WorldWideScience

Sample records for cytochrome p450 expression

  1. Expression of cytochrome P450 regulators in cynomolgus macaque.

    Science.gov (United States)

    Uno, Yasuhiro; Yamazaki, Hiroshi

    2017-09-11

    1. Cytochrome P450 (P450) regulators including nuclear receptors and transcription factors have not been fully investigated in cynomolgus macaques, an important species used in drug metabolism studies. In this study, we analyzed 17 P450 regulators by sequence and phylogenetic analysis, and tissue expression. 2. Gene and genome structures of 17 P450 regulators were similar to the human orthologs, and the deduced amino acid sequences showed high sequence identities (92-95%) and more closely clustered in a phylogenetic tree, with the human orthologs. 3. Many of the P450 regulator mRNAs were preferentially expressed in the liver, kidney, and/or jejunum. Among the P450 regulator mRNAs, PXR was most abundant in the liver and jejunum, and HNF4α in the kidney. In the liver, the expression of most P450 regulator mRNAs did not show significant differential expression (>2.5-fold) between cynomolgus macaques bred in Cambodia, China, and Indonesia, or rhesus macaques. 4. By correlation analysis, most of the P450 regulators were significantly (p < 0.05) correlated to other P450 regulators, and many of them were also significantly (p < 0.05) correlated with P450s. 5. These results suggest that 17 P450 regulators of cynomolgus macaques had similar molecular characteristics to the human orthologs.

  2. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  3. The cytochrome p450 homepage.

    Science.gov (United States)

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  4. An extensive (co-expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Provart Nicholas J

    2008-04-01

    Full Text Available Abstract Background Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling.

  5. Correlates of Cytochrome P450 1A1 Expression in Bottlenose Dolphin (Tursiops truncatus) Integument Biopsies

    NARCIS (Netherlands)

    Wilson, J.Y.; Wells, R.; Anguilar, A.; Borrell, A.; Tornero, V.; Reijnders, P.J.H.; Moore, M.

    2007-01-01

    Integument biopsy is a nondestructive method for sampling free-ranging cetaceans, which allows for the determination of both contaminant concentrations and biomarker responses. Cytochrome P450 1A1 (CYP1A1) expression is induced by polycyclic aromatic hydrocarbons and planar halogenated aromatic

  6. Cytochrome P450 humanised mice

    Directory of Open Access Journals (Sweden)

    Gonzalez Frank J

    2004-05-01

    Full Text Available Abstract Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s. These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach.

  7. Cytochrome P450 humanised mice

    Science.gov (United States)

    2004-01-01

    Humans are exposed to countless foreign compounds, typically referred to as xenobiotics. These can include clinically used drugs, environmental pollutants, food additives, pesticides, herbicides and even natural plant compounds. Xenobiotics are metabolised primarily in the liver, but also in the gut and other organs, to derivatives that are more easily eliminated from the body. In some cases, however, a compound is converted to an electrophile that can cause cell toxicity and transformation leading to cancer. Among the most important xenobiotic-metabolising enzymes are the cytochromes P450 (P450s). These enzymes represent a superfamily of multiple forms that exhibit marked species differences in their expression and catalytic activities. To predict how humans will metabolise xenobiotics, including drugs, human liver extracts and recombinant P450s have been used. New humanised mouse models are being developed which will be of great value in the study of drug metabolism, pharmacokinetics and pharmacodynamics in vivo, and in carrying out human risk assessment of xenobiotics. Humanised mice expressing CYP2D6 and CYP3A4, two major drug-metabolising P450s, have revealed the feasibility of this approach. PMID:15588489

  8. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    International Nuclear Information System (INIS)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-01-01

    Highlights: → Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. → First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. → Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. → Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. → Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b 5 and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  9. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    Energy Technology Data Exchange (ETDEWEB)

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States); Panda, Satya P., E-mail: panda@uthscsa.edu [The University of Texas Health Science Center at San Antonio, Department of Biochemistry, San Antonio, TX 78229 (United States)

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  10. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  11. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide.

    Science.gov (United States)

    O'Keefe, D. P.; Tepperman, J. M.; Dean, C.; Leto, K. J.; Erbes, D. L.; Odell, J. T.

    1994-01-01

    The Streptomyces griseolus gene encoding herbicide-metabolizing cytochrome P450SU1 (CYP105A1) was expressed in transgenic tobacco (Nicotiana tabacum). Because this P450 can be reduced by plant chloroplast ferredoxin in vitro, chloroplast-targeted and nontargeted expression were compared. Whereas P450SU1 antigen was found in the transgenic plants regardless of the targeting, only those with chloroplast-directed enzyme performed P450SU1-mediated N-dealkylation of the sulfonylurea 2-methylethyl-2,3-dihydro-N-[(4,6-dimethoxypyrimidin-2-yl)aminocarbonyl]-1, 2-benzoisothiazole- 7-sulfonamide-1,1-dioxide (R7402). Chloroplast targeting appears to be essential for the bacterial P450 to function in the plant. Because the R7402 metabolite has greater phytotoxicity than R7402 itself, plants bearing active P450SU1 are susceptible to injury from R7402 treatment that is harmless to plants without P450SU1. Thus, P450SU1 expression and R7402 treatment can be used as a negative selection system in plants. Furthermore, expression of P450SU1 from a tissue-specific promoter can sequester production of the phytotoxic R7402 metabolite to a single plant tissue. In tobacco expressing P450SU1 from a tapetum-specific promoter, treatment of immature flower buds with R7402 caused dramatically lowered pollen viability. Such treatment could be the basis for a chemical hybridizing agent. PMID:12232216

  12. Cytochrome P450s and molecular epidemiology

    Science.gov (United States)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  13. Low dose trichloroethylene alters cytochrome P450 - 2C subfamily expression in the developing chick heart

    Science.gov (United States)

    Makwana, Om; Ahles, Lauren; Lencinas, Alejandro; Selmin, Ornella I.; Runyan, Raymond B.

    2013-01-01

    Trichloroethylene (TCE) is an organic solvent and common environmental contaminant. TCE exposure is associated with heart defects in humans and animal models. Primary metabolism of TCE in adult rodent models is by specific hepatic cytochrome P450 enzymes (Lash et al., 2000). As association of TCE exposure with cardiac defects is in exposed embryos prior to normal liver development, we investigated metabolism of TCE in the early embryo. Developing chick embryos were dosed in ovo with environmentally relevant doses of TCE (8 ppb and 800 ppb) and RNA was extracted from cardiac and extra-cardiac tissue (whole embryo without heart). Real time PCR showed upregulation of CYP2H1 transcripts in response to TCE exposure in the heart. No detectable cytochrome expression was found in extra-cardiac tissue. As seen previously, the dose response was non-monotonic and 8ppb elicited stronger upregulation than 800 ppb. Immunostaining for CYP2C subfamily expression confirmed protein expression and showed localization in both myocardium and endothelium. TCE exposure increased protein expression in both tissues. These data demonstrate that the earliest embryonic expression of phase I detoxification enzymes is in the developing heart. Expression of these CYPs is likely to be relevant to the susceptibility of the developing heart to environmental teratogens. PMID:22855351

  14. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides.

    Science.gov (United States)

    Csernetics, Árpád; Tóth, Eszter; Farkas, Anita; Nagy, Gábor; Bencsik, Ottó; Vágvölgyi, Csaba; Papp, Tamás

    2015-02-01

    Carotenoids are natural pigments that act as powerful antioxidants and have various beneficial effects on human and animal health. Mucor circinelloides (Mucoromycotina) is a carotenoid producing zygomycetes fungus, which accumulates β-carotene as the main carotenoid but also able to produce the hydroxylated derivatives of β-carotene (i.e. zeaxanthin and β-cryptoxanthin) in low amount. These xanthophylls, together with the ketolated derivatives of β-carotene (such as canthaxanthin, echinenone and astaxanthin) have better antioxidant activity than β-carotene. In this study our aim was to modify and enhance the xanthophyll production of the M. circinelloides by expression of heterologous genes responsible for the astaxanthin biosynthesis. The crtS and crtR genes, encoding the cytochrome-P450 hydroxylase and reductase, respectively, of wild-type and astaxanthin overproducing mutant Xanthophyllomyces dendrorhous strains were amplified from cDNA and the nucleotide and the deduced amino acid sequences were compared to each other. Introduction of the crtS on autonomously replicating plasmid in the wild-type M. circinelloides resulted enhanced zeaxanthin and β-cryptoxanthin accumulation and the presence of canthaxanthin, echinenone and astaxanthin in low amount; the β-carotene hydroxylase and ketolase activity of the X. dendrorhous cytochrome-P450 hydroxylase in M. circinelloides was verified. Increased canthaxanthin and echinenone production was observed by expression of the gene in a canthaxanthin producing mutant M. circinelloides. Co-expression of the crtR and crtS genes led to increase in the total carotenoid and slight change in xanthophyll accumulation in comparison with transformants harbouring the single crtS gene.

  15. Identification of cytochrome P450 differentiated expression related to developmental stages in bromadiolone resistance in rats (Rattus norvegicus)

    DEFF Research Database (Denmark)

    Markussen, Mette; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    over-express the Cyp2a1 gene. TGhe altered gene expression has been suggested to be involved in the bromadiolone resistance by facilitating enhanced anticoagulant metabolism. To investigate the gene expression of these cytochrome P450 genes in rats of different developmental stages we compared...... expression profiles, from 8-, 12- and 20-week-old resistant rats of the Danish strain to profiles of anticoagulant-susceptible rats of same ages. The three age-groups were selected to represent a group of pre-pubertal, pubertal and adult rats. We found expression profiles of the pre-pubertal and pubertal...... resistant rats to concur with profiles of the adults suggesting that cytochrome P450 enzymes are involved in the Danish bromadiolone resistance regardless of developmental stage. We also investigated the relative importance of the six cytochrome P450s in the different development stages of the resistant...

  16. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-11-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.

  17. Expression of cytochrome P450 genes in CD34(+) hematopoietic stem and progenitor cells

    Czech Academy of Sciences Publication Activity Database

    Souček, P.; Anzenbacher, P.; Skoumalová, I.; Dvořák, Michal

    2005-01-01

    Roč. 23, č. 9 (2005), s. 1417-1422 ISSN 1066-5099 Institutional research plan: CEZ:AV0Z50520514 Keywords : CD34+ stem/progenitor cells * cytochrome P450 isoforms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.094, year: 2005

  18. An expression tag toolbox for microbial production of membrane bound plant cytochromes P450

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario; Cavaleiro, Mafalda; Christensen, Ulla

    2017-01-01

    of the intermediate and the final product of the pathway. Finally, the effect of a robustly performing expression tag was explored with a library of 49 different P450s from medicinal plants and nearly half of these were improved in expression by more than 2-fold. The developed toolbox serves as platform to tune P450...... tag chimeras of the model plant P450 CYP79A1 in different Escherichia coli strains. Using a high-throughput screening platform based on C-terminal GFP fusions, we identify several highly expressing and robustly performing chimeric designs. Analysis of long-term cultures by flow cytometry showed...... homogeneous populations for some of the conditions. Three chimeric designs were chosen for a more complex combinatorial assembly of a multigene pathway consisting of two P450s and a redox partner. Cells expressing these recombinant enzymes catalysed the conversion of the substrate to highly different ratios...

  19. Effects of Pristane on Cytochrome P450 Isozyme Expression in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Marvin A. Cuchens

    2005-04-01

    Full Text Available Chemical carcinogenesis studies are powerful tools to obtain information on potential mechanisms of chemical factors for malignancies. In this study Western blot analyses, using monoclonal antibodies specific for three different cytochrome P450 (CYP isozymes (CYP1A1, CYP1A2 and CYP2B, were employed to examine the effect(s of 3-methylcholanthrene and/or pristane (2,6,10,14-tetramethylpentadecane on the basal and inducible levels of expression of CYP proteins within Copenhagen rat tissues. Pristane exposure led to tissue specific differences in the CYP isozymes expressed and elicited increased CYP protein expression over 3-methylcholanthrene induced levels in microsomes isolated from liver, Peyer's Patches, and thymus. Within the context of the chemical carcinogenesis model employed in this study, these observations correlated with the induction of B-cell malignancies by low doses of 3-methylcholanthrene and of thymic lymphomas by a high 3-methylcholanthrene dose. The data suggest that pristane treatment affects CYP isozyme expression. This pristane-mediated effect clearly could be a contributing factor in the chemical carcinogenesis of the previously observed lymphoid malignancies, and a possible basis for the tumor enhancing effects of pristane.

  20. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants

    OpenAIRE

    Du, Hai; Ran, Feng; Dong, Hong-Li; Wen, Jing; Li, Jia-Na; Liang, Zhe

    2016-01-01

    Cytochrome P450 93 family (CYP93) belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies?CYP93A?K, with t...

  1. Cloning and tissue expression of cytochrome P450 1B1 and 1C1 ...

    African Journals Online (AJOL)

    Cytochrome P450 1 (CYP1) is widely used as an indicator of exposure to environmental contaminants. In the study, two full-length complementary DNAs encode for CYP1B1 and CYP1C1 were cloned from medaka liver exposed to 500 ppb β-naphthoflavone for 24 h. CYP1B1, having 1984 bp, contains an open reading ...

  2. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    Directory of Open Access Journals (Sweden)

    Steven J. Hughes

    1999-06-01

    Full Text Available The expression of cytochromes P450 (CYP in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  3. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    Science.gov (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  4. Protein and DNA technologies for functional expression of membrane-associated cytochromes P450 in bacterial cell factories

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario

    450 engineering guidelines and serves as platform to improve performance of microbial cells, thereby boosting recombinant production of complex plant P450-derived biochemicals. The knowledge generated, could guide future reconstruction of functional plant metabolic pathways leading to high valuable...... potential as medicines, fuels or food for humans. Plants conquered different environments thereby developing adaptation strategies based on the biosynthesis of a myriad of compounds. Unfortunately they are present in small amounts in plants and are too complex and to produce by organic chemical synthesis....... In most of biosynthetic pathways leading to these chemicals the cytochrome P450 enzyme family (P450s) is responsible for their final functionalization. However, the membrane-bound nature of P450s, makes their expression in microbial hosts a challenge. In order to meet the global demand for these natural...

  5. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    International Nuclear Information System (INIS)

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra

    2006-01-01

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain

  6. Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum.

    Directory of Open Access Journals (Sweden)

    Nikos Karatolos

    Full Text Available The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s are poorly understood.Bioassays against eggs of a German (TV8 population of T. vaporariorum revealed a moderate level (21-fold of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel displaying a much higher resistance ratio (>4000-fold. The enzyme inhibitor piperonyl butoxide (PBO suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s. Quantitative PCR highlighted a single P450 gene (CYP4G61 that was highly over-expressed (81.7-fold in TV8pyrsel.Over-expression of a single cytochrome P450 gene (CYP4G61 has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.

  7. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Joo [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Lee, Eun Kyung [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Lee, Yoon Kwang [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Park, Do Joon; Jang, Hak Chul [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Moore, David D., E-mail: moore@bcm.edu [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States)

    2012-09-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR{sup −/−} mice, but not in hypothyroid PXR{sup −/−} mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR{sup −/−} hypothyroid mice, and this induction was abolished in CAR{sup −/−} mice and in and CAR{sup −/−} PXR{sup −/−} double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR{sup −/−} mice and lowest in WT and PXR{sup −/−} mice. Hypothyroid WT or PXR{sup −/−} mice survived chronic CBZ treatment, but all hypothyroid CAR{sup −/−} and CAR{sup −/−} PXR{sup −/−} mice died, with CAR{sup −/−}PXR{sup −/−} mice surviving longer than CAR{sup −/−} mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice.

  8. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    International Nuclear Information System (INIS)

    Park, Young Joo; Lee, Eun Kyung; Lee, Yoon Kwang; Park, Do Joon; Jang, Hak Chul; Moore, David D.

    2012-01-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR −/− mice, but not in hypothyroid PXR −/− mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR −/− hypothyroid mice, and this induction was abolished in CAR −/− mice and in and CAR −/− PXR −/− double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR −/− mice and lowest in WT and PXR −/− mice. Hypothyroid WT or PXR −/− mice survived chronic CBZ treatment, but all hypothyroid CAR −/− and CAR −/− PXR −/− mice died, with CAR −/− PXR −/− mice surviving longer than CAR −/− mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice. ► Hypothyroidism sensitizes CAR null mice to toxic effects of carbamazepine.

  9. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  10. Monoclonal antibodies to drosophila cytochrome P-450's

    International Nuclear Information System (INIS)

    Sundseth, S.S.; Kennel, S.J.; Waters, L.C.

    1987-01-01

    Hybridomas producing monoclonal antibodies were prepared by the fusion of SP2/0 myeloma cells and spleen cells from a female BALB/c mouse immunized by cytochrome P-450-A and P-450-B purified from Drosophila Hikone-R (BG) microsomes. P-450-A and P-450-B are electrophoretically distinct subsets of Drosophila P-450. P-450-A is ubiquitous among strains tested, while P-450-B is present in only a few strains displaying unique enzyme activities and increased insecticide resistance. The Oregon-R strain contains only cytochromes P-450-A and is susceptible to insecticides. The authors Hikone-R (BG) strain expresses both cytochromes P-450-A and P-450-B and is insecticide resistant. Antibody producing hybridomas were detected in a solid-phase radioimmunoassay (RIA) by binding to Hikone-R (BG) or Oregon-R microsomes. Four independent hybridomas were identified as producing monoclonal antibodies that recognized proteins in the P-450 complex by immunoblot experiments. Three monoclonal antibodies recognized P-450-A proteins, while one monoclonal antibody bound predominantly P-450-B. This monoclonal antibody also recognized southern armyworm (Spodoptera eridania, Cramer) microsomal proteins

  11. Novel extrahepatic cytochrome P450s

    International Nuclear Information System (INIS)

    Karlgren, Maria; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-01-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis

  12. Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain.

    Directory of Open Access Journals (Sweden)

    Dorte H Højland

    Full Text Available Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains.Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression.CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes

  13. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    International Nuclear Information System (INIS)

    Peters, L.M.; Demmel, S.; Pusch, G.; Buters, J.T.M.; Thormann, W.; Zielinski, J.; Leeb, T.; Mevissen, M.; Schmitz, A.

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V max for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K m was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC 50 of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP enzyme involved in

  14. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    Energy Technology Data Exchange (ETDEWEB)

    Peters, L.M.; Demmel, S. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Pusch, G.; Buters, J.T.M. [ZAUM — Center of Allergy and Environment, Helmholtz Zentrum München/Technische Universität München, Biedersteiner Str. 29, 80802 München (Germany); Thormann, W. [Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Murtenstrasse 35, 3010 Bern (Switzerland); Zielinski, J. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Leeb, T. [Institute of Genetics, Vetsuisse Faculty, University Bern, Bremgartenstr. 109, 3012 Bern (Switzerland); Mevissen, M. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Schmitz, A., E-mail: andrea.schmitz@vetsuisse.unibe.ch [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland)

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V{sub max} for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K{sub m} was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC{sub 50} of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP

  15. Flower colour and cytochromes P450.

    Science.gov (United States)

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  16. Cytochrome P450s--Their expression, regulation, and role in insecticide resistance.

    Science.gov (United States)

    Liu, Nannan; Li, Ming; Gong, Youhui; Liu, Feng; Li, Ting

    2015-05-01

    P450s are known to be critical for the detoxification and/or activation of xenobiotics such as drugs and pesticides and overexpression of P450 genes can significantly affect the disposition of xenobiotics in the tissues of organisms, altering their pharmacological/toxicological effects. In insects, P450s play an important role in detoxifying exogenous compounds such as insecticides and plant toxins and their overexpression can result in increased levels of P450 proteins and P450 activities. This has been associated with enhanced metabolic detoxification of insecticides and has been implicated in the development of insecticide resistance in insects. Multiple P450 genes have been found to be co-overexpressed in individual insect species via several constitutive overexpression and induction mechanisms, which in turn are co-responsible for high levels of insecticide resistance. Many studies have also demonstrated that the transcriptional overexpression of P450 genes in resistant insects is regulated by trans and/or cis regulatory genes/factors. Taken together, these earlier findings suggest not only that insecticide resistance is conferred via multi-resistance P450 genes, but also that it is mediated through the interaction of regulatory genes/factors and resistance genes. This chapter reviews our current understanding of how the molecular mechanisms of P450 interaction/gene regulation govern the development of insecticide resistance in insects and our progress along the road to a comprehensive characterization of P450 detoxification-mediated insecticide resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    OpenAIRE

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2012-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. O...

  18. Decreased expression of cytochrome P450 protein in non-malignant colonic tissue of patients with colonic adenoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Bode, C.; Parlesak, Alexandr

    2005-01-01

    BACKGROUND: Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in both the elimination and activation of (pro-)carcinogens. To estimate the role of cytochrome P450 in carcinogenesis of the colon, expression patterns and protein levels of four...... representative CYPs (CYP2C, CYP2E1, CYP3A4 and CYP3A5) were determined in colon mucosa of normal and adenomatous colonic tissue of patients with adenomas and disease-free controls. METHODS: Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 in colon mucosa of normal and adenomatous colonic tissue of patients...... with adenoma and disease-free controls was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot. RESULTS: With the exception of CYP3A5, expression of CYP mRNA was similar among groups and tissues (e.g. normal colon mucosa and adenoma). CYP3A5 mRNA expression was significantly...

  19. Genome-Wide Analysis, Classification, Evolution, and Expression Analysis of the Cytochrome P450 93 Family in Land Plants.

    Directory of Open Access Journals (Sweden)

    Hai Du

    Full Text Available Cytochrome P450 93 family (CYP93 belonging to the cytochrome P450 superfamily plays important roles in diverse plant processes. However, no previous studies have investigated the evolution and expression of the members of this family. In this study, we performed comprehensive genome-wide analysis to identify CYP93 genes in 60 green plants. In all, 214 CYP93 proteins were identified; they were specifically found in flowering plants and could be classified into ten subfamilies-CYP93A-K, with the last two being identified first. CYP93A is the ancestor that was derived in flowering plants, and the remaining showed lineage-specific distribution-CYP93B and CYP93C are present in dicots; CYP93F is distributed only in Poaceae; CYP93G and CYP93J are monocot-specific; CYP93E is unique to legumes; CYP93H and CYP93K are only found in Aquilegia coerulea, and CYP93D is Brassicaceae-specific. Each subfamily generally has conserved gene numbers, structures, and characteristics, indicating functional conservation during evolution. Synonymous nucleotide substitution (dN/dS analysis showed that CYP93 genes are under strong negative selection. Comparative expression analyses of CYP93 genes in dicots and monocots revealed that they are preferentially expressed in the roots and tend to be induced by biotic and/or abiotic stresses, in accordance with their well-known functions in plant secondary biosynthesis.

  20. Epidermal CYP2 family cytochromes P450

    International Nuclear Information System (INIS)

    Du Liping; Hoffman, Susan M.G.; Keeney, Diane S.

    2004-01-01

    Skin is the largest and most accessible drug-metabolizing organ. In mammals, it is the competent barrier that protects against exposure to harmful stimuli in the environment and in the systemic circulation. Skin expresses many cytochromes P450 that have critical roles in exogenous and endogenous substrate metabolism. Here, we review evidence for epidermal expression of genes from the large CYP2 gene family, many of which are expressed preferentially in extrahepatic tissues or specifically in epithelia at the environmental interface. At least 13 CYP2 genes (CYP2A6, 2A7, 2B6, 2C9, 2C18, 2C19, 2D6, 2E1, 2J2, 2R1, 2S1, 2U1, and 2W1) are expressed in skin from at least some human individuals, and the majority of these genes are expressed in epidermis or cultured keratinocytes. Where epidermal expression has been localized in situ by hybridization or immunocytochemistry, CYP2 transcripts and proteins are most often expressed in differentiated keratinocytes comprising the outer (suprabasal) cell layers of the epidermis and skin appendages. The tissue-specific transcriptional regulation of CYP2 genes in the epidermis, and in other epithelia that interface with the environment, suggests important roles for at least some CYP2 gene products in the production and disposition of molecules affecting competency of the epidermal barrier

  1. Changes in cytochrome P450 gene expression and enzyme activity induced by xenobiotics in rabbits in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Orsolya Palócz

    2017-06-01

    Full Text Available As considerable inter-species differences exist in xenobiotic metabolism, developing new pharmaceutical therapies for use in different species is fraught with difficulties. For this reason, very few medicines have been registered for use in rabbits, despite their importance in inter alia meat and fur production. We have developed a rapid and sensitive screening system for drug safety in rabbits based on cytochrome P450 enzyme assays, specifically CYP1A1, CYP1A2 and CYP3A6, employing an adaptation of the luciferin-based clinical assay currently used in human drug screening. Short-term (4-h cultured rabbit primary hepatocytes were treated with a cytochrome inducer (phenobarbital and 2 inhibitors (alpha-naphthoflavone and ketoconazole. In parallel, and to provide verification, New Zealand white rabbits were dosed with 80 mg/kg phenobarbital or 40 mg/kg ketoconazole for 3 d. Ketoconazole significantly increased CYP3A6 gene expression and decreased CYP3A6 activity both in vitro and in vivo. CYP1A1 activity was decreased by ketoconazole in vitro and increased in vivo. This is the first report of the inducer effect of ketoconazole on rabbit cytochrome isoenzymes in vivo. Our data support the use of a luciferin-based assay in short-term primary hepatocytes as an appropriate tool for xenobiotic metabolism assays and short-term toxicity testing in rabbits.

  2. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  3. Expression, crystallization and preliminary diffraction studies of the Pseudomonas putida cytochrome P450cam operon repressor CamR

    International Nuclear Information System (INIS)

    Maenaka, Katsumi; Fukushi, Kouji; Aramaki, Hironori; Shirakihara, Yasuo

    2005-01-01

    The P. putida cytochrome P450cam operon repressor CamR has been expressed in E. coli and crystallized in space group P2 1 2 1 2. The Pseudomonas putida cam repressor (CamR) is a homodimeric protein that binds to the camO DNA operator to inhibit the transcription of the cytochrome P450cam operon camDCAB. CamR has two functional domains: a regulatory domain and a DNA-binding domain. The binding of the inducer d-camphor to the regulatory domain renders the DNA-binding domain unable to bind camO. Native CamR and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. Native CamR was crystallized under the following conditions: (i) 12–14% PEG 4000, 50 mM Na PIPES, 0.1 M KCl, 1% glycerol pH 7.3 at 288 K with and without camphor and (ii) 1.6 M P i , 50 mM Na PIPES, 2 mM camphor pH 6.7 at 278 K. The selenomethionyl derivative CamR did not crystallize under either of these conditions, but did crystallize using 12.5% PEG MME 550, 25 mM Na PIPES, 2.5 mM MgCl 2 pH 7.3 at 298 K. Preliminary X-ray diffraction studies revealed the space group to be orthorhombic (P2 1 2 1 2), with unit-cell parameters a = 48.0, b = 73.3, c = 105.7 Å. Native and selenomethionyl derivative data sets were collected to 3 Å resolution at SPring-8 and the Photon Factory

  4. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Directory of Open Access Journals (Sweden)

    Lihong He

    2012-06-01

    Full Text Available An expressed sequence tag (EST obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expressed in all three cell lines with the highest level in the cell line C20hi. In the mature C. roseus plant, the cyp71d1 cDNA was highly expressed in petals, roots and stems, but very weakly expressed in young leaves. Its transcription level increased with the development of flowers. 2,4-D could down-regulate the transcription of cyp71d1, as did KT, but only to a minor degree. Neither light nor yeast elicitor could induce the transcription of cyp71d1.

  5. Insecticidal activity and expression of cytochrome P450 family 4 genes in Aedes albopictus after exposure to pyrethroid mosquito coils.

    Science.gov (United States)

    Avicor, Silas W; Wajidi, Mustafa F F; El-Garj, Fatma M A; Jaal, Zairi; Yahaya, Zary S

    2014-10-01

    Mosquito coils are insecticides commonly used for protection against mosquitoes due to their toxic effects on mosquito populations. These effects on mosquitoes could induce the expression of metabolic enzymes in exposed populations as a counteractive measure. Cytochrome P450 family 4 (CYP4) are metabolic enzymes associated with a wide range of biological activities including insecticide resistance. In this study, the efficacies of three commercial mosquito coils with different pyrethroid active ingredients were assessed and their potential to induce the expression of CYP4 genes in Aedes albopictus analyzed by real-time quantitative PCR. Coils containing 0.3 % D-allethrin and 0.005 % metofluthrin exacted profound toxic effects on Ae. albopictus, inducing high mortalities (≥90 %) compared to the 0.2 % D-allethrin reference coil. CYP4H42 and CYP4H43 expressions were significantly higher in 0.3 % D-allethrin treated mosquitoes compared to the other treated populations. Short-term (KT50) exposure to mosquito coils induced significantly higher expression of both genes in 0.005 % metofluthrin exposed mosquitoes. These results suggest the evaluated products provided better protection than the reference coil; however, they also induced the expression of metabolic genes which could impact negatively on personal protection against mosquito.

  6. Identification of human cytochrome P450s as autoantigens.

    Science.gov (United States)

    Manns, M P; Johnson, E F

    1991-01-01

    Antimicrosomal antibodies in inflammatory liver diseases all seem to be directed against members of the cytochrome P450 family of proteins. These autoantigens seem to be genetically polymorphic, the autoantibodies are inhibitory, and the autoepitopes are generally conserved among species. Anti-P450 autoantibodies share these characteristics with other autoantibodies, for example, antinuclear antibodies in systemic lupus erythematosus. The identification of P450s as human autoantigens is clinically important. Diagnostic tests will be developed on the basis of cloned antigen, facilitating a better diagnosis of drug-induced and idiopathic autoimmune hepatitis. It is unknown what triggers autoantibody production against cytochrome P450 proteins. Furthermore, their pathogenetic role and thus their involvement in tissue destruction is unclear. In this context LKM1 autoantibodies may serve as a model. Although LKM1 antibodies are inhibitory, all LKM1 antibody-positive patients tested so far are extensive metabolizers for drug metabolism mediated by P450IID6 and express this protein in their livers. Thus, the inhibitory LKM1 autoantibody does not sufficiently penetrate through the intact liver cell membrane to inhibit enzyme function in vivo. Presumably, tissue destruction in autoimmune hepatitis is mediated by liver-infiltrating T lymphocytes. T lymphocytes have been cloned from liver tissue that specifically proliferate in the presence of recombinant cytochrome P450IID6. The construction of overlapping cDNA subclones is also valuable to identify immunodominant B cell as well as relevant T cell epitopes.

  7. Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains.

    OpenAIRE

    Shao, Z Q; Behki, R

    1996-01-01

    A cytochrome P-450 system in Rhodococcus strains, encoded by thcB, thcC, and thcD, participates in the degradation of thiocarbamates and several other pesticides. The regulation of the system was investigated by fusing a truncated lacZ in frame to thcB, the structural gene for the cytochrome P-450 monooxygenase. Analysis of the thcB-lacZ fusion showed that the expression of thcB was 10-fold higher in the presence of the herbicide EPTC (s-ethyl dipropylthiocarbamate). Similar enhancement of th...

  8. Prediction of cytochrome P450 mediated metabolism

    DEFF Research Database (Denmark)

    Olsen, Lars; Oostenbrink, Chris; Jørgensen, Flemming Steen

    2015-01-01

    Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard...... to rationalize what metabolites these enzymes generate. In recent years, many different in silico approaches have been developed to predict binding or regioselective product formation for the different CYP isoforms. These comprise ligand-based methods that are trained on experimental CYP data and structure...

  9. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.

    Science.gov (United States)

    Wriessnegger, Tamara; Moser, Sandra; Emmerstorfer-Augustin, Anita; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Pichler, Harald

    2016-04-01

    Cytochrome P450 enzymes (CYPs) play an essential role in the biosynthesis of various natural compounds by catalyzing regio- and stereospecific hydroxylation reactions. Thus, CYP activities are of great interest in the production of fine chemicals, pharmaceutical compounds or flavors and fragrances. Industrial applicability of CYPs has driven extensive research efforts aimed at improving the performance of these enzymes to generate robust biocatalysts. Recently, our group has identified CYP-mediated hydroxylation of (+)-valencene as a major bottleneck in the biosynthesis of trans-nootkatol and (+)-nootkatone in Pichia pastoris. In the current study, we aimed at enhancing CYP-mediated (+)-valencene hydroxylation by over-expressing target genes identified through transcriptome analysis in P. pastoris. Strikingly, over-expression of the DNA repair and recombination gene RAD52 had a distinctly positive effect on trans-nootkatol formation. Combining RAD52 over-expression with optimization of whole-cell biotransformation conditions, i.e. optimized media composition and cultivation at higher pH value, enhanced trans-nootkatol production 5-fold compared to the initial strain and condition. These engineering approaches appear to be generally applicable for enhanced hydroxylation of hydrophobic compounds in P. pastoris as confirmed here for two additional membrane-attached CYPs, namely the limonene-3-hydroxylase from Mentha piperita and the human CYP2D6. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of probiotic Escherichia coli Nissle 1917 on expression of cytochromes P450 along the gastrointestinal tract of male rats

    Czech Academy of Sciences Publication Activity Database

    Matušková, Z.; Tunková, A.; Anzenbacherová, E.; Večeřa, R.; Šiller, M.; Tlaskalová-Hogenová, Helena; Zídek, Zdeněk; Anzenbacher, P.

    2010-01-01

    Roč. 31, č. 2 (2010), s. 46-50 ISSN 0172-780X R&D Projects: GA ČR GA305/08/0535 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50390512 Keywords : probiotic * Escherichia coli * cytochrome P450 Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.621, year: 2010

  11. Biocatalytic Conversion of Avermectin to 4"-Oxo-Avermectin: Heterologous Expression of the ema1 Cytochrome P450 Monooxygenase

    Science.gov (United States)

    Molnár, István; Hill, D. Steven; Zirkle, Ross; Hammer, Philip E.; Gross, Frank; Buckel, Thomas G.; Jungmann, Volker; Pachlatko, Johannes Paul; Ligon, James M.

    2005-01-01

    The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1. PMID:16269733

  12. Effect of strychnine hydrochloride on liver cytochrome P450 mRNA expression and monooxygenase activities in rat

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2011-08-01

    Full Text Available Strychnos nux-vomica L. has been frequently used in traditional Chinese medicine but has high acute toxicity. It is commonly taken with Glycyrrhizae radix to decrease its toxicity but the mechanism of this interaction is unknown. In this work, the mRNA expression and the activity of four cytochrome P450 (CYP enzymes representative of four subfamilies (CYP1A, CYP3A, CYP2C and CYP2E were determined ex vivo in rat livers from groups of Wistar rats orally administered strychnine hydrochloride (SH at three doses (0.1, 0.3 and 0.9 mg/kg/day alone and, at the highest dose, in combination with glycyrrhetinic acid (GA, 25 mg/kg/day or liquiritin (LQ, 20 mg/kg/day once a day for 7 consecutive days. Compared to control, the mRNA expressions of CYP3A1, 1A2 and 2E1 were higher in rats receiving the highest dose of SH but lower for CYP3A1 and CYP2E1 in rats receiving the SH+GA and SH+LQ combinations. CYP2E1 activity was higher and CYP2C, CYP3A and CYP1A2 activities were lower in rats receiving the highest dose of SH. In contrast CYP1A2 and CYP2C activities were higher and CYP2E1 and CYP3A activities lower in rats receiving the SH+GA combination. CYP2E1 and CYP3A activities were also lower in rats receiving the SH+LQ combination. The results show that treatment with SH for 7 days affects the expression and the activity of CYP enzymes and that coadministration of GA and LQ modulates these effects. This modulation may explain the role of Glycyrrhizae radix in reducing the acute toxicity of Strychnos nux-vomica L.CYPs enzymes.

  13. Modulation of expression and activity of cytochrome P450s and alteration of praziquantel kinetics during murine schistosomiasis

    Directory of Open Access Journals (Sweden)

    Mara A Gotardo

    2011-03-01

    Full Text Available In this study, we investigated the expression and activity of liver cytochrome P450s (CYPs and praziquantel (PZQ kinetics in mice infected with Schistosoma mansoni. Swiss Webster (SW mice of both genders were infected (100 cercariae on postnatal day 10 and killed on post-infection days (PIDs 30 or 55. Non-infected mice of the same age and sex served as controls. Regardless of mouse sex, infection depressed the activities of CYP1A [ethoxy/methoxy-resorufin-O-dealkylases (EROD/MROD], 2B9/10 [pentoxy/benzyloxy-resorufin-O-dealkylases (PROD, BROD], 2E1 [p-nitrophenol-hydroxylase (PNPH] and 3A11 [erythromycin N-demethylase (END] on PID 55 but not on PID 30. On PID 55, infection decreased liver CYP mRNA levels (real-time reverse transcription-polymerase chain reaction. On PID 30, whereas mRNA levels remained unaltered in males, they were depressed in females. Plasma PZQ (200 and 400 mg/kg body weight intraperitoneally levels were measured (high-performance liquid chromatography at different post-treatment intervals. In males and females, infection delayed the PZQ clearance on PID 55, but not on PID 30. Therefore, it can be concluded that schistosomiasis down-modulated CYP expression and activity and delayed PZQ clearance on PID 55, when a great number of parasite eggs were lodged in the liver. On PID 30, when egg-laying was initiated by the worms, no change of CYP expression and activity was found, except for a depression of CYP1A2 and 3A11 mRNAs in female mice.

  14. Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Ting Yang

    Full Text Available Here we report a study of the 204 P450 genes in the whole genome sequence of larvae and adult Culex quinquefasciatus mosquitoes. The expression profiles of the P450 genes were compared for susceptible (S-Lab and resistant mosquito populations, two different field populations of mosquitoes (HAmCq and MAmCq, and field parental mosquitoes (HAmCq(G0 and MAmCq(G0 and their permethrin selected offspring (HAmCq(G8 and MAmCq(G6. While the majority of the P450 genes were expressed at a similar level between the field parental strains and their permethrin selected offspring, an up- or down-regulation feature in the P450 gene expression was observed following permethrin selection. Compared to their parental strains and the susceptible S-Lab strain, HAmCq(G8 and MAmCq(G6 were found to up-regulate 11 and 6% of total P450 genes in larvae and 7 and 4% in adults, respectively, while 5 and 11% were down-regulated in larvae and 4 and 2% in adults. Although the majority of these up- and down-regulated P450 genes appeared to be developmentally controlled, a few were either up- or down-regulated in both the larvae and adult stages. Interestingly, a different gene set was found to be up- or down-regulated in the HAmCq(G8 and MAmCq(G6 mosquito populations in response to insecticide selection. Several genes were identified as being up- or down-regulated in either the larvae or adults for both HAmCq(G8 and MAmCq(G6; of these, CYP6AA7 and CYP4C52v1 were up-regulated and CYP6BY3 was down-regulated across the life stages and populations of mosquitoes, suggesting a link with the permethrin selection in these mosquitoes. Taken together, the findings from this study indicate that not only are multiple P450 genes involved in insecticide resistance but up- or down-regulation of P450 genes may also be co-responsible for detoxification of insecticides, insecticide selection, and the homeostatic response of mosquitoes to changes in cellular environment.

  15. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats:

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Anticoagulant resistance in Norway rats (Rattus norvegicus) has been suggested to be due to mutations in the VKORC1 gene, encoding the target protein of anticoagulant rodenticides such as warfarin and bromadiolone. Other factors, e.g. pharmacokinetics, may however also contribute to resistance. We...... that bromadiolone resistance in Norway rats involves enhanced anticoagulant clearance and metabolism catalyzed by specific cytochrome P450 enzymes, such as Cyp2e1, Cyp3a2 and Cyp3a3. This pharmacokinetically based resistance varies to some extend between the genders....

  16. Cytochrome P450 1A expression in midwater fishes: Potential effects of chemical contaminants in remote oceanic zones

    Science.gov (United States)

    Stegeman, John J.; Schlezinger, Jennifer J.; Craddock, James E.; Tillitt, Donald E.

    2001-01-01

    Cytochrome P450 1A (CYP1A) induction is a robust marker for exposure to polynuclear aromatic hydrocarbons and planar halogenated aromatic hydrocarbons that are aryl hydrocarbon receptor agonists. We examined CYP1A expression in mesopelagic fishes from the western North Atlantic. Individuals in 22 species were obtained from slope water and the Sargasso Sea in 1977, 1978, and 1993. Aryl hydrocarbon hydroxylase (AHH), a CYP1A activity, was detected in liver from all species in 1977/78. In some, including Gonostoma elongatum, AHH was inhibited by the CYP1A inhibitor ??-naphthoflavone. CYP1A-dependent ethoxyresorufin O-deethylase (EROD) was detected in liver microsomes of all species in 1993; rates were highest in G. elongatum and Argyropelecus aculeatus. Immunoblot analysis with the CYP1A-specific monoclonal antibody 1-12-3 detected a single microsomal protein band in most 1993 samples; the highest content was in G. elongatum. Immunohistochemical analysis showed CYP1A staining in gill, heart, kidney, and/or liver of several species. Extracts of the 1993 G. elongatum and A. aculeatus, when applied to fish hepatoma cells (PLHC-1) in culture, elicited a significant induction of EROD in those cells. The capacity of the extracts to induce CYP1A correlated with the content of PCBs measured in the same fish (2-4.6 ng/g total body weight). Mesopelagic fish in the western North Atlantic, which experience no direct exposure to surface waters or sediments, are exposed chronically to inducers of CYP1A at levels that appear to be biochemically active in those fish.Cytochrome P450 1A (CYP1A) induction is a robust marker for exposure to polynuclear aromatic hydrocarbons and planar halogenated aromatic hydrocarbons that are awl hydrocarbon receptor agonists. We examined CYP1A expression in mesopelagic fishes from the western North Atlantic. Individuals in 22 species were obtained from slope water and the Sargasso Sea in 1977, 1978, and 1993. Aryl hydrocarbon hydroxylase (AHH), a CYP1A

  17. LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase.

    OpenAIRE

    Manns, M P; Griffin, K J; Sullivan, K F; Johnson, E F

    1991-01-01

    LKM-1 autoantibodies, which are associated with autoimmune chronic active hepatitis, recognize P450IID6, a cytochrome P-450 monooxygenase. The reactivities of 26 LKM-1 antisera were tested with a panel of deletion mutants of P450IID6 expressed in Escherichia coli. 22 sera recognize a 33-amino acid segment of P450IID6, and 11 of these recognize a shorter segment, DPAQPPRD. PAQPPR is also found in IE175 of herpes simplex virus type 1 (HSV-1). Antibodies for HSV-1 proteins were detected by ELISA...

  18. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  19. Characterization of the Ala62Pro polymorphic variant of human cytochrome P450 1A1 using recombinant protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Heon; Kang, Sukmo [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of); Dong, Mi Sook [School of Life Sciences and Biotechnology, Korea University, Seoul (Korea, Republic of); Park, Jung-Duck [College of Medicine, Chung-Ang University, Seoul (Korea, Republic of); Park, Jinseo; Rhee, Sangkee [College of Agriculture of Life Science, Seoul National University, Seoul (Korea, Republic of); Ryu, Doug-Young, E-mail: dyryu@snu.ac.kr [College of Veterinary Medicine, BK21plus Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul (Korea, Republic of)

    2015-06-15

    Cytochrome P450 (CYP) 1A1 is a heme-containing enzyme involved in detoxification of hydrophobic pollutants. Its Ala62Pro variant has been identified previously. Ala62 is located in α-helix A of CYP1A1. Residues such as Pro and Gly are α-helix breakers. In this study, the Ala62Pro variant was characterized using heterologous expression. E. coli expressing the Ala62Pro variant, and the purified variant protein, had lower CYP (i.e. holoenzyme) contents than their wild-type (WT) equivalents. The CYP variant from E. coli and mammalian cells exhibited lower 7-ethoxyresorufin O-dealkylation (EROD) and benzo[a]pyrene hydroxylation activities than the WT. Enhanced supplementation of a heme precursor during E. coli culture did not increase CYP content in E. coli expressing the variant, but did for the WT. As for Ala62Pro, E. coli expressing an Ala62Gly variant had a lower CYP content than the WT counterpart, but substitution of Ala62 with α-helix-compatible residues such as Ser and Val partially recovered the level of CYP produced. Microsomes from mammalian cells expressing Ala62Pro and Ala62Gly variants exhibited lower EROD activities than those expressing the WT or Ala62Val variant. A region harboring α-helix A has interactions with another region containing heme-interacting residues. Site-directed mutagenesis analyses suggest the importance of interactions between the two regions on holoenzyme expression. Together, these findings suggest that the Ala62Pro substitution leads to changes in protein characteristics and function of CYP1A1 via structural disturbance of the region where the residue is located. - Highlights: • Ala62 is located in α-helix A of the carcinogen-metabolizing enzyme CYP1A1. • Pro acts as an α-helix breaker. • A variant protein of CYP1A1, Ala62Pro, had lower heme content than the wild-type. • The variant of CYP1A1 had lower enzyme activities than the wild-type.

  20. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    Science.gov (United States)

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice.

    Science.gov (United States)

    Grant, Marianne K O; Seelig, Davis M; Sharkey, Leslie C; Zordoky, Beshay N

    2017-01-01

    There is inconclusive evidence about the role of sex as a risk factor for doxorubicin (DOX)-induced cardiotoxicity. Recent experimental studies have shown that adult female rats are protected against DOX-induced cardiotoxicity. However, the mechanisms of this sexual dimorphism are not fully elucidated. We have previously demonstrated that DOX alters the expression of several cytochrome P450 (CYP) enzymes in the hearts of male rats. Nevertheless, the sex-dependent effect of DOX on the expression of CYP enzymes is still not known. Therefore, in the present study, we determined the effect of acute DOX exposure on the expression of CYP genes in the hearts of both male and female C57Bl/6 mice. Acute DOX cardiotoxicity was induced by a single intraperitoneal injection of 20 mg/kg DOX in male and female adult C57Bl/6 mice. Cardiac function was assessed 5 days after DOX exposure by trans-thoracic echocardiography. Mice were euthanized 1 day or 6 days after DOX or saline injection. Thereafter, the hearts were harvested and weighed. Heart sections were evaluated for pathological lesions. Total RNA was extracted and expression of natriuretic peptides, inflammatory and apoptotic markers, and CYP genes was measured by real-time PCR. Adult female C57Bl/6 mice were protected from acute DOX-induced cardiotoxicity as they show milder pathological lesions, less inflammation, and faster recovery from DOX-induced apoptosis and DOX-mediated inhibition of beta-type natriuretic peptide. Acute DOX exposure altered the gene expression of multiple CYP genes in a sex-dependent manner. In 24 h, DOX exposure caused male-specific induction of Cyp1b1 and female-specific induction of Cyp2c29 and Cyp2e1. Acute DOX exposure causes sex-dependent alteration of cardiac CYP gene expression. Since cardiac CYP enzymes metabolize several endogenous compounds to biologically active metabolites, sex-dependent alteration of CYP genes may play a role in the sexual dimorphism of acute DOX

  2. Cytochrome P450 monooxygenases and insecticide resistance in insects.

    OpenAIRE

    Bergé, J B; Feyereisen, R; Amichot, M

    1998-01-01

    Cytochrome P450 monooxygenases are involved in many cases of resistance of insects to insecticides. Resistance has long been associated with an increase in monooxygenase activities and with an increase in cytochrome P450 content. However, this increase does not always account for all of the resistance. In Drosophila melanogaster, we have shown that the overproduction of cytochrome P450 can be lost by the fly without a corresponding complete loss of resistance. These results prompted the seque...

  3. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    Science.gov (United States)

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The biodiversity of microbial cytochromes P450.

    Science.gov (United States)

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  5. Influence of the flame retardant tetrabromobisphenol-A on the expression of cytochrome P450 isoenzymes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Germer, S.; Schmitz, H.J.; Schrenk, D. [Food Chemistry and Environmental Toxicology, Univ. of Kaiserslautern (Germany); Piersma, A.H.; Ven, L. van der [Lab. for Toxicology, Pathology and Genetics, National Inst. for Public Health and the Environment RIVM, Bilthoven (Netherlands)

    2004-09-15

    As one of the major brominated flame retardants (BFRs) tetrabromobisphenol A (TBBPA) is widely used in flammable plastic materials. There, it is incorporated either as covalently binding BFR or as an additive leading to likely leaching out of goods. Indeed, TBBPA was found in indoor air, environmental and human samples, i.e. mother's milk. Thus a certain degree of risk for human has to be considered. Some BFRs have been suspected to act as endocrine disrupters and/or affect the development of the unborn. Induction of drug metabolism may play a role in such effects by changing the body's homeostasis of hormones, such as steroids, thyroxine, and others. BFRs are prospected to lead to thyroid hormone deficiencies, neurodevelopmental deficiencies, cancer. Furthermore a variety of inducing agents have been described as tumor promoters in rodent liver. Herein the induction of enzymes of the cytochrome P450 family (CYP) plays a major role.

  6. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  7. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  8. A glycine insertion in the estrogen-related receptor (ERR is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Weilin Sun

    Full Text Available Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT resistant strains the glucocorticoid receptor-like (GR-like potential transcription factor binding motifs (TFBMs have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR in D. melanogaster is an estrogen-related receptor (ERR gene, which has two predicted alternative splice isoforms (ERRa and ERRb. Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G. Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.

  9. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...... in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing...

  10. The Role of Cytochromes P450 in Infection

    Directory of Open Access Journals (Sweden)

    Elisavet Stavropoulou

    2018-01-01

    Full Text Available Cytochromes are expressed in many different tissues of the human body. They are found mostly in intestinal and hepatic tissues. Cytochromes P450 (CYPs are enzymes that oxidize substances using iron and are able to metabolize a large variety of xenobiotic substances. CYP enzymes are linked to a wide array of reactions including and O-dealkylation, S-oxidation, epoxidation, and hydroxylation. The activity of the typical P450 cytochrome is influenced by a variety of factors, such as genus, environment, disease state, herbicide, alcohol, and herbal medications. However, diet seems to play a major role. The mechanisms of action of dietary chemicals, macro- and micronutrients on specific CYP isoenzymes have been extensively studied. Dietary modulation has effects upon the metabolism of xenobiotics. Cytochromes harbor intra- or interindividual and intra- or interethnic genetic polymorphisms. Bacteria were shown to express CYP-like genes. The tremendous metabolic activity of the microbiota is associated to its abundant pool of CYP enzymes, which catalyze phase I and II reactions in drug metabolism. Disease states, intestinal disturbances, aging, environmental toxic effects, chemical exposures or nutrition modulate the microbial metabolism of a drug before absorption. A plethora of effects exhibited by most of CYP enzymes can resemble those of proinflammatory cytokines and IFNs. Moreover, they are involved in the initiation and persistence of pathologic pain by directly activating sensory neurons and inflammatory cytokines.

  11. Heterologous expression of the isopimaric acid pathway in Nicotiana benthamiana and the effect of N-terminal modifications of the involved cytochrome P450 enzyme

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan; Vavitsas, Konstantinos; Andersen-Ranberg, Johan

    2015-01-01

    in the infiltrated leaves. Furthermore, we demonstrated that a modified membrane anchor is a prerequisite for a functional CYP720B4 enzyme when the chloroplast targeting peptide is added. We report the accumulation of 45-55 μg/g plant dry weight of isopimaric acid four days after the infiltration with the modified...... in the chloroplast and subsequently oxidized by a cytochrome P450, CYP720B4. RESULTS: We transiently expressed the isopimaric acid pathway in Nicotiana benthamiana leaves and enhanced its productivity by the expression of two rate-limiting steps in the pathway (providing the general precursor of diterpenes). This co...

  12. Immunohistochemical detection of cytochrome P450 isoenzymes in cultured human epidermal cells.

    Science.gov (United States)

    Van Pelt, F N; Meierink, Y J; Blaauboer, B J; Weterings, P J

    1990-12-01

    We used specific monoclonal antibodies (MAb) to human cytochrome P450 isoenzymes to determine the presence of these proteins in human epidermal cells. Two MAb (P450-5 and P450-8) recognize major forms of hepatic cytochrome P450 involved in biotransformation of xenobiotics. A third MAb, to cytochrome P450-9, is not fully characterized. The proteins were determined by the indirect immunoperoxidase technique after fixation with methanol and acetone. Biopsy materials for cultured keratinocytes, i.e., foreskin and hair follicles, contained the two major forms of cytochrome P450. In cultured keratinocytes derived from hair follicles the proteins were undetectable, whereas the keratinocytes derived from foreskin continued to express the two major forms of hepatic cytochrome P450. Cultured human fibroblasts and a human keratinocyte cell line (SVK14) showed staining similar to that of the foreskin keratinocytes. Cytochrome P450-9 was detectable only in human hepatocytes. The results indicate that, under the culture conditions applied, cultured human foreskin cells and the cell line SVK14 continue to express specific cytochrome P450 isoenzymes in culture, in contrast to hair follicle keratinocytes.

  13. Expression and Purification of the Recombinant Cytochrome P450 CYP141 Protein of Mycobacterium Tuberculosis as a Diagnostic Tool and Vaccine Production.

    Science.gov (United States)

    Heidari, Reza; Rabiee-Faradonbeh, Mohammad; Darban-Sarokhalil, Davood; Alvandi, Amirhooshang; Abdian, Narges; Aryan, Ehsan; Soleimani, Neda; Gholipour, Abolfazl

    2015-06-01

    Tuberculosis (TB) is regarded as a health problem worldwide, particularly in developing countries. Mycobacterium tuberculosis (M. tuberculosis) is the cause of this disease. Approximately two billion people worldwide are infected by M. tuberculosis and annually about two million individuals die in consequence. Forty million people are estimated to die because of M. tuberculosis over the next 25 years if the measures for controlling this infection are not extensively developed. In the vaccination field, Bacillus Calmette-Guérin (BCG) is still the most effective vaccine but it shows no efficacy in adult pulmonary patients. One of the other problems regarding TB is its appropriate diagnosis. In this experimental study, the recombinant cytochrome P450 CYP141 protein of M. tuberculosis was expressed and purified to be used as a vaccine candidate and diagnostic purpose in subsequent investigations. The optimization of the cytochrome P450 CYP141 protein expression was evaluated in different conditions. Then, this protein was purified with a resin column of nickel-nitrilotriacetic acid and investigated via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting. The highest expression of the cytochrome P450 CYP141 protein was obtained by the addition of 1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) to the bacterial culture grown to an optical density at 600 nm (OD600) of 0.6, 16 hours after induction. This protein was subsequently purified with a purification of higher than 80%. The results of Western Blotting indicated that the purified protein was specifically detected. In this experimental study, for the first time in Iran the expression and purification of this recombinant protein was done successfully. This recombinant protein could be used as a vaccine candidate and diagnostic purpose in subsequent investigations.

  14. Differentially regulated NADPH: cytochrome p450 oxidoreductases in parsely

    International Nuclear Information System (INIS)

    Koopmann, E.; Hahlbrock, K.

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H

  15. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    Chattha

    Economically, legumes represent the second most important family of crop plants after Poacea (grass family), accounting for ... further characterization of P450 genes with both known and unknown functions. MATERIALS AND METHODS ..... Cytochrome P450. In: Somerville CR, Meyerowitz EM (eds) .The Arabidopsis book,.

  16. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  17. Fast prediction of cytochrome P450 mediated drug metabolism

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Poongavanam, Vasanthanathan; Oostenbrink, Chris

    2009-01-01

    Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory...... calculations, for predicting activation energies for aliphatic and aromatic oxidations by cytochromes P450 is developed and compared with several other methods. Although the applicability of the method is currently limited to a subset of P450 reactions, these reactions describe more than 90...

  18. Ligand Access Channels in Cytochrome P450 Enzymes: A Review

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2018-05-01

    Full Text Available Quantitative structure-activity relationships may bring invaluable information on structural elements of both enzymes and substrates that, together, govern substrate specificity. Buried active sites in cytochrome P450 enzymes are connected to the solvent by a network of channels exiting at the distal surface of the protein. This review presents different in silico tools that were developed to uncover such channels in P450 crystal structures. It also lists some of the experimental evidence that actually suggest that these predicted channels might indeed play a critical role in modulating P450 functions. Amino acid residues at the entrance of the channels may participate to a first global ligand recognition of ligands by P450 enzymes before they reach the buried active site. Moreover, different P450 enzymes show different networks of predicted channels. The plasticity of P450 structures is also important to take into account when looking at how channels might play their role.

  19. Regulation of rabbit lung cytochrome P-450 prostaglandin omega-hydroxylase (P-450/sub PG-omega/) during pregnancy

    International Nuclear Information System (INIS)

    Muerhoff, A.S.; Williams, D.E.; Jackson, V.; Leithauser, M.T.; Waterman, M.R.; Johnson, E.F.; Masters, B.S.S.

    1987-01-01

    The mechanism of induction during pregnancy of a rabbit lung prostaglandin omega-hydroxylase cytochrome P-450 has been investigated. This activity has been demonstrated to be induced over 100-fold in 28-day pregnant rabbits, as compared to nonpregnant rabbits. The induction is reflected by an increase in the amount of P-450/sub PG-omega/ protein as measured by Western blotting. P-450/sub PG-omega/ microsomal protein increases throughout gestation concomitant with an increase in PGE 1 omega-hydroxylase activity. Elucidation of the level of induction involved extraction of RNA from rabbit lungs obtained at various days of gestation followed by in vitro translation of the RNA in the presence of 35 S-methionine. Immunoprecipitation of newly synthesized P-450 and analysis of the immunoisolates by SDS-PAGE, autoradiography and densitometry of the P-450/sub PG-omega/ band revealed that the P-450/sub PG-omega/ mRNA levels followed the gestational time-dependent increase observed for both PGE 1 omega-hydroxylase activity and P-450/sub PG-omega/ protein, i.e., a gradual increase peaking at 28-days, dropping precipitously to near control levels following parturition. These data suggest that control of P-450/sub PG-omega expression occurs at the transcriptional level. Western blots of human lung bronchioloalveolar-carcinoma cell lines NCL-H322 and NCL-H358 utilizing a guinea pig IgG to P-450/sub PG-omega/ detect a cross-reactive species

  20. Suppression of cytochrome P450 reductase (POR) expression in hepatoma cells replicates the hepatic lipidosis observed in hepatic POR-null mice.

    Science.gov (United States)

    Porter, Todd D; Banerjee, Subhashis; Stolarczyk, Elzbieta I; Zou, Ling

    2011-06-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis.

  1. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen Laurence

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially...... was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions...

  3. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis.

    Science.gov (United States)

    Zhong, Shilong; Han, Weichao; Hou, Chuqi; Liu, Junjin; Wu, Lili; Liu, Menghua; Liang, Zhi; Lin, Haoming; Zhou, Lili; Liu, Shuwen; Tang, Lan

    2017-01-01

    Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the Grey sWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.

  4. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[alpha]pyrene-induced expression patterns

    NARCIS (Netherlands)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, S.A.J.; Hagiwara, Atsushi; Lee, Jae-Seong

    2017-01-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the

  5. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Science.gov (United States)

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  6. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    Science.gov (United States)

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  7. Multivariate Modeling of Cytochrome P450 Enzymes for 4 ...

    African Journals Online (AJOL)

    Conclusion: Apart from insights into important molecular properties for CYP inhibition, the findings may also guide further investigations of novel drug candidates that are unlikely to inhibit multiple CYP sub-types. Keywords: Antimalarial, Chloroquine, Cytochrome P450, Genetic algorithm-based multiple linear regression, ...

  8. Cytochrome P450 3A expression and activity in the rabbit lacrimal gland: glucocorticoid modulation and the impact on androgen metabolism.

    Science.gov (United States)

    Attar, Mayssa; Ling, Kah-Hiing John; Tang-Liu, Diane D-S; Neamati, Nouri; Lee, Vincent H L

    2005-12-01

    Cytochrome P450 3A (CYP3A) is an enzyme of paramount importance to drug metabolism. The expression and activity of CYP3A, an enzyme responsible for active androgen clearance, was investigated in the rabbit lacrimal gland. Analysis of CYP3A expression and activity was performed on lacrimal gland tissues obtained from naïve untreated and treated New Zealand White rabbits. For 5 days, treated rabbits received daily administration of vehicle or 0.1% or 1.0% dexamethasone, in the lower cul-de-sac of each eye. Changes in mRNA expression were monitored by real-time RT-PCR. Protein expression was confirmed by Western blot. Functional activity was measured by monitoring the metabolism of CYP3A probe substrates-namely, 7-benzyloxyquinoline (BQ) and [3H]testosterone. Cytochrome P450 heme protein was detected at a concentration of 44.6 picomoles/mg protein, along with its redox partner NADPH reductase and specifically CYP3A6 in the naïve rabbit lacrimal gland. Genes encoding CYP3A6, in addition to the pregnane-X-receptor (PXR) and P-glycoprotein (P-gp) were expressed in the untreated tissue. BQ dealkylation was measured in the naïve rabbit lacrimal gland at a rate of 14 +/- 7 picomoles/mg protein per minute. Changes in CYP3A6, P-gp, and androgen receptor mRNA expression levels were detected after dexamethasone treatment. In addition, dexamethasone treatment resulted in significant increases in BQ dealkylation and CYP3A6-mediated [3H]testosterone metabolism. Concomitant increases in CYP3A6-mediated hydroxylated testosterone metabolites were observed in the treated rabbits. Furthermore, ketoconazole, all-trans retinoic acid, and cyclosporine inhibited CYP3A6 mediated [3H]testosterone 6beta hydroxylation in a concentration-dependent manner, with IC50 ranging from 3.73 to 435 microM. The results demonstrate, for the first time, the expression and activity of CYP3A6 in the rabbit lacrimal gland. In addition, this pathway was shown to be subject to modulation by a commonly

  9. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    Science.gov (United States)

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  10. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    Science.gov (United States)

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  11. Triterpene Structural Diversification by Plant Cytochrome P450 Enzymes

    Directory of Open Access Journals (Sweden)

    Sumit Ghosh

    2017-11-01

    Full Text Available Cytochrome P450 monooxygenases (P450s represent the largest enzyme family of the plant metabolism. Plants typically devote about 1% of the protein-coding genes for the P450s to execute primary metabolism and also to perform species-specific specialized functions including metabolism of the triterpenes, isoprene-derived 30-carbon compounds. Triterpenes constitute a large and structurally diverse class of natural products with various industrial and pharmaceutical applications. P450-catalyzed structural modification is crucial for the diversification and functionalization of the triterpene scaffolds. In recent times, a remarkable progress has been made in understanding the function of the P450s in plant triterpene metabolism. So far, ∼80 P450s are assigned biochemical functions related to the plant triterpene metabolism. The members of the subfamilies CYP51G, CYP85A, CYP90B-D, CYP710A, CYP724B, and CYP734A are generally conserved across the plant kingdom to take part in plant primary metabolism related to the biosynthesis of essential sterols and steroid hormones. However, the members of the subfamilies CYP51H, CYP71A,D, CYP72A, CYP81Q, CYP87D, CYP88D,L, CYP93E, CYP705A, CYP708A, and CYP716A,C,E,S,U,Y are required for the metabolism of the specialized triterpenes that might perform species-specific functions including chemical defense toward specialized pathogens. Moreover, a recent advancement in high-throughput sequencing of the transcriptomes and genomes has resulted in identification of a large number of candidate P450s from diverse plant species. Assigning biochemical functions to these P450s will be of interest to extend our knowledge on triterpene metabolism in diverse plant species and also for the sustainable production of valuable phytochemicals.

  12. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    International Nuclear Information System (INIS)

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs

  13. Influence of polyhalogenated aromatic hydrocarbons on the induction, activity, and stabilization of cytochrome P450

    International Nuclear Information System (INIS)

    Voorman, R.

    1987-01-01

    In the course of experiments evaluating the metabolism of polybrominated biphenyls by cytochrome P450 isozymes induced by 3,4,5,3',4',5'-hexabromobiphenyl (HBB), it was discovered that the inducer remained closely associated with cytochrome P450d. Subsequent purification of cytochromes from HBB treated rates revealed a 0.5:1 association of HBB to cytochrome P450d but virtually none with cytochrome P450c or cytochrome b5. Immunochemical quantitation of cytochrome P450d in the same microsomes yielded a ratio of P450d:HBB that approached unity. Measurement of cytochrome P450d estradiol 2-hydroxylase indicated non-competitive or mixed type inhibition caused by HBB at a concentration of 10-1000 nM. Inhibition was specific to cytochrome P450d since estradiol 2-hydroxylase catalyzed by cytochrome P450h was unaffected by HBB. The ability of HCB and isosafrole to stabilize cytochrome P450d, and thus indirectly influence regulation of the enzyme, was evaluated by treating rats with a dose of TCDD sufficient to produce maximum induction of cytochromes P450c and P450d via the Ah receptor, yet insufficient to bind to the enzyme. Subsequent treatment of these animals with HCB or isosafrole and a radiolabeled amino acid, revealed a significant increase in cytochrome P450d specific content relative to cytochrome P450c and significant retention of the radiolabel in P450d relative to rats treated only with TCDD

  14. Genome-wide and expression-profiling analyses suggest the main cytochrome P450 genes related to pyrethroid resistance in the malaria vector, Anopheles sinensis (Diptera Culicidae).

    Science.gov (United States)

    Yan, Zheng-Wen; He, Zheng-Bo; Yan, Zhen-Tian; Si, Feng-Ling; Zhou, Yong; Chen, Bin

    2018-02-02

    Anopheles sinensis is one of the major malaria vectors. However, pyrethroid resistance in An. sinensis is threatening malaria control. Cytochrome P450-mediated detoxification is an important pyrethroid resistance mechanism that has been unexplored in An. sinensis. In this study, we performed a comprehensive analysis of the An. sinensis P450 gene superfamily with special attention to their role in pyrethroid resistance using bioinformatics and molecular approaches. Our data revealed the presence of 112 individual P450 genes in An. sinensis, which were classified into four major clans (mitochondrial, CYP2, CYP3 and CYP4), 18 families and 50 subfamilies. Sixty-seven genes formed nine gene clusters, and genes within the same cluster and the same gene family had a similar gene structure. Phylogenetic analysis showed that most of An. sinensis P450s (82/112) had very close 1: 1 orthology with Anopheles gambiae P450s. Five genes (AsCYP6Z2, AsCYP6P3v1, AsCYP6P3v2, AsCYP9J5 and AsCYP306A1) were significantly upregulated in three pyrethroid-resistant populations in both RNA-seq and RT-qPCR analyses, suggesting that they could be the most important P450 genes involved in pyrethroid resistance in An. sinensis. Our study provides insight on the diversity of An. sinensis P450 superfamily and basis for further elucidating pyrethroid resistance mechanism in this mosquito species. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Boersma, M.G.; Horst, J.P.F. ter; Awad, H.M.; Fiamegos, Y.C.; Beek, T.A. van; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2006-01-01

    In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1′-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19,

  16. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    Science.gov (United States)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Avian cytochrome P450 (CYP 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    Directory of Open Access Journals (Sweden)

    Kensuke P Watanabe

    Full Text Available Cytochrome P450 (CYP of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.

  18. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    Science.gov (United States)

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. © 2016 Elsevier Inc. All rights reserved.

  19. Regulation of the cytochrome P450 2A genes

    International Nuclear Information System (INIS)

    Su Ting; Ding Xinxin

    2004-01-01

    Cytochrome P450 monooxygenases of the CYP2A subfamily play important roles in xenobiotic disposition in the liver and in metabolic activation in extrahepatic tissues. Many of the CYP2A transcripts and enzymes are inducible by xenobiotic compounds, and the expression of at least some of the CYP2A genes is influenced by physiological status, such as circadian rhythm, and pathological conditions, such as inflammation, microbial infection, and tumorigenesis. Variability in the expression of the CYP2A genes, which differs by species, animal strain, gender, and organ, may alter the risks of chemical toxicity for numerous compounds that are CYP2A substrates. The mechanistic bases of these variabilities are generally not well understood. However, recent studies have yielded interesting findings in several areas, such as the role of nuclear factor 1 in the tissue-selective expression of CYP2A genes in the olfactory mucosa (OM); the roles of constitutive androstane receptor, pregnane X receptor (PXR), and possibly, peroxisome proliferator-activated receptors in transcriptional regulation of the Cyp2a5 gene; and the involvement of heterogeneous nuclear ribonucleoprotein A1 in pyrazole-induced stabilization of CYP2A5 mRNA. The aims of this minireview are to summarize current knowledge of the regulation of the CYP2A genes in rodents and humans, and to stimulate further mechanistic studies that will ultimately improve our ability to determine, and to understand, these variabilities in humans

  20. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress.

    Science.gov (United States)

    Li, Yinsheng; Zhao, Chun; Lu, Xiaoxu; Ai, Xiaojie; Qiu, Jiangping

    2018-04-15

    Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. Earthworms have been used as a bioindicator of soil pollution in numerous studies, but no CYP450 gene has so far been cloned. RT-PCR and RACE-PCR were employed to construct and sequence the CYP450 gene DNA from the extracted mRNA in the earthworm Eisenia fetida. The cloned gene (EW1) has an open reading frame of 477bp. The 3'-terminal region contained both the consensus and the signature sequences characteristic of CYP450. It was closely related to the CYP450 gene from the flatworm genus Opisthorchis felineus with 87% homology. The predicted structure of the putative protein was 97% homologous to human CYP450 family 27. This gene has been deposited in GenBank (accession no. KM881474). Earthworms (E. fetida) were then exposed to 1, 10, 100, and 500mgkg -1 enrofloxacin in soils to explore the mRNA expression by real time qPCR. The effect of enrofloxacin on mRNA expression levels of EW1 exhibited a marked hormesis pattern across the enrofloxacin dose range tested. This is believed to be the first reported CYP450 gene in earthworms, with reference value for molecular studies on detoxification processes in earthworms. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Interaction of rocuronium with human liver cytochromes P450

    OpenAIRE

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-01-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver micro...

  2. Differential expression of cytochrome P450 genes between bromadiolone-resistant and anticoagulant-susceptible Norway rats

    DEFF Research Database (Denmark)

    Markussen, Mette Drude Kjær; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Background: Anticoagulant resistance in Norway rats, Rattus norvegicus (Berk.), has been suggested to be conferred by mutations in the VKORC1 gene, encoding the target protein of anticoagulant rodenticides. Other factors, e.g. pharmacokinetics, may also contribute to resistance, however. To examine......, Cyp3a2 and Cyp3a3 genes. On exposure to bromadiolone, females had higher Cyp2e1 expression than males, which possibly explains why female rats are generally more tolerant to anticoagulants than male rats. Conclusion: results suggest that bromadiolone resistance in a Danish strain of Norway rats...

  3. Variations in ecdysteroid levels and cytochrome P450 expression during moult and reproduction in male shore crabs Carcinus maenas

    DEFF Research Database (Denmark)

    Styrishave, B.; Rewitz, K.; Lund, T.

    2004-01-01

    and intermoult. In the testis, 20E and E were present at high levels except in Postmoult Stage A, where low levels were observed. PoA was never observed in the testis. Ecdysteroids were quantified in the red and green colour forms of late intermoult C-4 crabs. In both phenotypes, 20E was the dominating...... had significantly higher testicular E levels than red crabs. Ecdysteroid levels were negatively related to CYP330A1 and CYP4C39 gene expression. CYP330A1 and CYP4C39 mRNA levels were low during intermoult and premoult but high during postmoult. The results suggest that E and 20E are involved in both......Ecdysteroid levels were investigated by HPLC-MS over the moult cycle and in relation to reproduction in male shore crabs Carcinus maenas. Ecdysone (E), 20-hydroxyecdysone (20E) and Ponasterone A (PoA) were quantified in the haemolymph, hepatopancreas and testis. Also, the expression of 2 recently...

  4. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    Science.gov (United States)

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  5. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  6. Ketamine and ketamine metabolites as novel estrogen receptor ligands: Induction of cytochrome P450 and AMPA glutamate receptor gene expression.

    Science.gov (United States)

    Ho, Ming-Fen; Correia, Cristina; Ingle, James N; Kaddurah-Daouk, Rima; Wang, Liewei; Kaufmann, Scott H; Weinshilboum, Richard M

    2018-04-03

    Major depressive disorder (MDD) is the most common psychiatric illness worldwide, and it displays a striking sex-dependent difference in incidence, with two thirds of MDD patients being women. Ketamine treatment can produce rapid antidepressant effects in MDD patients, effects that are mediated-at least partially-through glutamatergic neurotransmission. Two active metabolites of ketamine, (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-HNK, also appear to play a key role in ketamine's rapid antidepressant effects through the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors. In the present study, we demonstrated that estrogen plus ketamine or estrogen plus active ketamine metabolites displayed additive effects on the induction of the expression of AMPA receptor subunits. In parallel, the expression of estrogen receptor alpha (ERα) was also significantly upregulated. Even more striking, radioligand binding assays demonstrated that [ 3 H]-ketamine can directly bind to ERα (K D : 344.5 ± 13 nM). Furthermore, ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites displayed similar affinity for ERα (IC 50 : 2.31 ± 0.1, 3.40 ± 0.2, and 3.53 ± 0.2 µM, respectively) as determined by [ 3 H]-ketamine displacement assays. Finally, induction of AMPA receptors by either estrogens or ketamine and its metabolites was lost when ERα was knocked down or silenced pharmacologically. These results suggest a positive feedback loop by which estrogens can augment the effects of ketamine and its (2R,6R)-HNK and (2S,6S)-HNK metabolites on the ERα-induced transcription of CYP2A6 and CYP2B6, estrogen inducible enzymes that catalyze ketamine's biotransformation to form the two active metabolites. These observations provide novel insight into ketamine's molecular mechanism(s) of action and have potential implications for the treatment of MDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  8. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns.

    Science.gov (United States)

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, Steven A J; Hagiwara, Atsushi; Lee, Jae-Seong

    2018-03-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Export of Cytochrome P450 105D1 to the Periplasmic Space of Escherichia coli

    OpenAIRE

    Kaderbhai, Mustak A.; Ugochukwu, Cynthia C.; Kelly, Steven L.; Lamb, David C.

    2001-01-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell ext...

  10. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    Science.gov (United States)

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  11. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    Science.gov (United States)

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  12. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    Science.gov (United States)

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  13. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  14. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    Science.gov (United States)

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Heterologous expression of Helicoverpa armigera cytochrome P450 CYP6B7 in Pichia pastoris and interactions of CYP6B7 with insecticides.

    Science.gov (United States)

    Zhao, Chunqing; Song, Genmiao; Duan, Hongxia; Tang, Tao; Wang, Chen; Qiu, Lihong

    2017-09-01

    Previous studies indicated that constitutive over-expression of cytochrome P450 CYP6B7 was involved in fenvalerate resistance in Helicoverpa armigera. In this study, the CYP6B7 gene from H. armigera (namely HaCYP6B7), was heterologously expressed in Pichia pastoris GS115. A vector pPICZA-HaCYP6B7 was constructed and transformed into P. pastoris GS115, the transformant of pPICZA-HaCYP6B7-GS115 was then cultured and induced by 1% (v/v) methanol and the heterologous expression of HaCYP6B7 protein in P. pastoris was confirmed by SDS-PAGE and western blot. Microsomes containing the expressed HaCYP6B7 showed activities against model substrate p-nitroanisole and 7-ethoxycoumarin, with p-nitroanisole O-demethylation (PNOD) and 7-ethoxycoumarin O-deethylation (ECOD) activities of 15.66- and 4.75-fold of the control, respectively. Moreover, it showed degradation activities against the insecticides bifenthrin, fenvalerate and chlorpyrifos, with clearance activities of 6.88-, 1.49- and 2.27-fold of the control, respectively. The interactions of HaCYP6B7 with insecticides were further confirmed by molecular docking in silico with binding scores of 5.450, 5.295 and 2.197 between putative HaCYP6B7 protein and bifenthrin, fenvalerate and chlorpyrifos, respectively. The results of present study provided more direct and important evidence on the role of HaCYP6B7 conferring pyrethroid resistance in H. armigera. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    Science.gov (United States)

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  17. Role of cytochrome P450 in drug interactions

    Directory of Open Access Journals (Sweden)

    Bibi Zakia

    2008-10-01

    Full Text Available Abstract Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.

  18. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-01-01

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture...

  19. Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate.

    Science.gov (United States)

    Venkatakrishnan, K; von Moltke, L L; Greenblatt, D J

    2001-04-01

    The relative activity factor (RAF) approach is being increasingly used in the quantitative phenotyping of multienzyme drug biotransformations. Using lymphoblast-expressed cytochromes P450 (CYPs) and the tricyclic antidepressant amitriptyline as a model substrate, we have tested the hypothesis that the human liver microsomal rates of a biotransformation mediated by multiple CYP isoforms can be mathematically reconstructed from the rates of the biotransformation catalyzed by individual recombinant CYPs using the RAF approach, and that the RAF approach can be used for the in vitro-in vivo scaling of pharmacokinetic clearance from in vitro intrinsic clearance measurements in heterologous expression systems. In addition, we have compared the results of two widely used methods of quantitative reaction phenotyping, namely, chemical inhibition studies and the prediction of relative contributions of individual CYP isoforms using the RAF approach. For the pathways of N-demethylation (mediated by CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and E-10 hydroxylation (mediated by CYPs 2B6, 2D6, and 3A4), the model-predicted biotransformation rates in microsomes from a panel of 12 human livers determined from enzyme kinetic parameters of the recombinant CYPs were similar to, and correlated with the observed rates. The model-predicted clearance via N-demethylation was 53% lower than the previously reported in vivo pharmacokinetic estimates. Model-predicted relative contributions of individual CYP isoforms to the net biotransformation rate were similar to, and correlated with the fractional decrement in human liver microsomal reaction rates by chemical inhibitors of the respective CYPs, provided the chemical inhibitors used were specific to their target CYP isoforms.

  20. Expression of a Human Cytochrome P450 in Yeast Permits Analysis of Pathways for Response to and Repair of Aflatoxin-Induced DNA Damage†

    OpenAIRE

    Guo, Yingying; Breeden, Linda L.; Zarbl, Helmut; Preston, Bradley D.; Eaton, David L.

    2005-01-01

    Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in str...

  1. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (Pcopepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  3. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    Science.gov (United States)

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  4. Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers

    International Nuclear Information System (INIS)

    Kim, James H.; Sherman, Mark E.; Curriero, Frank C.; Guengerich, F. Peter; Strickland, Paul T.; Sutter, Thomas R.

    2004-01-01

    Cytochromes P450 1A1 and 1B1 are known to bioactivate procarcinogens such as polycyclic aromatic hydrocarbons (PAHs) found in cigarette smoke and are inducible via an Ah receptor-mediated mechanism. The aim of this study was to examine the levels of expression of CYP1A1 and CYP1B1 in samples of lung from smokers (n = 18), non-smokers (n = 7), and ex-smokers (n = 7). Using immunoglobulin preparations of highly specific polyclonal antibodies and immunoblot analysis of microsomes from lung tissues, we determined the specific content for CYP1A1 and CYP1B1. For CYP1A1, we found median expression levels of 15.5 pmol/mg microsomal protein in smokers, 6.0 pmol/mg microsomal protein in non-smokers, and 19.0 pmol/mg microsomal protein in ex-smokers. The difference in median expression levels of smokers and ex-smokers compared to non-smokers was statistically significant. For CYP1B1, we found median expression levels of 1.8 pmol/mg microsomal protein in smokers, 1.0 pmol/mg microsomal protein in non-smokers, and 4.4 pmol/mg microsomal protein in ex-smokers. The difference in median expression levels between ex-smokers and non-smokers was statistically significant. These results suggest that levels of expression of CYP1A1 and CYP1B1 protein in lung tissues from smokers and ex-smokers are quantitatively greater than in non-smokers. By immunohistochemical analysis, we demonstrated the expression of CYP1A1 and CYP1B1 in normal human alveolar type I and II cells, ciliated columnar epithelial cells lining bronchoalveolar airways, and alveolar macrophages. These results confirm that CYP1A1 is expressed in normal human lung, appears to be induced in smokers, and show interindividual variation; the similar characteristics of CYP1B1 are demonstrated

  5. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    Science.gov (United States)

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1.

    Science.gov (United States)

    Lammel, Tobias; Boisseaux, Paul; Navas, José M

    2015-09-01

    Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard. © 2014 Wiley Periodicals, Inc.

  7. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    Science.gov (United States)

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  8. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  9. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  10. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  11. Fungal Cytochrome P450s and the P450 Complement (CYPome of Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Jiyoung Shin

    2018-03-01

    Full Text Available Cytochrome P450s (CYPs, heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.

  12. [The role of cytochrome P450 in nonalcoholic fatty liver induced by high-fat diet: a gene expression profile analysis].

    Science.gov (United States)

    Liu, Y; Cheng, F; Luo, Y X; Hu, P; Ren, H; Peng, M L

    2017-04-20

    Objective: To clarify the role of cytochrome P450 in nonalcoholic fatty liver disease (NAFLD) by RNA-Seq and bioinformatics analysis. Methods: A total of 20 male C57BL/6 mice were used. Ten mice were fed with high-fat diet (D12492, 60% kcal fat) for 16 weeks to establish a mouse model of NAFLD, and the other 10 mice were fed with low-fat diet (D12450B, 10% kcal fat) as control group. At the end of the experiment, the body weight, liver weight, and hepatic triglyceride (TG) content were measured. Meanwhile, HE staining and RNA-Seq analysis were performed for the liver tissues. The differentially expressed genes were screened out and subjected to bioinformatics analysis, including KEGG and GO BP enrichment analyses and interaction network analysis. Comparison of means between the two groups was made using t-test. Results: Compared with the control group, the mice in the model group were obviously obese, with significantly increased body weight (41.41 ± 6.01 g vs 28.78 ± 1.79 g, t = 6.04, P steatosis, accompanied by a small amount of inflammatory cell infiltration, but with no obvious fibrosis, according to the results of HE staining. In addition, the hepatic TG content in the model group was significantly increased compared with that in the control group (0.64 ± 0.01 mg/mg vs 0.29 ± 0.06 mg/mg, t = 10.11, P = 0.04). Compared with the control group, a total of 367 differentially expressed genes, including 211 down-regulated and 156 up-regulated ones, were identified in the model group according to the RNA-seq results. Meanwhile, 19 CYP450 subtypes, accounting for 5% of the differentially expressed genes, were identified, and CYP2E1, CYP2C70, CYP3A11, CYP3A25, CYP2D26, CYP4A10, CYP17A1, CYP2B10, and CYP2C38 were involved in oxidative stress, steroid hormone metabolism, fatty acid metabolism, arachidonic acid metabolism, and the PPAR signaling pathway. An interaction network was constructed with 30 nodes, and CYP2E1 and CYP2C70 were identified as key nodes. RT

  13. Analysis of cellular responses to aflatoxin B1 in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    International Nuclear Information System (INIS)

    Guo Yingying; Breeden, Linda L.; Fan, Wenhong; Zhao Lueping; Eaton, David L.; Zarbl, Helmut

    2006-01-01

    Aflatoxin B1 (AFB 1 ) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB 1 is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N 7 -guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB 1 , a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB 1 that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB 1 treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB 1 -treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by

  14. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  15. Nicotine Component of Cigarette Smoke Extract (CSE) Decreases the Cytotoxicity of CSE in BEAS-2B Cells Stably Expressing Human Cytochrome P450 2A13.

    Science.gov (United States)

    Ji, Minghui; Zhang, Yudong; Li, Na; Wang, Chao; Xia, Rong; Zhang, Zhan; Wang, Shou-Lin

    2017-10-13

    Cytochrome P450 2A13 (CYP2A13), an extrahepatic enzyme mainly expressed in the human respiratory system, has been reported to mediate the metabolism and toxicity of cigarette smoke. We previously found that nicotine inhibited 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism by CYP2A13, but its influence on other components of cigarette smoke remains unclear. The nicotine component of cigarette smoke extract (CSE) was separated, purified, and identified using high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), splitting CSE into a nicotine section (CSE-N) and nicotine-free section (CSE-O). Cell viability and apoptosis by Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted on immortalized human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13) or vector (B-V), respectively. Interestingly, CSE and CSE-O were toxic to BEAS-2B cells whereas CSE-N showed less cytotoxicity. CSE-O was more toxic to B-2A13 cells than to B-V cells (IC 50 of 2.49% vs. 7.06%), which was flatted by 8-methoxypsoralen (8-MOP), a CYP inhibitor. CSE-O rather than CSE or CSE-N increased apoptosis of B-2A13 cells rather than B-V cells. Accordingly, compared to CSE-N and CSE, CSE-O significantly changed the expression of three pairs of pro- and anti-apoptotic proteins, Bcl-2 Associated X Protein/B cell lymphoma-2 (Bax/Bcl-2), Cleaved Poly (Adenosine Diphosphate-Ribose) Polymerase/Poly (Adenosine Diphosphate-Ribose) Polymerase (C-PARP/PARP), and C-caspase-3/caspase-3, in B-2A13 cells. In addition, recombination of CSE-N and CSE-O (CSE-O/N) showed similar cytotoxicity and apoptosis to the original CSE. These results demonstrate that the nicotine component decreases the metabolic activation of CYP2A13 to CSE and aids in understanding the critical role of CYP2A13 in human respiratory diseases caused by cigarette smoking.

  16. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450

    DEFF Research Database (Denmark)

    Laursen, Tomas; Jensen, Kenneth; Møller, Birger Lindberg

    2011-01-01

    The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR und...... to serve as an effective electron transferring "nano-machine"....

  17. One-electron reduction of mitomycin c by rat liver : role of cytochrome P-450 and NADPH-cytochrome P-450 reductase

    NARCIS (Netherlands)

    Vromans, R M; Van de Straat, R; Groeneveld, M.; Vermeulen, N P

    1. The role of cytochrome P-450 in the one-electron reduction of mitomycin c was studied in rat hepatic microsomal systems and in reconstituted systems of purified cytochrome P-450. Formation of H2O2 from redox cycling of the reduced mitomycin c in the presence of O2 and the alkylation of

  18. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.

    Science.gov (United States)

    Sowden, Rebecca J; Yasmin, Samina; Rees, Nicholas H; Bell, Stephen G; Wong, Luet-Lok

    2005-01-07

    The sesquiterpenoids are a large class of naturally occurring compounds with biological functions and desirable properties. Oxidation of the sesquiterpene (+)-valencene by wild type and mutants of P450cam from Pseudomonas putida, and of P450BM-3 from Bacillus megaterium, have been investigated as a potential route to (+)-nootkatone, a fine fragrance. Wild type P450cam did not oxidise (+)-valencene but the mutants showed activities up to 9.8 nmol (nmol P450)(-1) min(-1), with (+)-trans-nootkatol and (+)-nootkatone constituting >85% of the products. Wild type P450BM-3 and mutants had higher activities (up to 43 min(-1)) than P450cam but were much less selective. Of the many products, cis- and trans-(+)-nootkatol, (+)-nootkatone, cis-(+)-valencene-1,10-epoxide, trans-(+)-nootkaton-9-ol, and (+)-nootkatone-13S,14-epoxide were isolated from whole-cell reactions and characterised. The selectivity patterns suggest that (+)-valencene has one binding orientation in P450cam but multiple orientations in P450BM-3.

  19. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus.

    Science.gov (United States)

    Kim, Ryeo-Ok; Kim, Bo-Mi; Jeong, Chang-Bum; Lee, Jae-Seong; Rhee, Jae-Sung

    2016-06-01

    Chlorpyrifos is a widely used organophosphorus insecticide for controlling diverse insect pests of crops. In the monogonont rotifer Brachionus koreanus, population growth retardation with the inhibition of lifespan, fecundity, and individual body size of ovigerous females was shown over 10 d in response to chlorpyrifos exposure. At the molecular and biochemical levels, the rotifer B. koreanus defensome, composed of cytochrome P450 complements, heat shock protein 70, and antioxidant enzymatic systems (i.e., glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase), was significantly induced in response to different concentrations of chlorpyrifos. Thus, chlorpyrifos strongly induced a defensome system to mitigate the deleterious effects of chlorpyrifos at in vivo and in vitro levels as a trade-off in fitness costs. Environ Toxicol Chem 2016;35:1449-1457. © 2015 SETAC. © 2015 SETAC.

  20. Identification of 28 cytochrome P450 genes from the transcriptome of the marine rotifer Brachionus plicatilis and analysis of their expression.

    Science.gov (United States)

    Kim, Hui-Su; Han, Jeonghoon; Kim, Hee-Jin; Hagiwara, Atsushi; Lee, Jae-Seong

    2017-09-01

    Whole transcriptomes of the rotifer Brachionus plicatilis were analyzed using an Illumina sequencer. De novo assembly was performed with 49,122,780 raw reads using Trinity software. Among the assembled 42,820 contigs, 27,437 putative open reading frame contigs were identified (average length 1235bp; N50=1707bp). Functional gene annotation with Gene Ontology and InterProScan, in addition to Kyoto Encyclopedia of Genes and Genomes pathway analysis, highlighted the metabolism of xenobiotics by cytochrome P450 (CYP). In addition, 28 CYP genes were identified, and their transcriptional responses to benzo[α]pyrene (B[α]P) were investigated. Most of the CYPs were significantly upregulated or downregulated (Pplicatilis in response to exposure to various chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon, E-mail: jeonghoon@skku.edu; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2017-03-15

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m{sup 2}, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m{sup 2}) induced developmental delays, and higher doses (6–18 kJ/m{sup 2}) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m{sup 2}) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  2. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    International Nuclear Information System (INIS)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-01-01

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m"2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m"2) induced developmental delays, and higher doses (6–18 kJ/m"2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m"2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  3. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Natalia Moskaleva

    Full Text Available Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM. Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.

  4. Cytochrome P450 polymorphism and postoperative cognitive dysfunction

    DEFF Research Database (Denmark)

    Steinmetz, J; Jespersgaard, Cathrine; Dalhoff, Kim Peder

    2012-01-01

    neuropsychological testing at one week had POCD, and 24 out of 307 (7.8%) had POCD at three months. None of the examined CYP2C19, 2D6 alleles, or various phenotypes were significantly associated with POCD. CONCLUSION: Polymorphisms in CYP2C19, or 2D6 genes do not seem to be related to the occurrence of cognitive......BACKGROUND:The etiology of postoperative cognitive dysfunction (POCD) remains unclear but toxicity of anesthetic drugs and their metabolites could be important. We aimed to assess the possible association between POCD after propofol anesthesia and various phenotypes owing to polymorphisms...... in cytochrome P450 encoding genes. METHODS:We included patients who underwent non-cardiac surgery under total intravenous anesthesia with propofol. POCD was identified using a neuropsychological test-battery administered preoperatively, one week, and three months after surgery. Genotyping of CYP2C19*2, *3, CYP2...

  5. Advances in molecular modeling of human cytochrome P450 polymorphism.

    Science.gov (United States)

    Martiny, Virginie Y; Miteva, Maria A

    2013-11-01

    Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined. © 2013.

  6. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  7. Cytochrome P450-mediated metabolism of tumour promoters modifies the inhibition of intercellular communication: a modified assay for tumour promotion

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, H.; Doehmer, J.

    1993-01-01

    The role of metabolism of tumour promoters on the inhibition of intercellular communication was investigated in a modified V79 metabolic cooperation system. V79 cells, which stably express different rat cytochrome P450 enzymes (CYP1A1, CYP1A2 or CYP2B1), were used in the metabolic cooperation assay...... B1 and 4-nitrobiphenyl, did not inhibit metabolic cooperation in either V79 cells expressing or cells not expressing cytochrome P450. We conclude that cytochrome P450-associated metabolism plays an important role in the inhibition of gap junctional intercellular communication of some tumour...... promoters. The modified metabolic cooperation assay presented here is valuable for detecting some inhibitory chemicals which have been 'false negative' in previous assays for gap junctional intercellular communication. The assay also discloses that cytochrome P450 metabolism alters intercellular...

  8. Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura.

    Science.gov (United States)

    Xi, Jinghui; Pan, Yiou; Bi, Rui; Gao, Xiwu; Chen, Xuewei; Peng, Tianfei; Zhang, Min; Zhang, Hua; Hu, Xiaoyue; Shang, Qingli

    2015-02-01

    A resistant strain of the Aphis glycines Matsumura (CRR) has developed 76.67-fold resistance to lambda-cyhalothrin compared with the susceptible (CSS) strain. Synergists piperonyl butoxide (PBO), S,S,S-Tributyltrithiophosphate (DEF) and triphenyl phosphate (TPP) dramatically increased the toxicity of lambda-cyhalothrin to the resistant strain. Bioassay results indicated that the CRR strain had developed high levels of cross-resistance to chlorpyrifos (11.66-fold), acephate (8.20-fold), cypermethrin (53.24-fold), esfenvalerate (13.83-fold), cyfluthrin (9.64-fold), carbofuran (14.60-fold), methomyl (9.32-fold) and bifenthrin (4.81-fold), but did not have cross-resistance to chlorfenapyr, imidacloprid, diafenthiuron, abamectin. The transcriptional levels of CYP6A2-like, CYP6A14-like and cytochrome b-c1 complex subunit 9-like increased significantly in the resistant strain than that in the susceptible. Similar trend were observed in the transcripts and DNA copy number of CarE and E4 esterase. Overall, these results demonstrate that increased esterase hydrolysis activity, combined with elevated cytochrome P450 monooxygenase detoxicatication, plays an important role in the high levels of lambda-cyhalothrin resistance and can cause cross-resistance to other insecticides in the CRR strain. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1.

    Directory of Open Access Journals (Sweden)

    Alexandr N Simonov

    Full Text Available Cytochrome P450c17 (P450 17A1, CYP17A1 is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions.

  10. Inactivation of Cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a Thiophene-Containing Anticancer DrugS⃞

    Science.gov (United States)

    Lin, Hsia-lien; Zhang, Haoming; Medower, Christine; Johnson, William W.

    2011-01-01

    An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b5 and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b5. The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a KI of 24 μM and a kinact of 0.04 min−1. This KI is significantly greater than the clinical OSI-930 Cmax of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation

  11. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).

    Science.gov (United States)

    Paquette, Suzanne M; Jensen, Kenneth; Bak, Søren

    2009-12-01

    Gene and genome duplication is a key driving force in evolution of plant diversity. This has resulted in a number of large multi-gene families. Two of the largest multi-gene families in plants are the cytochromes P450 (P450s) and family 1 glycosyltransferases (UGTs). These two families are key players in evolution, especially of plant secondary metabolism, and in adaption to abiotic and biotic stress. In the model plant Arabidopsis thaliana there are 246 and 112 cytochromes P450 and UGTs, respectively. The Arabidopsis P450, cytochromes b(5), NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases website (http://www.P450.kvl.dk) is a sequence repository of manually curated sequences, multiple sequence alignments, phylogenetic trees, sequence motif logos, 3D structures, intron-exon maps, and customized BLAST datasets.

  12. Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China.

    Science.gov (United States)

    Xu, Li; Li, Dongzhi; Qin, Jianying; Zhao, Weisong; Qiu, Lihong

    2016-09-01

    Pyrethroid resistance was one of the main reasons for control failure of cotton bollworm Helicoverpa armigera (Hübner) in China. The promotion of Bt crops decreased the application of chemical insecticides in controlling H.armigera. However, the cotton bollworm still kept high levels of resistance to fenvalerate. In this study, the resistance levels of 8 field-collected strains of H. armigera from north of China to 4 insecticides, as well as the expression levels of related P450 genes were investigated. The results of bioassay indicated that the resistance levels to fenvalerate in the field strains varied from 5.4- to 114.7-fold, while the resistance levels to lambda-cyhalothrin, phoxim and methomyl were low, which were ranged from 1.5- to 5.2-, 0.2- to 1.6-, and 2.9- to 8.3- fold, respectively, compared to a susceptible strain. Synergistic experiment showed that PBO was the most effective synergist in increasing the sensitivity of H. armigera to fenvalerate, suggesting that P450 enzymes were involved in the pyrethroid resistance in the field strains. The results of quantitative RT-PCR indicated that eight P450 genes (CYP332A1, CYP4L11, CYP4L5, CYP4M6, CYP4M7, CYP6B7, CYP9A12, CYP9A14) were all significantly overexpressed in Hejian1 and Xiajin1 strains of H. armigera collected in 2013, and CYP4L5 was significantly overexpressed in all the 6 field strains collected in 2014. CYP332A1, CYP6B7 and CYP9A12 had very high overexpression levels in all the field strains, indicating their important roles in fenvalerate resistance. The results suggested that multiple P450 genes were involved in the high-level fenvalerate-resistance in different field strains of H. armigera collected from north of China. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A., E-mail: Michail.Alterman@fda.hhs.gov

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  14. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    International Nuclear Information System (INIS)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A.

    2013-01-01

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  15. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques

    NARCIS (Netherlands)

    Vasanthanathan, P.; Taboureau, O.; Oostenbrink, C.; Vermeulen, N.P.; Olsen, L.; Jorgensen, F.S.

    2009-01-01

    The cytochrome P450 (P450) superfamily plays an important role in the metabolism of drug compounds, and it is therefore highly desirable to have models that can predict whether a compound interacts with a specific isoform of the P450s. In this work, we provide in silico models for classification of

  16. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children

    Directory of Open Access Journals (Sweden)

    Ida Aka

    2017-11-01

    Full Text Available Cytochrome P450 (CYP enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC data and surveyed 10 years of electronic health records (EHR data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone. For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole. For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.

  17. Interaction of rocuronium with human liver cytochromes P450.

    Science.gov (United States)

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  18. Cytochrome P450s from the fall armyworm (Spodoptera frugiperda): responses to plant allelochemicals and pesticides.

    Science.gov (United States)

    Giraudo, M; Hilliou, F; Fricaux, T; Audant, P; Feyereisen, R; Le Goff, G

    2015-02-01

    Spodoptera frugiperda is a polyphagous lepidopteran pest that encounters a wide range of toxic plant metabolites in its diet. The ability of this insect to adapt to its chemical environment might be explained by the action of major detoxification enzymes such as cytochrome P450s (or CYP). Forty-two sequences coding for P450s were identified and most of the transcripts were found to be expressed in the midgut, Malpighian tubules and fat body of S. frugiperda larvae. Relatively few P450s were expressed in the established cell line Sf9. In order to gain information on how these genes respond to different chemical compounds, larvae and Sf9 cells were exposed to plant secondary metabolites (indole, indole-3-carbinol, quercetin, 2-tridecanone and xanthotoxin), insecticides (deltamethrin, fipronil, methoprene, methoxyfenozide) or model inducers (clofibrate and phenobarbital). Several genes were induced by plant chemicals such as P450s from the 6B, 321A and 9A subfamilies. Only a few genes responded to insecticides, belonging principally to the CYP9A family. There was little overlap between the response in vivo measured in the midgut and the response in vitro in Sf9 cells. In addition, regulatory elements were detected in the promoter region of these genes. In conclusion, several P450s were identified that could potentially be involved in the adaptation of S. frugiperda to its chemical environment. © 2014 The Royal Entomological Society.

  19. P450 reductase and cytochrome b5 interactions with cytochrome P450: Effects on house fly CYP6A1 catalysis

    OpenAIRE

    Murataliev, Marat B.; Guzov, Victor M.; Walker, F. Ann; Feyereisen, René

    2008-01-01

    The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylatio...

  20. Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Xu

    2015-03-01

    Full Text Available Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  1. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System

    Science.gov (United States)

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B.

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H – referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner – diflavin reductase – by fusing both enzymes individually to the hydrophobin HFBI – a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  2. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  3. "Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila.".

    OpenAIRE

    Waters, L C; Zelhof, A C; Shaw, B J; Ch'ang, L Y

    1992-01-01

    P450-A and P450-B are electrophoretically defined subsets of cytochrome P450 enzymes in Drosophila melanogaster. P450-A is present among all strains tested, whereas expression of P450-B is associated with resistance to insecticides. Monoclonal antibodies were used to obtain cDNA clones for an enzyme from each P450 subset (i.e., P450-A1 and P450-B1). The P450-B1 cDNA was sequenced and shown to code for a P450 of 507 amino acids. Its gene has been named CYP6A2. Comparative molecular analyses of...

  4. CW EPR parameters reveal cytochrome P450 ligand binding modes.

    Science.gov (United States)

    Lockart, Molly M; Rodriguez, Carlo A; Atkins, William M; Bowman, Michael K

    2018-06-01

    Cytochrome P450 (CYP) monoxygenses utilize heme cofactors to catalyze oxidation reactions. They play a critical role in metabolism of many classes of drugs, are an attractive target for drug development, and mediate several prominent drug interactions. Many substrates and inhibitors alter the spin state of the ferric heme by displacing the heme's axial water ligand in the resting enzyme to yield a five-coordinate iron complex, or they replace the axial water to yield a nitrogen-ligated six-coordinate iron complex, which are traditionally assigned by UV-vis spectroscopy. However, crystal structures and recent pulsed electron paramagnetic resonance (EPR) studies find a few cases where molecules hydrogen bond to the axial water. The water-bridged drug-H 2 O-heme has UV-vis spectra similar to nitrogen-ligated, six-coordinate complexes, but are closer to "reverse type I" complexes described in older liteature. Here, pulsed and continuous wave (CW) EPR demonstrate that water-bridged complexes are remarkably common among a range of nitrogenous drugs or drug fragments that bind to CYP3A4 or CYP2C9. Principal component analysis reveals a distinct clustering of CW EPR spectral parameters for water-bridged complexes. CW EPR reveals heterogeneous mixtures of ligated states, including multiple directly-coordinated complexes and water-bridged complexes. These results suggest that water-bridged complexes are under-represented in CYP structural databases and can have energies similar to other ligation modes. The data indicates that water-bridged binding modes can be identified and distinguished from directly-coordinated binding by CW EPR. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  6. Regulation of cytochrome P-450 monooxygenases in the mouse

    International Nuclear Information System (INIS)

    Kelley, M.F.

    1986-01-01

    Recently, the compound 1,4-bis[2-(3,4-dichloropyridyloxy)] benzene (TCPOBOP) has been identified as a highly potent phenobabital-like agonist in mice. This finding has led to the suggestion that a receptor-mediated process may govern the induction of cytochrome P-450 monooxygenases by phenobarbital and phenobarbital-like agonists. This dissertation examines: (1) the effects of structural alterations of the TCPOBOP molecule on enzyme induction activity, (2) the induction response to phenobarbital and TCPOBOP among inbred mouse strains, (3) the spectrum of monooxygenase activities induced by phenobarbital and TCPOBOP compared to 3-methylcholanthrene, isosafrole and pregnenolone 16α-carbonitrile (PCN) and (4) the binding of [ 3 H] TCPOBOP in hepatic cytosol. Changes in the structure of the pyridyloxy or benzene rings markedly affect enzyme induction activity and provide additional indirect evidence for a receptor-mediated response. An evaluation of monooxygenase induction by TCPOBOP for 27 inbred mouse strains and by phenobarbital for 15 inbred mouse strains failed to identify a strain which was completely nonresponsive to these compounds, although several strains exhibited decreased responsiveness for select monooxygenase reactions. TCPOBOP, PCN and phenobarbital were all found to significantly increase the rate of hydroxylation of testosterone at the 2α-, 6β- and 15β- positions but only TCPOBOP and phenobarbital dramatically increased the rate of pentoxyresorufin O-dealkylation. The results demonstrates that TCPOBOP most closely resembles phenobarbital in its mode of monooxygenase induction in mice. Sucrose density gradient analysis of [ 3 H] TCPOBOP-hepatic cytosol incubations failed to identify specific, saturable binding of [ 3 H] TCPOBOP to cytosolic marcomolecular elements

  7. Construction and engineering of a thermostable self-sufficient cytochrome P450

    Energy Technology Data Exchange (ETDEWEB)

    Mandai, Takao; Fujiwara, Shinsuke [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  8. Construction and engineering of a thermostable self-sufficient cytochrome P450

    International Nuclear Information System (INIS)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu

    2009-01-01

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates β-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP + reductase (FNR): H 2 N-CYP175A1-Fdx-FNR-COOH (175FR) and H 2 N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V max value for β-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k m values of these enzymes were similar. 175RF retained 50% residual activity even at 80 o C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  9. Isolation of insecticide resistance-related forms of cytochrome P-450 from Drosophila melanogaster.

    OpenAIRE

    Sundseth, S S; Nix, C E; Waters, L C

    1990-01-01

    Significant purification of the ubiquitous cytochrome P-450-A and the strain-specific P-450-B from Drosophila melanogaster has been achieved by sequential chromatography on octylamino-agarose, DEAE-cellulose and hydroxyapatite. Preparations of P-450-A (specific contents of 7-9 nmol/mg) were homogeneous as determined by SDS/polyacrylamide-gel electrophoresis (PAGE) analysis. Preparations enriched for P-450-B (specific contents of 4-7 nmol/mg) contained significant amounts of P-450-A but were e...

  10. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains

    DEFF Research Database (Denmark)

    Højland, Dorte Heidi; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-01-01

    BACKGROUND The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three...... unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). RESULTS CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up...... to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2–14-fold higher than in the reference strain (P

  11. Pharmacokinetics and Differential Regulation of Cytochrome P450 Enzymes in Type 1 Allergic Mice.

    Science.gov (United States)

    Tanino, Tadatoshi; Komada, Akira; Ueda, Koji; Bando, Toru; Nojiri, Yukie; Ueda, Yukari; Sakurai, Eiichi

    2016-12-01

    Type 1 allergic diseases are characterized by elevated production of specific immunoglobulin E (IgE) for each antigen and have become a significant health problem worldwide. This study investigated the effect of IgE-mediated allergy on drug pharmacokinetics. To further understand differential suppression of hepatic cytochrome P450 (P450) activity, we examined the inhibitory effect of nitric oxide (NO), a marker of allergic conditions. Seven days after primary sensitization (PS7) or secondary sensitization (SS7), hepatic CYP1A2, CYP2C, CYP2E1, and CYP3A activities were decreased to 45%-75% of the corresponding control; however, CYP2D activity was not downregulated. PS7 and SS7 did not change the expression levels of five P450 proteins. Disappearance of CYP1A2 and CYP2D substrates from the plasma was not significantly different between allergic mice and control mice. In contrast, the area under the curve of a CYP1A2-mediated metabolite in PS7 and SS7 mice was reduced by 50% of control values. Total clearances of a CYP2E1 substrate in PS7 and SS7 mice were significantly decreased to 70% and 50% respectively, of the control without altering plasma protein binding. Hepatic amounts of CYP1A2 and CYP2E1 substrates were enhanced by allergic induction, being responsible for each downregulated activity. NO scavenger treatment completely improved the downregulated P450 activities. Therefore, our data suggest that the onset of IgE-mediated allergy alters the pharmacokinetics of major P450-metabolic capacity-limited drugs except for CYP2D drugs. NO is highly expected to participate in regulatory mechanisms of the four P450 isoforms. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    Science.gov (United States)

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  13. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2007-01-01

    AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls. METHODS: mRNA expression of CYP2E1...... tissue (e.g. CYP2C8, CYP3A4, CYP3A5, and CYP2E1) between SCC patients and healthy subjects and may contribute to the development of SCC in the esophagus....

  14. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    Science.gov (United States)

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  15. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    Science.gov (United States)

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  16. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    NARCIS (Netherlands)

    Oetari, S.; Sudibyo, M.; Commandeur, J.N.M.; Samhoedi, R.; Vermeulen, N.P.E.

    1996-01-01

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or

  17. CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY

    Science.gov (United States)

    The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...

  18. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  19. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    Science.gov (United States)

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  20. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata.

    Science.gov (United States)

    Lin, Huixin; Wang, Jian; Qi, Mengdie; Guo, Juan; Rong, Qixian; Tang, Jinfu; Wu, Yisheng; Ma, Xiaojing; Huang, Luqi

    2017-09-01

    Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide. Copyright © 2017. Published by Elsevier B.V.

  1. Circadian expression of steroidogenic cytochromes P450 in the mouse adrenal gland--involvement of cAMP-responsive element modulator in epigenetic regulation of Cyp17a1.

    Science.gov (United States)

    Košir, Rok; Zmrzljak, Ursula Prosenc; Bele, Tanja; Acimovic, Jure; Perse, Martina; Majdic, Gregor; Prehn, Cornelia; Adamski, Jerzy; Rozman, Damjana

    2012-05-01

    The cytochrome P450 (CYP) genes Cyp51, Cyp11a1, Cyp17a1, Cyb11b1, Cyp11b2 and Cyp21a1 are involved in the adrenal production of corticosteroids, whose circulating levels are circadian. cAMP signaling plays an important role in adrenal steroidogenesis. By using cAMP responsive element modulator (Crem) knockout mice, we show that CREM isoforms contribute to circadian expression of steroidogenic CYPs in the mouse adrenal gland. Most striking was the CREM-dependent hypomethylation of the Cyp17a1 promoter at zeitgeber time 12, which resulted in higher Cyp17a1 mRNA and protein expression in the knockout adrenal glands. The data indicate that products of the Crem gene control the epigenetic repression of Cyp17 in mouse adrenal glands. © 2011 The Authors Journal compilation © 2011 FEBS.

  2. Antibodies against human cytochrome P-450db1 in autoimmune hepatitis type II.

    Science.gov (United States)

    Zanger, U M; Hauri, H P; Loeper, J; Homberg, J C; Meyer, U A

    1988-11-01

    In a subgroup of children with chronic active hepatitis, circulating autoantibodies occur that bind to liver and kidney endoplasmic reticulum (anti-liver/kidney microsome antibody type I or anti-LKM1). Anti-LKM1 titers follow the severity of the disease and the presence of these antibodies serves as a diagnostic marker for this autoimmune hepatitis type II. We demonstrate that anti-LKM1 IgGs specifically inhibit the hydroxylation of bufuralol in human liver microsomes. Using two assay systems with different selectivity for the two cytochrome P-450 isozymes catalyzing bufuralol metabolism in human liver, we show that anti-LKM1 exclusively recognizes cytochrome P-450db1. Immunopurification of the LKM1 antigen from solubilized human liver microsomes resulted in an electrophoretically homogenous protein that had the same molecular mass (50 kDa) as purified P-450db1 and an identical N-terminal amino acid sequence. Recognition of both purified P-450db1 and the immunoisolated protein on western blots by several monoclonal antibodies confirmed the identity of the LKM1 antigen with cytochrome P-450db1. Cytochrome P-450db1 has been identified as the target of a common genetic polymorphism of drug oxidation. However, the relationship between the polymorphic cytochrome P-450db1 and the appearance of anti-LKM1 autoantibodies as well as their role in the pathogenesis of chronic active hepatitis remains speculative.

  3. Engineering soluble insect and plant cytochromes P450 for biochemical characterization

    DEFF Research Database (Denmark)

    Jensen, Mikael Kryger

    specificity, unlike many mammalian cytochromes P450. CYP405A2 from Zygaena filipendulae and CYP79D3 from Lotus corniculatus both convert isoleucine and valine into their corresponding oximes, but neither will convert leucine neatly illustrating the high degree of specificity the enzymes possess. Previous work...... of substrate specificity, although possibly not the only determinants. The results obtained in this PhD, represent an advance in our understanding of how these enzymes function and have achieved their high degree of specificity. Furthermore, the accumulated knowledge this thesis represents regarding expression...

  4. Changes in the expression of Hepatic Cytochrome P450 Isoenzymes 2E1, 2B1/2, 4A, and 2C6 in mice infected with different levels of Schistosoma Mansoni Cercariae

    International Nuclear Information System (INIS)

    Sheweita, Salah A.

    2005-01-01

    Most xenobiotic agents are metabolized by cytochrome P450 system. In the present study, Western blotting was used to investigate the effect of different levels of Schistosoma Mansoni infection on the expression of somr cytochrome P450 isozymes (CYP 2E1, 2B1/2, 2C6, 4A) and to enzyme assay their related metabolic functions in mouse liver microsomes. Male mice were infected with 60, 120, 180, 300 and 600 Schistosoma Mansoni cercariae per mouse for 33 days and 60, 120, 180 and 300 cercariae/mouse with no change at the last level of Schistosoma Mansoni infection. Also the expression of CYP 4A was potentially induced at all levels of Schistosoma Mansoni infection. A significant induction of CYP 2B1/2 expression was observed at all levels of Schistosoma Mansoni infection with loss of signal at 180 cercariaea/mouse. In contrast, CYP 2C6 expression was induced at the first two levels and such expression was decreased at the last three levels. In addition, the infection of the mouse with 60, 120 and 180 cercariae/mouse decreased; [1] 7-methoxycoumarin O-demethylase activity by 36, 54 and 58% respectively; [2] 7-ethoxycoumarin O-deethylase activity by 33, 40 and 57% respectively; [3] coumarin hydroxlase activity by 33, 45 and 55% respectively. However, 300 and 600 cercariae/mouse induced: [1] 7-methoxycoumarin O-demethylase activity by 45 and 97% respectively: [2] 7-ethoxycoumarin O-deethylase activity by 26 and 90% respectively; [3] coumarin hydroxylase activity by 100 and 200% respectively. In addition, all levels of Schistosoma Mansoni infection decreased the sleeping time caused by hexobarital. It is concluded that different levels of Schistosoma Mansoni infection change the expression of different CYPisozymes and that these alterations could enhance the carcinogenicity of N-nitrosamines which is mainly dependent on CYP 2E1. The alterations in the expression of CYP 2E1, 4A and 2B1/2 isozymes as a result of Schistosoma Mansoni infection may change the therapeutic actions

  5. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  7. Isolation and extreme sex-specific expression of cytochrome P450 genes in the bark beetle, Ips paraconfusus, following feeding on the phloem of host ponderosa pine, Pinus ponderosa.

    Science.gov (United States)

    Huber, D P W; Erickson, M L; Leutenegger, C M; Bohlmann, J; Seybold, S J

    2007-06-01

    We have identified cDNAs and characterized the expression of 13 novel cytochrome P450 genes of potential importance in host colonization and reproduction by the California fivespined ips, Ips paraconfusus. Twelve are of the Cyp4 family and one is of the Cyp9 family. Following feeding on host Pinus ponderosa phloem, bark beetle transcript levels of several of the Cyp4 genes increased or decreased in males only or in both sexes. In one instance (IparaCyp4A5) transcript accumulated significantly in females, but declined significantly in males. The Cyp9 gene (Cyp9T1) transcript levels in males were > 85 000 x higher at 8 h and > 25 000 x higher at 24 h after feeding compared with nonfed controls. Transcript levels in females were approximately 150 x higher at 24 h compared with nonfed controls. Cyp4G27 transcript was present constitutively regardless of sex or feeding and served as a better housekeeping gene than beta-actin or 18S rRNA for the real-time TaqMan polymerase chain reaction analysis. The expression patterns of Cyp4AY1, Cyp4BG1, and, especially, Cyp9T1 in males suggest roles for these genes in male-specific aggregation pheromone production. The differential transcript accumulation patterns of these bark beetle P450s provide insight into ecological interactions of I. paraconfusus with its host pines.

  8. [Immunomodulators with an 8-azasteroid structure as inducers of liver cytochrome P-450].

    Science.gov (United States)

    Kuz'mitskiĭ, B B; Dad'kov, I G; Mashkovich, A E; Stoma, O V; Slepneva, L M

    1990-01-01

    Two structural analogues of D-homo-8-azasteroids, both an immunostimulant and an immunodepressant, are inductors of the liver cytochrome P-450 in animals. This capability was shown by means of both a decrease of the hexenal sleep duration in the pharmacological test and an increase of the quantity of cytochrome P-450 and the rate of N-demethylation of aminopyrine in the biochemical assays.

  9. Evolution of NADPH-cytochrome P450 oxidoreductases (POR) in Apiales - POR 1 is missing

    DEFF Research Database (Denmark)

    Andersen, Trine Bundgaard; Hansen, Niels Bjørn; Laursen, Tomas

    2016-01-01

    The NADPH-dependent cytochrome P450 oxidoreductase (POR) is the obligate electron donor to eukaryotic microsomal cytochromes P450 enzymes. The number of PORs within plant species is limited to one to four isoforms, with the most common being two PORs per plant. These enzymes provide electrons to ...... (available from the SRA at NCBI). All three genes were shown to be functional upon reconstitution into nanodiscs, confirming that none of the isoforms are pseudogenes....

  10. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    Science.gov (United States)

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  11. Identification of rabbit cytochromes P450 2C1 and 2C2 as arachidonic acid epoxygenases.

    Science.gov (United States)

    Laethem, R M; Koop, D R

    1992-12-01

    Microsomes prepared from COS-1 cells transiently expressing rabbit cytochromes P450 2C1 and 2C2 catalyzed the metabolism of arachidonic acid to predominantly 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) when microsomal epoxide hydrolase activity was inhibited by 0.2 mM 1,2-epoxy-3,3,3-trichloropropane. P450 2C2 catalyzed the formation of 11,12-EET and 14,15-EET at a ratio of 3.0 and also produced 19-hydroxyeicosatetraenoic acid (19-HETE). The 11,12-EET, 14,15-EET, and 19-HETE represented 48.3, 15.9, and 12.8%, respectively, of the total metabolites formed. P450 2C1 produced a similar but distinct ratio of 11,12-EET to 14,15-EET (2.0) and did not produce any detectable 19-HETE. The 11,12-EET and 14,15-EET represented 63.0 and 31.1%, respectively, of the total metabolites formed. The 8,9- and 5,6-EETs were not detected with either enzyme. The ratio of the 11,12-EET to 14,15-EET was 1.5 with P450 2CAA, a P450 arachidonic acid epoxygenase (P450 2CAA) that had an amino-terminal sequence identical to that of P450 2C2 [J. Biol. Chem. 267:5552-5559 (1992)]. P450 2C1, 2C2, and 2CAA metabolized lauric acid. The ratio of omega-1- to omega-hydroxylated laurate was 3.6, 3.4, and 2.4 for P450 2CAA, P450 2C2, and P450 2C1, respectively. Purified P450 2CAA had a slightly greater apparent molecular weight than expressed P450 2C2 on sodium dodecyl sulfate-polyacrylamide gels. The results clearly establish that rabbit P450 2C1 and 2C2 are arachidonic acid epoxygenases, and they suggest that P450 2CAA and 2C2 are very similar but may not be identical isoforms.

  12. Effect of Flavonoids on Glutathione Level, Lipid Peroxidation and Cytochrome P450 CYP1A1 Expression in Human Laryngeal Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidija Vuković

    2007-01-01

    Full Text Available Flavonoids are phytochemicals exhibiting a wide range of biological activities, among which are antioxidant activity, the ability to modulate activity of several enzymes or cell receptors and possibility to interfere with essential biochemical pathways. Using human laryngeal carcinoma HEp2 cells and their drug-resistant CK2 subline, we examined the effect of five flavonoids, three structurally related flavons (quercetin, fisetin, and myricetin, one flavonol (luteolin and one glycosilated flavanone (naringin for: (i their ability to inhibit mitochondrial dehydrogenases as an indicator of cytotoxic effect, (ii their influence on glutathione level, (iii antioxidant/prooxidant effects and influence on cell membrane permeability, and (iv effect on expression of cytochrome CYP1A1. Cytotoxic action of the investigated flavonoids after 72 hours of treatment follows this order: luteolin>quercetin>fisetin>naringin>myricetin. Our results show that CK2 were more resistant to toxic concentrations of flavonoids as compared to parental cells. Quercetin increased the total GSH level in both cell lines. CK2 cells are less perceptible to lipid peroxidation and damage caused by free radicals. Quercetin showed prooxidant effect in both cell lines, luteolin only in HEp2 cells, whereas other tested flavonoids did not cause lipid peroxidation in the tested cell lines. These data suggest that the same compound, quercetin, can act as a prooxidant, but also, it may prevent damage in cells caused by free radicals, due to the induction of GSH, by forming less harmful complex. Quercetin treatment damaged cell membranes in both cell lines. Fisetin caused higher cell membrane permeability only in HEp2 cells. However, these two compounds did not enhance the damage caused by hydrogen peroxide. Quercetin, naringin, myricetin and fisetin increased the expression of CYP1A1 in both cell lines, while luteolin decreased basal level of CYP1A1 only in HEp2 cells. In conclusion, small

  13. Exposure of rats to exogenous endocrine disruptors 17alpha-ethinylestradiol and benzo(a) pyrene and an estrogenic hormone estradiol induces expression of cytochromes P450 involved in their metabolism

    Czech Academy of Sciences Publication Activity Database

    Bořek-Dohalská, L.; Klusoňová, Z.; Holecová, J.; Martinková, M.; Bárta, F.; Dračínská, H.; Cajthaml, Tomáš; Stiborová, M.

    2016-01-01

    Roč. 37, Sup 1 (2016), s. 84-94 ISSN 0172-780X R&D Projects: GA ČR(CZ) GA15-02328S Institutional support: RVO:61388971 Keywords : endocrine disruptor * 17 alpha-ethinylestradiol * cytochrome P450 Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 0.918, year: 2016

  14. Effects of Lactobacillus casei on the expression and the activity of cytochromes P450 and on the CYP mRNA level in the intestine and the liver of male rats

    Czech Academy of Sciences Publication Activity Database

    Matušková, Z.; Šiller, M.; Tunková, A.; Anzenbacherová, E.; Zachařová, A.; Tlaskalová-Hogenová, Helena; Zídek, Zdeněk; Anzenbacher, P.

    2011-01-01

    Roč. 32, č. 1 (2011), s. 8-14 ISSN 0172-780X R&D Projects: GA ČR GA305/08/0535 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50390512 Keywords : probiotics * l. casei * cytochromes P450 Subject RIV: EC - Immunology Impact factor: 1.296, year: 2011

  15. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Lao, Shu-Hua; Huang, Xiao-Hui; Huang, Hai-Jian; Liu, Cheng-Wen; Zhang, Chuan-Xi; Bao, Yan-Yuan

    2015-11-01

    The cytochrome P450 monooxygenase (P450) gene family is one of the most abundant eukaryotic gene families that encode detoxification enzymes. In this study, we identified an abundance of P450 gene repertoire through genome- and transcriptome-wide analysis in the brown planthopper (Nilaparvata lugens), the most destructive rice pest in Asia. Detailed gene information including the exon-intron organization, size, transcription orientation and distribution in the genome revealed that many P450 loci were closely situated on the same scaffold, indicating frequent occurrence of gene duplications. Insecticide-response expression profiling revealed that imidacloprid significantly increased NlCYP6CS1v2, NLCYP4CE1v2, NlCYP4DE1, NlCYP417A1v2 and NlCYP439A1 expression; while triazophos and deltamethrin notably enhanced NlCYP303A1 expression. Expression analysis at the developmental stage showed the egg-, nymph-, male- and female-specific expression patterns of N. lugens P450 genes. These novel findings will be helpful for clarifying the P450 functions in physiological processes including development, reproduction and insecticide resistance in this insect species. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    International Nuclear Information System (INIS)

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-01-01

    Deuterium isotope effects [/sup D/(V/K)] and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of [1,1- 2 H 2 ] ethanol at various concentrations, and a competitive method, where 1:1 mixtures of [1- 13 C]- and [ 2 H 6 ] ethanol or [2,2,2- 2 H 3 ]- and [1,1- 2 H 2 ] ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM 2 oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-[1- 2 H] ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C 1 -H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed

  17. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    Science.gov (United States)

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    Science.gov (United States)

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  19. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Jan, Yi-Hua [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Richardson, Jason R., E-mail: jricha3@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Baker, Angela A. [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  20. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication

    International Nuclear Information System (INIS)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40 mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. - Highlights: • Menadione redox cycles with cytochrome P450 reductase and generates reactive oxygen species. • Redox cycling inhibits cytochrome P450-mediated parathion metabolism. • Short term administration of menadione inhibits parathion toxicity by inhibiting paraoxon formation.

  1. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States); Totah, Rheem A., E-mail: rtotah@u.washington.edu [Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195-7610 (United States)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  2. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    International Nuclear Information System (INIS)

    Kaspera, Rüdiger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-01-01

    Highlights: ► Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k cat ∼ 25 min −1 ). ► Reduction is a direct hydride transfer from R-NADP 2 H to the carbonyl moiety. ► P450 domain variants enhance reduction through potential allosteric/redox interactions. ► Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k cat of ∼25 min −1 was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP 2 H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP 2 H but not D 2 O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  3. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  4. Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450_(BM3) demethylases

    OpenAIRE

    Lewis, Jared C.; Bastian, Sabine; Bennett, Clay S.; Fu, Yu; Mitsuda, Yuuichi; Chen, Mike M.; Greenberg, William A.; Wong, Chi-Huey; Arnold, Frances H.

    2009-01-01

    Polysaccharides comprise an extremely important class of biopolymers that play critical roles in a wide range of biological processes, but the synthesis of these compounds is challenging because of their complex structures. We have developed a chemoenzymatic method for regioselective deprotection of monosaccharide substrates using engineered Bacillus megaterium cytochrome P450 (P450_(BM3)) demethylases that provides a highly efficient means to access valuable intermediate...

  5. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions.

    Science.gov (United States)

    Ismail, Hanafy M; O'Neill, Paul M; Hong, David W; Finn, Robert D; Henderson, Colin J; Wright, Aaron T; Cravatt, Benjamin F; Hemingway, Janet; Paine, Mark J I

    2013-12-03

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or "pyrethrome." Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of unique tools for disease control.

  6. Cytochromes P450 for natural product biosynthesis in Streptomyces: sequence, structure, and function.

    Science.gov (United States)

    Rudolf, Jeffrey D; Chang, Chin-Yuan; Ma, Ming; Shen, Ben

    2017-08-30

    Covering: up to January 2017Cytochrome P450 enzymes (P450s) are some of the most exquisite and versatile biocatalysts found in nature. In addition to their well-known roles in steroid biosynthesis and drug metabolism in humans, P450s are key players in natural product biosynthetic pathways. Natural products, the most chemically and structurally diverse small molecules known, require an extensive collection of P450s to accept and functionalize their unique scaffolds. In this review, we survey the current catalytic landscape of P450s within the Streptomyces genus, one of the most prolific producers of natural products, and comprehensively summarize the functionally characterized P450s from Streptomyces. A sequence similarity network of >8500 P450s revealed insights into the sequence-function relationships of these oxygen-dependent metalloenzymes. Although only ∼2.4% and structurally characterized, respectively, the study of streptomycete P450s involved in the biosynthesis of natural products has revealed their diverse roles in nature, expanded their catalytic repertoire, created structural and mechanistic paradigms, and exposed their potential for biomedical and biotechnological applications. Continued study of these remarkable enzymes will undoubtedly expose their true complement of chemical and biological capabilities.

  7. Vitamin K3 (menadione) redox cycling inhibits cytochrome P450-mediated metabolism and inhibits parathion intoxication.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-10-01

    Parathion, a widely used organophosphate insecticide, is considered a high priority chemical threat. Parathion toxicity is dependent on its metabolism by the cytochrome P450 system to paraoxon (diethyl 4-nitrophenyl phosphate), a cytotoxic metabolite. As an effective inhibitor of cholinesterases, paraoxon causes the accumulation of acetylcholine in synapses and overstimulation of nicotinic and muscarinic cholinergic receptors, leading to characteristic signs of organophosphate poisoning. Inhibition of parathion metabolism to paraoxon represents a potential approach to counter parathion toxicity. Herein, we demonstrate that menadione (methyl-1,4-naphthoquinone, vitamin K3) is a potent inhibitor of cytochrome P450-mediated metabolism of parathion. Menadione is active in redox cycling, a reaction mediated by NADPH-cytochrome P450 reductase that preferentially uses electrons from NADPH at the expense of their supply to the P450s. Using human recombinant CYP 1A2, 2B6, 3A4 and human liver microsomes, menadione was found to inhibit the formation of paraoxon from parathion. Administration of menadione bisulfite (40mg/kg, ip) to rats also reduced parathion-induced inhibition of brain cholinesterase activity, as well as parathion-induced tremors and the progression of other signs and symptoms of parathion poisoning. These data suggest that redox cycling compounds, such as menadione, have the potential to effectively mitigate the toxicity of organophosphorus pesticides including parathion which require cytochrome P450-mediated activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Certain tryptophan photoproducts are inhibitors of cytochrome P450-dependent mutagenicity

    International Nuclear Information System (INIS)

    Rannug, U.; Agurell, E.; Cederberg, H.; Rannug, A.

    1992-01-01

    Two photoproducts, derived from UV-irradiation of the amino acid L-tryptophan and with high Ah (TCDD) receptor binding affinity, were tested for genotoxic and antimutagenic effects. The two indolo[3,2-b]carbazole derivatives, with the molecular weights of 284 and 312, respectively, were tested in Saccharomyces cerevisiae strain D7 for mitotic gene conversion and reverse mutation and in strain RS112 for sister chromatid conversion and gene conversion. No significant (P > 0.05) genotoxic effects were found in strain D7, while strain RS112 showed a small but significant increase in the frequency of sister chromatid conversions. In Chinese hamster ovary (CHO) cells the two compounds induced a statistically significant but less than twofold increase in the frequency of sister chromatid exchanges (SCE). No mutations were detected when the compounds were tested in Salmonella tphimurium strains TA98 and TA100. However, both 284 and 312 acted as antimutagens on strain TA100+S9 in the presence of benzo(a)pyrene. The decrease in mutagenicity by the most potent compound 284 was 20 revertants/nmol. This effect could be explained by an inhibitory effect on the cytochrome P450-dependent ethoxyresorufin O-deethylase (EROD) activity as seen in rat hepatocytes. The two compounds were also tested with hamster cells expressing rat cytochrome P-4501A1. The results support the conclusion that this cytochrome P-450 isozyme is inhibited by the tryptophan photoproducts. Similar results were also seen with two other high affinity Ah receptor ligands the quinazolinocarboline alkaloids rutaecapine and dehydrorutaecarpine. 20 refs., 3 figs., 4 tabs

  9. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    Science.gov (United States)

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For comparison, another group received 300 mg of triacetyloleandomycin (TAO) per kg, which is equivalent to the 226-mg/kg tiamulin group. Subsequently, microsomal P-450 contents, P-450 enzyme activities, metabolic intermediate complex spectra, and P-450 apoprotein concentrations were assessed. In addition, effects on individual microsomal P-450 activities were studied in control microsomes at different tiamulin and substrate concentrations. In the rats treated with tiamulin, a dose-dependent complex formation as evidenced by its absorption spectrum and an increase in cytochrome P-4503A1/2 contents as assessed by Western blotting (immunoblotting) were found. The effects were comparable to those of TAO. Tiamulin induced microsomal P-450 content, testosterone 6 beta-hydroxylation rate, erythromycin N-demethylation rate, and the ethoxyresorufin O-deethylation activity. Other activities were not affected or decreased. When tiamulin was added to microsomes of control rats, the testosterone 6 beta-hydroxylation rate and the erythromycin N-demethylation were strongly inhibited. It is concluded that tiamulin is a potent and selective inducer-inhibitor of cytochrome P-450. Though not belonging to the macrolides, the compound produces an effect on P-450 similar to those of TAO and related compounds.

  10. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    International Nuclear Information System (INIS)

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-01-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of [chloroethyl-3H]cyclophosphamide [( chloroethyl-3H]CP) and [4-14C]cyclophosphamide [( 4-14C]CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of [14C]acrolein, a metabolite of [4-14C]CP, were also investigated. The metabolism of [chloroethyl-3H]CP and [4-14C]CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between [4-14C]CP and [chloroethyl-3H]CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of [chloroethyl-3H]CP to nucleic acids and almost exclusive binding of [4-14C]CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with [4-14C]CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with [14C]acrolein in the presence and the absence of NADPH. The results confirmed covalent association between [14C]acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of [14C]acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations

  11. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    Science.gov (United States)

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  12. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.

  13. Third international symposium: Cytochrome P450 biodiversity. Final report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Loper, J.C.

    1997-03-01

    The Symposium was held on October 8-12, 1995 at the Marine Biological Laboratory in Woods Hole Massachusetts. Other international symposia promote cytochrome P450 research but have a primary focus on mammalian systems. This symposium is exclusively devoted to research in other organisms, and major topics reflect the distribution and dominance of non-mammalian species in the biosphere. The five sessions focused on basic mechanism, regulation, biodiversity, host-parasite interactions, and practical applications. 170 Scientists contributed 38 oral presentations and 91 posters, with a truly international composition of the symposium. Practical applications were a recurring feature, linking reports on mechanism and regulation to studies on the engineering of substrate specificity, microorganisms to degrade halogenated hydrocarbons and herbicides, and the production of in vitro P450 electrochemical bioreactors. At the time of the symposium there were 477 cytochrome P450 sequences in the database. Expansion of the known plant P450 genes was reported, with 20 new plant P450 families added in the last 3 years. Of these only 5 families have a physiological function associated with them. A growing number of identified invertebrate P450s was documented, where in insects, the forms identified are primarily involved in inducible xenobiotic metabolism and detoxification of toxic plant substances.

  14. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  15. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius.

    Science.gov (United States)

    Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F; Potter, Michael F; Palli, Subba R

    2012-01-01

    NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs.

  16. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Offord, E.A.; Brouwer, C.

    2002-01-01

    Human and mouse liver microsomes And membranes isolated from Escherichia coli, which expressed cytochrome P450 (CYP) 1A2, 3A4 2C9 or 2D6, were used to investigate CYP-mediated metabolism of five selected dietary flavonoids. In human and mouse liver microsomes kaempferol, apigenin and naringenin...... were hydroxylated at the 3'-position to yield their corresponding analogs quercetin, luteolin and eriodietyol, whereas hesperetin and tamarixetin were demethylated at the 4'-position to yield eriodictyol and quercetin. respectively, Microsomal flavonoid metabolism as potently inhibited by the CYP1A2...... inhibitors. fluvoxamine and alpha-naphthoflavone. Recombinant CYP1A2 as capable of metabolizing all five investigated flavonoids. CYP3A4 recombinant protein did not catalyze hesperetin demethylation. but showed similar metabolic profiles for the remaining compounds, as did human microsomes and recombinant...

  17. Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2016-09-01

    Full Text Available Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1 and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.

  18. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    Science.gov (United States)

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  19. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    Science.gov (United States)

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice

    Czech Academy of Sciences Publication Activity Database

    Jourová, L.; Anzenbacher, P.; Lišková, B.; Matušková, Z.; Hermanová, Petra; Hudcovic, Tomáš; Kozáková, Hana; Hrnčířová, Lucia; Anzenbacherová, E.

    2017-01-01

    Roč. 62, č. 6 (2017), s. 463-469 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GAP303/12/0535; GA ČR GA15-07268S Institutional support: RVO:61388971 Keywords : HUMAN GUT MICROBIOTA * GENE-EXPRESSION * NISSLE 1917 Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.521, year: 2016

  1. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    Science.gov (United States)

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  2. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    Science.gov (United States)

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effects of trimethoprim on life history parameters, oxidative stress, and the expression of cytochrome P450 genes in the copepod Tigriopus japonicus.

    Science.gov (United States)

    Han, Jeonghoon; Lee, Min-Chul; Kim, Duck-Hyun; Lee, Young Hwan; Park, Jun Chul; Lee, Jae-Seong

    2016-09-01

    Trimethoprim (TMP) is an antibiotic that has been detected in various environments including marine habitats; however, the toxic effects of TMP are poorly understood in non-target marine organisms. In this study, the effects of TMP on mortality, development, reproduction, intracellular reactive oxygen species (ROS) levels, and transcription levels of antioxidant and xenobiotic detoxification-related enzyme genes were investigated in the copepod Tigriopus japonicus. The TMP half lethal dose at 48 h (LC50-48 h) in nauplius and TMP LC50-96 h in adult T. japonicus copepods was determined as 156 mg/L and 200 mg/L, respectively. In TMP-exposed T. japonicus, delayed developmental time and impaired reproduction were observed as harmful effects on the life history parameters. Increased ROS levels were also shown in response to TMP exposure at the highest concentration (100 mg/L TMP) and the expression of antioxidant- (e.g. GST-kappa, GST-sigma) and xenobiotic detoxification (e.g. CYPs)-related genes were upregulated in a time and/or dose-dependent manner in response to TMP. Particularly, significant upregulation of three CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) were examined, suggesting that these CYP genes are likely playing an important role in the TMP detoxification metabolism in T. japonicus. In summary, we found that TMP induced oxidative stress via the transcriptional regulation of antioxidant- and xenobiotic detoxification-related genes, leading to changes in life history parameters such as developmental delay and reproduction impairment. Three Tj-CYP genes (Tj-CYP3024A2, Tj-CYP3024A3 and Tj-CYP3027C2) could be useful as potential T. japonicus biomarkers in response to antibiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Vinclozolin modulates hepatic cytochrome P450 isoforms during pregnancy.

    Science.gov (United States)

    de Oca, Félix Genoveva García-Montes; López-González, Ma de Lourdes; Escobar-Wilches, Derly Constanza; Chavira-Ramírez, Roberto; Sierra-Santoyo, Adolfo

    2015-06-01

    Vinclozolin (V) is classified as a potent endocrine disruptor. The aim of the present study was to determine the effects of V on rat liver CYP regulation and on serum levels of testosterone and estradiol during pregnancy. Pregnancy decreased the liver total CYP content by 65%, enzyme activities of MROD, PROD, and PNPH, and testosterone hydroxylation activities, as well as the protein content of CYP2A and 3A. V exposure remarkably induced the protein content and enzyme activities of CYP1A, 2A, 2B and 3A subfamilies. Testosterone and estradiol were affected in an opposite manner, provoking a 3.5-fold increase in the estradiol/testosterone ratio. These results suggest that V could regulate the hepatic CYP expression through interaction with receptors and coactivators involved in its expression and may play an important role in hormonal balance during pregnancy. In addition, the results may also contribute to understanding the toxicity of V by in utero exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. In vitro study of modulatory effects of extracts of Strobilanthes Crispus on human cDNA-expressed cytochrome P450 2A6 (CYP2A6) and CYP3A4

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.; Hsu, C.J.; Koh, R.I.; Ong, C.E.; Chieng, J.Y.

    2016-07-01

    Aim: Cytochrome P450 (CYP) 2A6 and CYP3A4 play important roles in biotransformation of endogenous substances as well as xenobiotics. Strobilanthes crispus (L.) Blume (S. crispus) has been found to have anti-cancer activities and this was suggested to be due to inhibition of enzymes involved in metabolic activation of procarcinogens. The purpose of this study was to look into the potential inhibitory effects of various extracts (aqueous, hexane, chloroform, ethyl acetate, and methanol) of S. crispus from leaf and stem on human cDNA-expressed CYP2A6 and CYP3A4 activities. Methods: The activity of CYP2A6 was examined via a fluorescence-based 7-hydroxylase coumarin assay. Meanwhile, high performance liquid chromatography (HPLC)-based testosterone 6β-hydroxylase assay was established to assess CYP3A4 activity. Results: It was shown that none of the extracts from both leaf and stem potently inhibited CYP2A6 and CYP3A4 activities with IC50values above 100μg/ml. Conclusion: The anticancer potency of S. crispus is unlikely due to the modulation of CYP2A6 and CYP3A4 activities, while other mechanisms might be involved and merits further investigation. On the other hand, potential drug-herb interactions occurring between CYP2A6 and CYP3A4 substrates and S. crispus preparations is relatively low, which requires further investigations via in vivo animal as well as clinical studies.

  6. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Johnston, Jonathan B.; Montellano, Paul R. Ortiz de

    2012-01-01

    The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multif...

  7. INTERACTION OF AROMATIC CYTOKININS WITH HUMAN LIVER MICROSOMAL CYTOCHROMES P450

    Czech Academy of Sciences Publication Activity Database

    Anzenbacherová, E.; Janalík, J.; Popa, Igor; Strnad, Miroslav; Anzenbacher, P.

    2005-01-01

    Roč. 149, č. 2 (2005), s. 349-351 ISSN 1213-8118 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cytokinins * Cyclin dependent kinase inhibitor * Cytochrome P450 Subject RIV: CE - Biochemistry http://publib.upol.cz/~obd/fulltext/Biomed/2005/2/349.pdf

  8. Rat liver microsomal cytochrome P450-dependent oxidation of 3,5-disubstituted analogues of paracetamol

    NARCIS (Netherlands)

    Bessems, J.G.M.; Koppele, J.M. te; Dijk, P.A. van; Stee, L.L.P. van; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    1. The cytochrome P450-dependent binding of paracetamol and a series of 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -C(H)3, -C2H5, -iC3H7) have been determined with β-naphthoflavone (βNF)-induced rat liver microsomes and produced reverse type I spectral changes. K(s,app) varied

  9. Study on the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene in humans

    NARCIS (Netherlands)

    Bloemen, L. J.; Monster, A. C.; Kezic, S.; Commandeur, J. N.; Veulemans, H.; Vermeulen, N. P.; Wilmer, J. W.

    2001-01-01

    To investigate in humans the contribution of the cytochrome P-450- and glutathione-dependent biotransformation of trichloroethylene (TRI) under controlled repeated exposure in volunteers, and under occupational conditions. Volunteers were exposed to TRI, using repeated 15 min exposures at 50 and 100

  10. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    Science.gov (United States)

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  11. P-Link: A method for generating multicomponent cytochrome P450 fusions with variable linker length

    DEFF Research Database (Denmark)

    Belsare, Ketaki D.; Ruff, Anna Joelle; Martinez, Ronny

    2014-01-01

    Fusion protein construction is a widely employed biochemical technique, especially when it comes to multi-component enzymes such as cytochrome P450s. Here we describe a novel method for generating fusion proteins with variable linker lengths, protein fusion with variable linker insertion (P...

  12. Molecular characterization of cytochrome P450 1B1 and effect of ...

    African Journals Online (AJOL)

    CYP1B which belongs to the cytochrome P450 superfamily of genes, is involved in the oxidation of endogenous and exogenous compounds, and could potentially be a useful biomarker in fish for exposure to arylhydrocarbon receptors (AhR) ligands. In this study, a new complementary DNA (cDNA) of the CYP1B subfamily ...

  13. Substrate binding in the active site of cytochrome P450cam

    NARCIS (Netherlands)

    Swart, M.; Groenhof, A.R.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    We have studied the binding of camphor in the active site of cytochrome P450cam with density functional theory (DFT) calculations. A strong hydrogen bond (>6 kcal/mol) to a tyrosine residue (Tyr96) is observed, that may account for the high specificity of the reaction taking place. The DFT

  14. Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3

    NARCIS (Netherlands)

    van Vugt-Lussenburg, B.M.A.; Damsten, M.C.; Maasdijk, D.M.; Vermeulen, N.P.E.; Commandeur, J.N.M.

    2006-01-01

    Recently, we described a triple mutant of the bacterial cytochrome P450 BM3 as the first mutant with affinity for drug-like compounds. In this paper, we show that this mutant, but not wild-type BM3, is able to metabolise testosterone and several drug-like molecules such as amodiaquine,

  15. Subgrouping of patients with oral lichen planus according to cytochrome P450 enzyme phenotype and genotype

    DEFF Research Database (Denmark)

    Kragelund, Camilla; Jensen, Siri Beier; Hansen, Claus

    2014-01-01

    Objective. This study aimed to determine if the activity of the environmentally influenced cytochrome P450 enzyme CYP1A2, alone or in combination with CYP2D6*4 genotype, discriminates subgroups of oral lichen planus (OLP) according to lifestyle factors and clinical manifestations. Study Design...

  16. The effects of selected flavonoids on cytochromes P450 in rat liver and small intestine

    Czech Academy of Sciences Publication Activity Database

    Křížková, J.; Burdová, K.; Stiborová, M.; Křen, Vladimír; Hodek, P.

    2009-01-01

    Roč. 2, č. 3 (2009), s. 201-204 ISSN 1337-6853 R&D Projects: GA ČR GD305/09/H008 Institutional research plan: CEZ:AV0Z50200510 Keywords : flavonoids * cytochrome p450 * small intestine Subject RIV: EE - Microbiology, Virology

  17. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.; Martásek, Pavel; Masters, Bettie Sue; Kim, Jung-Ja P. (MCW); (Charles U); (UTSMC)

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.

  18. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate

    Directory of Open Access Journals (Sweden)

    Esra Yilmaz

    2017-12-01

    Full Text Available Benzimidazoles (BZs remain amongst the most widely used anthelmintic drug classes against gastro-intestinal nematode infections, although their efficacy is increasingly compromised by resistance. The primary underlying mechanisms for BZ resistance are single-nucleotide polymorphisms (SNPs in the isotype 1 β-tubulin gene causing the substitutions F167Y, E198A or F200Y. However, resistance is believed to be multi-genic and previous studies have shown that isolates carrying 90–100% F200Y can vary considerably in their resistance level in the egg hatch assay (EHA. Cytochrome P450 monooxygenases (CYPs are associated with drug resistance in mammals and arthropods and have been considered as mediators of anthelmintic resistance. In Caenorhabditis elegans, several members of the CYP34/35 and CYP31 families are BZ and/or xenobiotic inducible and thiabendazole (TBZ is metabolised by CYP35D1. Here, expression of all 5 CYPs closely related to the C. elegans CYP34/35 and CYP31 families was investigated in fourth-stage larvae of two susceptible and three BZ-resistant Haemonchus contortus isolates following in vitro exposure to TBZ for 3 and 6 h using real-time RT-PCR. The resistance status of all isolates was determined using EHAs and quantification of resistance-associated β-tubulin SNPs using pyrosequencing. While none of the CYPs was TBZ inducible, constitutive expression of CYP34/35 family member HCOI100383400 was significantly 2.4–3.7-fold higher in the multi-drug resistant WR isolate with the strongest BZ resistance phenotype compared to susceptible and intermediate-level BZ-resistant isolates. Although this increase is only moderate, HCOI100383400 might still be involved in high-level BZ resistance by further decreasing susceptibility in isolates already carrying 100% of a β-tubulin SNP causing BZ resistance. Lower transcript levels were observed for all CYPs in the intermediately resistant IRE isolate in comparison to the susceptible Hc

  19. Role of cytochrome P450 genotype in the steps toward personalized drug therapy

    Directory of Open Access Journals (Sweden)

    Cavallari LH

    2011-11-01

    Full Text Available Larisa H Cavallari1,2, Hyunyoung Jeong1,2, Adam Bress11Department of Pharmacy Practice, 2Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USAAbstract: Genetic polymorphism for cytochrome 450 (P450 enzymes leads to interindividual variability in the plasma concentrations of many drugs. In some cases, P450 genotype results in decreased enzyme activity and an increased risk for adverse drug effects. For example, individuals with the CYP2D6 loss-of-function genotype are at increased risk for ventricular arrhythmia if treated with usual does of thioridazine. In other cases, P450 genotype may influence the dose of a drug required to achieve a desired effect. This is the case with warfarin, with lower doses often necessary in carriers of a variant CYP2C9*2 or *3 allele to avoid supratherapeutic anticoagulation. When a prodrug, such as clopidogrel or codeine, must undergo hepatic biotransformation to its active form, a loss-of-function P450 genotype leads to reduced concentrations of the active drug and decreased drug efficacy. In contrast, patients with multiple CYP2D6 gene copies are at risk for opioid-related toxicity if treated with usual doses of codeine-containing analgesics. At least 25 drugs contain information in their US Food and Drug Administration-approved labeling regarding P450 genotype. The CYP2C9, CYP2C19, and CYP2D6 genes are the P450 genes most often cited. To date, integration of P450 genetic information into clinical decision making is limited. However, some institutions are beginning to embrace routine P450 genotyping to assist in the treatment of their patients. Genotyping for P450 variants may carry less risk for discrimination compared with genotyping for disease-associated variants. As such, P450 genotyping is likely to lead the way in the clinical implementation of pharmacogenomics. This review discusses variability in the CYP2C9, CYP2C19, and CYP2D6 genes and the

  20. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    Directory of Open Access Journals (Sweden)

    Ranson Hilary

    2008-11-01

    Full Text Available Abstract Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron and an urban area (Gbedjromede, low levels of resistance in mosquito samples from an oil contaminated site (Ojoo and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84 but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold and Ojoo (7.4-fold populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential

  1. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    Science.gov (United States)

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  2. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  3. Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization

    International Nuclear Information System (INIS)

    Yoshida, Nobutaka; Osawa, Yoshio

    1991-01-01

    A simple and efficient method is described for the purification of microsomal aromatase cytochrome P-450 from human placenta. The enzyme was solubilized with Emulgen 913 and sodium cholate and subjected to chromatography on a column of Sepharose 4B couples with a specific monoclonal antibody, followed by hydroxyapatite column chromatography. The specific cytochrome P-450 content of purified aromatase was 13.1 (12-14.8) nmol/mg of protein. Aromatase assays were carried out with reconstituted systems of bovine liver P-450 reductase and dilauroyl-L-α-phosphatidylcholine with [1β- 3 H,4- 14 C]androstenedione as substrate. The total recovery of purified aromatase activity was 32.2%, and P-450 recovery was 17.6%. The very high K m value for 16α-hydroxytestosterone aromatization gives a reasonable indication that estriol is not the directly aromatized product in the fetoplacental unit of human pregnancy. The aromatase P-450 was subjected to SDS-polyacrylamide gel electrophoresis in increasing quantities. Silver stain detection techniques indicated a single band having a molecular mass of 55 kDa with greater than 97% purity. The stability analysis showed a half-life of over 4 years on storage at -80C

  4. Molecular LEGO by domain-imprinting of cytochrome P450 BM3.

    Science.gov (United States)

    Jetzschmann, K J; Yarman, A; Rustam, L; Kielb, P; Urlacher, V B; Fischer, A; Weidinger, I M; Wollenberger, U; Scheller, F W

    2018-04-01

    Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his 6 -tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his 6 -tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode. Copyright © 2018. Published by Elsevier B.V.

  5. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    Science.gov (United States)

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.

  6. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    Science.gov (United States)

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  7. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    International Nuclear Information System (INIS)

    Estabrook, Ronald W.

    2005-01-01

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11β-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O 18 studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17α-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17α-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11β-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction

  8. A comparative study of P450 gene expression in field and laboratory Musca domestica L. strains.

    Science.gov (United States)

    Højland, Dorte H; Vagn Jensen, Karl-Martin; Kristensen, Michael

    2014-08-01

    The housefly is a global pest that has developed resistance to most insecticides applied for its control. Resistance has been associated with cytochrome P450 monooxygenases (P450s). The authors compare the expression of six genes possibly associated with insecticide resistance in three unselected strains: a multiresistant strain (791a), a neonicotinoid-resistant strain (766b) and a new field strain (845b). CYP4G2 was highly expressed throughout the range of strains and proved to be the one of the most interesting expression profiles of all P450s analysed. CYP6G4 was expressed up to 11-fold higher in 766b than in WHO-SRS. Significant differences between expression of P450 genes between F1 flies from 845b and established laboratory strains were shown. In general, P450 gene expression in 845b was 2-14-fold higher than in the reference strain (P resistance. There is a strong indication that CYP6G4 is a major insecticide resistance gene involved in neonicotinoid resistance. © 2013 Society of Chemical Industry.

  9. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    Science.gov (United States)

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  10. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  11. Two mutant alleles of the human cytochrome P-450dbl gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs

    International Nuclear Information System (INIS)

    Skoda, R.C.; Gonzalez, F.L.; Demierre, A.; Meyer, R.A.

    1988-01-01

    The debrisoquine polymorphism is a clinically important genetic defect of drug metabolism affecting 5-10% of individuals in Caucasian populations. It is inherited as an autosomal recessive trait. A full-length cDNA for human cytochrome P-450db1, the deficient enzyme (also designated P450IID1 for P450 family II subfamily D isozyme 1), has recently been cloned. Leukocyte DNA from extensive metabolizers (EMs) or poor metabolizers (PMs) of debrisoquine was examined by Southern analysis. Two polymorphic restriction fragments were associated with the PM phenotype when DNAs from 24 unrelated PM and 29 unrelated EM individuals were probed with P-450db1 cDNA after digestion with Xba I restriction endonuclease and Southern blotting. Seventy-five percent of PMs had either the 44-kb or the 11.5-kb fragment or both. Segregation of these restriction fragment length polymorphisms in the families of six PM probands demonstrated that each of the two fragments is allelic with the 29-kb fragment present in all EM individuals and suggests that they identify two independent mutated alleles of the P-450db1 gene (designated P450C2D1). The Xba I 44-kb fragment and 11.5-kb fragment were in linkage disequilibrium with restriction fragment length polymorphisms generated by four and five additional restriction endonucleases, respectively, which can be used to identify the same mutant alleles for the P-450db1 gene

  12. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    NARCIS (Netherlands)

    Schallmey, Anett; den Besten, Gijs; Teune, Ite G. P.; Kembaren, Roga F.; Janssen, Dick B.

    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The

  13. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450 : indications for a uniform oxidation mechanism

    NARCIS (Netherlands)

    Koymans, L.; Lenthe, J.H.; Van de Straat, R; Donné-Op den Kelder, G M; Vermeulen, N P

    1989-01-01

    The cytochrome P-450 mediated activation of paracetamol (PAR) to the reactive electrophilic intermediate N-acetyl-p-benzoquinone imine (NAPQI) has been studied by use of SV 6-31G ab initio energy calculations and spin distributions. A simplified model for cytochrome P-450 has been used by

  14. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens.

    Science.gov (United States)

    Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Martel, An; Van Immerseel, Filip; Croubels, Siska

    2017-03-01

    Cytochrome P450 (CYP450) drug biotransformation enzymes and multidrug resistance (MDR) proteins may influence drug disposition processes. The first part of the study aimed to evaluate the effect of mycotoxins deoxynivalenol (DON) and/or fumonisins (FBs), at contamination levels approaching European Union guidance levels, on intestinal and hepatic CYP450 enzymes and MDR proteins gene expression in broiler chickens. mRNA expression of genes encoding CYP450 enzymes (CYP3A37, CYP1A4 and CYP1A5) and drug transporters (MDR1/ABCB1 and MRP2/ABCC2) was determined using qRT-PCR. A significant up-regulation of CYP1A4 (P = 0.037) and MDR1 (P = 0.036) was observed in the jejunum of chickens fed a diet contaminated with FBs. The second part of this study aimed to investigate the impact of feeding a FBs contaminated diet on the oral absorption of enrofloxacin (10 mg/kg BW), a MDR1 substrate. A significant (P = 0.045), however small, decreased area under the plasma concentration-time curve (AUC 0-48  h, mean ± SD) was observed for enrofloxacin in chickens fed the FBs contaminated diet compared to the control group, 16.28 ± 1.82 h μg/mL versus 18.27 ± 1.79 h μg/mL. These findings suggest that concurrent administration of drugs with FBs contaminated feed might alter the pharmacokinetic characteristics of CYP1A4 substrate drugs and MDR1 substrates, such as enrofloxacin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  16. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    Science.gov (United States)

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  17. Biodegradation of Cosmetics Products: A Computational Study of Cytochrome P450 Metabolism of Phthalates

    Directory of Open Access Journals (Sweden)

    Fabián G. Cantú Reinhard

    2017-11-01

    Full Text Available Cytochrome P450s are a broad class of enzymes in the human body with important functions for human health, which include the metabolism and detoxification of compounds in the liver. Thus, in their catalytic cycle, the P450s form a high-valent iron(IV-oxo heme cation radical as the active species (called Compound I that reacts with substrates through oxygen atom transfer. This work discusses the possible degradation mechanisms of phthalates by cytochrome P450s in the liver, through computational modelling, using 2-ethylhexyl-phthalate as a model substrate. Phthalates are a type of compound commonly found in the environment from cosmetics usage, but their biodegradation in the liver may lead to toxic metabolites. Experimental studies revealed a multitude of products and varying product distributions among P450 isozymes. To understand the regio- and chemoselectivity of phthalate activation by P450 isozymes, we focus here on the mechanisms of phthalate activation by Compound I leading to O-dealkylation, aliphatic hydroxylation and aromatic hydroxylation processes. We set up model complexes of Compound I with the substrate and investigated the reaction mechanisms for products using the density functional theory on models and did a molecular mechanics study on enzymatic structures. The work shows that several reaction barriers in the gas-phase are close in energy, leading to a mixture of products. However, when we tried to dock the substrate into a P450 isozyme, some of the channels were inaccessible due to unfavorable substrate positions. Product distributions are discussed under various reaction conditions and rationalized with valence bond and thermodynamic models.

  18. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    Science.gov (United States)

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  19. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    Science.gov (United States)

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  20. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  1. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11 in the Liver of Mouse Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bangjun Zhang

    2015-03-01

    Full Text Available Microcystins (MCs are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11 at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD (CYP1A1 and erythromycin N-demthylase (ERND (CYP3A11 activities and increased aniline hydroxylase (ANH activity (CYP2E1 in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.

  2. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    Science.gov (United States)

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A

    2011-09-01

    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p system, with the intrinsic clearance calculated from full kinetic data is recommended for generation of the CYP2C9 ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended. Copyright © 2011 John Wiley & Sons, Ltd.

  3. Study on the interaction of chemopreventive compounds and food born carcinogens with cytochrome P450 enzymes

    OpenAIRE

    Brabencová, Eliška

    2013-01-01

    The use of food supplements containing natural chemopreventive compounds increased in recent years. Some of the most popular chemopreventive compounds are flavonoids. Due to their natural origin, flavonoids are generally accepted as safe compounds. They exert antioxidant, anti-cancer and anti-inflammatory properties. However, flavonoids should be considered as foreign compounds (xenobiotics). Flavonoids interact with many enzymes, among the most important belong cytochromes P450 (CYPs), key e...

  4. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    OpenAIRE

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme...

  5. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    OpenAIRE

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For compari...

  6. Prediction of activation energies for hydrogen abstraction by cytochrome p450

    DEFF Research Database (Denmark)

    Olsen, Lars; Rydberg, Patrik; Rod, Thomas Holm

    2006-01-01

    We have estimated the activation energy for hydrogen abstraction by compound I in cytochrome P450 for a diverse set of 24 small organic substrates using state-of-the-art density functional theory (B3LYP). We then show that these results can be reproduced by computationally less demanding methods,...... of the less demanding methods are applied to study the CYP3A4 metabolism of progesterone and dextromethorphan....

  7. In vivo cytochrome P450 activity alterations in diabetic nonalcoholic steatohepatitis mice

    OpenAIRE

    Li, Hui; Clarke, John D.; Dzierlenga, Anika L.; Bear, John; Goedken, Michael J.; Cherrington, Nathan J.

    2016-01-01

    Nonalcoholic steatohepatitis (NASH) has been identified as a source of significant interindividual variation in drug metabolism. A previous ex vivo study demonstrated significant changes in hepatic Cytochrome P450 (CYP) activity in human NASH. This study evaluated the in vivo activities of multiple CYP isoforms simultaneously in prominent diabetic NASH mouse models. The pharmacokinetics of CYP selective substrates: caffeine, losartan, and omeprazole changed significantly in a diabetic NASH mo...

  8. Nitrogen inversion barriers affect the N-oxidation of tertiary alkylamines by cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Jørgensen, Martin S.; Jacobsen, T.A.

    2013-01-01

    Calculations: Cytochrome P450 enzymes facilitate a number of chemically different reactions. For example, amines can be either N-dealkylated or N-oxidized, but it is complex to rationalize which of these competing reactions occurs. It is shown that the barrier for inversion of the alkylamine...... nitrogen atom seems to be of vital importance for the amount of N-oxidized product formed relative to dealkylation and hydroxylation products....

  9. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A. [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States)

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  10. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  11. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  12. Preferential hydroxylation over epoxidation catalysis by a horseradish peroxidase mutant: a cytochrome P450 mimic.

    Science.gov (United States)

    de Visser, Sam P

    2007-10-25

    Density functional theory calculations are presented on the catalytic properties of a horseradish peroxidase mutant whereby the axial nitrogen atom is replaced by phosphorus. This mutant has never been studied experimentally and only one theoretical report on this system is known (de Visser, S. P. J. Phys. Chem. B 2006, 110, 20759-20761). Thus, a one-atom substitution in horseradish peroxidase changes the properties of the catalytic center of the enzyme to more cytochrome P450-type qualities. In particular, the phosphorus-substituted horseradish peroxidase mutant reacts with substrates via a unique reactivity pattern, whereby alkanes are regioselectively hydroxylated even in the presence of a double bond. Reaction barriers of propene epoxidation and hydroxylation are almost identical to ones observed for a cytochrome P450 catalyst and significantly higher than those obtained for a horseradish peroxidase catalyst. It is shown that the regioselectivity difference is entropy and thermally driven and that the electron-transfer processes that occur during the reaction mechanism follow cytochrome P450-type patterns in the hydroxylation reaction.

  13. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    Science.gov (United States)

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  14. Comparison of xenobiotic-metabolising human, porcine, rodent, and piscine cytochrome P450

    International Nuclear Information System (INIS)

    Burkina, Viktoriia; Rasmussen, Martin Krøyer; Pilipenko, Nadezhda; Zamaratskaia, Galia

    2017-01-01

    Highlights: • The percent identity of porcine, murine and piscine CYPs was compared with human CYPs. • Main similarities and differences were reviewed. • Understanding of molecular mechanisms of CYP system will provide further insights into the CYP regulatory processes, and responses to different factors. - Abstract: Cytochrome P450 proteins (CYP450s) are present in most domains of life and play a critical role in the metabolism of endogenous compounds and xenobiotics. The effects of exposure to xenobiotics depend heavily on the expression and activity of drug-metabolizing CYP450s, which is determined by species, genetic background, age, gender, diet, and exposure to environmental pollutants. Numerous reports have investigated the role of different vertebrate CYP450s in xenobiotic metabolism. Model organisms provide powerful experimental tools to investigate Phase I metabolism. The aim of the present review is to compare the existing data on human CYP450 proteins (1–3 families) with those found in pigs, mice, and fish. We will highlight differences and similarities and identify research gaps which need to be addressed in order to use these species as models that mimic human traits. Moreover, we will discuss the roles of nuclear receptors in the cellular regulation of CYP450 expression in select organisms.

  15. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  16. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    2014-09-01

    Full Text Available Cytochrome P450 (CYP450 is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole, one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint.

  17. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes

    International Nuclear Information System (INIS)

    Stanley, Lesley A.; Skare, Julie A.; Doyle, Edward; Powrie, Robert; D'Angelo, Diane; Elcombe, Clifford R.

    2005-01-01

    p-Phenylenediamine (PPD) is a widely used ingredient in permanent hair dyes; however, little has been published on its metabolism, especially with respect to hepatic cytochrome P450 (CYP)-mediated oxidation. This is regarded as a key step in the activation of carcinogenic arylamines that ultimately leads to the development of bladder cancer. Most epidemiology studies show no significant association between personal use of hair dyes and bladder cancer, but one recent study reported an increased risk of bladder cancer in women who were frequent users of permanent hair dyes. The aim of the present study was to use intact human hepatocytes, human liver microsomes, and heterologously expressed human CYPs to determine whether PPD is metabolised by hepatic CYPs to form an N-hydroxylamine. p-Phenylenediamine was N-acetylated by human hepatocytes to form N-acetylated metabolites, but there was no evidence for the formation of mono-oxygenated metabolites or for enzyme-mediated covalent binding of 14 C-PPD to microsomal protein. In contrast, 2-aminofluorene underwent CYP-mediated metabolism to ≥4 different hydroxylated metabolites. The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine

  18. Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor

    International Nuclear Information System (INIS)

    Mikamo, Eriko; Harada, Shingo; Nishikawa, Jun-ichi; Nishihara, Tsutomu

    2003-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates the expression of genes for cytochrome P450 3A (CYP3A), multidrug resistance 1 (MDR1), and organic anion-transporting peptide 2 (OATP2). These genes control the metabolism (CYP3A subfamily) and aspects of the pharmacokinetics (MDR1 and OATP2) of both endogenous and xenobiotic compounds. Since PXR is important in understanding the actions of endocrine disruptors (EDs), we determined the ability of suspected EDs to interact with PXR. In our study, 7 of 54 xenobiotics compounds interacted with PXR, including methoxychlor and benzophenone. All of the chemicals activated PXR in vitro and induced CYP3A mRNA in the male rat liver. In addition, CYP2C11 was also induced by some PXR agonists and converted methoxychlor into xenoestrogen. These findings suggest that some EDs affect sex hormone receptor indirectly by induction of metabolic enzyme via PXR, to produce rapidly higher concentrations of effective metabolites, leading to disturbance of the endocrine system

  19. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P; Tsatsakis, Aristidis M; Spandidos, Demetrios A

    2009-01-01

    CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism

  20. Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity.

    Science.gov (United States)

    Zha, Weibin; Edin, Matthew L; Vendrov, Kimberly C; Schuck, Robert N; Lih, Fred B; Jat, Jawahar Lal; Bradbury, J Alyce; DeGraff, Laura M; Hua, Kunjie; Tomer, Kenneth B; Falck, John R; Zeldin, Darryl C; Lee, Craig R

    2014-10-01

    Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    International Nuclear Information System (INIS)

    Ohhira, Shuji; Enomoto, Mitsunori; Matsui, Hisao

    2006-01-01

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, including typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats

  2. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  3. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    Science.gov (United States)

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  4. EXPRESSION AND CHARACTERIZATION OF FULL-LENGTH HUMAN HEME OXYGENASE-1: PRESENCE OF INTACT MEMBRANE-BINDING REGION LEADS TO INCREASED BINDING AFFINITY FOR NADPH-CYTOCHROME P450 REDUCTASE

    Science.gov (United States)

    Huber, Warren J.; Backes, Wayne L.

    2009-01-01

    Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953

  5. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase.

    Science.gov (United States)

    Huber, Warren J; Backes, Wayne L

    2007-10-30

    Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.

  6. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica.

    OpenAIRE

    Feyereisen, R; Koener, J F; Farnsworth, D E; Nebert, D W

    1989-01-01

    A cDNA expression library from phenobarbital-treated house fly (Musca domestica) was screened with rabbit antisera directed against partially purified house fly cytochrome P-450. Two overlapping clones with insert lengths of 1.3 and 1.5 kilobases were isolated. The sequence of a 1629-base-pair (bp) cDNA was obtained, with an open reading frame (nucleotides 81-1610) encoding a P-450 protein of 509 residues (Mr = 58,738). The insect P-450 protein contains a hydrophobic NH2 terminus and a 22-res...

  7. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.).

    Science.gov (United States)

    Li, Xiuxia; Li, Ran; Zhu, Bin; Gao, Xiwu; Liang, Pei

    2018-06-01

    The diamondback moth Plutella xylostella (L.) is the most widely distributed pest of cruciferous crops and has developed resistance to most commonly used insecticides, including chlorantraniliprole. Resistance to chlorantraniliprole is likely caused by mutations of the target, the ryanodine receptor, and/or mediated by an increase in detoxification enzyme activities. Although target-site resistance is documented in detail, resistance mediated by increased metabolism has rarely been reported. The activity of cytochrome P450 was significantly higher in two resistant P. xylostella populations than in a susceptible one. Among ten detected cytochrome P450 genes, CYP6BG1 was significantly overexpressed (over 80-fold) in a field-resistant population compared with expression in a susceptible one. Knockdown of CYP6BG1 by RNA interference dramatically reduced the 7-ethoxycoumarin-O-deethylase (7-ECOD) activity of P450 by 45.5% and increased the toxicity of chlorantraniliprole toward P. xylostella by 26.8% at 48 h postinjection of double-stranded RNA. By contrast, overexpression of CYP6BG1 in a transgenic Drosophila melanogaster line significantly decreased the toxicity of the insecticide to the transgenic flies. Overexpression of CYP6BG1 may contribute to chlorantraniliprole resistance in P. xylostella. Our findings will provide new insights into the mechanisms of resistance to diamide insecticides in other insect pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  9. In vitro formation of metabolic-intermediate cytochrome P450 complexes in rabbit liver microsomes by tiamulin and various macrolides.

    Science.gov (United States)

    Carletti, Monica; Gusson, Federica; Zaghini, Anna; Dacasto, Mauro; Marvasi, Luigi; Nebbia, Carlo

    2003-01-01

    Tiamulin and a number of macrolides were evaluated as to their ability in forming metabolic-intermediate (MI) complexes with cytochrome P450 in liver microsomes from rabbits bred for meat production. Complex formation, which occurred only in preparations where the expression of P450 3A was increased as the result of rifampicin pre-treatment and with different kinetics, was in the order tiamulin > erythromycin > TAO approximately roxithromycin approximately tylosin and did not take place with tilmicosin and spiramycin. Most of the tested compounds underwent an oxidative N-dealkylation and a good relationship could be found between the rate of N-dealkylase activity in induced preparations and the aptitude in generating MI complexes. Although the results from in vitro studies should be interpreted with caution, it is suggested that the potential for in vivo drug interactions also exists in the rabbit for tiamulin and for four out of the six tested macrolides.

  10. Endocrine disrupting chemicals (bisphenol A, 4-nonylphenol, 4-tert-octylphenol) modulate expression of two distinct cytochrome P450 aromatase genes differently in gender types of the hermaphroditic fish Rivulus marmoratus.

    Science.gov (United States)

    Lee, Young-Mi; Seo, Jung Soo; Kim, Il-Chan; Yoon, Yong-Dal; Lee, Jae-Seong

    2006-06-30

    To understand the effect of endocrine-disrupting chemicals (EDCs) on cytochrome P450 aromatase (rm-cyp19) gene expression between gender types in the hermaphroditic fish Rivulus marmoratus, we cloned two distinct rm-cyp19 genes using RT-PCR with degenerative primers, obtained full-length cDNAs using 5'- and 3'-RACE-PCR methods, and completely sequenced them. The brain aromatase (rm-cyp19b) cDNA consisted of 2,124 bp including the open reading frame (ORF), which encoded a putative protein of 505 amino acids. The ovarian aromatase (rm-cyp19a) cDNA consisted of 2,075 bp, including the ORF encoding a putative protein of 516 amino acids. Expression patterns of rm-cyp19b and rm-cyp19a mRNAs were investigated in embryos of different developmental stages and in seven different tissues of adult fish. The rm-cyp19b gene in hermaphrodite and secondary male R. marmoratus was predominantly expressed in the brain, while the rm-cyp19a gene was expressed gender-specifically in the gonad. The expression of rm-cyp19b mRNA increased from stage 1 (2 d post fertilization) to stage 4 (12 d post fertilization) in a developmental stage-dependent manner but steeply decreased in the hatching stage. Compared to the rm-cyp19b gene, the abundance of ovarian aromatase rm-cyp19a transcripts was very low, and its expression was first detected at stage 3 and then decreased gradually to the hatching stage. Alteration of rm-cyp19b and rm-cyp19a gene expression was further analyzed in the brain and gonad by real-time RT-PCR 96 h after EDC exposure in hermaphrodites and secondary males. The brain aromatase rm-cyp19b gene was up-regulated in the brain after 4-nonylphenol (4-NP)-exposure, while the ovarian aromatase rm-cyp19a gene was significantly down-regulated in the gonad. In 300 microg/L 4-tert octylphenol (4-tert-OP), or 600 microg/L bisphenol A-exposed brain and gonad, both rm-cyp19b and rm-cyp19a genes were up-regulated. In the case of secondary males, the rm-cyp19b gene was highly expressed in

  11. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2008-01-01

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD 50 ; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increase in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics

  12. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  13. {sup 13}C-Methyl isocyanide as an NMR probe for cytochrome P450 active sites

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, Christopher R.; Pullela, Phani Kumar [Marquette University, Chemical Proteomics Facility at Marquette, Department of Chemistry (United States); Im, Sang-Choul; Waskell, Lucy [University of Michigan and VA Medical Center, Department of Anesthesiology (United States); Sem, Daniel S. [Marquette University, Chemical Proteomics Facility at Marquette, Department of Chemistry (United States)], E-mail: Daniel.sem@marquette.edu

    2009-03-15

    The cytochromes P450 (CYPs) play a central role in many biologically important oxidation reactions, including the metabolism of drugs and other xenobiotic compounds. Because they are often assayed as both drug targets and anti-targets, any tools that provide: (a) confirmation of active site binding and (b) structural data, would be of great utility, especially if data could be obtained in reasonably high throughput. To this end, we have developed an analog of the promiscuous heme ligand, cyanide, with a {sup 13}CH{sub 3}-reporter attached. This {sup 13}C-methyl isocyanide ligand binds to bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. It can be used in a rapid 1D experiment to identify binders, and provides a qualitative measure of structural changes in the active site.

  14. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    Science.gov (United States)

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  16. Two cytochrome P450 genes are involved in imidacloprid resistance in field populations of the whitefly, Bemisia tabaci, in China.

    Science.gov (United States)

    Yang, Xin; Xie, Wen; Wang, Shao-li; Wu, Qing-jun; Pan, Hui-peng; Li, Ru-mei; Yang, Ni-na; Liu, Bai-ming; Xu, Bao-yun; Zhou, Xiaomao; Zhang, You-jun

    2013-11-01

    The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae), is an invasive and damaging pest of field crops worldwide. The neonicotinoid insecticide imidacloprid has been widely used to control this pest. We assessed the species composition (B vs. Q), imidacloprid resistance, and association between imidacloprid resistance and the expression of five P450 genes for 14-17 B. tabaci populations in 12 provinces in China. Fifteen of 17 populations contained only B. tabaci Q, and two populations contained both B and Q. Seven of 17 populations exhibited moderate to high resistance to imidacloprid, and eight populations exhibited low resistance to imidacloprid, compared with the most susceptible field WHHB population. In a study of 14 of the populations, resistance level was correlated with the expression of the P450 genes CYP6CM1 and CYP4C64 but not with the expression of CYP6CX1, CYP6CX4, or CYP6DZ7. This study indicates that B. tabaci Q has a wider distribution in China than previously reported. Resistance to imidacloprid in field populations of B. tabaci is associated with the increased expression of two cytochrome P450 genes (CYP6CM1 and CYP4C64). Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  17. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    Science.gov (United States)

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Phytomonitoring and phytoremediation of agrochemicals and related compounds based on recombinant cytochrome P450s and aryl hydrocarbon receptors (AhRs).

    Science.gov (United States)

    Shimazu, Sayuri; Inui, Hideyuki; Ohkawa, Hideo

    2011-04-13

    Molecular mechanisms of metabolism and modes of actions of agrochemicals and related compounds are important for understanding selective toxicity, biodegradability, and monitoring of biological effects on nontarget organisms. It is well-known that in mammals, cytochrome P450 (P450 or CYP) monooxygenases metabolize lipophilic foreign compounds. These P450 species are inducible, and both CYP1A1 and CYP1A2 are induced by aryl hydrocarbon receptor (AhR) combined with a ligand. Gene engineering of P450 and NADPH cytochrome P450 oxidoreductase (P450 reductase) was established for bioconversion. Also, gene modification of AhRs was developed for recombinant AhR-mediated β-glucronidase (GUS) reporter assay of AhR ligands. Recombinant P450 genes were transformed into plants for phytoremediation, and recombinant AhR-mediated GUS reporter gene expression systems were each transformed into plants for phytomonitoring. Transgenic rice plants carrying CYP2B6 metabolized the herbicide metolachlor and remarkably reduced the residues in the plants and soils under paddy field conditions. Transgenic Arabidopsis plants carrying recombinant guinea pig (g) AhR-mediated GUS reporter genes detected PCB126 at the level of 10 ng/g soils in the presence of biosurfactants MEL-B. Both phytomonitoring and phytoremediation plants were each evaluated from the standpoint of practical uses.

  19. Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates

    KAUST Repository

    Lewis, Jared C.; Mantovani, Simone M.; Fu, Yu; Snow, Christopher D.; Komor, Russell S.; Wong , Chi-Huey; Arnold, Frances H.

    2010-01-01

    Made for each other: Combinatorial alanine substitution of active site residues in a thermostable cytochrome P450BM3 variant was used to generate an enzyme that is active with large substrates. Selective hydroxylation of methoxymethylated

  20. In Situ Proteolysis for Crystallization of Membrane Bound Cytochrome P450 17A1 and 17A2 Proteins from Zebrafish.

    Science.gov (United States)

    Lei, Li; Egli, Martin

    2016-04-01

    Fish and human cytochrome P450 (P450) 17A1 catalyze both steroid 17α-hydroxylation and 17α,20-lyase reactions. Fish P450 17A2 catalyzes only 17α-hydroxylation. Both enzymes are microsomal-type P450s, integral membrane proteins that bind to the membrane through their N-terminal hydrophobic segment, the signal anchor sequence. The presence of this N-terminal region renders expression of full-length proteins challenging or impossible. For some proteins, variable truncation of the signal anchor sequence precludes expression or results in poor expression levels. To crystallize P450 17A1 and 17A2 in order to gain insight into their different activities, we used an alternative N-terminal sequence to boost expression together with in situ proteolysis. Key features of our approach to identify crystallizable P450 fragments were the use of an N-terminal leader sequence, a screen composed of 12 proteases to establish optimal cleavage, variations of protease concentration in combination with an SDS-PAGE assay, and analysis of the resulting fragments using Edman sequencing. Described in this unit are protocols for vector preparation, expression, purification, and in situ proteolytic crystallization of two membrane-bound P450 proteins. Copyright © 2016 John Wiley & Sons, Inc.

  1. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

    DEFF Research Database (Denmark)

    Christensen, Ulla; Vazquez Albacete, Dario; Søgaard, Karina Marie

    2017-01-01

    Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading......-type E. coli strains using standard growth media. Furthermore, sequences encoding a small synthetic peptide and a small bacterial membrane anchor markedly enhance the expression of all six genes. For one of the CYPs, the length of the linker region between the predicted N-terminal transmembrane segment...

  2. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  3. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  4. CYTOCHROME P450 REGULATION: THE INTERPLAY BETWEEN ITS HEME AND APOPROTEIN MOIETIES IN SYNTHESIS, ASSEMBLY, REPAIR AND DISPOSAL123

    OpenAIRE

    Correia, Maria Almira; Sinclair, Peter R.; De Matteis, Francesco

    2010-01-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biot...

  5. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  6. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  7. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    International Nuclear Information System (INIS)

    Reed, James R.; Cawley, George F.; Ardoin, Taylor G.; Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W.; Backes, Wayne L.

    2014-01-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  8. Mechanism of the N-Hydroxylation of Primary and Secondary Amines by Cytochrome P450

    DEFF Research Database (Denmark)

    Seger, Signe T.; Rydberg, Patrik; Olsen, Lars

    2015-01-01

    Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able...... to predict if a given compound will be a substrate for CYPs, in order to avoid toxic metabolites, and hence to understand the mechanism that is utilized by CYPs. Two possible mechanisms, for the N-hydroxylation of primary and secondary amines mediated by CYPs, are studied by density functional theory (DFT...

  9. Prediction of activation energies for aromatic oxidation by cytochrome P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Ryde, Ulf; Olsen, Lars

    2008-01-01

    We have estimated the activation energy for aromatic oxidation by compound I in cytochrome P450 for a diverse set of 17 substrates using state-of-the-art density functional theory (B3LYP) with large basis sets. The activation energies vary from 60 to 87 kJ/mol. We then test if these results can...... be reproduced by computationally less demanding methods. The best methods (a B3LYP calculation of the activation energy of a methoxy-radical model or a partial least-squares model of the semiempirical AM1 bond dissociation energies and spin densities of the tetrahedral intermediate for both a hydroxyl...

  10. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    Science.gov (United States)

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  11. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    Science.gov (United States)

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC 50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC 50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  12. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  13. Electroactive cytochrome P450BM3 cast polyion films on graphite electrodes

    International Nuclear Information System (INIS)

    Pardo-Jacques, Aurelie; Basseguy, Regine; Bergel, Alain

    2006-01-01

    Films of electrochemically active cytochrome P450 BM 3 were constructed on graphite electrodes using alternate assembly with polyethyleneimine (PEI). The original layer-by-layer adsorption method was slightly modified here to form so-called 'cast polyion' films. The cast polyion films were elaborated by immobilizing two successive layers of PEI and protein in very large excess with respect to a monolayer, without any intermediate washing step. Following the immobilization steps by SEM showed that uniform films of a few micrometers were deposited on the graphite surface. The electrochemically activity of the immobilized cytP450 was tested with regard to the reduction of oxygen and the one-electron reduction of the heme. Cyclic voltammetry indicated surface concentration of electrochemically active cytP450 around 0.6nmol/cm 2 , which corresponded to 5% of the total amount of protein that was consumed by the immobilisation process. Adapting the procedure to a graphite felt electrode with the view of scaling up porous electrodes for large scale synthesis increased the concentration to 0.9nmol/cm 2 . Cast polyion films may represent a simple technique to immobilize high amount of electrochemically active protein, keeping the advantage of the electrostatic interactions of the regular layer-by-layer method

  14. Curcumin Prevents Aflatoxin B1 Hepatoxicity by Inhibition of Cytochrome P450 Isozymes in Chick Liver

    Directory of Open Access Journals (Sweden)

    Ni-Ya Zhang

    2016-11-01

    Full Text Available This study was designed to establish if Curcumin (CM alleviates Aflatoxin B1 (AFB1-induced hepatotoxic effects and to determine whether alteration of the expression of cytochrome P450 (CYP450 isozymes is involved in the regulation of these effects in chick liver. One-day-old male broilers (n = 120 were divided into four groups and used in a two by two factorial trial in which the main factors included supplementing AFB1 (< 5 vs. 100 μg/kg and CM (0 vs. 150 mg/kg in a corn/soybean-based diet. Administration of AFB1 induced liver injury, significantly decreasing albumin and total protein concentrations and increasing alanine aminotransferase and aspartate aminotransferase activities in serum, and induced hepatic histological lesions at week 2. AFB1 also significantly decreased hepatic glutathione peroxidase, catalase, and glutathione levels, while increasing malondialdehyde, 8-hydroxydeoxyguanosine, and exo-AFB1-8,9-epoxide (AFBO-DNA concentrations. In addition, the mRNA and/or activity of enzymes responsible for the bioactivation of AFB1 into AFBO—including CYP1A1, CYP1A2, CYP2A6, and CYP3A4—were significantly induced in liver microsomes after 2-week exposure to AFB1. These alterations induced by AFB1 were prevented by CM supplementation. Conclusively, dietary CM protected chicks from AFB1-induced liver injury, potentially through the synergistic actions of increased antioxidant capacities and inhibition of the pivotal CYP450 isozyme-mediated activation of AFB1 to toxic AFBO.

  15. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus.

    Directory of Open Access Journals (Sweden)

    Mariya Y Pakharukova

    2015-12-01

    Full Text Available The basic metabolic cytochrome P450 (CYP system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium are considered by the International Agency for Research on Cancer (IARC as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii to assess CYP ability to metabolize xenobiotics, and (iii to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target.

  16. Inhibitory and inductive effects of Phikud Navakot extract on human cytochrome P450.

    Science.gov (United States)

    Chiangsom, Abhiruj; Lawanprasert, Somsong; Oda, Shingo; Kulthong, Kornphimol; Luechapudiporn, Rataya; Yokoi, Tsuyoshi; Maniratanachote, Rawiwan

    2016-06-01

    Effects of the hydroethanolic extract of Phikud Navakot (PN), a Thai traditional remedy, on human cytochrome P450s (CYPs) were investigated in vitro. Selective substrates of CYPs were used to investigate the effects and kinetics of PN on CYP inhibition using human liver microsomes. Primary human hepatocytes were used to assess the inductive effects of PN on CYP enzyme activities and protein expressions. The results showed that PN inhibited the activities of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 with half maximal inhibitory concentration (IC50) values of 13, 62, 67, and 88 μg/mL, respectively. Meanwhile, it had no effect on the activities of CYP2C19 and CYP2E1 (IC50 > 1 mg/mL). PN exhibited competitive inhibition of CYP1A2 (Ki = 34 μg/mL), mixed type inhibition of CYP2C9 and CYP2D6 (Ki = 80 and 12 μg/mL, respectively), and uncompetitive inhibition of CYP3A4 (Ki = 150 μg/mL). PN did not have an inductive effect on CYP1A2, CYP2C9, CYP2C19 and CYP3A4 in primary human hepatocytes, which is an advantageous characteristic of the extract. However the extract may cause herb-drug interactions via inhibition of CYP1A2, CYP2C9, CYP2D6 and CYP3A4, and precautions should be taken when PN is coadministered with drugs that are metabolized by these CYP enzymes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  17. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    Science.gov (United States)

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  18. Metabolism of 7-ethoxycoumarin, flavanone and steroids by cytochrome P450 2C9 variants.

    Science.gov (United States)

    Uno, Tomohide; Nakano, Ryosuke; Kanamaru, Kengo; Takenaka, Shinji; Uno, Yuichi; Imaishi, Hiromasa

    2017-11-01

    CYP2C9 is a human microsomal cytochrome P450c (CYP). Much of the variation in CYP2C9 levels and activity can be attributed to polymorphisms of this gene. Wild-type CYP2C9 and mutants were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. The hydroxylase activities toward 7-ethoxycoumarin, flavanone and steroids were examined. Six CYP2C9 variants showed Soret peaks (450 nm) typical of P450 in reduced CO-difference spectra. CYP2C9.38 had the highest 7-ethoxycoumarin de-ethylase activity. All the CYP2C9 variants showed lower flavanone 6-hydroxylation activities than CYP2C9.1 (the wild-type). CYP2C9.38 showed higher activities in testosterone 6β-hydroxylation, progesterone 6β-/16α-hydroxylation, estrone 11α-hydroxylation and estradiol 6α-hydroxylation than CYP2C9.1. CYP2C9.40 showed higher testosterone 17-oxidase activity than CYP2C9.1; CYP2C9.8 showed higher estrone 16α-hydroxylase activity and CYP2C9.12 showed higher estrone 11α-hydroxylase activity. CYP2C9.9 and CYP2C9.10 showed similar activities to CYP2C9.1. These results indicate that the substrate specificity of CYP2C9.9 and CYP2C9.10 was not changed, but CYP2C9.8, CYP2C9.12 and CYP2C9.40 showed different substrate specificity toward steroids compared with CYP2C9.1; and especially CYP2C9.38 displayed diverse substrate specificities towards 7-ethoxycoumarin and steroids. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    International Nuclear Information System (INIS)

    Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M.; Lamb, David C.; Tanguay, Robert L.; Goldstone, Jared V.; Stegeman, John J.

    2016-01-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  20. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Benjamin; Kubota, Akira; O' Meara, Conor M. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Lamb, David C. [Institute of Life Science, Medical School, Swansea University, Swansea (United Kingdom); Tanguay, Robert L. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR (United States); Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2016-04-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. - Highlights: • The “orphan” CYP20A1 was cloned from zebrafish and its sequence analyzed. • Knockdown of CYP20A1 reduced an optomotor response and elicited bursts of activity. • Effects of

  1. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    Science.gov (United States)

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  2. Pi-pi Stacking Mediated Cooperative Mechanism for Human Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Botao Fa

    2015-04-01

    Full Text Available Human Cytochrome P450 3A4 (CYP3A4 is an important member of the cytochrome P450 superfamily with responsibility for metabolizing ~50% of clinical drugs. Experimental evidence showed that CYP3A4 can adopt multiple substrates in its active site to form a cooperative binding model, accelerating substrate metabolism efficiency. In the current study, we constructed both normal and cooperative binding models of human CYP3A4 with antifungal drug ketoconazoles (KLN. Molecular dynamics simulation and free energy calculation were then carried out to study the cooperative binding mechanism. Our simulation showed that the second KLN in the cooperative binding model had a positive impact on the first one binding in the active site by two significant pi-pi stacking interactions. The first one was formed by Phe215, functioning to position the first KLN in a favorable orientation in the active site for further metabolism reactions. The second one was contributed by Phe304. This pi-pi stacking was enhanced in the cooperative binding model by the parallel conformation between the aromatic rings in Phe304 and the dioxolan moiety of the first KLN. These findings can provide an atomic insight into the cooperative binding in CYP3A4, revealing a novel pi-pi stacking mechanism for drug-drug interactions.

  3. Evidence for induction of cytochrome P-450I in patients with tropical chronic pancreatitis.

    Science.gov (United States)

    Chaloner, C; Sandle, L N; Mohan, V; Snehalatha, C; Viswanathan, M; Braganza, J M

    1990-06-01

    Theophylline kinetics, as an in vivo probe for the potentially toxic cytochrome P-450I pathway of drug metabolism, were studied in 11 healthy volunteers and 11 patients with calcific chronic pancreatitis at Madras, South India. Theophylline clearance was faster in the patients than controls [median 69 (range 39-114) vs 45 (33-56) ml h-1 kg-1, p = 0.003]. In keeping with this finding, detailed social histories identified a higher exposure level in the patients to xenobiotics that are inducers of cytochrome P-450I and/or yield reactive metabolites upon processing thereby (score 7, 4-11 vs 3, 2-9, p = 0.002). However, the concentration of D-glucaric acid in urine, as a marker of phase II conjugating pathways of drug metabolism, was similar in patients and controls. This pattern of drug metabolism could predispose to oxidant stress: hence micronutrient antioxidant supplements may have therapeutic (or even prophylactic) value in tropical chronic pancreatitis.

  4. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  5. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    Science.gov (United States)

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  6. Effects of Cytochrome P 450 Inhibitors on Itraconazole and Fluconazole Induced Cytotoxicity in Hepatocytes

    International Nuclear Information System (INIS)

    Somchit, N.; Ngee, C.S.; Yaakob, A.; Ahmad, Z.; Zakaria, Z.A.

    2009-01-01

    Itraconazole and fluconazole have been reported to induce hepatotoxicity in patients. The present study was designed to investigate the role of cytochrome P450 inhibitors, SKF 525A, and curcumin pretreatment on the cytotoxicity of antifungal drugs fluconazole and itraconazole. For 3 consecutive days, female rats were administered daily SKF 525A or curcumin (5 and 25?mg/kg). Control rats received an equivalent amount of dosed vehicle. The animals were anaesthetised 24 hours after receiving the last dose for liver perfusion. Hepatocytes were then exposed to various concentrations of antifungal drugs. In vitro incubation of hepatocytes with itraconazole revealed significantly lower viability when compared to fluconazole as assessed by lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase activities. The cytotoxicity of itraconazole was enhanced when incubated with hepatocytes pretreated with SKF 525A. SKF 525A had no effects on the cytotoxicity of fluconazole. Curcumin failed to either increase or decrease the cytotoxicity of both antifungal drugs. ATP levels also showed significant decrease in both itraconazole and fluconazole incubated hepatocytes. However, SKF 525A pretreated hepatocytes had significantly lower ATP levels after itraconazole incubations. Collectively, these results confirm the involvement of cytochrome P450 in the cytoprotection in itraconazole induced hepatocyte toxicity. Differences of the effects of SKF 525A on the cytotoxicity induced by itraconazole and fluconazole may be due to the differences on the metabolism of each antifungal drug in vivo.

  7. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    Science.gov (United States)

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  8. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment.

    Science.gov (United States)

    Quester, Katrin; Juarez-Moreno, Karla; Secundino, Isamel; Roseinstein, Yvonne; Alejo, Karla P; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2017-05-01

    Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF-7 breast cancer cells are treated with CYP-polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site-specific CYP activity in tumor tissues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery.

    Science.gov (United States)

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco

    2015-10-01

    This work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs. Ag/AgCl for GC/PDDA/2D15 and GC/AuNPs/2D15, respectively. These experiments were then followed by the electro-catalytic activity of the immobilized enzyme in the presence of metoprolol. The latter drug is a beta-blocker used for the treatment of hypertension and is a specific marker of the human P450 2D6 activity. Electrocatalysis data showed that only in the presence of AuNps the expected α-hydroxy-metoprolol product was present as shown by HPLC. The successful immobilization of the electroactive C. familiaris cytochrome P450 2D15 on electrode surfaces addresses the ever increasing demand of developing alternative in vitromethods for amore detailed study of animal P450 enzymes' metabolism, reducing the number of animals sacrificed in preclinical tests.

  10. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    Science.gov (United States)

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  11. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    International Nuclear Information System (INIS)

    Wilderman, P. Ross; Jang, Hyun-Hee; Malenke, Jael R.; Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia; Dearing, M. Denise; Halpert, James R.

    2014-01-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP 2 B substrate recognition remains to be clarified. • Reported N. lepida gene

  12. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    Energy Technology Data Exchange (ETDEWEB)

    Wilderman, P. Ross, E-mail: pwilderman@ucsd.edu [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Jang, Hyun-Hee [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Malenke, Jael R. [Department of Biology, University of Utah, Salt Lake City, UT (United States); Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Dearing, M. Denise [Department of Biology, University of Utah, Salt Lake City, UT (United States); Halpert, James R. [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States)

    2014-02-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene

  13. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  14. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata

    Directory of Open Access Journals (Sweden)

    Ishida Hiroyuki

    2006-04-01

    Full Text Available Abstract Background Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence. Results By performing differential display of cDNAs during Petunia inflata petal senescence, a highly upregulated gene encoding a cytochrome P450 was identified. Analysis of the complete cDNA sequence revealed that the predicted protein is a member of the CYP74C family (CYP74C9 and is highly similar to a tomato CYP74C allene oxide synthase (AOS that is known to be active on 9-hydroperoxides. Cloning of the petunia genomic DNA revealed an intronless gene with a promoter region that carries signals found in stress-responsive genes and potential binding sites for Myb transcription factors. Transcripts were present at detectable levels in root and stem, but were 40 times more abundant in flowers 36 hours after pollination. Ethylene and jasmonate treatment resulted in transitory increases in expression in detached flowers. A protein fusion of the CYP74C coding region to a C-terminal GFP was found to be located in the tonoplast. Conclusion Though oxylipins, particularly jasmonates, are known to be involved in stress responses, the role of other products of CYP74 enzymes is less well understood. The identification of a CYP74C family member as a highly upregulated gene during petal senescence suggests that additional products of fatty acid metabolism may play important roles during programmed cell death. In contrast to the chloroplast localization of AOS proteins in the CYP74A subfamily, GFP fusion data indicates that the petunia CYP74C9 enzyme is in the tonoplast. This result

  15. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions

    International Nuclear Information System (INIS)

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J.; Wolf, C. Roland; Schmeiser, Heinz H.; Phillips, David H.; Frei, Eva; Arlt, Volker M.

    2014-01-01

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b 5 , and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b 5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b 5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b 5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b 5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR

  16. Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallén).

    Science.gov (United States)

    Elzaki, Mohammed Esmail Abdalla; Zhang, Wanfang; Feng, Ai; Qiou, Xiaoyan; Zhao, Wanxue; Han, Zhaojun

    2016-05-01

    Imidacloprid is a principal insecticide for controlling rice planthoppers worldwide. Resistance to imidacloprid has been reported in a field population of Laodelphax striatellus. The present work was conducted to study the molecular mechanisms of imidacloprid resistance. An imidacloprid-resistant strain was produced by selecting a field population with imidacloprid for 24 generations. Piperonyl butoxide (PBO) showed a 1.70-fold synergistic effect. Enzyme activity assays were conducted, and cytochrome P450 monooxygenase showed 1.88-fold activity. The mRNA expression levels of 57 P450 genes were compared. Four CYP genes were found to be overexpressed and significantly different to the susceptible strain. Four strains were selected with imidacloprid for a short period, and the expression levels of ten identified detoxification genes were then compared. Only CYP353D1v2 overexpressed and was significantly different to the susceptible strain. Strong correlation was found between CYP353D1v2 expression levels and imidacloprid treatments. Additionally, gene-silencing RNAi via dsRNA feeding showed that depressing the expression of CYP353D1v2 could significantly enhance the sensitivity of L. striatellus to imidacloprid. Constitutive overexpression of four CYP genes was associated with imidacloprid resistance in long-term selection, and expression of CYP353D1v2 with imidacloprid resistance in short-term selection in L. striatellus. © 2015 Society of Chemical Industry.

  17. N-Heterocyclic Carbene Capture by Cytochrome P450 3A4

    Science.gov (United States)

    Jennings, Gareth K.; Ritchie, Caroline M.; Shock, Lisa S.; Lyons, Charles E.

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the dominant P450 enzyme involved in human drug metabolism, and its inhibition may result in adverse interactions or, conversely, favorably reduce the systemic elimination rates of poorly bioavailable drugs. Herein we describe a spectroscopic investigation of the interaction of CYP3A4 with N-methylritonavir, an analog of ritonavir, widely used as a pharmacoenhancer. In contrast to ritonavir, the binding affinity of N-methylritonavir for CYP3A4 is pH-dependent. At pH UV-visible spectroscopy binding studies with molecular fragments narrows the source of this pH dependence to its N-methylthiazolium fragment. The C2 proton of this group is acidic, and variable-pH resonance Raman spectroscopy tentatively assigns it a pKa of 7.4. Hence, this fragment of N-methylritonavir is expected to be readily deprotonated under physiologic conditions to yield a thiazol-2-ylidene, which is an N-heterocyclic carbene that has high-affinity for and is presumed to be subsequently captured by the heme iron. This mechanism is supported by time-dependent density functional theory with an active site model that accurately reproduces distinguishing features of the experimental UV-visible spectra of N-methylritonavir bound to CYP3A4. Finally, density functional theory calculations support that this novel interaction is as strong as the tightest-binding azaheterocycles found in P450 inhibitors and could offer new avenues for inhibitor development. PMID:27126611

  18. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  19. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal.

    Science.gov (United States)

    Correia, Maria Almira; Sinclair, Peter R; De Matteis, Francesco

    2011-02-01

    Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.

  20. A Panel of Cytochrome P450 BM3 Variants To Produce Drug Metabolites and Diversify Lead Compounds

    Science.gov (United States)

    Sawayama, Andrew M.; Chen, Michael M. Y.; Kulanthaivel, Palaniappan; Kuo, Ming-Shang; Hemmerle, Horst; Arnold, Frances H.

    2011-01-01

    Here we demonstrate that a small panel of variants of cytochrome P450 BM3 from Bacillus megaterium covers the breadth of reactivity of human P450s by producing 12 of 13 mammalian metabolites for two marketed drugs, verapamil and astemizole, and one research compound. The most active enzymes support preparation of individual metabolites for preclinical bioactivity and toxicology evaluations. Underscoring their potential utility in drug lead diversification, engineered P450 BM3 variants also produce novel metabolites by catalyzing reactions at carbon centers beyond those targeted by animal and human P450s. Production of a specific metabolite can be improved by directed evolution of the enzyme catalyst. Some variants are more active on the more hydrophobic parent drug than on its metabolites, which limits production of multiply-hydroxylated species, a preference that appears to depend on the evolutionary history of the P450 variant. PMID:19774562

  1. Active sites of two orthologous cytochromes P450 2E1: Differences revealed by spectroscopic methods

    International Nuclear Information System (INIS)

    Anzenbacherova, Eva; Hudecek, Jiri; Murgida, Daniel; Hildebrandt, Peter; Marchal, Stephane; Lange, Reinhard; Anzenbacher, Pavel

    2005-01-01

    Cytochromes P450 2E1 of human and minipig origin were examined by absorption spectroscopy under high hydrostatic pressure and by resonance Raman spectroscopy. Human enzyme tends to denature to the P420 form more easily than the minipig form; moreover, the apparent compressibility of the heme active site (as judged from a redshift of the absorption maximum with pressure) is greater than that of the minipig counterpart. Relative compactness of the minipig enzyme is also seen in the Raman spectra, where the presence of planar heme conformation was inferred from band positions characteristic of the low-spin heme with high degree of symmetry. In this respect, the CYP2E1 seems to be another example of P450 conformational heterogeneity as shown, e.g., by Davydov et al. for CYP3A4 [Biochem. Biophys. Res. Commun. 312 (2003) 121-130]. The results indicate that the flexibility of the CYP active site is likely one of its basic structural characteristics

  2. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    Science.gov (United States)

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  3. Purification, Reconstitution, and Inhibition of Cytochrome P-450 Sterol Δ22-Desaturase from the Pathogenic Fungus Candida glabrata

    Science.gov (United States)

    Lamb, David C.; Maspahy, Segula; Kelly, Diane E.; Manning, Nigel J.; Geber, Antonia; Bennett, John E.; Kelly, Steven L.

    1999-01-01

    Sterol Δ22-desaturase has been purified from a strain of Candida glabrata with a disruption in the gene encoding sterol 14α-demethylase (cytochrome P-45051; CYP51). The purified cytochrome P-450 exhibited sterol Δ22-desaturase activity in a reconstituted system with NADPH–cytochrome P-450 reductase in dilaurylphosphatidylcholine, with the enzyme kinetic studies revealing a Km for ergosta-5,7-dienol of 12.5 μM and a Vmax of 0.59 nmol of this substrate metabolized/min/nmol of P-450. This enzyme is encoded by CYP61 (ERG5) in Saccharomyces cerevisiae, and homologues have been shown in the Candida albicans and Schizosaccharomyces pombe genome projects. Ketoconazole, itraconazole, and fluconazole formed low-spin complexes with the ferric cytochrome and exhibited type II spectra, which are indicative of an interaction between the azole moiety and the cytochrome heme. The azole antifungal compounds inhibited reconstituted sterol Δ22-desaturase activity by binding to the cytochrome with a one-to-one stoichiometry, with total inhibition of enzyme activity occurring when equimolar amounts of azole and cytochrome P-450 were added. These results reveal the potential for sterol Δ22-desaturase to be an antifungal target and to contribute to the binding of drugs within the fungal cell. PMID:10390230

  4. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have characte...... the concept that the selectivity of the steroidogenic CYPs is ruled by direct interactions with the enzyme, in contrast to the selectivity of drug-metabolizing CYPs, where the reactivity of the substrates dominates....... characterized the reaction path for both the hydroxylase and lyase reactions using density functional theory (DFT) calculations and the enzyme–substrate interactions by molecular dynamics (MD) simulations. Activation barriers for positions subject to hydroxylase reaction have values close to each other and span...

  5. Comparative study of hops-containing products on human cytochrome P450-mediated metabolism.

    Science.gov (United States)

    Foster, Brian C; Arnason, John T; Saleem, Ammar; Tam, Teresa W; Liu, Rui; Mao, Jingqin; Desjardins, Suzanne

    2011-05-11

    The potential for 15 different ales (6), ciders (2 apple and 1 pear), and porters (6) and 2 non-alcoholic products to affect cytochrome P450 (CYP)-mediated biotransformation and P-glycoprotein-mediated efflux of rhodamine was examined. As in our previous study, a wide range of recovered nonvolatile suspended solids dry weights were noted. Aliquots were also found to have varying effects on biotransformation and efflux. Distinct differences in product ability to affect the safety and efficacy of therapeutic products confirmed our initial findings that some porters (stouts) have a potential to affect the safety and efficacy of health products metabolized by CYP2D6 and CYP3A4 isozymes. Most products, except 2 of the ciders and the 2 non-alcoholic products, also have the potential to affect the safety of CYP2C9 metabolized medications and supplements. Further studies are required to determine the clinical significance of these findings.

  6. The contribution of atom accessibility to site of metabolism models for cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rostkowski, M.; Gloriam, D.E.

    2013-01-01

    Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...... coordinates. The method was implemented in the SMARTCyp site of metabolism prediction models and improved the results by up to 4 percentage points for nine cytochrome P450 isoforms. The final models are made available at http://www.farma.ku.dk/smartcyp.......Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...

  7. Water Complexes of Cytochrome P450: Insights from Energy Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Hajime Hirao

    2013-06-01

    Full Text Available Water is a small molecule that nevertheless perturbs, sometimes significantly, the electronic properties of an enzyme’s active site. In this study, interactions of a water molecule with the ferric heme and the compound I (Cpd I intermediate of cytochrome P450 are studied. Energy decomposition analysis (EDA schemes are used to investigate the physical origins of these interactions. Localized molecular orbital EDA (LMOEDA implemented in the quantum chemistry software GAMESS and the EDA method implemented in the ADF quantum chemistry program are used. EDA reveals that the electrostatic and polarization effects act as the major driving force in both of these interactions. The hydrogen bonding in the Cpd I•••H2O complex is similar to that in the water dimer; however, the relative importance of the electrostatic effect is somewhat larger in the water dimer.

  8. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation.

    Directory of Open Access Journals (Sweden)

    Mai Miura

    Full Text Available Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA, a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug.

  9. Inducible bilirubin oxidase: A novel function for the mouse cytochrome P450 2A5

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne Maioha [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Aganovic, Simona [Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 578, S-751 23 Uppsala (Sweden); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 578, S-751 23 Uppsala (Sweden)

    2011-11-15

    We have previously shown that bilirubin (BR), a breakdown product of haem, is a strong inhibitor and a high affinity substrate of the mouse cytochrome P450 2A5 (CYP2A5). The antioxidant BR, which is cytotoxic at high concentrations, is potentially useful in cellular protection against oxygen radicals if its intracellular levels can be strictly controlled. The mechanisms that regulate cellular BR levels are still obscure. In this paper we provide preliminary evidence for a novel function of CYP2A5 as hepatic 'BR oxidase'. A high-performance liquid chromatography/electrospray ionisation mass spectrometry screening showed that recombinant yeast microsomes expressing the CYP2A5 oxidise BR to biliverdin, as the main metabolite, and to three other smaller products with m/z values of 301, 315 and 333. The metabolic profile is significantly different from that of chemical oxidation of BR. In chemical oxidation the smaller products were the main metabolites. This suggests that the enzymatic reaction is selective, towards biliverdin production. Bilirubin treatment of primary hepatocytes increased the CYP2A5 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A5 compared to cells treated only with CHX. Collectively, the observations suggest that the CYP2A5 is potentially an inducible 'BR oxidase' where BR may accelerate its own metabolism through stabilization of the CYP2A5 protein. It is possible that this metabolic pathway is potentially part of the machinery controlling intracellular BR levels in transient oxidative stress situations, in which high amounts of BR are produced. -- Highlights: Black-Right-Pointing-Pointer CYP2A5 metabolizes bilirubin to biliverdin and dipyrroles. Black-Right-Pointing-Pointer Bilirubin increased the hepatic CYP2A5 protein and activity levels. Black-Right-Pointing-Pointer Bilirubin does not

  10. Metabolism of bilirubin by human cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne M. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Wikman, Anna S. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala (Sweden); Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu [School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio (Finland); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic

  11. Metabolism of bilirubin by human cytochrome P450 2A6

    International Nuclear Information System (INIS)

    Abu-Bakar, A'edah; Arthur, Dionne M.; Wikman, Anna S.; Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu; Ng, Jack C.; Lang, Matti A.

    2012-01-01

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K i of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic CYP2A6

  12. Inducible bilirubin oxidase: A novel function for the mouse cytochrome P450 2A5

    International Nuclear Information System (INIS)

    Abu-Bakar, A'edah; Arthur, Dionne Maioha; Aganovic, Simona; Ng, Jack C.; Lang, Matti A.

    2011-01-01

    We have previously shown that bilirubin (BR), a breakdown product of haem, is a strong inhibitor and a high affinity substrate of the mouse cytochrome P450 2A5 (CYP2A5). The antioxidant BR, which is cytotoxic at high concentrations, is potentially useful in cellular protection against oxygen radicals if its intracellular levels can be strictly controlled. The mechanisms that regulate cellular BR levels are still obscure. In this paper we provide preliminary evidence for a novel function of CYP2A5 as hepatic “BR oxidase”. A high-performance liquid chromatography/electrospray ionisation mass spectrometry screening showed that recombinant yeast microsomes expressing the CYP2A5 oxidise BR to biliverdin, as the main metabolite, and to three other smaller products with m/z values of 301, 315 and 333. The metabolic profile is significantly different from that of chemical oxidation of BR. In chemical oxidation the smaller products were the main metabolites. This suggests that the enzymatic reaction is selective, towards biliverdin production. Bilirubin treatment of primary hepatocytes increased the CYP2A5 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A5 compared to cells treated only with CHX. Collectively, the observations suggest that the CYP2A5 is potentially an inducible “BR oxidase” where BR may accelerate its own metabolism through stabilization of the CYP2A5 protein. It is possible that this metabolic pathway is potentially part of the machinery controlling intracellular BR levels in transient oxidative stress situations, in which high amounts of BR are produced. -- Highlights: ► CYP2A5 metabolizes bilirubin to biliverdin and dipyrroles. ► Bilirubin increased the hepatic CYP2A5 protein and activity levels. ► Bilirubin does not change the hepatic CYP2A5 mRNA levels. ► Co-treatment with a protein synthesis inhibitor

  13. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  14. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats.

    Science.gov (United States)

    Jian, Tun-Yu; He, Jian-Chang; He, Gong-Hao; Feng, En-Fu; Li, Hong-Liang; Bai, Min; Xu, Gui-Li

    2012-08-01

    Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2017-01-01

    Full Text Available Carbon monoxide (CO formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2. Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR; CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  16. Inhibition selectivity of grapefruit juice components on human cytochromes P450.

    Science.gov (United States)

    Tassaneeyakul, W; Guo, L Q; Fukuda, K; Ohta, T; Yamazoe, Y

    2000-06-15

    Five compounds including furanocoumarin monomers (bergamottin, 6', 7'-dihydroxybergamottin (DHB)), furanocoumarin dimers (4-¿¿6-hydroxy-71-¿(1-hydroxy-1-methyl)ethyl-4-methyl-6-(7-oxo-7H- furo¿3,2-g1benzopyran-4-yl)-4-hexenyl]oxy]-3,7-dimethyl- 2-octenyl]oxy]-7H-furo[3,2-g]¿1benzopyran-7-one (GF-I-1) and 4-¿¿6-hydroxy-7¿¿4-methyl-1-(1-methylethenyl)-6-(7-oxo-7H-furo¿3, 2-g1benzopyran-4-yl)-4-hexenylŏxy-3, 7-dimethyl-2-octenylŏxy-7H-furo¿3,2-g1benzopyran-7-one (GF-I-4)), and a sesquiterpene nootkatone have been isolated from grapefruit juice and screened for their inhibitory effects toward human cytochrome P450 (P450) forms using selective substrate probes. Addition of ethyl acetate extract of grapefruit juice into an incubation mixture resulted in decreased activities of CYP3A4, CYP1A2, CYP2C9, and CYP2D6. All four furanocoumarins clearly inhibited CYP3A4-catalyzed nifedipine oxidation in concentration- and time-dependent manners, suggesting that these compounds are mechanism-based inhibitors of CYP3A4. Of the furanocoumarins investigated, furanocoumarin dimers, GF-I-1 and GF-I-4, were the most potent inhibitors of CYP3A4. Inhibitor concentration required for half-maximal rate of inactivation (K(I)) values for bergamottin, DHB, GF-I-1, and GF-I-4 were calculated, respectively, as 40.00, 5. 56, 0.31, and 0.13 microM, whereas similar values were observed on their inactivation rate constant at infinite concentration of inhibitor (k(inact), 0.05-0.08 min(-1)). Apparent selectivity toward CYP3A4 does occur with the furanocoumarin dimers. In contrast, bergamottin showed rather stronger inhibitory effect on CYP1A2, CYP2C9, CYP2C19, and CYP2D6 than on CYP3A4. DHB inhibited CYP3A4 and CYP1A2 activities at nearly equivalent potencies. Among P450 forms investigated, CYP2E1 was the least sensitive to the inhibitory effect of furanocoumarin components. A sesquiterpene nootkatone has no significant effect on P450 activities investigated except for CYP2A6 and CYP2C19

  17. Regulation of rat liver cytochrome P450j, a high affinity N-nitrosodimethylamine demethylase (NDMAD)

    International Nuclear Information System (INIS)

    Thomas, P.E.; Bandiera, S.; Maines, S.L.; Ryan, D.E.; Levin, W.

    1987-01-01

    Purified IgG from sera of rabbits immunized with homogeneous P450j was absorbed to produce monospecific anti-P450j. Results using anti-P450j in ELISA show that rat liver microsomal P450j content decreases between 3 and 6 wks of age in both sexes. Several xenobiotics (Aroclor 1254, mirex and 3-methylcholanthrene) repressed P450j levels when administered to male rats. In contrast, hepatic levels of P450j were induced by isoniazid, dimethylsulfoxide, pyrazole, 4-methylpyrazole, ethanol and chemically-induced diabetes. P450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries and testes; however, extra-hepatic P450j was inducible by isoniazid. Between 80-90% of microsomal NDMAD was inhibited by anti-P450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of P450j. Results obtained with the reconstituted system suggest that the remaining microsomal NDMAD resistant to antibody inhibition is the result of the inaccessibility of a certain proportion of P450j due to interference by NADPH-P450 reductase. P450j content and NDMAD activity correlated well in microsomes from rats of all treatment groups. The evidence indicates that P450j is the primary, and possibly only, microsomal catalyst of NDMAD at substrate concentrations relevant to hepatocarcinogenesis induced by NDMA

  18. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  19. Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals.

    Science.gov (United States)

    Rosic, Nedeljka N; Pernice, Mathieu; Dunn, Simon; Dove, Sophie; Hoegh-Guldberg, Ove

    2010-05-01

    Exposure to heat stress has been recognized as one of the major factors leading to the breakdown of the coral-alga symbiosis and coral bleaching. Here, we describe the presence of three new cytochrome P450 (CYP) genes from the reef-building coral endosymbiont Symbiodinium (type C3) and changes in their expression during exposure to severe and moderate heat stress conditions. Sequence analysis of the CYP C-terminal region and two conserved domains, the "PERF" and "heme-binding" domains, confirmed the separate identities of the CYP genes analyzed. In order to explore the effects of different heat stress scenarios, samples of the scleractinian coral Acropora millepora were exposed to elevated temperatures incrementally over an 18-h period (rapid thermal stress) and over a 120-h period (gradual thermal stress). After 18 h of gradual heating and incubation at 26 degrees C, the Symbiodinium CYP mRNA pool was approximately 30% larger, while a further 6 degrees C increase to a temperature above the average sea temperature (29 degrees C after 72 h) resulted in a 2- to 4-fold increase in CYP expression. Both rapid heat stress and gradual heat stress at 32 degrees C resulted in 50% to 90% decreases in CYP gene transcript abundance. Consequently, the initial upregulation of expression of CYP genes at moderately elevated temperatures (26 degrees C and 29 degrees C) was followed by a decrease in expression under the greater thermal stress conditions at 32 degrees C. These findings indicate that in the coral-alga symbiosis under heat stress conditions there is production of chemical stressors and/or transcriptional factors that regulate the expression of genes, such as the genes encoding cytochrome P450 monooxygenases, that are involved in the first line of an organism's chemical defense.

  20. Significance of cytochrome P450 system responses and levels of bile fluorescent aromatic compounds in marine wildlife following oil spills

    International Nuclear Information System (INIS)

    Lee, R.F.; Anderson, J.W.

    2005-01-01

    The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 in marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to

  1. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Carlo Barnaba

    2017-05-01

    Full Text Available Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome b5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  2. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    International Nuclear Information System (INIS)

    Meier, U.T.; Meyer, U.A.

    1987-01-01

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single [ 125 I]-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme

  3. The effect of lycopene on the total cytochrome P450, CYP1A2 and CYP2E1

    Directory of Open Access Journals (Sweden)

    Melva Louisa

    2009-12-01

    Full Text Available Aim: Some carotenoids such as canthaxantin, astaxanthin and beta apo-8’-carotenal were reported to have modulatoryeffect on the cytochrome P450. The present study was conducted to investigate the effects of lycopene, a nonprovitamin A carotenoid, on microsomal cytochrome P450, CYP1A2 and CYP2E1.Methods: Total cytochrome P450 levels, CYP1A2 and CYP2E1-catalyzed reactions (acetanilide 4-hydroxylation and p-nitrophenol hydroxylation were studied in the liver microsomes of male Sprague Dawley rats. Microsomes were prepared using differential centrifugation combined with calcium aggregation method. Lycopene was orally administered in the dosages of 0, 25, 50 or 100 mg/kgBW/day for 14 days in a repeated fashion. Data were analyzed using ANOVA test.Results: Total cytochrome P450 level and acetanilide 4-hydroxylase activity were unaffected by any of the treatments. The CYP2E1 probe enzyme (p-nitrophenol hydroxylase was significantly reduced by repeated administration of 100mg/ kgBW/day lycopene (7.88 + 2.04 vs 12.26 + 2.77 n mol/min/mg prot.Conclusion: The present results suggest that lycopene does not affect the total cytochrome P450 or CYP1A2 activity but it inhibits the activity of CYP2E1 (p-nitrophenol hydroxylase in the rat. (Med J Indones 2009; 18: 233-8Keywords: lycopene, cytochrome P450, CYP1A2, CYP2E1

  4. Influence of sex hormones on relative quantities of multiple species of cytochrome P-450 in rat liver microsomes

    International Nuclear Information System (INIS)

    Fujita, S.; Peisach, J.; Chevion, M.; Hebrew Univ., Jerusalem

    1981-01-01

    EPR spectra of rat liver microsomes from male, female and hormonally-treated castrated hepatectomized rats were studied. The spectra, especially in the region of gsub(max) suggested a heterogeneity of local environments of the low spin ferric heme indicative of multiple structures for cytochrome P-450. Certain features in the spectrum correlated with sexual differences. It is suggested that the changes in the relative amplitudes of the EPR features represent differences in the relative abundance of the individual proteins in the mixture that, in turn, are related to the sexual differences of metabolic patterns for reactions catalyzed by cytochrome P-450. (author)

  5. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    Science.gov (United States)

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  6. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    Science.gov (United States)

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  8. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene

    NARCIS (Netherlands)

    Cankar, K.; van Houwelingen, A.; Bosch, H.J.; Sonke, T.; Bouwmeester, H.; Beekwilder, J.P.

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene

  11. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    Science.gov (United States)

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.

  12. Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues

    International Nuclear Information System (INIS)

    Chung, B.; Picado-Leonard, J.; Haniu, M.; Bienkowski, M.; Hall, P.F.; Shively, J.E.; Miller, W.L.

    1987-01-01

    P450c17 is the single enzyme mediating both 17α-hydroxylase (steroid 17α-monooxygenase, EC 1.14.99.9) and 17,20 lyase activities in the synthesis of steroid hormones. It has been suggested that different P450c17 isozymes mediate these activities in the adrenal gland and testis. The authors sequenced 423 of the 509 amino acids (83%) of the porcine adrenal enzyme; based on this partial sequence, a 128-fold degenerate 17-mer was synthesized and used to screen a porcine adrenal cDNA library. This yielded a 380-base cloned cDNA, which in turn was used to isolate several human adrenal cDNAs. The longest of these, λ hac 17-2, is 1754 base pairs long and includes the full-length coding region, the complete 3'-untranslated region, and 41 bases of the 5'-untranslated region. This cDNA encodes a protein of 508 amino acids having a predicted molecular weight of 57,379.82. High-stringency screening of a human testicular cDNA library yielded a partial clone containing 1303 identical bases. RNA gel blots and nuclease S1-protection experiments confirm that the adrenal and testicular P450c17 mRNAs are indistinguishable. These data indicate that the testis possesses a P450c17 identical to that in the adrenal. The human amino acid sequence is 66.7% homologous to the corresponding regions of the porcine sequence, and the human cDNA and amino acid sequences are 80.1 and 70.3% homologous, respectively, to bovine adrenal P450c17 cDNA. Both comparisons indicate that a central region comprising amino acid residues 160-268 is hypervariable among these species of P450c17

  13. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    Science.gov (United States)

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  14. Hydrogen atom abstraction of 3,5-disubstituted analogues of paracetamol by horseradish peroxidase and cytochrome P450

    NARCIS (Netherlands)

    Bessems, J.G.M.; Groot, M.J. de; Baede, E.J.; Koppele, J.M. te; Vermeulen, N.P.E.

    1998-01-01

    1. The formation of free radicals during enzyme catalysed oxidation of eight 3,5-disubstituted analogues of paracetamol (PAR) has been studied. A simple peroxidase system as well as cytochrome P450-containing systems were used. Radicals were detected by electron spin resonance (ESR) on incubation of

  15. Metabolic stereoselectivity of cytochrome P450 3A4 towards deoxypodophyllotoxin : In silico predictions and experimental validation

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Vasilev, Nikolay P.; Schneidman-Duhovny, Dina; Muntendarn, Remco; Woerdenbag, Herman J.; Quax, Wim J.; Wolfson, Haim J.; Ionkova, Iliana; Kayser, Oliver

    Deoxypodophyllotoxin is stereoselectively converted into epipodophyllotoxin by recombinant human cytochrome P450 3A4 (CY-P3A4). Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for hydroxylation of deoxypodophyllotoxin by CYP3A4 at C7 position were 1.93 mu M and 1.48

  16. Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states

    DEFF Research Database (Denmark)

    Laursen, Tomas; Singha, Aparajita; Rantzau, Nicolai

    2014-01-01

    450 enzymes. Measurements and statistical analy-sis of individual catalytic turnover cycles shows POR to sample at least two major functional states. This phenotype may underlie regulatory interactions with different cytochromes P450 but to date remained masked in bulk kinetics. To ensure that we...

  17. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  18. Comprehensive and Automated Linear Interaction Energy Based Binding-Affinity Prediction for Multifarious Cytochrome P450 Aromatase Inhibitors

    NARCIS (Netherlands)

    van Dijk, Marc; Ter Laak, Antonius M; Wichard, Jörg D; Capoferri, Luigi; Vermeulen, Nico P E; Geerke, Daan P

    2017-01-01

    Cytochrome P450 aromatase (CYP19A1) plays a key role in the development of estrogen dependent breast cancer, and aromatase inhibitors have been at the front line of treatment for the past three decades. The development of potent, selective and safer inhibitors is ongoing with in silico screening

  19. Whole genome identification, phylogeny and evolution of the cytochrome P450 family 2 (CYP2) sub-families in birds

    DEFF Research Database (Denmark)

    Almeida, Daniela; Maldonado, Emanuel; Khan, Imran

    2016-01-01

    The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 novel avian who...

  20. Effects of MicroRNA-34a on the Pharmacokinetics of Cytochrome P450 Probe Drugs in Mice.

    Science.gov (United States)

    Jilek, Joseph L; Tian, Ye; Yu, Ai-Ming

    2017-05-01

    MicroRNAs (miRNAs or miRs), including miR-34a, have been shown to regulate nuclear receptor, drug-metabolizing enzyme, and transporter gene expression in various cell model systems. However, to what degree miRNAs affect pharmacokinetics (PK) at the systemic level remains unknown. In addition, miR-34a replacement therapy represents a new cancer treatment strategy, although it is unknown whether miR-34a therapeutic agents could elicit any drug-drug interactions. To address this question, we refined a practical single-mouse PK approach and investigated the effects of a bioengineered miR-34a agent on the PK of several cytochrome P450 probe drugs (midazolam, dextromethorphan, phenacetin, diclofenac, and chlorzoxazone) administered as a cocktail. This approach involves manual serial blood microsampling from a single mouse and requires a sensitive liquid chromatography-tandem mass spectrometry assay, which was able to illustrate the sharp changes in midazolam PK by ketoconazole and pregnenolone 16 α -carbonitrile as well as phenacetin PK by α -naphthoflavone and 3-methylcholanthrene. Surprisingly, 3-methylcholanthrene also decreased systemic exposure to midazolam, whereas both pregnenolone 16 α -carbonitrile and 3-methylcholanthrene largely reduced the exposure to dextromethorphan, diclofenac, and chlorzoxazone. Finally, the biologic miR-34a agent had no significant effects on the PK of cocktail drugs but caused a marginal (45%-48%) increase in systemic exposure to midazolam, phenacetin, and dextromethorphan in mice. In vitro validation of these data suggested that miR-34a slightly attenuated intrinsic clearance of dextromethorphan. These findings from single-mouse PK and corresponding mouse liver microsome models suggest that miR-34a might have minor or no effects on the PK of coadministered cytochrome P450-metabolized drugs. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-05-01

    Full Text Available Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys, that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT. We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato.Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2 and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.

  2. Generalized cytochrome P450-mediated oxidation and oxygenation reactions in aromatic substrates with activated N-H, O-H, C-H, or S-H substituents

    NARCIS (Netherlands)

    Koymans, L.; Donné-Op den Kelder, G M; te Koppele, J.M.; Vermeulen, N P

    1. The general mechanism of metabolic oxidation of substrates by cytochromes P450 (P450s) appears to consist of sequential one-electron oxidation steps rather than of a single concerted transfer of activated oxygen species from P450 to substrates. 2. In case of the acetanilides paracetamol (PAR),

  3. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    Science.gov (United States)

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  4. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    Science.gov (United States)

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Degradation of Diuron by Phanerochaete chrysosporium: Role of Ligninolytic Enzymes and Cytochrome P450

    Directory of Open Access Journals (Sweden)

    Jaqueline da Silva Coelho-Moreira

    2013-01-01

    Full Text Available The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μg/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl-3-methylurea] and DCPU [(3,4-dichlorophenylurea], were detected in the culture medium at the concentrations of 0.74 μg/mL and 0.06 μg/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT, a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.

  6. Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450.

    Science.gov (United States)

    Coelho-Moreira, Jaqueline da Silva; Bracht, Adelar; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina

    2013-01-01

    The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μ g/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μ g/mL and 0.06 μ g/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.

  7. Reverse Conservation Analysis Reveals the Specificity Determining Residues of Cytochrome P450 Family 2 (CYP 2

    Directory of Open Access Journals (Sweden)

    Tai-Sung Lee

    2008-01-01

    Full Text Available The concept of conservation of amino acids is widely used to identify important alignment positions of orthologs. The assumption is that important amino acid residues will be conserved in the protein family during the evolutionary process. For paralog alignment, on the other hand, the opposite concept can be used to identify residues that are responsible for specificity. Assuming that the function-specific or ligand-specific residue positions will have higher diversity since they are under evolutionary pressure to fit the target specificity, these function-specific or ligand-specific residues positions will have a lower degree of conservation than other positions in a highly conserved paralog alignment. This study assessed the ability of reverse conservation analysis to identify function-specific and ligand-specific residue positions in closely related paralog. Reverse conservation analysis of paralog alignments successfully identified all six previously reported substrate recognition sites (SRSs in cytochrome P450 family 2 (CYP 2. Further analysis of each subfamily identified the specificity-determining residues (SDRs that have been experimentally found. New potential SDRs were also predicted and await confirmation by further experiments or modeling calculations. This concept may be also applied to identify SDRs in other protein families.

  8. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Babu, Peram Ravindra; Rao, Khareedu Venkateswara; Reddy, Vudem Dashavantha

    2013-01-15

    Flax CYPome analysis resulted in the identification of 334 putative cytochrome P450 (CYP450) genes in the cultivated flax genome. Classification of flax CYP450 genes based on the sequence similarity with Arabidopsis orthologs and CYP450 nomenclature, revealed 10 clans representing 44 families and 98 subfamilies. CYP80, CYP83, CYP92, CYP702, CYP705, CYP708, CYP728, CYP729, CYP733 and CYP736 families are absent in the flax genome. The subfamily members exhibited conserved sequences, length of exons and phasing of introns. Similarity search of the genomic resources of wild flax species Linum bienne with CYP450 coding sequences of the cultivated flax, revealed the presence of 127 CYP450 gene orthologs, indicating amplification of novel CYP450 genes in the cultivated flax. Seven families CYP73, 74, 75, 76, 77, 84 and 709, coding for enzymes associated with phenylpropanoid/fatty acid metabolism, showed extensive gene amplification in the flax. About 59% of the flax CYP450 genes were present in the EST libraries. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Progesterone Metabolites Produced by Cytochrome P450 3A Modulate Uterine Contractility in a Murine Model

    Science.gov (United States)

    Patil, Avinash S.; Swamy, Geeta K.; Murtha, Amy P.; Heine, R. Phillips; Zheng, Xiaomei; Grotegut, Chad A.

    2015-01-01

    Objective: We seek to characterize the effect of progesterone metabolites on spontaneous and oxytocin-induced uterine contractility. Study Design: Spontaneous contractility was studied in mouse uterine horns after treatment with progesterone, 2α-hydroxyprogesterone, 6β-hydroxyprogesterone (6β-OHP), 16α-hydroxyprogesterone (16α-OHP), or 17-hydroxyprogesterone caproate (17-OHPC) at 10−9 to 10−6 mol/L. Uterine horns were exposed to progestins (10−6 mol/L), followed by increasing concentrations of oxytocin (1-100 nmol/L) to study oxytocin-induced contractility. Contraction parameters were compared for each progestin and matched vehicle control using repeated measures 2-way analysis of variance. In vitro metabolism of progesterone by recombinant cytochrome P450 3A (CYP3A) microsomes (3A5, 3A5, and 3A7) identified major metabolites. Results: Oxytocin-induced contractile frequency was decreased by 16α-OHP (P = .03) and increased by 6β-OHP (P = .05). Progesterone and 17-OHPC decreased oxytocin-induced contractile force (P = .02 and P = .04, respectively) and frequency (P = .02 and P = .03, respectively). Only progesterone decreased spontaneous contractile force (P = .02). Production of 16α-OHP and 6β-OHP metabolites were confirmed in all CYP3A isoforms tested. Conclusion: Progesterone metabolites produced by maternal or fetal CYP3A enzymes influence uterine contractility. PMID:26037300

  10. Site-Specific Characterization of Cytochrome P450cam Conformations by Infrared Spectroscopy.

    Science.gov (United States)

    Basom, Edward J; Maj, Michał; Cho, Minhaeng; Thielges, Megan C

    2016-06-21

    Conformational changes are central to protein function but challenging to characterize with both high spatial and temporal precision. The inherently fast time scale and small chromophores of infrared (IR) spectroscopy are well-suited for characterization of potentially rapidly fluctuating environments, and when frequency-resolved probes are incorporated to overcome spectral congestion, enable characterization of specific sites in proteins. We selectively incorporated p-cyanophenylalanine (CNF) as a vibrational probe at five distinct locations in the enzyme cytochrome P450cam and used IR spectroscopy to characterize the environments in substrate and/or ligand complexes reflecting those in the catalytic cycle. Molecular dynamics (MD) simulations were performed to provide a structural basis for spectral interpretation. Together the experimental and simulation data suggest that the CN frequencies are sensitive to both long-range influences, resulting from the particular location of a residue within the enzyme, as well as short-range influences from hydrogen bonding and packing interactions. The IR spectra demonstrate that the environments and effects of substrate and/or ligand binding are different at each position probed and also provide evidence that a single site can experience multiple environments. This study illustrates how IR spectroscopy, when combined with the spectral decongestion and spatial selectivity afforded by CNF incorporation, provides detailed information about protein structural changes that underlie function.

  11. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  12. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  13. Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis

    Science.gov (United States)

    Ačimovič, Jure; Goyal, Sandeep; Košir, Rok; Goličnik, Marko; Perše, Martina; Belič, Ales; Urlep, Žiga; Guengerich, F. Peter; Rozman, Damjana

    2016-06-01

    Cholesterol synthesis is among the oldest metabolic pathways, consisting of the Bloch and Kandutch-Russell branches. Following lanosterol, sterols of both branches are proposed to be dedicated to cholesterol. We challenge this dogma by mathematical modeling and with experimental evidence. It was not possible to explain the sterol profile of testis in cAMP responsive element modulator tau (Crem τ) knockout mice with mathematical models based on textbook pathways of cholesterol synthesis. Our model differs in the inclusion of virtual sterol metabolizing enzymes branching from the pathway. We tested the hypothesis that enzymes from the cytochrome P450 (CYP) superfamily can participate in the catalysis of non-classical reactions. We show that CYP enzymes can metabolize multiple sterols in vitro, establishing novel branching points of cholesterol synthesis. In conclusion, sterols of cholesterol synthesis can be oxidized further to metabolites not dedicated to production of cholesterol. Additionally, CYP7A1, CYP11A1, CYP27A1, and CYP46A1 are parts of a broader cholesterol synthesis network.

  14. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    Directory of Open Access Journals (Sweden)

    Maryam Foroozesh

    2012-08-01

    Full Text Available The cytochrome P450 (CYP superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR, and three-dimensional quantitative structure activity relationships (3D-QSAR represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions.

  15. Virtual screening for cytochromes p450: successes of machine learning filters.

    Science.gov (United States)

    Burton, Julien; Ijjaali, Ismail; Petitet, François; Michel, André; Vercauteren, Daniel P

    2009-05-01

    Cytochromes P450 (CYPs) are crucial targets when predicting the ADME properties (absorption, distribution, metabolism, and excretion) of drugs in development. Particularly, CYPs mediated drug-drug interactions are responsible for major failures in the drug design process. Accurate and robust screening filters are thus needed to predict interactions of potent compounds with CYPs as early as possible in the process. In recent years, more and more 3D structures of various CYP isoforms have been solved, opening the gate of accurate structure-based studies of interactions. Nevertheless, the ligand-based approach still remains popular. This success can be explained by the growing number of available data and the satisfying performances of existing machine learning (ML) methods. The aim of this contribution is to give an overview of the recent achievements in ML applications to CYP datasets. Particularly, popular methods such as support vector machine, decision trees, artificial neural networks, k-nearest neighbors, and partial least squares will be compared as well as the quality of the datasets and the descriptors used. Consensus of different methods will also be discussed. Often reaching 90% of accuracy, the models will be analyzed to highlight the key descriptors permitting the good prediction of CYPs binding.

  16. The human genome project and novel aspects of cytochrome P450 research

    International Nuclear Information System (INIS)

    Ingelman-Sundberg, Magnus

    2005-01-01

    Currently, 57 active cytochrome P450 (CYP) genes and 58 pseudogenes are known to be present in the human genome. Among the genes discovered by initiatives in the human genome project are CYP2R1, CYP2W1, CYP2S1, CYP2U1 and CYP3A43, the latter apparently encoding a pseudoenzyme. The function, polymorphism and regulation of these genes are still to be discovered to a great extent. The polymorphism of drug metabolizing CYPs is extensive and influences the outcome of drug therapy causing lack of response or adverse drug reactions. The basis for the differences in the global distribution of the polymorphic variants is inactivating gene mutations and subsequent genetic drift. However, polymorphic alleles carrying multiple active gene copies also exist and are suggested in case of CYP2D6 to be caused by positive selection due to development of alkaloid resistance in North East Africa about 10,000-5000 BC. The knowledge about the CYP genes and their polymorphisms is of fundamental importance for effective drug therapy and for drug development as well as for understanding metabolic activation of carcinogens and other xenobiotics. Here, a short review of the current knowledge is given

  17. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia

    2014-10-26

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2\\'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2\\'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  18. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia; van Dijk, Aalt D J; Scaffidi, Adrian; Flematti, Gavin R.; Hofmann, Manuel; Charnikhova, Tatsiana; Verstappen, Francel; Hepworth, Jo; van der Krol, Sander; Leyser, Ottoline; Smith, Steven M.; Zwanenburg, Binne; Al-Babili, Salim; Ruyter-Spira, Carolien; Bouwmeester, Harro J.

    2014-01-01

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  19. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy.

    Science.gov (United States)

    Farrow, Scott C; Hagel, Jillian M; Beaudoin, Guillaume A W; Burns, Darcy C; Facchini, Peter J

    2015-09-01

    The gateway to morphine biosynthesis in opium poppy (Papaver somniferum) is the stereochemical inversion of (S)-reticuline since the enzyme yielding the first committed intermediate salutaridine is specific for (R)-reticuline. A fusion between a cytochrome P450 (CYP) and an aldo-keto reductase (AKR) catalyzes the S-to-R epimerization of reticuline via 1,2-dehydroreticuline. The reticuline epimerase (REPI) fusion was detected in opium poppy and in Papaver bracteatum, which accumulates thebaine. In contrast, orthologs encoding independent CYP and AKR enzymes catalyzing the respective synthesis and reduction of 1,2-dehydroreticuline were isolated from Papaver rhoeas, which does not accumulate morphinan alkaloids. An ancestral relationship between these enzymes is supported by a conservation of introns in the gene fusions and independent orthologs. Suppression of REPI transcripts using virus-induced gene silencing in opium poppy reduced levels of (R)-reticuline and morphinan alkaloids and increased the overall abundance of (S)-reticuline and its O-methylated derivatives. Discovery of REPI completes the isolation of genes responsible for known steps of morphine biosynthesis.

  20. Comparative study of hop-containing products on human cytochrome p450-mediated metabolism.

    Science.gov (United States)

    Foster, Brian C; Kearns, Nikia; Arnason, John T; Saleem, Ammar; Ogrodowczyk, Carolina; Desjardins, Suzanne

    2009-06-10

    Thirty-five national and international brands of beer were examined for their potential to affect human cytochrome P450 (CYP)-mediated metabolism. They represented the two main categories of beer, ales and lagers, and included a number of specialty products including bitter (porter, stout), coffee, ice, wheat, Pilsner, and hemp seed. Aliquots were examined for nonvolatile soluble solids, effect on CYP metabolism and P-glycoprotein (Pgp) transport, and major alpha- and beta-hop acids. Wide variance was detected in contents of alcohol, nonvolatile suspended solids, and hop acids and in the potential to affect CYP-mediated metabolism and Pgp-mediated efflux transport. Many of the products affected CYP2C9-mediated metabolism, and only two (NRP 306 and 307) markedly affected CYP3A4; hence, some products have the capacity to affect drug safety. CYP3A4, CYP3A5, CYP3A7, and CYP19 (aromatase) inhibition to the log concentration of beta-acid content was significant with r(2) > 0.37, suggesting that these components can account for some of the variation in inhibition of CYP metabolism.

  1. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    Science.gov (United States)

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.

  2. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    Science.gov (United States)

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families.

  3. Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1

    Science.gov (United States)

    Lafferty Doty, Sharon; Shang, Tanya Q.; Wilson, Angela M.; Tangen, Jeff; Westergreen, Aram D.; Newman, Lee A.; Strand, Stuart E.; Gordon, Milton P.

    2000-06-01

    Chlorinated solvents, especially trichloroethylene (TCE), are the most widespread groundwater contaminants in the United States. Existing methods of pumping and treating are expensive and laborious. Phytoremediation, the use of plants for remediation of soil and groundwater pollution, is less expensive and has low maintenance; however, it requires large land areas and there are a limited number of suitable plants that are known to combine adaptation to a particular environment with efficient metabolism of the contaminant. In this work, we have engineered plants with a profound increase in metabolism of the most common contaminant, TCE, by introducing the mammalian cytochrome P450 2E1. This enzyme oxidizes a wide range of important pollutants, including TCE, ethylene dibromide, carbon tetrachloride, chloroform, and vinyl chloride. The transgenic plants had a dramatic enhancement in metabolism of TCE of up to 640-fold as compared with null vector control plants. The transgenic plants also showed an increased uptake and debromination of ethylene dibromide. Therefore, transgenic plants with this enzyme could be used for more efficient remediation of many sites contaminated with halogenated hydrocarbons.

  4. Dynamics of water molecules in the active-site cavity of human cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars

    2007-01-01

    We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot....... In the simulations, the cavities are completely filled with water molecules, although with approximately 20% lower density than in bulk water. The 2A6 protein differs from the other three in that it has a very small cavity with only two water molecules and no exchange with the surroundings. The other three proteins...... channels, through which there is a quite frequent exchange of water molecules (one molecule is exchanged every 30-200 ps), except in 2A6. Most of the channels are observed also in the crystal structures, but two to three channels in each protein open only during the simulations. There are no water...

  5. Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway.

    Science.gov (United States)

    Alecu, Irina; Othman, Alaa; Penno, Anke; Saied, Essa M; Arenz, Christoph; von Eckardstein, Arnold; Hornemann, Thorsten

    2017-01-01

    The 1-deoxysphingolipids (1-deoxySLs) are atypical sphingolipids (SLs) that are formed when serine palmitoyltransferase condenses palmitoyl-CoA with alanine instead of serine during SL synthesis. The 1-deoxySLs are toxic to neurons and pancreatic β-cells. Pathologically elevated 1-deoxySLs cause the inherited neuropathy, hereditary sensory autonomic neuropathy type 1 (HSAN1), and are also found in T2D. Diabetic sensory polyneuropathy (DSN) and HSAN1 are clinically very similar, suggesting that 1-deoxySLs may be implicated in both pathologies. The 1-deoxySLs are considered to be dead-end metabolites, as they lack the C1-hydroxyl group, which is essential for the canonical degradation of SLs. Here, we report a previously unknown metabolic pathway, which is capable of degrading 1-deoxySLs. Using a variety of metabolic labeling approaches and high-resolution high-accuracy MS, we identified eight 1-deoxySL downstream metabolites, which appear to be formed by cytochrome P450 (CYP)4F enzymes. Comprehensive inhibition and induction of CYP4F enzymes blocked and stimulated, respectively, the formation of the downstream metabolites. Consequently, CYP4F enzymes might be novel therapeutic targets for the treatment of HSAN1 and DSN, as well as for the prevention of T2D. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Status of Resistance of Bemisia tabaci (Hemiptera: Aleyrodidae) to Neonicotinoids in Iran and Detoxification by Cytochrome P450-Dependent Monooxygenases.

    Science.gov (United States)

    Basij, M; Talebi, K; Ghadamyari, M; Hosseininaveh, V; Salami, S A

    2017-02-01

    Nine Bemisia tabaci (Gennadius) populations were collected from different regions of Iran. In all nine populations, only one biotype (B biotype) was detected. Susceptibilities of these populations to imidacloprid and acetamiprid were assayed. The lethal concentration 50 values (LC 50 ) for different populations showed a significant discrepancy in the susceptibility of B. tabaci to imidacloprid (3.76 to 772.06 mg l -1 ) and acetamiprid (4.96 to 865 mg l -1 ). The resistance ratio of the populations ranged from 9.72 to 205.20 for imidacloprid and 6.38 to 174.57 for acetamiprid. The synergistic effects of piperonylbutoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) were evaluated for the susceptible (RF) and resistant (JR) populations for the determination of the involvement of cytochrome P450-dependent monooxygenase and carboxylesterase, respectively, in their resistance mechanisms. The results showed that PBO overcame the resistance of the JR population to both imidacloprid and acetamiprid, with synergistic ratios of 72.7 and 106.9, respectively. Carboxylesterase, glutathione S-transferase and cytochrome P450-dependent monooxygenase were studied biochemically, for the purpose of measuring the activity of the metabolizing enzymes in order to determine which enzymes are directly involved in neonicotinoid resistance. There was an increase in the activity of cytochrome P450-dependent monooxygenase up to 17-fold in the resistant JR population (RR = 205.20). The most plausible activity of cytochrome P450-dependent monooxygenase correlated with the resistances of imidacloprid and acetamiprid, and this suggests that cytochrome P450-dependent monooxygenase is the only enzyme system responsible for neonicotinoid resistance in the nine populations of B. tabaci.

  7. Cytochrome P450 detection in liver of the catfish Ancistrus multispinis (Osteichthyes, Loricariidae

    Directory of Open Access Journals (Sweden)

    Claudio Klemz

    2010-04-01

    Full Text Available Sensitive biological responses to environmental contaminants are useful as early warning signals to predict the damages by long-term exposure. Protocols standardization to quantify biochemical parameters in different fish species is required to validate its use as biomarkers. Comparative studies from different fish species and its interpretation are a challenge for the validation of its use as general biomarkers, representative of environmental impact. In this study, the protocol for liver cytochrome P450 (CYP analysis from the native Brazilian fish Ancistrus multispinis was established. The microsome contamination by hemoglobin during the analysis of CYP in liver was detected, leading to misinterpretation of the results. The spectrophotometric method for CYP analysis was adapted in order to diminish the hemoglobin interference. Additionally, the western blotting method for CYP1A analysis was tested with success for this fish species.Respostas biológicas sensíveis aos contaminantes ambientais são úteis para prever efeitos prejudiciais devido a exposições crônicas. Padronização de protocolos para quantificar parâmetros bioquímicos em diferentes espécies de peixes é necessária para validar o uso como biomarcador. Estudos comparativos de diferentes espécies de peixe e sua interpretação são um avanço para a validação do uso de biomarcadores gerais, representativos do impacto ambiental. Neste estudo o protocolo para a análise do citocromo P450 (CYP do peixe nativo brasileiro Ancistrus multispinis foi estabelecido. Cyp é um biomarcador de exposição principalmente de hidrocarbonetos policíclicos aromáticos (HAP, bifenilas policloradas (PCB e dioxinas. A contaminação do microssomo pela hemoglobina durante as análises do CYP no fígado foi detectada, levando a uma interpretação errônea dos resultados. O método espectrofotométrico para análise do CYP foi adaptado para diminuir a interferência da hemoglobina. Al

  8. El citocromo P-450 y la respuesta terapéutica a los antimaláricos Cytochrome P-450 and the response to antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán

    2006-01-01

    permitan responder a las interrogantes que aún subsisten, entre ellas cuál es la ruta metabólica de otros medicamentos antimaláricos, la distribución en la población de los alelos de las enzimas que participan en su metabolismo, y la contribución de tales mutaciones al fracaso terapéutico, y predecir la respuesta a los tratamientos antimaláricos. CONCLUSIONES: La respuesta terapéutica a los medicamentos antimaláricos es un proceso multifactorial y poco comprendido, por lo que no es posible asignar a un fenotipo o a un genotipo una determinada responsabilidad en la respuesta terapéutica antimalárica. Se debe contemplar la influencia de factores biológicos y sociales, tales como la alimentación, el estado nutricional y cualquier proceso inflamatorio e infeccioso concomitante, que puedan ser frecuentes en las zonas con malaria endémica.OBJECTIVES: To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. METHODS: We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina", "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina", "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina", "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that

  9. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase.

    Science.gov (United States)

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-07-01

    Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Peroxisome proliferator activated receptor alpha regulates a male-specific cytochrome P450 in mouse liver.

    Science.gov (United States)

    Jeffery, Brett; Choudhury, Agharul I; Horley, Neill; Bruce, Mary; Tomlinson, Simon R; Roberts, Ruth A; Gray, Tim J B; Barrett, David A; Shaw, P Nicholas; Kendall, David; Bell, David R

    2004-09-15

    We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.

  11. The curious case of benzbromarone: insight into super-inhibition of cytochrome P450.

    Directory of Open Access Journals (Sweden)

    Abhinav Parashar

    Full Text Available Cytochrome P450 (CYP family of redox enzymes metabolize drugs and xenobiotics in liver microsomes. Isozyme CYP2C9 is reported to be inhibited by benzbromarone (BzBr and this phenomenon was hitherto explained by classical active-site binding. Theoretically, it was impossible to envisage the experimentally derived sub-nM Ki for an inhibitor, when supra-nM enzyme and 10X KM substrate concentrations were employed. We set out to find a more plausible explanation for this highly intriguing "super-inhibition" phenomenon. In silico docking of various BzBr analogs with known crystal structure of CYP2C9 did not provide any evidence in support of active-site based inhibition hypothesis. Experiments tested the effects of BzBr and nine analogs on CYPs in reconstituted systems of lab-purified proteins, complex baculosomes & crude microsomal preparations. In certain setups, BzBr and its analogs could even enhance reactions, which cannot be explained by an active site hypothesis. Generally, it was seen that Ki became smaller by orders of magnitude, upon increasing the dilution order of BzBr analogs. Also, it was seen that BzBr could also inhibit other CYP isozymes like CYP3A4, CYP2D6 and CYP2E1. Further, amphipathic derivatives of vitamins C & E (scavengers of diffusible reactive oxygen species or DROS effectively inhibited CYP2C9 reactions in different reaction setups. Therefore, the inhibition of CYP activity by BzBr analogs (which are also surface-active redox agents is attributed to catalytic scavenging of DROS at phospholipid interface. The current work expands the scope of interpretations of inhibitions in redox enzymes and ushers in a new cellular biochemistry paradigm that small amounts of DROS may be obligatorily required in routine redox metabolism for constructive catalytic roles.

  12. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes.

    Science.gov (United States)

    Mikov, Momir; Đanić, Maja; Pavlović, Nebojša; Stanimirov, Bojan; Goločorbin-Kon, Svetlana; Stankov, Karmen; Al-Salami, Hani

    2017-12-01

    Following the drug administration, patients are exposed not only to the parent drug itself, but also to the metabolites generated by drug-metabolizing enzymes. The role of drug metabolites in cytochrome P450 (CYP) inhibition and subsequent drug-drug interactions (DDIs) have recently become a topic of considerable interest and scientific debate. The list of metabolites that were found to significantly contribute to clinically relevant DDIs is constantly being expanded and reported in the literature. New strategies have been developed for better understanding how different metabolites of a drug candidate contribute to its pharmacokinetic properties and pharmacological as well as its toxicological effects. However, the testing of the role of metabolites in CYP inhibition is still not routinely performed during the process of drug development, although the evaluation of time-dependent CYP inhibition during the clinical candidate selection process may provide information on possible effects of metabolites in CYP inhibition. Due to large number of compounds to be tested in the early stages of drug discovery, the experimental approaches for assessment of CYP-mediated metabolic profiles are particularly resource demanding. Consequently, a large number of in silico or computational tools have been developed as useful complement to experimental approaches. In summary, circulating metabolites may be recognized as significant CYP inhibitors. Current data may suggest the need for an optimized effort to characterize the inhibitory potential of parent drugs metabolites on CYP, as well as the necessity to develop the advanced in vitro models that would allow a better quantitative predictive value of in vivo studies.

  13. Does cytochrome P450 liver isoenzyme induction increase the risk of liver toxicity after paracetamol overdose?

    Directory of Open Access Journals (Sweden)

    Kalsi SS

    2011-10-01

    Full Text Available Sarbjeet S Kalsi1,2, David M Wood2–4, W Stephen Waring5, Paul I Dargan2–4 1Emergency Department, 2Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London; 3King's Health Partners, 4King's College London, London; 5York Teaching Hospital NHS Foundation Trust, York, UK Abstract: Paracetamol (acetaminophen, N-acetyl-p-aminophenol, 4-hydroxyacetanilide is the most common cause of acute liver failure in developed countries. There are a number of factors which potentially impact on the risk of an individual developing hepatotoxicity following an acute paracetamol overdose. These include the dose of paracetamol ingested, time to presentation, decreased liver glutathione, and induction of cytochrome P450 (CYP isoenzymes responsible for the metabolism of paracetamol to its toxic metabolite N-acetyl-p-benzoquinoneimine (NAPQI. In this paper, we review the currently published literature to determine whether induction of relevant CYP isoenzymes is a risk factor for hepatotoxicity in patients with acute paracetamol overdose. Animal and human in vitro studies have shown that the CYP isoenzyme responsible for the majority of human biotransformation of paracetamol to NAPQI is CYP2E1 at both therapeutic and toxic doses of paracetamol. Current UK treatment guidelines suggest that patients who use a number of drugs therapeutically should be treated as “high-risk” after paracetamol overdose. However, based on our review of the available literature, it appears that the only drugs for which there is evidence of the potential for an increased risk of hepatotoxicity associated with paracetamol overdose are phenobarbital, primidone, isoniazid, and perhaps St John's wort. There is no evidence that other drugs often quoted as increasing risk, such as carbamazepine, phenytoin, primidone, rifampicin, rifabutin, efavirenz, or nevirapine, should be considered risk factors for hepatotoxicity in patients presenting with acute paracetamol overdose. Keywords

  14. Developing and Evaluating the HRM Technique for Identifying Cytochrome P450 2D6 Polymorphisms.

    Science.gov (United States)

    Lu, Hsiu-Chin; Chang, Ya-Sian; Chang, Chun-Chi; Lin, Ching-Hsiung; Chang, Jan-Gowth

    2015-05-01

    Cytochrome P450 2D6 is one of the important enzymes involved in the metabolism of many widely used drugs. Genetic polymorphisms of CYP2D6 can affect its activity. Therefore, an efficient method for identifying CYP2D6 polymorphisms is clinically important. We developed a high-resolution melting (HRM) analysis to investigate CYP2D6 polymorphisms. Genomic DNA was extracted from peripheral blood samples from 71 healthy individuals. All nine exons of the CYP2D6 gene were sequenced before screening by HRM analysis. This method can detect the most genotypes (*1, *2, *4, *10, *14, *21 *39, and *41) of CYP2D6 in Chinese. All samples were successfully genotyped. The four most common mutant CYP2D6 alleles (*1, *2, *10, and *41) can be genotyped. The single nucleotides polymorphism (SNP) frequencies of 100C > T (rs1065852), 1039C > T (rs1081003), 1661G > C (rs1058164), 2663G > A (rs28371722), 2850C > T (rs16947), 2988G > A (rs28371725), 3181A > G, and 4180G > C (rs1135840) were 58%, 61%, 73%, 1%, 13%, 3%, 1%, 73%, respectively. We identified 100% of all heterozygotes without any errors. The two homozygous genotypes (1661G > C and 4180G > C) can be distinguished by mixing with a known genotype sample to generate an artificial heterozygote for HRM analysis. Therefore, all samples could be identified using our HRM method, and the results of HRM analysis are identical to those obtained by sequencing. Our method achieved 100% sensitivity, specificity, positive prediction value and negative prediction value. HRM analysis is a nongel resolution method that is faster and less expensive than direct sequencing. Our study shows that it is an efficient tool for typing CYP2D6 polymorphisms. © 2014 Wiley Periodicals, Inc.

  15. Cytochrome P450 2E1 polymorphism and nasopharyngeal carcinoma development in Thailand: a correlative study

    International Nuclear Information System (INIS)

    Kongruttanachok, Narisorn; Sukdikul, Sairoong; Setavarin, Surachai; Kerekhjanarong, Verachai; Supiyaphun, Pakpoom; Voravud, Narin; Poovorawan, Yong; Mutirangura, Apiwat

    2001-01-01

    Nasopharyngeal carcinoma (NPC) is a rare tumor in most parts of the world but occurs at relatively high frequency among people of Chinese descent. The cytochrome P450 2E1 enzyme (CYP2E1) is responsible for the metabolic activation of nitrosamines, and has been shown to be a susceptibility gene for NPC development in Taiwan [RR = 2.6; 95%CI = 1.2-5.7]. Since there has been only one report of this link, it was decided to investigate the susceptibility of CYP2E1 to NPC development in other populations. Therefore, the correlation between the RsaI polymorphism of this gene and NPC was studied in-patients including Thai and Chinese in Thailand. The present study comprised 217 cases diagnosed with NPC and 297 healthy controls. Similar to the result found in Taiwanese, a homozygous uncut genotype demonstrated a higher relative risk both when all cases were analyzed [RR = 2.19; 95%CI = 0.62-8.68] or individual racial groups, Thai [RR = 1.51; 95%CI = 0.08-90.06] or Chinese [RR = 1.99; 95%CI = 0.39-10.87]. The ethnicity-adjusted odds ratio is 2.39 with 95%CI, 0.72-7.89. Though our finding was not statistically significant due to the moderate sample size of the study, similarity to the study in Taiwan with only a slight loss in precision was demonstrated. The higher RR found for the same genotype in distinct populations confirmed that CYP2E1 is one of several NPC susceptibility genes and that the RsaI minus variant is one mutation that affects phenotype

  16. Ancestry-Adjusted Vitamin D Metabolite Concentrations in Association With Cytochrome P450 3A Polymorphisms.

    Science.gov (United States)

    Wilson, Robin Taylor; Masters, Loren D; Barnholtz-Sloan, Jill S; Salzberg, Anna C; Hartman, Terryl J

    2018-04-01

    We investigated the association between genetic polymorphisms in cytochrome P450 (CYP2R1, CYP24A1, and the CYP3A family) with nonsummer plasma concentrations of vitamin D metabolites (25-hydroxyvitamin D3 (25(OH)D3) and proportion 24,25-dihydroxyvitamin D3 (24,25(OH)2D3)) among healthy individuals of sub-Saharan African and European ancestry, matched on age (within 5 years; n = 188 in each ancestral group), in central suburban Pennsylvania (2006-2009). Vitamin D metabolites were measured using high-performance liquid chromatography with tandem mass spectrometry. Paired multiple regression and adjusted least-squares mean analyses were used to test for associations between genotype and log-transformed metabolite concentrations, adjusted for age, sex, proportion of West-African genetic ancestry, body mass index, oral contraceptive (OC) use, tanning bed use, vitamin D intake, days from summer solstice, time of day of blood draw, and isoforms of the vitamin D receptor (VDR) and vitamin D binding protein. Polymorphisms in CYP2R1, CYP3A43, vitamin D binding protein, and genetic ancestry proportion remained associated with plasma 25(OH)D3 after adjustment. Only CYP3A43 and VDR polymorphisms were associated with proportion 24,25(OH)2D3. Magnitudes of association with 25(OH)D3 were similar for CYP3A43, tanning bed use, and OC use. Significant least-squares mean interactions (CYP2R1/OC use (P = 0.030) and CYP3A43/VDR (P = 0.013)) were identified. A CYP3A43 genotype, previously implicated in cancer, is strongly associated with biomarkers of vitamin D metabolism. Interactive associations should be further investigated.

  17. Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.

    Science.gov (United States)

    Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle

    2017-08-01

    Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1.

    Science.gov (United States)

    Cui, Ying-Lu; Xue, Qiao; Zheng, Qing-Chuan; Zhang, Ji-Long; Kong, Chui-Peng; Fan, Jing-Rong; Zhang, Hong-Xing

    2015-10-01

    Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved. Copyright © 2015. Published by Elsevier B.V.

  19. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.

    Science.gov (United States)

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P; Permentier, Hjalmar P

    2011-05-01

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the oxidation reactions initiated by charge transfer, has shown promise in the mimicry of certain CYP-mediated metabolic reactions. The electrochemical approach may further be utilized in an automated manner in microfluidics devices facilitating fast screening of oxidative drug metabolism. A wide range of in vivo oxidation reactions, particularly those initiated by hydrogen atom transfer, can be imitated through the electrochemically-assisted Fenton reaction. This reaction is based on O-O bond activation in hydrogen peroxide and oxidation by hydroxyl radicals, wherein electrochemistry is used for the reduction of molecular oxygen to hydrogen peroxide, as well as the reduction of Fe(3+) to Fe(2+). Metalloporphyrins, as surrogates for the prosthetic group in CYP, utilizing metallo-oxo reactive species, can also be used in combination with electrochemistry. Electrochemical reduction of metalloporphyrins in solution or immobilized on the electrode surface activates molecular oxygen in a manner analogous to the catalytical cycle of CYP and different metalloporphyrins can mimic selective oxidation reactions. Chemoselective, stereoselective, and regioselective oxidation reactions may be mimicked using electrodes that have been modified with immobilized enzymes, especially CYP itself. This review summarizes the recent attempts in utilizing electrochemistry as a versatile analytical and preparative technique in the mimicry of oxidative drug metabolism by CYP. © 2011 Bentham Science Publishers Ltd.

  20. Albendazole metabolism in patients with neurocysticercosis: antipyrine as a multifunctional marker drug of cytochrome P450

    Directory of Open Access Journals (Sweden)

    M.P. Marques

    2002-02-01

    Full Text Available The present study investigates the isoform(s of cytochrome P450 (CYP involved in the metabolism of albendazole sulfoxide (ASOX to albendazole sulfone (ASON in patients with neurocysticercosis using antipyrine as a multifunctional marker drug. The study was conducted on 11 patients with neurocysticercosis treated with a multiple dose regimen of albendazole for 8 days (5 mg/kg every 8 h. On the 5th day of albendazole treatment, 500 mg antipyrine was administered po. Blood and urine samples were collected up to 72 h after antipyrine administration. Plasma concentrations of (+-ASOX, (--ASOX and ASON were determined by HPLC using a chiral phase column and detection by fluorescence. The apparent clearance (CL/f of ASON and of the (+ and (--ASOX enantiomers were calculated and compared to total antipyrine clearance (CL T and the clearance for the production of the three major antipyrine metabolites (CLm. A correlation (P<=0.05 was obtained only between the CL T of antipyrine and the CL/f of ASON (r = 0.67. The existence of a correlation suggests the involvement of CYP isoforms common to the metabolism of antipyrine and of ASOX to ASON. Since the CL T of antipyrine is a general measure of CYP enzymes but with a slight to moderate weight toward CYP1A2, we suggest the involvement of this enzyme in ASOX to ASON metabolism in man. The study supports the establishment of a specific marker drug of CYP1A2 in the study of the in vivo metabolism of ASOX to ASON.

  1. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  2. Cytochrome P450 2E1 participation in the pathogenesis of experimental metabolic syndrome in guinea pigs

    Directory of Open Access Journals (Sweden)

    V. V. Rushchak

    2016-04-01

    Full Text Available In this work the experimental metabolic syndrome on the basis of protamine sulfate modeling in guinea pigs was reproduced and pathological processes in the liver of experimental animals were studied. We determined the level of free radicals and markers of liver damage in the blood of experimental animals. We investigated the liver glycogen content and K+,Na+-ATPase activity in the liver of experimental animals as well as measured the cytochrome P450 2E1 (CYP2E1 expression – one of the main factors of oxidative stress. Evidence of development of hepatotoxic processes, increasing of the CYP2E1 level as well as of the free radical level in the animals with metabolic syndrome were found. Using of CYP2E1 inhibitors had shown that the free radical level in the blood of experimental animals depended on the level of the enzyme expression and activity. The obtained results suggest that the changes in the CYP2E1 expression play an important role in the development of hepatotoxic processes upon experimental metabolic syndrome. It was assumed that pharmacological correction of the enzyme expression may be an important mechanism for the influence on the metabolic syndrome clinical course.

  3. Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significantly correlated with cytochrome P450 suppression.

    Science.gov (United States)

    Chen, Xia; Sun, Chang-Kai; Han, Guo-Zhu; Peng, Jin-Yong; Li, Ying; Liu, Yan-Xia; Lv, Yuan-Yuan; Liu, Ke-Xin; Zhou, Qin; Sun, Hui-Jun

    2009-04-21

    To investigate the hepatoprotective activity of tea polyphenols (TP) and its relation with cytochrome P450 (CYP450) expression in mice. Hepatic CYP450 and CYPb(5) levels were measured by UV-spectrophotometry in mice 2 d after intraperitoneal TP (25, 50 and 100 mg/kg per day). Then the mice were intragastricly pre-treated with TP (100, 200 and 400 mg/kg per day) for six days before paracetamol (1000 mg/kg) was given. Their acute mortality was compared with that of control mice. The mice were pre-treated with TP (100, 200, and 400 mg/kg per day) for five days before paracetamol (500 mg/kg) was given. Hepatic CYP2E1 and CYP1A2 protein and mRNA expression levels were evaluated by Western blotting, immunohistochemical staining and transcriptase-polymerase chain reaction. The hepatic CYP450 and CYPb(5) levels in mice of TP-treated groups (100, 200 and 400 mg/kg per day) were decreased in a dose-dependent manner compared with those in the negative control mice. TP significantly attenuated the paracetamol-induced hepatic injury and dramatically reduced the mortality of paracetamol-treated mice. Furthermore, TP reduced CYP2E1 and CYP1A2 expression at both protein and mRNA levels in a dose-dependent manner. TP possess potential hepatoprotective properties and can suppress CYP450 expression.

  4. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    Directory of Open Access Journals (Sweden)

    Li Xianchun

    2007-03-01

    Full Text Available Abstract Background Transposons, i.e. transposable elements (TEs, are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements, SINEs (short interspersed nuclear elements, MITEs (miniature inverted-repeat transposable elements, one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1 implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1 involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes.

  5. Posttranslational modification of hepatic cytochrome P-450. Phosphorylation of phenobarbital-inducible P-450 forms PB-4 (IIB1) and PB-5 (IIB2) in isolated rat hepatocytes and in vivo

    International Nuclear Information System (INIS)

    Koch, J.A.; Waxman, D.J.

    1989-01-01

    Phosphorylation of hepatic cytochrome P-450 was studied in isolated hepatocytes incubated in the presence of agents known to stimulate protein kinase activity. Incubation of hepatocytes isolated from phenobarbital-induced adult male rats with [ 32 P]orthophosphate in the presence of N 6 , O 2' -dibutyryl-cAMP (diBtcAMP) or glucagon resulted in the phosphorylation of microsomal proteins that are immunoprecipitable by polyclonal antibodies raised to the phenobarbital-induced P-450 form PB-4 (P-450 gene IIB1). Two-dimensional gel electrophoresis revealed that these 32 P-labeled microsomal proteins consist of a mixture of P-450 PB-4 and the closely related P-450 PB-5 (gene IIB2), both of which exhibited heterogeneity in the isoelectric focusing dimension. Phosphorylation of both P-450 forms was markedly enhanced by diBtcAMP at concentrations as low as 5 μM. Phosphoamino acid analysis of the 32 P-labeled P-450 PB-4 + PB-5 immunoprecipitate revealed that these P-450s are phosphorylated on serine in the isolated hepatocytes. Peptide mapping indicated that the site of phosphorylation in hepatocytes is indistinguishable from the site utilized by cAMP-dependent protein kinase in vitro, which was previously identified as serine-128 for the related rabbit protein P-450 LM2. In vitro analyses revealed that phosphorylation of P-450 PB-4 leads to a loss of monooxygenase activity, suggesting that the posttranslational modification of this P-450 enzyme by cAMP-dependent protein kinase may play a role in the modulation of P-450-dependent monooxygenase activity in vivo

  6. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions.

    Science.gov (United States)

    Li, Guannan; Huang, Ke; Nikolic, Dejan; van Breemen, Richard B

    2015-11-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry-based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography-tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. The Flavin-Containing Reductase Domain of Cytochrome P450 BM3 Acts as a Surrogate for Mammalian NADPH-P450 Reductase.

    Science.gov (United States)

    Park, Seon-Ha; Kang, Ji-Yeon; Kim, Dong-Hyun; Ahn, Taeho; Yun, Chul-Ho

    2012-11-01

    Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics (kcat =4120 min(-1), Km =77 μM for MTT and kcat =6580 min(-1), Km =51 μM for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR.

  8. Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2.

    Science.gov (United States)

    Belkina, N V; Lisurek, M; Ivanov, A S; Bernhardt, R

    2001-12-15

    The final steps of the biosynthesis of glucocorticoids and mineralocorticoids in the adrenal cortex require the action of two different cytochromes P450--CYP11B1 and CYP11B2. Homology modelling of the three-dimensional structures of these cytochromes was performed based on crystallographic coordinates of two bacterial P450s, CYP102 (P450BM-3) and CYP108 (P450terp). Principal attention was given to the modelling of the active sites and a comparison of the active site structures of CYP11B1 and CYP11B2 was performed. It can be demonstrated that key residue contacts within the active site appear to depend on the orientation of the heme. The obtained 3D structures of CYP11B1 and CYP11B2 were used for investigation of structure-function relationships of these enzymes. Previously obtained results on naturally occurring mutants and on mutants obtained by site-directed mutagenesis are discussed.

  9. The molecular evolution of cytochrome P450 genes within and between drosophila species.

    Science.gov (United States)

    Good, Robert T; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-04-20

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Transcriptome Analysis of an Insecticide Resistant Housefly Strain: Insights about SNPs and Regulatory Elements in Cytochrome P450 Genes.

    Science.gov (United States)

    Mahmood, Khalid; Højland, Dorte H; Asp, Torben; Kristensen, Michael

    2016-01-01

    Insecticide resistance in the housefly, Musca domestica, has been investigated for more than 60 years. It will enter a new era after the recent publication of the housefly genome and the development of multiple next generation sequencing technologies. The genetic background of the xenobiotic response can now be investigated in greater detail. Here, we investigate the 454-pyrosequencing transcriptome of the spinosad-resistant 791spin strain in relation to the housefly genome with focus on P450 genes. The de novo assembly of clean reads gave 35,834 contigs consisting of 21,780 sequences of the spinosad resistant strain. The 3,648 sequences were annotated with an enzyme code EC number and were mapped to 124 KEGG pathways with metabolic processes as most highly represented pathway. One hundred and twenty contigs were annotated as P450s covering 44 different P450 genes of housefly. Eight differentially expressed P450s genes were identified and investigated for SNPs, CpG islands and common regulatory motifs in promoter and coding regions. Functional annotation clustering of metabolic related genes and motif analysis of P450s revealed their association with epigenetic, transcription and gene expression related functions. The sequence variation analysis resulted in 12 SNPs and eight of them found in cyp6d1. There is variation in location, size and frequency of CpG islands and specific motifs were also identified in these P450s. Moreover, identified motifs were associated to GO terms and transcription factors using bioinformatic tools. Transcriptome data of a spinosad resistant strain provide together with genome data fundamental support for future research to understand evolution of resistance in houseflies. Here, we report for the first time the SNPs, CpG islands and common regulatory motifs in differentially expressed P450s. Taken together our findings will serve as a stepping stone to advance understanding of the mechanism and role of P450s in xenobiotic detoxification.

  11. Magnetic circular dichroism studies on microsomal aryl hydrocarbon hydroxylase: comparison with cytochrome b/sub 5/ and cytochrome P-450/sub cam/

    Energy Technology Data Exchange (ETDEWEB)

    Vickery, L; Salmon, A; Sauer, K

    1975-01-01

    Magnetic circular dichroism spectra are reported for the visible and near ultraviolet spectral regions of liver microsomes from dimethylbenzanthracene-treated rats. The sequential addition of NADH, dithionite, and carbon monoxide enables us to determine contributions to the magnetic circular dichroism by cytochromes b/sub 5/ and P-450, which dominate the spectra. The magnetic circular dichroism of the microsomal preparation is compared with that of purified oxidized and reduced cytochrome b/sub 5/ from pig liver and with the camphor-complexed and camphor-free oxidized, reduced, and reduced carbonmonoxy cytochrome P-450/sub cam/ from Pseudomonas putida. The magnetic circular dichroism spectra of the membrane bound cytochrome b/sub 5/ are similar to those of the purified protein, indicating that little or no alteration in the environment of the heme occurs during the isolation procedure. The soluble bacterial cytochrome P-450/sub cam/ also appears to be a suitable model for microsomal P-450, although differences in the magnetic circular dichroism intensity are observed for the two enzymes. No effect of dimethylbenzanthracene on the magnetic circular dichroism spectra of induced compared to control rat microsomes could be observed.

  12. Soybean meal fermented by Aspergillus awamori increases the <