axes in the bone marrow. A role for the CXCL12/CXCR4 chemokine axis in the trafficking of senescent neutrophils back to the bone marrow for clearance, along with the role of bone marrow macrophages and the molecules that mediate neutrophil clearance by bone marrow macrophages, is also discussed. Copyright © 2013 S. Karger AG, Basel.

  20. Novel pathways for glucocorticoid effects on neutrophils in chronic inflammation.

    Science.gov (United States)

    Goulding, N J; Euzger, H S; Butt, S K; Perretti, M

    1998-10-01

    Neutrophils have been implicated in mediating much of the tissue damage associated with chronic inflammatory diseases such as rheumatoid arthritis, where they are involved in destruction of both cartilage and bone. Glucocorticoids are powerful anti-inflammatory agents, often used in the treatment of this autoimmune disease. They exert significant inhibitory effects on neutrophil activation and functions, such as chemotaxis, adhesion, transmigration, apoptosis, oxidative burst, and phagocytosis. The mechanisms by which glucocorticoids exert these effects on neutrophils are unclear. Evidence from studies of inflammation in human subjects and animal models suggests that annexin-I an endogenous, glucocorticoid-induced protein also known as lipocortin-1, has a pivotal role in modulating neutrophil activation, transmigratory, and phagocytic functions. Furthermore, we present evidence for altered neutrophil functions in rheumatoid arthritis that correspond to a significantly reduced capacity of these cells to bind annexin-I. A proposed novel pathway for glucocorticoid actions on neutrophils involving annexin-I could explain the development of chronic neutrophil activation in diseases such as rheumatoid arthritis.

  1. Review of the neutrophil response to Bordetella pertussis infection.

    Science.gov (United States)

    Eby, Joshua C; Hoffman, Casandra L; Gonyar, Laura A; Hewlett, Erik L

    2015-12-01

    The nature and timing of the neutrophil response to infection with Bordetella pertussis is influenced by multiple virulence factors expressed by the bacterium. After inoculation of the host airway, the recruitment of neutrophils signaled by B. pertussis lipooligosaccharide (LOS) is suppressed by pertussis toxin (PTX). Over the next week, the combined activities of PTX, LOS and adenylate cyclase toxin (ACT) result in production of cytokines that generate an IL-17 response, promoting neutrophil recruitment which peaks at 10-14 days after inoculation in mice. Arriving at the site of infection, neutrophils encounter the powerful local inhibitory activity of ACT, in conjunction with filamentous hemagglutinin. With the help of antibodies, neutrophils contribute to clearance of B. pertussis, but only after 28-35 days in a naïve mouse. Studies of the lasting, antigen-specific IL-17 response to infection in mice and baboons has led to progress in vaccine development and understanding of pathogenesis. Questions remain about the mediators that coordinate neutrophil recruitment and the mechanisms by which neutrophils overcome B. pertussis virulence factors.

  2. Characterization of neutrophil adhesion to different titanium surfaces

    Indian Academy of Sciences (India)

    V Campos; R C N Melo; L P Silva; E N Aquino; M S Castro; W Fontes

    2014-02-01

    Although titanium (Ti) is known to elicit a foreign body response when implanted into humans, Ti implant healing resembles normal wound healing in terms of inflammatory cell recruitment and inflammation persistence. Rough implant surfaces may present better conditions for protein adsorption and for the adhesion of platelets and inflammatory cells such as neutrophils. Implanted biomedical devices initially interact with coagulating blood; however, direct contact between the oxide layer of the implant and neutrophils has not been completely described. The aim of the present study is to compare the behaviours of neutrophils in direct contact with different Ti surfaces. Isolated human neutrophils were placed into contact with Ti discs, which had been rendered as `smooth' or `rough', following different surface treatments. Scanning electron microscopy and flow cytometry were used to measure cell adhesion to the surfaces and exposure of membrane proteins such as CD62L and CD11b. Topographic roughness was demonstrated as higher for SLA treated surfaces, measured by atomic force microscopy and elemental analysis was performed by energy dispersive X-ray, showing a similar composition for both surfaces. The adhesion of neutrophils to the `rough' Ti surface was initially stronger than adhesion to the `smooth' surface. The cell morphology and adhesion marker results revealed clear signs of neutrophil activation by either surface, with different neutrophil morphological characteristics being observed between the two surface types. Understanding the cellular mechanisms regulating cell–implant interactions should help researchers to improve the surface topography of biomedical implant devices.

  3. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  4. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  5. Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor.

    Science.gov (United States)

    English, D; Broxmeyer, H E; Gabig, T G; Akard, L P; Williams, D E; Hoffman, R

    1988-10-01

    This investigation was undertaken to clarify the mechanism by which purified recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) potentiates neutrophil oxidative responses triggered by the chemotactic peptide, FMLP. Previous studies have shown that GM-CSF priming of neutrophil responses to FMLP is induced relatively slowly, requiring 90 to 120 min of incubation in vitro, is not associated with increased levels of cytoplasmic free Ca2+, but is associated with up-regulation of cell-surface FMLP receptors. We have confirmed these findings and further characterized the process of GM-CSF priming. We found that the effect of GM-CSF on neutrophil oxidative responsiveness was induced in a temperature-dependent manner and was not reversed when the cells were washed extensively to remove the growth factor before stimulation with FMLP. Extracellular Ca2+ was not required for functional enhancement by GM-CSF and GM-CSF alone effected no detectable alteration in the 32P-labeled phospholipid content of neutrophils during incubation in vitro. Our data indicate that GM-CSF exerts its influence on neutrophils by accelerating a process that occurs spontaneously and results in up-regulation of both cell-surface FMLP receptors and oxidative responsiveness to FMLP. Thus, the results demonstrate that, with respect to oxidative activation, circulating endstage polymorphonuclear leukocytes are nonresponsive or hyporesponsive to FMLP; functional responsiveness increases dramatically as surface FMLP receptors are gradually deployed after the cells leave the circulation. Thus, as neutrophils mature, their responsiveness to FMLP changes in a manner which may be crucial for efficient host defense. At 37 degrees C, this process is markedly potentiated by GM-CSF. We conclude that endogenous GM-CSF, released systemically or at sites of infection and inflammation, potentially plays an important role in host defense by accelerating functional maturation of responding

  6. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  7. Activation of AMPK enhances neutrophil chemotaxis and bacterial killing.

    Science.gov (United States)

    Park, Dae Won; Jiang, Shaoning; Tadie, Jean-Marc; Stigler, William S; Gao, Yong; Deshane, Jessy; Abraham, Edward; Zmijewski, Jaroslaw W

    2013-11-08

    An inability of neutrophils to eliminate invading microorganisms is frequently associated with severe infection and may contribute to the high mortality rates associated with sepsis. In the present studies, we examined whether metformin and other 5' adenosine monophosphate-activated protein kinase (AMPK) activators affect neutrophil motility, phagocytosis and bacterial killing. We found that activation of AMPK enhanced neutrophil chemotaxis in vitro and in vivo, and also counteracted the inhibition of chemotaxis induced by exposure of neutrophils to lipopolysaccharide (LPS). In contrast, small interfering RNA (siRNA)-mediated knockdown of AMPKα1 or blockade of AMPK activation through treatment of neutrophils with the AMPK inhibitor compound C diminished neutrophil chemotaxis. In addition to their effects on chemotaxis, treatment of neutrophils with metformin or aminoimidazole carboxamide ribonucleotide (AICAR) improved phagocytosis and bacterial killing, including more efficient eradication of bacteria in a mouse model of peritonitis-induced sepsis. Immunocytochemistry showed that, in contrast to LPS, metformin or AICAR induced robust actin polymerization and distinct formation of neutrophil leading edges. Although LPS diminished AMPK phosphorylation, metformin or AICAR was able to partially decrease the effects of LPS/toll-like receptor 4 (TLR4) engagement on downstream signaling events, particularly LPS-induced IκBα degradation. The IκB kinase (IKK) inhibitor PS-1145 diminished IκBα degradation and also prevented LPS-induced inhibition of chemotaxis. These results suggest that AMPK activation with clinically approved agents, such as metformin, may facilitate bacterial eradication in sepsis and other inflammatory conditions associated with inhibition of neutrophil activation and chemotaxis.

  8. Slow flow of passive neutrophils and sequestered nucleus into micropipette.

    Science.gov (United States)

    Kaleridis, V; Athanassiou, G; Deligianni, D; Missirlis, Y

    2010-01-01

    In the present study, the role of the nucleus and its contribution to the deformability of the passive neutrophils was investigated. To determine the rheological properties of the nucleus and of the neutrophil itself, deformation tests on single neutrophil and sequestered nucleus have been performed by micropipette under low aspiration pressure (80 Pa = 2-3 Pcr). The stiffness of the nucleus was found to be larger than that of the neutrophil, and its viscosity was found almost ten-fold higher. A subpopulation of neutrophils (Sub-A) showed two phases of deformation, a first rapid phase and a second phase with a constant deformation rate up to their full entrance, with an apparent viscosity mu app-second-Phase(N Sub-A) = 286 +/- 123 Pa x s, calculated by the liquid drop model. Another subpopulation (Sub-B) of the tested neutrophils displayed three deformation phases: a first one reflecting the rapid entry of cell into the micropipette, a second with constant deformation rate, and a third phase, with a slower, also constant, deformation rate were recorded. The corresponding apparent viscosities were found as mu app-second-Phase(N Sub-B) = 341 +/- 94 Pa x s and mu app-third-Phase(N Sub-B) = 1651 +/- 734 Pa x s. The apparent viscosity values of the neutrophilic nucleus, mu app (N nucl) = 2468 +/- 1345 Pa x s and of the whole neutrophil calculated in the third phase of deformation, mu app-third-Phase(N Sub-B) = 1651 +/- 734 Pa.s were comparable. These results support our hypothesis that the nucleus plays a significant role in the mechanical and rheological behavior of the neutrophil, especially when it has to pass through openings much smaller than its size.

  9. 中性粒细胞弹性蛋白酶及其抑制剂与肺癌关系的研究进展%Progress of relationship of neutrophil elastase and neutrophil elastase inhibitor with lung cancer

    Institute of Scientific and Technical Information of China (English)

    郭晓斌; 朱运奎

    2010-01-01

    肿瘤转移作为一系列复杂事件的结果,这一过程需要很多酶的参与.中性粒细胞弹性蛋白酶在肺癌侵袭和转移中发挥重要作用,在生理条件下,中性粒细胞弹性蛋白酶有很多特殊的作用底物,过量的中性粒细胞弹性蛋白酶可导致弹力蛋白的降解,还可导致细胞外基质的降解.肺癌组织中的中性粒细胞弹性蛋白酶的量不仅可作为肺癌预后的独立指标,而且在重度联合免疫缺陷小鼠的肺癌种植模型中,一种特殊的中性粒细胞弹性蛋白酶抑制剂ONO-5046完全抑制了肺癌细胞的生长.中性粒细胞弹性蛋白酶免疫抑制剂的应用有望成为阻止肺癌侵袭和转移的有效方法.%Tumor metastasis is a result of a series of complex events.Many enzymes participate in this process.Neutrophil elastase plays an important role in the invasion and metastasis of lung cancer.Neutrophil elastase has many special substrate under physiological conditions.Excessive neutrophil elastase results in degradation of elastin and extracellular matrix.The level of neutrophil elastase in tumor tissue is an independent prognostic indicator of patients with lung cancer.In implant model with lung cancer of severe combined immunodeficiency mice,ONO-5046 which is a specific neutrophil elastase inhibitor completely suppresses growth of cancer cells.The use of neutrophil elastase inhibitor is hoped to be an effective way to prevent the invasion and metastasis of lung cancer.

  10. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  11. Localization and Functionality of the Inflammasome in Neutrophils

    DEFF Research Database (Denmark)

    Bakele, Martina; Joos, Melanie; Burdi, Sofia;

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the in...... intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis....

  12. Relationships between intrauterine infusion of N-acetylcysteine, equine endometrial pathology, neutrophil function, post-breeding therapy, and reproductive performance.

    Science.gov (United States)

    Gores-Lindholm, Alicia R; LeBlanc, Michelle M; Causey, Robert; Hitchborn, Anna; Fayrer-Hosken, Richard A; Kruger, Marius; Vandenplas, Michel L; Flores, Paty; Ahlschwede, Scott

    2013-08-01

    Persistent endometritis in the mare is associated with hypersecretion of mucus by endometrial epithelium and migration of neutrophils into the uterine lumen. This study examines the relationships between N-acetylcysteine (NAC), a mucolytic agent with anti-inflammatory properties, and endometrial architecture, serum neutrophil function, post-breeding therapy, and reproductive performance of NAC-treated mares in a clinical setting. In study 1, endometrial biopsies from mares receiving intrauterine saline (fertile-control, n = 6) or 3.3% NAC (fertile-treatment, n = 6; barren-treatment, n = 10) were evaluated by histology and image analysis. In study 2, phagocytic activity of serum-derived neutrophils was measured after adding 0.5% or 3% NAC. In study 3, pregnancy rates of repeat breeders (n = 44) receiving an intrauterine infusion of 3.3% NAC 24-36 hours before mating (group 1) was recorded, as was first cycle of the season pregnancy rates of reproductively normal mares (group 2, n = 85), and mares treated for bacterial endometritis the cycle before mating (group 3, n = 25). Intrauterine NAC did not adversely affect endometrial histology. Extracellular mucus thickness and staining intensity were reduced in fertile-treatment mares (P NAC solution, but not by 0.5% NAC (P NAC was not irritating and inhibited the oxidative burst of neutrophils. Repeat breeder mares, with evidence of mucus hypersecretion, but no uterine pathogens, when treated with NAC followed by post-mating uterine lavage and oxytocin (and in some cases intrauterine antibiotics), achieved a pregnancy rate of 77%.

  13. Influence of gut microbiota-derived ellagitannins' metabolites urolithins on pro-inflammatory activities of human neutrophils.

    Science.gov (United States)

    Piwowarski, Jakub P; Granica, Sebastian; Kiss, Anna K

    2014-07-01

    Ellagitannin-rich products exhibit beneficial influence in the case of inflammation-associated diseases. Urolithins, metabolites of ellagitannins produced by gut microbiota, in contrary to high molecular weight hydrophilic parental polyphenols, possess well established bioavailability. Because of the important role of neutrophils in progression of inflammation, the influence of urolithins on their pro-inflammatory functions was tested. Urolithin B at a concentration of 20 µM showed significant inhibition of interleukin 8 and extracellular matrix-degrading enzyme MMP-9 production. It was also significantly active in prevention of cytochalasin A/formyl-met-leu-phenylalanine-triggered selectin CD62L shedding. Urolithin C was the only active compound towards inhibition of elastase release from cytochalasin A/formyl-met-leu-phenylalanine-stimulated neutrophils with 39.0 ± 15.9% inhibition at a concentration of 5 µM. Myeloperoxidase release was inhibited by urolithins A and C (at 20 µM by 46.7 ± 16.1 and 63.8 ± 8.6%, respectively). Urolithin A was the most potent reactive oxygen species release inhibitor both in formyl-met-leu-phenylalanine and 4β-phorbol-12β-myristate-R13-acetate-stimulated neutrophils. At the concentration of 1 µM, it caused reactive oxygen species level decrease by 42.6 ± 26.6 and 53.7 ± 16.0%, respectively. Urolithins can specifically modulate inflammatory functions of neutrophils, and thus could contribute to the beneficial health effects of ellagitannin-rich medicinal plant materials and food products.

  14. Purification of a 75 kDa protein from the organelle matrix of human neutrophils and identification as N-acetylglucosamine-6-sulphatase

    Science.gov (United States)

    2004-01-01

    A 75 kDa protein was purified to homogeneity from granule extracts of normal human granulocytes using Sephadex G-75 chromatography, Mono-S cation exchange chromatography and chromatofocusing. The protein consisted of one chain with a molecular mass of 75 kDa, as determined by SDS/PAGE. Tryptic peptide analysis by MALDI-TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS and sequence analysis by MS/MS identified the protein to be N-acetylglucosamine-6-sulphatase (EC 3.1.6.14). The identity of the protein was confirmed by demostrating enzymatic activity towards the substrate N-acetylglucosamine 6-sulphate. The enzyme was active over a broad pH range with an optimum of pH 7.0, and showed a Km value of 13.0 mM and a Vmax value of ∼1.8 μM/min per mg. The enzyme also showed O-desulphation activity towards heparan sulphate-derived saccharides. Subcellular fractionation of neutrophil organelles showed the presence of enzymatic activity mainly in the same fractions as primary granules. Furthermore, PMA treatment of the neutrophils induced release of the enzyme, indicating its matrix protein nature. The presence of N-acetylglucosamine-6-sulphatase in human neutrophils implies that neutrophils may play a role in the modulation of cell surface molecules and extracellular matrix by O-desulphation. PMID:15595925

  15. Oxidative burst of neutrophils against melanoma B16-F10.

    Science.gov (United States)

    Zivkovic, Morana; Poljak-Blazi, Marija; Zarkovic, Kamelija; Mihaljevic, Danijela; Schaur, Rudolf Joerg; Zarkovic, Neven

    2007-02-08

    Intensive oxidative burst was determined by chemiluminescence of peripheral blood neutrophils of mice that were intramuscularly injected with melanoma B16-F10 and/or subcutaneously with Sephadex G-200. The neutrophils from papula developed at the site of Sephadex injection were cytotoxic for the B16-F10 cells in vitro. However, survival of Sephadex injected tumour-bearing mice was lower than of control animals bearing B16-F10, while their tumours grew faster and were less necrotic. Thus, it is likely that injection of Sephadex distracted the neutrophils from the tumour allowing faster progression of the tumour, indicating that neutrophils may have an important role in the host defence against malignant cells in the early stage of tumour development.

  16. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  17. Cryptococcal capsular glucuronoxylomannan reduces ischaemia-related neutrophil influx

    NARCIS (Netherlands)

    Ellerbroek, PM; Schoemaker, RG; van Veghel, R; Hoepelman, AIM; Coenjaerts, FEJ

    2004-01-01

    Background The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans interferes with the chemotaxis and transendothelial migration of neutrophils. Intravenous administration of purified GXM has been shown to reduce the influx of inflammatory cells in an animal model of bacteri

  18. Neutrophil microbial killing mechanisms: Lessons learned from primary immunodeficiencies

    NARCIS (Netherlands)

    Gazendam, R.P.

    2016-01-01

    Humans and microbes have a balanced and longstanding relationship. Immunosuppresive therapies and primary immunodeficiencies (PIDs) may disturb this balance and result in infection. Patients with neutropenia or PIDs with neutrophil functional defects, including Chronic Granulomatous Disease (CGD), a

  19. [The phagocytosis of polymorphonuclear neutrophilic granulocytes in progressive periodontitis].

    Science.gov (United States)

    Konopka, T; Zietek, M

    1995-01-01

    The aim of this paper was the evaluation of the phagocytic activity of neutrophils in blood and in gingival pocket fluid in patients suffering from rapidly progressive periodontitis (RPP) and postjuvenile periodontitis (PJP). Prior to periodontal treatment the authors evaluated the capacity to phagocytose latex particles of peripheral blood neutrophils from 21 patients with RPP, 51 with PJP and 59 healthy subjects (control group) as well as the phagocytic activity of neutrophils in pocket fluid from 21 patients with RPP, 14 with PJP and from 20 healthy subjects. This phagocytic activity was significantly lower in all examined groups in comparison with the control group. A similar evaluation executed 3 months after treatment revealed normal phagocytosis of blood neutrophils from patients with RPP. In patients receiving complementary pharmacotherapy (spiramycine combined with metronidazol), a better improvement of phagocytosis was noted, than that observed in patients treated only surgically.

  20. Fatty acids as modulators of neutrophil recruitment, function and survival.

    Science.gov (United States)

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed.

  1. Hypoxia Selectively Inhibits Respiratory Burst Activity and Killing of Staphylococcus aureus in Human Neutrophils

    OpenAIRE

    McGovern, Naomi N.; Cowburn, Andrew S.; Porter, Linsey; Walmsley, Sarah R.; Summers, Charlotte; Thompson, Alfred A. R.; Anwar, Sadia; Willcocks, Lisa C.; Moira K B Whyte; Condliffe, Alison M; Chilvers, Edwin R.

    2010-01-01

    Neutrophils play a central role in the innate immune response and a critical role in bacterial killing. Most studies of neutrophil function have been conducted under conditions of ambient oxygen, but inflamed sites where neutrophils operate may be extremely hypoxic. Previous studies indicate that neutrophils sense and respond to hypoxia via the ubiquitous prolyl hydroxylase/hypoxia-inducible factor pathway and that this can signal for enhanced survival. In the current study, human neutrophils...

  2. Mechanism of neutrophil recruitment to the lung after pulmonary contusion

    OpenAIRE

    2011-01-01

    Blunt chest trauma resulting in pulmonary contusion is a common but poorly understood injury. We previously demonstrated that lung contusion activates localized and systemic innate immune mechanisms and recruits neutrophils to the injured lung. We hypothesized that the innate immune and inflammatory activation of neutrophils may figure prominently in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinicall...

  3. Polyphenol derivatives – potential regulators of neutrophil activity

    OpenAIRE

    2012-01-01

    The study provides new information on the effect of natural polyphenols (derivatives of stilbene – resveratrol, pterostilbene, pinosylvin and piceatannol and derivatives of ferulic acid – curcumin, N-feruloylserotonin) on the activity of human neutrophils in influencing oxidative burst. All the polyphenols tested were found to reduce markedly the production of reactive oxygen species released by human neutrophils on extra-and intracellular levels as well as in cell free system. Moreover, pino...

  4. Salivary duct carcinoma with striking neutrophil-tumor cell cannibalism

    OpenAIRE

    Payam Arya; Khalbuss, Walid E.; Monaco, Sara E.; Liron Pantanowitz

    2011-01-01

    Cannibalism of neutrophils by tumor cells has previously been reported in certain carcinomas, lymphoma and melanoma. Tumor cannibalism is believed to serve as a tumor-immune escape mechanism, associated with high-grade aggressive cancers with a significantly increased metastatic potential. This interesting phenomenon has not been previously documented in association with salivary gland tumors. We report, for the first time, striking neutrophil-tumor cell cannibalism associated with a high gra...

  5. Neutrophil function and metabolism in individuals with diabetes mellitus

    Directory of Open Access Journals (Sweden)

    T.C. Alba-Loureiro

    2007-08-01

    Full Text Available Neutrophils act as first-line-of-defense cells and the reduction of their functional activity contributes to the high susceptibilityto and severity of infections in diabetes mellitus. Clinical investigations in diabetic patients and experimental studies in diabetic rats and mice clearly demonstrated consistent defects of neutrophil chemotactic, phagocytic and microbicidal activities. Other alterations that have been reported to occur during inflammation in diabetes mellitus include: decreased microvascular responses to inflammatory mediators such as histamine and bradykinin, reduced protein leakage and edema formation, reduced mast cell degranulation, impairment of neutrophil adhesionto the endothelium and migration to the site of inflammation, production of reactive oxygen species and reduced release of cytokines and prostaglandin by neutrophils, increased leukocyte apoptosis, and reduction in lymph node retention capacity. Since neutrophil function requires energy, metabolic changes (i.e., glycolytic and glutaminolytic pathways may be involved in the reduction of neutrophil function observed in diabetic states. Metabolic routes by which hyperglycemia is linked to neutrophil dysfunction include the advanced protein glycosylation reaction, the polyol pathway, oxygen-free radical formation, the nitric oxide-cyclic guanosine-3'-5'monophosphate pathway, and the glycolytic and glutaminolytic pathways. Lowering of blood glucose levels by insulin treatment of diabetic patients or experimental animals has been reported to have significant correlation with improvement of neutrophil functional activity. Therefore, changes might be primarily linked to a continuing insulin deficiency or to secondary hyperglycemia occurring in the diabetic individual. Accordingly, effective control with insulin treatment is likely to be relevant during infection in diabetic patients.

  6. Inhibition of neutrophil-mediated production of reactive oxygen species (ROS) by endothelial cells is not impaired in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis patients

    NARCIS (Netherlands)

    Al Laham, F.; Kaelsch, A. -I.; Heinrich, L.; Birck, R.; Kallenberg, C. G. M.; Heeringa, P.; Yard, B.

    2010-01-01

    P>Leucocyte transendothelial migration is strictly regulated to prevent undesired inflammation and collateral damage of endothelial cells by activated neutrophils/monocytes. We hypothesized that in anti-neutrophil cytoplasmic autoantibodies (ANCA)-associated vasculitis (AAV) patients' dysregulation

  7. A Role for Neutrophils in Viral Respiratory Disease

    Directory of Open Access Journals (Sweden)

    Jeremy V. Camp

    2017-05-01

    Full Text Available Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI. During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.

  8. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia.

    Science.gov (United States)

    Yamamoto, Kazuko; Ahyi, Ayele-Nati N; Pepper-Cunningham, Zachary A; Ferrari, Joseph D; Wilson, Andrew A; Jones, Matthew R; Quinton, Lee J; Mizgerd, Joseph P

    2014-02-01

    Epithelial cells line the respiratory tract and interface with the external world. Epithelial cells contribute to pulmonary inflammation, but specific epithelial roles have proven difficult to define. To discover unique epithelial activities that influence immunity during infection, we generated mice with nuclear factor-κB RelA mutated throughout all epithelial cells of the lung and coupled this approach with epithelial cell isolation from infected and uninfected lungs for cell-specific analyses of gene induction. The RelA mutant mice appeared normal basally, but in response to pneumococcus in the lungs they were unable to rapidly recruit neutrophils to the air spaces. Epithelial cells expressed multiple neutrophil-stimulating cytokines during pneumonia, all of which depended on RelA. Cytokine expression by nonepithelial cells was unaltered by the epithelial mutation of RelA. Epithelial cells were the predominant sources of CXCL5 and granulocyte-macrophage colony-stimulating factor (GM-CSF), whereas nonepithelial cells were major sources for other neutrophil-activating cytokines. Epithelial RelA mutation decreased whole lung levels of CXCL5 and GM-CSF during pneumococcal pneumonia, whereas lung levels of other neutrophil-recruiting factors were unaffected. Defective neutrophil recruitment in epithelial mutant mice could be rescued by administration of CXCL5 or GM-CSF. These results reveal a specialized immune function for the pulmonary epithelium, the induction of CXCL5 and GM-CSF, to accelerate neutrophil recruitment in the infected lung.

  9. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  10. The Role of Neutrophil Activation in Pathogenesis of Preeclampsia

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the effect of neutrophil activation on pathogenesis of pre-eclampsia, neutrophil activation was examined by using flow cytometry to assess the CD11b expression and the levels of plasma endothelin-1 (ET-1) and serum NO-2 were also measured by using non-equilibrium radioimmunoassay and by Griess assay in 29 pregnant women with pre-eclampsia and 31 normal pregnant women at third trimester. The expression of neutrophil CD11b was significantly elevated in women with pre-eclampsia as compared with that of normal pregnant women at third trimester. The mean fluorescence index of CD11b was 438.38±179.91 and 326.97±170.14 respectively (P<0.05). The plasma ET-1 level and serum NO 2 concentration in pre-eclampsic women (63.69±48.33 pg/ml and 20.03±4.77 μmol/L, respectively) were both significantly increased as compared with those in the normal pregnancy women (29.98±20.25 pg/ml and 15.47±5.47 μmol/L, respectively, P<0.01). The neutrophil CD11b expression was significantly elevated in pre-eclampsia. The increased neutrophil activation may cause the damage of vascular endothelium and result in NO release compensatory increase in endothelial cells, suggesting that the neutrophil activation may play a key role in pathogenesis of pre-eclampsia.

  11. The interaction of Acanthamoeba castellanii cysts with macrophages and neutrophils.

    Science.gov (United States)

    Hurt, Michael; Proy, Vincent; Niederkorn, Jerry Y; Alizadeh, Hassan

    2003-06-01

    Acanthamoeba castellanii, a free-living amoeba, causes a sight-threatening form of keratitis. Even after extensive therapies, corneal damage can be severe, often requiring corneal transplantation to restore vision. However, A. castellanii cysts are not eliminated from the conjunctiva and stroma of humans and can excyst, resulting in infection of the corneal transplant. The aim of this study was to determine whether elements of the innate immune apparatus, neutrophils and macrophages, were capable of detecting and eliminating A. castellanii cysts and to examine the mechanism by which they kill the cysts. Results show that neither innate immune cell is attracted chemotactically to intact cysts, yet both were attracted to lysed cysts. Both macrophages and neutrophils were capable of killing significant numbers of cysts, yet neutrophils were 3-fold more efficient than macrophages. Activation of macrophages with lipopolysaccharide and interferon-gamma did not increase their cytolytic ability. Conditioned medium isolated from macrophages did not lyse the cysts; however, prevention of phagocytosis by cytochalasin D inhibited 100% of macrophage-mediated killing of the cysts. Conditioned medium from neutrophils did kill significant numbers of the cysts, and this killing was blocked by quercetin, a potent inhibitor of myeloperoxidase (MPO). These results indicate that neither macrophages nor neutrophils are chemoattracted to intact cysts, yet both are capable of killing the cysts. Macrophages killed the cysts by phagocytosis, whereas neutrophils killed cysts through the secretion of MPO.

  12. Free p-Cresol Alters Neutrophil Function in Dogs.

    Science.gov (United States)

    Bosco, Anelise Maria; Pereira, Priscila Preve; Almeida, Breno Fernando Martins; Narciso, Luis Gustavo; Dos Santos, Diego Borba; Santos-Neto, Álvaro José Dos; Ferreira, Wagner Luis; Ciarlini, Paulo César

    2016-05-01

    To achieve a clearer understanding of the mechanisms responsible for neutrophil dysfunction recently described in dogs with chronic renal failure (CRF), the plasma concentrations of free p-cresol in healthy dogs (n = 20) and those with CRF (n = 20) were compared. The degree of correlation was determined between plasma levels of p-cresol and markers of oxidative stress and function of neutrophils in these dogs. The effect of this compound on oxidative metabolism and apoptosis was assessed in neutrophils isolated from 16 healthy dogs incubated in RPMI 1640 supplemented with p-cresol (0.405 mg/L) and compared with medium supplemented with uremic plasma (50%). To achieve this, the plasma concentration of p-cresol was quantified by liquid phase high-performance liquid chromatography. The neutrophil oxidative metabolism was determined using the probes hydroethidine and 2',7'-dichlorofluorescein diacetate and apoptosis was measured using Annexin V-PE by capillary flow cytometry. Compared with the healthy dogs, uremic dogs presented higher concentrations of free p-cresol, greater oxidative stress, and neutrophils primed for accelerated apoptosis. The free p-cresol induced in neutrophils from healthy dogs increased apoptosis and decreased reactive oxygen species production. We conclude that the health status presented during uremia concomitant with the increase in plasma free p-cresol can contribute to the presence of immunosuppression in dogs with CRF.

  13. [Purification and antimicrobial activity of human neutrophil defensins].

    Science.gov (United States)

    Qu, X; Wang, A

    1991-11-01

    Neutrophils are one of the weapons of host defenses against microbial infection. Their ability to kill the invading microorganisms depends on two principle mechanisms. One depends on production of reactive oxygen intermediates (ROI) by stimulated neutrophils, and the other depends on the delivery of antimicrobial contents of the neutrophils' cytoplasmic granules, oxygen-independent. The defensins have the highest concentration in the neutrophils, and the broadest antimicrobial spectrum, being capable of killing gram-positive and gram-negative bacteria, fungi and some envelope viruses. We purified human defensins from the neutrophils' granules by gel permeation chromatography and SDS-preparative acrylamide gel electrophoresis. The molecular weight of human defensins is between 3,000-4,000 daltons. After testing, C. neoformans was susceptible to these defensins. Under condition of 37 degrees C, pH 7.4 and low ionic strength, antifungal activity by human defensins was related to its concentration and incubating time. All of these illustrate that nonoxidative killing mechanism of neutrophils, especially the function of defensins is very important in host defenses.

  14. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  15. Mycobacterium tuberculosis 19-kDa lipoprotein promotes neutrophil activation.

    Science.gov (United States)

    Neufert, C; Pai, R K; Noss, E H; Berger, M; Boom, W H; Harding, C V

    2001-08-01

    Certain microbial substances, e.g., LPS, can activate neutrophils or prime them to enhance their response to other activating agents, e.g., fMLP. We investigated the role of the Mycobacterium tuberculosis (MTB) 19-kDa lipoprotein in activation of human neutrophils. MTB 19-kDa lipoprotein initiated phenotypic changes characteristic of neutrophil activation, including down-regulation of CD62 ligand (L-selectin) and up-regulation of CD35 (CR1) and CD11b/CD18 (CR3, Mac-1). In addition, exposure of neutrophils to MTB 19-kDa lipoprotein enhanced the subsequent oxidative burst in response to fMLP as assessed by oxidation of dihydrorhodamine 123 (determined by flow cytometry). LPS also produced these effects with similar kinetics, but an oligodeoxynucleotide containing a CpG motif failed to induce any priming or activation response. Although the effects of LPS required the presence of serum, neutrophil activation by MTB 19-kDa lipoprotein occurred independently of serum factors, suggesting the involvement of different receptors and signaling mechanisms for LPS and MTB 19-kDa lipoprotein. Thus, MTB 19-kDa lipoprotein serves as a pathogen-associated molecular pattern that promotes neutrophil priming and activation.

  16. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  17. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  18. Neutrophil depletion inhibits experimental abdominal aortic aneurysm formation.

    Science.gov (United States)

    Eliason, Jonathan L; Hannawa, Kevin K; Ailawadi, Gorav; Sinha, Indranil; Ford, John W; Deogracias, Michael P; Roelofs, Karen J; Woodrum, Derek T; Ennis, Terri L; Henke, Peter K; Stanley, James C; Thompson, Robert W; Upchurch, Gilbert R

    2005-07-12

    Neutrophils may be an important source of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two matrix-degrading enzymes thought to be critical in the formation of an abdominal aortic aneurysm (AAA). The purpose of this investigation was to test the hypothesis that neutrophil depletion would limit experimental AAA formation by altering one or both of these enzymes. Control, rabbit serum-treated (RS; n=27) or anti-neutrophil-antibody-treated (anti-PMN; n=25) C57BL/6 mice underwent aortic elastase perfusion to induce experimental aneurysms. Anti-PMN-treated mice became neutropenic (mean, 349 cells/microL), experiencing an 84% decrease in the circulating absolute neutrophil count (P<0.001) before elastase perfusion. Fourteen days after elastase perfusion, control mice exhibited a mean aortic diameter (AD) increase of 104+/-14% (P<0.0001), and 67% developed AAAs, whereas anti-PMN-treated mice exhibited a mean AD increase of 42+/-33%, with 8% developing AAAs. The control group also had increased tissue neutrophils (20.3 versus 8.6 cells per 5 high-powered fields [HPFs]; P=0.02) and macrophages (6.1 versus 2.1 cells per 5 HPFs, P=0.005) as compared with anti-PMN-treated mice. There were no differences in monocyte chemotactic protein-1 or macrophage inflammatory protein-1alpha chemokine levels between groups by enzyme-linked immunosorbent assay. Neutrophil collagenase (MMP-8) expression was detected only in the 14-day control mice, with increased MMP-8 protein levels by Western blotting (P=0.017), and MMP-8-positive neutrophils were seen almost exclusively in this group. Conversely, there were no statistical differences in MMP-2 or MMP-9 mRNA expression, protein levels, enzyme activity, or immunostaining patterns between groups. When C57BL/6 wild-type (n=15) and MMP-8-deficient mice (n=17) were subjected to elastase perfusion, however, ADs at 14 days were no different in size (134+/-7.9% versus 154+/-9.9%; P=0.603), which suggests that MMP-8

  19. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    Science.gov (United States)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; Simon, S. I.

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  20. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  1. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  2. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  3. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils.

    Science.gov (United States)

    Maaty, Walid S; Lord, Connie I; Gripentrog, Jeannie M; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A; Bothner, Brian; Jesaitis, Algirdas J

    2013-09-20

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu(312)-Arg(322) and Arg(323)-Lys(350)) and extracellular FPR1 peptide (Ile(191)-Arg(201)) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala(323)-Lys(350) only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr(325), Ser(328), Thr(329), Thr(331), Ser(332), Thr(334), and Thr(339). No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nM. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites

  4. Identification of C-terminal Phosphorylation Sites of N-Formyl Peptide Receptor-1 (FPR1) in Human Blood Neutrophils*

    Science.gov (United States)

    Maaty, Walid S.; Lord, Connie I.; Gripentrog, Jeannie M.; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A.; Bothner, Brian; Jesaitis, Algirdas J.

    2013-01-01

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of

  5. Absolute neutrophil values in malignant patients on cytotoxic chemotherapy.

    Science.gov (United States)

    Madu, A J; Ibegbulam, O G; Ocheni, S; Madu, K A; Aguwa, E N

    2011-01-01

    A total of eighty patients with various malignancies seen between September 2008 and April 2009 at the University of Nigeria Teaching Hospital (UNTH) Ituku Ozalla, Enugu, Nigeria, had their absolute neutrophil counts, done at Days 0 and 12 of the first cycle of their various chemotherapeutic regimens. They were adult patients who had been diagnosed of various malignancies, consisting of Breast cancer 36 (45%), Non-Hodgkin's lymphoma 8 (10%), Hodgkin's lymphoma 13 (16.25%), Colorectal carcinoma 6 (7.5%), Multiple myeloma 7 (8.75%), Cervical carcinoma 1 (1.25%) and other malignancies 9 (11.25%), Manual counting of absolute neutrophil count was done using Turks solution and improved Neubauer counting chamber and Galen 2000 Olympus microscope. The socio demographic data of the patients were assessed from a questionnaire. There were 27 males (33.75%) and 53 females (66.25%). Their ages ranged from 18 - 80 years with a median of 45 years. The mean absolute neutrophil count of the respondents pre-and post chemotherapy was 3.7 +/- 2.1 x 10(9)/L and 2.5 +/- 1.6 x 10(9)/L respectively. There were significant differences in both the absolute neutrophil count (p=0.00) compared to the pre-chemotherapy values. Chemotherapeutic combinations containing cyclophosphamide and Adriamycin were observed to cause significant reduction in absolute neutrophil.

  6. Leukocyte subsets and neutrophil function after short-term spaceflight

    Science.gov (United States)

    Stowe, R. P.; Sams, C. F.; Mehta, S. K.; Kaur, I.; Jones, M. L.; Feeback, D. L.; Pierson, D. L.

    1999-01-01

    Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic