WorldWideScience

Sample records for cytochrome p-450 involvement

  1. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  2. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei; Lei, Li; Yoshimoto, Francis K.; Waterman, Michael R.; Egli, Martin; Guengerich, F. Peter (Vanderbilt-MED)

    2017-05-24

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12 variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.

  3. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    Science.gov (United States)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus

  4. Cytochromes P450 and drug resistance

    NARCIS (Netherlands)

    Doehmer, J.; Goeptar, A R; Vermeulen, N P

    1993-01-01

    Cytochromes P450 are the key enzymes for activating and inactivating many drugs, in particular anticancer drugs. Therefore, individual expression levels of cytochromes P450 may play a crucial role in drug safety and drug efficacy. Overexpression of cytochrome P450 may yield rapid turnover and

  5. Comparative modelling of cytochromes P450.

    Science.gov (United States)

    Kirton, Stewart B; Baxter, Carol A; Sutcliffe, Michael J

    2002-03-31

    The superfamily of enzymes known as the cytochromes P450 (P450s) comprises a wide-ranging class of proteins with diverse functions. They are known, amongst other things, to be involved in the hormonal regulation of metabolism and reproduction, as well as having a major clinical significance through their association with diseases such as cancer, diabetes and hepatitis. Knowledge of the three-dimensional (3D) structure of a protein gives insight into its function. The 3D structures of P450s are therefore of considerable scientific interest. A number of high-resolution structures of P450s have been determined by X-ray crystallography and studies of these structures have provided valuable insights into the mechanism of these enzymes. Only one of these structures is mammalian and as yet there is no structural information on human P450s in the public domain. Until such a structure is solved it is necessary to employ alternative methods to gain structural insight into how human P450s perform their biological function. Here we report on the use of comparative modelling to predict the structure of human P450s based on knowledge of their amino acid sequences plus the 3D structures of other (not human) P450s. As an illustrative example of these techniques we have modelled the structure of P450 2C5 using five bacterial P450 structures as templates. We examine the importance of selecting suitable templates, obtaining a good amino acid sequence alignment, and evaluating the models generated. To improve the quality of the models an iterative cycle of sequence alignment, model building, and model evaluation is employed. The result is a model with excellent stereochemistry, good amino acid side chain environment properties, and a Calpha trace similar to the crystal structure.

  6. Prediction of cytochrome P450 mediated metabolism

    DEFF Research Database (Denmark)

    Olsen, Lars; Oostenbrink, Chris; Jørgensen, Flemming Steen

    2015-01-01

    Cytochrome P450 enzymes (CYPs) form one of the most important enzyme families involved in the metabolism of xenobiotics. CYPs comprise many isoforms, which catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be formed. However, it is often hard...

  7. Cj1411c GENE OF CAMPYLOBACTER JEJUNI 11168 ENCODES FOR A CYTOCHROME P450 INVOLVED IN BACTERIAL CAPSULE SUGAR METABOLISM

    Directory of Open Access Journals (Sweden)

    CORCIONIVOSCHI N.

    2007-01-01

    Full Text Available After isolation in 1970s, Campylobacter jejuni become the most commonlyrecognized cause of bacterial gastroenteritis in man. In animals is frequently foundin bovines on ovines. Publishing of the genome sequence of Campylobacter jejuni11168 (Parkhill, 2000 revealed the presence of only one cytochrome P450 in anoperon involved in sugar and cell surface biosynthesis. The gene name is Cj1411c, is1359 bp long and encodes 453 aa. The sequence is strictly conserved inCampylobacter jejuni RM221. Similarities with two cytochrome P450s, one formSilicobacter sp. and one form Poloromonas sp., were identified. These two enzymesare known to be involved in ascorbate and aldarate metabolism. The recombinantconstruct allowed the expression of active P450 enzyme with a 450 nm peak whenbinds CO. The protein was purified in proportion of ~ 70 %. By deleting the P450gene from the Campylobacter jejuni 11168 genome clear changes in cellmorphology were identified cells becoming wider and shorter. The capsular sugarprofile of the NCI strain reveals the presence of arabinose which was not found inthe wild type strain. The arabinose was identified by both High Performance LiquidChromatography (HPLC and Nuclear Magnetic Resonance (NMR.

  8. Mechanisms of activation of phenacetin to reactive metabolites by cytochrome P-450 : a theoretical study involving radical intermediates

    NARCIS (Netherlands)

    Koymans, L.; Lenthe, J.H.; Donné-op Den Kelder, G M; Vermeulen, N P

    The cytochrome P-450-mediated activation of phenacetin (PHEN) to reactive intermediates by two hypothetical mechanisms has been studied by use of SV 6-31G ab initio energy and spin distribution calculations. In our calculations, the cytochrome P-450 enzyme system has been substituted by a singlet

  9. Purification of cytochrome P450 from filamentous fungus Rhyzopus nigricans.

    Science.gov (United States)

    Makovec, T; Breskvar, K

    2000-01-01

    It has been reported in our previous studies that steroid hydroxylation system of Rhizopus nigricans involves cytochrome P450 and NADPH-cytochrome P450 reductase in the electron transport system. Both enzymes are membrane bound and are located in the microsomal preparations of progesterone induced fungal mycelia. In order to identify and characterize the cytochrome P450 component of fungal monoxygenase system, microsomal proteins from induced mycelia were subjected to HIGH Q anion exchange and MONO P (FPLC) anion exchange chromatography. Four fractions containing cytochrome P450 have been resolved on MONO P column. They exhibit CO difference spectra and type II difference spectra with ketoconazole.

  10. Light-driven cytochrome P450 hydroxylations

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Jensen, Poul Erik; Møller, Birger Lindberg

    2011-01-01

    Plants are light-driven "green" factories able to synthesize more than 200,000 different bioactive natural products, many of which are high-value products used as drugs (e.g., artemisinin, taxol, and thapsigargin). In the formation of natural products, cytochrome P450 (P450) monooxygenases play...... a key role in catalyzing regio- and stereospecific hydroxylations that are often difficult to achieve using the approaches of chemical synthesis. P450-catalyzed monooxygenations are dependent on electron donation typically from NADPH catalyzed by NADPH-cytochrome P450 oxidoreductase (CPR......). The consumption of the costly cofactor NADPH constitutes an economical obstacle for biotechnological in vitro applications of P450s. This bottleneck has been overcome by the design of an in vitro system able to carry out light-driven P450 hydroxylations using photosystem I (PSI) for light harvesting...

  11. Intronic polymorphisms of cytochromes P450

    OpenAIRE

    Ingelman-Sundberg Magnus; Sim Sarah C

    2010-01-01

    Abstract The cytochrome P450 enzymes active in drug metabolism are highly polymorphic. Most allelic variants have been described for enzymes encoded by the cytochrome P450 family 2 (CYP2) gene family, which has 252 different alleles. The intronic polymorphisms in the cytochrome P450 genes account for only a small number of the important variant alleles; however, the most important ones are CYP2D6*4 and CYP2D6*41, which cause abolished and reduced CYP2D6 activity, respectively, and CYP3A5*3 an...

  12. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement.

    Science.gov (United States)

    Li, Rong; Reed, Darwin W; Liu, Enwu; Nowak, Jacek; Pelcher, Lawrence E; Page, Jonathan E; Covello, Patrick S

    2006-05-01

    Tropane alkaloids are valuable pharmaceutical drugs derived from solanaceous plants such as Hyoscyamus niger (black henbane). The biosynthesis of these molecules, including the nature of the enigmatic rearrangement of (R)-littorine to (S)-hyoscyamine, is not completely understood. To test the hypothesis that a cytochrome P450 enzyme is involved in this rearrangement, we used virus-induced gene silencing to silence a cytochrome P450, CYP80F1, identified from H. niger roots by EST sequencing. Silencing CYP80F1 resulted in reduced hyoscyamine levels and the accumulation of littorine. Hyoscyamine was observed in CYP80F1-expressing tobacco hairy roots supplied with (R)-littorine. Expression in yeast confirmed that CYP80F1 catalyzes the oxidation of (R)-littorine with rearrangement to form hyoscyamine aldehyde, a putative precursor to hyoscyamine, and without rearrangement to form 3'-hydroxylittorine. Our data strongly support the involvement of CYP80F1 in the rearrangement of littorine to hyoscyamine.

  13. In Vitro Effects of Concomitant Use of Herbal Preparations on Cytochrome P450s Involved in Clozapine Metabolism.

    Science.gov (United States)

    Wang, Wei; Tian, Dan-Dan; Zhang, Zhang-Jin

    2016-05-06

    Herbal supplements are increasingly used in psychiatric practice. Our epidemiological study has identified several herbal preparations associated with adverse outcomes of antipsychotic therapy. In this study, we evaluated the in vitro effects of four herbal preparations-Radix Rehmanniae (RR), Fructus Schisandrae (FS), Radix Bupleuri (RB) and Fructus Gardeniae (FG)-on cytochrome P450s (CYPs) involved in the metabolism of clozapine in human liver microsomes (HLMs) and recombinant human cytochrome P450 enzymes (rCYPs). N-desmethylclozapine and clozapine N-oxide, two major metabolites of clozapine, were measured using high-performance liquid chromatography (HPLC). FG, RR and RB showed negligible inhibitory effects in both in vitro systems, with estimated half-maximal inhibitory concentrations (IC50) and apparent inhibitory constant values (Ki) greater than 1 mg/mL (raw material), suggesting that minimal metabolic interaction occurs when these preparations are used concomitantly with clozapine. The FS extract affected CYP activity with varying potency; its effect on CYP 3A4-catalyzed clozapine oxidation was relatively strong (Ki: 0.11 mg/mL). Overall, the weak-to-moderate inhibitory effect of FS on in vitro clozapine metabolism indicated its potential role in herb-drug interaction in practice.

  14. Structural Models for Cytochrome P450�Mediated Catalysis

    Directory of Open Access Journals (Sweden)

    David F.V. Lewis

    2003-01-01

    Full Text Available This review focuses on the structural models for cytochrome P450 that are improving our knowledge and understanding of the P450 catalytic cycle, and the way in which substrates bind to the enzyme leading to catalytic conversion and subsequent formation of mono-oxygenated metabolites. Various stages in the P450 reaction cycle have now been investigated using X-ray crystallography and electronic structure calculations, whereas homology modelling of mammalian P450s is currently revealing important aspects of pharmaceutical and other xenobiotic metabolism mediated by P450 involvement. These features are explored in the current review on P450-based catalysis, which emphasises the importance of structural modelling to our understanding of this enzyme's function. In addition, the results of various QSAR analyses on series of chemicals, which are metabolised via P450 enzymes, are presented such that the importance of electronic and other structural factors in explaining variations in rates of metabolism can be appreciated.

  15. Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-05-01

    Full Text Available Stigma is a crucial structure of female reproductive organ in plants. Stigma color is usually regarded as an important trait in variety identification in some species, but the molecular mechanism of stigma color formation remains elusive. Here, we characterized a tomato mutant, yellow stigma (ys, that shows yellow rather than typical green color in the stigma. Analysis of pigment contents revealed that the level of flavonoid naringenin chalcone was increased in the ys stigma, possibly as a result of higher accumulation of p-coumaric acid, suggesting that naringenin chalcone might play a vital role in yellow color control in tomato stigma. To understand the genes and gene networks that regulate tomato stigma color, RNA-sequencing (RNA-Seq analyses were performed to compare the transcriptomes of stigmas between ys mutant and wild-type (WT. We obtained 507 differentially expressed genes, in which, 84 and 423 genes were significantly up-regulated and down-regulated in the ys mutant, respectively. Two cytochrome P450 genes, SlC3H1 and SlC3H2 which encode p-coumarate 3-hydroxylases, and six peroxidase genes were identified to be dramatically inhibited in the yellow stigma. Further bioinformatic and biochemical analyses implied that the repression of the two SlC3Hs and six PODs may indirectly lead to higher naringenin chalcone level through inhibiting lignin biosynthesis, thereby contributing to yellow coloration in tomato stigma. Thus, our data suggest that two SlC3Hs and six PODs are involved in yellow stigma formation. This study provides valuable information for dissecting the molecular mechanism of stigma color control in tomato.Statement: This study reveals that two cytochrome P450s (SlC3H1 and SlC3H2 and six peroxidases potentially regulate the yellow stigma formation by indirectly enhancing biosynthesis of yellow-colored naringenin chalcone in the stigma of tomato.

  16. Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity.

    Science.gov (United States)

    Quintanilha, Júlia Coelho França; de Sousa, Vanessa Marcilio; Visacri, Marília Berlofa; Amaral, Laís Sampaio; Santos, Roseane Maria Maia; Zambrano, Tomás; Salazar, Luis Antonio; Moriel, Patricia

    2017-08-01

    The aim of this study is to evaluate the relationship between the CYP450 enzyme family and cisplatin toxicity. This article examined a collection of studies suggesting that CYP450 enzymes may influence cisplatin toxicity. We performed a narrative mini-review. The studies review showed that CYP450 enzymes have an important role in drug-induced hepatotoxicity and nephrotoxicity, mainly CYP2E1 and CYP4A11. The studies also suggested that the cisplatin and CYP2E1 interaction leads to the generation of reactive oxygen species (ROS) and other oxidants resulting in renal injury; and that ROS generated by both the use of cisplatin and by the CYP2E1 increases tissue damage, induces apoptosis, and causes liver failure. We observed that there is an important relationship between CYP450 and cisplatin, involving increased toxicity. However, the possible mechanisms described for the involvement of CYP450 enzymes in nephrotoxicity and hepatotoxicity induced by cisplatin need to be confirmed by further studies. Therefore, there is a need for a deeper investigation focusing on cisplatin toxicity mediated by CYP450 enzymes, which would undoubtedly contribute to a better understanding of the mechanisms that have been implicated so far.

  17. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  18. The expression of cytochrome P-450 and cytochrome P-450 reductase genes in the simultaneous transformation of corticosteroids and phenanthrene by Cunninghamella elegans.

    Science.gov (United States)

    Lisowska, Katarzyna; Szemraj, Janusz; Rózalska, Sylwia; Długoński, Jerzy

    2006-08-01

    The expression of cytochrome P-450 and cytochrome P-450 reductase (CPR) genes in the conterminous biotransformation of corticosteroids and PAHs was studied in Cunninghamella elegans 1785/21Gp. We had previously used this strain as a microbial eucaryotic model for studying the relationship between mammalian steroid hydroxylation and the metabolization of PAHs. We reported that cytochrome P-450 reductase is involved in the biotransformaton of cortexolone and phenanthrene. RT-PCR and Northern blotting analyses indicated that the cytochrome P-450 and CPR genes appear to be inducible by both steroids and PAHs. The expression of the cytochrome P-450 gene was increased ninefold and the expression of the CPR gene increased 6.4-fold in cultures with cortexolone and/or phenanthrene in comparison with controls. We conclude that the increase in cytochrome P-450 gene expression was accompanied by an increase in cytochrome P-450 enzymatic activity levels.

  19. Involvement of a Natural Fusion of a Cytochrome P450 and a Hydrolase in Mycophenolic Acid Biosynthesis

    DEFF Research Database (Denmark)

    Hansen, Bjarne Gram; Mnich, Ewelina; Nielsen, Kristian Fog

    2012-01-01

    is carried out by a natural fusion enzyme MpaDE, consisting of a cytochrome P450 (MpaD) in the N-terminal region and a hydrolase (MpaE) in the C-terminal region. We verified that the fusion gene is indeed expressed in P. brevicompactum by obtaining full-length sequence of the mpaDE cDNA prepared from...... that the P450 catalyzes hydroxylation of 5-MOA to 4,6-dihydroxy-2-(hydroxymethyl)-3-methylbenzoic acid (DHMB). DHMB is then converted to DHMP, and our results suggest that the hydrolase domain aids this second step by acting as a lactone synthase that catalyzes the ring closure. Overall, the chimeric enzyme...

  20. Cytochrome P450-mediated cardiovascular drug interactions.

    Science.gov (United States)

    Scheen, André J

    2011-09-01

    There are numerous drug-drug interactions (DDIs) related to cardiovascular medications and many of these are mediated via the cytochrome P450 (CYP) system. Some of these may lead to serious adverse events and it is, therefore, essential that clinicians are aware of the important interactions that occur. An extensive literature search was performed to analyze the CYP-mediated cardiovascular DDIs that lead to a loss of efficacy or potential toxicity. Cardiovascular drugs may be victims or act as perpetrators of DDIs. The paper analyzes CYP-mediated drug interactions concerning anticoagulants, antiplatelet agents, antiarrhythmics, β-blockers, calcium antagonists, antihypertensive medications, lipid-lowering drugs and oral antidiabetic agents. Cardiovascular DDIs involving the CYP system are numerous. Additionally, the spectrum of drugs prescribed is constantly changing, particularly with cardiovascular diseases and it is not necessarily the case that drugs that had shown safety earlier will always show safety. Clinicians are encouraged to develop their knowledge of CYP-mediated DDIs so that they can choose safe drug combination regimens, adjust drug dosages appropriately and conduct therapeutic drug monitoring for drugs with narrow therapeutic indices.

  1. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s

    Science.gov (United States)

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E.; Nelson, David R.; Tuszynski, Jack A.; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria −42; fungi −19; plant −28; animal −22; plant and animal −1 and common P450 family −1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study’s results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  2. Cannabinoids and Cytochrome P450 Interactions.

    Science.gov (United States)

    Zendulka, Ondřej; Dovrtělová, Gabriela; Nosková, Kristýna; Turjap, Miroslav; Šulcová, Alexandra; Hanuš, Lumír; Juřica, Jan

    2016-01-01

    This review consists of three parts, representing three different possibilities of interactions between cannabinoid receptor ligands of both exogenous and endogenous origin and cytochrome P450 enzymes (CYPs). The first part deals with cannabinoids as CYP substrates, the second summarizes current knowledge on the influence of various cannabinoids on the metabolic activity of CYP, and the third outline a possible involvement of the endocannabinoid system and cannabinoid ligands in the regulation of CYP liver activity. We performed a structured search of bibliographic and drug databases for peer-reviewed literature using focused review questions. Biotransformation via a hydrolytic pathway is the major route of endocannabinoid metabolism and the deactivation of substrates is characteristic, in contrast to the minor oxidative pathway via CYP involved in the bioactivation reactions. Phytocannabinoids are extensively metabolized by CYPs. The enzymes CYP2C9, CYP2C19, and CYP3A4 catalyze most of their hydroxylations. Similarly, CYP represents a major metabolic pathway for both synthetic cannabinoids used therapeutically and drugs that are abused. In vitro experiments document the mostly CYP inhibitory activity of the major phytocannabinoids, with cannabidiol as the most potent inhibitor of many CYPs. The drug-drug interactions between cannabinoids and various drugs at the CYP level are reported, but their clinical relevance remains unclear. The direct activation/inhibition of nuclear receptors in the liver cells by cannabinoids may result in a change of CYP expression and activity. Finally, we hypothesize the interplay of central cannabinoid receptors with numerous nervous systems, resulting in a hormone-mediated signal towards nuclear receptors in hepatocytes.

  3. Flower colour and cytochromes P450.

    Science.gov (United States)

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  4. Structural characterization of CYP165D3, a cytochrome P450 involved in phenolic coupling in teicoplanin biosynthesis.

    Science.gov (United States)

    Cryle, Max J; Staaden, Jessica; Schlichting, Ilme

    2011-03-01

    Teicoplanin is a glycopeptide antibiotic with activity against Gram-positive bacteria and remains one of the last lines of clinical defense against certain bacterial infections. We have cloned, expressed, and purified the cytochrome P450 OxyE (CYP165D3) from the teicoplanin biosynthetic gene cluster of Actinoplanes teichomyceticus, which is responsible for the phenolic coupling of the aromatic side chains of the first and third peptide residues in the teicoplanin peptide. The crystal structure of OxyE has been determined to 2.5Å resolution, revealing the probable binding surface for the carrier protein substrate and an extension of the active site into a pocket located above the β-1 sheet. The binding of potential substrates to OxyE shows that peptidyl carrier protein-bound linear peptides bind to OxyE, albeit with low affinity in the absence of a phenolic cross-link that should normally be installed by another Oxy protein in the teicoplanin biosynthetic pathway. This result indicates that the carrier protein alone is not sufficient for tight substrate binding to OxyE and that the Oxy proteins sense the structure of the bound peptide in addition to the presence of the carrier protein, a feature distinct from other carrier protein/P450 systems. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases

    Science.gov (United States)

    Kikete, Siambi; Liang, Rongjia; Wang, Lili

    2017-01-01

    Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs) modulated via cytochrome P450 enzyme family (CYP) and P-glycoprotein (P-gp) and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes. PMID:28250793

  6. Cytochrome P450 and P-Glycoprotein-Mediated Interactions Involving African Herbs Indicated for Common Noncommunicable Diseases

    Directory of Open Access Journals (Sweden)

    Gregory Ondieki

    2017-01-01

    Full Text Available Herbal remedies are regularly used to complement conventional therapies in the treatment of various illnesses in Africa. This may be because they are relatively cheap and easily accessible and are believed by many to be safe, cause fewer side effects, and are less likely to cause dependency. On the contrary, many herbs have been shown to alter the pharmacokinetics of coadministered allopathic medicines and can either synergize or antagonize therapeutic effects as well as altering the toxicity profiles of these drugs. Current disease burden data point towards epidemiological transitions characterised by increasing urbanization and changing lifestyles, risk factors for chronic diseases like hypertension, diabetes, and cancer which often present as multimorbidities. As a result, we highlight African herb-drug interactions (HDIs modulated via cytochrome P450 enzyme family (CYP and P-glycoprotein (P-gp and the consequences thereof in relation to antihypertensive, antidiabetic, and anticancer drugs. CYPs are enzymes which account for to up to 70% of drug metabolism while P-gp is an efflux pump that extrudes drug substrates out of cells. Consequently, regulation of the relative activity of both CYP and P-gp by African herbs influences the effective drug concentration at the site of action and modifies therapeutic outcomes.

  7. Human Liver Microsomal Cytochrome P450 3A Enzymes Involved in Thalidomide 5-Hydroxylation and Formation of a Glutathione Conjugate

    Science.gov (United States)

    Chowdhury, Goutam; Murayama, Norie; Okada, Yusuke; Uno, Yasuhiro; Shimizu, Makiko; Shibata, Norio; Guengerich, F. Peter; Yamazaki, Hiroshi

    2013-01-01

    (R)-Thalidomide was oxidized to 5-hydroxythalidomide and 5’-hydroxythalidomide by NADPH-fortified liver microsomes from humans and monkeys. (R)-Thalidomide was hydroxylated more efficiently than (S)-thalidomide. Recombinant human P450s 3A4, 3A5, and 3A7 and monkey P450s 3A8 and 3A5 (co-expressed with NADPH-P450 reductase in bacterial membranes) also catalyzed (R)-thalidomide 5-hydroxylation. Purified human P450s 2C19, 3A4, and 3A5 mediated (R)-thalidomide 5-hydroxylation at similar rates in reconstituted systems. P450 2C19 showed a rather non-saturable substrate-velocity curve; however, P450s 3A4 and 3A5 showed sigmoidal curves. P450 also oxidized 5-hydroxythalidomide to an epoxide or dihydroxy compound. Liquid chromatography-mass spectrometry analysis revealed formation of a glutathione conjugate from (R)- and (S)-5-hydroxythalidomide, catalyzed by liver microsomal P450s 3A4 and 3A5 in the presence of glutathione (assigned as a conjugate of 5-hydroxythalidomide formed on the phenyl ring). These results indicate that human P450s 3A4 and 3A5 mediate thalidomide 5-hydroxylation and further oxidation leading to a glutathione conjugate, which may be of relevance in the pharmacological and toxicological actions of thalidomide. PMID:20443640

  8. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH

    DEFF Research Database (Denmark)

    Nielsen, Line Marie; Holm, Niels Bjerre; Leth-Petersen, Sebastian

    2017-01-01

    The dimethoxyphenyl-N-((2-methoxyphenyl)methyl)ethanamine (NBOMe) compounds are potent serotonin 5-HT2A receptor agonists and have recently been subject to recreational use due to their hallucinogenic effects. Use of NBOMe compounds has been known since 2011, and several non-fatal and fatal...... intoxication cases have been reported in the scientific literature. The aim of this study was to determine the importance of the different cytochrome P450 enzymes (CYP) involved in the metabolism of 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2methoxybenzyl)ethanamine (25I-NBOMe) and 2-[[2-(4-iodo-2,5dimethoxyphenyl...

  9. Predicting drug metabolism by cytochrome P450 2C9

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Olsen, Lars

    2012-01-01

    By the use of knowledge gained through modeling of drug metabolism mediated by the cytochrome P450 2D6 and 3A4 isoforms, we constructed a 2D-based model for site-of-metabolism prediction for the cytochrome P450 2C9 isoform. The similarities and differences between the models for the 2C9 and 2D6...

  10. The SMARTCyp cytochrome P450 metabolism prediction server

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Gloriam, David Erik Immanuel; Olsen, Lars

    2010-01-01

    The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism.......The SMARTCyp server is the first web application for site of metabolism prediction of cytochrome P450-mediated drug metabolism....

  11. Prediction of drug metabolism : the case of cytochrome P450 2D6

    NARCIS (Netherlands)

    Vermeulen, Nico P E

    2003-01-01

    Cytochromes P450 (Cyt P450s) constitute the most important biotransformation enzymes involved in the biotransformation of drugs and other xenobiotics. Because drug metabolism by Cyt P450s plays such an important role in the disposition and in the pharmacological and toxicological effects of drugs,

  12. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...... in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing...

  13. Cloning and characterization of the biosynthetic gene cluster of 16-membered macrolide antibiotic FD-891: involvement of a dual functional cytochrome P450 monooxygenase catalyzing epoxidation and hydroxylation.

    Science.gov (United States)

    Kudo, Fumitaka; Motegi, Atsushi; Mizoue, Kazutoshi; Eguchi, Tadashi

    2010-07-26

    FD-891 is a 16-membered cytotoxic antibiotic macrolide that is especially active against human leukemia such as HL-60 and Jurkat cells. We identified the FD-891 biosynthetic (gfs) gene cluster from the producer Streptomyces graminofaciens A-8890 by using typical modular type I polyketide synthase (PKS) genes as probes. The gfs gene cluster contained five typical modular type I PKS genes (gfsA, B, C, D, and E), a cytochrome P450 gene (gfsF), a methyltransferase gene (gfsG), and a regulator gene (gfsR). The gene organization of PKSs agreed well with the basic polyketide skeleton of FD-891 including the oxidation states and alpha-alkyl substituent determined by the substrate specificities of the acyltransferase (AT) domains. To clarify the involvement of the gfs genes in the FD-891 biosynthesis, the P450 gfsF gene was inactivated; this resulted in the loss of FD-891 production. Instead, the gfsF gene-disrupted mutant accumulated a novel FD-891 analogue 25-O-methyl-FD-892, which lacked the epoxide and the hydroxyl group of FD-891. Furthermore, the recombinant GfsF enzyme coexpressed with putidaredoxin and putidaredoxin reductase converted 25-O-methyl-FD-892 into FD-891. In the course of the GfsF reaction, 10-deoxy-FD-891 was isolated as an enzymatic reaction intermediate, which was also converted into FD-891 by GfsF. Therefore, it was clearly found that the cytochrome P450 GfsF catalyzes epoxidation and hydroxylation in a stepwise manner in the FD-891 biosynthesis. These results clearly confirmed that the identified gfs genes are responsible for the biosynthesis of FD-891 in S. graminofaciens.

  14. Molecular cloning and functional characterization of two CYP619 cytochrome P450s involved in biosynthesis of patulin in Aspergillus clavatus

    Science.gov (United States)

    Artigot, Marie Pierre; Loiseau, Nicolas; Laffitte, Joelle; Mas-Reguieg, Lina; Tadrist, Souria; Oswald, Isabelle P.; Puel, Olivier

    2009-01-01

    Patulin is an acetate-derived tetraketide mycotoxin produced by several fungal species, especially Aspergillus, Penicillium and Byssochlamys species. The health risks due to patulin consumption by humans have led many countries to regulate it in human food. Previous studies have shown the involvement of cytochrome P450 monooxygenases in the hydroxylation of two precursors of patulin, m-cresol and m-hydroxybenzylalcohol. In the present study, two cytochrome P450 genes were identified in the genome sequence of Aspergillus clavatus, a patulin-producing species. Both mRNAs were strongly co-expressed during patulin production. CYP619C2, encoded by the first gene, consists of 529 aa, while the second cytochrome, CYP619C3, consists of 524 aa. The coding sequences were used to perform the heterologous expression of functional enzymes in Saccharomyces cerevisiae. The bioconversion assays showed that CYP619C3 catalysed the hydroxylation of m-cresol to yield m-hydroxybenzyl alcohol. CYP619C2 catalysed the hydroxylation of m-hydroxybenzyl alcohol and m-cresol to gentisyl alcohol and 2,5-dihydroxytoluene (toluquinol), respectively. Except for the last compound, all enzyme products are known precursors of patulin. Taken together, these data strongly suggest the involvement of CYP619C2 and CYP619C3 in the biosynthesis of patulin. CYP619C2 and CYP619C3 are located near to two other genes involved in patulin biosynthesis, namely the 6-methylsalicylic acid synthase (6msas) and isoepoxydon dehydrogenase (idh) genes. The current data associated with an analysis of the sequence of A. clavatus suggest the presence of a cluster of 15 genes involved in patulin biosynthesis. PMID:19383676

  15. Liver microsomal cytochromes P-450 and azoreductase activity.

    Science.gov (United States)

    Fujita, S; Peisach, J

    1978-07-10

    Hepatic microsomal azoreductase activity with amaranth (3-hydroxy-4[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt) as a substrate is proportional to the levels of microsomal cytochrome P-450 from control or phenobarbital-pretreated rats and mice or cytochrome P-448 from 3-methylchol-anthrene-pretreated animals. In the "inducible" C57B/6J strain of mice, 3-methylcholanthrene and phenobarbital pretreatment cause an increase in cytochrome P-448 and P-450 levels, respectively, which is directly proportional to the increase of azoreductase activity. However, in the "noninducible" DBA/2J strain of mice, only phenobarbital treatment causes the increase both in cytochrome P-450 levels and azoreductase activity, while 3-methylcholanthrene has no effect. These experiments suggest that the P-450 type cytochromes are responsible for azoreductase activity in liver microsomes.

  16. On the role of phospholipids in the cytochrome P450 enzyme system

    NARCIS (Netherlands)

    Balvers, W.G.

    1994-01-01

    The cytochrome P450 enzyme system is involved in the metabolism and elimination of an almost unlimited number of endogenous and exogenous substrates. Biotransformation by cytochromes P450 plays a role in the conversion xenobiotics into more hydrophilic products. Generally, this process of

  17. The Role of Cytochromes P450 in Infection

    Directory of Open Access Journals (Sweden)

    Elisavet Stavropoulou

    2018-01-01

    Full Text Available Cytochromes are expressed in many different tissues of the human body. They are found mostly in intestinal and hepatic tissues. Cytochromes P450 (CYPs are enzymes that oxidize substances using iron and are able to metabolize a large variety of xenobiotic substances. CYP enzymes are linked to a wide array of reactions including and O-dealkylation, S-oxidation, epoxidation, and hydroxylation. The activity of the typical P450 cytochrome is influenced by a variety of factors, such as genus, environment, disease state, herbicide, alcohol, and herbal medications. However, diet seems to play a major role. The mechanisms of action of dietary chemicals, macro- and micronutrients on specific CYP isoenzymes have been extensively studied. Dietary modulation has effects upon the metabolism of xenobiotics. Cytochromes harbor intra- or interindividual and intra- or interethnic genetic polymorphisms. Bacteria were shown to express CYP-like genes. The tremendous metabolic activity of the microbiota is associated to its abundant pool of CYP enzymes, which catalyze phase I and II reactions in drug metabolism. Disease states, intestinal disturbances, aging, environmental toxic effects, chemical exposures or nutrition modulate the microbial metabolism of a drug before absorption. A plethora of effects exhibited by most of CYP enzymes can resemble those of proinflammatory cytokines and IFNs. Moreover, they are involved in the initiation and persistence of pathologic pain by directly activating sensory neurons and inflammatory cytokines.

  18. Cytochrome P450 from Plants: Platforms for Valuable ...

    African Journals Online (AJOL)

    Cytochrome P450 enzymes are important for biotechnology due to their capacity to modify diverse secondary metabolites that may produce chemicals with pharmacological properties. Most terpenes, flavonoids and alkaloids require P450 catalytic functions to reach their biological activity. In the last ten years, several efforts ...

  19. Evaluation of cytochrome P-450 concentration in Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Sakuragui Matuo

    2010-09-01

    Full Text Available Saccharomyces cerevisiae has been widely used in mutagenicity tests due to the presence of a cytochrome P-450 system, capable of metabolizing promutagens to active mutagens. There are a large number of S. cerevisiae strains with varying abilities to produce cytochrome P-450. However, strain selection and ideal cultivation conditions are not well defined. We compared cytochrome P-450 levels in four different S. cerevisiae strains and evaluated the cultivation conditions necessary to obtain the highest levels. The amount of cytochrome P-450 produced by each strain varied, as did the incubation time needed to reach the maximum level. The highest cytochrome P-450 concentrations were found in media containing fermentable sugars. The NCYC 240 strain produced the highest level of cytochrome P-450 when grown in the presence of 20 % (w/v glucose. The addition of ethanol to the media also increased cytochrome P-450 synthesis in this strain. These results indicate cultivation conditions must be specific and well-established for the strain selected in order to assure high cytochrome P-450 levels and reliable mutagenicity results.Linhagens de Saccharomyces cerevisiae tem sido amplamente empregadas em testes de mutagenicidade devido à presença de um sistema citocromo P-450 capaz de metabolizar substâncias pró-mutagênicas à sua forma ativa. Devido à grande variedade de linhagens de S. cerevisiae com diferentes capacidades de produção de citocromo P-450, torna-se necessária a seleção de cepas, bem como a definição das condições ideais de cultivo. Neste trabalho, foram comparados os níveis de citocromo P-450 em quatro diferentes linhagens de S. cerevisiae e avaliadas as condições de cultivo necessárias para obtenção de altas concentrações deste sistema enzimático. O maior nível enzimático foi encontrado na linhagem NCYC 240 em presença de 20 % de glicose (p/v. A adição de etanol ao meio de cultura também produziu um aumento na s

  20. Competing modes of peroxyacid flux through cytochrome P-450

    National Research Council Canada - National Science Library

    M B McCarthy; R E White

    1983-01-01

    In the presence of peroxyphenylacetic acid and a hydroxylatable substrate, cytochrome P-450LM2 catalyzes two reactions which proceed concurrently, decarboxylation of the peroxyacid and hydroxylation of substrate...

  1. Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist.

    Science.gov (United States)

    Usmani, Khawja A; Chen, Weichao G; Sadeque, Abu J M

    2012-04-01

    Lorcaserin, a selective serotonin 5-hydroxytryptamine 2C receptor agonist, is being developed for weight management. The oxidative metabolism of lorcaserin, mediated by recombinant human cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes, was examined in vitro to identify the enzymes involved in the generation of its primary oxidative metabolites, N-hydroxylorcaserin, 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin. Human CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and FMO1 are major enzymes involved in N-hydroxylorcaserin; CYP2D6 and CYP3A4 are enzymes involved in 7-hydroxylorcaserin; CYP1A1, CYP1A2, CYP2D6, and CYP3A4 are enzymes involved in 5-hydroxylorcaserin; and CYP3A4 is an enzyme involved in 1-hydroxylorcaserin formation. In 16 individual human liver microsomal preparations (HLM), formation of N-hydroxylorcaserin was correlated with CYP2B6, 7-hydroxylorcaserin was correlated with CYP2D6, 5-hydroxylorcaserin was correlated with CYP1A2 and CYP3A4, and 1-hydroxylorcaserin was correlated with CYP3A4 activity at 10.0 μM lorcaserin. No correlation was observed for N-hydroxylorcaserin with any P450 marker substrate activity at 1.0 μM lorcaserin. N-Hydroxylorcaserin formation was not inhibited by CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 inhibitors at the highest concentration tested. Furafylline, quinidine, and ketoconazole, selective inhibitors of CYP1A2, CYP2D6, and CYP3A4, respectively, inhibited 5-hydroxylorcaserin (IC(50) = 1.914 μM), 7-hydroxylorcaserin (IC(50) = 0.213 μM), and 1-hydroxylorcaserin formation (IC(50) = 0.281 μM), respectively. N-Hydroxylorcaserin showed low and high K(m) components in HLM and 7-hydroxylorcaserin showed lower K(m) than 5-hydroxylorcaserin and 1-hydroxylorcaserin in HLM. The highest intrinsic clearance was observed for N-hydroxylorcaserin, followed by 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin in HLM. Multiple human P450 and FMO enzymes catalyze

  2. Fast prediction of cytochrome P450 mediated drug metabolism

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Poongavanam, Vasanthanathan; Oostenbrink, Chris

    2009-01-01

    Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory...... calculations, for predicting activation energies for aliphatic and aromatic oxidations by cytochromes P450 is developed and compared with several other methods. Although the applicability of the method is currently limited to a subset of P450 reactions, these reactions describe more than 90...... % of the metabolites. The rules employed are relatively few and general, and when combined with solvent-accessible surface area calculations to account for steric accessibility, the method gives a major P450 metabolite as first-ranked position for 75 % of the substrates, and ranked in the top three for 90...

  3. Homotropic cooperativity of monomeric cytochrome P450 3A4

    Energy Technology Data Exchange (ETDEWEB)

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G. (UIUC)

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  4. Cytochrome P-450 and glutathione: what is the significance of their interrelationship in lipid peroxidation?

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.

    1984-01-01

    Both cytochrome P-450 and glutathione participate in the metabolism of xenobiotics. Their interrelationship is described here, as well as current findings indicating their mutual involvement in lipid peroxidation.

  5. Identification and expression patterns of Halloween genes encoding cytochrome P450s involved in ecdysteroid biosynthesis in the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Zheng, J; Tian, K; Yuan, Y; Li, M; Qiu, X

    2017-02-01

    20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval-larval molt and in larval-pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.

  6. Characterization of human cytochrome P450s involved in the bioactivation of tri-Ortho-Cresyl phosphate (ToCP)

    NARCIS (Netherlands)

    Reinen, J.; Nematollahi, L.; Fidder, A.; Vermeulen, N.P.E.; Noort, D.; Commandeur, J.N.M.

    2015-01-01

    Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may

  7. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    Directory of Open Access Journals (Sweden)

    Pandey Sona

    2010-11-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases (P450s catalyze oxidation of various substrates using oxygen and NAD(PH. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an

  8. cDNA cloning and functional characterisation of CYP98A14 and NADPH:cytochrome P450 reductase from Coleus blumei involved in rosmarinic acid biosynthesis.

    Science.gov (United States)

    Eberle, David; Ullmann, Pascaline; Werck-Reichhart, Danièle; Petersen, Maike

    2009-02-01

    The final reactions of rosmarinic acid biosynthesis, the introduction of the aromatic 3- and 3'-hydroxyl groups, are catalysed by cytochrome P450-dependent hydroxylases. The cDNAs encoding CYP98A14 as well as a NADPH:cytochrome P450 reductase (CPR) were isolated from Coleus blumei and actively expressed in Saccharomyces cerevisiae. The CYP98A14-cDNA showed an open reading frame of 1521 nucleotides with high similarities to 4-coumaroylshikimate/quinate 3-hydroxylases. Yeast microsomes harbouring the CYP98A14 protein catalysed the 3-hydroxylation of 4-coumaroyl-3',4'-dihydroxyphenyllactate and the 3'-hydroxylation of caffeoyl-4'-hydroxyphenyllactate, in both cases forming rosmarinic acid. Apparent K (m)-values for 4-coumaroyl-3',4'-dihydroxyphenyllactate and caffeoyl-4'-hydroxyphenyllactate were determined to be at 5 microM and 40 microM, respectively. CYP98A14 differs from CYP98s from other plants, since 4-coumaroylshikimate or -quinate were not accepted as substrates. Coexpression of the Coleus blumei CPR and CYP98A14 in the same yeast cells increased the hydroxylation activity up to sevenfold. CYP98A14 from Coleus blumei is a novel bifunctional cytochrome P450 specialised for rosmarinic acid biosynthesis.

  9. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen Laurence

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially...... was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions...

  10. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon.

    Science.gov (United States)

    Thies, F; Backhaus, T; Bossmann, B; Grimme, L H

    1996-09-01

    The N-demethylation of the pyridazinone pro-herbicide metflurazon into norflurazon implies a toxification in photosynthetic organisms. This is confirmed by quantitative structure activity relationships determined for two unicellular green algae, Chlorella sorokiniana and Chlorella fusca; however, the latter is 25 to 80 times more sensitive to metflurazon. This sensitivity is linked to differences in the N-demethylase activity of both algae, as determined by an optimized in vivo biotransformation assay. Apparent K(m) values of the metflurazon-N-demethylase indicate a 10-fold higher affinity for this xenobiotic substrate for Chlorella fusca. Furthermore, algal metflurazon-N-demethylation is characterized by distinct variations in activity, depending on the stage of cell development within the cell cycle. Several well-established inhibitors of cytochrome P450-mediated reactions, including piperonylbutoxide, 1-aminobenzotriazole, 1-phenoxy-3-(1H-1,2,4-triol-1yl)-4-hydroxy-5,5-dimethylhexane++ +, and tetcyclacis, as well as cinnamic acid, a potential endogenous substrate, inhibited the N-demethylation of metflurazon. The results suggest that the N-demethylation of metflurazon by both algae is mediated by a cytochrome P450 monooxygenase. The determination of antigenic cross-reactivity of algal proteins with heterologous polyclonal antibodies originally raised against plant P450s, anti-cinnamic acid 4-hydroxylase (CYP73A1), anti-ethoxycoumarin-O-dealkylase, anti-tulip allene oxidase (CYP74), and an avocado P450 (CYP71A1) or those of bacterial origin, CYP105A1 and CYP105B1, suggests the presence of distinct P450 isoforms in both algae.

  11. Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system.

    Directory of Open Access Journals (Sweden)

    Giuseppina Mattace Raso

    activation of angiotensin receptor 1 underlying pathways in mesenteric beds was shown in basal conditions in PEA-treated SHR. In conclusion, our data demonstrate the involvement of epoxyeicosatrienoic acids and renin angiotensin system in the blood pressure lowering effect of PEA.

  12. Cytochrome P450 Monooxygenase CYP716A141 is a Unique β-Amyrin C-16β Oxidase Involved in Triterpenoid Saponin Biosynthesis in Platycodon grandiflorus.

    Science.gov (United States)

    Tamura, Keita; Teranishi, Yuga; Ueda, Shinya; Suzuki, Hideyuki; Kawano, Noriaki; Yoshimatsu, Kayo; Saito, Kazuki; Kawahara, Nobuo; Muranaka, Toshiya; Seki, Hikaru

    2017-05-01

    The roots of Platycodon grandiflorus are widely used as a crude drug. The active components include a variety of triterpenoid saponins. Recent studies have revealed that Cyt P450 monooxygenases (P450s) function as triterpene oxidases in triterpenoid saponin biosynthesis in many plant species. However, there have been no reports regarding triterpene oxidases in P. grandiflorus. In this study, we performed transcriptome analysis of three different P. grandiflorus tissues (roots, leaves and petals) using RNA sequencing (RNA-Seq) technology. We cloned six P450 genes that were highly expressed in roots, and classified them as belonging to the CYP716A, CYP716D and CYP72A subfamilies. We heterologously expressed these P450s in an engineered yeast strain that produces β-amyrin, one of the most common triterpenes in plants. Two of the CYP716A subfamily P450s catalyzed oxidation reactions of the β-amyrin skeleton. One of these P450s, CYP716A140v2, catalyzed a three-step oxidation reaction at C-28 on β-amyrin to produce oleanolic acid, a reaction performed by CYP716A subfamily P450s in a variety of plant species. The other P450, CYP716A141, catalyzed the hydroxylation of β-amyrin at C-16β. This reaction is unique among triterpene oxidases isolated to date. These results enhance our knowledge of functional variation among CYP716A subfamily enzymes involved in triterpenoid biosynthesis, and provide novel molecular tools for use in synthetic biology to produce triterpenoid saponins with pre-defined structures. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. [Cytochrome P-450 and the response to antimalarial drugs].

    Science.gov (United States)

    Guzmán, Valentina; Carmona-Fonseca, Jaime

    2006-01-01

    To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other

  14. Crystal structure of human cytochrome P450 2D6.

    Science.gov (United States)

    Rowland, Paul; Blaney, Frank E; Smyth, Martin G; Jones, Jo J; Leydon, Vaughan R; Oxbrow, Amanda K; Lewis, Ceri J; Tennant, Mike G; Modi, Sandeep; Eggleston, Drake S; Chenery, Richard J; Bridges, Angela M

    2006-03-17

    Cytochrome P450 2D6 is a heme-containing enzyme that is responsible for the metabolism of at least 20% of known drugs. Substrates of 2D6 typically contain a basic nitrogen and a planar aromatic ring. The crystal structure of human 2D6 has been solved and refined to 3.0A resolution. The structure shows the characteristic P450 fold as seen in other members of the family, with the lengths and orientations of the individual secondary structural elements being very similar to those seen in 2C9. There are, however, several important differences, the most notable involving the F helix, the F-G loop, the B'helix, beta sheet 4, and part of beta sheet 1, all of which are situated on the distal face of the protein. The 2D6 structure has a well defined active site cavity above the heme group, containing many important residues that have been implicated in substrate recognition and binding, including Asp-301, Glu-216, Phe-483, and Phe-120. The crystal structure helps to explain how Asp-301, Glu-216, and Phe-483 can act as substrate binding residues and suggests that the role of Phe-120 is to control the orientation of the aromatic ring found in most substrates with respect to the heme. The structure has been compared with published homology models and has been used to explain much of the reported site-directed mutagenesis data and help understand the metabolism of several compounds.

  15. The interplay between tubulins and P450 cytochromes during Plasmodium berghei invasion of Anopheles gambiae midgut.

    Directory of Open Access Journals (Sweden)

    Rute C Félix

    Full Text Available BACKGROUND: Plasmodium infection increases the oxidative stress inside the mosquito, leading to a significant alteration on transcription of Anopheles gambiae detoxification genes. Among these detoxification genes several P450 cytochromes and tubulins were differently expressed, suggesting their involvement in the mosquito's response to parasite invasion. P450 cytochromes are usually involved in the metabolism and detoxification of several compounds, but are also regulated by several pathogens, including malaria parasite. Tubulins are extremely important as components of the cytoskeleton, which rearrangement functions as a response to malaria parasite invasion. METHODOLOGY/PRINCIPAL FINDINGS: Gene silencing methods were used to uncover the effects of cytochrome P450 reductase, tubulinA and tubulinB silencing on the A. gambiae response to Plasmodium berghei invasion. The role of tubulins in counter infection processes was also investigated by inhibiting their effect. Colchicine, vinblastine and paclitaxel, three different tubulin inhibitors were injected into A. gambiae mosquitoes. Twenty-four hours post injection these mosquitoes were infected with P. berghei through a blood meal from infected CD1 mice. Cytochrome P450 gene expression was measured using RT-qPCR to detect differences in cytochrome expression between silenced, inhibited and control mosquitoes. Results showed that cytochrome P450 reductase silencing, as well as tubulin (A and B silencing and inhibition affected the efficiency of Plasmodium infection. Silencing and inhibition also affected the expression levels of cytochromes P450. CONCLUSIONS: Our results suggest the existence of a relationship between tubulins and P450 cytochromes during A. gambiae immune response to P. berghei invasion. One of the P450 cytochromes in this study, CYP6Z2, stands out as the potential link in this association. Further work is needed to fully understand the role of tubulin genes in the response to

  16. Cytochrome P450 polymorphism and postoperative cognitive dysfunction

    DEFF Research Database (Denmark)

    Steinmetz, J; Jespersgaard, Cathrine; Dalhoff, Kim Peder

    2012-01-01

    in cytochrome P450 encoding genes. METHODS:We included patients who underwent non-cardiac surgery under total intravenous anesthesia with propofol. POCD was identified using a neuropsychological test-battery administered preoperatively, one week, and three months after surgery. Genotyping of CYP2C19*2, *3, CYP2...

  17. Trends in predicted chemoselectivity of cytochrome P450 oxidation

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Lonsdale, Richard; Harvey, Jeremy N

    2014-01-01

    Prediction of epoxide formation in drug metabolism is a difficult but important task, as epoxide formation is linked to drug toxicity. A comparison of the energy barriers for cytochrome P450 mediated epoxidation of alkenes to the barriers for the hydroxylation of an aliphatic carbon atom next...

  18. Multivariate Modeling of Cytochrome P450 Enzymes for 4 ...

    African Journals Online (AJOL)

    Conclusion: Apart from insights into important molecular properties for CYP inhibition, the findings may also guide further investigations of novel drug candidates that are unlikely to inhibit multiple CYP sub-types. Keywords: Antimalarial, Chloroquine, Cytochrome P450, Genetic algorithm-based multiple linear regression, ...

  19. Identification of novel cytochrome P450s in the Acari

    Science.gov (United States)

    Cytochrome P450s are the major phase I drug metabolising enzymes found in most organisms, including arthropods. Much of the work within the area of xenobiotic metabolism in this group of animals has centered around mosquito species, e.g. Anopheles gambiae and Culex quinquefasciatus, due to their rol...

  20. How important is intestinal cytochrome P450 3A metabolism?

    NARCIS (Netherlands)

    Herwaarden, A.E. van; Waterschoot, R.A. van; Schinkel, A.H.

    2009-01-01

    Cytochrome P450 3A (CYP3A) enzymes metabolize a wide variety of xenobiotics including many drugs. Because CYP3A is localized in both the liver and intestine, it can make a major contribution to the presystemic elimination of substrate drugs after oral administration ('first-pass metabolism').

  1. An inducible NADPH-cytochrome P450 reductase from Picrorhiza kurrooa - an imperative redox partner of cytochrome P450 enzymes.

    Science.gov (United States)

    Bhat, Wajid Waheed; Rana, Satiander; Dhar, Niha; Razdan, Sumeer; Pandith, Shahzad A; Vishwakarma, Ram; Lattoo, Surrinder K

    2014-06-01

    Picrorhiza kurrooa synthesizes a large array of pharmacologically important monoterpenoid iridoid glycosides called picrosides. Although chemical profile and pharmacological activities of P. kurrooa have been extensively studied, limited attempts have been made to decipher the biosynthetic route and to identify the key regulatory genes involved in picroside biosynthesis. In the present study, NADPH-cytochrome P450 reductase, a key enzyme involved in electron transfer to cytochrome P450s was identified from P. kurrooa. The full length cDNA (2679 bp) contained an open reading frame of 2133 bp, corresponding to 710 amino acids. PkCPR was heterologously expressed in Escherichia coli and the kinetic parameters of the recombinant enzyme were determined. Specific activity, V max and K m of PkCPR were found to be 5.8 ± 0.05 μmol min(-1) mg(-1), 8.1 ± 0.12 μmol min(-1) mg(-1) and 7.8 μM, respectively. PkCPR was found to be spatially regulated at transcript level, being maximally expressed in leaf tissues. Altitude was found to have a positive effect on the picroside concentration and the picroside content positively correlated with the PkCPR transcript levels in samples collected at varied altitudes. Further, transcript profiling under methyl jasmonate, salicylic acid, 2,4-dicholorophenoxy acetic acid and UV-B elicitations displayed differential transcriptional regulation of PkCPR that fully corroborated with the identified cis-elements within the PkCPR promoter. Expression of PkCPR was inducible by UV-B and phytohormone elicitation, indicating that the PkCPR is possibly related to defence reactions, including biosynthesis of secondary metabolites. Present study is so far the only report of identification and functional characterization of CPR ortholog from P. kurrooa.

  2. Exploiting the versatility of human cytochrome P450 enzymes: the promise of blue roses from biotechnology.

    Science.gov (United States)

    Gillam, E M; Guengerich, F P

    2001-12-01

    The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.

  3. Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen 1′-hydroxymethyleugenol

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Boersma, M.G.; Horst, J.P.F. ter; Awad, H.M.; Fiamegos, Y.C.; Beek, T.A. van; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2006-01-01

    In vitro studies were performed to elucidate the human cytochrome P450 enzymes involved in the bioactivation of methyleugenol to its proximate carcinogen 1′-hydroxymethyleugenol. Incubations with Supersomes, expressing individual P450 enzymes to a high level, revealed that P450 1A2, 2A6, 2C9, 2C19,

  4. Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes.

    Science.gov (United States)

    Castro, C E; Wade, R S; Belser, N O

    1985-01-01

    The products, stoichiometry, and kinetics of the oxidation of the enzyme cytochrome P-450 cam by five polyhalomethanes and chloronitromethane are described. The reactivity of the enzyme is compared with that of deuteroheme and with the enzyme in its native cell, Pseudomonas putida (PpG-786). In all cases, the reaction entails hydrogenolysis of the carbon-halogen bond: 2FeIIP + RCXn----2FeIIIP + RCHXn-1 (P = porphyrin or P-450 cam in vitro and in vivo). Trichloronitromethane was the fastest reacting substrate, and chloroform was the slowest. The results establish that P. putida is a valid whole cell model for the reductase activity of the P-450 complement in these reactions. The reactions of cytochrome P-450 with polyhaloalkanes proceed in a manner quite analogous to other iron(II) proteins in the G conformation. The chemistry observed for the enzyme parallels that of its iron(II) porphyrin active site. Iron-bonded carbenes are not intermediates, and hydrolytically stable iron alkyls are not products of these reactions.

  5. Inhibition of cytochrome p450 enzymes by quinones and anthraquinones.

    Science.gov (United States)

    Sridhar, Jayalakshmi; Liu, Jiawang; Foroozesh, Maryam; Klein Stevens, Cheryl L

    2012-02-20

    In silico docking studies and quantitative structure-activity relationship analysis of a number of in-house cytochrome P450 inhibitors have revealed important structural characteristics that are required for a molecule to function as a good inhibitor of P450 enzymes 1A1, 1A2, 2B1, and/or 2A6. These insights were incorporated into the design of pharmacophores used for a 2D search of the Chinese medicine database. Emodin, a natural anthraquinone isolated from Rheum emodi and known to be metabolized by cytochrome P450 enzymes, was one of the hits and was used as the lead compound. Emodin was found to inhibit P450s 1A1, 1A2, and 2B1 with IC(50) values of 12.25, 3.73, and 14.89 μM, respectively. On the basis of the emodin molecular structure, further similarity searches of the PubChem and ZINC chemical databases were conducted resulting in the identification of 12 emodin analogues for testing against P450s 1A1-, 1A2-, 2B1-, and 2A6-dependent activities. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) showed the best inhibition potency for P450 1A1 with an IC(50) value of 0.40 μM. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) and 1-amino-4-hydroxyanthracene-9,10-dione (compound 2) both inhibited P450 1A2 with the same IC(50) value of 0.53 μM. In addition, compound 1 acted as a mechanism-based inhibitor of cytochrome P450s 1A1 and 1A2 with K(I) and K(inactivation) values of 5.38 μM and 1.57 min(-1) for P450 1A1 and 0.50 μM and 0.08 min(-1) for P450 1A2. 2,6-Di-tert-butyl-5-hydroxynaphthalene-1,4-dione (compound 8) directly inhibited P450 2B1 with good selectivity and inhibition potency (IC(50) = 5.66 μM). Docking studies using the 3D structures of the enzymes were carried out on all of the compounds. The binding modes of these compounds revealed the structural characteristics responsible for their potency and selectivity. Compound 1, which is structurally similar to compound 2 with the presence of an amino group at position 1, showed a

  6. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  7. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children

    Directory of Open Access Journals (Sweden)

    Ida Aka

    2017-11-01

    Full Text Available Cytochrome P450 (CYP enzymes are commonly involved in drug metabolism, and genetic variation in the genes encoding CYPs are associated with variable drug response. While genotype-guided therapy has been clinically implemented in adults, these associations are less well established for pediatric patients. In order to understand the frequency of pediatric exposures to drugs with known CYP interactions, we compiled all actionable drug–CYP interactions with a high level of evidence using Clinical Pharmacogenomic Implementation Consortium (CPIC data and surveyed 10 years of electronic health records (EHR data for the number of children exposed to CYP-associated drugs. Subsequently, we performed a focused literature review for drugs commonly used in pediatrics, defined as more than 5000 pediatric patients exposed in the decade-long EHR cohort. There were 48 drug–CYP interactions with a high level of evidence in the CPIC database. Of those, only 10 drugs were commonly used in children (ondansetron, oxycodone, codeine, omeprazole, lansoprazole, sertraline, amitriptyline, citalopram, escitalopram, and risperidone. For these drugs, reports of the drug–CYP interaction in cohorts including children were sparse. There are adequate data for implementation of genotype-guided therapy for children for three of the 10 commonly used drugs (codeine, omeprazole and lansoprazole. For the majority of commonly used drugs with known CYP interactions, more data are required to support pharmacogenomic implementation in children.

  8. In vitro oxidative metabolism of cajaninstilbene Acid by human liver microsomes and hepatocytes: involvement of cytochrome p450 reaction phenotyping, inhibition, and induction studies.

    Science.gov (United States)

    Hua, Xin; Peng, Xiao; Tan, Shengnan; Li, Chunying; Wang, Wei; Luo, Meng; Fu, Yujie; Zu, Yuangang; Smyth, Hugh

    2014-10-29

    Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid), an active constituent of pigeonpea leaves, an important tropical crop, is known for its clinical effects in the treatment of diabetes, hepatitis, and measles and its potential antitumor effect. In this study, the effect of the cytochrome P450 isozymes on the activity of CSA was investigated. Two hydroxylation metabolites were identified in the study. The reaction phenotype study showed that CYP3A4, CYP2C9, and CYP1A2 were the major cytochrome P450 isozymes in the metabolism of CSA. The metabolic food-drug interaction potential was also evaluated in vitro. The effect of CSA inhibition/induction of enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro was estimated by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques. CSA showed different inhibitory effects on different isozymes. CSA reversibly inhibited CYP3A4 and CYP2C9 activities in human liver microsomes with IC50 values of 28.3 and 31.3 μM, respectively, but exhibited no inhibition activities to CYP1A2, CYP2A6, CYP2C19, CYP2D6, and CYP2E1. CSA showed a weak effect on CYP450 enzymes in a time-dependent manner. CSA did not substantially induce CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM in primary human hepatocytes. The results of our experiments may be helpful to predict clinically significant food-drug interactions when other drugs are administered in combination with CSA.

  9. Role of cytochrome P450 in drug interactions

    Directory of Open Access Journals (Sweden)

    Bibi Zakia

    2008-10-01

    Full Text Available Abstract Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events.

  10. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450

    NARCIS (Netherlands)

    Goeptar, A R; te Koppele, J.M.; van Maanen, M.J.; Zoetemelk, C E; Vermeulen, N P

    1992-01-01

    Bioreductive activation of quinones in mammalian liver has generally been attributed to NADPH-cytochrome P450 reductase. However, in view of the 20-30-fold molar excess of cytochrome P450 over NADPH-cytochrome P450 reductase on the endoplasmic reticulum of the rat liver cell and the capability of

  11. Human Cytochrome P450 Oxidation of 5-Hydroxythalidomide and Pomalidomide, an Amino Analog of Thalidomide

    Science.gov (United States)

    Chowdhury, Goutam; Shibata, Norio; Yamazaki, Hiroshi; Guengerich, F. Peter

    2014-01-01

    The sedative and antiemetic drug thalidomide [α-(N-phthalimido)glutarimide] was withdrawn in the early 1960s due to its potent teratogenic effects but was approved for the treatment of lesions associated with leprosy in 1998 and multiple myeloma in 2006. The mechanism of teratogenicity of thalidomide still remains unclear, but it is well established that metabolism of thalidomide is important for both teratogenicity and cancer treatment outcome. Thalidomide is oxidized by various cytochrome P450 (P450) enzymes, the major being P450 2C19, to 5-hydroxy-, 5’-hydroxy-, and dihydroxythalidomide. We previously reported that P450 3A4 oxidizes thalidomide to the 5-hydroxy and dihydroxy metabolites, with the second oxidation step involving a reactive intermediate, possible an arene oxide, that can be trapped by glutathione (GSH) to GSH adducts. We now show that the dihydroxythalidomide metabolite can be further oxidized to a quinone intermediate. Human P450s 2J2, 2C18, and 4A11 were also found to oxidize 5-hydroxythalidomide to dihydroxy products. Unlike P450s 2C19 and 3A4, neither P450 2J2, 2C18, nor 4A11 oxidized thalidomide itself. A recently approved amino analog of thalidomide, pomalidomide (CC-4047, Actimid™), was also oxidized by human liver microsomes and P450s 2C19, 3A4, and 2J2 to the corresponding phthalimide ring-hydroxylated product. PMID:24350712

  12. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  13. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  14. Regulation of cytochrome P-450j in rat hepatocytes in vivo and in primry monolayer culture

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, C.M.; Molowa, D.T.; Thomas, P.E.; Levin, W.; Guzelian, P.S.; Wrighton, S.A.

    1987-05-01

    Cytochrome P-450j is of importance because it metabolically activates carcinogens and cytotoxic agents. They treated groups of 4 rats with 10% ethanol (EtOH) or 0.1% isoniazid (INH) and found that the amount of liver microsomal P-450j protein was increased 1.5- and 2.4 fold, respectively, over untreated control levels. When liver RNA samples were subjected to Northern and slot blot analyses, a 1.8 kb RNA species that hybridized with a cDNA probe which encodes for HLj (the human ortholog of P-450j) was increased 1.6- and 1.7-fold, respectively, in EtOH- and INH-treated rats as compared to controls. To investigate the P-450j induction mechanism, they isolated hepatocytes from untreated rats and found that when the cells were incubated on an extracellular biomatrix in serum free medium, the amount of P-450j immunoreactive protein decrease to < 50% of the level at time 0 after 72 h in culture and < 25% after 120h. Additions to the culture medium of pyrazole, hydrazine, or INH for 72 h increased P-450j immunoreactive protein up to 4.5-fold, 2.4-fold, and 1.6-fold, respectively, over control values. Moreover, P-450j mRNA decreased becoming undetectable within 24-48 h in culture. Additions of pyrazole but not other inducers increased P-450j mRNA to detectable levels. They conclude that at least some inducers of P-450j act directly on the hepatocyte by a mechanism(s) that involves both increases in P-450j mRNA and, apparently, other post-transcriptional events.

  15. Cytochrome P450c17α 5'-untranslated region *T/C polymorphism in ...

    Indian Academy of Sciences (India)

    Administrator

    Estrogen plays a role in the pathogenesis of endometriosis. The CYP17 gene codes for the cytochrome P450c17α enzyme that is involved in the estrogen biosynthesis. We aimed to investigate if CYP17 polymorphism could be used as marker to predict the susceptibility of endometriosis. Women were divided into two ...

  16. Human cytochrome P450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Punt, A.; Boersma, M.G.; Bogaards, J.J.P.; Fiamegos, Y.C.; Schilter, B.; Bladeren, P.J. van; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2007-01-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1′-hydroxyestragole were identified and compared to the enzymes of importance for 1′-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that

  17. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However...... of interaction explains the innate ability to interact with non-cognate enzymes such as P450s, and suggests ways to improve the effectiveness of the photosystem I-P450 electron transfer chain. Two strategies to control the flow of electrons from photosynthesis were investigated using the tobacco transient...... expression system. The first strategy uses variants of ferredoxin and flavodoxin proteins, revealing the carrier redox potentials as key to determine the fate of electrons from photosynthesis. This offers a way to avoid channeling of reducing power into competing metabolism. The second strategy involves...

  18. Cytochrome P450 2U1, a very peculiar member of the human P450s family.

    Science.gov (United States)

    Dhers, L; Ducassou, L; Boucher, J-L; Mansuy, D

    2017-05-01

    Cytochrome P450 2U1 (CYP2U1) exhibits several distinctive characteristics among the 57 human CYPs, such as its presence in almost all living organisms with a highly conserved sequence, its particular gene organization with only five exons, its major location in thymus and brain, and its protein sequence involving an unusually long N-terminal region containing 8 proline residues and an insert of about 20 amino acids containing 5 arginine residues after the transmembrane helix. Few substrates, including fatty acids, N-arachidonoylserotonin (AS), and some drugs, have been reported so far. However, its biological roles remain largely unknown, even though CYP2U1 mutations have been involved in some pathological situations, such as complicated forms of hereditary spastic paraplegia. These data together with its ability to hydroxylate some fatty acids and AS suggest its possible role in lipid metabolism.

  19. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    Science.gov (United States)

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  1. Spaceflight Effects on Cytochrome P450 Content in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Natalia Moskaleva

    Full Text Available Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM. Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.

  2. Phenobarbital-induced expression of cytochrome P450 genes.

    Science.gov (United States)

    Czekaj, P

    2000-01-01

    In contrast to the well-known Ah receptor-mediated regulation of the CYP1A1 gene by polycyclic aromatic hydrocarbons, the molecular mechanism by which phenobarbital (PB) and PB-like inducers affect transcription of CYP genes remains unknown; no receptor for these chemicals has been found to date. However, in the last 5 years PB-responsive sequences have been identified in the 5' flanking regions of several P450 genes. The phenobarbital-responsive enhancer unit (PBRU) of CYP2B gene family members contain two potential nuclear receptor binding sites (NR1 and NR2) that flank a nuclear factor 1 (NF-1) binding motif. The nuclear factors that regulate PBRU activity have not yet been characterized. It seems that PB may activate multiple nuclear orphan receptors to induce various CYP genes. CYP2B and CYP3A genes appear to be targets for the orphan receptors CAR and PXR, respectively. It is also possible that the pleiotropic effects of PB can, in part, be explained by the ability of the CAR-RXR heterodimer to bind to a variety of nuclear receptor binding motifs. The induction of cytochromes P450 may result in interactions between xenobiotics and in the interference of xenobiotic metabolism and endogenous signalling pathways.

  3. Interactions of phospholipase D and cytochrome P450 protein stability

    Energy Technology Data Exchange (ETDEWEB)

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  4. Prediction of cytochrome p450 mediated metabolism of designer drugs.

    Science.gov (United States)

    Nielsen, Line Marie; Linnet, Kristian; Olsen, Lars; Rydberg, Patrik

    2014-01-01

    The analysis of designer drugs in human plasma is highly complex, as most of these drugs are metabolized quickly, and often into multiple products. For novel designer drugs, it is common that reference compounds for these metabolites are unavailable at the time of analysis. Hence, the usage of in silico procedures to accurately predict the chemical structures of these metabolites would be very useful. In this study, the differences between several methods for prediction of site of metabolism for cytochrome P450 mediated drug metabolism are described, and their prediction accuracies are analyzed on a set of designer drugs. It is found that ligand-based methods, which are simpler and faster, are better than or at least as good as much more complex structure-based methods.

  5. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  6. Human cytochrome P450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1′-hydroxysafrole

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Bogaards, J.J.P.; Awad, H.M.; Boersma, M.G.; Brand, W.; Fiamegos, Y.C.; Beek, T.A. van; Alink, G.M.; Sudhölter, E.J.R.; Cnubben, N.H.P.; Rietjens, I.M.C.M.

    2004-01-01

    In the present study, the cytochrome P450 mediated bioactivation of safrole to its proximate carcinogenic metabolite, 1′-hydroxysafrole, has been investigated for the purpose of identifying the human P450 enzymes involved. The 1′-hydroxylation of safrole was characterized in a variety of in vitro

  7. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).

    Science.gov (United States)

    Paquette, Suzanne M; Jensen, Kenneth; Bak, Søren

    2009-12-01

    Gene and genome duplication is a key driving force in evolution of plant diversity. This has resulted in a number of large multi-gene families. Two of the largest multi-gene families in plants are the cytochromes P450 (P450s) and family 1 glycosyltransferases (UGTs). These two families are key players in evolution, especially of plant secondary metabolism, and in adaption to abiotic and biotic stress. In the model plant Arabidopsis thaliana there are 246 and 112 cytochromes P450 and UGTs, respectively. The Arabidopsis P450, cytochromes b(5), NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases website (http://www.P450.kvl.dk) is a sequence repository of manually curated sequences, multiple sequence alignments, phylogenetic trees, sequence motif logos, 3D structures, intron-exon maps, and customized BLAST datasets.

  8. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase

    Science.gov (United States)

    Krochko; Abrams; Loewen; Abrams; Cutler

    1998-11-01

    Abscisic acid (ABA) 8'-hydroxylase catalyzes the first step in the oxidative degradation of (+)-ABA. The development of a robust in vitro assay has now permitted detailed examination and characterization of this enzyme. Although several factors (buffer, cofactor, and source tissue) were critical in developing the assay, the most important of these was the identification of a tissue displaying high amounts of in vivo enzyme activity (A.J. Cutler, T.M. Squires, M.K. Loewen, J.J. Balsevich [1997] J Exp Bot 48: 1787-1795). (+)-ABA 8'-hydroxylase is an integral membrane protein that is localized to the microsomal fraction in suspension-cultured maize (Zea mays) cells. (+)-ABA metabolism requires both NADPH and molecular oxygen. NADH was not an effective cofactor, although there was substantial stimulation of activity (synergism) when it was included at rate-limiting NADPH concentrations. The metabolism of (+)-ABA was progressively inhibited at O2 concentrations less than 10% (v/v) and was very low (less than 5% of control) under N2. (+)-ABA 8'-hydroxylase activity was inhibited by tetcyclacis (50% inhibition at 10(-6) M), cytochrome c (oxidized form), and CO. The CO inhibition was reversible by light from several regions of the visible spectrum, but most efficiently by blue and amber light. These data strongly support the contention that (+)-ABA 8'-hydroxylase is a cytochrome P450 monooxygenase.

  9. Characterization of the Critical Amino Acids of an Aspergillus parasiticus Cytochrome P-450 Monooxygenase Encoded by ordA That Is Involved in the Biosynthesis of Aflatoxins B1, G1, B2, and G2

    Science.gov (United States)

    Yu, Jiujiang; Chang, Perng-Kuang; Ehrlich, Kenneth C.; Cary, Jeffrey W.; Montalbano, Beverly; Dyer, John M.; Bhatnagar, Deepak; Cleveland, Thomas E.

    1998-01-01

    The conversion of O-methylsterigmatocystin (OMST) and dihydro-O-methylsterigmatocystin to aflatoxins B1, G1, B2, and G2 requires a cytochrome P-450 type of oxidoreductase activity. ordA, a gene adjacent to the omtA gene, was identified in the aflatoxin-biosynthetic pathway gene cluster by chromosomal walking in Aspergillus parasiticus. The ordA gene was a homolog of the Aspergillus flavus ord1 gene, which is involved in the conversion of OMST to aflatoxin B1. Complementation of A. parasiticus SRRC 2043, an OMST-accumulating strain, with the ordA gene restored the ability to produce aflatoxins B1, G1, B2, and G2. The ordA gene placed under the control of the GAL1 promoter converted exogenously supplied OMST to aflatoxin B1 in Saccharomyces cerevisiae. In contrast, the ordA gene homolog in A. parasiticus SRRC 2043, ordA1, was not able to carry out the same conversion in the yeast system. Sequence analysis revealed that the ordA1 gene had three point mutations which resulted in three amino acid changes (His-400→Leu-400, Ala-143→Ser-143, and Ile-528→Tyr-528). Site-directed mutagenesis studies showed that the change of His-400 to Leu-400 resulted in a loss of the monooxygenase activity and that Ala-143 played a significant role in the catalytic conversion. In contrast, Ile-528 was not associated with the enzymatic activity. The involvement of the ordA gene in the synthesis of aflatoxins G1, and G2 in A. parasiticus suggests that enzymes required for the formation of aflatoxins G1 and G2 are not present in A. flavus. The results showed that in addition to the conserved heme-binding and redox reaction domains encoded by ordA, other seemingly domain-unrelated amino acid residues are critical for cytochrome P-450 catalytic activity. The ordA gene has been assigned to a new cytochrome P-450 gene family named CYP64 by The Cytochrome P450 Nomenclature Committee. PMID:9835571

  10. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Qiang Yan

    Full Text Available The cytochrome P450 monooxygenases (P450s represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.. Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA or ethephon (ETH. Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA, and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes.

  11. Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.

    Science.gov (United States)

    Syed, Khajamohiddin; Shale, Karabo; Pagadala, Nataraj Sekhar; Tuszynski, Jack

    2014-01-01

    Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s) in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families), CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant material. To our

  12. Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available Genome sequencing of basidiomycetes, a group of fungi capable of degrading/mineralizing plant material, revealed the presence of numerous cytochrome P450 monooxygenases (P450s in their genomes, with some exceptions. Considering the large repertoire of P450s found in fungi, it is difficult to identify P450s that play an important role in fungal metabolism and the adaptation of fungi to diverse ecological niches. In this study, we followed Sir Charles Darwin's theory of natural selection to identify such P450s in model basidiomycete fungi showing a preference for different types of plant components degradation. Any P450 family comprising a large number of member P450s compared to other P450 families indicates its natural selection over other P450 families by its important role in fungal physiology. Genome-wide comparative P450 analysis in the basidiomycete species, Phanerochaete chrysosporium, Phanerochaete carnosa, Agaricus bisporus, Postia placenta, Ganoderma sp. and Serpula lacrymans, revealed enrichment of 11 P450 families (out of 68 P450 families, CYP63, CYP512, CYP5035, CYP5037, CYP5136, CYP5141, CYP5144, CYP5146, CYP5150, CYP5348 and CYP5359. Phylogenetic analysis of the P450 family showed species-specific alignment of P450s across the P450 families with the exception of P450s of Phanerochaete chrysosporium and Phanerochaete carnosa, suggesting paralogous evolution of P450s in model basidiomycetes. P450 gene-structure analysis revealed high conservation in the size of exons and the location of introns. P450s with the same gene structure were found tandemly arranged in the genomes of selected fungi. This clearly suggests that extensive gene duplications, particularly tandem gene duplications, led to the enrichment of selective P450 families in basidiomycetes. Functional analysis and gene expression profiling data suggest that members of the P450 families are catalytically versatile and possibly involved in fungal colonization of plant

  13. Classification of cytochrome p(450) activities using machine learning methods.

    Science.gov (United States)

    Hammann, Felix; Gutmann, Heike; Baumann, Ulli; Helma, Christoph; Drewe, Juergen

    2009-01-01

    The cytochrome P(450) (CYP) system plays an integral part in the metabolism of drugs and other xenobiotics. Knowledge of the structural features required for interaction with any of the different isoforms of the CYP system is therefore immensely valuable in early drug discovery. In this paper, we focus on three major isoforms (CYP 1A2, CYP 2D6, and CYP 3A4) and present a data set of 335 structurally diverse drug compounds classified for their interaction (as substrate, inhibitor, or any interaction) with these isoforms. We also present machine learning models using a variety of commonly used methods (k-nearest neighbors, decision tree induction using the CHAID and CRT algorithms, random forests, artificial neural networks, and support vector machines using the radial basis function (RBF) and homogeneous polynomials as kernel functions). We discuss the physicochemical features relevant for each end point and compare it to similar studies. Many of these models perform exceptionally well, even with 10-fold cross-validation, yielding corrected classification rates of 81.7 to 91.9% for CYP 1A2, 89.2 to 92.9% for CYP 2D6, and 87.4 to 89.9% for CYP3A4. Our models help in understanding the structural requirements for CYP interactions and can serve as sensitive tools in virtual screenings and lead optimization for toxicological profiles in drug discovery.

  14. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity.

    Science.gov (United States)

    Guengerich, F P

    2001-06-01

    Cytochrome P450 (P450) enzymes catalyze a variety of reactions and convert chemicals to potentially reactive products as well as make compounds less toxic. Most of the P450 reactions are oxidations. The majority of these can be rationalized in the context of an FeO(3+) intermediate and odd electron abstraction/rebound mechanisms; however, other iron-oxygen complexes are possible and alternate chemistries can be considered. Another issue regarding P450-catalyzed reactions is the delineation of rate-limiting steps in the catalytic cycle and the contribution to reaction selectivity. In addition to the rather classical oxidations, P450s also catalyze less generally discussed reactions including reduction, desaturation, ester cleavage, ring expansion, ring formation, aldehyde scission, dehydration, ipso attack, one-electron oxidation, coupling reactions, rearrangement of fatty acid and prostaglandin hydroperoxides, and phospholipase activity. Most of these reactions are rationalized in the context of high-valent iron-oxygen intermediates and Fe(2+) reductions, but others are not and may involve acid-base catalysis. Some of these transformations are involved in the bioactivation and detoxication of xenobiotic chemicals.

  15. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    However, to date only a limited number of P450s have been identified and characterized in soybean (Glycine max.). In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, ...

  16. Osteomalacia in an HIV-infected man receiving rifabutin, a cytochrome P450 enzyme inducer: a case report

    Directory of Open Access Journals (Sweden)

    Horne Anne M

    2008-01-01

    Full Text Available Abstract Introduction People infected with human immunodeficiency virus are frequently treated with medications that can induce or inhibit cytochrome P450 enzymes. Case presentation A 59 year old man treated with zidovudine, lamivudine, indinavir, and ritonavir for infection with human immunodeficiency virus volunteered to take part in a study of bone loss. He was found to have vitamin D insufficiency with secondary hyperparathyroidism and received vitamin D and calcium supplementation. He suffered a recurrence of infection with Mycobacterium avium intracellulare for which he received treatment with ciprofloxacin, rifabutin, and ethambutol. Subsequently, he developed worsening vitamin D deficiency with hypocalcaemia, secondary hyperparathyroidism and elevated markers of bone turnover culminating in an osteomalacic vertebral fracture. Correction of the vitamin D deficiency required 100,000 IU of cholecalciferol monthly. Rifabutin is a cytochrome P450 inducer, and vitamin D and its metabolites are catabolised by cytochrome P450 enzymes. We therefore propose that treatment with rifabutin led to the induction of cytochrome P450 enzymes catabolising vitamin D, thereby causing vitamin D deficiency and osteomalacia. This process might be mediated through the steroid and xenobiotic receptor (SXR. Conclusion Treatment with rifabutin induces the cytochrome P450 enzymes that metabolise vitamin D and patients treated with rifabutin might be at increased risk of vitamin D deficiency. In complex medication regimens involving agents that induce or inhibit cytochrome P450 enzmyes, consultation with a clinical pharmacist or pharmacologist may be helpful in predicting and/or preventing potentially harmful interactions.

  17. Bioconversion of Mono- and Sesquiterpenoids by Recombinant Human Cytochrome P450 Monooxygenases

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Fichera, Mario A.; Malz, Frank; Ebbelaar, Monique; Bos, Rein; Woerdenbag, Herman J.; Quax, Wim J.; Kayser, Oliver

    2008-01-01

    Cytochrome P450 monooxygenases play an important role in the biosynthesis and metabolism of terpenoids. We explored the potential of recombinant human liver cytochrome P450 monooxygenases CYP1A2, CYP2C9, and CYP3A4, heterologously expressed in Escherichia coli, to convert mono- and sesquiterpenoids

  18. Theoretical study of the cytochrome P450 mediated metabolism of phosphorodithioate pesticides

    DEFF Research Database (Denmark)

    Rydberg, Patrik

    2012-01-01

    The toxicity of phosphorodithioate pesticides is due to the formation of the active oxane product through desulfurization by cytochrome P450 enzymes, both in humans and insects. During this desulfurization, inhibition of cytochrome P450 and a loss of heme has been observed. Here, we study...

  19. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans

    DEFF Research Database (Denmark)

    Jürgens, Gesche; Christensen, Hanne Rolighed; Brøsen, Kim

    2002-01-01

    Our objective was to investigate the effect of acute hypoxia on the activity of hepatic cytochrome P450 (CYP) enzymes.......Our objective was to investigate the effect of acute hypoxia on the activity of hepatic cytochrome P450 (CYP) enzymes....

  20. Characterization of human cytochrome P450 induction by pesticides.

    Science.gov (United States)

    Abass, Khaled; Lämsä, Virpi; Reponen, Petri; Küblbeck, Jenni; Honkakoski, Paavo; Mattila, Sampo; Pelkonen, Olavi; Hakkola, Jukka

    2012-03-29

    Pesticides are a large group of structurally diverse toxic chemicals. The toxicity may be modified by cytochrome P450 (CYP) enzyme activity. In the current study, we have investigated effects and mechanisms of 24 structurally varying pesticides on human CYP expression. Many pesticides were found to efficiently activate human pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Out of the 24 compounds tested, 14 increased PXR- and 15 CAR-mediated luciferase activities at least 2-fold. While PXR was predominantly activated by pyrethroids, CAR was, in addition to pyrethroids, well activated by organophosphates and several carbamates. Induction of CYP mRNAs and catalytic activities was studied in the metabolically competent, human derived HepaRG cell line. CYP3A4 mRNA was induced most powerfully by pyrethroids; 50 μM cypermethrin increased CYP3A4 mRNA 35-fold. CYP2B6 was induced fairly equally by organophosphate, carbamate and pyrethroid compounds. Induction of CYP3A4 and CYP2B6 by these compound classes paralleled their effects on PXR and CAR. The urea herbicide diuron and the triazine herbicide atrazine induced CYP2B6 mRNA more than 10-fold, but did not activate CAR indicating that some pesticides may induce CYP2B6 via CAR-independent mechanisms. CYP catalyzed activities were induced much less than the corresponding mRNAs. At least in some cases, this is probably due to significant inhibition of CYP enzymes by the studied pesticides. Compared with human CAR activation and CYP2B6 expression, pesticides had much less effect on mouse CAR and CYP2B10 mRNA. Altogether, pesticides were found to be powerful human CYP inducers acting through both PXR and CAR. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of kanglaite on rat cytochrome P450.

    Science.gov (United States)

    Du, Xiaoxiang; Ye, Huizhou; Zhang, Chunxia; Ye, Lei; Lin, Guanyang

    2015-07-01

    Kanglaite (KLT) is an oily substance extracted from Coix lacryma-jobi Linn. (Cramineae) and has been proved to significantly improve the life span and quality of life of patients, when combined with chemotherapy, radiotherapy, or surgery. The purpose of this study was to find out whether KLT influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4) by using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), bupropion (20 mg/kg), tolbutamide (5 mg/kg), omeprazole (20 mg/kg), and midazolam (10 mg/kg), was given as oral administration to rats treated with 7 d intraperitoneal injection of KLT. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0 (SPPS Inc., Chicago, IL). In the experiment, there was a statistically significant difference in the t1/2, Cmax, AUC(0-∞), and CL for phenacetin, bupropion, tolbutamide, omeprazole, and midazolam. Our study showed that treatment with multiple doses of KLT had induction effect on rat CYP1A2, while CYP2B6, CYP2C9, CYP2C19, and CYP3A4 enzyme activities had been inhibited after multiple doses of KLT treatment. KLT can either induce or inhibit activities of CYP. Therefore, caution is needed when KLT is co-administration with some CYP substrates in clinic, which may result in herb-drug interactions.

  2. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  3. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A. [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States); Sligar, Stephen G., E-mail: s-sligar@illinois.edu [Departments of Biochemistry and Chemistry, University of Illinois, 505 South Goodwin Avenue (United States)

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  4. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator

    DEFF Research Database (Denmark)

    Jornil, Jakob; Jensen, Klaus Gjervig; Larsen, Frank

    2010-01-01

    the importance of the identified paroxetine-metabolizing P450 isoforms for human metabolism, taking mechanism-based inhibition into account. The amount of active hepatic CYP2D6 and CYP3A4 (not inactivated by mechanism-based inhibition) was also estimated by Simcyp. For extensive and poor metabolizers of CYP2D6...... to be the major contributors to paroxetine metabolism in humans. For some individuals CYP1A2 could be of importance for paroxetine metabolism, whereas the importance of CYP2C19 and CYP3A5 is probably limited....

  5. Purification and characterization of an acetone-inducible cytochrome P-450 from hamster liver microsomes.

    OpenAIRE

    Puccini, P; Menicagli, S; Longo, V.; Santucci, A.; Gervasi, P. G.

    1992-01-01

    A form of cytochrome P-450 has been purified to electrophoretic homogeneity from the hepatic microsomes of Syrian golden hamsters treated with acetone. This P-450 form, designated ha P-450j, had an M(r) of approximately 55,000, bound dimethyl sulphoxide and exhibited a CO-reduced absorbance maximum at 451 nm. The absolute spectra of its oxidized form indicated that ha P-450j was predominantly in the low-spin state. In a reconstituted system, ha P-450j showed relatively low catalytic activitie...

  6. Exposure of rats to exogenous endocrine disruptors 17alpha-ethinylestradiol and benzo(a) pyrene and an estrogenic hormone estradiol induces expression of cytochromes P450 involved in their metabolism

    Czech Academy of Sciences Publication Activity Database

    Bořek-Dohalská, L.; Klusoňová, Z.; Holecová, J.; Martinková, M.; Bárta, F.; Dračínská, H.; Cajthaml, Tomáš; Stiborová, M.

    2016-01-01

    Roč. 37, Sup 1 (2016), s. 84-94 ISSN 0172-780X R&D Projects: GA ČR(CZ) GA15-02328S Institutional support: RVO:61388971 Keywords : endocrine disruptor * 17 alpha-ethinylestradiol * cytochrome P450 Subject RIV: EE - Microbiology, Virology Impact factor: 0.918, year: 2016

  7. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building

    NARCIS (Netherlands)

    Koymans, L M; Vermeulen, N P; Baarslag, A; Donné-Op den Kelder, G M

    A homology model building study of cytochrome P450 2D6 has been carried out based on the crystal structure of cytochrome P450 101. The primary sequences of P450 101 and P450 2D6 were aligned by making use of an automated alignment procedure. This alignment was adjusted manually by matching

  8. Induction and repression of the major phenobarbital-induced cytochrome P-450 measured by radioimmunoassay.

    OpenAIRE

    Phillips, I R; Shephard, E A; Bayney, R M; Pike, S F; Rabin, B R; Heath, R; Carter, N.

    1983-01-01

    Two independent radioimmunoassay techniques for the major phenobarbital-inducible cytochrome P-450 (PB P-450) of rat liver microsomal membranes are described. The first technique employs as the source of radiolabelled antigen the products of translation in vitro labelled with [35S]methionine. The second technique employs purified antigen labelled with 125I and is quicker, less expensive and more precise. Both assays are highly specific for PB P-450 and can detect quantities of this variant as...

  9. Evaluation of Inhibition Selectivity for Human Cytochrome P450 2A Enzymes

    OpenAIRE

    Stephens, Eva S.; Walsh, Agnes A.; Scott, Emily E.

    2012-01-01

    Cytochrome P450 (P450) enzymes are mixed-function oxidases that catalyze the metabolism of xenobiotics and endogenous biochemicals. Selective inhibitors are needed to accurately distinguish the contributions of individual P450 enzymes in the metabolism of drugs and the activation of procarcinogens in human tissues, but very frequently these enzymes have substantial overlapping selectivity. We evaluated a chemically diverse set of nine previously identified CYP2A6 inhibitors to determine which...

  10. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    Chattha

    protein identified to date (Morant et al., 2003). P450s are found in all major plant biosynthetic pathways, including ... The large scale of soybean expressed sequence tags (ESTs) database (NCBI) contains over 1,386,618 ... are still large quantities of genes to be annotated. This study used ESTs which is a good approach for.

  11. Purification and characterization of NADPH-cytochrome P450 reductase from filamentous fungus Rhizopus nigricans.

    Science.gov (United States)

    Makovec, T; Breskvar, K

    1998-09-15

    We report here the isolation and partial characterization of a flavoprotein, NADPH-cytochrome P450 (cytochrome c) reductase. The enzyme is a part of steroid 11 alpha-hydroxylating system and is associated with the microsomal fraction of the fungus Rhizopus nigricans. Fungal reductase was solubilized from microsomal membranes with Triton X-100 and purified to apparent homogeneity by affinity and high-performance ion-exchange chromatography. A 350-fold purification of the enzyme with specific activity of 37 mumol cytochrome c reduced/min/mg protein was achieved. A single protein band was obtained on SDS-PAGE analysis with an apparent molecular weight of 79 kDa. Purified reductase contained approximately equimolar quantities of flavin adenine dinucleotide and flavin mononucleotide per mole of the enzyme. Upon induction of the steroid hydroxylating system with progesterone the activity of microsomal NADPH-cytochrome c (P450) reductase increased 10-fold. This is in good correlation with the increase in content of fungal cytochrome P450. Purified fungal flavoprotein was active in a reconstituted system with cytochrome P450 C21 from adrenal gland but could not replace adrenodoxin reductase in the mitochondrial steroid 11 beta-hydroxylating system. We were able to confirm the role of the enzyme by reconstituting steroid 11 alpha-hydroxylating activity from the separated components NADPH-cytochrome P450 reductase and cytochrome P450, partly purified from fungal microsomes.

  12. Catalytic and immunochemical properties of NADPH-cytochrome P450 reductase from fungus Rhizopus nigricans.

    Science.gov (United States)

    Makovec, Tomaz; Breskvar, Katja

    2002-09-01

    Flavoprotein NADPH-cytochrome P450 reductase (CPR, EC 1.6.2.4) from filamentous fungus Rhizopus nigricans is a membrane bound enzyme which is involved in the reduction of cytochrome P450 during the hydroxylation of progesterone at 11alpha position. After purification of the enzyme from induced mycelia three forms of fungal CPR were detected on SDS-PAGE: a predominant form with an apparent molecular mass of 78kDa and two truncated forms. N-terminal sequences of all three forms were determined as well as some internal sequences of 78kDa form. Dose-dependent immunoinhibition of NADPH-cytochrome c reductase and progesterone 11alpha-hydroxylase activities was observed with mouse anti-CPR antisera. No cross-reactions were obtained on Western blots between mouse anti-CPR antisera and protein preparations from noninduced mycelia and microsomal fraction from fungus Pleurotus osteatus, plant Ginkgo biloba or chicken liver. The kinetic mechanism of CPR was proposed on the basis of model reaction with cytochrome c(3+). Results obtained at high ionic strength suggest a nonclassical two-site ping pong mechanism and at low ionic strength a sequential mechanism of bisubstrate reaction.

  13. Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver.

    NARCIS (Netherlands)

    Oetari, S.; Sudibyo, M.; Commandeur, J.N.M.; Samhoedi, R.; Vermeulen, N.P.E.

    1996-01-01

    The stability of curcumin, as well as the interactions between curcumin and cytochrome P450s (P450s) and glutathione S-transferases (GSTs) in rat liver, were studied. Curcumin is relatively unstable in phosphate buffer at pH 7.4. The stability of curcumin was strongly improved by lowering the pH or

  14. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    Science.gov (United States)

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  15. Monooxygenation of small hydrocarbons catalyzed by bacterial cytochrome p450s.

    Science.gov (United States)

    Shoji, Osami; Watanabe, Yoshihito

    2015-01-01

    Cytochrome P450s (P450s) catalyze the NAD(P)H/O2-dependent monooxygenation of less reactive organic molecules under mild conditions. The catalytic activity of bacterial P450s is very high compared with P450s isolated from animals and plants, and the substrate specificity of bacterial P450s is also very high. Accordingly, their catalytic activities toward nonnative substrates are generally low especially toward small hydrocarbons. However, mutagenesis approaches have been very successful for engineering bacterial P450s for the hydroxylation of small hydrocarbons. On the other hand, "decoy" molecules, whose structures are very similar to natural substrates, can be used to trick the substrate recognition of bacterial P450s, allowing the P450s to catalyze oxidation reactions of nonnative substrates without any substitution of amino acid residues in the presence of decoy molecules. Thus, the hydroxylation of small hydrocarbons such as ethane, propane, butane and benzene can be catalyzed by P450BM3, a long-alkyl-chain hydroxylase, using substrate misrecognition of P450s induced by decoy molecules. Furthermore, a number of H2O2-dependent bacterial P450s can catalyze the peroxygenation of a variety of nonnative substrates through a simple substrate-misrecognition trick, in which catalytic activities and enantioselectivity are dependent on the structure of decoy molecules.

  16. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates.

    Science.gov (United States)

    Kumar, Suresh

    2015-01-17

    Cytochrome P450s (CYPs) are important heme-containing proteins, well known for their monooxygenase reaction. The human cytochrome P450 4X1 (CYP4X1) is categorized as "orphan" CYP because of its unknown function. In recent studies it is found that this enzyme is expressed in neurovascular functions of the brain. Also, various studies have found the expression and activity of orphan human cytochrome P450 4X1 in cancer. It is found to be a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4X1 remain unclear. In the present study, the three-dimensional structure of orphan human cytochrome P450 4X1 was generated by homology modeling using Modeller 9v8. The generated structure was accessed for geometrical errors and energy stability using PROCHECK, VERFIY 3D and PROSA. A molecular docking analysis was carried out against substrates arachidonic acid and anandamide and the docked substrates were predicted for drug-likeness, ADME-Tox parameters and biological spectrum activity. The three-dimensional model of orphan human cytochrome P450 4X1 was generated and assessed with various structural validation programmes. Docking of orphan human cytochrome P450 4X1 with arachidonic acid revealed that TYR 112, ALA 126, ILE 222, ILE 223, THR 312, LEU 315, ALA 316, ASP 319, THR 320, PHE 491 and ILE 492 residues were actively participating in the interaction, while docking of CYP4X1 with anandamide showed that TYR 112, GLN 114, PRO 118, ALA 126, ILE 222, ILE 223, SER 251, LEU 315, ALA 316 and PHE 491 key residues were involved in strong interaction. From this study, several key residues were identified to be responsible for the binding of arachidonic acid and anandamide with orphan human cytochrome P450 4X1. Both substrates obeyed Lipinski rule of five in drug-likeness test and biological spectrum prediction showed anticarcinogenic activity. Compared to anandamide, arachidonic acid showed strong

  17. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat.

    Science.gov (United States)

    Kot, Marta; Daniel, Władysława A

    2008-01-01

    The current knowledge on the involvement of cytochrome P450 (P450, CYP) isoforms in the metabolism of caffeine in rat and human liver is reviewed. Attention is also paid to species- and concentration-dependent metabolism of caffeine. Finally, we discuss the P450-mediated metabolism of caffeine in relation to coffee addiction and drug interactions. Due to its safety, favorable pharmacokinetic properties, and P450 isoform-selective metabolism, caffeine has great potential as a metabolic marker substance in both humans and rats, and as a more universal metabolic tool in the latter species. However, the qualitative and relative quantitative contribution of P450 isoforms to the metabolism of caffeine is species- and concentration-dependent. While 3-N-demethylation is quantitatively the main oxidation pathway in human, 8-hydroxylation is the dominant metabolic pathway in rat. Both of these main reactions in the two species are specifically catalyzed by CYP1A2. Caffeine may be applied as a marker substance for assessing the activity of CYP1A2 in human and rat liver, but by using different reactions: 3-N-demethylation in humans and C-8-hydroxylation in rats. In addition, caffeine can be used to preliminarily and simultaneously estimate CYP2C activity in rat liver using 7-N-demethylation as a marker reaction. On the other hand, CYP3A4-catalyzed 8-hydroxylation in humans is not sufficiently isoform-specific to mark the activity of CYP3A4. Caffeine pharmacokinetics may be changed by drugs affecting the activity of CYP1A2 (human and rat) or CYP2C (rat), e.g. via autoinduction or by treatment with certain antidepressants or neuroleptics. Therefore, patients taking caffeine-containing medicine or coffee drinkers taking drugs that interact with CYP1A2 may require proper dosage adjustments upon caffeine ingestion and cessation.

  18. Purification and characterization of an acetone-inducible cytochrome P-450 from hamster liver microsomes.

    Science.gov (United States)

    Puccini, P; Menicagli, S; Longo, V; Santucci, A; Gervasi, P G

    1992-11-01

    A form of cytochrome P-450 has been purified to electrophoretic homogeneity from the hepatic microsomes of Syrian golden hamsters treated with acetone. This P-450 form, designated ha P-450j, had an M(r) of approximately 55,000, bound dimethyl sulphoxide and exhibited a CO-reduced absorbance maximum at 451 nm. The absolute spectra of its oxidized form indicated that ha P-450j was predominantly in the low-spin state. In a reconstituted system, ha P-450j showed relatively low catalytic activities towards 7-ethoxycoumarin, 7-ethoxyresorufin, aminopyrine, ethylmorphine and benzphetamine, whereas it catalysed the oxidation of aniline, acetone and thiobenzamide with a high catalytic-centre activity. In addition, ha P-450j catalysed at a high rate the high-affinity component of dimethylnitrosamine N-demethylase; in contrast, only the low-affinity component of diethylnitrosamine N-de-ethylase was efficiently catalysed. The addition of cytochrome b5 to the reconstitution system decreased the Km value for dimethylnitrosamine N-demethylase by a factor of 5 and increased the Vmax. value, and slightly enhanced the other activities. Thiobenzamide and diethyldithiocarbamate were found to be the most effective inhibitors of the ha-P-450j-dependent aniline hydroxylation. Polyclonal antibodies against rat P-450j recognized ha P-450j in immunoblots of control and treated hamster liver microsomes. Treatment of hamsters with acetone increased the apparent abundance of ha P-450j in microsomes, whereas phenobarbital and beta-naphthoflavone did not induce it. Analysis of N-terminal amino acid sequences demonstrated that ha P-450j has a high degree of sequence identity with rat P-450j. All the evidence presented in this study indicates that ha P-450j could represent the hamster orthologue of the previously described CYP2E1(s) of other species.

  19. Effect of sulfonated steroids on steroidogenic cytochrome P450-dependent steroid hydroxylases.

    Science.gov (United States)

    Neunzig, J; Bernhardt, R

    2017-07-08

    In the last decades, sulfonated steroids evolved from inactive metabolites intended for excretion to highly relevant compounds involved in many physiological processes. Investigations of the impact of sulfonated steroids on the steroid hormone biosynthesis revealed that, on the one hand, these can serve as substrate for steroidogenic cytochromes P450 and, on the other hand, these are able to influence the catalytic properties of these enzymes. In this review the relevance of sulfonated steroids for the steroid hormone biosynthesis will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily

    DEFF Research Database (Denmark)

    Dueholm, Bjørn; Krieger, Celia; Drew, Damian

    2015-01-01

    belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects. Results: A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two...... of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline...... a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ. Conclusion: Two subclades functionally assigned to the biosynthesis of furanocoumarins...

  1. Linking cytochrome P450cam (Cyp101) to its redox partner putidaredoxin and probing new reactions of the P450cam system

    OpenAIRE

    Rojubally, Adina

    2008-01-01

    The most recognized activity of P450cam is the oxidation of the unactivated C-H bond at C-5 of D (+)-camphor to an alcohol moiety. This hydroxylation reaction has few counterparts in chemical synthesis; hence, the application of cytochrome P450cam for industrial purposes has practical potential. P450¬cam requires a carefully orchestrated reaction cycle, which includes two electron transfer partners: putidaredoxin (Pdx) and putidaredoxin reductase (Pdr). Studies have shown that Pdx plays an es...

  2. Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily

    DEFF Research Database (Denmark)

    Dueholm, Bjørn; Krieger, Celia; Drew, Damian

    2015-01-01

    Background: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants...... belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects. Results: A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two...

  3. Hepatic cytochrome P450 activity, abundance, and expression throughout human development

    Energy Technology Data Exchange (ETDEWEB)

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo M.; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.; Wright, Aaron T.

    2016-07-01

    Cytochrome P450s are Phase I metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes can vary considerably throughout human development, especially when comparing fetal development to neonates, children, and adults. In an effort to develop a more comprehensive understanding of the ontogeny of P450 expression and activity we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. To quantify the functional activity of individual P450s we employ activity-based protein profiling, which uses modified mechanism-based inhibitors of P450s as chemical probes, in tandem with proteomic analyses to quantify activity. Our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. The results were used to distribute P450s into three general classes based upon developmental stage of expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that our ontogeny results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics.

  4. Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone.

    Science.gov (United States)

    Uehara, Shotaro; Uno, Yasuhiro; Nakanishi, Kazuyuki; Ishii, Sakura; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2017-05-01

    Common marmosets ( Callithrix jacchus ), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6 β -hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Insights into molecular basis of cytochrome p450 inhibitory promiscuity of compounds.

    Science.gov (United States)

    Cheng, Feixiong; Yu, Yue; Zhou, Yadi; Shen, Zhonghua; Xiao, Wen; Liu, Guixia; Li, Weihua; Lee, Philip W; Tang, Yun

    2011-10-24

    Cytochrome P450 inhibitory promiscuity of a drug has potential effects on the occurrence of clinical drug-drug interactions. Understanding how a molecular property is related to the P450 inhibitory promiscuity could help to avoid such adverse effects. In this study, an entropy-based index was defined to quantify the P450 inhibitory promiscuity of a compound based on a comprehensive data set, containing more than 11,500 drug-like compounds with inhibition against five major P450 isoforms, 1A2, 2C9, 2C19, 2D6, and 3A4. The results indicated that the P450 inhibitory promiscuity of a compound would have a moderate correlation with molecular aromaticity, a minor correlation with molecular lipophilicity, and no relations with molecular complexity, hydrogen bonding ability, and TopoPSA. We also applied an index to quantify the susceptibilities of different P450 isoforms to inhibition based on the same data set. The results showed that there was a surprising level of P450 inhibitory promiscuity even for substrate specific P450, susceptibility to inhibition follows the rank-order: 1A2 > 2C19 > 3A4 > 2C9 > 2D6. There was essentially no correlation between P450 inhibitory potency and specificity and minor negative trade-offs between P450 inhibitory promiscuity and catalytic promiscuity. In addition, classification models were built to predict the P450 inhibitory promiscuity of new chemicals using support vector machine algorithm with different fingerprints. The area under the receiver operating characteristic curve of the best model was about 0.9, evaluated by 5-fold cross-validation. These findings would be helpful for understanding the mechanism of P450 inhibitory promiscuity and improving the P450 inhibitory selectivity of new chemicals in drug discovery.

  6. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Reed, James R., E-mail: rreed@lsuhsc.edu [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Cawley, George F.; Ardoin, Taylor G. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); Dellinger, Barry; Lomnicki, Slawomir M.; Hasan, Farhana; Kiruri, Lucy W. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Backes, Wayne L. [Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States); The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112 (United States)

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of several P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to

  7. Cytochrome P-450-mediated denitrification of 2-nitropropane in mouse liver microsomes.

    Science.gov (United States)

    Marker, E K; Kulkarni, A P

    1986-09-01

    Enzymatic denitrification of 2-nitropropane (2NP) was investigated in an NADPH-dependent hepatic microsomal system from male CD1 mice. The involvement of cytochrome P-450 (P-450) as the catalyst in 2NP denitrification was revealed by the induction of nitrite-releasing activity following phenobarbital (PB) pretreatment, by a decrease in activity with carbon tetrachloride pretreatment, by the inhibition of the reaction with classical P-450 inhibitors, and by the observation of a type I binding spectrum. Under optimal conditions, two pH-dependent peaks of activity were observed at pH 7.6 and pH 8.8, each with its own optimal substrate concentration. Inhibition of the reaction by metyrapone and carbon monoxide (CO) (among others) produced differential responses dependent on pH. These results, along with two pH optima and two substrate optima, suggested the involvement of multiple P-450 isozymes. Average specific activities were 8.05 nmoles of nitrite released per minute per milligram microsomal protein at pH 7.6 and 6.44 nmoles of nitrite released per minute per milligram microsomal protein at pH 8.8. Acetone was identified as the second product of the reaction by gas chromatography/mass spectrometry (GC/MS). Stoichiometry studies indicated that the acetone production was slightly less than expected (about 70%) from nitrite release. Up to 25% residual activity was observed under anaerobic conditions. These results suggested that though the predominant reaction mechanism was oxidative, oxygen-independent metabolism of 2NP also occurred to some extent. In contrast to the reported lack of activity in untreated rat, the observed denitrification in uninduced mouse liver microsomes was significant and suggested that major species-specific differences exist in the in vitro metabolism of 2NP.

  8. Effect of health foods on cytochrome P450-mediated drug metabolism.

    Science.gov (United States)

    Sasaki, Takamitsu; Sato, Yu; Kumagai, Takeshi; Yoshinari, Kouichi; Nagata, Kiyoshi

    2017-01-01

    Health foods have been widely sold and consumed in Japan. There has been an increase in reports of adverse effects in association with the expanding health food market. While health food-drug interactions are a particular concern from the viewpoint of safe and effective use of health foods, information regarding such interactions is limited owing to the lack of established methods to assess the effects of health food products on drug metabolism. We therefore developed cells that mimicked the activities of cytochrome P450 1A2 (CYP1A2), CYP2C9, CYP2C19, CYP2D6, and CYP3A4, which strongly contribute to drug metabolism in human hepatocytes, and established a system to assess the inhibitory activity of health foods toward P450-mediated metabolism. We simultaneously infected HepG2 cells with five P450-expressing adenoviruses (Ad-CYP1A2, Ad-CYP2C9, Ad-CYP2C19, Ad-CYP2D6, and Ad-CYP3A4) to mimic the activity levels of these P450s in human hepatocytes, and named them Ad-P450 cells. The activity levels of P450s in Ad-P450 cells and human hepatocytes were calculated via simultaneous liquid chromatography/tandem mass spectrometry analysis utilizing a P450 substrate cocktail. We established Ad-P450 cells mimicking the activity levels of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in human hepatocytes. We determined the Km values of P450 substrates and IC50 values of P450 inhibitors in Ad-P450 cells. These values were approximately equivalent to those obtained in previous studies. We investigated the inhibitory effects of 172 health foods that were recently in circulation in Japan on P450-mediated metabolism using Ad-P450 cells. Of the 172 health foods, five products (two products having dietary effects, one turmeric-based product, one collagen-based product, and one propolis-containing product) simultaneously inhibited the five P450s by more than 50%. Another 29 products were also confirmed to inhibit one or more P450s. We established a comprehensive assessment system to

  9. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    Science.gov (United States)

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2008-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × 1010 s−1 to 12.5 ± 3 × 1010 s−1 for trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-α-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450cam active site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of α-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent. PMID:16401082

  10. Radical intermediates in the catalytic oxidation of hydrocarbons by bacterial and human cytochrome P450 enzymes.

    Science.gov (United States)

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R

    2006-01-17

    Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.

  11. Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Meier, U.T.; Meyer, U.A.

    1987-12-15

    The metabolism of the anticonvulsant mephenytoin is subject to a genetic polymorphism. In 2-5% of Caucasians and 18-23% of Japanese subjects a specific cytochrome P-450 isozyme, P-450 meph, is functionally deficient or missing. The authors have accumulated evidence that autoimmune antibodies observed in sera of patients with tienilic acid induced hepatitis (anti-liver kidney microsome 2 or anti-LKM2 antibodies) specifically recognize the cytochrome P-450 involved in the mephrenytoin hydroxylation polymorphism. This is demonstrated by immunoinhibition and immunoprecipitation of microsomal (S)-mephenytoin 4-hydroxylation activity and by the recognition by anti-LKM2 antibodies of a single (/sup 125/I)-protein band on immunoblots of human liver microsomes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis or isoelectric focusing. The cytochrome P-450 recognized by anti-LKM2 antibodies was immunopurified from microsomes derived from livers of extensive (EM) or poor metabolizers (PM) of (S)-mephenytoin. Comparison of the EM-type cytochrome P-450 to that isolated from PM livers revealed no difference in regard to immuno-cross-reactivity, molecular weight, isoelectric point, relative content in microsomes, two-dimensional tryptic peptide maps, one-dimensional peptide maps with three proteases, amino acid composition, and amino-terminal protein sequence. Finally, the same protein was precipitated from microsomes prepared from the liver biopsy of a subject phenotyped in vivo as a poor metabolizer of mephenytoin. These data strongly suggest that the mephenytoin hydroxylation deficiency is caused by a minor structural change leading to a functionally altered cytochrome P-450 isozyme.

  12. Cloning, expression and purification of cindoxin, an unusual Fmn-containing cytochrome p450 redox partner.

    Science.gov (United States)

    Hawkes, David B; Slessor, Kate E; Bernhardt, Paul V; De Voss, James J

    2010-05-17

    Cytochromes P450 (P450s) belong to a superfamily of haemoproteins that catalyse a remarkable variety of oxidative transformations. P450 catalysis generally requires that cognate redox proteins transfer electrons, derived ultimately from NAD(P)H, to the P450 for oxygen activation. P450(cin) (CYP176A1) is a bacterial P450 that is postulated to allow Citrobacter braakii to live on cineole as its sole carbon source by initiating cineole biodegradation. Here we report the cloning, expression, purification and characterisation of one of its postulated redox partners, cindoxin (Cdx), which has strong similarity to the FMN domain of cytochrome P450 reductase. Cindoxin reductase (CdR), which displays strong similarity to NADPH-dependent ferredoxin reductases, was unable to be expressed in a functional form. Mass spectrometric and HPLC analyses confirmed that the flavin cofactor of cindoxin was FMN. Redox potentiometric titrations were performed with cindoxin within the range 6reductase (Fpr) acting as the terminal redox partner in the absence of CdR. Our results show that Cdx and Fpr support regio- and stereoselective P450(cin)-catalysed cineole oxidation to (1R)-6beta-hydroxycineole with turnover rates up to 1500 min(-1). This system is tightly coupled with 80 % of NADPH reducing equivalents funnelled into substrate oxidation.

  13. De-bugging and maximizing plant cytochrome P450 production in Escherichia coli with C-terminal GFP fusions

    DEFF Research Database (Denmark)

    Christensen, Ulla; Vazquez Albacete, Dario; Søgaard, Karina Marie

    2017-01-01

    Cytochromes P450 (CYP) are attractive enzyme targets in biotechnology as they catalyze stereospecific C-hydroxylations of complex core skeletons at positions that typically are difficult to access by chemical synthesis. Membrane bound CYPs are involved in nearly all plant pathways leading...

  14. Role of the conserved threonine 309 in mechanism of oxidation by cytochrome P450 2D6

    NARCIS (Netherlands)

    Keizers, P.H.J.; Schraven, L.H.; de Graaf, C.; Hidestrand, M.; Ingelman-Sundberg, M.; van Dijk, B.M.; Vermeulen, N.P.E.; Commandeur, J.N.M.

    2005-01-01

    Based on sequence alignments and homology modeling, threonine 309 in cytochrome P450 2D6 (CYP2D6) is proposed to be the conserved I-helix threonine, which is supposed to be involved in dioxygen activation by CYPs. The T309V mutant of CYP2D6 displayed a strong shift from O-dealkylation to

  15. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    Science.gov (United States)

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  16. Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Nielsen, Agnieszka Janina Zygadlo; Burow, Meike

    2016-01-01

    Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form......, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane, and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here we report the fusion...... of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore...

  17. Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate.

    Science.gov (United States)

    McCarthy, M B; White, R E

    1983-08-10

    A series of seven hemeproteins, cytochromes P-450LM2, P-450LM4, and P-420LM2, horseradish peroxidase, chloroperoxidase, catalase, and metmyoglobin, as well as hemin were tested for their ability to catalyze a set of five oxidative reactions. These reactions were a typical peroxidative reaction (oxidation of pyrogallol to purpurogallin) and three characteristic P-450 reactions (aliphatic hydroxylation, aromatic hydroxylation, and olefinic epoxidation). In addition, the ability to decarboxylate a peroxyacid was measured. All hemeproteins were able to carry out peroxidation, but three (horseradish peroxidase, chloroperoxidase, and catalase) were much better catalysts than the others. Only the P-450 enzymes were competent catalysts for the hydroxylation and epoxidation reactions. Furthermore, the decarboxylation reaction was strictly limited to the P-450 enzymes, establishing it as a new, unique P-450 activity. Since the decarboxylation of peroxyacids is diagnostic of peroxide homolysis, these results indicate a fundamentally different manner of processing of peroxides by cytochrome P-450 than by the peroxidases. Thus, the possibility of close similarity of reactive oxygen intermediates in the two series is called into question.

  18. Expression of a Ripening-Related Avocado (Persea americana) Cytochrome P450 in Yeast 1

    Science.gov (United States)

    Bozak, Kristin R.; O'Keefe, Daniel P.; Christoffersen, Rolf E.

    1992-01-01

    One of the mRNAs that accumulates during the ripening of avocado (Persea americana Mill. cv Hass) has been previously identified as a cytochrome P450 (P450) monooxygenase and the corresponding gene designated CYP71A1. In this report we demonstrate that during ripening the accumulation of antigenically detected CYP71A1 gene product (CYP71A1) correlates with increases in total P450 and two P450-dependent enzyme activities: para-chloro-N-methylaniline demethylase, and trans-cinnamic acid hydroxylase (tCAH). To determine whether both of these activities are derived from CYP71A1, we have expressed this protein in yeast (Saccharomyces cerevisiae) using a galactose-inducible yeast promoter. Following induction, the microsomal fraction of transformed yeast cells undergoes a large increase in P450 level, attributable almost exclusively to the plant CYP71A1 protein. These membranes exhibit NADPH-dependent para-chloro-N-methylaniline demethylase activity at a rate comparable to that in avocado microsomes but have no detectable tCAH. These results demonstrate both that the CYP71A1 protein is not a tCAH and that a plant P450 is fully functional upon heterologous expression in yeast. These findings also indicate that the heterologous P450 protein can interact with the yeast NADPH:P450 reductase to produce a functional complex. Images Figure 1 Figure 3 PMID:16653226

  19. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    Science.gov (United States)

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  20. Identification of the rate‐limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 from Sulfolobus tokodaii strain 7

    National Research Council Canada - National Science Library

    Hayakawa, Shohei; Matsumura, Hirotoshi; Nakamura, Nobuhumi; Yohda, Masafumi; Ohno, Hiroyuki

    2014-01-01

    Cytochrome P450 from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 (P450st) is a thermophilic cytochrome P450 that shows high tolerance of harsh conditions and is capable of catalyzing some peroxygenase reactions...

  1. Global (Q)SAR models on substrates for human Cytochrome P450 3A4

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Wedebye, Eva Bay

    The Cytochrome P450 (CYP) is a superfamily of enzymes which catalyze the metabolism of a wide range of endobiotics and xenobiotics. The latter category comprises drugs and about 75% of marketed drugs are metabolised by CYP enzymes. Besides drugs, CYP enzymes detoxify environmental compounds...... domain. Domain coverage of EINECS chemicals and number of predicted substrates are discussed. Reference: C.W. Yap and Y.Z. Chen, Prediction of cytochrome p450 3A4, 2D6, and 2C9 inhibitors and substrates by using support vector machines, J. Chem. Inf. Model. 45 (2005), pp. 982–992....

  2. FROM GENE TO PROTEIN – CLONNING, EXPRESSION AND PUFICATION OF A P450 CYTOCHROM FROM Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    N. CORCIONIVOSCHI

    2009-05-01

    Full Text Available Recently, the complete genome sequence of Campylobacter jejuni NCTC 11168 was published revealing the presence of only one open reading frame (Cj1411c encoding for a cytochrome P450, in contrast to 20 found in M. tuberculosis. The gene Cj1411c encodes for a soluble 52.6 kDa protein with a predicted isoelectric point of 9.3. The P450 gene is part of reading frame which hosts genes involved in the synthesis of cell surface components (capsula. Campylobacter capsule are important in adherence, invasion and colonisation of host cells and for maintenance of cell surface charge and serum resistance. These capsule are thought to cause autoimmunity leading to Guillan-Barre and Miller-Fischer syndromes. The structure of the lipoolygosaccharides and capsule polysaccharide was published last year revealing that the strain possessed a type II/III capsule locus found in other microorganisms such Nisseria meningitidis. This project focuses on the cloning and characterisation of the only P450 enzyme of the human pathogen Campylobacter jejuni NCTC 11168. We aim to understand the metabolic role of this P450 cytochrome in order to elucidate its possible use as a new target for drug design. To achieve this aim we have cloned, expressed and purify the product of P450 coding gene.

  3. Engineering of daidzein 3’-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450

    Science.gov (United States)

    2012-01-01

    A cytochrome P450 (CYP) enzyme, 3’-daidzein hydroxylase, CYP105D7 (3’-DH), responsible for daidzein hydroxylation at the 3’-position, was recently reported. CYP105D7 (3’-DH) is a class I type of CYP that requires electrons provided through electron transfer proteins such as ferredoxin and ferredoxin reductase. Presently, we constructed an artificial CYP in order to develop a reaction host for the production of a hydroxylated product. Fusion-mediated construction with the reductase domain from self-sufficient CYP102D1 was done to increase electron transfer efficiency and coupling with the oxidative process. An artificial self-sufficient daidzein hydroxylase (3’-ASDH) displayed distinct spectral properties of both flavoprotein and CYP. The fusion enzyme catalyzed hydroxylation of daidzein more efficiently, with a kcat/Km value of 16.8 μM-1 min-1, which was about 24-fold higher than that of the 3’-DH-camA/B reconstituted enzyme. Finally, a recombinant Streptomyces avermitilis host for the expression of 3’-ASDH and production of the hydroxylated product was developed. The conversion that was attained (34.6%) was 5.2-fold higher than that of the wild-type. PMID:22697884

  4. Engineering of daidzein 3’-hydroxylase P450 enzyme into catalytically self-sufficient cytochrome P450

    Directory of Open Access Journals (Sweden)

    Choi Kwon-Young

    2012-06-01

    Full Text Available Abstract A cytochrome P450 (CYP enzyme, 3’-daidzein hydroxylase, CYP105D7 (3’-DH, responsible for daidzein hydroxylation at the 3’-position, was recently reported. CYP105D7 (3’-DH is a class I type of CYP that requires electrons provided through electron transfer proteins such as ferredoxin and ferredoxin reductase. Presently, we constructed an artificial CYP in order to develop a reaction host for the production of a hydroxylated product. Fusion-mediated construction with the reductase domain from self-sufficient CYP102D1 was done to increase electron transfer efficiency and coupling with the oxidative process. An artificial self-sufficient daidzein hydroxylase (3’-ASDH displayed distinct spectral properties of both flavoprotein and CYP. The fusion enzyme catalyzed hydroxylation of daidzein more efficiently, with a kcat/Km value of 16.8 μM-1 min-1, which was about 24-fold higher than that of the 3’-DH-camA/B reconstituted enzyme. Finally, a recombinant Streptomyces avermitilis host for the expression of 3’-ASDH and production of the hydroxylated product was developed. The conversion that was attained (34.6% was 5.2-fold higher than that of the wild-type.

  5. A G-protein-coupled receptor regulation pathway in cytochrome P450-mediated permethrin-resistance in mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Li, Ting; Cao, Chuanwang; Yang, Ting; Zhang, Lee; He, Lin; Xi, Zhiyong; Bian, Guowu; Liu, Nannan

    2015-12-10

    Rhodopsin-like G protein-coupled receptors (GPCRs) are known to be involved in the GPCR signal transduction system and regulate many essential physiological processes in organisms. This study, for the first time, revealed that knockdown of the rhodopsin-like GPCR gene in resistant mosquitoes resulted in a reduction of mosquitoes' resistance to permethrin, simultaneously reducing the expression of two cAMP-dependent protein kinase A genes (PKAs) and four resistance related cytochrome P450 genes. The function of rhodopsin-like GPCR was further confirmed using transgenic lines of Drosophila melanogaster, in which the tolerance to permethrin and the expression of Drosophila resistance P450 genes were both increased. The roles of GPCR signaling pathway second messenger cyclic adenosine monophosphate (cAMP) and downstream effectors PKAs in resistance were investigated using cAMP production inhibitor Bupivacaine HCl and the RNAi technique. Inhibition of cAMP production led to significant decreases in both the expression of four resistance P450 genes and two PKA genes and mosquito resistance to permethrin. Knockdown of the PKA genes had shown the similar effects on permethrin resistance and P450 gene expression. Taken together, our studies revealed, for the first time, the role of the GPCR/cAMP/PKA-mediated regulatory pathway governing P450 gene expression and P450-mediated resistance in Culex mosquitoes.

  6. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  7. Synthetic Biology with Cytochromes P450 Using Photosynthetic Chassis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan

    in N. benthamiana. This demonstrated that using transient infiltration of Nicotiana benthamiana with Agrobacterium tumefaciens as a tool, the expression of heterologous metabolic pathways that are involved in terpenoid biosynthesis is indeed feasible. However, during this study, we encountered...

  8. Cytochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis.

    Science.gov (United States)

    Haslinger, Kristina; Maximowitsch, Egle; Brieke, Clara; Koch, Alexa; Cryle, Max J

    2014-12-15

    Bacterial cytochrome P450s form a remarkable clade of the P450 superfamily of oxidative hemoproteins, and are often involved in the biosynthesis of complex natural products. Those in a subgroup known as "Oxy enzymes" play a crucial role in the biosynthesis of glycopeptide antibiotics, including vancomycin and teicoplanin. The Oxy enzymes catalyze crosslinking of aromatic residues in the non-ribosomal antibiotic precursor peptide while it remains bound to the non-ribosomal peptide synthetase (NRPS); this crosslinking secures the three-dimensional structure of the glycopeptide, crucial for antibiotic activity. We have characterized OxyBtei , the first of the Oxy enzymes in teicoplanin biosynthesis. Our results reveal that OxyBtei possesses a structure similar to those of other Oxy proteins and is active in crosslinking NRPS-bound peptide substrates. However, OxyBtei displays a significantly altered activity spectrum against peptide substrates compared to its well-studied vancomycin homologue. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    Science.gov (United States)

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Synthetic Biology with Cytochromes P450 Using Photosynthetic Chassis

    DEFF Research Database (Denmark)

    Gnanasekaran, Thiyagarajan

    in N. benthamiana. This demonstrated that using transient infiltration of Nicotiana benthamiana with Agrobacterium tumefaciens as a tool, the expression of heterologous metabolic pathways that are involved in terpenoid biosynthesis is indeed feasible. However, during this study, we encountered...... compounds such as terpenoids....

  11. An extensive (co-expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Provart Nicholas J

    2008-04-01

    Full Text Available Abstract Background Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling.

  12. Cloning, sequencing, and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans.

    Science.gov (United States)

    Wang, R F; Cao, W W; Khan, A A; Cerniglia, C E

    2000-07-01

    A polyclonal antibody against microsomes of a fungus, Cunninghamella elegans, was used to screen a C. elegans cDNA library. A cDNA clone, containing an open reading frame (ORF) encoding a protein of 389 amino acids (aa), was obtained. GenBank comparison (BLAST) showed that the protein was closely related to P450 because a heme-binding region, which is highly conserved in all P450 sequences, was found in the ORF protein. Using an oligo probe designed from this C. elegans heme-binding region to rescreen the cDNA library, we obtained three new clones. Sequence comparison showed that the three clones, with different length cDNA inserts, were from the same mRNA of the C. elegans P450 gene. One clone had the full C. elegans P450 gene, encoding 473 aa with a molecular mass of 54958.60, whereas the 389 was a part of the 473 aa without the N-terminal. The entire C. elegans P450 gene was successfully subcloned and overexpressed in a plasmid-Escherichia coli system (pQE30). Immunostaining with three antibodies (CYP1A1, CYP2E1, and CYP3A1) against mammalian P450 enzymes and benzidine staining for hemoproteins showed positive results for the recombinant protein expressed in E. coli. A phylogenetic tree was constructed by comparison of other fungal P450s to the C. elegans sequence. The C. elegans P450 clustered close to the cyp51 family and was named cyp509A1 by the International Committee on the Nomenclature for Cytochrome P450 Enzymes.

  13. Electrochemistry in the Mimicry of Oxidative Drug Metabolism by Cytochrome P450s

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Bischoff, Rainer; Bruins, Andries P.; Permentier, Hjalmar P.

    Prediction of oxidative drug metabolism at the early stages of drug discovery and development requires fast and accurate analytical techniques to mimic the in vivo oxidation reactions by cytochrome P450s (CYP). Direct electrochemical oxidation combined with mass spectrometry, although limited to the

  14. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    Science.gov (United States)

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  15. Rat liver microsomal cytochrome P450-dependent oxidation of 3,5-disubstituted analogues of paracetamol

    NARCIS (Netherlands)

    Bessems, J.G.M.; Koppele, J.M. te; Dijk, P.A. van; Stee, L.L.P. van; Commandeur, J.N.M.; Vermeulen, N.P.E.

    1996-01-01

    1. The cytochrome P450-dependent binding of paracetamol and a series of 3,5-disubstituted paracetamol analogues (R = -F, -Cl, -Br, -I, -C(H)3, -C2H5, -iC3H7) have been determined with β-naphthoflavone (βNF)-induced rat liver microsomes and produced reverse type I spectral changes. K(s,app) varied

  16. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2007-01-01

    AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls. METHODS: mRNA expression of CYP2E1...

  17. Mechanism of the N-Hydroxylation of Primary and Secondary Amines by Cytochrome P450

    DEFF Research Database (Denmark)

    Seger, Signe T.; Rydberg, Patrik; Olsen, Lars

    2015-01-01

    Cytochrome P450 enzymes (CYPs) metabolize alkyl- and arylamines, generating several different products. For the primary and secondary amines, some of these reactions result in hydroxylated amines, which may be toxic. Thus, when designing new drugs containing amine groups, it is important to be able...

  18. Prediction of activation energies for aromatic oxidation by cytochrome P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Ryde, Ulf; Olsen, Lars

    2008-01-01

    We have estimated the activation energy for aromatic oxidation by compound I in cytochrome P450 for a diverse set of 17 substrates using state-of-the-art density functional theory (B3LYP) with large basis sets. The activation energies vary from 60 to 87 kJ/mol. We then test if these results can...

  19. Prediction of activation energies for hydrogen abstraction by cytochrome p450

    DEFF Research Database (Denmark)

    Olsen, Lars; Rydberg, Patrik; Rod, Thomas Holm

    2006-01-01

    We have estimated the activation energy for hydrogen abstraction by compound I in cytochrome P450 for a diverse set of 24 small organic substrates using state-of-the-art density functional theory (B3LYP). We then show that these results can be reproduced by computationally less demanding methods...

  20. Mechanism of Cytochrome P450 17A1-Catalyzed Hydroxylase and Lyase Reactions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jorgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Cytochrome P450 17A1 (CYP17A1) catalyzes C17 hydroxylation of pregnenolone and progesterone and the subsequent C17–C20 bond cleavage (lyase reaction) to form androgen precursors. Compound I (Cpd I) and peroxo anion (POA) are the heme-reactive species underlying the two reactions. We have...

  1. Structure-based optimisation of non-steroidal cytochrome P450 17A1 inhibitors

    DEFF Research Database (Denmark)

    Larsen, Morten; Hansen, Cecilie Hurup; Rasmussen, Tobias B.

    2017-01-01

    Five new non-steroidal inhibitors for cytochrome P450 17A1 (CYP17A1) were identified by structure-based optimisation from a recently identified selective CYP17A1 inhibitor. The compounds are nanomolar inhibitors of steroidogenesis measured in recombinant CYP17A1 and in H295R cells....

  2. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    Science.gov (United States)

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  3. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    Science.gov (United States)

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  4. Correlates of Cytochrome P450 1A1 Expression in Bottlenose Dolphin (Tursiops truncatus) Integument Biopsies

    NARCIS (Netherlands)

    Wilson, J.Y.; Wells, R.; Anguilar, A.; Borrell, A.; Tornero, V.; Reijnders, P.J.H.; Moore, M.

    2007-01-01

    Integument biopsy is a nondestructive method for sampling free-ranging cetaceans, which allows for the determination of both contaminant concentrations and biomarker responses. Cytochrome P450 1A1 (CYP1A1) expression is induced by polycyclic aromatic hydrocarbons and planar halogenated aromatic

  5. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes

    NARCIS (Netherlands)

    Monshouwer, M.; Klooster, G.A.E. van 't; Nijmeijer, S.M.; Witkamp, R.F.; Miert, A.S.J.P.A.M. van

    1998-01-01

    Despite the fact that pigs are increasingly used in pharmacological and toxicological studies, knowledge on the enzymes which metabolize xenobiotics, in particular cytochrome P450 (CYP) enzymes, in pigs is still very limited. Primary cultures of pig hepatocytes were used to characterize CYP enzymes.

  6. Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3

    NARCIS (Netherlands)

    van Vugt-Lussenburg, B.M.A.; Damsten, M.C.; Maasdijk, D.M.; Vermeulen, N.P.E.; Commandeur, J.N.M.

    2006-01-01

    Recently, we described a triple mutant of the bacterial cytochrome P450 BM3 as the first mutant with affinity for drug-like compounds. In this paper, we show that this mutant, but not wild-type BM3, is able to metabolise testosterone and several drug-like molecules such as amodiaquine,

  7. Cloning and tissue expression of cytochrome P450 1B1 and 1C1 ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... reading frame of 1551 bp encoding a protein of 517 amino acids; while, CYP1C1 having 2601 bp consists of an open ... expression. Key words: Cytochrome P450, Javanese medaka, salinity, starvation, heavy fuel oil, cloning, expression. .... had no influence on hepatic EROD activities, (Vigano et al., 1993) ...

  8. Identification of two Nereis virens [Annelida: Polychaeta] cytochrome P450 enzymes and induction by xenobiotics

    DEFF Research Database (Denmark)

    Rewitz, Kim; Kjellerup, C; Jørgensen, A

    2004-01-01

    Cytochrome P450 (CYP) enzyme catalysed metabolism of xenobiotics such as polycyclic aromatic hydrocarbons (PAHs) are known to occur in polychaetes. Yet specific polychaete CYP enzymes have so far not been identified. Here, we report two partial CYP cDNA sequences, both of 453 bp, characterised fr...

  9. A predictive model for substrates of cytochrome P450-debrisoquine (2D6)

    NARCIS (Netherlands)

    Koymans, L.; Vermeulen, N P; van Acker, S.A.B.E.; te Koppele, J.M.; Heykants, J J; Lavrijsen, K; Meuldermans, W; Donné-Op den Kelder, G M

    1992-01-01

    Molecular modeling techniques were used to derive a predictive model for substrates of cytochrome P450 2D6, an isozyme known to metabolize only compounds with one or more basic nitrogen atoms. Sixteen substrates, accounting for 23 metabolic reactions, with a distance of either 5 A ("5-A substrates",

  10. Cytochrome P450 Activity in Ex Vivo Cornea Models and a Human Cornea Construct.

    Science.gov (United States)

    Kölln, Christian; Reichl, Stephan

    2016-07-01

    The pharmacokinetic behaviors of novel ophthalmic drugs are often preliminarily investigated in preclinical studies using ex vivo animal cornea or corneal cell culture models. During transcorneal passage, topically applied drugs may be affected by drug metabolizing enzymes. The knowledge regarding the functional expression of metabolic enzymes in corneal tissue is marginal; thus, the aim of this study was to investigate cytochrome P450 activity in an organotypic three-dimensional human cornea construct and to compare it with porcine and rabbit corneas, which are commonly used ex vivo cornea models. The total cytochrome P450 activity was determined by measuring the transformation of 7-ethoxycoumarin. Furthermore, the expression of the cytochrome P450 enzyme 2D6 (CYP2D6) was investigated at the protein level using immunohistochemistry and western blotting. CYP2D6 activity measurements were performed using a d-luciferin-based assay. In summary, similar levels of the total cytochrome P450 activity were identified in all 3 cornea models. The protein expression of CYP2D6 was confirmed in the human cornea construct and porcine cornea, whereas the signals in the rabbit cornea were weak. The analysis of the CYP2D6 activity indicated similar values for the human cornea construct and porcine cornea; however, a distinctly lower activity was observed in the rabbit cornea. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Role of cytochrome P450 genotype in the steps toward personalized drug therapy

    Directory of Open Access Journals (Sweden)

    Cavallari LH

    2011-11-01

    Full Text Available Larisa H Cavallari1,2, Hyunyoung Jeong1,2, Adam Bress11Department of Pharmacy Practice, 2Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USAAbstract: Genetic polymorphism for cytochrome 450 (P450 enzymes leads to interindividual variability in the plasma concentrations of many drugs. In some cases, P450 genotype results in decreased enzyme activity and an increased risk for adverse drug effects. For example, individuals with the CYP2D6 loss-of-function genotype are at increased risk for ventricular arrhythmia if treated with usual does of thioridazine. In other cases, P450 genotype may influence the dose of a drug required to achieve a desired effect. This is the case with warfarin, with lower doses often necessary in carriers of a variant CYP2C9*2 or *3 allele to avoid supratherapeutic anticoagulation. When a prodrug, such as clopidogrel or codeine, must undergo hepatic biotransformation to its active form, a loss-of-function P450 genotype leads to reduced concentrations of the active drug and decreased drug efficacy. In contrast, patients with multiple CYP2D6 gene copies are at risk for opioid-related toxicity if treated with usual doses of codeine-containing analgesics. At least 25 drugs contain information in their US Food and Drug Administration-approved labeling regarding P450 genotype. The CYP2C9, CYP2C19, and CYP2D6 genes are the P450 genes most often cited. To date, integration of P450 genetic information into clinical decision making is limited. However, some institutions are beginning to embrace routine P450 genotyping to assist in the treatment of their patients. Genotyping for P450 variants may carry less risk for discrimination compared with genotyping for disease-associated variants. As such, P450 genotyping is likely to lead the way in the clinical implementation of pharmacogenomics. This review discusses variability in the CYP2C9, CYP2C19, and CYP2D6 genes and the

  12. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    Science.gov (United States)

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  13. Identification of cytochrome P-450, and its distribution in the membrana granulosa of the preovulatory follicle, using quantitative cytochemistry.

    Science.gov (United States)

    Zoller, L C; Weisz, J

    1978-07-01

    The distribution of cytochrome P-450 (C-P450), an essential component of the oxidative enzyme system involved in the hydroxylation of steroids, was measured by quantitative cytochemistry in cryostat sections of preovulatory follicles obtained from rats in proestrous. The sections were reacted with medium saturated with carbon monoxide with or without the addition of sodium dithionite. The absorbance spectrum was measured from 400 to 500 nm and a difference spectrum calculated by subtracting the extinction obtained from incubations without sodium dithionite from that obtained in the presence of sodium dithionite. A distinct peak at 450nm was recorded in cells of the peripheral portion of the membrana granulosa (MG) but not in those of the cumulus, providing evidence for the presence and differential distribution of C-P450 in the MG of the preovulatory follicle.

  14. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A., E-mail: Michail.Alterman@fda.hhs.gov

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  15. Structural basis for human NADPH-cytochrome P450 oxidoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuanwu; Panda, Satya P.; Marohnic, Christopher C.; Martásek, Pavel; Masters, Bettie Sue; Kim, Jung-Ja P. (MCW); (Charles U); (UTSMC)

    2012-03-15

    NADPH-cytochrome P450 oxidoreductase (CYPOR) is essential for electron donation to microsomal cytochrome P450-mediated monooxygenation in such diverse physiological processes as drug metabolism (approximately 85-90% of therapeutic drugs), steroid biosynthesis, and bioactive metabolite production (vitamin D and retinoic acid metabolites). Expressed by a single gene, CYPOR's role with these multiple redox partners renders it a model for understanding protein-protein interactions at the structural level. Polymorphisms in human CYPOR have been shown to lead to defects in bone development and steroidogenesis, resulting in sexual dimorphisms, the severity of which differs significantly depending on the degree of CYPOR impairment. The atomic structure of human CYPOR is presented, with structures of two naturally occurring missense mutations, V492E and R457H. The overall structures of these CYPOR variants are similar to wild type. However, in both variants, local disruption of H bonding and salt bridging, involving the FAD pyrophosphate moiety, leads to weaker FAD binding, unstable protein, and loss of catalytic activity, which can be rescued by cofactor addition. The modes of polypeptide unfolding in these two variants differ significantly, as revealed by limited trypsin digestion: V492E is less stable but unfolds locally and gradually, whereas R457H is more stable but unfolds globally. FAD addition to either variant prevents trypsin digestion, supporting the role of the cofactor in conferring stability to CYPOR structure. Thus, CYPOR dysfunction in patients harboring these particular mutations may possibly be prevented by riboflavin therapy in utero, if predicted prenatally, or rescued postnatally in less severe cases.

  16. Participation of cytochrome P-450 in the reduction of nitro compounds by rat liver microsomes.

    Science.gov (United States)

    Harada, N; Omura, T

    1980-05-01

    1. The subcellular distribution of nitrobenzene reduction activity in rat liver cells indicated the existence of two different enzyme systems, one localized in microsomes and the other localized in cytosol. The activity in the cytosol was mainly attributable to xanthine oxidase, judging from its substrate specificity and the inhibition by allopurinol. 2. The participation of the microsomal electron transport system in nitrobenzene reduction was examined by using antibodies against four components of the system, NADPH-cytochrome c reductase (fpT), NADH-cytochrome b5 reductase (fpD), cytochrome b5, and cytochrome P-450. Both NADH- and NADPH-dependent nitrobenzene reduction activities were strongly inhibited by anti-fpT IG and also by anti-P450 IG, but not inhibited by anti-fpD IG or anti-b5 IG. The reduction of nitrosobenzene and phenylhydroxylamine, which are supposed to be the intermediates of nitrobenzene reduction, was also examined, and it was found that NADH- and NADPH-dependent reduction of both compounds were strongly inhibited by anti-fpT IG and anti-P450 IG, but not by anti-fpD IG or anti-b5 IG. 3. Reconstruction experiments using purified NADPH-cytochrome P-450 reductase and cytochrome P-450 were also carried out and it was confirmed that the reduction of nitrobenzene, nitrosobenzene, and phenylhydroxylamine to aniline could be effected by these two components. 4. Nitrobenzene reduction by microsomes exhibited a short initial time lag and was activated by the addition of purified NADPH-cytochrome c reductase, whereas nitrosobenzene and phenylhydroxylamine reductions did not show any initial time lag and were not activated by the reductase. These observations suggest that the reduction of nitrobenzene to an intermediate, possibly nitrosobenzene or phenylhydroxylamine, limits the rate of aniline formation, and such an initial step of nitrobenzene reduction can be catalyzed by NADPH-cytochrome c reductase alone. Cytochrome P-450 is essential at least in the

  17. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  18. Cloning of eggplant hypocotyl cDNAs encoding cytochromes P450 belonging to a novel family (CYP77).

    Science.gov (United States)

    Toguri, T; Tokugawa, K

    1994-02-07

    From eggplant hypocotyl tissues we have cloned two closely related cDNAs encoding cytochromes P450 (P450s) by PCR amplification using a primer designed based on the highly conserved sequence among the known eggplant P450s. One cDNA lacks the NH2-terminal short sequence that is present in the other, full-length cDNA. The two predicted protein sequences are 71% identical with each other and show less than 30% identity with any other known P450s. It is concluded that these P450s, which are termed CYP77A1 and -A2, belong to a hitherto unknown P450 family.

  19. Water oxidation by a cytochrome p450: mechanism and function of the reaction.

    Science.gov (United States)

    Prasad, Brinda; Mah, Derrick J; Lewis, Andrew R; Plettner, Erika

    2013-01-01

    P450(cam) (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450(cam) catalysis is controlled by oxygen levels: at high O2 concentration, P450(cam) catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using (17)O and (2)H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450(cam) , and we present a plausible mechanism that accounts for the 1:1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450(cam) and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce.

  20. Radical Intermediates in the Catalytic Oxidation of Hydrocarbons by Bacterial and Human Cytochrome P450 Enzymes†

    OpenAIRE

    Jiang, Yongying; He, Xiang; Ortiz de Montellano, Paul R.

    2006-01-01

    Cytochromes P450cam and P450BM3 oxidize α- and β-thujone into multiple products, including 7-hydroxy-α-(or β-)thujone, 7,8-dehydro-α-(or β-)thujone, 4-hydroxy-α-(or β-)thujone, 2-hydroxy α-(or β-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 ± 0.3 × ...

  1. Engineering soluble insect and plant cytochromes P450 for biochemical characterization

    DEFF Research Database (Denmark)

    Jensen, Mikael Kryger

    substrate specificity in the CYP79 and CYP405 families we chose to initiate a large-scale project, attempting to express and purify multiple P450s with the aim of obtaining crystal structures. The research presented in this thesis demonstrates how to engineer plant and insect microsomal cytochromes P450......D study, a combined approach of visible-light fluorescence spectroscopy and in silico methods was used to investigate structural features important for determining the specificity in these proteins. We identified residue in the F and I helix as well as the β1-4 and β4-2 strands as likely determinants...

  2. Exploring the substrate range of selected myxobacterial cytochromes P450 from Sorangium cellulosum So ce56

    OpenAIRE

    Litzenburger, Martin

    2016-01-01

    Cytochromes P450 are highly versatile biocatalysts due to their ability to introduce molecular oxygen into a non-activated C-H bond. In this work, nine P450 enzymes from Sorangium cellulosum So ce56 were investigated concerning their substrate range and catalytic biodiversity. Hence, terpenes, terpenoids, carotenoid-derived aroma compounds, aromatic compounds and drugs were tested as potential substrates for CYP109C1, CYP109C2, CYP109D1, CYP260A1, CYP260B1, CYP264A1, CYP264B1, CYP267A1 and CY...

  3. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame.

    Science.gov (United States)

    Kim, Sung-Mi; Wang, YongQiang; Nabavi, Noushin; Liu, Yi; Correia, Maria Almira

    2016-08-01

    The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.

  4. Multiple Cytochrome P450 Genes: Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus

    Science.gov (United States)

    Reid, William R.; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCqG0, the field parental population) to highly resistant (HAmCqG8, the 8th generation of permethrin selected offspring of HAmCqG0). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCqG8, suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCqG8 adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes. PMID:21858101

  5. Occurrence of a cytochrome P-450-containing mixed-function oxidase system in the pond snail, Lymnaea stagnalis

    NARCIS (Netherlands)

    Wilbrink, M; Groot, E J; Jansen, R; de Vries, Y.; Vermeulen, N P

    1. The occurrence of an as yet unidentified cytochrome P-450 in the microsomal fraction of the digestive gland of the snail, Lymnaea stagnalis was studied. 2. Studies in vivo and in vitro (digestive gland homogenates or the 170,000g fraction) of the cytochrome P-450-mediated metabolism of substrates

  6. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    Science.gov (United States)

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  7. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450 : indications for a uniform oxidation mechanism

    NARCIS (Netherlands)

    Koymans, L.; Lenthe, J.H.; Van de Straat, R; Donné-Op den Kelder, G M; Vermeulen, N P

    1989-01-01

    The cytochrome P-450 mediated activation of paracetamol (PAR) to the reactive electrophilic intermediate N-acetyl-p-benzoquinone imine (NAPQI) has been studied by use of SV 6-31G ab initio energy calculations and spin distributions. A simplified model for cytochrome P-450 has been used by

  8. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  9. Biotransformation of praziquantel by human cytochrome p450 3A4 (CYP 3A4).

    Science.gov (United States)

    Godawska-Matysik, Anna; Kieć-Kononowicz, Katarzyna

    2006-01-01

    Praziquantel (PZQ) is the drug of choice for the treatment of human schistosomiasis. It is estimated that about 200 million people in the world are currently affected by this tropical disease. Now PZQ is also used in malaria treatment. The usefulness of PZQ as antimalarial drug is important because of rapid development of resistance to usually applied drugs. PZQ undergoes extensive metabolism in human body, mainly in liver by two cytochrome P-450 isoenzymes 2B1 and 3A. As the result of these biotransformations numerous mono- and dihydroxylated derivatives in B, C and D ring are formed. Two metabolites have been fully identified and described, as cis- and trans-4-hydroxypraziquantel. Up to now there were created many different in vitro and in vivo models of PZQ biotransformations. In vitro model of PZQ biotransformation was created by using human cytochrome P-450 3A4 expressed in Eschelichia coli and Saccharomyces cerevisiae. In the first experiment we have used human cytochrome P-450 3A4 from Escherichia coli (isolated on NTA-column). In the second experiment microsomes isolated from Saccharomyces cerevisiae containing coexpressed human CYP 3A4, human CYP-reductase and human cytochrome b5 were used. The reactions were monitored by HPLC and MS.

  10. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera.

    Science.gov (United States)

    Johnson, Reed M; Mao, Wenfu; Pollock, Henry S; Niu, Guodong; Schuler, Mary A; Berenbaum, May R

    2012-01-01

    Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the

  11. Deficits in neuronal cytochrome P450 activity attenuate opioid analgesia but not opioid side effects.

    Science.gov (United States)

    Hough, Lindsay B; Nalwalk, Julia W; Cleary, Rachel A; Phillips, James G; Fang, Cheng; Yang, Weizhu; Ding, Xinxin

    2014-10-05

    Morphine-like analgesics act on µ opioid receptors in the CNS to produce highly effective pain relief, but the same class of receptors also mediates non-therapeutic side effects. The analgesic properties of morphine were recently shown to require the activity of a brain neuronal cytochrome P450 epoxygenase, but the significance of this pathway for opioid side effects is unknown. Here we show that brain P450 activity is not required for three of morphine׳s major side effects (respiratory depression, constipation, and locomotor stimulation). Following systemic or intracerebroventricular administration of morphine, transgenic mice with brain neuron - specific reductions in P450 activity showed highly attenuated analgesic responses as compared with wild-type (control) mice. However, brain P450-deficient mice showed normal morphine-induced side effects (respiratory depression, locomotor stimulation, and inhibition of intestinal motility). Pretreatment of control mice with the P450 inhibitor CC12 similarly reduced the analgesia, but not these side effects of morphine. Because activation of brain µ opioid receptors produces both opioid analgesia and opioid side effects, dissociation of the mechanisms for the therapeutic and therapy-limiting effects of opioids has important consequences for the development of analgesics with reduced side effects and/or limited addiction liability. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Novel approaches to the use of cytochrome P450 activities in wildlife toxicity studies

    Energy Technology Data Exchange (ETDEWEB)

    VandenBerg, M. [Utrecht Univ. (Netherlands). Research Inst. of Toxicology; Bosveld, A.T.C.

    1995-12-31

    Many wildlife toxicity studies, e.g. with avian species, use cytochrome P450 activities as markers for biological activities of environmental contaminants. It has been established that induction of CYP1A1 correlates with Ah-receptor mediated toxicity of dioxin-like compounds in many species. In addition, CYP1A1 plays a significant role in bioactivation of polycyclic aromatics. So far very few studies focused on the natural function of P450 isoenzymes in wildlife species. Besides classical hepatic CYP1A(1) associated activities, like EROD and AHH, several new techniques are available to study the activities of various CYP isoenzymes. Caffeine N-demethylation, testosterone and 17ss-estradiol hydroxylation patterns can provide new insights in the physiological function of P450 isoenzymes and the induction of the basal activities by chemicals. So far little interest was given to processes which occur after the DNA-receptor binding, e.g. changes in steroid hormone metabolism and pathways in environmental toxicology. This in spite of the fact that very subtle changes in steroid hormone levels may have significant physiological implications. This presentation will focus on some P450 activities, besides CYP1A(1), which might be important for development and reproduction. Some experimental approaches, limitations and techniques will be discussed which could lead to elucidation of the possible endocrine function of P450s.

  13. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    Science.gov (United States)

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  14. Photosystem I from plants as a bacterial cytochrome P450 surrogate electron donor

    DEFF Research Database (Denmark)

    Jensen, Kenneth; Johnston, Jonathan B.; Montellano, Paul R. Ortiz de

    2012-01-01

    The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx) is a multif......The ability of cytochrome P450 enzymes to catalyze highly regio- and stereospecific hydroxylations makes them attractive alternatives to approaches based on chemical synthesis but they require expensive cofactors, e.g. NAD(P)H, which limits their commercial potential. Ferredoxin (Fdx......) is a multifunctional electron carrier that in plants accepts electrons from photosystem I (PSI) and facilitates photoreduction of NADP+ to NADPH mediated by ferredoxin-NAD(P)H oxidoreductase (FdR). In bacteria, the electron flow is reversed and Fdx accepts electrons from NADPH via FdR and serves as the direct electron...... donor to bacterial P450s. By combining the two systems, we demonstrate that irradiation of PSI can drive the activity of a bacterial P450, CYP124 from Mycobacterium tuberculosis. The substitution of the costly cofactor NADPH with sunlight illustrates the potential of the light-driven hydroxylation...

  15. Inkjet-printed selective microfluidic biosensor using CNTs functionalized by cytochrome P450 enzyme

    Science.gov (United States)

    Krivec, Matic; Leitner, Raimund; Überall, Florian; Hochleitner, Johannes

    2017-05-01

    An additive manufacturing concept, consisting of 3D photopolymer printing and Ag nanoparticle printing, was investigated for the construction of a microfluidic biosensor based on immobilized cytochrome P450 enzyme. An acylate-type microfluidic chamber composed of two parts, i.e. chamber-housing and chamber-lid was printed with a polyjet 3D printer. A 3-electrode sensor structure was inkjet-printed on the lid using a combination of Ag and graphene printing. The working electrode was covered with carbon nanotubes by drop-casting and immobilized with cytochrome P450 2D6 enzyme. The microfluidic sensor shows a significant response to a test xenobiotic, i.e. dextromethorphan; the cyclic voltammetrical measurements show a corresponding oxidation peak at 0.4 V with around 5 μM detection limit.

  16. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    OpenAIRE

    Pearce, Robin E.; Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catal...

  17. African Genetic Diversity: Implications for Cytochrome P450-mediated Drug Metabolism and Drug Development

    OpenAIRE

    Rajman, Iris; Knapp, Laura; Morgan, Thomas,; Masimirembwa, Collen

    2017-01-01

    Genetic diversity is greater in Africa than in other continental populations. Genetic variability in genes encoding drug metabolizing enzymes may contribute to the high numbers of adverse drug reactions reported in Africa. We reviewed publications (1995?April 2016) reporting frequencies of known cytochrome P450 (CYP) variants in African populations. Using principal components analysis (PCA) we identified CYP alleles of potential clinical relevance with a marked difference in distribution in A...

  18. Cloning and tissue expression of cytochrome P450 1B1 and 1C1 ...

    African Journals Online (AJOL)

    Cytochrome P450 1 (CYP1) is widely used as an indicator of exposure to environmental contaminants. In the study, two full-length complementary DNAs encode for CYP1B1 and CYP1C1 were cloned from medaka liver exposed to 500 ppb β-naphthoflavone for 24 h. CYP1B1, having 1984 bp, contains an open reading ...

  19. Resolution and reconstitution of cytochrome P-450 containing steroid hydroxylation system of Rhizopus nigricans.

    Science.gov (United States)

    Breskvar, K; Cresnar, B; Hudnik-Plevnik, T

    1987-04-01

    11 alpha-hydroxylation of progesterone in the eucaryotic filamentous fungus Rhizopus nigricans is catalyzed by a monooxygenase. Three components of this multienzyme system, cytochrome P-450, rhizoporedoxin and a FAD containing rhizoporedoxin reductase have been separated from the postmitochondrial fraction on DEAE cellulose. Using NADPH as electron donor we showed that the presence of all three components was necessary for the reconstitution of the active electron transport chain.

  20. Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements

    Science.gov (United States)

    2013-12-03

    analysis for the four most important drug metabolizing CYP1A, CYP2C, CYP2D, and CYP3A subfamilies. Using the CYP450 Engineering Database [15], we downloaded...17983264. 13. Ota N, Agard DA (2005) Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. J Mol Biol 351: 345-354...cytochrome P450 engineering database : Integration of biochemical properties. BMC Biochem 10: 27. doi:10.1186/1471-2091-10-27. PubMed: 19909539. 16. Cojocaru

  1. Plant Omics: Isolation, Identification, and Expression Analysis of Cytochrome P450 Gene Sequences from Coleus forskohlii.

    Science.gov (United States)

    Awasthi, Praveen; Mahajan, Vidushi; Rather, Irshad Ahmad; Gupta, Ajai Prakash; Rasool, Shafaq; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G

    2015-12-01

    The omics analyses of plants and the agrigenomics field offer the opportunity to better characterize our ecosystems. In this context, characterization of cytochrome P450 genes (CYP450s), which constitute one of the largest gene families in plants, is important. They play vital roles in biosynthesis of secondary metabolites, phytohormones as well as in detoxification of harmful chemicals. Tuberous roots of Coleus forskohlii accumulate forskolin, a potent and reversible activator of adenylate cyclase, as well as other related diterpenoids. Coleus forskohlii is also known to produce rosmarinic acid, genkwanin (7-O-methylapigenin), and guaiacol glycerin. We report here the isolation of CYP450s from C. forskohlii, expression profiling of CYP450s in different tissues, and how different elicitors/stresses regulate the expression of different CYP450 sequences. Degenerate primers, designed from the conserved regions of CYP450s, were used to amplify fragments from cDNA of C. forskohlii and a library was prepared. Sequences homologous to CYP450s were assembled into seven distinct gene fragments (CfP450C1-C7), belonging to seven CYP450 families. Expression profiling of CYP450s showed that the transcripts of CfP450C1, CfP450C4, CfP450C5, CfP450C6, and CfP450C7 were prominent in aerial tissues (flower, young leaf, and mature leaf), whereas expression of CfP450C3 was dominant in root and root tip. CfP450C2 showed higher expression in flowers and roots as compared to other tissues. Expression profiles of CYP450s, in response to different stresses (abscisic acid, methyl jasmonate, salicylic acid, 2, 4-dichloro-phenoxyacetic acid, UVA, and wounding) were also studied. This study has isolated CYP450s from C. forskohlii, and will help to understand their regulation as well as their functions. This is the first report on the isolation and expression analysis of CYP450s from this herb.

  2. Drug Interactions with Angiotensin Receptor Blockers: Role of Human Cytochromes P450.

    Science.gov (United States)

    Yang, Ruirui; Luo, Zhiqiang; Liu, Yang; Sun, Mohan; Zheng, Ling; Chen, Yingying; Li, Yanping; Wang, Hao; Chen, Lingzhu; Wu, Ming; Zhao, Huihui

    2016-01-01

    Angiotensin receptor blockers (ARBs) are the most recent class of agents for the treatment of hypertension. However, ARBs may cause a low incidence of headache, upper respiratory infection, back pain, muscle cramps, fatigue, dizziness, and many other side effects. In some cases, such toxicity is associated with pharmacokinetic alterations. The cytochrome P450 (CYP) enzyme system plays an important role in a lot of clinically important pharmacokinetic drug interactions. To identify relevant studies on drug-drug and food-drug pharmacokinetic interactions with the ARBs, a literature search of Google Scholar was performed from January 1994 to June 2015, with the following keywords: 'losartan', 'valsartan,' 'candesartan,' 'irbesartan,' 'telmisartan,' 'eprosartan,' 'olmesartan,' and 'azilsartan', combined with the keyword 'pharmacokinetic interactions' and 'CYP'. Based on the literatures published, it has been demonstrated that pharmacokinetic interactions of losartan with other agents are mainly via CYP2C9- and CYP3A4-mediated, the role played by CYP enzyme system in the metabolism of valsartan, candesartan, irbesartan, and azilsartan appears modest, and cytochrome P450 system has no influence on the metabolism of telmisartan, eprosartan, olmesartan. Therefore, according to these pharmacokinetic findings, no dosage adjustment is recommended when eprosartan, telmisartan and olmesartan are combined with other pharmacological agents in patients with hypertension. This review summarize the available data on cytochrome P450 - related drug-drug interactions reported in the literature for the eight ARBs. Knowledge of the pharmacokinetic properties of the ARBs should allow the avoidance of the majority of drug interactions without compromising therapeutic benefits.

  3. Construction and engineering of a thermostable self-sufficient cytochrome P450

    Energy Technology Data Exchange (ETDEWEB)

    Mandai, Takao; Fujiwara, Shinsuke [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp [Nanobiotechnology Research Center and Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan)

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  4. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.

    Science.gov (United States)

    Kumar, Devesh; de Visser, Sam P; Sharma, Pankaz K; Hirao, Hajime; Shaik, Sason

    2005-06-07

    The sulfoxidation of dimethyl sulfide (DMS), by two different heme-type enzyme models (without the protein), namely, horseradish peroxidase (HRP) and cytochrome P450 (P450), was studied using density functional theory. The models differ from each other by the axial ligand of the iron, which is imidazole in the case of HRP and thiolate in the case of P450. The computational results reveal a concerted oxygen atom transfer to sulfur, with spin-state selection dependent upon the identity of the proximal ligand. In the case of thiolate, the mechanism prefers the high-spin quartet pathway; whereas in the case of imidazole, the mechanism involves two-state reactivity (TSR), with competing quartet and doublet spin states. Furthermore, with thiolate the high-spin transition state, (4)TS(P450), has an upright conformation with a large Fe-O-S(DMS) angle of 147 degrees , whereas the low-spin species, (2)TS(P450), has a small angle and its Fe-O moiety makes an O-N(Por) bond with one of the nitrogen atoms of the porphine macrocycle. By contrast, when the proximal ligand is imidazole, both transition states possess a bent Fe-O bond and an O-N(Por) bond. These spin-state selection patterns obey simple orbital-selection rules, which are manifestations of the electronic nature of the ligand, i.e., the electron-releasing effect of the thiolate vis-a-vis the electron-withdrawal effect of imidazole. Other possible reactivity expressions of the spin-selection patterns are discussed [Dowers, T. S., Rock, D. A., Rock, D. A., Jones, J. P. (2004) J. Am. Chem. Soc. 126, 8868-8869]. Theory shows that intrinsically, HRP should be as reactive as P450 toward sulfoxidation.

  5. [Genetic polymorphism of cytochrome P450 2E1 and the risk of nasopharyngeal carcinoma].

    Science.gov (United States)

    Ben Chaaben, Arij; Abaza, Hajer; Douik, Hayet; Chaouch, Leila; Ayari, Fayza; Ouni, Nesrine; Mamoghli, Tasnim; Ben Guezella, Dorra; Mejri, Rachida; Harzallah, Latifa; Guemira, Fethi

    2015-12-01

    Cytochrome P450 2E1 (CYP2E1) is a detoxifying enzyme that belongs to the phase I metabolism of xenobiotics. This enzyme is encoded by a highly polymorphic gene whose common polymorphism corresponds to the substitution of cytosine (C) and thymine (T) at position -1019 (rs2031920). This polymorphism has been identified in several cancers including nasopharyngeal cancer (NPC). The study involved 124 patients with nasopharyngeal carcinoma, compared with 166 healthy controls. The presence or absence of the polymorphism is determined by PCR-RFLP. The frequency comparison between the two groups is determined by the χ(2) test. The analysis of our results showed a significant difference between the two groups regarding the mutant genotype (C2/C2) (5% vs. 0.5%, P=0.04) and has a risk factor for NPC in Tunisia (OR=8.39; CI 95% [0.99-388.1]). Also, the C2 allele was significantly associated with the group of patients than the control group (6% vs. 2%, P=0.016) and increased three times the risk of NPC in Tunisia (OR=2.99, CI 95% [1.12-8.79]). Our results confirm the results reported in other populations and emphasize the importance of the involvement of this gene in the development of detoxification of the NPC, which seems more and more strongly associated with environmental factors. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Xanthates As Useful Probes for Testing the Active Sites of Cytochromes P450 4A11 and 2E1

    Directory of Open Access Journals (Sweden)

    Tsveta Stoyanova

    2017-09-01

    Full Text Available Xanthates (alkyl or aryl derivatives of dithiocarbonic acid have been shown to be selective mechanism-based inactivators of cytochromes P450 2B1/2B6 and 2E1 due to covalent binding of a reactive intermediate to apoprotein after double hydrogen abstraction at α-carbon atom, suggesting interaction of the xanthate dithiocarbonic head with the enzyme heme. The structures of xanthates with a long alkyl chain are similar to the fatty acids. Saturated fatty acids (FA such as lauric acid (LA, are metabolized by different cytochrome P450 isoforms to ω- and (ω-1-hydroxy products, in humans done by CYP4A11 and CYP2E1, respectively. In the present study we aimed at elucidating the possible interactions of xanthates with two cytochrome P450 isoforms CYP4A11 and CYP2E1 involved in the metabolism of the FA. Our experiments showed that LA-ω-hydroxylation by CYP4A11 is inhibited in a competitive manner by xanthates with long alkyl chain (C12-xanthate being the most potent inhibitor. On the other hand LA-(ω-1-hydroxylation reaction by purified CYP2E1 is inactivated by a mechanism-based type. The suggested differences in the interactions of C12-xanthate with the two cytochrome P450 isoforms were investigated by molecular modeling using docking approach. The results suggested that in CYP2E1 active site C12-xanthate coordinates to the heme with its most vulnerable dithiocarbonic head leading to a mechanism-based inactivation. In CYP4A11 xanthate alkyl chain is exposed to the heme, thus, a potenial ω-hydroxylated xanthate product could be formed, which could inhibit in a competitive manner the hydroxylation of LA. The observed differences of xanthates interactions with the active sites of the two similar cytochrome P450 isoforms (CYP4A11 and CYP2E1 involved in the metabolism of FA, which lead to different changes in the enzyme activity, suggest that xanthates can be used as probing tools for analyzing enzyme active sites when exploring useful and selective

  7. Candidate cytochrome P450 genes for ethoxyresorufin O-deethylase activity in oyster Crassostrea gigas.

    Science.gov (United States)

    Siebert, Marília Nardelli; Mattos, Jacó Joaquim; Toledo-Silva, Guilherme; Razzera, Guilherme; Bainy, Afonso Celso Dias

    2017-08-01

    Vertebrate cytochrome P450 1 (CYP1) enzymes metabolize endogenous and xenobiotic compounds and usually demonstrate a substrate-inducible response. Ethoxyresorufin O-deethylase activity (EROD) is a common method to quantify CYP1 enzymes activity in these organisms. Despite the absence of this gene family in protostomes, CYP1-like genes were identified in several species, even though no evolutionary relationship has been established with the vertebrate CYP1 family. In the present study, EROD activity was evaluated in microsomal fraction of gills, digestive gland and mantle of Crassostrea gigas. Enzyme activity was quantified in gills, although no activity was detected in digestive gland and mantle. EROD kinetic characterization in gills using typical Michaelis-Menten equation demonstrated an apparent Km of 1.15μM and Vmax of 229.2 fmol.min-1mg.protein -1. EROD activity was analyzed in the presence of CYP1 inhibitors, ellipticine (ELP), furafylline (FRF), clotrimazole (CTZ), α-naphthoflavone (ANF), and the non-ionic surfactant Triton X-100. CTZ inhibited EROD activity in all tested concentrations while Triton X-100 (0.5mM) caused 16% inhibition. Transcript levels of four CYP1-like genes were determined in gills, digestive gland and mantle. In general, CYP1-like genes showed higher transcript levels in gills compared to other tissues. The transcript levels of CYP1-like 1 and 2, analyzed together, positively correlated with EROD activity observed in gills, suggesting the possible involvement of these two gene products in EROD activity in this tissue. Homology models of translated CYP1-like 1 and 2 were generated based on human CYP1A1 structure and were similar to the general canonical cytochrome P450 fold. Molecular docking analysis showed that the two putative oyster CYP1-like structures have the potential to metabolize 7-ethoxyresorufin (7-ER), although the contribution of other CYP1-like genes needs to be investigated. Proteins encoded by CYP1-like 1 and 2 genes

  8. Effects of selective cytochrome P-450 inhibitors on the metabolism of thioridazine. In vitro studies.

    Science.gov (United States)

    Daniel, W A; Syrek, M; Haduch, A

    1999-01-01

    The aim of the present study was to determine optimum conditions for the study of thioridazine metabolism in rat liver microsomes and to investigate the influence of specific cytochrome P-450 inhibitors on 2- and 5-sulfoxidation, and N-demethylation of thioridazine. Basing on the developed method, the thioridazine metabolism in liver microsomes was studied at linear dependence of the product formation on time, and protein and substrate concentrations (incubation time was 15 min, concentration of microsomal protein was 0.5 mg/ml, substrate concentrations were 25, 50 and 75 nmol/ml). Dixon analysis of tioridazine metabolism carried out in the control liver microsomes, in the absence and presence of specific cytochrome P-450 inhibitors, showed that quinine (CYP2D1 inhibitor), metyrapone (CYP2B1/B2 inhibitor) and alpha-naphthoflavone (CYP1A2 inhibitor) affected while erythromycin (CYP3A inhibitor) and sulfaphenazole (CYP2C9 inhibitor) did not affect the neuroleptic biotransformation. Thus, quinine and metyrapone inhibited competitively thioridazine N-demethylation and mono-2-sulfoxidation. As reflected by Ki values, N-demethylation was inhibited to a higher degree (Ki = 16.5 and 43 microM, respectively) than mono-2-sulfoxidation (Ki = 25 and 137 microM, respectively). On the other hand, alpha-naphthoflavone inhibited competitively not only N-demethylation and mono-2-sulfoxidation, but also 5-sulfoxidation of thioridazine. The calculated Ki values showed that the highest potency of alpha-naphthoflavone to inhibit thioridazine metabolism was observed for N-demethylation and it descended in the following order: N-demethylation (Ki = 13.8 microM) > mono-2-sulfoxidation (Ki = 34 microM) > 5-sulfoxidation (Ki = 70.4 microM). In conclusion, it can be assumed that N-demethylation and mono-2-sulfoxidation are catalyzed by the isoenzymes 2D1, 2B and 1A2 while 5-sulfoxidation only by 1A2; isoenzymes belonging to the subfamilies 2C and 3A seem not to be involved in the metabolism

  9. The contribution of cytochrome P-450 isoenzymes to the metabolism of phenothiazine neuroleptics.

    Science.gov (United States)

    Daniel, W A; Syrek, M; Haduch, A

    2002-10-01

    The aim of the present study was to determine optimum conditions for studying promazine and perazine metabolism in rat liver microsomes, and to investigate the influence of specific cytochrome P-450 inhibitors on 5-sulfoxidation and N-demethylation of these neuroleptics. Based on the developed method, the metabolism of neuroleptics in liver microsomes was studied at linear dependence of product formation on time, and protein and substrate concentrations (incubation time: 10 min; concentration of microsomal proteins: promazine-0.7 mg ml(-1), perazine-0.5 mg ml(-1); substrate concentrations: promazine-25, 40 and 75 nmol ml(-1), perazine-20, 35, 50 nmol ml(-1)). A Dixon analysis of the metabolism of neuroleptics showed that quinine (a CYP2D1 inhibitor), metyrapone (a CYP2B1/B2 inhibitor) and alpha-naphthoflavone (a CYP1A1/2 inhibitor) affected, whereas erythromycin (a CYP3A inhibitor) and sulfaphenazole (a CYP2C inhibitor) did not change the neuroleptic biotransformation. N-Demethylation of promazine was competitively inhibited by quinine (K(i)=20 microM) and metyrapone (K(i)=83 microM), while that of perazine-by quinine (K(i)=46.5 microM), metyrapone (K(i)=46 microM) and alpha-naphthoflavone (K(i)=78.8 microM). 5-Sulfoxidation of promazine was inhibited only by quinine (K(i)=28.6 microM), whereas that of perazine-by quinine (K(i)=10 microM) and metyrapone (K(i)=96 microM). The results obtained are compared with our previous findings of analogous experiments concerning thioridazine, and with the data on other phenothiazines and species. In summary, it is proposed that N-demethylation of the mentioned phenothiazine neuroleptics in the rat is catalyzed by the isoenzymes CYP2D1, CYP2B2 and CYP1A2 (CYP1A2 does not refer to promazine). 5-Sulfoxidation of these drugs may be mediated by different isoenzymes, e.g. CYP2D1 (promazine and perazine), CYP2B2 (perazine) and CYP1A2 (thioridazine). Isoenzymes belonging to subfamilies CYP2C and CYP3A do not seem to be involved in the

  10. Structural–functional organization of cytochrome P450 containing monooxygenase and some aspects of modeling

    Directory of Open Access Journals (Sweden)

    M.S. Gordeziani

    2016-06-01

    Full Text Available The article deals with a superfamily of monooxygenases, a multienzymeproteinaceous complex containing cytochrome P450 as a terminal electron acceptor. Due to the low substrate specificity, this monooxygenase actively participates in biosynthesis and oxidation of numerous endogenous cell compounds, and also in oxidation and detoxification of wide spectrum of compounds that are foreign to an organism (xenobiotics. The main peculiarity of animal monooxygenase is its interaction with the membrane: all three components of it are true membrane proteins that gain some advantages (binding of hydrophobic substrates to cytochrome P450, creation of optimal conditions by reaction with its own reductase, modulation of electron transport, etc over other soluble oxidases. In plants, cytochrome P450 is embedded in the membrane but simultaneously, it occurs in a soluble form as well. As a result, a stronger protection barrier against the impact of xenobiotic-toxicants is created in it. In addition, it is shown that in plants, the same isoforms of cytochrome P450 participate in biosyntheses and xenobiotic degradation. Penetration of xenobiotics into a plant cell and especially, its polarity represents a regulatory signal, which ensures proper distribution of hemoprotein pool in these processes. Action mechanism of cytochrome P450, i.e. the functioning of monooxygenase cycle and its completion stage, when oxygen activated by two electrons is inserted into the substrate and hydroxylation product is formed, is described in more detail. Nowadays, functional models of monooxygenases are used effectively to study this stage. It is considered that in oxygenase reaction, oxygen atom formed by its interaction with ferric ion complex and redox-active ligand is transferred to the substrate via so-called oxenoid mechanism. The rate of the whole hydroxylation process is limited by the stage of insertion of activated oxygen into the substrate. It deserves consideration that

  11. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis

    KAUST Repository

    Zhang, Yanxia

    2014-10-26

    Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis More Axillary Growth 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2\\'-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2\\'-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

  12. Catalytic diversity and homotropic allostery of two Cytochrome P450 monooxygenase like proteins from Trichoderma brevicompactum.

    Science.gov (United States)

    Hussain, Razak; Kumari, Indu; Sharma, Shikha; Ahmed, Mushtaq; Khan, Tabreiz Ahmad; Akhter, Yusuf

    2017-12-01

    Trichothecenes are the secondary metabolites produced by Trichoderma spp. Some of these molecules have been reported for their ability to stimulate plant growth by suppressing plant diseases and hence enabling Trichoderma spp. to be efficiently used as biocontrol agents in modern agriculture. Many of the proteins involved in the trichothecenes biosynthetic pathway in Trichoderma spp. are encoded by the genes present in the tri cluster. Tri4 protein catalyzes three consecutive oxygenation reaction steps during biosynthesis of isotrichodiol in the trichothecenes biosynthetic pathway, while tri11 protein catalyzes the C4 hydroxylation of 12, 13-epoxytrichothec-9-ene to produce trichodermol. In the present study, we have homology modelled the three-dimensional structures of tri4 and tri11 proteins. Furthermore, molecular dynamics simulations were carried out to elucidate the mechanism of their action. Both tri4 and tri11 encode for cytochrome P450 monooxygenase like proteins. These data also revealed effector-induced allosteric changes on substrate binding at an alternative binding site and showed potential homotropic negative cooperativity. These analyses also showed that their catalytic mechanism relies on protein-ligand and protein-heme interactions controlled by hydrophobic and hydrogen-bonding interactions which orient the complex in optimal conformation within the active sites.

  13. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    Science.gov (United States)

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  14. Hepatotoxicity of Herbal Supplements Mediated by Modulation of Cytochrome P450

    Directory of Open Access Journals (Sweden)

    Christopher Trent Brewer

    2017-11-01

    Full Text Available Herbal supplements are a significant source of drug-drug interactions (DDIs, herb-drug interactions, and hepatotoxicity. Cytochrome P450 (CYP450 enzymes metabolize a large number of FDA-approved pharmaceuticals and herbal supplements. This metabolism of pharmaceuticals and supplements can be augmented by concomitant use of either pharmaceuticals or supplements. The xenobiotic receptors constitutive androstane receptor (CAR and the pregnane X receptor (PXR can respond to xenobiotics by increasing the expression of a large number of genes that are involved in the metabolism of xenobiotics, including CYP450s. Conversely, but not exclusively, many xenobiotics can inhibit the activity of CYP450s. Induction of the expression or inhibition of the activity of CYP450s can result in DDIs and toxicity. Currently, the United States (US Food and Drug Administration does not require the investigation of the interactions of herbal supplements and CYP450s. This review provides a summary of herbal supplements that inhibit CYP450s, induce the expression of CYP450s, and/or whose toxicity is mediated by CYP450s.

  15. Effect of Coleus forskohlii and its major constituents on cytochrome P450 induction.

    Science.gov (United States)

    Hebbani Nagarajappa, Shivaprasad; Pandit, Subrata; Divanji, Manohar; Mariyanna, Bhanumathy; Kumar, Pavan; Godavarthi, Ashok

    2016-01-01

    Coleus forskohlii Briq. has been used traditionally for the treatment of several ailments since antiquity in Ayurveda. In the present study, an approach has been made to evaluate the effect of C. forskohlii and its major constituents on cytochrome P450 (CYP3A, CYP2B, and CYP2C) mRNA expression in rat hepatocytes. To gain better understanding of the herb-drug interaction potential of the chemical constituents present in C. forskohlii, the extract was subjected to column chromatography followed by standardization with respect to forskolin, 1-deoxyforskolin, and 1,9-dideoxyforskolin using reversed-phase high-performance liquid chromatography (RP-HPLC). Hepatocytes were treated with extracts, fractions, and phytoconstituents, followed by extraction and purification of total mRNA. Study of mRNA expression was carried out through reverse transcription polymerase chain reaction, followed by agarose gel electrophoresis. Results revealed that the test substances did not show any significant mRNA expression compared to the control against CYP3A, CYP2B, and CYP2C. Positive controls such as dexamethasone and rifampin showed significantly high (p < 0.001) induction potential compared to the control. It can be concluded that C. forskohlii and its major constituents may not be involved in CYP450 induction-based drug interaction.

  16. Effect of Coleus forskohlii and its major constituents on cytochrome P450 induction

    Directory of Open Access Journals (Sweden)

    Shivaprasad Hebbani Nagarajappa

    2016-01-01

    Full Text Available Coleus forskohlii Briq. has been used traditionally for the treatment of several ailments since antiquity in Ayurveda. In the present study, an approach has been made to evaluate the effect of C. forskohlii and its major constituents on cytochrome P450 (CYP3A, CYP2B, and CYP2C mRNA expression in rat hepatocytes. To gain better understanding of the herb–drug interaction potential of the chemical constituents present in C. forskohlii, the extract was subjected to column chromatography followed by standardization with respect to forskolin, 1-deoxyforskolin, and 1,9-dideoxyforskolin using reversed-phase high-performance liquid chromatography (RP-HPLC. Hepatocytes were treated with extracts, fractions, and phytoconstituents, followed by extraction and purification of total mRNA. Study of mRNA expression was carried out through reverse transcription polymerase chain reaction, followed by agarose gel electrophoresis. Results revealed that the test substances did not show any significant mRNA expression compared to the control against CYP3A, CYP2B, and CYP2C. Positive controls such as dexamethasone and rifampin showed significantly high (p < 0.001 induction potential compared to the control. It can be concluded that C. forskohlii and its major constituents may not be involved in CYP450 induction-based drug interaction.

  17. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway.

    Science.gov (United States)

    Umemoto, Naoyuki; Nakayasu, Masaru; Ohyama, Kiyoshi; Yotsu-Yamashita, Mari; Mizutani, Masaharu; Seki, Hikaru; Saito, Kazuki; Muranaka, Toshiya

    2016-08-01

    α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    2014-09-01

    Full Text Available Cytochrome P450 (CYP450 is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole, one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint.

  19. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  20. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    Science.gov (United States)

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  1. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    Science.gov (United States)

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cloning and characterization of the cytochrome P450 oxidoreductase gene from the zygomycete fungus Cunninghamella.

    Science.gov (United States)

    Yadav, J S; Loper, J C

    2000-02-16

    The filamentous fungus Cunninghamella utilizes cytochrome P450 system(s) in the metabolism of a broad range of polyaromatic and aliphatic pollutants and a variety of drugs, but prior attempts at isolation of P450 system components of this fungus have been generally unsuccessful. We report upon the cytochrome P450 oxidoreductase (CPR) gene from two widely studied species, C. elegans and C. echinulata. The C. elegans CPR gene was obtained by screening a genomic library using as probe a PCR amplicon obtained with degenerate primers based on known CPRs. The 2420 bp coding region contained two apparent introns (149 bp and 138 bp). Northern blot analysis showed that the CPR gene is transcriptionally expressed in C. elegans and appears to be inducible by an alkane substrate, n-tetradecane. Phylogenetic comparison of the deduced C. elegans CPR (710 aa) suggested that it is more closely related to animal CPRs (41-42%) than to yeast (38-41%) and plant (35-36%) forms. A 2074 bp sequence containing most of the CPR gene homolog from C. echinulata was also isolated. Copyright 2000 Academic Press.

  3. Expression of xenobiotic metabolizing cytochrome P450 genes in a spinosad-resistant Musca domestica L. strain.

    Directory of Open Access Journals (Sweden)

    Dorte H Højland

    Full Text Available Spinosad is important in pest management strategies of multiple insect pests. However, spinosad resistance is emerging in various pest species. Resistance has in some species been associated with alterations of the target-site receptor, but in others P450s seems to be involved. We test the possible importance of nine cytochrome P450 genes in the spinosad-resistant housefly strain 791spin and investigate the influence of spinosad on P450 expression in four other housefly strains.Significant differences in P450 expression of the nine P450 genes in the four strains after spinosad treatment were identified in 40% of cases, most of these as induction. The highly expressed CYP4G2 was induced 6.6-fold in the insecticide susceptible WHO-SRS females, but decreased 2-fold in resistant 791spin males. CYP6G4 was constitutively higher expressed in the resistant strain compared to the susceptible strain. Furthermore, CYP6G4 gene expression was increased in susceptible WHO-SRS flies by spinosad while the expression level did not alter significantly in resistant fly strains. Expression of CYP6A1 and male CYP6D3 was constitutively higher in the resistant strain compared to the susceptible. However, in both cases male expression was higher than female expression.CYP4G2, CYP6A1, CYP6D3 and CYP6G4 have expressions patterns approaching the expectations of a hypothesized sex specific spinosad resistance gene. CYP4G2 fit requirements of a spinosad resistance gene best, making it the most likely candidate. The overall high expression level of CYP4G2 throughout the strains also indicates importance of this gene. However, the data on 791spin are not conclusive concerning spinosad resistance and small contributions from multiple P450s with different enzymatic capabilities could be speculated to do the job in 791spin. Differential expression of P450s between sexes is more a rule than an exception. Noteworthy differences between spinosad influenced expression of P450 genes

  4. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  5. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Science.gov (United States)

    Qhanya, Lehlohonolo Benedict; Matowane, Godfrey; Chen, Wanping; Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  6. Intestinal cytochromes P450 regulating the intestinal microbiota and its probiotic profile

    Directory of Open Access Journals (Sweden)

    Eugenia Elefterios Venizelos Bezirtzoglou

    2012-09-01

    Full Text Available Cytochromes P450 (CYPs enzymes metabolize a large variety of xenobiotic substances. In this vein, a plethora of studies were conducted to investigate their role, as cytochromes are located in both liver and intestinal tissues. The P450 profile of the human intestine has not been fully characterized. Human intestine serves primarily as an absorptive organ for nutrients, although it has also the ability to metabolize drugs. CYPs are responsible for the majority of phase I drug metabolism reactions. CYP3A represents the major intestinal CYP (80% followed by CYP2C9. CYP1A is expressed at high level in the duodenum, together with less abundant levels of CYP2C8-10 and CYP2D6. Cytochromes present a genetic polymorphism intra- or interindividual and intra- or interethnic. Changes in the pharmacokinetic profile of the drug are associated with increased toxicity due to reduced metabolism, altered efficacy of the drug, increased production of toxic metabolites, and adverse drug interaction. The high metabolic capacity of the intestinal flora is due to its enormous pool of enzymes, which catalyzes reactions in phase I and phase II drug metabolism. Compromised intestinal barrier conditions, when rupture of the intestinal integrity occurs, could increase passive paracellular absorption. It is clear that high microbial intestinal charge following intestinal disturbances, ageing, environment, or food-associated ailments leads to the microbial metabolism of a drug before absorption. The effect of certain bacteria having a benefic action on the intestinal ecosystem has been largely discussed during the past few years by many authors. The aim of the probiotic approach is to repair the deficiencies in the gut flora and establish a protective effect. There is a tentative multifactorial association of the CYP (P450 cytochrome role in the different diseases states, environmental toxic effects or chemical exposures and nutritional status.

  7. Chlorinated Glycopeptide Antibiotic Peptide Precursors Improve Cytochrome P450-Catalyzed Cyclization Cascade Efficiency.

    Science.gov (United States)

    Peschke, Madeleine; Brieke, Clara; Goode, Rob J A; Schittenhelm, Ralf B; Cryle, Max J

    2017-03-07

    The activity of glycopeptide antibiotics (GPAs) depends upon important structural modifications to their precursor heptapeptide backbone: specifically, the cytochrome P450-catalyzed oxidative cross-linking of aromatic side chains as well as the halogenation of specific residues within the peptide. The timing of halogenation and its effect on the cyclization of the peptide are currently unclear. Our results show that chlorination of peptide precursors improves their processing by P450 enzymes in vitro, which provides support for GPA halogenation occurring prior to peptide cyclization during nonribosomal peptide synthesis. We could also determine that the activity of the second enzyme in the oxidative cyclization cascade, OxyA, remains higher for chlorinated peptide substrates even when the biosynthetic GPA product possesses an altered chlorination pattern, which supports the role of the chlorine atoms in orienting the peptide substrate in the active site of these enzymes.

  8. Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi.

    Science.gov (United States)

    Amaya, Jose A; Rutland, Cooper D; Makris, Thomas M

    2016-05-01

    Intensive interest has focused on enzymes that are capable of synthesizing hydrocarbons, alkenes and alkanes, for sustainable fuel production. A recently described cytochrome P450 (OleTJE) from the CYP152 family catalyzes an unusual carbon-carbon scission reaction, transforming Cn fatty acids to Cn-1 1-alkenes. Here, we show that a second CYP152, CYP-MP from Methylobacterium populi ATCC BAA 705, also catalyzes oxidative substrate decarboxylation. Alkene production is accompanied with the production of fatty alcohol products, underscoring the mechanistic similarity of the decarboxylation reaction with canonical P450 monooxygenation chemistry. The branchpoint of these two chemistries, and regiospecificity of oxidation products, is strongly chain length dependent, suggesting an importance of substrate coordination for regulating alkene production. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Comparison of two monooxygenase systems with cytochrome P450 in filamentous fungus Rhizopus nigricans.

    Science.gov (United States)

    Kunic, B; Makovec, T; Breskvar, K

    2000-01-01

    Besides the progesterone inducible steroid hydroxylase which catalyses the transformation of progesterone to 11alpha-hydroxyprogesterone the presence of another monooxygenase system in filamentous fungus Rhizopus nigricans (R. nigricans)--lanosterol demethylase was confirmed. Lanosterol demethylase was not inducible with progesterone. After subcellular fractionation both monooxygenase systems were found in microsomal fraction of fungus R. nigricans. To find out how to differentiate between the hydroxylase and demethylase systems the influence of inhibitors ketoconazole and metyrapone on both monooxygenase systems was studied. Both substances efficiently inhibited fungal steroid hydroxylase. Spectral studies used to characterize the interaction of inhibitors with cytochromes P450 showed that both inhibitors bind to induced fungal preparations whereas in noninduced fungal preparations interaction with P450 was found only with ketoconazole. This indicated the difference in interaction of the two inhibitors on both monooxygenase systems present in fungus R. nigricans.

  10. El citocromo P-450 y la respuesta terapéutica a los antimaláricos Cytochrome P-450 and the response to antimalarial drugs

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán

    2006-01-01

    dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. RESULTS: Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism, as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other antimalarial drugs, the distribution in the population of the genetic alleles linked to the enzymes involved in their metabolism, the contribution of these genetic mutations to therapeutic failure, and the possibility of predicting the response to antimalarial therapy. CONCLUSIONS: The therapeutic response to antimalarial drugs is a multifactorial process that is poorly understood, so that it is not possible to ascribe to a specific phenotype or genotype a role in the response to antimalarial therapy. Attention should be given to biological and social factors, such as diet, nutritional status, and inflammatory and infectious processes that are often present in areas where malaria is endemic.

  11. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Reed M Johnson

    Full Text Available BACKGROUND: Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. CONCLUSIONS/SIGNIFICANCE: These results

  12. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    Science.gov (United States)

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  13. Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish

    Directory of Open Access Journals (Sweden)

    Parente Thiago

    2010-11-01

    Full Text Available Abstract Background Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase, and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1 recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Conclusions Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different

  14. Thalidomide Increases Human Hepatic Cytochrome P450 3A Enzymes by Direct Activation of Pregnane X Receptor

    Science.gov (United States)

    Suemizu, Hiroshi; Guillouzo, Christiane Guguen; Shibata, Norio; Yajima, Kanako; Utoh, Masahiro; Shimizu, Makiko; Chesné, Christophe; Nakamura, Masato; Guengerich, F. Peter; Houtman, René; Yamazaki, Hiroshi

    2014-01-01

    Heterotropic cooperativity of human cytochrome P450 (P450) 3A4/3A5 by the teratogen thalidomide was recently demonstrated by H. Yamazaki et al. (2013) using the model substrate midazolam in various in vitro and in vivo models. Chimeric mice with humanized liver also displayed enhanced midazolam clearance upon pre treatment with orally administered thalidomide, presumably because of human P450 3A induction. In the current study, we further investigated the regulation of human hepatic drug metabolizing enzymes. Thalidomide enhanced levels of P450 3A4 and 2B6 mRNA, protein expression, and/or oxidation activity in human hepatocytes, indirectly suggesting activation of upstream transcription factors involved in detoxication, e.g. the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). A key event after ligand binding is an alteration of nuclear receptor conformation and recruitment of co regulator proteins that alter chromatin accessibility of target genes. To investigate direct engagement and functional alteration of PXR and CAR by thalidomide, we utilized a peptide microarray with 154 co regulator derived nuclear receptor interaction motifs and co regulator and nuclear receptor boxes, which serves as a sensor for nuclear receptor conformation and activity status as a function of ligand. Thalidomide and its human proximate metabolite 5 hydroxythalidomide displayed significant modulation of co regulator interaction with PXR and CAR ligand binding domains, similar to established agonists for these receptors. These results collectively suggest that thalidomide acts as a ligand for PXR and CAR and causes enzyme induction leading to increased P450 enzyme activity. The possibilities of drug interactions during thalidomide therapy in humans require further evaluation. PMID:24460184

  15. Role of hepatic microsomal and purified cytochrome P-450 in one-electron reduction of two quinone imines and concomitant reduction of molecular oxygen

    NARCIS (Netherlands)

    Van de Straat, R; de Vries, J; Vermeulen, N P

    1987-01-01

    The possible role of cytochrome P-450 in one-electron reduction of quinoid compounds as well as in the formation of reduced oxygen species was investigated in hepatic microsomal and reconstituted systems of purified cytochrome P-450 and purified NADPH-cytochrome P-450 reductase using electron spin

  16. Albendazole metabolism in patients with neurocysticercosis: antipyrine as a multifunctional marker drug of cytochrome P450

    Directory of Open Access Journals (Sweden)

    M.P. Marques

    2002-02-01

    Full Text Available The present study investigates the isoform(s of cytochrome P450 (CYP involved in the metabolism of albendazole sulfoxide (ASOX to albendazole sulfone (ASON in patients with neurocysticercosis using antipyrine as a multifunctional marker drug. The study was conducted on 11 patients with neurocysticercosis treated with a multiple dose regimen of albendazole for 8 days (5 mg/kg every 8 h. On the 5th day of albendazole treatment, 500 mg antipyrine was administered po. Blood and urine samples were collected up to 72 h after antipyrine administration. Plasma concentrations of (+-ASOX, (--ASOX and ASON were determined by HPLC using a chiral phase column and detection by fluorescence. The apparent clearance (CL/f of ASON and of the (+ and (--ASOX enantiomers were calculated and compared to total antipyrine clearance (CL T and the clearance for the production of the three major antipyrine metabolites (CLm. A correlation (P<=0.05 was obtained only between the CL T of antipyrine and the CL/f of ASON (r = 0.67. The existence of a correlation suggests the involvement of CYP isoforms common to the metabolism of antipyrine and of ASOX to ASON. Since the CL T of antipyrine is a general measure of CYP enzymes but with a slight to moderate weight toward CYP1A2, we suggest the involvement of this enzyme in ASOX to ASON metabolism in man. The study supports the establishment of a specific marker drug of CYP1A2 in the study of the in vivo metabolism of ASOX to ASON.

  17. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    Science.gov (United States)

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  18. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    Directory of Open Access Journals (Sweden)

    Poojah Jawallapersand

    Full Text Available Cytochrome P450 monooxygenases (CYPs/P450s are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103 were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome

  19. Effective cytochrome P450 (CYP) inhibitor isolated from thyme (Thymus saturoides) purchased from a Japanese market.

    Science.gov (United States)

    Brahmi, Zeineb; Niwa, Hitomi; Yamasato, Mio; Shigeto, Sakurako; Kusakari, Yuna; Sugaya, Kouichi; Onose, Jun-ichi; Abe, Naoki

    2011-01-01

    A highly polymethylated flavone that effectively inhibited cytochrome P450s (CYPs) 1A2 and 3A4 (IC(50) = 2.41 and 1.71 µM) in vitro was isolated from thyme leaves (Thymus saturoides) purchased from a Japanese market. Its structure was spectroscopically identified as 4',5-dihydroxy-3',6,7,8-tetramethoxy flavone (8-methoxycirsilineol, 1). This is the first report describing a strong inhibitor of CYP1A2 and 3A4 isolated from Thymus saturoides.

  20. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect molting hormone

    DEFF Research Database (Denmark)

    Rewitz, Kim; Rybczynski, Robert; Warren, James T.

    2006-01-01

    ), are mediated by four cytochrome P450 enzymes, encoded by genes in the Halloween family. Orthologs of the Drosophila Halloween genes phantom (phm: CYP306A1), disembodied (dib: CYP302A1), shadow (sad: CYP315A1) and shade (shd: CYP314A1) were obtained from the endocrinological model insect, the tobacco hornworm...... during the fifth instar. Transcript levels of shd in the fat body and midgut closely parallel the enzyme activity measured in vitro. The data indicate that these Halloween genes are transcriptionally regulated to support the high biosynthetic activity that produces the cyclic ecdysteroid pulses...

  1. Induction of cytochrome p-450-ia1 in juvenile fish by creosote-contaminated sediment

    Energy Technology Data Exchange (ETDEWEB)

    Schoor, W.P.; Williams, D.E.; Takahashi, N.

    1991-01-01

    Intact sediment cores, including their surface layers, were used in simulated field exposure tests of juvenile guppies (Poecilia reticulata) to creosote-contaminated sediments. Mixed-function oxygenase activity was induced in the fish after 43 days of exposure to environmentally realistic, sublethal concentrations of creosote-related compounds. An average 50-fold induction in the cytochrome P-450-IA1 was found in the liver in the absence of any histopathological lesions. The possibility that a threshold level for proliferative liver changes was not reached is discussed in the light of the observed biochemical activation.

  2. The contribution of atom accessibility to site of metabolism models for cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rostkowski, M.; Gloriam, D.E.

    2013-01-01

    Three different types of atom accessibility descriptors are investigated in relation to site of metabolism predictions. To enable the integration of local accessibility we have constructed 2DSASA, a method for the calculation of the atomic solvent accessible surface area that is independent of 3D...... coordinates. The method was implemented in the SMARTCyp site of metabolism prediction models and improved the results by up to 4 percentage points for nine cytochrome P450 isoforms. The final models are made available at http://www.farma.ku.dk/smartcyp....

  3. Structure of OxyA tei: completing our picture of the glycopeptide antibiotic producing Cytochrome P450 cascade.

    Science.gov (United States)

    Haslinger, Kristina; Cryle, Max J

    2016-02-01

    Cyclization of glycopeptide antibiotic precursors occurs in either three or four steps catalyzed by Cytochrome P450 enzymes. Three of these enzymes have been structurally characterized to date with the second enzyme along the pathway, OxyA, escaping structural analysis. We are now able to present the structure of OxyAtei involved in teicoplanin biosynthesis - the same enzyme recently shown to be the first active OxyA homolog. In spite of the hydrophobic character of the teicoplanin precursor, the polar active site of OxyAtei and its affinity for certain azole inhibitors hint at its preference for substrates with polar decorations. © 2016 Federation of European Biochemical Societies.

  4. Cytochromes P450 and Skin Cancer: Role of Local Endocrine Pathways

    Science.gov (United States)

    Slominski, Andrzej T.; Zmijewski, Michal A.; Semak, Igor; Zbytek, Blazej; Pisarchik, Alexander; Li, Wei; Zjawiony, Jordan; Tuckey, Robert C.

    2013-01-01

    Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7-steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu. PMID:23869782

  5. Transcriptome Assembly and Systematic Identification of Novel Cytochrome P450s in Taxus chinensis

    Directory of Open Access Journals (Sweden)

    Weifang Liao

    2017-08-01

    Full Text Available Taxus spp. is a highly valuable medicinal plant with multiple pharmacological effects on various cancers. Cytochrome P450s (CYP450s play important roles in the biosynthesis of active compounds in Taxus spp., such as the famous diterpenoid, Taxol. However, some specific CYP450 enzymes involved in the biosynthesis of Taxol remain unknown, and the systematic identification of CYP450s in Taxus has not been reported. In this study, 118 full-length and 175 partial CYP450 genes were identified in Taxus chinensis transcriptomes. The 118 full-length genes were divided into 8 clans and 29 families. The CYP71 clan included all A-type genes (52 belonging to 11 families. The other seven clans possessed 18 families containing 66 non-A-type genes. Two new gymnosperm-specific families were discovered, and were named CYP864 and CYP947 respectively. Protein sequence alignments revealed that all of the T. chinensis CYP450s hold distinct conserved domains. The expression patterns of all 118 CYP450 genes during the long-time subculture and MeJA elicitation were analyzed. Additionally, the expression levels of 15 novel CYP725 genes in different Taxus species were explored. Considering all the evidence, 6 CYP725s were identified to be candidates for Taxol biosynthesis. The cis-regulatory elements involved in the transcriptional regulation were also identified in the promoter regions of CYP725s. This study presents a comprehensive overview of the CYP450 gene family in T. chinensis and can provide important insights into the functional gene studies of Taxol biosynthesis.

  6. Molecular Characterization and Functional Analysis of Three Pathogenesis-Related Cytochrome P450 Genes from Bursaphelenchus xylophilus (Tylenchida: Aphelenchoidoidea

    Directory of Open Access Journals (Sweden)

    Xiao-Lu Xu

    2015-03-01

    Full Text Available Bursaphelenchus xylophilus, the causal agent of pine wilt disease, causes huge economic losses in pine forests. The high expression of cytochrome P450 genes in B. xylophilus during infection in P. thunbergii indicated that these genes had a certain relationship with the pathogenic process of B. xylophilus. Thus, we attempted to identify the molecular characterization and functions of cytochrome P450 genes in B. xylophilus. In this study, full-length cDNA of three cytochrome P450 genes, BxCYP33C9, BxCYP33C4 and BxCYP33D3 were first cloned from B. xylophilus using 3' and 5' RACE PCR amplification. Sequence analysis showed that all of them contained a highly-conserved cytochrome P450 domain. The characteristics of the three putative proteins were analyzed with bioinformatic methods. RNA interference (RNAi was used to assess the functions of BxCYP33C9, BxCYP33C4 and BxCYP33D3. The results revealed that these cytochrome P450 genes were likely to be associated with the vitality, dispersal ability, reproduction, pathogenicity and pesticide metabolism of B. xylophilus. This discovery confirmed the molecular characterization and functions of three cytochrome P450 genes from B. xylophilus and provided fundamental information in elucidating the molecular interaction mechanism between B. xylophilus and its host plant.

  7. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone.

    Science.gov (United States)

    Rewitz, K F; Rybczynski, R; Warren, J T; Gilbert, L I

    2006-12-01

    The developmental events occurring during moulting and metamorphosis of insects are controlled by precisely timed changes in levels of ecdysteroids, the moulting hormones. The final four sequential hydroxylations of steroid precursors into the active ecdysteroid of insects, 20E (20-hydroxyecdysone), are mediated by four cytochrome P450 (P450) enzymes, encoded by genes in the Halloween family. Orthologues of the Drosophila Halloween genes phantom (phm; CYP306A1), disembodied (dib; CYP302A1), shadow (sad; CYP315A1) and shade (shd; CYP314A1) were obtained from the endocrinological model insect, the tobacco hornworm Manduca sexta. Expression of these genes was studied and compared with changes in the ecdysteroid titre that controls transition from the larval to pupal stage. phm, dib and sad, which encode P450s that mediate the final hydroxylations in the biosynthesis of ecdysone, were selectively expressed in the prothoracic gland, the primary source of ecdysone during larval and pupal development. Changes in their expression correlate with the haemolymph ecdysteroid titre during the fifth (final) larval instar. Shd, the 20-hydroxylase, which converts ecdysone into the more active 20E, is expressed in tissues peripheral to the prothoracic glands during the fifth instar. Transcript levels of shd in the fat body and midgut closely parallel the enzyme activity measured in vitro. The results indicate that these Halloween genes are transcriptionally regulated to support the high biosynthetic activity that produces the cyclic ecdysteroid pulses triggering moulting.

  8. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors.

    Science.gov (United States)

    Kitahata, Nobutaka; Saito, Shigeki; Miyazawa, Yutaka; Umezawa, Taishi; Shimada, Yukihisa; Min, Yong Ki; Mizutani, Masaharu; Hirai, Nobuhiro; Shinozaki, Kazuo; Yoshida, Shigeo; Asami, Tadao

    2005-07-15

    Plant hormone abscisic acid (ABA) is an important factor for conferring drought stress resistance on plants. Therefore, small molecules that regulate ABA levels in plants can be useful both for investigating functions of ABA and for developing new plant growth regulators. Abscisic acid (ABA) catabolism in plants is primarily regulated by ABA 8'-hydroxylase, which is a cytochrome P450 (P450). We tested known P450 inhibitors containing a triazole group and found that uniconazole-P inhibited ABA catabolism in cultured tobacco Bright Yellow-2 cells. In a structure-activity study of uniconazole, we found a more effective ABA catabolic inhibitor (diniconazole) than uniconazole-P. Diniconazole, a fungicide, acted as a potent competitive inhibitor of recombinant Arabidopsis ABA 8'-hydroxylase, CYP707A3, in an in vitro assay. Diniconazole-treated plants retained a higher ABA content and higher transcription levels of ABA response genes during rehydration than did untreated plants and were more drought stress tolerant than untreated plants. These results strongly suggest that ABA catabolic inhibitors that target ABA 8'-hydroxylase can regulate the ABA content of plants and conferred drought stress resistance on plants. The optical resolution of diniconazole revealed that the S-form isomer, which is a weak fungicidal isomer, was more active as an ABA catabolic inhibitor than was the R-form isomer.

  9. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    Science.gov (United States)

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  10. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?

    Science.gov (United States)

    Kelly, Steven L.; Kelly, Diane E.

    2013-01-01

    The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated. PMID:23297358

  11. Relationships among Ergot Alkaloids, Cytochrome P450 Activity, and Beef Steer Growth

    Directory of Open Access Journals (Sweden)

    Charles F. Rosenkrans

    2015-03-01

    Full Text Available Determining a grazing animal’s susceptibility to ergot alkaloids has been a research topic for decades. Our objective was to determine if the Promega™ P450-Glo assay could be used to indirectly detect ergot alkaloids or their metabolites in urine of steers. The first experiment validated the effects of ergot alkaloids [0, 20, and 40 μM of ergotamine (ET, dihydroergotamine (DHET, and ergonovine (EN] on human CYP3A4 using the P450-Glo assay (Promega™ V9800. With this assay, luminescence is directly proportional to CYP450 activity. Relative inhibition of in vitro cytochrome P450 activity was affected (P < 0.001 by an interaction between alkaloids and concentration. That interaction resulted in no concentration effect of EN, but within ET and DHET 20 and 40 µM concentrations inhibited CYP450 activity when compared with controls. In experiment 2, urine was collected from Angus-sired crossbred steers (n = 39; 216 ± 2.6 d of age; 203 ± 1.7 kg after grazing tall fescue pastures for 105 d. Non-diluted urine was added to the Promega™ P450-Glo assay, and observed inhibition (3.7 % ± 2.7 of control. Urine content of total ergot alkaloids (331.1 ng/mg of creatinine ± 325.7 was determined using enzyme linked immunosorbent assay. Urine inhibition of CYP450 activity and total alkaloids were correlated (r = -0.31; P < 0.05. Steers were genotyped at CYP450 single nucleotide polymorphism, C994G. Steer genotype affected (P < 0.03 inhibition of CYP450 activity by urine; heterozygous steers had the least amount of CYP450 inhibition suggesting that genotyping cattle may be a method of identifying animals that are susceptible to ergot alkaloids. Although, additional research is needed, we demonstrate that the Promega™ P450-Glo assay is sensitive to ergot alkaloids and urine from steers grazing tall fescue. With some refinement the P450-Glo assay has potential as a tool for screening cattle for their exposure to fescue toxins.

  12. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.

    Science.gov (United States)

    Lipka, J J; Waskell, L A

    1989-01-01

    Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.

  13. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus.

    Directory of Open Access Journals (Sweden)

    Mariya Y Pakharukova

    2015-12-01

    Full Text Available The basic metabolic cytochrome P450 (CYP system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium are considered by the International Agency for Research on Cancer (IARC as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii to assess CYP ability to metabolize xenobiotics, and (iii to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target.

  14. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    Science.gov (United States)

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  15. Curcumin Prevents Aflatoxin B1 Hepatoxicity by Inhibition of Cytochrome P450 Isozymes in Chick Liver

    Directory of Open Access Journals (Sweden)

    Ni-Ya Zhang

    2016-11-01

    Full Text Available This study was designed to establish if Curcumin (CM alleviates Aflatoxin B1 (AFB1-induced hepatotoxic effects and to determine whether alteration of the expression of cytochrome P450 (CYP450 isozymes is involved in the regulation of these effects in chick liver. One-day-old male broilers (n = 120 were divided into four groups and used in a two by two factorial trial in which the main factors included supplementing AFB1 (< 5 vs. 100 μg/kg and CM (0 vs. 150 mg/kg in a corn/soybean-based diet. Administration of AFB1 induced liver injury, significantly decreasing albumin and total protein concentrations and increasing alanine aminotransferase and aspartate aminotransferase activities in serum, and induced hepatic histological lesions at week 2. AFB1 also significantly decreased hepatic glutathione peroxidase, catalase, and glutathione levels, while increasing malondialdehyde, 8-hydroxydeoxyguanosine, and exo-AFB1-8,9-epoxide (AFBO-DNA concentrations. In addition, the mRNA and/or activity of enzymes responsible for the bioactivation of AFB1 into AFBO—including CYP1A1, CYP1A2, CYP2A6, and CYP3A4—were significantly induced in liver microsomes after 2-week exposure to AFB1. These alterations induced by AFB1 were prevented by CM supplementation. Conclusively, dietary CM protected chicks from AFB1-induced liver injury, potentially through the synergistic actions of increased antioxidant capacities and inhibition of the pivotal CYP450 isozyme-mediated activation of AFB1 to toxic AFBO.

  16. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens.

    Science.gov (United States)

    Kang, K; Yang, P; Pang, R; Yue, L; Zhang, W

    2017-10-01

    Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field. © 2017 The Royal Entomological Society.

  17. Considerations and recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction

    Science.gov (United States)

    Li, Haiyan; Sun, Jin; Fan, Xiaowen; Sui, Xiaofan; Zhang, Lan; Wang, Yongjun; He, Zhonggui

    2008-11-01

    Quantitative structure-activity relationships (QSAR) methods are urgently needed for predicting ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties to select lead compounds for optimization at the early stage of drug discovery, and to screen drug candidates for clinical trials. Use of suitable QSAR models ultimately results in lesser time-cost and lower attrition rate during drug discovery and development. In the case of ADME/T parameters, drug metabolism is a key determinant of metabolic stability, drug-drug interactions, and drug toxicity. QSAR models for predicting drug metabolism have undergone significant advances recently. However, most of the models used lack sufficient interpretability and offer poor predictability for novel drugs. In this review, we describe some considerations to be taken into account by QSAR for modeling drug metabolism, such as the accuracy/consistency of the entire data set, representation and diversity of the training and test sets, and variable selection. We also describe some novel statistical techniques (ensemble methods, multivariate adaptive regression splines and graph machines), which are not yet used frequently to develop QSAR models for drug metabolism. Subsequently, rational recommendations for developing predictable and interpretable QSAR models are made. Finally, the recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction, including in vivo hepatic clearance, in vitro metabolic stability, inhibitors and substrates of cytochrome P450 families, are briefly summarized.

  18. Allosteric Activation of Cytochrome P450 3A4 via Progesterone Bioconjugation.

    Science.gov (United States)

    Polic, Vanja; Auclair, Karine

    2017-04-19

    Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of the majority of drugs. As such, it is implicated in many adverse drug-drug and food-drug interactions, and is of significant interest to the pharmaceutical industry. This enzyme is known to simultaneously bind multiple ligands and display atypical enzyme kinetics, suggestive of allostery and cooperativity. As well, evidence of a postulated peripheral allosteric binding site has provoked debate around its significance and location. We report the use of bioconjugation to study the significance of substrate binding at the proposed allosteric site and its effect on CYP3A4 activity. CYP3A4 mutants were created and covalently modified with various small molecules including progesterone. The labeled mutants displayed enhanced kinetic stability and improved activity in testosterone and 7-benzyloxy-(4-trifluoromethyl)coumarin oxidation assays. Our work applies a new strategy to study cytochrome P450 allostery and supports the hypothesis that substrate binding at the postulated allosteric site of CYP3A4 may induce functional cooperativity.

  19. Pi-pi Stacking Mediated Cooperative Mechanism for Human Cytochrome P450 3A4

    Directory of Open Access Journals (Sweden)

    Botao Fa

    2015-04-01

    Full Text Available Human Cytochrome P450 3A4 (CYP3A4 is an important member of the cytochrome P450 superfamily with responsibility for metabolizing ~50% of clinical drugs. Experimental evidence showed that CYP3A4 can adopt multiple substrates in its active site to form a cooperative binding model, accelerating substrate metabolism efficiency. In the current study, we constructed both normal and cooperative binding models of human CYP3A4 with antifungal drug ketoconazoles (KLN. Molecular dynamics simulation and free energy calculation were then carried out to study the cooperative binding mechanism. Our simulation showed that the second KLN in the cooperative binding model had a positive impact on the first one binding in the active site by two significant pi-pi stacking interactions. The first one was formed by Phe215, functioning to position the first KLN in a favorable orientation in the active site for further metabolism reactions. The second one was contributed by Phe304. This pi-pi stacking was enhanced in the cooperative binding model by the parallel conformation between the aromatic rings in Phe304 and the dioxolan moiety of the first KLN. These findings can provide an atomic insight into the cooperative binding in CYP3A4, revealing a novel pi-pi stacking mechanism for drug-drug interactions.

  20. Two potent cytochrome P450 2D6 inhibitors found in Rhodiola rosea.

    Science.gov (United States)

    Xu, Wen; Zhang, Tingting; Wang, Zhi; Liu, Tao; Liu, Yanping; Cao, Zhihong; Sui, Zhongguo

    2013-12-01

    Throughout the world, in particular in Russia, Northern Europe and China, Rhodiola species are used as herb supplements. Previously, we found that the extract of Rhodiola rosea, one of the most widely used Rhodiola species, had an inhibitory effect on the catalytic activity of cytochrome P450 2D6. Here, its inhibitory components were identified. A human liver microsomal in vitro system was used with dextromethorphan as substrate. The production rate of destrorphan, a metabolite of dextromethorphan, was used to measure enzyme activity. The concentration of destrorphan in the samples was measured using LC-MS/MS. Inhibitory activity of eight main components from Rhodiola rosea was evaluated. Rhodiosin and rhodionin showed inhibitory activity with IC50 values of 0.761 microM and 0.420 microM, respectively. The other components showed no obvious inhibition (with a residual enzyme activity of more than 90%). Both rhodiosin and rhodionin were determined to be non-competitive inhibitors with Ki values of 0.769 microM and 0.535 microM. Two of the main Rhodiola rosea compounds, rhodiosin and rhodionin, can inhibit cytochrome P450 2D6 non-competitively with high specificity which could have implications for interactions with co-administered drugs.

  1. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance.

    Science.gov (United States)

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A; Halberg, Kenneth A; Dow, Julian A T; Davies, Shireen-A

    2015-12-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Dynamics of water molecules in the active-site cavity of human cytochromes P450

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Rod, Thomas Holm; Olsen, Lars

    2007-01-01

    We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot. In the...... molecules close to the heme iron ion in these simulations of the high-spin ferric state (the average distance to the closest water molecule is 3.3-5 A), and there are few ordered water molecules in the active sites, none of which is conserved in all proteins.......We have studied the dynamics of water molecules in six crystal structures of four human cytochromes P450, 2A6, 2C8, 2C9, and 3A4, with molecular dynamics simulations. In the crystal structures, only a few water molecules are seen and the reported sizes of the active-site cavity vary a lot....... In the simulations, the cavities are completely filled with water molecules, although with approximately 20% lower density than in bulk water. The 2A6 protein differs from the other three in that it has a very small cavity with only two water molecules and no exchange with the surroundings. The other three proteins...

  3. Interaction of carbon tetrachloride with beta-naphthoflavone-mediated cytochrome P450 induction in winter flounder (Pseudopleuronectes americanus).

    Science.gov (United States)

    Kleinow, K M; Droy, B F; Buhler, D R; Williams, D E

    1990-06-15

    The interaction between beta-naphthoflavone induction (BNF: 100 mg/kg) and carbon tetrachloride (CCl4; 1 ml/kg) hepatotoxicity was examined in the flounder. Treatment groups composed of control, BNF, CCl4, and BNF/CCl4 were compared in terms of cytochrome P450 isozyme content (LM4b; LM2), catalytic activity, isozyme distribution. SGOT-SGPT levels, and pathology. CCl4 administration resulted in significant reductions in both the constitutive P450 (LM2) and the BNF-inducible isozyme (LM4b) as well as elevations in SGPT and SGOT levels. The decline in LM4b isozyme content was reflected by stoichiometric decreases in ethoxyresorufin-O-deethylase activities. BNF/CCl4 coadministration was protective in part against CCl4 hepatotoxicity. Immunohistochemistry indicated that LM4b was diffusely distributed throughout the liver. These interactions have demonstrated a multiple P450 isozyme involvement, the protective nature of BNF against CCl4 hepatotoxicity in the flounder, the ability to maintain an inductive response in face of CCl4 coadministration, and the diffuse distributional pattern of LM4b in the flounder liver.

  4. Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome

    Directory of Open Access Journals (Sweden)

    Ritland Carol

    2009-08-01

    Full Text Available Abstract Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs and full-length (FLcDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR and a cytochrome P450 (CYP720B4 from a non-arrayed genomic BAC library of white spruce (Picea glauca. Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR and 94 kbp (CYP720B4 long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs, high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene

  5. Mechanism-Based Inactivation of Human Cytochrome P450 2B6 by Clopidogrel: Involvement of Both Covalent Modification of Cysteinyl Residue 475 and Loss of HemeS⃞

    Science.gov (United States)

    Zhang, Haoming; Amunugama, Hemali; Ney, Sarah; Cooper, Nyemade

    2011-01-01

    We have investigated the mechanisms by which clopidogrel inactivates human cytochrome P450 2B6 (CYP2B6) in a reconstituted system. It was found that clopidogrel and its thiolactone metabolite, 2-oxo-clopidogrel, both inactivate CYP2B6 in a time- and concentration-dependent manner. On the basis of kinact/KI ratios, clopidogrel is approximately 5 times more efficient than 2-oxo-clopidogrel in inactivating CYP2B6. Analysis of the molecular mass of the CYP2B6 wild-type (WT) protein that had been inactivated by either clopidogrel or 2-oxo-clopidogrel showed an increase in the mass of the protein by ∼350 Da. This increase in the protein mass corresponds to the addition of the active metabolite of clopidogrel to CYP2B6. It is noteworthy that this adduct can be cleaved from the protein matrix by incubation with dithiothreitol, confirming that the active metabolite is linked to a cysteinyl residue of CYP2B6 via a disulfide bond. Peptide mapping of tryptic digests of the inactivated CYP2B6 using electrospray ionization liquid chromatography-tandem mass spectrometry identified Cys475 as the site of covalent modification by the active metabolite. This was further confirmed by the observation that mutation of Cys475 to a serine residue eliminates the formation of the protein adduct and prevents the C475S variant from mechanism-based inactivation by 2-oxo-clopidogrel. However, this mutation did not prevent the C475S variant from being inactivated by clopidogrel. Furthermore, inactivation of both CYP2B6 WT and C475S by clopidogrel, but not by 2-oxo-clopidogrel, led to the loss of the heme, which accounts for most of the loss of the catalytic activity. Collectively, these results suggest that clopidogrel inactivates CYP2B6 primarily through destruction of the heme, whereas 2-oxo-clopidogrel inactivates CYP2B6 through covalent modification of Cys475. PMID:21862689

  6. Utility of non-human primates in drug development: Comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes.

    Science.gov (United States)

    Uno, Yasuhiro; Uehara, Shotaro; Yamazaki, Hiroshi

    2016-12-01

    Cynomolgus monkeys (Macaca fascicularis, an Old World Monkey) have been widely used as a non-human primate model in preclinical studies because of their genetic and physiological similarity to humans. This trend has been followed by common marmoset (Callithrix jacchus, a New World Monkey). However, drug-metabolism properties in these non-human primates have not been fully understood due to limited information on cytochrome P450 (P450) enzymes, major drug-metabolizing enzymes in humans. Multiple forms of cynomolgus monkey P450 enzymes have been identified and characterized in comparison to those of humans, including a cynomolgus monkey specific form, P450 2C76. Similarly, marmoset P450 1A/B, 2A, 2C, 2D, and 4F enzymes were recently identified and characterized to understand drug metabolism properties. In this research update, updates for marmoset, cynomolgus monkey, and human P450 cDNAs are provided. Marmoset and cynomolgus monkey P450 enzymes showed high sequence homology to their human counterparts and generally had similar substrate recognition functionality to human P450 enzymes; however, they also possibly contribute to limited specific differences in drug oxidative metabolism partly due to small differences in amino acid residues. These findings provide a foundation for successful use of non-human primates as preclinical models and will help to further understand molecular mechanisms of human P450 function. In addition to the P450 enzymes, flavin-containing monooxygenases, another monooxygenase family, in these non-human primates have been found to be involved in the oxidation of a variety of compounds associated with pharmacological and/or toxicological effects in humans and are also described. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. 7,8-benzoflavone binding to human cytochrome P450 3A4 reveals complex fluorescence quenching, suggesting binding at multiple protein sites.

    Science.gov (United States)

    Marsch, Glenn A; Carlson, Benjamin T; Guengerich, F Peter

    2017-03-20

    Human cytochrome P450 (P450) 3A4 is involved in the metabolism of one-half of marketed drugs and shows cooperative interactions with some substrates and other ligands. The interaction between P450 3A4 and the known allosteric effector 7,8-benzoflavone (α-naphthoflavone, αNF) was characterized using steady-state fluorescence spectroscopy. The binding interaction of P450 3A4 and αNF effectively quenched the fluorescence of both the enzyme and ligand. The Hill Equation and Stern-Volmer fluorescence quenching models were used to evaluate binding of ligand to enzyme. P450 3A4 fluorescence was quenched by titration with αNF; at the relatively higher [αNF]/[P450 3A4] ratios in this experiment, two weaker quenching interactions were revealed (Kd 1.8-2.5 and 6.5 μM). A range is given for the stronger interaction since αNF quenching of P450 3A4 fluorescence changed the protein spectral profile: quenching of 315 nm emission was slightly more efficient (Kd 1.8 μM) than the quenching of protein fluorescence at 335 and 355 nm (Kd 2.5 and 2.1 μM, respectively). In the reverse titration, αNF fluorescence was quenched by P450 3A4; at the lower [αNF]/[P450 3A4] ratios here, two strong quenching interactions were revealed (Kd 0.048 and 1.0 μM). Thus, four binding interactions of αNF to P450 3A4 are suggested by this study, one of which may be newly recognized and which could affect studies of drug oxidations by this important enzyme.

  8. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    Science.gov (United States)

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0

  9. Polymorphisms in the Human Cytochrome P450 and Arylamine N-Acetyltransferase: Susceptibility to Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Rim Khlifi

    2013-01-01

    Full Text Available The occurrence of head and neck cancer (HNC is associated with smoking and alcohol drinking. Tobacco smoking exposes smokers to a series of carcinogenic chemicals. Cytochrome P450 enzymes (CYP450s, such as CYP1A1, CYP1B1, and CYP2D6, usually metabolize carcinogens to their inactive derivatives, but they occasionally convert the chemicals to more potent carcinogens. In addition, via CYP450 (CYP2E1 oxidase, alcohol is metabolized to acetaldehyde, a highly toxic compound, which plays an important role in carcinogenesis. Furthermore, two N-acetyltransferase isozymes (NATs, NAT1 and NAT2, are polymorphic and catalyze both N-acetylation and O-acetylation of aromatic and heterocyclic amine carcinogens. Genetic polymorphisms are associated with a number of enzymes involved in the metabolism of carcinogens important in the induction of HNC. It has been suggested that such polymorphisms may be linked to cancer susceptibility. In this paper, we select four cytochrome P450 enzymes (CYP1A1, CYP1BA1, CYP2D6, and CYP2E1, and two N-acetyltransferase isozymes (NAT1 and NAT2 in order to summarize and analyze findings from the literature related to HNC risk by focusing on (i the interaction between these genes and the environment, (ii the impact of genetic defect on protein activity and/or expression, and (iii the eventual involvement of race in such associations.

  10. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes.

    Science.gov (United States)

    Moktali, Venkatesh; Park, Jongsun; Fedorova-Abrams, Natalie D; Park, Bongsoo; Choi, Jaeyoung; Lee, Yong-Hwan; Kang, Seogchan

    2012-10-04

    Cytochrome P450 proteins (CYPs) play diverse and pivotal roles in fungal metabolism and adaptation to specific ecological niches. Fungal genomes encode extremely variable "CYPomes" ranging from one to more than 300 CYPs. Despite the rapid growth of sequenced fungal and oomycete genomes and the resulting influx of predicted CYPs, the vast majority of CYPs remain functionally uncharacterized. To facilitate the curation and functional and evolutionary studies of CYPs, we previously developed Fungal Cytochrome P450 Database (FCPD), which included CYPs from 70 fungal and oomycete species. Here we present a new version of FCPD (1.2) with more data and an improved classification scheme. The new database contains 22,940 CYPs from 213 species divided into 2,579 clusters and 115 clans. By optimizing the clustering pipeline, we were able to uncover 36 novel clans and to assign 153 orphan CYP families to specific clans. To augment their functional annotation, CYP clusters were mapped to David Nelson's P450 databases, which archive a total of 12,500 manually curated CYPs. Additionally, over 150 clusters were functionally classified based on sequence similarity to experimentally characterized CYPs. Comparative analysis of fungal and oomycete CYPomes revealed cases of both extreme expansion and contraction. The most dramatic expansions in fungi were observed in clans CYP58 and CYP68 (Pezizomycotina), clans CYP5150 and CYP63 (Agaricomycotina), and family CYP509 (Mucoromycotina). Although much of the extraordinary diversity of the pan-fungal CYPome can be attributed to gene duplication and adaptive divergence, our analysis also suggests a few potential horizontal gene transfer events. Updated families and clans can be accessed through the new version of the FCPD database. FCPD version 1.2 provides a systematic and searchable catalogue of 9,550 fungal CYP sequences (292 families) encoded by 108 fungal species and 147 CYP sequences (9 families) encoded by five oomycete species. In

  11. Crystallization and Preliminary X-ray Analysis of Allene Oxide Synthase, Cytochrome P450 CYP74A2, from Parthenium argentatum

    Science.gov (United States)

    Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium a...

  12. Dissecting the Cytochrome P450 1A2- and 3A4-Mediated Metabolism of Aflatoxin B1 in Ligand and Protein Contributions

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Jørgensen, Flemming Steen; Olsen, Lars

    2017-01-01

    Aflatoxin B1 (AFB1) is a chemically intriguing compound because it has several potential sites of metabolism (SOMs), although only some of them are observed experimentally. Cytochrome P450 (CYP) 3A4 and 1A2 are the major isoforms involved in its metabolism. Here, we systematically investigate...

  13. Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia.

    Science.gov (United States)

    Moshal, Karni S; Zeldin, Darryl C; Sithu, Srinivas D; Sen, Utpal; Tyagi, Neetu; Kumar, Munish; Hughes, William M; Metreveli, Naira; Rosenberger, Dorothea S E; Singh, Mahavir; Vacek, Thomas P; Rodriguez, Walter E; Ayotunde, Adeagbo; Tyagi, Suresh C

    2008-06-01

    Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase-9 (MMP-9). Cytochrome P450 (CYP) epoxygenase-2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF-kappabeta. However, the underlying molecular mechanisms for MMP-9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)-induced MMP-9 activation. CYP2J2 was over-expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF-kappabeta-mediated MMP-9 regulation were evaluated using Western blot, in-gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K-dependent AKT signal. Hcy induced the nuclear translocation of NF-kappabeta via downregulation of IKbetaalpha (endogenous cytoplasmic inhibitor of NF-kappabeta). Hcy induced MMP-9 activation by increasing NF-kappabeta-DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9-EET phosphorylated the AKT and attenuated Hcy-induced MMP-9 activation. This occurred, in part, by the inhibition of NF-kappabeta nuclear translocation, NF-kappabeta-DNA binding and activation of IKbetaalpha. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP-9 signal. (c) 2008 Wiley-Liss, Inc.

  14. Cytochrome P450 differences in normal and imposex-affected female whelk Buccinum undatum from the open North Sea.

    Science.gov (United States)

    Santos, M M; ten Hallers-Tjabbes, C C; Vieira, N; Boon, J P; Porte, C

    2002-01-01

    Normal and imposex-affected female Buccinum undatum were sampled from the open North Sea at three locations, one with low, and two with high shipping densities. Cytochrome P450 components and P450 aromatase activity were determined in the microsomal fractions isolated from pooled digestive gland/gonads. Cytochrome P450 aromatase activity was significantly higher (P imposex animals from a high shipping density area (620 +/- 287 fmol/h/mg protein). A negative correlation was found between aromatase activity and organotin body burden (r = -0.99). Levels of CYP450, cytochrome b5 and NADPH cytochrome c reductase activity did not show differences among groups. This is the first field evidence of depressed aromatase activity in imposex affected females, although additional research under laboratory controlled conditions is required to fully understand the mechanisms underlying the development of imposex in this species.

  15. Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum

    Directory of Open Access Journals (Sweden)

    Nelson David R

    2010-12-01

    Full Text Available Abstract Background Intense consumer pressure strongly affects the structural organization and function of marine ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome P450s (CYPs, which have received little attention in marine invertebrates despite the importance of allelochemicals in their evolution. Results Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate

  16. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    Directory of Open Access Journals (Sweden)

    Braun Andreas

    2012-08-01

    Full Text Available Abstract Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR or Y. lipolytica cytochrome P450 reductase (YlCPR. These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more

  17. Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1.

    Science.gov (United States)

    Nejidat, Ali; Kafka, Limor; Tekoah, Yoram; Ronen, Zeev

    2008-06-01

    We hypothesized that biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)--a widely used explosive contaminating soil and groundwater--by Rhodococcus strain YH1 is controlled by the presence of external nitrogen sources. This strain is capable of degrading RDX while using it as sole nitrogen source under aerobic conditions. Both inorganic and organic nitrogen sources were found to have a profound impact on RDX-biodegradation activity. This effect was tested in growing and resting cells of strain YH1. Nitrate and nitrite delayed the onset of RDX degradation by strain YH1, while ammonium inhibited it almost completely. In addition, 2,4,6-trinitrotoluene (TNT) inhibited RDX degradation and growth of strain YH1. On the other hand, tetrahydrophthalamide did not influence biodegradation or growth. Growth on RDX induced the expression of a cytochrome P-450 enzyme that is suggested to be involved in the first step in the aerobic pathway of RDX degradation, as identified by SDS-PAGE analysis. Ammonium and nitrite strongly repressed cytochrome P-450 expression. Our findings suggest that effective RDX bioremediation by strain YH1 requires the design of a treatment scheme that includes initial removal of ammonium, nitrite, nitrate and TNT before RDX degradation can take place.

  18. Evaluation of inhibition selectivity for human cytochrome P450 2A enzymes.

    Science.gov (United States)

    Stephens, Eva S; Walsh, Agnes A; Scott, Emily E

    2012-09-01

    Cytochrome P450 (P450) enzymes are mixed-function oxidases that catalyze the metabolism of xenobiotics and endogenous biochemicals. Selective inhibitors are needed to accurately distinguish the contributions of individual P450 enzymes in the metabolism of drugs and the activation of procarcinogens in human tissues, but very frequently these enzymes have substantial overlapping selectivity. We evaluated a chemically diverse set of nine previously identified CYP2A6 inhibitors to determine which are able to discriminate between human CYP2A enzymes CYP2A6 and the 94%-identical CYP2A13 enzyme. Inhibitor binding to recombinant purified enzyme was evaluated, and affinities were determined. K(i) values were determined for inhibition of p-nitrophenol 2-hydroxylation, a reaction accomplished by CYP2A13 and CYP2A6 with more similar catalytic efficiencies (k(cat)/K(m) 0.19 and 0.12 μM⁻¹ · min⁻¹, respectively) than hydroxylation of the classic substrate coumarin (0.11 and 0.53 μM⁻¹ · min⁻¹, respectively). Of the nine compounds assayed, only tranylcypromine and (R)-(+)-menthofuran had a greater than 10-fold preference for CYP2A6 inhibition versus CYP2A13 inhibition. Most compounds evaluated [tryptamine, 4-dimethylaminobenzaldehyde, phenethyl isothiocyanate, β-nicotyrine, (S)-nicotine, and pilocarpine] demonstrated only moderate or no preference for inhibition of one CYP2A enzyme over the other. However, 8-methoxypsoralen has a 6-fold lower K(i) for CYP2A13 than for CYP2A6. This information is useful to inform reinterpretation of previous data with these inhibitors and to guide future studies seeking to determine which human CYP2A enzyme is responsible for the in vivo metabolism of compounds in human tissues expressing both enzymes.

  19. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species.

    Science.gov (United States)

    Gray, Joshua P; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. 2010. Published by Elsevier Inc.

  20. Upregulation of a tonoplast-localized cytochrome P450 during petal senescence in Petunia inflata

    Directory of Open Access Journals (Sweden)

    Ishida Hiroyuki

    2006-04-01

    Full Text Available Abstract Background Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence. Results By performing differential display of cDNAs during Petunia inflata petal senescence, a highly upregulated gene encoding a cytochrome P450 was identified. Analysis of the complete cDNA sequence revealed that the predicted protein is a member of the CYP74C family (CYP74C9 and is highly similar to a tomato CYP74C allene oxide synthase (AOS that is known to be active on 9-hydroperoxides. Cloning of the petunia genomic DNA revealed an intronless gene with a promoter region that carries signals found in stress-responsive genes and potential binding sites for Myb transcription factors. Transcripts were present at detectable levels in root and stem, but were 40 times more abundant in flowers 36 hours after pollination. Ethylene and jasmonate treatment resulted in transitory increases in expression in detached flowers. A protein fusion of the CYP74C coding region to a C-terminal GFP was found to be located in the tonoplast. Conclusion Though oxylipins, particularly jasmonates, are known to be involved in stress responses, the role of other products of CYP74 enzymes is less well understood. The identification of a CYP74C family member as a highly upregulated gene during petal senescence suggests that additional products of fatty acid metabolism may play important roles during programmed cell death. In contrast to the chloroplast localization of AOS proteins in the CYP74A subfamily, GFP fusion data indicates that the petunia CYP74C9 enzyme is in the tonoplast. This result

  1. Genome-wide identification and characterization of cytochrome P450 monooxygenase genes in the ciliate Tetrahymena thermophila

    Directory of Open Access Journals (Sweden)

    Xiong Jie

    2009-05-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases play key roles in the metabolism of a wide variety of substrates and they are closely associated with endocellular physiological processes or detoxification metabolism under environmental exposure. To date, however, none has been systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it an ideal model system to study the evolutionary and functional diversity of the P450 monooxygenase gene family. Results A total of 44 putative functional cytochrome P450 genes were identified and could be classified into 13 families and 21 sub-families according to standard nomenclature. The characteristics of both the conserved intron-exon organization and scaffold localization of tandem repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families probably resulted from recent separate small duplication events. Gene expression patterns of all T. thermophila P450s during three important cell physiological stages (vegetative growth, starvation and conjugation were analyzed based on EST and microarray data, and three main categories of expression patterns were postulated. Evolutionary analysis including codon usage preference, site-specific selection and gene-expression evolution patterns were investigated and the results indicated remarkable divergences among the T. thermophila P450 genes. Conclusion The characterization, expression and evolutionary analysis of T. thermophila P450 monooxygenase genes in the current study provides useful information for understanding the characteristics and diversities of the P450 genes in the Ciliophora, and provides the baseline for functional analyses of individual P450 isoforms in this model ciliate species.

  2. Catalytic strategy for carbon−carbon bond scission by the cytochrome P450 OleT

    Science.gov (United States)

    Grant, Job L.; Mitchell, Megan E.; Makris, Thomas Michael

    2016-01-01

    OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe4+−oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C−H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe4+−OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon−carbon scission reaction catalyzed by OleT. PMID:27555591

  3. Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2016-09-01

    Full Text Available Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1 and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.

  4. Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid.

    Science.gov (United States)

    Schünemann, V; Jung, C; Trautwein, A X; Mandon, D; Weiss, R

    2000-08-18

    Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).

  5. Catalytic activity and quantitation of cytochrome P-450 2E1 in prenatal human brain.

    Science.gov (United States)

    Brzezinski, M R; Boutelet-Bochan, H; Person, R E; Fantel, A G; Juchau, M R

    1999-06-01

    Cytochrome P-450 2E1 (CYP2E1) is a readily inducible hemoprotein that catalyzes the oxidation of endogenous compounds and many low molecular weight xenobiotics. As the major component of the microsomal ethanol oxidizing system, it contributes significantly to ethanol metabolism and the formation of the highly reactive metabolite acetaldehyde. The leaky property of this enzyme results in the generation of reactive oxygen species that can induce oxidative stress and cytotoxic conditions deleterious to development. To further investigate the proposed role of CYP2E1 in the etiology of alcohol teratogenesis, the current study focused on the quantification of CYP2E1 in prenatal human brain, a tissue that is highly vulnerable to the damaging effects of ethanol throughout gestation. In microsomal samples prepared from pools of brain tissues, immunoreactive protein was detected by Western blot analysis using enhanced chemiluminescence, whereas functional protein was estimated with an enzymatic assay using p-nitrophenol and an electrochemical detection system. CYP2E1 transcript was consistently detected in RNA samples prepared from individual brain tissues using the ribonuclease protection assay. Quantitative data were collected by scanning densitometry and phosphorimaging technology. There was a dramatic increase in human brain CYP2E1 content around gestational day 50 and a fairly constant level was maintained throughout the early fetal period, until at least day 113. The relatively low levels of the P-450 isoform present in conceptal brain may be sufficient to generate reactive intermediates that elicit neuroembryotoxicity following maternal alcohol consumption.

  6. Cytochrome P450 bioreactors in the pharmaceutical industry: challenges and opportunities.

    Science.gov (United States)

    Martinez, Carlos A; Rupashinghe, Sanjeewa G

    2013-01-01

    Cytochrome P450 (CYP) bioreactors play a major role in establishing the practical use of this enzyme family in academia and industry. The current demand for enzymatic hydroxylations of unactivated carbons in the parmaceutical industry includes the preparation of drug metabolites and various hydroxylated synthetic precursors as well as the enzyme mediated lead diversification and natural product synthesis, most of which require multigram scale synthesis. To date, the large scale application of CYPs in the synthesis of oxygenated compounds is limited by many challenges. This review describes relevant examples of CYP oxidations and also presents the strategies available to overcome such challenges. At present, P450 catalyzed reactions can only be performed at substrate concentrations ranging from 1-25 mM, unlike other biocatalytic redox reactions like ketone reductases, typically performed at substrate loads greater than 500 mM. The emergence of powerful expression methods and a large number of CYP mutants developed for specific applications holds the promise for future industrial applications. The search for higher volumetric productivities is however a task that needs to be addressed not only through the use of protein engineering as the primary tool but significant emphasis needs to be placed on process development through exploring multiple operating schemes, optimizing reaction media and modifying microbial strains needed for heterologous expression.

  7. Alternative splicing in the human cytochrome P450IIB6 gene generates a high level of aberrant messages

    Energy Technology Data Exchange (ETDEWEB)

    Miles, J.S.; McLaren, A.W.; Wolf, C.R. (Imperial Cancer Research Fund, Edinburgh (England))

    1989-10-25

    Polymorphisms within the human cytochrome P450 system can have severe clinical consequences and have been associated with adverse drug side effects and susceptibility to environmentally linked disease such as cancer. Aberrant splicing of cytochrome P450 mRNA has been proposed as a potential mechanism for these polymorphisms. The authors have isolated aberrantly, as well as normally, spliced mRNAs (cDNAs) from the human P450IIB6 gene which either contain part of intron 5 and lack exon 8 or which contain a 58-bp fragment (exon 8A) instead of exon 8. Sequence analysis of the P450IIB6 gene demonstrates the presence of cryptic splice sites in intron 8 which will account for the generation of exon 8A. The mRNAs were therefore generated by alternative splicing. These data gain significance as the mRNAs will not encode a functional P450 enzyme and appear to represent a high proportion of the P450IIB6 mRNA population. Analysis of mRNA from fifteen individual human livers and cDNA libraries constructed from a variety of human tissues using the polymerase chain reaction shows that the aberrant splicing occurs in all cells and all individuals tested. This suggests a high level of infidelity in the processing of P450IIB6 mRNAs and demonstrates that the presence of abnormal transcripts does not imply the presence of a functionally inactive gene.

  8. Chemical modification of lysine residues in cytochrome P450LM2 (P450IIB4): influence on heme liganding of arylamines.

    Science.gov (United States)

    Golly, I; Hlavica, P

    1992-01-01

    Treatment of cytochrome P450LM2 with fluorescein isothiocyanate to introduce up to two equivalents of fluorophore per polypeptide chain resulted in the selective derivatization of lysine residues. CD-spectral measurements revealed the overall conformation as well as the immediate heme environment of the hemoprotein to remain unaffected by attachment of the label. Modification caused decreased affinity of p-phenylenediamine and other 4-substituted anilines for the heme site, whereas there was a rise in the extent of substrate interaction. Experiments with pigment containing acetylated lysines gave analogous results, suggesting that the observed phenomenon was due to charge neutralization. There was linear correlation between the Hammett sigma P values and both the optical dissociation constants for arylamine binding to intact enzyme and the dipole moments of the anilines, indicating that basicity along with electronic factors controlled heme liganding; lipophilicity appeared to be of minor importance. Introduction of fluorescein isothiocyanate into the oxygenase was found to influence the bond-making process through modulating basicity of the nitrogenous compounds, but perturbation of optimal spacial orientation of the amine nitrogen toward the heme iron also might have been operative. The lysines studied seem to represent metabolically inactive elements of the substrate channel located on the cytosolic surface of the aggregates, as evidenced by steady-state fluorescence measurements. A hydrophilic segment in the cytochrome P450LM2 molecule that would accommodate the critical residues is discussed.

  9. Expression of a mammalian PCB-metabolizing cytochrome P-450 in Nicotiana tabacum

    Energy Technology Data Exchange (ETDEWEB)

    Wall, V.D.; Galbraith, D.W.; Halpert, J.R.; Bourque, D.P. (Univ. of Arizona, Tucson (United States))

    1991-05-01

    Polychlorinated biphenyls (PCBs) are resistant to metabolism in most animal species. The dog possesses the unique ability to metabolize and eliminate certain PCB congeners, as a result of the activity of the cytochrome P-450 isozyme PBD-2. An expressible cDNA coding for PBD-2 has been introduced into the genome of tobacco plants. PBD-2 cDNA and a screenable marker gene coding for neomycin phosphotransferase were introduced into tobacco leaf disks using a binary Agrobacterium tumefaciens vector system. Southern and Western blot analyses have confirmed chromosomal integration of the cDNA and expression of the PBD-2 polypeptide. Differential centrifugation and Western blot analyses have shown the PBD-2 protein to be associated with a membrane fraction in transgenic tobacco leaf homogenates. The authors goal is to develop transgenic plants in which the PBD-2 protein metabolizes PCBs, thus providing a novel method for bioremediation of PCB-contaminated soils.

  10. Engineering soluble insect and plant cytochromes P450 for biochemical characterization

    DEFF Research Database (Denmark)

    Jensen, Mikael Kryger

    Because most plants are sessile organisms they have had to evolve different mechanisms to defend against herbivores. Cyanogenic glucosides (CNglcs) are ancient defence compounds found in certain plant and a few insect species, which releases cyanide upon attack. The biosynthesis of CNglcs in plants...... and insects is performed by three enzymes converting an amino acid into its corresponding CNglc. The pathways have been shown to have evolved convergently with the enzymes from plants and insects having less than 20 percent sequence identity at the amino acid level. The first enzyme in the pathway is from...... the cytochrome P450 (CYP) 79 and CYP405 family in plants and insects respectively, which convert the amino acid into its corresponding oxime through two sequential (N)-hydroxylation’s followed by a dehydration, decarboxylation and isomerization step. Enzymes from both families display a high degree of substrate...

  11. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Offord, E.A.; Brouwer, C.

    2002-01-01

    Human and mouse liver microsomes And membranes isolated from Escherichia coli, which expressed cytochrome P450 (CYP) 1A2, 3A4 2C9 or 2D6, were used to investigate CYP-mediated metabolism of five selected dietary flavonoids. In human and mouse liver microsomes kaempferol, apigenin and naringenin...... were hydroxylated at the 3'-position to yield their corresponding analogs quercetin, luteolin and eriodietyol, whereas hesperetin and tamarixetin were demethylated at the 4'-position to yield eriodictyol and quercetin. respectively, Microsomal flavonoid metabolism as potently inhibited by the CYP1A2...... inhibitors. fluvoxamine and alpha-naphthoflavone. Recombinant CYP1A2 as capable of metabolizing all five investigated flavonoids. CYP3A4 recombinant protein did not catalyze hesperetin demethylation. but showed similar metabolic profiles for the remaining compounds, as did human microsomes and recombinant...

  12. Virtual Screening and Prediction of Site of Metabolism for Cytochrome P450 1A2 Ligands

    DEFF Research Database (Denmark)

    Vasanthanathan, P.; Hritz, Jozef; Taboureau, Olivier

    2009-01-01

    questions have been addressed: 1. Binding orientations and conformations were successfully predicted for various substrates. 2. A virtual screen was performed with satisfying enrichment rates. 3. A classification of individual compounds into active and inactive was performed. It was found that while docking...... can be used successfully to address the first two questions, it seems to be more difficult to perform the classification. Different scoring functions were included, and the well-characterized water molecule in the active site was included in various ways. Results are compared to experimental data...... and earlier classification data using machine learning methods. The possibilities and limitations of using structure-based drug design tools for cytochrome P450 1A2 come to light and are discussed....

  13. Cytochrome P450 monooxygenase-mediated neonicotinoid resistance in the house fly Musca domestica L

    DEFF Research Database (Denmark)

    Markussen, Mette D K; Kristensen, Michael

    2010-01-01

    Neonicotinoids play an essential role in the control of house flies Musca domestica. The development of neonicotinoid resistance was found in two field populations. 766b was 130- and 140-fold resistant to imidacloprid and 17- and 28-fold resistant to thiamethoxam in males and females, respectively...... impact. Neonicotinoid resistance was in all cases suppressed by PBO. The cytochrome P450 genes CYP6A1, CYP6D1 and CYP6D3 were constitutively over-expressed in resistant strains and CYP6D1 and CYP6D3 differentially expressed between sexes. The highest level of CYP6A1 expression was observed in both gender...... of the imidacloprid-selected strain after neonicotinoid exposure. CYP6D1 expression was increased after neonicotinoid exposure in resistant males. CYP6D3 expression was induced in both sexes upon neonicotinoid exposure but significantly higher in females....

  14. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation.

    Directory of Open Access Journals (Sweden)

    Mai Miura

    Full Text Available Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA, a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug.

  15. Water Complexes of Cytochrome P450: Insights from Energy Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Hajime Hirao

    2013-06-01

    Full Text Available Water is a small molecule that nevertheless perturbs, sometimes significantly, the electronic properties of an enzyme’s active site. In this study, interactions of a water molecule with the ferric heme and the compound I (Cpd I intermediate of cytochrome P450 are studied. Energy decomposition analysis (EDA schemes are used to investigate the physical origins of these interactions. Localized molecular orbital EDA (LMOEDA implemented in the quantum chemistry software GAMESS and the EDA method implemented in the ADF quantum chemistry program are used. EDA reveals that the electrostatic and polarization effects act as the major driving force in both of these interactions. The hydrogen bonding in the Cpd I•••H2O complex is similar to that in the water dimer; however, the relative importance of the electrostatic effect is somewhat larger in the water dimer.

  16. Inhibitory effect of valproic acid on cytochrome P450 2C9 activity in epilepsy patients.

    Science.gov (United States)

    Gunes, Arzu; Bilir, Erhan; Zengil, Hakan; Babaoglu, Melih O; Bozkurt, Atila; Yasar, Umit

    2007-06-01

    Drug interactions constitute a major problem in the treatment of epilepsy because drug combinations are so common. Valproic acid is a widely used anticonvulsant drug with a broad therapeutic spectrum. Case reports suggest interaction between valproic acid and other drugs metabolized mainly by cytochrome P450 isoforms. The aim of this study was to evaluate the inhibitory effect of valproic acid on cytochrome P450 2C9 (CYP2C9) activity by using losartan oxidation as a probe in epilepsy patients. Patients were prescribed sodium valproate (mean 200 mg/day for the first week and 400 mg/day in the following period) according to their clinical need. A single oral dose of 25 mg losartan was given to patients before and after the first dose, first week and 4 weeks of valproic acid treatment. Losartan and E3174, the CYP2C9-derived carboxylic acid metabolite of losartan in 8 hr urine were assayed by using high pressure liquid chromatography. Urinary losartan/E3174 ratio did not change significantly on the first day (0.9, 0.3-3.5; median, range), and first week (0.6, 0.2-3.8; median, range), while a significant increase was observed after 4 weeks of valproic acid treatment (1.1, 0.3-5.7; median, range) as compared to that of measured before valproic acid administration (0.6, 0.1-2.1; median, range) (P = 0.039). The degree of inhibition was correlated with the steady-state plasma concentrations of valproic acid (r(2) = 0.70, P = 0.04). The results suggest an inhibitory effect of valproic acid on CYP2C9 enzyme activity in epilepsy patients at steady state. The risk of pharmacokinetic drug-drug interactions should be taken into account during concomitant use of valproic acid and CYP2C9 substrates.

  17. Cytochrome P450 reductase: a harbinger of diffusible reduced oxygen species.

    Directory of Open Access Journals (Sweden)

    Kelath Murali Manoj

    Full Text Available The bi-enzymatic system of cytochrome P450 (CYP, a hemoprotein and cytochrome P450 reductase (CPR, a diflavoenzyme mediate the redox metabolism of diverse indigenous and xenobiotic molecules in various cellular and organ systems, using oxygen and NADPH. Curiously, when a 1:1 ratio is seen to be optimal for metabolism, the ubiquitous CYP:CPR distribution ratio is 10 to 100:1 or higher. Further, the NADPH equivalents consumed in these in vitro or in situ assemblies usually far exceeded the amount of substrate metabolized. We aimed to find the rationale to explain for these two oddities. We report here that CPR is capable of activating molecular oxygen on its own merit, generating diffusible reduced oxygen species (DROS. Also, in the first instance for a flavoprotein, CPR is shown to deplete peroxide via diffusible radical mediated process, thereby leading to the formation of water (but without significant evolution of oxygen. We also quantitatively demonstrate that the rate of oxygen activation and peroxide depletion by CPR accounts for the major reactivity in the CYP+CPR mixture. We show unambiguously that CPR is able to regulate the concentration of diffusible reduced oxygen species in the reaction milieu. These findings point out that CPR mediated processes are bound to be energetically 'wasteful' and potentially 'hazardous' owing to the unavoidable nature of the CPR to generate and deplete DROS. Hence, we can understand that CPR is distributed at low densities in cells. Some of the activities that were primarily attributed to the heme-center of CYP are now established to be a facet of the flavins of CPR. The current approach of modeling drugs to minimize "uncoupling" on the basis of erstwhile hypothesis stands questionable, considering the ideas brought forth in this work.

  18. Biosynthesis of Sandalwood Oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol.

    Directory of Open Access Journals (Sweden)

    Maria L Diaz-Chavez

    Full Text Available Sandalwood oil is one of the world's most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and epi-β-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, β-, and epi-β-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests.

  19. Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism.

    Science.gov (United States)

    Shedlofsky, S I; Israel, B C; McClain, C J; Hill, D B; Blouin, R A

    1994-12-01

    In experimental animals, injection of gram-negative endotoxin (LPS) decreases hepatic cytochrome P450-mediated drug metabolism. To evaluate this phenomenon in a human model of gram-negative sepsis, LPS was administered on two consecutive days to healthy male volunteers during which time a cocktail of antipyrine (AP-250 mg), hexobarbital (HB-500 mg), and theophylline (TH-150 mg) was ingested and the apparent oral clearance of each drug determined. Each subject had a control drug clearance study with saline injections. In the first experiment, six subjects received the drug cocktail 0.5 h after the first dose of LPS. In the second experiment, another six subjects received the drug cocktail 0.5 h after the second dose of LPS. In both experiments, LPS caused the expected physiologic responses of inflammation including fever with increases in serum concentrations of TNF alpha, IL-1 beta, IL-6, and acute phase reactants. In the first experiment, only minor decreases in clearances of the probe drugs were observed (7-12%). However in the second experiment, marked decreases in the clearances of AP (35, 95% CI 18-48%), HB (27, 95% CI 14-34%), and TH (22, 95% CI 12-32%) were seen. The decreases in AP clearance correlated with initial peak values of TNF alpha (r = 0.82) and IL-6 (r = 0.86). These data show that in humans the inflammatory response to even a very low dose of LPS significantly decreases hepatic cytochrome P450-mediated drug metabolism and this effect evolves over a 24-h period. It is likely that septic patients with much higher exposures to LPS have more profound inhibition of drug metabolism.

  20. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Seredina Tatyana A

    2012-06-01

    Full Text Available Abstract Background The enzymes of the cytochrome P450 family (CYPs play an important role in the metabolism of a great variety of anticancer agents; therefore, polymorphisms in genes encoding for metabolizing enzymes and drugs transporters can affect drug efficacy and toxicity. Methods The genetic polymorphisms of cytochrome P450 were studied in 395 patients with breast cancer by RLFP analysis. Results Here, we studied the association of functionally significant variant alleles of CYP3A4, CYP3A5, CYP2B6, CYP2C8, CYP2C9 and CYP2C19 with the clinical response to neoadjuvant chemotherapy in breast cancer patients. A significant correlation was observed between the CYP2C9*2 polymorphism and chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91, as well as between CYP2C9*2 heterozygotes and chemotherapy resistance in women with nodal forms of breast cancer and a cancer hereditary load (OR = 15.50; CI 95% = 1.08 – 826.12 when the potential combined effects were examined. No significant association between chemotherapy resistance and the other examined genotypes and the potential combined clinical and tumour-related parameters were discovered. Conclusion In conclusion, CYP2C9*2 was associated with neoadjuvant chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91 in the population of interest.

  1. Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA.

    Science.gov (United States)

    Zhang, Yan; Gaikwad, Nilesh W; Olson, Kevin; Zahid, Muhammad; Cavalieri, Ercole L; Rogan, Eleanor G

    2007-07-01

    Accumulating evidence suggests that specific metabolites of estrogens, namely, catechol estrogen quinones, react with DNA to form adducts and generate apurinic sites, which can lead to the mutations that induce breast cancer. Oxidation of estradiol (E(2)) produces 2 catechol estrogens, 4-hydroxyestradiol (4-OHE(2)) and 2-OHE(2) among the major metabolites. These, in turn, are oxidized to the quinones, E(2)-3,4-quinone (E(2)-3,4-Q) and E(2)-2,3-Q, which can react with DNA. Oxidation of E(2) to 2-OHE(2) is mainly catalyzed by cytochrome P450 (CYP) 1A1, and CYP3A4, whereas oxidation of E(2) to 4-OHE(2) in extrahepatic tissues is mainly catalyzed by CYP1B1 as well as some CYP3As. The potential involvement of CYP isoforms in the further oxidation of catechols to semiquinones and quinones has, however, not been investigated in detail. In this project, to identify the potential function of various CYPs in oxidizing catechol estrogens to quinones, we used different recombinant human CYP isoforms, namely, CYP1A1, CYP1B1, and CYP3A4, with the scope of oxidizing the catechol estrogens 2-OHE(2) and 4-OHE(2) to their respective estrogen quinones, which then reacted with DNA. The depurinating adducts 2-OHE(2)-6-N3Ade, 4-OHE(2)-1-N3Ade, and 4-OHE(2)-1-N7Gua were observed in the respective reaction systems by ultraperformance liquid chromatography/tandem mass spectrometry. Furthermore, more than 100-fold higher levels of estrogen-glutathione (GSH) conjugates were detected in the reactions. Glutathione conjugates were observed, in much smaller amounts, when control microsomes were used. Depurinating adducts, as well as GSH conjugates, were obtained when E(2)-3,4-Q was incubated with CYP1B1 or control microsomes in a 30-minute reaction, further demonstrating that GSH is present in these recombinant enzyme preparations. These experiments demonstrated that CYP1A1, CYP1B1, and CYP3A4 are able to oxidize catechol estrogens to their respective quinones, which can further react with GSH

  2. Metabolism of bilirubin by human cytochrome P450 2A6

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne M. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Wikman, Anna S. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala (Sweden); Rahnasto, Minna; Juvonen, Risto O.; Vepsäläinen, Jouko; Raunio, Hannu [School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, POB 1627, 70211 Kuopio (Finland); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2012-05-15

    The mouse cytochrome P450 (CYP) 2A5 has recently been shown to function as hepatic “Bilirubin Oxidase” (Abu-Bakar, A., et al., 2011. Toxicol. Appl. Pharmacol. 257, 14–22). To date, no information is available on human CYP isoforms involvement in bilirubin metabolism. In this paper we provide novel evidence for human CYP2A6 metabolising the tetrapyrrole bilirubin. Incubation of bilirubin with recombinant yeast microsomes expressing the CYP2A6 showed that bilirubin inhibited CYP2A6-dependent coumarin 7-hydroxylase activity to almost 100% with an estimated K{sub i} of 2.23 μM. Metabolite screening by a high-performance liquid chromatography/electrospray ionisation mass spectrometry indicated that CYP2A6 oxidised bilirubin to biliverdin and to three other smaller products with m/z values of 301, 315 and 333. Molecular docking analyses indicated that bilirubin and its positively charged intermediate interacted with key amino acid residues at the enzyme's active site. They were stabilised at the site in a conformation favouring biliverdin formation. By contrast, the end product, biliverdin was less fitting to the active site with the critical central methylene bridge distanced from the CYP2A6 haem iron facilitating its release. Furthermore, bilirubin treatment of HepG2 cells increased the CYP2A6 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A6 compared to cells treated only with CHX. Collectively, the observations indicate that the CYP2A6 may function as human “Bilirubin Oxidase” where bilirubin is potentially a substrate and a regulator of the enzyme. -- Highlights: ► Human CYP2A6 interacts with bilirubin with a high affinity. ► Bilirubin docking to the CYP2A6 active site is more stable than biliverdin docking. ► Recombinant CYP2A6 microsomes metabolised bilirubin to biliverdin. ► Bilirubin increased the hepatic

  3. The Cytochrome P450 superfamily complement (CYPome in the annelid Capitella teleta.

    Directory of Open Access Journals (Sweden)

    Chris A Dejong

    Full Text Available The Cytochrome P450 super family (CYP is responsible for a wide range of functions in metazoans, having roles in both exogenous and endogenous substrate metabolism. Annelids are known to metabolize polycyclic aromatic hydrocarbons (PAHs and produce estrogen. CYPs are postulated to be key enzymes in these processes in annelids. In this study, the CYP complement (CYPome of the annelid Capitella teleta has been robustly identified and annotated with the genome assembly available. Phylogenetic analyses were performed to understand the evolutionary relationships between CYPs in C. teleta and other species. Predictions of which CYPs are potentially involved in both PAH metabolism and steroidogensis were made based on phylogeny. Annotation of 84 full length and 12 partial CYP sequences predicted a total of 96 functional CYPs in C. teleta. A further 13 CYP fragments were found but these may be pseudogenes. The C. teleta CYPome contained 24 novel CYP families and seven novel CYP subfamilies within existing families. A phylogenetic analysis identified that the C. teleta sequences were found in 9 of the 11 metazoan CYP clans. Two CYPs, CYP3071A1 and CYP3072A1, did not cluster with any metazoan CYP clans. We found xenobiotic response elements (XREs upstream of C. teleta CYPs related to vertebrate CYP1 (CYP3060A1, CYP3061A1 and from families with reported transcriptional upregulation in response to PAH exposure (CYP4, CYP331. C. teleta had a CYP51A1 with ∼65% identity to vertebrate CYP51A1 sequences and has been predicted to have lanosterol 14 α-demethylase activity. CYP376A1, CYP3068A1, CYP3069A1, and CYP3070A1 were the most appropriate candidates for steroidogenesis genes based on their phylogeny and warrant further analyses, though no specific aromatase (estrogen synthesis candidates were found. Presence of XREs upstream of C. teleta CYPs may indicate a functional aryl hydrocarbon receptor in C. teleta and candidate CYPs for studies of PAH metabolism.

  4. Regulation of rat liver cytochrome P450j, a high affinity N-nitrosodimethylamine demethylase (NDMAD)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.E.; Bandiera, S.; Maines, S.L.; Ryan, D.E.; Levin, W.

    1987-05-01

    Purified IgG from sera of rabbits immunized with homogeneous P450j was absorbed to produce monospecific anti-P450j. Results using anti-P450j in ELISA show that rat liver microsomal P450j content decreases between 3 and 6 wks of age in both sexes. Several xenobiotics (Aroclor 1254, mirex and 3-methylcholanthrene) repressed P450j levels when administered to male rats. In contrast, hepatic levels of P450j were induced by isoniazid, dimethylsulfoxide, pyrazole, 4-methylpyrazole, ethanol and chemically-induced diabetes. P450j levels were measurable in kidney, whereas this isozyme was barely detectable in lung, ovaries and testes; however, extra-hepatic P450j was inducible by isoniazid. Between 80-90% of microsomal NDMAD was inhibited by anti-P450j whether the microsomes were isolated from untreated rats or animals administered inducers or repressors of P450j. Results obtained with the reconstituted system suggest that the remaining microsomal NDMAD resistant to antibody inhibition is the result of the inaccessibility of a certain proportion of P450j due to interference by NADPH-P450 reductase. P450j content and NDMAD activity correlated well in microsomes from rats of all treatment groups. The evidence indicates that P450j is the primary, and possibly only, microsomal catalyst of NDMAD at substrate concentrations relevant to hepatocarcinogenesis induced by NDMA.

  5. Effects of quinolones on liver microsome cytochrome P450 in rats

    Directory of Open Access Journals (Sweden)

    Yi ZHANG

    2012-11-01

    Full Text Available Objective  To study and compare the effects of fluoroquinolones (levofloxacin, gatifloxacin, moxifloxacin and pazufloxacin on the enzyme system of liver microsome cytochrome P450 in rat. Methods  Thirty male Wistar rats were equally assigned into five groups: control group, levofloxacin (LV group, gatifloxacin (GT group, moxifloxacin (MX group and pazufloxacin (PZ group. Each drug was consecutively administered by tail vein injection for 7 days in a dosage of 120 mg/(kg•d. Liver microsomes were prepared by differential centrifugation, the concentration of protein in the liver microsome was measured by Lowry method, the content and activity of cy tochrome P450 were detected by spectrophotometric determination, and the results were analyzed by one-way ANOVA. Results  Compared with control group, the weight of liver in MX group and GT group was significantly reduced (P 0.05. Assay of aminopyrine-N-demethylase activity showed that the difference in enzyme activity was statistically significant between the control group and groups LV, GT and MX (P < 0.01. Erythromycin-N-demethylase activity measurement revealed that the enzyme activity was lowered in GT group and slightly elevated in MX group, and the difference was statistically significant compared with that of control group (P < 0.01. Measurement of activity of rat liver microsomal CYP450 enzyme system subfamily showed that the BROD activity increased in LV, MX and PZ groups (P < 0.01, and slightly decreased in GT group as compared with control group (P < 0.05. The PROD activity increased in GT group, but decreased in PZ group (P < 0.01. The EROD activity increased in all the four groups (P < 0.01. Conclusions  The four fluoroquinolones have some effects on the enzyme system of liver microsome cytochrome P450 in rats, but the effects may be different (enhancement or attenuation of the enzymatic activity depending on the enzymes, and the extent of the decrease of effect is in the

  6. Cytochrome P450-mediated metabolism of tumour promoters modifies the inhibition of intercellular communication: a modified assay for tumour promotion

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, H.; Doehmer, J.

    1993-01-01

    The role of metabolism of tumour promoters on the inhibition of intercellular communication was investigated in a modified V79 metabolic cooperation system. V79 cells, which stably express different rat cytochrome P450 enzymes (CYP1A1, CYP1A2 or CYP2B1), were used in the metabolic cooperation assay...... B1 and 4-nitrobiphenyl, did not inhibit metabolic cooperation in either V79 cells expressing or cells not expressing cytochrome P450. We conclude that cytochrome P450-associated metabolism plays an important role in the inhibition of gap junctional intercellular communication of some tumour......-associated metabolism. 7-Octylindolactam V was as potent as TPA, whereas the related indolactam V was 100-fold less active. The carcinogenic aromatic amine 4-aminobiphenyl, but not its primary metabolite 4-hydroxyaminobiphenyl, inhibited metabolic cooperation. Other known carcinogens, ochratoxin A, aflatoxin...

  7. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Carlo Barnaba

    2017-05-01

    Full Text Available Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome b5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  8. The effect of lycopene on the total cytochrome P450, CYP1A2 and CYP2E1

    Directory of Open Access Journals (Sweden)

    Melva Louisa

    2009-12-01

    Full Text Available Aim: Some carotenoids such as canthaxantin, astaxanthin and beta apo-8’-carotenal were reported to have modulatoryeffect on the cytochrome P450. The present study was conducted to investigate the effects of lycopene, a nonprovitamin A carotenoid, on microsomal cytochrome P450, CYP1A2 and CYP2E1.Methods: Total cytochrome P450 levels, CYP1A2 and CYP2E1-catalyzed reactions (acetanilide 4-hydroxylation and p-nitrophenol hydroxylation were studied in the liver microsomes of male Sprague Dawley rats. Microsomes were prepared using differential centrifugation combined with calcium aggregation method. Lycopene was orally administered in the dosages of 0, 25, 50 or 100 mg/kgBW/day for 14 days in a repeated fashion. Data were analyzed using ANOVA test.Results: Total cytochrome P450 level and acetanilide 4-hydroxylase activity were unaffected by any of the treatments. The CYP2E1 probe enzyme (p-nitrophenol hydroxylase was significantly reduced by repeated administration of 100mg/ kgBW/day lycopene (7.88 + 2.04 vs 12.26 + 2.77 n mol/min/mg prot.Conclusion: The present results suggest that lycopene does not affect the total cytochrome P450 or CYP1A2 activity but it inhibits the activity of CYP2E1 (p-nitrophenol hydroxylase in the rat. (Med J Indones 2009; 18: 233-8Keywords: lycopene, cytochrome P450, CYP1A2, CYP2E1

  9. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    Science.gov (United States)

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  10. Resolution and reconstitution of the NADPH-cytochrome c (P-450) reductase induced by progesterone in Rhizopus nigricans.

    Science.gov (United States)

    Cresnar, B; Breskvar, K; Hudnik-Plevnik, T

    1985-12-31

    The NADPH-cytochrome c (P-450) reductase induced in the filamentous fungus Rhizopus nigricans as a component of 11 alpha-hydroxylase of progesterone was resolved by DEAE-cellulose chromatography into two components. One of the components is an iron-sulfur protein (rhizoporedoxin), whereas the other component is a protein with reductase activity dependent on NADPH (rhizoporedoxin reductase). As shown in the reconstitution assay, the NADPH-cytochrome c (P-450) reductase activity was restored upon combination of these two proteins.

  11. Cloning, purification, crystallization and preliminary X-ray analysis of a chimeric NADPH-cytochrome P450 reductase.

    Science.gov (United States)

    Aigrain, Louise; Pompon, Denis; Truan, Gilles; Moréra, Solange

    2009-03-01

    NADPH-cytochrome P450 reductase (CPR) is the favoured redox partner of microsomal cytochromes P450. This protein is composed of two flavin-containing domains (FMN and FAD) connected by a structured linker. An active CPR chimera consisting of the yeast FMN and human FAD domains has been produced, purified and crystallized. The crystals belonged to the monoclinic space group C2 and contained one molecule per asymmetric unit. Molecular replacement was performed using the published rat and yeast structures as search models. The initial electron-density maps revealed that the chimeric enzyme had crystallized in a conformation that differed from those of previously solved structures.

  12. A cytochrome P450 gene plays a role in the recognition of sex pheromones in the tobacco cutworm, Spodoptera litura.

    Science.gov (United States)

    Feng, B; Zheng, K; Li, C; Guo, Q; Du, Y

    2017-08-01

    Cytochrome P450 (P450 or CYP) genes are involved in fundamental physiological functions, and might be also associated with the olfactory recognition of sex pheromones in beetles and moths. A P450 gene, Spodoptera litura CYP4L4 (SlituCYP4L4), was cloned for the first time from the antennae of S. litura. SlituCYP4L4 was almost exclusively expressed in the adult stage and predominantly expressed in the adult antennae. In situ hybridization showed that SlituCYP4L4 localized mainly at the base of the long sensilla trichoidea, which responds to sex pheromone components. Pretreatment with an S. litura sex pheromone significantly reduced the expression levels of SlituCYP4L4, consistent with other genes involved in sex pheromone recognition. The expression level of SlituCYP4L4 was different in moths collected with different ratios of sex pheromone lures and collected in different geographical locations. After gene knockdown of SlituCYP4L4 in the antennae, the electroantennogram (EAG) responses of male and female moths to (9Z,11E)-tetradecadienyl acetate or (9Z,12E)-tetradecadienyl acetate were significantly decreased. In contrast, EAG responses to plant volatiles and sex pheromones of other moth species were not significantly influenced in these moths. SlituCYP4L4 was also expressed in the gustatory tissues and sensilla, which suggests that SlituCYP4L4 may have other functions in the chemosensory system. Our results have shown for the first time the function of a CYP gene with appendage-specific expression in insect sex pheromone recognition, especially in adult moths. © 2017 The Royal Entomological Society.

  13. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    Science.gov (United States)

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  14. Stereoselective sulfoxidation of the pesticide methiocarb by flavin-containing monooxygenase and cytochrome P450-dependent monooxygenases of rat liver microsomes. Anticholinesterase activity of the two sulfoxide enantiomers.

    Science.gov (United States)

    Buronfosse, T; Moroni, P; Benoît, E; Rivière, J L

    1995-08-01

    Evidence based on thermal lability and enzyme inhibition data suggests that the sulfoxidation of methiocarb (an N-methylcarbamate insecticide) by rat liver microsomes is catalyzed by flavin-containing monooxygenase(s) (FMO) and by cytochrome(s) P450 (P450). In control rats, the relative proportion is ca. 50% P450:50% FMO. Stereoselective formation of methiocarb sulfoxide from the corresponding sulfide has also been examined to compare the enantioselectivity of the two different enzyme systems. Only the FMO-dependent sulfoxidation presents a high stereoselectivity with an enantiomeric excess of 88% in favor of the (A)-enantiomer. Pretreatment of rats with different P450 inducers such as phenobarbital, 3-methylcholanthrene, dexamethasone, and pyrazole did not affect, or decreased, the rate of methiocarb sulfoxidation. Stereoselectivity of the reaction was modified, mainly because of changes in the relative involvement of FMO and P450 in sulfoxidase activity in pretreated animals. The acetylcholinesterase inhibition properties of methiocarb and its main metabolites were also investigated. Racemic methiocarb sulfoxide was slightly less inhibitory (Ki = 0.216 microM-1.min-1) than methiocarb, but a 10-fold difference was observed between the bimolecular rate constants found for the two sulfoxides produced (0.054 and 0.502 microM-1.min-1 for the (A) and (B) enantiomers, respectively).

  15. Drug-induced liver graft toxicity caused by cytochrome P450 poor metabolism.

    Science.gov (United States)

    Kóbori, László; Kõhalmy, Krisztina; Porrogi, Pálma; Sárváry, Enikõ; Gerlei, Zsuzsa; Fazakas, János; Nagy, Péter; Járay, Jenõ; Monostory, Katalin

    2008-03-01

    What is already known about this subject. The activity of drug-metabolizing enzymes, primarily cytochrome P450 enzymes, can determine a patient's response to a drug. Therapeutic failure or drug toxicity in the postoperative period after liver transplantation is influenced by the drug metabolizing capacity of the graft. Dose adjustment or selection of an alternative drug, which is not a substrate for the polymorphic enzyme may prevent the development of side-effects in recipients of poor metabolizer liver grafts. What this study adds. A validated analytical system with metabolomic tools has been developed to estimate the drug-metabolizing capacity of transplanted liver, which allows the prediction of potential poor metabolizer phenotypes of donors and facilitates the improvement of individual recipient therapy. In the test of drug-metabolizing status, one of the liver grafts was found to be a CYP2C9 poor metabolizer, while the other was a CYP2C19 poor metabolizer. Rationalization of the medication resulted in the recovery of both the grafts and the recipients within 1 week. The drug-metabolizing capacity of transplanted liver highly influences drug efficacy or toxicity, particularly in the early postoperative period. The aim of our study was to predict therapeutic failures or severe adverse drug reactions by phenotyping for cytochrome P450 (P450) polymorphism resulting in reduced or no activity of the key drug-metabolizing enzymes. A validated analytical system with metabolomic tools has been developed for estimation of the drug-metabolizing capacity of transplanted liver, which allows the prediction of potential poor metabolizer phenotypes of donors and facilitates improvement of the individual recipient therapy. Of the 109 liver donors in Hungary, the frequency of poor metabolizers was found to be 0.92%, 5.5% and 8.3% for CYP2C9, CYP2C19 and CYP2D6, respectively. In the present study, two liver grafts transplanted in paediatric recipients were reported to be poor

  16. Catalytic Determinants of Alkene Production by the Cytochrome P450 Peroxygenase OleTJE.

    Science.gov (United States)

    Matthews, Sarah; Belcher, James D; Tee, Kang Lan; Girvan, Hazel M; McLean, Kirsty J; Rigby, Stephen E J; Levy, Colin W; Leys, David; Parker, David A; Blankley, Richard T; Munro, Andrew W

    2017-03-24

    The Jeotgalicoccus sp. peroxygenase cytochrome P450 OleTJE (CYP152L1) is a hydrogen peroxide-driven oxidase that catalyzes oxidative decarboxylation of fatty acids, producing terminal alkenes with applications as fine chemicals and biofuels. Understanding mechanisms that favor decarboxylation over fatty acid hydroxylation in OleTJE could enable protein engineering to improve catalysis or to introduce decarboxylation activity into P450s with different substrate preferences. In this manuscript, we have focused on OleTJE active site residues Phe79, His85, and Arg245 to interrogate their roles in substrate binding and catalytic activity. His85 is a potential proton donor to reactive iron-oxo species during substrate decarboxylation. The H85Q mutant substitutes a glutamine found in several peroxygenases that favor fatty acid hydroxylation. H85Q OleTJE still favors alkene production, suggesting alternative protonation mechanisms. However, the mutant undergoes only minor substrate binding-induced heme iron spin state shift toward high spin by comparison with WT OleTJE, indicating the key role of His85 in this process. Phe79 interacts with His85, and Phe79 mutants showed diminished affinity for shorter chain (C10-C16) fatty acids and weak substrate-induced high spin conversion. F79A OleTJE is least affected in substrate oxidation, whereas the F79W/Y mutants exhibit lower stability and cysteine thiolate protonation on reduction. Finally, Arg245 is crucial for binding the substrate carboxylate, and R245E/L mutations severely compromise activity and heme content, although alkene products are formed from some substrates, including stearic acid (C18:0). The results identify crucial roles for the active site amino acid trio in determining OleTJE catalytic efficiency in alkene production and in regulating protein stability, heme iron coordination, and spin state. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution.

    Science.gov (United States)

    Cohen, M B; Schuler, M A; Berenbaum, M R

    1992-01-01

    Cytochrome P-450 monooxygenases (P-450s) play a critical role in the detoxification of natural and synthetic toxins in a wide range of organisms. We have isolated and sequenced cDNA clones encoding a P-450, CYP6B1, from larvae of Papilio polyxenes (Lepidoptera: Papilionidae), the black swallowtail butterfly. This P-450, cloned from a herbivorous insect, is highly inducible by xanthotoxin, a secondary metabolite abundant in the host plants of this specialized herbivore. On Northern blots, mRNAs crossreactive with CYP6B1 were detected in three Papilio species that, like the black swallowtail, have high levels of xanthotoxin-metabolic P-450 activity and encounter xanthotoxin or related compounds in their host plants; in contrast, no crossreactive mRNAs were detectable in three papilinid species that never encounter xanthotoxin in their host plants and lack detectable xanthotoxin-metabolic activity. These results provide evidence that new P-450s can arise as herbivores colonize different host plants and support the hypothesis that interactions between herbivores and their toxin-producing host plants have contributed to the diversification of the P-450 superfamily. Images PMID:1279697

  18. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450

    Science.gov (United States)

    2013-01-01

    Background Cytochrome P450 monooxygenases – able to regio- and stereoselectively hydroxylate non-activated carbon atoms – are important enzymes for the synthesis of valuable intermediates in the production of steroid hormones in the pharmaceutical industry. However, up to now only a few bacterial enzymes able to hydroxylate steroids have been reported. CYP154C5 from Nocardia farcinica IFM 10152, a bacterial P450 monooxygenase, was previously shown to convert testosterone to 16α-hydroxytestosterone. Since the hydroxylation at 16α-position is of special interest for the pharmaceutical industry, we have studied this enzyme in more detail to investigate its activity and selectivity in bioconversions of further steroids. Results CYP154C5 was coexpressed in Escherichia coli together with putidaredoxin and putidaredoxin reductase from Pseudomonas putida as redox partners for electron transfer and applied in bioconversions of various pregnanes and androstanes [pregnenolone (1), dehydroepiandrosterone (2), progesterone (3), androstenedione (4), testosterone (5) and nandrolone (6)]. Structure elucidation of the formed products revealed an exclusive regio- and stereoselectivity of CYP154C5, always yielding the corresponding 16α-hydroxylated steroids. Application of whole cells expressing the three components, P450, Pdx and PdR, in steroid biotransformations resulted in significantly higher conversions and total turnover numbers (TTN) compared to reactions using cell-free extracts. Additionally, considerably higher substrate loads (up to 15 mM) were tolerated by the whole-cell system. Furthermore, turnover numbers (TON) were determined for the six different steroids using whole cells. Thus, testosterone was found to be the worst substrate with a TON of only 0.8 μmol substrate consumed min-1 μmol-1 CYP154C5, while progesterone and pregnenolone were converted the fastest resulting in TON of 3.3 μmol substrate consumed min-1 μmol-1 CYP154C5. Conclusion CYP154C5

  19. Cytochrome P450 4A11 expression in human keratinocytes: effects of ultraviolet irradiation.

    Science.gov (United States)

    Gonzalez, M C; Marteau, C; Franchi, J; Migliore-Samour, D

    2001-11-01

    The skin is the major interface between the body and its environment. Directly and continuously exposed to a large variety of foreign agents and stimuli such as ultraviolet radiation (UVR), cutaneous cells are active sites of intense metabolism. The cytochromes P450 (P450) are a group of enzymes that play an important part in the protective role of the skin; they are a family of microsomal membrane-bound mono-oxygenases. These haem-containing proteins catalyse the insertion of an atom of molecular oxygen into the substrate. Although generally present at low levels, a certain number of these enzymes have now been characterized in mammalian skin as constitutive or inducible isoforms. To test the effects of UVR, a source of oxidative stress, on the expression of mRNA coding for several P450 isoforms (CYP), with particular reference to the CYP2E1 and CYP4A11 isoforms, which might play a role in lipid metabolism in human keratinocytes. Human keratinocytes were cultured, irradiated and mRNA expression was analysed by gel electrophoresis after reverse transcriptase polymerase chain reactions. CYP proteins were determined from keratinocyte microsomal fractions by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoperoxidase staining. Thin layer chromatography was used to detect (omega-1)- and (omega)-hydroxylation of lauric acid in the microsomal fractions. mRNAs for CYP2E1, CYP1A1 and CYP3A5 were expressed in all the keratinocyte preparations tested; however, neither CYP3A4 nor CYP3A7 were detected, either in the presence or absence of UVR treatment. CYP19Aro, CYP2C19 and CYP26 were not expressed constitutively, although some induction of CYP19Aro was seen after combined UVB and UVA irradiation. CYP4A11 mRNA was not detected in any keratinocyte preparations either under control conditions or after UVB treatment. Nevertheless, in non-irradiated keratinocyte microsomes, two protein bands were immunoreactive with anti-CYP4A11 enzyme antibodies, one of which

  20. Effects of antidepressant drugs on the activity of cytochrome P-450 measured by caffeine oxidation in rat liver microsomes.

    Science.gov (United States)

    Danie, W A; Syrek, M; Ryłko, Z; Wójcikowski, J

    2001-01-01

    Caffeine is a marker drug for testing the activity of CYP1A2 (3-N-demethylation) in humans and rats. Moreover, it is also a relatively specific substrate of CYP3A (8-hydroxylation). In the case of 1-N- and in particular 7-N-demethylation of caffeine, apart from CYP1A2, other cytochrome P-450 isoenzymes play a considerable role. The aim of the present study was to investigate the influence of imipramine, amitriptyline and fluoxetine on cytochrome P-450 activity measured by caffeine oxidation in rat liver microsomes. The obtained results showed that imipramine exerted a most potent inhibitory effect on caffeine metabolism. Imipramine decreased the rate of 3-N-, 1-N- and 7-N-demethylations, and 8-hydroxylation of caffeine, the effect on 3-N-demethylation being most pronounced (Ki = 33 microM). Amitriptyline showed distinct inhibition of 3-N- and 1-N-demethylation of caffeine, though its effect was less potent than in the case of imipramine (Ki = 57 and 61 pM, respectively). The influence of amitriptyline on 8-hydroxylation and especially on 7-N-demethylation of caffeine was weaker (Ki = 108 and 190 pM, respectively) than on 3-N- or 1-N-demethylation, suggesting a narrower spectrum of cytochrome P-450 inhibition by amitriptyline than by imipramine, involving mainly the subfamily CYP1A2, and--to a lesser degree--CYP3A. In contrast to the tested tricyclic antidepressants, fluoxetine did not exert any considerable effect on the 3-N- or 1-N-demethylation of caffeine (Ki = 152 and 196 microM, respectively), which indicates its low affinity for CYP1A2. However, fluoxetine displayed a clear inhibitory effect on caffeine 7-N-demethylation (Ki = 72 microM), the reaction which is catalyzed mainly by other than CYP1A2 isoenzymes. Fluoxetine diminished markedly the 8-hydroxylation of the marker drug; as reflected by Ki values, the potency of inhibition of rat CYP3A by fluoxetine was similar to that of imipramine (Ki = 40 and 45 microM, respectively). In summary, CYP1A2 was

  1. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    Science.gov (United States)

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  2. Cytochromes P450 of the sophorose lipid-producing yeast Candida apicola: heterogeneity and polymerase chain reaction-mediated cloning of two genes.

    Science.gov (United States)

    Lottermoser, K; Schunck, W H; Asperger, O

    1996-05-01

    Candida apicola belongs to a group of yeasts producing high amounts of surface-active extracellular glycolipids consisting of sophorose and long-chain-omega- and (omega-1)-hydroxy fatty acids. The involvement of cytochrome P450 in the synthesis of sophorose lipid by the hydroxylation of long-chain fatty acids was suggested from a simultaneous increase of cellular P450 content. Hydroxylation studies indicated the existence of multiple P450 forms capable of hydroxylating not only long-chain fatty acids, but also n-alkanes. In this report, two different P450 DNA fragments amplified in a polymerase chain reaction with heterologous primers and chromosomal DNA of Candida apicola were used as homologous probes for the isolation of full-length clones from a genomic library. The open reading frames of both genes encode proteins of 519 amino acids with calculated molecular weights of 58,656 and 58,631, respectively, that contain N-terminal membrane anchor sequences and hallmark residues, in common with other eukaryotic P450s. The deduced amino acid sequences of the C. apicola P450 genes are 84.4% identical. They share 34.5 to 44.1% identity with the proteins of the yeast family CYP52 and about 25% identity with fatty acid hydroxylases of higher eukaryotes (family CYP4A) and of Bacillus megaterium (CYP102). Southern hybridization experiments revealed the existence of further P450-related genes in C. apicola. According to the P450 nomenclature system, the cloned genes were named CYP52E1 and CYP52E2, establishing a new subfamily in yeast family CYP52.

  3. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities.

    Science.gov (United States)

    Hanapi, N A; Ismail, S; Mansor, S M

    2013-10-01

    To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. The in vitro study was conducted using a high-throughput luminescence assay. Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P GraphPad Prism(®) 5 (Version 5.01, GraphPad Software, Inc., USA). Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 μM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 μM luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 μM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 μM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 μM. The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions.

  4. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities.

    Science.gov (United States)

    Elbarbry, Fawzy; Ung, Aimy; Abdelkawy, Khaled

    2018-01-01

    Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP

  5. Cloning and characterization of the NADPH cytochrome P450 oxidoreductase gene from the filamentous fungus Aspergillus niger

    NARCIS (Netherlands)

    Brink, J.M. van den; Zeijl, C.M.J. van; Brons, J.F.; Hondel, C.A.M.J.J. van den; Gorcom, R.F.M. van

    1995-01-01

    In this paper, we describe the cloning and molecular characterization of the Aspergillus niger cytochrome P450 reductase (CPR) gene, cprA. Attempts to clone the cprA gene by heterologous hybridization techniques were unsuccessful. Using the polymerase chain reaction (PCR) with degenerate primers

  6. The in-vitro effect of complementary and alternative medicines on cytochrome P450 2C9 activity

    NARCIS (Netherlands)

    Mooiman, Kim D; Goey, Andrew K L; Huijbregts, Tomy J; Maas-Bakker, Roel F; Beijnen, Jos H; Schellens, Jan H M; Meijerman, Irma

    OBJECTIVES: The aim of this study is to establish the inhibitory effects of 14 commonly used complementary and alternative medicines (CAM) on the metabolism of cytochrome P450 2C9 (CYP2C9) substrates 7-methoxy-4-trifluoromethyl coumarine (MFC) and tolbutamide. CYP2C9 is important for the metabolism

  7. The novel antifungal agent PLD-118 is neither metabolized by liver microsomes nor inhibits cytochrome P450 in vitro

    NARCIS (Netherlands)

    Parnham, M.J.; Bogaards, J.J.P.; Schrander, F.; Schut, M.W.; Orešković, K.; Mildner, B.

    2005-01-01

    PLD-118 is a novel, oral antifungal drug, under development for the treatment of Candida infections. Possible metabolism of PLD-118 by rat, dog and human S9 liver homogenates and inhibition of human cytochrome P450 (CYP) enzymes were investigated. PLD-118 (10 and 100 μm) incubated for 0-60 min with

  8. Effect of butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole on cytochrome P450 forms in cultured human hepatocytes

    NARCIS (Netherlands)

    Price, R.J.; Scott, M.P.; Giddings, A.M.; Walters, D.G.; Stierum, R.H.; Meredith, C.; Lake, B.G.

    2008-01-01

    1. The objective of this study was to investigate the effects of four food chemicals, namely butylated hydroxytoluene (BHT), curcumin (CC), propyl gallate (PG) and thiabendazole (TB), on cytochrome P450 (CYP) forms in cultured human hepatocytes. 2. Treatment of human hepatocytes for 72 h with 2-200

  9. Reductase and oxidase activity of rat liver cytochrome P450 with 2,3,5,6-tetramethylbenzoquinone as substrate

    NARCIS (Netherlands)

    Goeptar, A R; te Koppele, J.M.; Neve, E P; Vermeulen, N P

    1992-01-01

    The main objective of the present study was to investigate the proposed role of cytochrome P450 in the reductive metabolism of quinones as well as in the formation of reduced oxygen species in liver microsomes from phenobarbital (PB-microsomes) and beta-naphthoflavone (beta NF-microsomes) pretreated

  10. Identification of cytochrome P450 differentiated expression related to developmental stages in bromadiolone resistance in rats (Rattus norvegicus)

    DEFF Research Database (Denmark)

    Markussen, Mette; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    Adult, 20-week-old, rats from a Danish bromadiolone-resistant strain of rats (Rattus norvegicus) overexpresss the cytochrome P450 genes Cyp2e1, Cyp3a2 and Cyp3a3 upon bromadiolone exposure. Furthermore, adult female rats of this strain over-express the Cyp2c13 gene and suppress Cyp2c12, while males...

  11. Short-Term Fasting Alters Pharmacokinetics of Cytochrome P450 Probe Drugs: Does Protein Binding Play a Role?

    NARCIS (Netherlands)

    Lammers, Laureen A.; Achterbergh, Roos; Romijn, Johannes A.; Mathôt, Ron A. A.

    2017-01-01

    Short-term fasting differentially alters cytochrome P450 (CYP) mediated drug metabolism. This has been established by using CYP-enzyme selective probe drugs. However, the observed effects of fasting on the pharmacokinetics of these probe drugs may also include the effects of altered plasma protein

  12. Probing the substrate specificity of the catalytically self-sufficient cytochrome P450 RhF from a Rhodococcus sp.

    Science.gov (United States)

    Celik, Ayhan; Roberts, Gareth A; White, John H; Chapman, Stephen K; Turner, Nicholas J; Flitsch, Sabine L

    2006-11-21

    Analysis of the substrate specificity of the self-sufficient cytochrome P450 RhF revealed that the enzyme tends to catalyse the dealkylation of substituted alkyl-aryl ethers with shorter alkyl moieties more readily than equivalent compounds with longer alkyl groups.

  13. Metabolic stereoselectivity of cytochrome P450 3A4 towards deoxypodophyllotoxin : In silico predictions and experimental validation

    NARCIS (Netherlands)

    Julsing, Mattijs K.; Vasilev, Nikolay P.; Schneidman-Duhovny, Dina; Muntendarn, Remco; Woerdenbag, Herman J.; Quax, Wim J.; Wolfson, Haim J.; Ionkova, Iliana; Kayser, Oliver

    Deoxypodophyllotoxin is stereoselectively converted into epipodophyllotoxin by recombinant human cytochrome P450 3A4 (CY-P3A4). Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for hydroxylation of deoxypodophyllotoxin by CYP3A4 at C7 position were 1.93 mu M and 1.48

  14. Subacute effects of the brominated flame retardants hexabromocyclododecane and tetrabromobisphenol A on hepatic cytochrome P450 levels in rats.

    NARCIS (Netherlands)

    Germer, Silke; Piersma, Aldert H; Ven, Leo T M van der; Kamyschnikow, Andreas; Fery, Yvonne; Schmitz, Hans-Joachim; Schrenk, Dieter

    2006-01-01

    The brominated flame retardants tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are found in the environment, e.g., in sediments and organisms, in food items, human blood samples and mother's milk. In this study, the effects of both compounds on rat hepatic cytochrome P450 (CYP)

  15. Draft Genome Sequences of Three Actinobacteria Strains Presenting New Candidate Organisms with High Potentials for Specific P450 Cytochromes.

    Science.gov (United States)

    Grumaz, Christian; Vainshtein, Yevhen; Kirstahler, Philipp; Luetz, Stephan; Kittelmann, Matthias; Schroer, Kirsten; Eggimann, Fabian K; Czaja, Rico; Vogel, Andreas; Hilberath, Thomas; Worsch, Anne; Girhard, Marco; Urlacher, Vlada B; Sandberg, Marcel; Sohn, Kai

    2017-07-13

    The three Actinobacteria strains Streptomyces platensis DSM 40041, Pseudonocardia autotrophica DSM 535, and Streptomyces fradiae DSM 40063 were described to selectively oxyfunctionalize several drugs. Here, we present their draft genomes to unravel their gene sets encoding promising cytochrome P450 monooxygenases associated with the generation of drug metabolites. Copyright © 2017 Grumaz et al.

  16. Evaluation of alkoxyresorufins as fluorescent substrates for cytochrome P450 BM3 and site-directed mutants

    NARCIS (Netherlands)

    Lussenburg, B.M.A.; Babel, L.C.; Vermeulen, N.P.E.; Commandeur, J.N.M.

    2005-01-01

    In this study, the first fluorescent assay for bacterial cytochrome P450 BM3 (BM3) and mutants is described. BM3 mutants are potentially very versatile biocatalysts for the production of fine chemicals. A fluorescent assay would be very useful for the identification of nonnatural ligands in

  17. 3-aminobenzanthrone, a human metabolite of the environmental pollutant 3-nitrobenzanthrone, forms DNA adducts after metabolic activation by human and rat liver microsomes: evidence for activation by cytochrome P450 1A1 and P450 1A2.

    Science.gov (United States)

    Arlt, Volker M; Hewer, Alan; Sorg, Bernd L; Schmeiser, Heinz H; Phillips, David H; Stiborova, Marie

    2004-08-01

    3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen found in diesel exhaust and ambient air pollution. The main metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), was recently detected in the urine of salt mining workers occupationally exposed to diesel emissions. Determining the capability of humans to metabolize 3-ABA and understanding which human enzymes are involved in its activation are important in the assessment of individual susceptibility. We compared the ability of eight human hepatic microsomal samples to catalyze DNA adduct formation by 3-ABA. Using the (32)P-postlabeling method, we found that all hepatic microsomes were competent to activate 3-ABA. DNA adduct patterns with multiple adducts, qualitatively similar to those formed in vivo in rats treated with 3-ABA, were observed. These patterns were also similar to those formed by the nitroaromatic counterpart 3-NBA and which derive from reductive metabolites of 3-NBA bound to purine bases in DNA. The role of specific cytochrome P450s (P450s) in the human hepatic microsomal samples in 3-ABA activation was investigated by correlating the P450-linked catalytic activities in each microsomal sample with the level of DNA adducts formed by the same microsomes. On the basis of this analysis, most of the hepatic microsomal activation of 3-ABA was attributable to P450 1A1 and 1A2 enzyme activity. Inhibition of DNA adduct formation in human liver microsomes by alpha-naphthoflavone and furafylline, inhibitors of P450 1A1 and 1A2, and P450 1A2 alone, respectively, supported this finding. Using recombinant human P450 1A1 and 1A2 expressed in Chinese hamster V79 cells and microsomes of baculovirus-transfected insect cells (Supersomes), we confirmed the participation of these enzymes in the formation of 3-ABA-derived DNA adducts. Moreover, essentially the same DNA adduct pattern found in microsomes was detected in metabolically competent human lymphoblastoid MCL-5 cells expressing P450 1A1 and 1A2. Using rat

  18. Equine cytochrome P450 2B6 — Genomic identification, expression and functional characterization with ketamine

    Energy Technology Data Exchange (ETDEWEB)

    Peters, L.M.; Demmel, S. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Pusch, G.; Buters, J.T.M. [ZAUM — Center of Allergy and Environment, Helmholtz Zentrum München/Technische Universität München, Biedersteiner Str. 29, 80802 München (Germany); Thormann, W. [Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Murtenstrasse 35, 3010 Bern (Switzerland); Zielinski, J. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Leeb, T. [Institute of Genetics, Vetsuisse Faculty, University Bern, Bremgartenstr. 109, 3012 Bern (Switzerland); Mevissen, M. [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland); Schmitz, A., E-mail: andrea.schmitz@vetsuisse.unibe.ch [Division Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University Bern, Laenggassstr. 124, 3012 Bern (Switzerland)

    2013-01-01

    Ketamine is an anesthetic and analgesic regularly used in veterinary patients. As ketamine is almost always administered in combination with other drugs, interactions between ketamine and other drugs bear the risk of either adverse effects or diminished efficacy. Since cytochrome P450 enzymes (CYPs) play a pivotal role in the phase I metabolism of the majority of all marketed drugs, drug–drug interactions often occur at the active site of these enzymes. CYPs have been thoroughly examined in humans and laboratory animals, but little is known about equine CYPs. The characterization of equine CYPs is essential for a better understanding of drug metabolism in horses. We report annotation, cloning and heterologous expression of the equine CYP2B6 in V79 Chinese hamster fibroblasts. After computational annotation of all CYP2B genes, the coding sequence (CDS) of equine CYP2B6 was amplified by RT-PCR from horse liver total RNA and revealed an amino acid sequence identity of 77% and a similarity of 93.7% to its human ortholog. A non-synonymous variant c.226G>A in exon 2 of the equine CYP2B6 was detected in 97 horses. The mutant A-allele showed an allele frequency of 82%. Two further variants in exon 3 were detected in one and two horses of this group, respectively. Transfected V79 cells were incubated with racemic ketamine and norketamine as probe substrates to determine metabolic activity. The recombinant equine CYP2B6 N-demethylated ketamine to norketamine and produced metabolites of norketamine, such as hydroxylated norketamines and 5,6-dehydronorketamine. V{sub max} for S-/and R-norketamine formation was 0.49 and 0.45 nmol/h/mg cellular protein and K{sub m} was 3.41 and 2.66 μM, respectively. The N-demethylation of S-/R-ketamine was inhibited concentration-dependently with clopidogrel showing an IC{sub 50} of 5.63 and 6.26 μM, respectively. The functional importance of the recorded genetic variants remains to be explored. Equine CYP2B6 was determined to be a CYP

  19. quantitative assessment of the influence of cytochrome P450 1A2 gene polymorphism and colorectal cancer risk.

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    Full Text Available Cytochrome P450 1A2 (CYP1A2 encodes a member of the cytochrome P450 superfamily of enzymes, which play a central role in activating and detoxifying many carcinogens and endogenous compounds thought to be involved in the development of colorectal cancer (CRC. The CYP1A2*C (rs2069514 and CYP1A2*F (rs762551 polymorphism are two of the most commonly studied polymorphisms of the gene for their association with risk of CRC, but the results are conflicting. To derive a more precise estimation of the relationship between CYP1A2 and genetic risk of CRC, we performed a comprehensive meta-analysis which included 7088 cases and 7568 controls from 12 published case-control studies. In a combined analysis, the summary per-allele odds ratio for CRC was 0.91 (95% CI: 0.83-1.00, P = 0.04, and 0.91 (95% CI: 0.68-1.22, P = 0.53, for CYP1A2 *F and *C allele, respectively. In the subgroup analysis by ethnicity, significant associations were found in Asians for CYP1A2*F and CYP1A2*C, while no significant associations were detected among Caucasian populations. Similar results were also observed using dominant genetic model. Potential sources of heterogeneity were explored by subgroup analysis and meta-regression. No significant heterogeneity was detected in most of comparisons. This meta-analysis suggests that the CYP1A2 *F and *C polymorphism is a protective factor against CRC among Asians.

  20. NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L. dunal.

    Directory of Open Access Journals (Sweden)

    Satiander Rana

    Full Text Available Withania somnifera (L. Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in

  1. Automated luminescence-based cytochrome P450 profiling using a simple, elegant robotic platform.

    Science.gov (United States)

    Larson, Brad; Banks, Peter; Cali, James J; Sobol, Mary; Shultz, Sarah

    2011-02-01

    The determination of inhibitory effects that lead compounds have on cytochrome P450 (CYP) enzymes is an important part of today's drug discovery process. Assays can be performed early in the discovery process to predict adverse drug-drug interactions caused by CYP inhibition and to minimize the costs associated with terminating candidates in late stage development or worse, removing a drug from the market after launch. For early discovery work, testing substantial numbers of compounds is desirable, thus automated "mix and read" assays are beneficial. Here, we demonstrate the automation of the CYP profiling process using a simple, yet robust robotic platform. Compound titration, as well as transfer of compounds and assay components was performed by the same automated pipetting system. IC(50)s of small molecule drugs were determined using recombinant CYP enzymes, CYP3A4, -2C9, and -2D6 and luminogenic substrates specific to each. Compounds were profiled against all three enzymes on the same 384-well assay plate. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.

  2. Cytochrome P450 2D6 based electrochemical sensor for the determination of codeine.

    Science.gov (United States)

    Asturias-Arribas, Laura; Alonso-Lomillo, M Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, M Julia

    2014-11-01

    Considering the enzymatic activity of the cytochrome P450 2D6 on substrates such as codeine, the current paper includes the development of an enzymatic biosensor for detection of this drug. Home-made screen-printed electrodes were used as electrochemical transducers of the biosensor, in which the enzyme was covalently attached to the carbon surface of the working electrode, this type of modification being the most suitable for the immobilization of the biological element. Chronoamperometric measurements were carried out under optimum conditions of pH and working potential, pH 7 and +200 mV vs. screen-printed Ag/AgCl electrode, giving a reduction signal related to the concentration of codeine in solution. Consecutive additions of a solution of codeine were performed to obtain calibration curves in order to validate the electrochemical method in terms of precision and calculate its capability of detection. These biosensors were used for the determination of codeine in urine and commercial pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Menthol reduces the anticoagulant effect of warfarin by inducing cytochrome P450 2C expression.

    Science.gov (United States)

    Hoshino, Motohiro; Ikarashi, Nobutomo; Tsukui, Makoto; Kurokawa, Asako; Naito, Rina; Suzuki, Midori; Yokobori, Kohsuke; Ochiai, Takumi; Ishii, Makoto; Kusunoki, Yoshiki; Kon, Risako; Ochiai, Wataru; Wakui, Nobuyuki; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2014-06-02

    Recently, it was reported that the anticoagulant effect of warfarin was reduced when patients receiving warfarin also took menthol. The purpose of this study is to reveal the mechanism of this reduced anticoagulant effect of warfarin from the pharmacokinetic point of view. Warfarin was orally administered to mice 24h after the administration of menthol for 2 days, and the plasma warfarin concentration was measured. In the menthol administration group, the area under the blood concentration time curve of warfarin was decreased by approximately 25%, while total clearance was increased to 1.3-fold compared to the control group. The hepatic cytochrome P450 (CYP) 2C protein expression level in the menthol administration group was significantly increased compared to that in the control group. An increase in the nuclear translocation of constitutive androstane receptor (CAR) was also observed. The addition of menthol to human hepatic cells, HepaRG cells, caused an increase in the mRNA expression level of CYP2C9. The results of this study revealed that menthol causes an increase in CYP2C expression levels in the liver, which leads to an enhancement of warfarin metabolism, resulting in a decreased anticoagulant effect of warfarin. It was also suggested that menthol acted directly on the liver and increased the expression level of CYP2C by enhancing the nuclear translocation of CAR. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Relationship between drug-induced interstitial lung diseases and cytochrome P450 polymorphisms.

    Science.gov (United States)

    Wijnen, Petal A H M; Bekers, Otto; Drent, Marjolein

    2010-09-01

    Interstitial lung disease and especially drug-induced interstitial lung disease can occur as a cause of drug(s) or drug-drug interactions. In this review we summarize the possible role of cytochrome P450 (CYP) enzymes in drug-induced interstitial lung disease. The CYP enzyme family plays an important role in the metabolism of all sorts of ingested, injected or inhaled xenobiotic substances. Although the liver is considered to be the major metabolism site of CYP enzymes, in recent years more CYP isoforms have been detected in lung tissue. Polymorphisms in these CYP genes can influence the metabolic activity of the subsequent enzymes, which in turn may lead to localized (toxic) reactions and tissue damage. Drug toxicity can be the consequence of no or very poor enzyme activity, especially if no other metabolic route is available. In the case of reduced enzyme activity, dose reduction or prescribing an alternative drug metabolized by a different, unaffected CYP enzyme is recommended to prevent toxic side effects. Therefore, knowing a patient's CYP profile before drug prescription could be a way to prevent drug-induced interstitial lung disease. Moreover, it might be helpful in explaining serious adverse effects from inhaled, injected or ingested xenobiotic substances.

  5. Tyrosine-96 as a natural spectroscopic probe of the cytochrome P-450cam active site.

    Science.gov (United States)

    Atkins, W M; Sligar, S G

    1990-02-06

    The previously described correlation between the ferric spin equilibrium of cytochrome P-450cam and the environmental polarity of tyrosine residues (Fisher et al., 1986) has been further examined with the use of site-directed mutagenesis and active-site affinity reagents. Whereas the wild-type demonstrates an increase in environmental polarity of approximately one tyrosine residue, the mutant protein Y96F, in which Tyr-96 has been changed to Phe-96, demonstrates a lack of spin-state-dependent change in the second-derivative ultraviolet absorption spectrum. This suggests that the active-site Tyr-96 serves as a ultraviolet spectroscopic probe which can be utilized to determine the relative degree of water access to the active site for various substrate/protein complexes. The affinity reagent isobornyl mercaptan has been used to demonstrate the utility of this probe in determining the active-site polarity when substrate analogues are bound at the active site. In addition, the sensitivity of Tyr-96 to environmental polarity has been used to demonstrate that the product/enzyme complex, formed with 5-exo-hydroxycamphor, may be associated with increased water access to the heme iron. This may provide a means for turning off electron transfer when the product, instead of the substrate, is bound at the active site.

  6. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns

    Directory of Open Access Journals (Sweden)

    Xiangyang Liu

    2016-06-01

    Full Text Available The increased number of annotated bacterial genomes provides a vast resource for genome mining. Several bacterial natural products with epoxide groups have been identified as pre-mRNA spliceosome inhibitors and antitumor compounds through genome mining. These epoxide-containing natural products feature a common biosynthetic characteristic that cytochrome P450s (CYPs and its patterns such as epoxidases are employed in the tailoring reactions. The tailoring enzyme patterns are essential to both biological activities and structural diversity of natural products, and can be used for enzyme pattern-based genome mining. Recent development of direct cloning, heterologous expression, manipulation of the biosynthetic pathways and the CRISPR-CAS9 system have provided molecular biology tools to turn on or pull out nascent biosynthetic gene clusters to generate a microbial natural product library. This review focuses on a library of epoxide-containing natural products and their associated CYPs, with the intention to provide strategies on diversifying the structures of CYP-catalyzed bioactive natural products. It is conceivable that a library of diversified bioactive natural products will be created by pattern-based genome mining, direct cloning and heterologous expression as well as the genomic manipulation.

  7. Effect of Benifuuki Tea on Cytochrome P450-mediated Metabolic Activity in Rats.

    Science.gov (United States)

    Hirai, Takahito; Nishimura, Yuki; Kurata, Norimitsu; Namba, Hokuto; Iwase, Mariko; Gomi, Yurika; Tsuchiya, Hiromichi; Yamakawa, Tomoyuki; Kiuchi, Yuji

    2018-01-01

    Benifuuki tea has recently been used as an alternative therapy for pollinosis, and it may be consumed with pharmaceutical drugs. This study aimed to examine cytochrome P450 (CYP)-mediated food-drug interactions with Benifuuki tea in rats. The inhibitory effects of Benifuuki tea and (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) on CYP activities were evaluated in vitro. Midazolam pharmacokinetics was investigated after two treatments with Benifuuki tea. In an ex vivo study, CYP activities were determined after 1-week-treatment with the tea. Benifuuki tea and EGCG3"Me inhibited CYP2D and CYP3A activities in a concentration-dependent manner in vitro. However, MDZ metabolism did not change by Benifuuki treatment in vivo and ex vivo. In contrast, CYP2D activity was decreased ex vivo. Normal intake of Benifuuki tea is not likely to cause food-drug interactions by CYP3A inhibition or induction. In contrast, Benifuuki tea consumption may lead to food-drug interactions through the inhibition of CYP2D. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Characterization of equine cytochrome P450: role of CYP3A in the metabolism of diazepam.

    Science.gov (United States)

    Nakayama, S M M; Ikenaka, Y; Hayami, A; Mizukawa, H; Darwish, W S; Watanabe, K P; Kawai, Y K; Ishizuka, M

    2016-10-01

    Research on drug metabolism and pharmacokinetics in large animal species including the horse is scarce because of the challenges in conducting in vivo studies. The metabolic reactions catalyzed by cytochrome P450s (CYPs) are central to drug pharmacokinetics. This study elucidated the characteristics of equine CYPs using diazepam (DZP) as a model compound as this drug is widely used as an anesthetic and sedative in horses, and is principally metabolized by CYPs. Diazepam metabolic activities were measured in vitro using horse and rat liver microsomes to clarify the species differences in enzyme kinetic parameters of each metabolite (temazepam [TMZ], nordiazepam [NDZ], p-hydroxydiazepam [p-OH-DZP], and oxazepam [OXZ]). In both species microsomes, TMZ was the major metabolite, but the formation rate of p-OH-DZP was significantly less in the horse. Inhibition assays with a CYP-specific inhibitors and antibody suggested that CYP3A was the main enzyme responsible for DZP metabolism in horse. Four recombinant equine CYP3A isoforms expressed in Cos-7 cells showed that CYP3A96, CYP3A94, and CYP3A89 were important for TMZ formation, whereas CYP3A97 exhibited more limited activity. Phylogenetic analysis suggested diversification of CYP3As in each mammalian order. Further study is needed to elucidate functional characteristics of each equine CYP3A isoform for effective use of diazepam in horses. © 2016 John Wiley & Sons Ltd.

  9. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    Science.gov (United States)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  10. Interactions of omeprazole-based analogues with cytochrome P450 2C19: a computational study.

    Science.gov (United States)

    Li, Junhao; Du, Hanwen; Wu, Zengrui; Su, Haixia; Liu, Guixia; Tang, Yun; Li, Weihua

    2016-05-24

    Cytochrome P450 2C19 (CYP2C19) is one of 57 drug metabolizing enzymes in humans and is responsible for the metabolism of ∼7-10% of drugs in clinical use. Recently omeprazole-based analogues were reported to be the potent inhibitors of CYP2C19 and have the potential to be used as the tool compounds for studying the substrate selectivity of CYP2C19. However, the binding modes of these compounds with CYP2C19 remain to be elucidated. In this study, a combination of molecular docking, molecular dynamics (MD), and MM/GBSA calculations was employed to systematically investigate the interactions between these compounds and CYP2C19. The binding modes of these analogues were analyzed in detail. The results indicated that the inclusion of explicit active site water molecules could improve binding energy prediction when the water molecules formed a hydrogen bonding network between the ligand and protein. We also found that the effect of active site water molecules on binding free energy prediction was dependent on the ligand binding modes. Our results unravel the interactions of these omeprazole-based analogues with CYP2C19 and might be helpful for the future design of potent CYP2C19 inhibitors with improved metabolic properties.

  11. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    Directory of Open Access Journals (Sweden)

    Maryam Foroozesh

    2012-08-01

    Full Text Available The cytochrome P450 (CYP superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR, and three-dimensional quantitative structure activity relationships (3D-QSAR represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions.

  12. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  13. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  14. Effects of Pristane on Cytochrome P450 Isozyme Expression in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Marvin A. Cuchens

    2005-04-01

    Full Text Available Chemical carcinogenesis studies are powerful tools to obtain information on potential mechanisms of chemical factors for malignancies. In this study Western blot analyses, using monoclonal antibodies specific for three different cytochrome P450 (CYP isozymes (CYP1A1, CYP1A2 and CYP2B, were employed to examine the effect(s of 3-methylcholanthrene and/or pristane (2,6,10,14-tetramethylpentadecane on the basal and inducible levels of expression of CYP proteins within Copenhagen rat tissues. Pristane exposure led to tissue specific differences in the CYP isozymes expressed and elicited increased CYP protein expression over 3-methylcholanthrene induced levels in microsomes isolated from liver, Peyer's Patches, and thymus. Within the context of the chemical carcinogenesis model employed in this study, these observations correlated with the induction of B-cell malignancies by low doses of 3-methylcholanthrene and of thymic lymphomas by a high 3-methylcholanthrene dose. The data suggest that pristane treatment affects CYP isozyme expression. This pristane-mediated effect clearly could be a contributing factor in the chemical carcinogenesis of the previously observed lymphoid malignancies, and a possible basis for the tumor enhancing effects of pristane.

  15. Tissue distribution and cytochrome P450 inhibition of sesaminol and its tetrahydrofuranoid metabolites.

    Science.gov (United States)

    Jan, Kuo-Ching; Chang, Yi-Wei; Hwang, Lucy Sun; Ho, Chi-Tang

    2012-09-05

    Sesame lignans such as sesamin, sesaminol, and sesamolin are major constituents of sesame oil, and all have a methylenedioxyphenyl group and multiple functions in vivo. It was previously reported that sesaminol, a tetrahydrofurofuran type lignin, was metabolized to mammalian lignans. The present study examined the tissue distribution of sesaminol in Sprague-Dawley (SD) rats. Changes in the concentration of sesaminol and its metabolites (sesaminol glucuronide/sulfate, hydroxymethylsesaminol-tetrahydrofuran, enterolactone, and enterodiol) were determined in tissues within a 24 h period after tube feeding (po 220 mg/kg) to SD rats. The concentrations of enterodiol and enterolactone were significantly higher than those of sesaminol and its tetrahydrofuranoid metabolites in the organs (liver, heart, brain, and kidney). This study demonstrates that sesaminol has potent inhibition of cytochrome P450 (CYPs), compared to tetrahydrofuranoid metabolites. The IC(50) values of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 for sesaminol were determined as 3.57, 3.93, 0.69, 1.33, and 0.86 μM, respectively. In addition, hydroxymethylsesaminol-tetrahydrofuran and enterodiol were weak inhibitors of CYP2C9 and CYP1A2, respectively.

  16. Effects of nicotine on cytochrome P450 2A6 and 2E1 activities

    Science.gov (United States)

    Hukkanen, Janne; Jacob, Peyton; Peng, Margaret; Dempsey, Delia; Benowitz, Neal L

    2010-01-01

    AIMS Smoking slows the metabolism of nicotine and accelerates the metabolism of chlorzoxazone, which are probe reactions for cytochrome P450 2A6 (CYP2A6) and CYP2E1 activities, respectively. We aimed to determine the role of nicotine in these metabolic effects of cigarette smoking. METHODS The study had a single-blind, randomized, crossover two-arm design. Twelve healthy smokers were given two transdermal patches with 42-mg nicotine a day or placebo patches, each for 10 days. The subjects abstained from smoking during the study arms. Oral chlorzoxazone was given on day 7 and deuterium-labelled nicotine-d2 and cotinine-d4 infusion on day 8. RESULTS There was no significant influence of transdermal nicotine administration on pharmacokinetic parameters of nicotine-d2 or on the formation of cotinine-d2. Nicotine decreased the volume of distribution (62.6 vs. 67.7 l, 95% confidence interval of the difference −9.7, −0.6, P= 0.047) of infused cotinine-d4. There were no significant differences in disposition kinetics of chlorzoxazone between the treatments. CONCLUSIONS CYP2A6 and CYP2E1 activities are not affected by nicotine. The tobacco smoke constituents responsible for the reduced CYP2A6 and increased CYP2E1 activities remain unknown. PMID:20233178

  17. Coleus forskohlii extract induces hepatic cytochrome P450 enzymes in mice.

    Science.gov (United States)

    Virgona, Nantiga; Yokotani, Kaori; Yamazaki, Yuko; Shimura, Fumio; Chiba, Tsuyoshi; Taki, Yuko; Yamada, Shizuo; Shinozuka, Kazumasa; Murata, Masatsune; Umegaki, Keizo

    2012-03-01

    Coleus forskohlii root extract (CFE) is popular for use as a weight loss dietary supplement. In this study, the influence of standardized CFE containing 10% active component forskolin on the hepatic drug metabolizing system was investigated to evaluate the safety through its drug interaction potential. Male ICR mice were fed AIN93G-based diets containing 0-5% CFE or 0.05% pure forskolin for 2-3 weeks. Intake of two different sources of 0.5% CFE significantly increased the relative liver weight, total content of hepatic cytochrome P450 (CYP) and induced CYPs (especially 2B, 2C, 3A types) and glutathione S-transferase (GST) activities. CFE significantly increased mRNA expression of CYPs and GST with dose related responses. However, unlike the CFE, intake of 0.05% pure forskolin was found to be associated with only weak induction in CYP3A and GST activities with no significant increases in relative liver weight, total hepatic content or other CYPs activities. The inductions of CYPs and GST by CFE were observed at 1 week of feeding and rapidly recovered by discontinuation of CFE. These results indicated the induction potential of CFE on CYPs, and that this effect was predominantly due to other, as yet unidentified constituents, and not forskolin contained in CFE. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. In vitro and in silico Approaches to Study Cytochrome P450-Mediated Interactions.

    Science.gov (United States)

    Tan, Boon Hooi; Pan, Yan; Dong, Amelia Nathania; Ong, Chin Eng

    2017-01-01

    In vitro and in silico models of drug metabolism are utilized regularly in the drug research and development as tools for assessing pharmacokinetic variability and drug-drug interaction risk. The use of in vitro and in silico predictive approaches offers advantages including guiding rational design of clinical drug-drug interaction studies, minimization of human risk in the clinical trials, as well as cost and time savings due to lesser attrition during compound development process. This article gives a review of some of the current in vitro and in silico methods used to characterize cytochrome P450(CYP)-mediated drug metabolism for estimating pharmacokinetic variability and the magnitude of drug-drug interactions. Examples demonstrating the predictive applicability of specific in vitro and in silico approaches are described. Commonly encountered confounding factors and sources of bias and error in these approaches are presented. With the advent of technological advancement in high throughput screening and computer power, the in vitro and in silico methods are becoming more efficient and reliable and will continue to contribute to the process of drug discovery, development and ultimately safer and more effective pharmacotherapy. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  19. Interactions of food and dietary supplements with drug metabolising cytochrome P450 enzymes.

    Science.gov (United States)

    Nekvindová, J; Anzenbacher, P

    2007-07-01

    Drug side effects and toxicity and often the drug efficacy are highly dependent on drug metabolism determining the activation and/or elimination of the respective compound. In humans, cytochromes P450 are the most important drug metabolizing enzymes of the first phase of drug biotransformation. Their activity can vary due to interindividual genetic differences, but it can be changed also by inhibition or induction of the enzymes by their substrates or other compounds that are not only drugs themselves and/or drugs taken concomitantly. Often, influence on drug metabolism by compounds that occur in the environment, most remarkably in the food, is forgotten. Some commonly used herbs, fruits as well as e.g. alcohol may cause failure of the therapy up to serious alterations of the patient's health. This review presents a brief overview of potentially dangerous nutrition factors including herbs (incl. teas, infusions) that should be considered when indicating individual drug therapy. Examples include primarily grapefruits, pomelo, star fruit, pomegranates and some other fruits, St John's Wort (Hypericum perforatum), caffeine, as well as alcohol and cigarette smoking.

  20. Conformational diversity and ligand tunnels of mammalian cytochrome P450s.

    Science.gov (United States)

    Yu, Xiaofeng; Cojocaru, Vlad; Wade, Rebecca C

    2013-01-01

    The mammalian cytochrome P450 (CYP) enzymes play important roles in drug metabolism, steroid biosynthesis, and xenobiotic degradation. The active site of CYPs is buried in the protein and thus the ligands have to enter and exit the active site via ligand tunnels. Conformational changes of flexible parts of the protein usually accompany the entrance and exit of ligands. Comparison of the crystal structures of mammalian CYPs in closed, open, and partially open states reveals that the greatest conformational diversity associated with ligand tunnel opening is in the regions of the B-C and F-G loops. Some CYPs have been observed to adopt different open and closed conformations when bound to different ligands, suggesting that the ligand entrance and exit routes might differ according to the ligand properties. Mammalian CYPs are mostly membrane-bound enzymes, making them difficult to characterize structurally and dynamically. A range of molecular dynamics simulation techniques has been applied to investigate the dynamics and the ligand tunnels of these proteins both in the aqueous environment, and more recently, in lipid bilayers. These simulations not only reveal multiple tunnels through which ligands can pass but also show that different tunnels are preferred by different ligands and that the lipid bilayer can influence the protein dynamics and tunnel opening. The results indicate that not only the active site but also the ligand tunnels can contribute to the different substrate specificity profiles of the mammalian CYPs. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  1. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Robert N Schuck

    Full Text Available Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs, which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH, our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.

  2. Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products.

    Science.gov (United States)

    Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Ohta, Shigeru; Kitamura, Shigeyuki

    2016-01-01

    The in vitro cytochrome P450 (CYP)-inhibitory effects of 11 parabens and 7 phthalates used in consumer products, as well as their hydrolytic metabolites, were investigated, using rat liver microsomes as an enzyme source. The effects on individual CYP isozymes were evaluated by assaying inhibition of activities towards specific substrates, i.e., ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), pentoxyresorufin O-dealkylase (PROD), 7-benzyloxy-4-trifluoromethylcoumarin dealkylase (BFCD), 7-methoxy-4-trifluoromethylcoumarin dealkylase (MFCD) and 7-ethoxy-4-trifluoromethylcoumarin dealkylase (EFCD) activities. These activities were dose-dependently inhibited, most potently by medium-side-chain parabens (C6-9) and phthalates (C4-6), and less potently by shorter- and longer-side-chain esters. The hydrolytic product of parabens, 4-hydroxybenzoic acid, was not inhibitory, while those of phthalates, phthalic acid monoesters, showed lower inhibitory activity than the parent phthalates. Parabens showed relatively potent inhibition of MFCD activity, considered to be mainly due to CYP2C, and phthalates showed relatively potent inhibition of PROD activity, considered to be mainly due to CYP2B.

  3. In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products.

    Science.gov (United States)

    Foster, B C; Vandenhoek, S; Hana, J; Krantis, A; Akhtar, M H; Bryan, M; Budzinski, J W; Ramputh, A; Arnason, J T

    2003-05-01

    Spices, herbal and black teas, and soybean products were analyzed for their capacity to inhibit in vitro metabolism of drug marker substrates by human cytochrome P-450 (CYP) isoforms. Inhibition of drug metabolism was determined using aliquots or infusions from these products in a fluorescence-detection assay. Aliquots and infusions of all natural product categories inhibited 3A4 metabolism to some extent. Of the 26 aliquots from teas and spices further tested with 2C9, 2C19 and 2D6, many demonstrated significant inhibitory activity on the metabolism mediated by these isoforms. Black teas and herbal tea mixtures were generally more inhibitory than single-entity herbal teas. Spices and single-entity herbal teas showed species-specific isoform inhibition with sage, thyme, cloves, St John's Wort and goldenseal having the highest activity against several isoforms. Seven soybean varieties tested, as well as daidzein and genistein isolated from soybean, were found to inhibit 3A4-mediated metabolism. Genistein was found to inhibit 3A7- but not 3A5-mediated metabolism of the marker substrate. Assessment of the in vitro CYP inhibition potential for these natural products has important implications for predicting the likelihood of natural product-drug interactions if these products are taken concomitantly.

  4. Concurrent Assessment of Hepatic and Intestinal Cytochrome P450 3A Activities Using Deuterated Alfentanil

    Science.gov (United States)

    Kharasch, Evan D.; Vangveravong, Suwanna; Buck, Nikki; London, Amy; Kim, Thomas; Blood, Jane; Mach, Robert H

    2013-01-01

    Alfentanil is a validated probe for hepatic, first-pass, and intestinal cytochrome P450 (CYP) 3A activity, using plasma clearances, single-point concentrations and noninvasive pupil diameter change (miosis). Assessing intravenous and oral drug disposition typically requires separate dosing. This investigation evaluated concurrent administration of oral deuterated and intravenous unlabeled alfentanil, to assess both intestinal and hepatic CYP3A, and compare sequential and simultaneous dosing. Alfentanil disposition was evaluated after strong hepatic and/or intestinal CYP3A induction and inhibition by rifampin, ketoconazole, and grapefruit juice. Using plasma alfentanil concentrations and area under the curve, clearance, or single-point concentrations, both simultaneous and sequential dosing provided equivalent results and detected hepatic and intestinal CYP3A induction and inhibition. Miosis better detected CYP3A modulation with sequential vs simultaneous dosing. These results show that concurrent oral deuterated and intravenous alfentanil, administered either sequentially or simultaneously, is an efficient and effective approach to assessing hepatic and intestinal CYP3A activity. PMID:21346758

  5. Quantifying and predicting the promiscuity and isoform specificity of small-molecule cytochrome P450 inhibitors.

    Science.gov (United States)

    Nath, Abhinav; Zientek, Michael A; Burke, Benjamin J; Jiang, Ying; Atkins, William M

    2010-12-01

    Drug promiscuity (i.e., inhibition of multiple enzymes by a single compound) is increasingly recognized as an important pharmacological consideration in the drug development process. However, systematic studies of functional or physicochemical characteristics that correlate with drug promiscuity are handicapped by the lack of a good way of quantifying promiscuity. In this article, we present a new entropy-based index of drug promiscuity. We apply this index to two high-throughput data sets describing inhibition of cytochrome P450 isoforms by small-molecule drugs and drug candidates, and we demonstrate how drug promiscuity or specificity can be quantified. For these drug-metabolizing enzymes, we find that there is essentially no correlation between a drug's potency and specificity. We also present an index to quantify the susceptibilities of different enzymes to inhibition by diverse substrates. Finally, we use partial least-squares regression to successfully predict isoform specificity and promiscuity of small molecules, using a set of fingerprint-based descriptors.

  6. Catalytic versus inhibitory promiscuity in cytochrome P450s: implications for evolution of new function.

    Science.gov (United States)

    Foti, Robert S; Honaker, Mathew; Nath, Abhinav; Pearson, Josh T; Buttrick, Brian; Isoherranen, Nina; Atkins, William M

    2011-04-05

    Catalytically promiscuous enzymes are intermediates in the evolution of new function from an existing pool of protein scaffolds. However, promiscuity will only confer an evolutionary advantage if other useful properties are not compromised or if there is no "negative trade-off" induced by the mutations that yield promiscuity. Therefore, identification and characterization of negative trade-offs incurred during the emergence of promiscuity are required to further develop the evolutionary models and to optimize in vitro evolution. One potential negative trade-off of catalytic promiscuity is increased susceptibility to inhibition, or inhibitory promiscuity. Here we exploit cytochrome P450s (CYPs) as a model protein scaffold that spans a vast range of catalytic promiscuity and apply a quantitative index to determine the relationship between promiscuity of catalysis and promiscuity of inhibition for a series of homologues. The aim of these studies is to begin to identify properties that, in general, correlate with catalytic promiscuity, hypothetically such as inhibitory promiscuity. Interestingly, the data indicate that the potential negative trade-off of inhibitory promiscuity is nearly insignificant because even highly substrate specific CYPs have high inhibitory promiscuity, with little incremental increase in susceptibility to inhibitory interactions as the substrate promiscuity increases across the series of enzymes. In the context of evolution, inhibitory promiscuity is not an obligate negative trade-off for catalytic promiscuity.

  7. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones.

    Science.gov (United States)

    Guo, Juan; Ma, Xiaohui; Cai, Yuan; Ma, Ying; Zhan, Zhilai; Zhou, Yongjin J; Liu, Wujun; Guan, Mengxin; Yang, Jian; Cui, Guanghong; Kang, Liping; Yang, Lei; Shen, Ye; Tang, Jinfu; Lin, Huixin; Ma, Xiaojing; Jin, Baolong; Liu, Zhenming; Peters, Reuben J; Zhao, Zongbao K; Huang, Luqi

    2016-04-01

    Cytochromes P450 (CYPs) play a key role in generating the structural diversity of terpenoids, the largest group of plant natural products. However, functional characterization of CYPs has been challenging because of the expansive families found in plant genomes, diverse reactivity and inaccessibility of their substrates and products. Here we present the characterization of two CYPs, CYP76AH3 and CYP76AK1, which act sequentially to form a bifurcating pathway for the biosynthesis of tanshinones, the oxygenated diterpenoids from the Chinese medicinal plant Danshen (Salvia miltiorrhiza). These CYPs had similar transcription profiles to that of the known gene responsible for tanshinone production in elicited Danshen hairy roots. Biochemical and RNA interference studies demonstrated that both CYPs are promiscuous. CYP76AH3 oxidizes ferruginol at two different carbon centers, and CYP76AK1 hydroxylates C-20 of two of the resulting intermediates. Together, these convert ferruginol into 11,20-dihydroxy ferruginol and 11,20-dihydroxy sugiol en route to tanshinones. Moreover, we demonstrated the utility of these CYPs by engineering yeast for heterologous production of six oxygenated diterpenoids, which in turn enabled structural characterization of three novel compounds produced by CYP-mediated oxidation. Our results highlight the incorporation of multiple CYPs into diterpenoid metabolic engineering, and a continuing trend of CYP promiscuity generating complex networks in terpenoid biosynthesis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Catalytic vs. Inhibitory Promiscuity in Cytochrome P450s: Implications for Evolution of New Function

    Science.gov (United States)

    Foti, Robert S.; Honaker, Mathew; Nath, Abhinav; Pearson, Josh T.; Buttrick, Brian; Isoherranen, Nina; Atkins, William M.

    2011-01-01

    Catalytically promiscuous enzymes are intermediates in the evolution of new function from an existing pool of protein scaffolds. However, promiscuity will only confer an evolutionary advantage if other useful properties are not compromised, or if there is no ‘negative trade-off’ induced by the mutations that yield promiscuity. Therefore, identification and characterization of negative trade-offs incurred during the emergence of promiscuity is required to further develop the evolutionary models and to optimize in vitro evolution. One potential negative trade-off of catalytic promiscuity is increased susceptibility to inhibition, or inhibitory promiscuity. Here we exploit Cytochrome P450s (CYPs) as a model protein scaffold that spans a vast range of catalytic promiscuity, and apply a quantitative index to determine the relationship between promiscuity of catalysis and promiscuity of inhibition for a series of homologs. The aim of these studies is to begin to identify properties that, in general, correlate with catalytic promiscuity, hypothetically such as inhibitory promiscuity. Interestingly, the data indicate that the potential negative trade-off of inhibitory promiscuity is nearly insignificant because even highly substrate specific CYPs have high inhibitory promiscuity, with little incremental increase in susceptibility to inhibitory interactions as the substrate promiscuity increases across the series of enzymes. In the context of evolution, inhibitory promiscuity is not an obligate negative trade-off of catalytic promiscuity. PMID:21370922

  9. Investigation of the Regulatory Effects of Saccharin on Cytochrome P450s in Male ICR Mice.

    Science.gov (United States)

    Jo, Jun Hyeon; Kim, Sunjoo; Jeon, Tae Won; Jeong, Tae Cheon; Lee, Sangkyu

    2017-01-01

    Saccharin, the first artificial sweetener, was discovered in 1879 that do not have any calories and is approximately 200~700 times sweeter than sugar. Saccharin was the most common domestically produced sweetener in Korea in 2010, and it has been used as an alternative to sugar in many products. The interaction between artificial sweeteners and drugs may affect the drug metabolism in patients with diabetes, cancer, and liver damage, this interaction has not been clarified thus far. Here, we examined the effects of the potential saccharin-drug interaction on the activities of 5 cytochrome P450 (CYPs) in male ICR mice; further, we examined the effects of saccharin (4,000 mg/kg) on the pharmacokinetics of bupropion after pretreatment of mice with saccharin for 7 days and after concomitant administration of bupropion and saccharin. Our results showed saccharin did not have a significant effect on the 5 CYPs in the S9 fractions obtained from the liver of mice. In addition, we observed no differences in the pharmacokinetic parameters of bupropion between the control group and the groups pretreated with saccharin and that receiving concomitant administration of saccharin. Thus, our results showed that saccharin is safe and the risk of saccharin-drug interaction is very low.

  10. Association of cytochrome P450 1B1 haplotypes with head and neck cancer risk.

    Science.gov (United States)

    Katiyar, Tridiv; Maurya, Shailendra S; Hasan, Feza; Singh, Arvind P; Khan, Anwar J; Hadi, Rahat; Singh, Sudhir; Bhatt, Madan L B; Parmar, Devendra

    2017-07-01

    Genetic polymorphisms have been reported in several cytochrome P450 (CYP) genes, including CYP1B1 which metabolically activates procarcinogens present in tobacco to carcinogenic intermediates. This study used a case-control approach in North Indian population to determine associations between genetic variants in CYP1B1 and risk of Head and Neck Squamous Cell Carcinoma (HNSCC). We examined the genotype and haplotype frequencies at various single-nucleotide polymorphisms (SNPs), including SNPs previously reported in the promoter region and intron 1 of CYP1B1 in Caucasians. Using cycle sequencing, 9 SNPs were identified in the promoter region, intron 1, and exons 2 and 3. Haplotype analysis revealed that 5 SNPs (those in the promoter region, intron, and Arg48Gly and Ala119Ser in exon 2) were in strong linkage disequilibrium (LD). Cases with the T-A-T-G-T haplotype were significantly associated with increased risk of HNSCC. Interestingly, qRT-PCR studies revealed a significant increase in mRNA expression of CYP1B1 in peripheral blood isolated from cases with the T-A-T-G-T haplotype compared with cases with the C-G-C-C-G haplotype, and in cases compared to controls for both main haplotypes. The data thus provide evidence that CYP1B1 haplotypes could be more effective in predicting HNSCC risk. Environ. Mol. Mutagen. 58:443-450, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Cytochrome P450 Gene Variants, Race, and Mortality Among Clopidogrel Treated Patients Following Acute Myocardial Infarction

    Science.gov (United States)

    Cresci, Sharon; Depta, Jeremiah P.; Lenzini, Petra A.; Li, Allie Y.; Lanfear, David E.; Province, Michael A.; Spertus, John A.; Bach, Richard G.

    2014-01-01

    Background Clopidogrel is recommended after acute myocardial infarction (AMI) but has variable efficacy and safety, in part related to the effect of cytochrome P450 (CYP) polymorphisms on its metabolism. The effect of CYP polymorphisms on cardiovascular events among clopidogrel-treated patients after AMI remains controversial, and no studies to date have investigated the association of CYP variants with outcomes in African American patients. Methods and Results 2732 subjects (2062 Caucasians; 670 African Americans) hospitalized with AMI enrolled in the prospective, multicenter TRIUMPH study were genotyped for CYP polymorphisms. The majority of Caucasians (79%) and African Americans (64.4%) were discharged on clopidogrel. Among Caucasians, carriers of the loss-of-function CYP2C19*2 allele had significantly increased 1-year mortality (adjusted HR: 1.70; CI: 1.01 to 2.86; p=0.046), and a trend toward increased rate of recurrent MI (adjusted HR: 2.10; CI 0.95 to 4.63; p= 0.066). Among African Americans, increased 1-year mortality was associated with the gain of function CYP2C19*17 allele (adjusted HR for *1/*17 vs. *1/*1: 2.02; CI: 0.92 to 4.44; *17/*17 vs. *1/*1: 8.97; CI: 3.34 to 24.10; pclopidogrel metabolism are associated with increased mortality among clopidogrel treated patients following AMI; the specific polymorphism and the putative mechanism vary according to race. PMID:24762860

  12. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor.

    Science.gov (United States)

    Baj-Rossi, C; Rezzonico Jost, T; Cavallini, A; Grassi, F; De Micheli, G; Carrara, S

    2014-03-15

    This paper reports the characterization of an electrochemical biosensor for the continuous monitoring of Naproxen based on cytochrome P450. The electrochemical biosensor is based on the drop-casting of multi-walled carbon-nanotubes (MWCNTs) and microsomal cytochrome P4501A2 (msCYP1A2) on a graphite screen-printed electrode (SPE). The proposed biosensor was employed to monitor Naproxen (NAP), a well-known anti-inflammatory compound, through cyclic voltammetry. The dynamic linear range for the amperometric detection of NAP had an upper limit of 300 µM with a corresponding limit of detection (LOD) of 16 ± 1 µM (S/N=3), which is included in NAP physiological range (9-300 µM). The MWCNT/msCYP1A2-SPE sensor was also calibrated for NAP detection in mouse serum that was previously extracted from mice, showing a slightly higher LOD (33 ± 18 µM). The stability of the msCYP1A2-based biosensor was assessed by longtime continuous cyclic voltammetric measurements. The ability of the sensor to monitor drug delivery was investigated by using a commercial micro-osmotic pump. Results show that the MWCNT/msCYP1A2-SPE sensor is capable of precisely monitoring the real-time delivery of NAP for 16 h. This work proves that the proposed electrochemical sensor might represent an innovative point-of-care solution for the personalization of drug therapies, as well as for pharmacokinetic studies in both animals and humans. © 2013 Elsevier B.V. All rights reserved.

  13. Production and Characterization of Monoclonal Antibodies against NADPH-Cytochrome P-450 Reductases from Helianthus tuberosus1

    Science.gov (United States)

    Lesot, Agnès; Benveniste, Irène; Hasenfratz, Marie-Paule; Durst, Francis

    1992-01-01

    Monoclonal antibodies (mAbs) against a plant NADPH-cytochrome P-450 (Cyt P-450) reductase from Jerusalem artichoke (Helianthus tuberosus) tuber were prepared. These antibodies were produced by hybridoma resulting from the fusion of spleen cells from a rat immunized with a purified preparation of the reductase and mouse myeloma cells. The mAbs thus obtained were screened for their interaction with the reductases, first in western dots and then in blots, and for their ability to inhibit the NADPH-cytochrome c (Cyt c) reductase activity from Jerusalem artichoke microsomes. Among the 11 clones giving a positive response on western blots, only 6 were also able to inhibit microsomal NADPH-Cyt c reductase activity, and the microsomal Cyt P-450 monooxygenase activities dependent upon electrons transferred by the reductase. Thus, two families of mAbs were characterized: a family of mAbs that interact with epitopes of the reductase implicated in the reduction of Cyt P-450 by NADPH (binding sites for NADPH, flavin mononucleotide, flavin adenine dinucleotide, and Cyt P-450), and a structural family, whose members recognize epitopes outside the active site of the reductases. These mAbs specifically recognize the reductase, and all of them interact with all of the isoforms, indicating that important primary or secondary structural analogies exist between the isoforms, not only at the active site, but also at the level of epitopes not directly associated with catalytic activity. Images Figure 1 Figure 2 Figure 3 PMID:16653138

  14. Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum.

    Directory of Open Access Journals (Sweden)

    Nikos Karatolos

    Full Text Available The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s are poorly understood.Bioassays against eggs of a German (TV8 population of T. vaporariorum revealed a moderate level (21-fold of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel displaying a much higher resistance ratio (>4000-fold. The enzyme inhibitor piperonyl butoxide (PBO suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s. Quantitative PCR highlighted a single P450 gene (CYP4G61 that was highly over-expressed (81.7-fold in TV8pyrsel.Over-expression of a single cytochrome P450 gene (CYP4G61 has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.

  15. Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum.

    Science.gov (United States)

    Karatolos, Nikos; Williamson, Martin S; Denholm, Ian; Gorman, Kevin; Ffrench-Constant, Richard H; Bass, Chris

    2012-01-01

    The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s) are poorly understood. Bioassays against eggs of a German (TV8) population of T. vaporariorum revealed a moderate level (21-fold) of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much higher resistance ratio (>4000-fold). The enzyme inhibitor piperonyl butoxide (PBO) suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR highlighted a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in TV8pyrsel. Over-expression of a single cytochrome P450 gene (CYP4G61) has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen.

  16. Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol and midazolam, in common marmosets (Callithrix jacchus).

    Science.gov (United States)

    Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Toda, Akiko; Shimizu, Makiko; Uno, Yasuhiro; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    1. Pharmacokinetics of human cytochrome P450 probes (caffeine, racemic warfarin, omeprazole, metoprolol and midazolam) composite, after single intravenous and oral administrations at doses of 0.20 and 1.0 mg kg(-1), respectively, to four male common marmosets were investigated. 2. The plasma concentrations of caffeine and warfarin decreased slowly in a monophasic manner but those of omeprazole, metoprolol and midazolam decreased extensively after intravenous and oral administrations, in a manner that approximated those as reported for pharmacokinetics in humans. 3. Bioavailabilities were ∼100% for caffeine and warfarin, but omeprazole and metoprolol. Bioavailability of midazolam was 4% in marmosets, presumably because of contribution of marmoset P450 3A4 expressed in small intestine and liver, with a high catalytic efficiency for midazolam 1'-hydroxylation as evident in the recombinant system. 4. These results suggest that common marmosets, despite their rapid clearance of some human P450 probe substrates, could be an experimental model for humans and that marmoset P450s have functional characteristics that differ from those of human and/or cynomolgus monkey P450s in some aspects, indicating their importance in modeling in P450-dependent drug metabolism studies in marmosets and of further studies.

  17. Cytochrome P450 detection in liver of the catfish Ancistrus multispinis (Osteichthyes, Loricariidae

    Directory of Open Access Journals (Sweden)

    Claudio Klemz

    2010-04-01

    Full Text Available Sensitive biological responses to environmental contaminants are useful as early warning signals to predict the damages by long-term exposure. Protocols standardization to quantify biochemical parameters in different fish species is required to validate its use as biomarkers. Comparative studies from different fish species and its interpretation are a challenge for the validation of its use as general biomarkers, representative of environmental impact. In this study, the protocol for liver cytochrome P450 (CYP analysis from the native Brazilian fish Ancistrus multispinis was established. The microsome contamination by hemoglobin during the analysis of CYP in liver was detected, leading to misinterpretation of the results. The spectrophotometric method for CYP analysis was adapted in order to diminish the hemoglobin interference. Additionally, the western blotting method for CYP1A analysis was tested with success for this fish species.Respostas biológicas sensíveis aos contaminantes ambientais são úteis para prever efeitos prejudiciais devido a exposições crônicas. Padronização de protocolos para quantificar parâmetros bioquímicos em diferentes espécies de peixes é necessária para validar o uso como biomarcador. Estudos comparativos de diferentes espécies de peixe e sua interpretação são um avanço para a validação do uso de biomarcadores gerais, representativos do impacto ambiental. Neste estudo o protocolo para a análise do citocromo P450 (CYP do peixe nativo brasileiro Ancistrus multispinis foi estabelecido. Cyp é um biomarcador de exposição principalmente de hidrocarbonetos policíclicos aromáticos (HAP, bifenilas policloradas (PCB e dioxinas. A contaminação do microssomo pela hemoglobina durante as análises do CYP no fígado foi detectada, levando a uma interpretação errônea dos resultados. O método espectrofotométrico para análise do CYP foi adaptado para diminuir a interferência da hemoglobina. Al

  18. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15.

    Science.gov (United States)

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2006-07-05

    In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta

  19. Rapid birth-death evolution specific to xenobiotic cytochrome P450 genes in vertebrates.

    Directory of Open Access Journals (Sweden)

    James H Thomas

    2007-05-01

    Full Text Available Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450 gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50-80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth-death evolution even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. Unstable gene islands in vertebrates share some functional properties with bacterial genomic islands, though they arise by local gene duplication rather than horizontal gene

  20. Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics

    Science.gov (United States)

    Yang, Chunhua; Donthamsetty, Shashikiran; Cantuaria, Guilherme; Jadhav, Gajanan R.; Vangala, Subrahmanyam; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural “milieu” confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens. PMID:25251219

  1. Modulation of cytochrome P450 metabolism and transport across intestinal epithelial barrier by ginger biophenolics.

    Directory of Open Access Journals (Sweden)

    Rao Mukkavilli

    Full Text Available Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural "milieu" confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G, 8-gingerol (8 G, 10-gingerol (10 G and 6-shogaol (6S, through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp. Intriguingly, however, 10 G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens.

  2. In vitro inhibitory effects of pristimerin on human liver cytochrome P450 enzymes.

    Science.gov (United States)

    Hao, Xiaoyi; Yuan, Jianlei; Xu, Yansen; Wang, Zhao; Hou, Jianzhang; Hu, Tao

    2017-04-07

    1. Pristimerin (PTM) is a biological component isolated from Chinese herbal plant Celastrus and Maytenus spp and it possesses numerous pharmacological activities. However, whether PTM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. 2. In this study, the inhibitory effects of PTM on the eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs). 3. The results showed that PTM inhibited the activity of CYP1A2, 3A4, and 2C9, with IC50 values of 21.74, 15.88, and 16.58 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that PTM was not only a non-competitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP1A2 and 2C9, with Ki values of 7.33, 11.60, and 8.09 μM, respectively. In addition, PTM is a time-dependent inhibitor for CYP3A4 with Kinact/KI value of 0.049/11.62 μM-1min-1. 4. The in vitro studies of PTM with CYP isoforms indicate that PTM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, 3A4, and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.

  3. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    Directory of Open Access Journals (Sweden)

    Steven J. Hughes

    1999-06-01

    Full Text Available The expression of cytochromes P450 (CYP in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  4. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro.

    Science.gov (United States)

    Christiansen, Anne; Backensfeld, Thomas; Denner, Karsten; Weitschies, Werner

    2011-05-01

    The purpose of the study was to investigate the impact of commonly used non-ionic surfactants on cytochrome P450 (CYP) 3A4-mediated metabolism of testosterone and the CYP2C9-mediated metabolism of diclofenac. Polysorbate 80 (PS 80), D-α-tocopheryl polyethylene glycol (1000) succinate (TPGS), sucrose laurate, Cremophor EL (CR EL), and Cremophor RH 40 (Cr RH 40) were incubated with human liver microsomes at different concentrations to determine the IC(50) of the reduced metabolism of the model substrates. Inhibitory potential in case of all tested compounds could be observed already below their critical micelle concentrations (CMC) and in concentration-dependant manner. The IC(50) of the CYP 3A4-mediated 6β-hydroxylation of testosterone has been determined as 0.40 mM (PS 80), 0.15 mM (TPGS), 0.20mM (sucrose laurate), 0.60mM (CrEL), and 0.80 mM (CrRH40). The IC(50) concerning the CYP 2C9-mediated 4-hydroxylation of diclofenac has been calculated to be 0.04 mM (PS80), 0.30 mM (TPGS), 0.07 mM (sucrose laurate), 0.03 mM (CrEL), and 0.03 mM (Cr RH 40). The results indicate that these non-ionic surfactants are in vitro inhibitors of CYP-mediated metabolism and might have the potential to modify the pharmacokinetics of co-administered drugs, which are substrates of CYP, and thereby enhance their bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Food-drug interactions via human cytochrome P450 3A (CYP3A).

    Science.gov (United States)

    Fujita, Ken-ichi

    2004-01-01

    Food-drug interactions have been reported to occur in various systems in the body. The causes of these interactions are mainly divided into pharmacodynamic and pharmacokinetic processes. Among these processes, drug metabolism plays a crucial role in drug interactions. Metabolic food-drug interactions occur when a certain food alters the activity of a drug-metabolizing enzyme, leading to a modulation of the pharmacokinetics of drugs metabolized by the enzyme. A variety of interactions have been documented so far. Foods consisting of complex chemical mixtures, such as fruits, alcoholic beverages, teas, and herbs, possess the ability to inhibit or induce the activity of drug-metabolizing enzymes. According to results obtained thus far, cytochrome P450 3A4 (CYP3A4) appears to be a key enzyme in food-drug interactions. For example, interactions of grapefruit juice with felodipine and cyclosporine, red wine with cyclosporine, and St John's wort with various medicines including cyclosporine, have been demonstrated. The results indicate the requirement of dosage adjustment to maintain drug concentrations within their therapeutic windows. The CYP3A4-related interaction by food components may be related to the high level of expression of CYP3A4 in the small intestine, as well as its broad substrate specificity, as CYP3A4 is responsible for the metabolism of more than 50% of clinical pharmaceuticals. This review article summarizes the findings obtained to date concerning food-drug interactions and their clinical implications. It seems likely that more information regarding such interactions will accumulate in the future, and awareness is necessary for achieving optimal drug therapy.

  6. Rapid estimation of activation enthalpies for cytochrome-P450-mediated hydroxylations.

    Science.gov (United States)

    Mayeno, Arthur N; Robinson, Jonathan L; Reisfeld, Brad

    2011-03-01

    Cytochrome P450 (CYP) enzymes play a critical role in detoxication and bioactivation of xenobiotics; thus, the ability to predict the biotransformation rates and regioselectivity of CYP enzymes toward substrates is an important goal in toxicology and pharmacology. Here, we present the use of the semiempirical quantum chemistry method SAM1 to rapidly estimate relative activation enthalpies (ΔH(‡)) for the hydroxylation of aliphatic carbon centers of various substrates. The ΔH(‡) were determined via a reaction path calculation, in the reverse direction (RRP), using the iron-hydroxo-porphine intermediate and the substrate radical. The SAM1 ΔH(‡) were calculated via unrestricted Hartree-Fock (UHF) and configuration interaction (CI) formalisms for both the doublet and quartet spin states. The SAM1 RRP ΔH(‡), after subtracting a correction factor, were compared with density functional theory (DFT) B3LYP activation energies for two sets of substrates and showed R(2) ranging from 0.69 to 0.89, and mean absolute differences ranging from 1.2 ± 1.0 to 1.7 ± 1.5 kcal/mol. SAM1 UHF and CI RRP calculation times were, on average, more than 200 times faster than those for the corresponding forward reaction path DFT calculations. Certain key transition-state (TS) geometry measurements, such as the forming O···H bond length, showed good correlation with the DFT values. These results suggest that the SAM1 RRP approach can be used to rapidly estimate the DFT activation energy and some key TS geometry measurements and can potentially be applied to estimate substrate hydroxylation rates and regioselectivity by CYP enzymes. Copyright © 2010 Wiley Periodicals, Inc.

  7. Low hepatic cytochrome P450 3A activity is a risk for corticosteroid-induced osteonecrosis.

    Science.gov (United States)

    Kaneshiro, Yasunori; Oda, Yutaka; Iwakiri, Kentaro; Masada, Toshiaki; Iwaki, Hiroyoshi; Hirota, Yoshio; Kondo, Kyoko; Takaoka, Kunio

    2006-10-01

    Osteonecrosis of the femoral head (ONFH) is one of the major side effects of corticosteroid therapy. Because corticosteroids are metabolized by hepatic cytochrome P450 (CYP) 3A, a low endogenous activity of this enzyme may contribute to the pathogenesis of ONFH. The purpose of this study was to examine the possible association of hepatic CYP3A activity and the susceptibility to ONFH in patients treated with corticosteroids. In this prospective controlled study we measured the clearance of intravenous midazolam (0.25 mg/kg) to estimate hepatic CYP3A activity in patients with steroid-induced ONFH (n = 26), patients with alcohol-related ONFH (n = 29), and non-ONFH control patients (n = 75) undergoing orthopedic surgery. Midazolam clearance was compared between the groups, and the relationship between the level of hepatic CYP3A activity and the prevalence of ONFH was evaluated by multivariate analysis. Midazolam clearance in patients with steroid-induced ONFH was significantly lower than that in control patients and patients with alcohol-related ONFH (7.7 +/- 1.8 mL x kg(-1) x min(-1) versus 11.4 +/- 3.5 mL x kg(-1) x min(-1) and 10.5 +/- 2.8 mL x kg(-1) x min(-1), respectively; P < .001). Patients with low midazolam clearance (<9.5 mL x kg(-1) x min(-1)) had a 9-fold greater risk for steroid-induced ONFH (adjusted odds ratio, 9.08 [95% confidence interval, 2.79-29.6]; P < .001). Midazolam clearance did not show a significant correlation with the prevalence of alcohol-related ONFH. Low hepatic CYP3A activity may significantly contribute to the risk for steroid-induced ONFH.

  8. Cytochrome P450 inhibitory potential of Triphala--a Rasayana from Ayurveda.

    Science.gov (United States)

    Ponnusankar, S; Pandit, Subrata; Babu, Ramesh; Bandyopadhyay, Arun; Mukherjee, Pulok K

    2011-01-07

    'Triphala' is one of the age-old, most commonly used polyherbal preparation from Ayurveda as Rasayana drug. This study was aimed at evaluating the effect of 'Triphala' on drug modulating enzymes to assess its safety through its potential to interact with co-administered drugs. The cytochrome P450 inhibitory effect of 'triphala' formulation was investigated on rat liver microsomes using CYP450-CO complex assay and on individual isoform such as CYP3A4 and 2D6 using fluorescence screening. RP-HPLC method was developed to standardize 'triphala' and its individual components using gallic acid as analytical marker compound. RP-HPLC analysis demonstrated the presence of gallic acid (4.30±2.09 mg/g) in the formulation. The formulation showed 23% inhibition of the rat liver microsomes through CYP450-CO complex assay which is comparatively less when compared with the individual components. Further, the effect of standardized formulation dissolved in ethanol showed CYP3A4 and CYP2D6 inhibitory activity at the IC(50) values of 119.65±1.91 μg/ml and 105.03±0.98 μg/ml respectively. Gallic acid was also found to inhibit both the isoforms at the IC(50) values of 87.24±1.11 μg/ml and 92.03±0.38 μg/ml respectively. Various concentrations of the formulation and its individual components showed significantly less inhibitory activity (p<0.001) on individual isoforms when compared with the positive control. Assessment on the in vitro effect of 'triphala' on drug modulating enzymes has important implications for predicting the likelihood of herb-drug interactions if these are administered concomitantly. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Assessment of the inhibition risk of shikonin on cytochrome P450 via cocktail inhibition assay.

    Science.gov (United States)

    Tang, Shuowen; Chen, Ang; Zhou, Xiaojing; Zeng, Li; Liu, Mingyao; Wang, Xin

    2017-11-05

    Shikonin is a naphthoquinone pigment extracted from roots of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), and possesses various pharmaceutical activities, such as anti-inflammation and anti-cancer effects. In addition, shikonin as a natural red colorant for food garnishment and cosmetics ingredient is widely used in the world. However, the inhibition risk of shikonin on cytochrome P450 (CYP) remains unclear. The aim of this study was to investigate the potential inhibition of shikonin against CYP1A2, CYP2B1/6, CYP2C9/11, CYP2D1/6, CYP2E1 and CYP3A2/4 activities in human and rat liver microsomes through cocktail approach in vitro. The results demonstrated that shikonin exhibited no time-dependent inhibition of CYP activities. In human liver microsomes, shikonin was not only a mixed inhibitor of CYP1A2, CYP2B6, CYP2C9, CYP2D6 and CYP3A4, but also a competitive inhibitor of CYP2E1, with Ki values no more than 7.72μM. In rat liver microsomes, shikonin also exhibited the mixed inhibition on CYP1A2, CYP2B1, CYP2C11, CYP2D1, and the competitive inhibition on CYP2E1. Interestingly, shikonin presented an atypical kinetic inhibition of CYP3A2-mediated midazolam 1-hydroxylation in rats. In conclusion, the relatively low Ki values of shikonin would have a high risk potential to cause the possible toxicity, especially drug-drug or food-drug interactions based on the potent inhibition of CYP enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1.

    Science.gov (United States)

    Cui, Ying-Lu; Xue, Qiao; Zheng, Qing-Chuan; Zhang, Ji-Long; Kong, Chui-Peng; Fan, Jing-Rong; Zhang, Hong-Xing

    2015-10-01

    Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved. Copyright © 2015. Published by Elsevier B.V.

  11. Effect of colchicine on rat hepatic cytochrome P450 enzymes by cocktail probe drugs.

    Science.gov (United States)

    Xu, Bei-Bei; Xu, Zhi-Sheng; Zheng, Shuang-Li; Tang, Cong-Rong

    2014-01-01

    Colchicine (COL), an alkaloid derived from plants, has been used to treat gout, pseudogout and familial Mediterranean fever for several decades. The purpose of this study was to investigate the in vivo effect of COL on rat cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2C19 and CYP2D6) to assess its potential to interact with co-administered drugs. This was a randomized, double-blind, two-way crossover study with a 4-week washout period between the phases. Rats received COL via an irrigation stomach needle at a dose of 0.4 mg/kg once daily for consecutive 10 days. On the eleventh day, a cocktail solution at a dose of 4 ml/kg, which contained phenacetin (15.0 mg/kg), tolbutamide (3.0 mg/kg), omeprazole (15.0 mg/kg) and dextromethorphan (15.0mg/kg), was oral administered to all rats. Then 0.3 ml blood samples were collected at a set of time-points. The plasma concentrations of probe drugs were simultaneously determined by HPLC-MS/MS. Pharmacokinetic parameters simulated by DAS software were used for the evaluation of COL on the activities of rat CYP1A2, CYP2C9, CYP2C19 and CYP2D6 enzymes. Our study showed that COL administration induced CYP2C9 activity, causing a significant decrease in AUC(0-infinity) (P drugs metabolized by CYP2C9 or CYP2D6, which may result in altered plasma concentrations of these drugs and relevant drug-drug interactions.

  12. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeong

    2010-09-01

    Full Text Available Eupatilin and jaceosidin are bioactive flavones found in the medicinal herbs of the genus Artemisia. These bioactive flavones exhibit various antioxidant, antiinflammatory, antiallergic, and antitumor activities. The inhibitory potentials of eupatilin and jaceosidin on the activities of seven major human cytochrome P450 enzymes in human liver microsomes were investigated using a cocktail probe assay. Eupatilin and jaceosidin potently inhibited CYP1A2-catalyzed phenacetin O-deethylation with 50% inhibitory concentration (IC50 values of 9.4 mM and 5.3 mM, respectively, and CYP2C9-catalyzed diclofenac 4-hydroxylation with IC50 values of 4.1 mM and 10.2 mM, respectively. Eupatilin and jaceosidin were also found to moderately inhibit CYP2C19-catalyzed [S]-mephenytoin 4¢-hydroxylation, CYP2D6-catalyzed bufuralol 1¢-hydroxylation, and CYP2C8-catalyzed amodiaquine N-deethylation. Kinetic analysis of human liver microsomes showed that eupatilin is a competitive inhibitor of CYP1A2 with a Ki value of 2.3 mM and a mixed-type inhibitor of CYP2C9 with a Ki value of 1.6 mM. Jaceosidin was shown to be a competitive inhibitor of CYP1A2 with a Ki value of 3.8 mM and a mixed-type inhibitor of CYP2C9 with Ki value of 6.4 mM in human liver microsomes. These in vitro results suggest that eupatilin and jaceosidin should be further examined for potential pharmacokinetic drug interactions in vivo due to inhibition of CYP1A2 and CYP2C9.

  13. Relationship between cytochrome P450 polymorphisms and prescribed medication in elderly haemodialysis patients.

    Science.gov (United States)

    Parker, Krystina; Aasebø, Willy; Haslemo, Tore; Stavem, Knut

    2016-01-01

    Elderly patients on haemodialysis have a high prevalence of polypharmacy and are at risk of drug-related complications. More than 80 % of all prescribed drugs are metabolized by the cytochrome P450 (CYP) enzyme system. The aims of this study were to describe the prevalence of polymorphism in three CYP isoenzymes and the relationship between CYP polymorphism and prescribed drugs. Fifty-one elderly haemodialysis patients aged ≥65 years were included. CYP-genotyping was carried out in whole blood by a real-time PCR method for detecting common variant alleles in CYP2C9, CYP2C19 and CYP2D6. The allele frequencies were calculated using the Hardy-Weinberg equation. The overall prevalence of CYP polymorphisms (heterozygous and homozygous) was 77 %. The prevalence of heterozygous carriers of variant alleles coding for defective CYP2D6, CYP2C9 and CYP2C19 was 64, 22 and 55 %, respectively; the prevalence of homozygous carriers was 6 % for each of the CYP2D6, CYP2C9 and CYP2C19 enzymes. The prevalence of the CYP2D6*6, CYP2D6*9 and CYP2D6*41 variant alleles did not differ (p = 0.31) from that in a European Caucasian reference population. Twenty-three patients (45 %) had at least one CYP mutation and used drugs that are metabolized by the CYP isoenzymes. Metoprolol and proton-pump inhibitors were the most commonly used drugs that could be affected by a heterozygous or homozygous mutation. Polymorphisms of CYP2C9, CYP2C19 and CYP2D6 are common in elderly haemodialysis patients. Many of these patients have a phenotype with altered CYP enzyme activity and could benefit from close drug monitoring or a drug switch.

  14. Cytochrome P450-mediated metabolic alterations in preeclampsia evaluated by quantitative steroid signatures.

    Science.gov (United States)

    Moon, Ju-Yeon; Moon, Myeong Hee; Kim, Ki Tae; Jeong, Dae Hoon; Kim, Young Nam; Chung, Bong Chul; Choi, Man Ho

    2014-01-01

    Although preeclampsia has been suggested potential risk factors including placental and systemic inflammation, oxidative stress, and abnormal steroid metabolism during pregnancy, the pathogenesis of preeclampsia has not fully been elucidated, particularly in steroid metabolism. The association between various cytochrome P450 (CYP)-mediated steroid metabolic markers and preeclampsia risk was therefore investigated. The serum levels of 54 CYP-mediated regioselective hydroxysteroids and their substrates were quantitatively evaluated from both pregnant women with preeclampsia (n=30; age, 30.8±4.5 years) and normotensive controls (n=30; age, 31.0±3.5 years), who were similar with respect to maternal age, gestational age, and body mass index. The levels of 6ß-, 7a-, and 11ß-hydroxymetabolites of androgens and corticoids were significantly increased in women with preeclampsia. In addition, the levels of oxysterols, including 7a-, 7ß-, 4ß-, 20a-, 24S-, and 27-hydroxycholesterol, were markedly higher, while the levels of 16a-OH-DHEA, 16a-OH-androstenedione, and cholesterol were significantly decreased in patients. The 6ß-hydroxylation of androgens and corticoids by CYP3A4 (P2.0-fold) were positively correlated with the conditions of preeclampsia. Our metabolic profiling suggests the CYP-mediated alterations in steroid metabolism and hydroxylation in pregnancy-induced hypertension. These multiple markers could serve as background information for improved clinical diagnosis and management during pregnancy. This article is part of a Special Issue entitled "Pregnancy and Steroids". Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease.

    Science.gov (United States)

    Theken, Katherine N; Schuck, Robert N; Edin, Matthew L; Tran, Bryant; Ellis, Kyle; Bass, Almasa; Lih, Fred B; Tomer, Kenneth B; Poloyac, Samuel M; Wu, Michael C; Hinderliter, Alan L; Zeldin, Darryl C; Stouffer, George A; Lee, Craig R

    2012-06-01

    Preclinical and genetic epidemiologic studies suggest that modulating cytochrome P450 (CYP)-mediated arachidonic acid metabolism may have therapeutic utility in the management of coronary artery disease (CAD). However, predictors of inter-individual variation in CYP-derived eicosanoid metabolites in CAD patients have not been evaluated to date. Therefore, the primary objective was to identify clinical factors that influence CYP epoxygenase, soluble epoxide hydrolase (sEH), and CYP ω-hydroxylase metabolism in patients with established CAD. Plasma levels of epoxyeicosatrienoic acids (EETs), dihydroxyeicosatrienoic acids (DHETs), and 20-hydroxyeicosatetraenoic acid (20-HETE) were quantified by HPLC-MS/MS in a population of patients with stable, angiographically confirmed CAD (N=82) and healthy volunteers from the local community (N=36). Predictors of CYP epoxygenase, sEH, and CYP ω-hydroxylase metabolic function were evaluated by regression. Obesity was significantly associated with low plasma EET levels and 14,15-EET:14,15-DHET ratios. Age, diabetes, and cigarette smoking also were significantly associated with CYP epoxygenase and sEH metabolic activity, while only renin-angiotensin system inhibitor use was associated with CYP ω-hydroxylase metabolic activity. Compared to healthy volunteers, both obese and non-obese CAD patients had significantly higher plasma EETs (Ppatients, and demonstrate that biomarkers of CYP epoxygenase and sEH, but not CYP ω-hydroxylase, metabolism are altered in stable CAD patients relative to healthy individuals. Future studies are necessary to determine the therapeutic utility of modulating these pathways in patients with CAD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. [Effects of intestinal flora on the expression of cytochrome P450 3A in the liver].

    Science.gov (United States)

    Ishii, Makoto; Toda, Takahiro; Ikarashi, Nobutomo; Ochiai, Wataru; Sugiyama, Kiyoshi

    2012-01-01

    Living organisms eliminate foreign low-antigenic substances, such as drugs and environmental pollutants, by detoxification mediated by metabolizing cytochrome P450 (CYP). We have examined the possible regulation of CYP expression by enteric bacteria. Cyp mRNA expression levels, Cyp3a protein expression level, and the activity of Cyp3a in hepatic microsomal fractions were compared in germ-free (GF) and specific pathogen-free (SPF) mice. We evaluated hepatic Cyp3a11 mRNA expression levels and Cyp3a metabolic activity in GF and SPF mice after five days of antibiotic administration. The fecal levels of lithocholic acid (LCA)-producing bacteria and hepatic taurolithocholic acid (TLCA) were also measured. Cyp mRNA expression levels, Cyp3a protein expression level, and the activity of Cyp3a in SPF mice were higher than those in GF mice, indicating that enteric bacteria increases hepatic Cyp3a expression. The effects of enteric bacteria-reducing antibiotics on Cyp3a expression were examined. We observed that decreasing enteric bacteria with antibiotics in SPF mice caused a significant decrease in the hepatic Cyp3a11 mRNA expression, TLCA, and fecal LCA-producing bacteria compared to the group that did not receive antibiotics. No change in Cyp3a11 expression was observed in GF mice that were treated with antibiotics. Administration of LCA to GF mice showed an increase in Cyp3a11 expression similar to that of SPF mice. The enzymes of the enteric bacteria are believed to metabolize and detoxify drugs by either reduction or hydrolysis. The results of this study indicate that changes in enteric bacteria may alter the expression and activity of hepatic drug metabolizing enzymes and pharmacokinetics. Therefore, enteric bacteria should be closely monitored to ensure the safe use of drugs.

  17. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Hanafy M.; O' Neill, Paul M.; Hong, David; Finn, Robert; Henderson, Colin; Wright, Aaron T.; Cravatt, Benjamin; Hemingway, Janet; Paine, Mark J.

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the target tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.

  18. Biosynthesis of Costunolide, Dihydrocostunolide, and Leucodin. Demonstration of Cytochrome P450-Catalyzed Formation of the Lactone Ring Present in Sesquiterpene Lactones of Chicory

    Science.gov (United States)

    de Kraker, Jan-Willem; Franssen, Maurice C.R.; Joerink, Maaike; de Groot, Aede; Bouwmeester, Harro J.

    2002-01-01

    Chicory (Cichorium intybus) is known to contain guaianolides, eudesmanolides, and germacranolides. These sesquiterpene lactones are postulated to originate from a common germacranolide, namely (+)-costunolide. Whereas a pathway for the formation of germacra-1(10),4,11(13)-trien-12-oic acid from farnesyl diphosphate had previously been established, we now report the isolation of an enzyme activity from chicory roots that converts the germacrene acid into (+)-costunolide. This (+)-costunolide synthase catalyzes the last step in the formation of the lactone ring present in sesquiterpene lactones and is dependent on NADPH and molecular oxygen. Incubation of the germacrene acid in the presence of 18O2 resulted in the incorporation of one atom of 18O into (+)-costunolide. The label was situated at the ring oxygen atom. Hence, formation of the lactone ring most likely occurs via C6-hydroxylation of the germacrene acid and subsequent attack of this hydroxyl group at the C12-atom of the carboxyl group. Blue light-reversible CO inhibition and experiments with cytochrome P450 inhibitors demonstrated that the (+)-costunolide synthase is a cytochrome P450 enzyme. In addition, enzymatic conversion of (+)-costunolide into 11(S),13-dihydrocostunolide and leucodin, a guaianolide, was detected. The first-mentioned reaction involves an enoate reductase, whereas the formation of leucodin from (+)-costunolide probably involves more than one enzyme, including a cytochrome P450 enzyme. PMID:12011356

  19. Thermodynamic and kinetic studies on the binding of nitric oxide to a new enzyme mimic of cytochrome p450.

    Science.gov (United States)

    Franke, Alicja; Hessenauer-Ilicheva, Natalya; Meyer, Dominik; Stochel, Grazyna; Woggon, Wolf-D; van Eldik, Rudi

    2006-10-18

    A new model for the P450 enzyme carrying a SO(3)(-) ligand coordinated to iron(III) (complex 2) reversibly binds NO to yield the nitrosyl adduct. The rate constant for NO binding to 2 in toluene is of the same order of magnitude as that found for the nitrosylation of the native, substrate-bound form of P450(cam) (E.S-P450(cam)). Large and negative activation entropy and activation volume values for the binding of NO to complex 2 support a mechanism that is dominated by bond formation with concomitant iron spin change from S = (5)/(2) to S = 0, as proposed for the reaction between NO and E.S-P450(cam). In contrast, the dissociation of NO from 2(NO) was found to be several orders of magnitude faster than the corresponding reaction for the E.S-P450(cam)/NO system. In a coordinating solvent such as methanol, the alcohol coordinates to iron(III) of 2 at the distal position, generating a six-coordinate, high-spin species 5. The reaction of NO with 5 in methanol was found to be much slower in comparison to the nitrosylation reaction of 2 in toluene. This behavior can be explained in terms of a mechanism in which methanol must be displaced during Fe-NO bond formation. The thermodynamic and kinetic data for NO binding to the new model complexes of P450 (2 and 5) are discussed in reference to earlier results obtained for closely related nitrosylation reactions of cytochrome P450(cam) (in the presence and in the absence of the substrate) and a thiolate-ligated iron(III) model complex.

  20. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for generating toxicity alerts.

    OpenAIRE

    Rossato Gianluca; Ernst Beat; Smiesko Martin; Spreafico Morena; Vedani Angelo

    2010-01-01

    Drug metabolism toxicity and their interaction profiles are major issues in the drug discovery and lead optimization processes. The cytochromes P450 (CYPs) 2D6 and 2C9 are enzymes involved in the oxidative metabolism of a majority of marketed drugs. Therefore the prediction of the binding affinity towards CYP2D6 and CYP2C9 would be beneficial for identifying cytochrome mediated adverse effects triggered by drugs or chemicals (e.g. toxic reactions drug drug and food drug interactions). By iden...

  1. Immunodetection and quantification of cytochromes P450 using epitope tagging: immunological, spectroscopic, and kinetic analysis of cinnamate 4-hydroxylase.

    Science.gov (United States)

    Humphreys, John M; Chapple, Clint

    2004-09-01

    Cytochrome P450-dependent monooxygenases (P450s) are integral membrane proteins typically expressed at low levels both in vivo and by heterologous expression systems, often making quantification of these enzymes challenging. Since the time of their discovery, P450s have typically been quantified by their carbon monoxide (CO) difference spectra. Although this technique is reliable, it requires quantities of enzyme that are sometimes difficult to obtain, and spectroscopic instruments and expertise frequently unavailable in laboratories whose primary focus is genetics or molecular biology. We have developed a method for quantifying recombinant FLAG epitope-tagged proteins using fluorescence detection of a chromophore-labeled anti-FLAG monoclonal antibody and well-established immunoblot technology. The utility of this technique was tested using cinnamate 4-hydroxylase (C4H), one of the best-studied plant P450s. No substantial differences in the stability or kinetic properties were observed between the native and FLAG-tagged enzymes. Immunochemical quantification of epitope-tagged C4H reported slightly lower P450 concentrations than conventional methods but has a limit of quantification 400-fold lower than carbon monoxide difference spectroscopy.

  2. Chimeric cytochromes P450 engineered by domain swapping and random mutagenesis for producing human metabolites of drugs.

    Science.gov (United States)

    Kang, Ji-Yeon; Ryu, Sang Hoon; Park, Sun-Ha; Cha, Gun Su; Kim, Dong-Hyun; Kim, Keon-Hee; Hong, Austin W; Ahn, Taeho; Pan, Jae-Gu; Joung, Young Hee; Kang, Hyung-Sik; Yun, Chul-Ho

    2014-07-01

    Human drug metabolites produced by cytochrome P450 enzymes are critical for safety testing and may themselves act as drugs or leads in the drug discovery and development process. Here, highly active chimeric fusion proteins (chimeras) were obtained by reductase domain swapping of mutants at key catalytic residues of the heme domain with that of a natural variant (CYP102A1.2) of P450 BM3 (CYP102A1.1) from Bacillus megaterium. Random mutagenesis at the heme domain of the chimera was also used to generate chimeric mutants that were more active and diverse than the chimeras themselves. To determine whether the chimeras and several mutants of the highly active chimera displayed enhanced catalytic activity and, more importantly, whether they acquired activities of biotechnological importance, we measured the oxidation activities of the chimeras and chimeric mutants toward human P450 substrates, mainly drugs. Some of the chimeric mutants showed high activity toward typical human P450 substrates including drugs. Statin leads, especially chiral products, with inhibitory effects toward HMG-CoA reductase could be obtained from metabolites of statin drugs generated using these chimeric mutants. This study reveals the critical role of the reductase domain for the activity of P450 BM3 and shows that chimeras generated by domain swapping can be used to develop industrial enzymes for the synthesis of human metabolites from drugs and drug leads. © 2014 Wiley Periodicals, Inc.

  3. Substrate and reaction specificity of Mycobacterium tuberculosis cytochrome P450 CYP121: insights from biochemical studies and crystal structures.

    Science.gov (United States)

    Fonvielle, Matthieu; Le Du, Marie-Hélène; Lequin, Olivier; Lecoq, Alain; Jacquet, Mickaël; Thai, Robert; Dubois, Steven; Grach, Guillaume; Gondry, Muriel; Belin, Pascal

    2013-06-14

    Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn(85), Phe(168), and Trp(182). The propensity of the cYY tyrosyl to point toward Arg(386) was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy.

  4. Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat

    National Research Council Canada - National Science Library

    Kot, Marta; Daniel, Władysława A

    2008-01-01

    .... Attention is also paid to species- and concentration-dependent metabolism of caffeine. Finally, we discuss the P450-mediated metabolism of caffeine in relation to coffee addiction and drug interactions...

  5. Cytochrome P450 CYP716A254 catalyzes the formation of oleanolic acid from β-amyrin during oleanane-type triterpenoid saponins biosynthesis in Anemone flaccida.

    Science.gov (United States)

    Zhan, Chuansong; Ahmed, Shakeel; Hu, Sheng; Dong, Shuang; Cai, Qian; Yang, Tewu; Wang, Xuekui; Li, Xiaohua; Hu, Xuebo

    2018-01-01

    Anemone flaccida Fr. Shmidt (Ranunculaceae), known as 'Di Wu' in China, is a perennial herb which has long been used to treat arthritis. The rhizome of A. flaccida contains pharmacologically active components i.e. oleanane-type triterpenoid saponins. Oleanolic acid is natural triterpenoid in plants with diverse biological activities. The biosynthesis of oleanolic acid involves cyclization of 2,3-oxidosqualene to the oleanane-type triterpenoid skeleton, followed by a series of oxidation reactions catalyzed by cytochrome P450 monooxygenase (CYP450). Previously, we identified four possible cytochrome P450 genes belonging to CYP716A subfamily from the transcriptome of A. flaccida. In this study, we identified one of those genes "CYP716A254" encoding a cytochrome P450 monooxygenase from A. flaccida that catalyzes the conversion of the β-amyrin into oleanolic acid. The heterologous expression of CYP716A254 in yeast resulted in oxidation of β-amyrin at the C-18 position to oleanolic acid production. These results provide an important basis for further studies of oleanane-type triterpenoid saponins synthesis in A. flaccida. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Genetic analysis of the phenobarbital regulation of the cytochrome P-450 2b-9 and aldehyde dehydrogenase type 2 mRNAs in mouse liver.

    OpenAIRE

    Damon, M.; Fautrel, A; Guillouzo, A.; Corcos, L.

    1996-01-01

    The aim of this study was to investigate the effect of the genetic background on the phenobarbital inducibility of cytochrome P-450 2b-9, cytochrome P-450 2b-10 and aldehyde dehydrogenase type 2 mRNAs in mice. We analysed the basal expression and the phenobarbital inducibility of both cytochrome P-450 mRNAs by semi-quantitative specific reverse transcription-PCR analyses in five inbred mouse strains (A/J,BALB/cByJ,C57BL/6J, DBA/2J and SWR/J). Male mice constitutively expressed cytochrome P-45...

  7. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per

    2017-01-01

    Tamoxifen therapy for estrogen receptor-positive breast cancer reduces the risk of recurrence by approximately one-half. Cytochrome P-450 2D6, encoded by the polymorphic cytochrome P-450 2D6 gene (CYP2D6), oxidizes tamoxifen to its most active metabolites. Steady-state concentrations of endoxifen...... (4-hydroxy-N-desmethyltamoxifen), the most potent antiestrogenic metabolite, are reduced in women whose CYP2D6 genotypes confer poor enzyme function. Thirty-one studies of the association of CYP2D6 genotype with breast cancer survival have yielded heterogeneous results. Some influential studies...... genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor...

  8. Reactivity Patterns of (Protonated) Compound II and Compound I of Cytochrome P450: Which is the better oxidant?

    OpenAIRE

    Li, Xiao-Xi; Postils, Verònica; Sun, Wei; Faponle, Abayomi S.; Solà i Puig, Miquel; Wang, Yong; Nom, Wonwoo; de Visser, Sam P

    2017-01-01

    The cytochromes P450 are versatile enzymes in human physiology that perform substrate hydroxylation reactions extremely efficient. In this work, we present results of a computational study on the reactivity patterns of Compound I, Compound II and protonated Compound II with model substrates and addresses the question, which of those is the most effective oxidant. All calculations, regardless of the substrate, implicate that Compound I is the superior oxidant of the three. However, Compound II...

  9. Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states

    DEFF Research Database (Denmark)

    Laursen, Tomas; Singha, Aparajita; Rantzau, Nicolai

    2014-01-01

    Electron transfer between membrane spanning oxi-doreductase enzymes crucially controls vital meta-bolic processes. Here we studied for the first time with single molecule resolution the function of P450 oxidoreductase (POR), the canonical membrane spanning activator of all microsomal cytochrome P...... conditions high-lighting the importance of studying POR function in membrane environment. This assay paves the way for studying the function of additional membrane spanning oxidoreductases with single molecule reso-lution....

  10. Peroxisome Proliferator-Activated Receptors in Regulation of Cytochromes P450: New Way to Overcome Multidrug Resistance?

    OpenAIRE

    Katerina Cizkova; Anna Konieczna; Bela Erdosova; Radka Lichnovska; Jiri Ehrmann

    2012-01-01

    Embryonic and tumour cells are able to protect themselves against various harmful compounds. In human pathology, this phenomenon exists in the form of multidrug resistance (MDR) that significantly deteriorates success of anticancer treatment. Cytochromes P450 (CYPs) play one of the key roles in the xenobiotic metabolism. CYP expression could contribute to resistance of cancer cells to chemotherapy. CYP epoxygenases (CYP2C and CYP2J) metabolize about 20% of clinically important drugs. Besides ...

  11. Can the CEIBA cocktail designed for human cytochrome P450 enzymes be used in the rat for drug interaction studies?

    OpenAIRE

    Magalhães, Paulo; Andrés Segura, Fernando de; Falcão, Amílcar; Llerena,Adrián; Alves, Gilberto

    2016-01-01

    The CEIBA cocktail consisting of caffeine (CAF), omeprazole (OZ), dextromethorphan (DM) and losartan (LOS) was previously proposed for the clinical phenotyping of five major human cytochrome P450 (CYP) isoenzymes. This work aimed to assess the usefulness of CEIBA cocktail to study non-clinical drug interactions in the rat. Methods - Wistar rats were divided into five groups to receive a single-oral dose of each probe drug (CAF, OZ, LOS, DM), individually or in combination as a cocktail. Pl...

  12. Combinatorial Alanine Substitution Enables Rapid Optimization of Cytochrome P450BM3 for Selective Hydroxylation of Large Substrates

    KAUST Repository

    Lewis, Jared C.

    2010-11-24

    Made for each other: Combinatorial alanine substitution of active site residues in a thermostable cytochrome P450BM3 variant was used to generate an enzyme that is active with large substrates. Selective hydroxylation of methoxymethylated monosaccharides, alkaloids, and steroids was thus made possible (see Scheme). This approach could be useful for improving the activity of enzymes that show only limited activity with larger substrates. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural insights into the mechanism for recognizing substrate of the cytochrome P450 enzyme TxtE.

    Directory of Open Access Journals (Sweden)

    Feng Yu

    Full Text Available Thaxtomins, a family of phytotoxins produced by Streptomyces spp., can cause dramatic plant cell hypertrophy and seedling stunting. Thaxtomin A is the dominant form from Streptomyces scabies and has demonstrated herbicidal action. TxtE, a cytochrome P450 enzyme from Streptomyces scabies 87.22, catalyzes direct nitration of the indolyl moiety of L-tryptophan to L-4-nitrotryptophan using nitric oxide, dioxygen and NADPH. The crystal structure of TxtE was determined at 2.1 Å resolution and described in this work. A clearly defined substrate access channel is observed and can be classified as channel 2a, which is common in bacteria cytochrome P450 enzymes. A continuous hydrogen bond chain from the active site to the external solvent is observed. Compared with other cytochrome P450 enzymes, TxtE shows a unique proton transfer pathway which crosses the helix I distortion. Polar contacts of Arg59, Tyr89, Asn293, Thr296, and Glu394 with L-tryptophan are seen using molecular docking analysis, which are potentially important for substrate recognition and binding. After mutating Arg59, Asn293, Thr296 or Glu394 to leucine, the substrate binding ability of TxtE was lost or decreased significantly. Based on the docking and mutation results, a possible mechanism for substrate recognition and binding is proposed.

  14. Knockdown of NADPH-cytochrome P450 reductase increases the susceptibility to carbaryl in the migratory locust, Locusta migratoria.

    Science.gov (United States)

    Zhang, Xueyao; Wang, Junxiu; Liu, Jiao; Li, Yahong; Liu, Xiaojian; Wu, Haihua; Ma, Enbo; Zhang, Jianzhen

    2017-12-01

    NADPH-cytochrome P450 reductase (CPR) plays important roles in cytochrome P450-mediated metabolism of endogenous and exogenous compounds, and participates in cytochrome P450-related detoxification of insecticides. However, the CPR from Locusta migratoria has not been well characterized and its function is still undescribed. The full-length of CPR gene from Locusta migratoria (LmCPR) was cloned by RT-PCR based on transcriptome information. The membrane anchor region, and 3 conserved domains (FMN binding domain, connecting domain, FAD/NADPH binding domain) were analyzed by bioinformatics analysis. Phylogenetic analysis showed that LmCPR was grouped in the Orthoptera branch and was more closely related to the CPRs from hemimetabolous insects. The LmCPR gene was ubiquitously expressed at all developmental stages and was the most abundant in the fourth-instar nymphs and the lowest in the egg stage. Tissue-specific expression analysis showed that LmCPR was higher expressed in ovary, hindgut, and integument. The CPR activity was relatively higher in Malpighian tubules and integument. Silencing of LmCPR obviously reduced the enzymatic activity of LmCPR, and enhanced the susceptibility of Locusta migratoria to carbaryl. These results suggest that LmCPR contributes to the susceptibility of L. migratoria to carbaryl and could be considered as a novel target for pest control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular dynamics simulations give insight into the conformational change, complex formation, and electron transfer pathway for cytochrome P450 reductase

    Science.gov (United States)

    Sündermann, Axel; Oostenbrink, Chris

    2013-01-01

    Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577

  16. Molecular characterization and expression analysis of a suite of cytochrome P450 enzymes implicated in insect hydrocarbon degradation in the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Pedrini, Nicolás; Zhang, Shizhu; Juárez, M Patricia; Keyhani, Nemat O

    2010-08-01

    The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as Beauveria bassiana, it is the initial interface mediating the host-pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. B. bassiana is able to grow on straight chain alkanes up to n-C(33) as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug Triatomas infestans revealed a differential expression pattern for the P450 genes examined, and suggest that B. bassiana contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.

  17. Induction of human cytochrome P450 3A enzymes in cultured placental cells by thalidomide and relevance to bioactivation and toxicity.

    Science.gov (United States)

    Murayama, Norie; Kazuki, Yasuhiro; Satoh, Daisuke; Arata, Kazuya; Harada, Tasuku; Shibata, Norio; Guengerich, F Peter; Yamazaki, Hiroshi

    2017-01-01

    Evidence has been presented for auto-induced human cytochrome P450 3A enzyme involvement in the teratogenicity and clinical outcome of thalidomide due to oxidation to 5-hydroxythalidomide and subsequent metabolic activation in livers. In this study, more relevant human placenta preparations and placental BeWo cells showed low but detectable P450 3A4/5 mRNA expression and drug oxidation activities. Human placental microsomal fractions from three subjects showed detectable midazolam 1´- and 4-hydroxylation and thalidomide 5-hydroxylation activities. Human placental BeWo cells, cultured in the recommended media, also indicated detectable midazolam 1´- and 4-hydroxylation and thalidomide 5-hydroxylation activities. To reduce any masking effects by endogenous hormones used in the recommended media, induction of P450 3A4/5 mRNA and oxidation activities were measured in placental BeWo cells cultured with a modified medium containing 5% charcoal-stripped fetal bovine serum. Thalidomide significantly induced P450 3A4/5, 2B6, and pregnane X receptor (PXR) mRNA levels 2 to 3-fold, but rifampicin only enhanced P450 3A5 and PXR mRNA under the modified media conditions. Under these modified conditions, thalidomide also significantly induced midazolam 1´-hydroxylation and thalidomide 5-hydroxylaion activities 3-fold but not bupropion hydroxylation activity. Taken together, activation of thalidomide to 5-hydroxythalidomide with autoinduction of P450 3A enzymes in human placentas, as well as livers, is suggested in vivo.

  18. Inducible bilirubin oxidase: A novel function for the mouse cytochrome P450 2A5

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Arthur, Dionne Maioha [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Aganovic, Simona [Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 578, S-751 23 Uppsala (Sweden); Ng, Jack C. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide (Australia); Lang, Matti A. [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 578, S-751 23 Uppsala (Sweden)

    2011-11-15

    We have previously shown that bilirubin (BR), a breakdown product of haem, is a strong inhibitor and a high affinity substrate of the mouse cytochrome P450 2A5 (CYP2A5). The antioxidant BR, which is cytotoxic at high concentrations, is potentially useful in cellular protection against oxygen radicals if its intracellular levels can be strictly controlled. The mechanisms that regulate cellular BR levels are still obscure. In this paper we provide preliminary evidence for a novel function of CYP2A5 as hepatic 'BR oxidase'. A high-performance liquid chromatography/electrospray ionisation mass spectrometry screening showed that recombinant yeast microsomes expressing the CYP2A5 oxidise BR to biliverdin, as the main metabolite, and to three other smaller products with m/z values of 301, 315 and 333. The metabolic profile is significantly different from that of chemical oxidation of BR. In chemical oxidation the smaller products were the main metabolites. This suggests that the enzymatic reaction is selective, towards biliverdin production. Bilirubin treatment of primary hepatocytes increased the CYP2A5 protein and activity levels with no effect on the corresponding mRNA. Co-treatment with cycloheximide (CHX), a protein synthesis inhibitor, resulted in increased half-life of the CYP2A5 compared to cells treated only with CHX. Collectively, the observations suggest that the CYP2A5 is potentially an inducible 'BR oxidase' where BR may accelerate its own metabolism through stabilization of the CYP2A5 protein. It is possible that this metabolic pathway is potentially part of the machinery controlling intracellular BR levels in transient oxidative stress situations, in which high amounts of BR are produced. -- Highlights: Black-Right-Pointing-Pointer CYP2A5 metabolizes bilirubin to biliverdin and dipyrroles. Black-Right-Pointing-Pointer Bilirubin increased the hepatic CYP2A5 protein and activity levels. Black-Right-Pointing-Pointer Bilirubin does not

  19. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    Energy Technology Data Exchange (ETDEWEB)

    Wilderman, P. Ross, E-mail: pwilderman@ucsd.edu [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Jang, Hyun-Hee [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Malenke, Jael R. [Department of Biology, University of Utah, Salt Lake City, UT (United States); Salib, Mariam; Angermeier, Elisabeth; Lamime, Sonia [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States); Dearing, M. Denise [Department of Biology, University of Utah, Salt Lake City, UT (United States); Halpert, James R. [Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA (United States)

    2014-02-01

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteins gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene

  20. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  1. Target Proteins in Human Autoimmunity: Cytochromes P450 and Udp-Glycoronosyltransferases

    Directory of Open Access Journals (Sweden)

    Petra Obermayer-Straub

    2000-01-01

    Full Text Available Cytochromes P450 (CYPs and UDP-glucuronosyltransferases (UGTs are targets of autoantibodies in several hepatic and extrahepatic autoimmune diseases. Autoantibodies directed against hepatic CYPs and UGTs were first detected by indirect immunofluorescence as antiliver and/or kidney microsomal antibodies. In autoimmune hepatitis (AIH type 2, liver and/or kidney microsomal (LKM type 1 autoantibodies are detected and are directed against CYP2D6. About 10% of AIH-2 sera further contain LKM-3 autoantibodies directed against family 1 UGTs. Chronic infections by hepatitis C virus and hepatitis delta virus may induce several autoimmune phenomena, and multiple autoantibodies are detected. Anti-CYP2D6 autoantibodies are detected in up to 4% of patients with chronic hepatitis C, and anti-CYP2A6 autoantibodies are detected in about 2% of these patients. In contrast, 14% of patients with chronic hepatitis delta virus infections generate anti-UGT autoantibodies. In a small minority of patients, certain drugs are known to induce immune-mediated, idiosyncratic drug reactions, also known as ’drug-induced hepatitis’. Drug-induced hepatitis is often associated with autoantibodies directed against hepatic CYPs or other hepatic proteins. Typical examples are tienilic acid-induced hepatitis with anti-CYP2C9, dihydralazine hepatitis with anti-CYP1A2, halothane hepatitis with anti-CYP2E1 and anticonvulsant hepatitis with anti-CYP3A. Recent data suggest that alcoholic liver disease may be induced by mechanisms similar to those that are active in drug-induced hepatitis. Autoantibodies directed against several CYPs are further detected in sera from patients with the autoimmune polyglandular syndrome type 1. Patients with autoimmune polyglandular syndrome type 1 with hepatitis often develop anti-CYP1A2; patients with adrenal failure develop anti-CYP21, anti- CYP11A1 or CYP17; and patients with gonadal failure develop anti-CYP11A1 or CYP17. In idiopathic Addison disease

  2. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Joo [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Lee, Eun Kyung [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Lee, Yoon Kwang [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Park, Do Joon; Jang, Hak Chul [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Moore, David D., E-mail: moore@bcm.edu [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States)

    2012-09-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR{sup −/−} mice, but not in hypothyroid PXR{sup −/−} mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR{sup −/−} hypothyroid mice, and this induction was abolished in CAR{sup −/−} mice and in and CAR{sup −/−} PXR{sup −/−} double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR{sup −/−} mice and lowest in WT and PXR{sup −/−} mice. Hypothyroid WT or PXR{sup −/−} mice survived chronic CBZ treatment, but all hypothyroid CAR{sup −/−} and CAR{sup −/−} PXR{sup −/−} mice died, with CAR{sup −/−}PXR{sup −/−} mice surviving longer than CAR{sup −/−} mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice.

  3. Nicotine-related alkaloids and metabolites as inhibitors of human cytochrome P-450 2A6.

    Science.gov (United States)

    Denton, Travis T; Zhang, Xiaodong; Cashman, John R

    2004-02-15

    S-(-)-Nicotine and 13 of the most prevalent nicotine-related alkaloids and metabolites (i.e., S-(-)-nornicotine, myosmine, beta-nicotyrine, S-cotinine, S-norcotinine, S-(-)-nicotine N-1'-oxide, S-(-)-nicotine Delta1'-5'-iminium ion, S-(-)-anabasine, S-(-)-N-methylanabasine, anabaseine, S-(-)-anatabine, nicotelline, and 2,3'-bipyridyl) were evaluated as inhibitors of human cDNA-expressed cytochrome P-450 2A6 (CYP2A6) mediated coumarin 7-hydroxylation. Tobacco alkaloids myosmine, S-(-)-nornicotine, S-cotinine, S-norcotinine, S-(-)-nicotine N-1'-oxide, S-(-)-nicotine Delta1'-5'-iminium ion, S-(-)-N-methylanabasine, anabaseine, and nicotelline had Ki values for inhibition of coumarin 7-hydroxylation ranging from 20 microM to more than 300 microM whereas nicotine and S-(-)-anatabine were much more potent (i.e. 4.4 and 3.8 microM, respectively). The tobacco alkaloids 2,3'-bipyridyl (7.7 microM) and S-(-)-anabasine (5.4 microM), were somewhat less potent compared with S-(-)-nicotine or S-(-)-anatabine in inhibition of human CYP2A6. beta-Nicotyrine, in which the N-methylpyrrolidino moiety of nicotine was replaced by the aromatic N-methylpyrrole ring, was shown to inhibit human CYP2A6 with much greater potency (Ki=0.37 microM) compared with S-(-)-nicotine. Among the compounds examined, only nicotine and beta-nicotyrine were mechanism-based inhibitors of human CYP2A6. The potency of the mechanism-based CYP2A6 inhibitors suggests that, for smokers, modulation of CYP2A6 may be greater than that predicted on the basis of serum concentration of these alkaloids. Our results indicate that the prominent nicotine-related alkaloid beta-nicotyrine present after smoking potently inhibits human CYP2A6.

  4. Effects of Polygonum multiflorum on the activity of cytochrome P450 isoforms in rats.

    Science.gov (United States)

    Zhang, Yuan; Ding, Ting; Diao, Tingting; Deng, Mengjiao; Chen, Suhong

    2015-01-01

    Polygonum multiflorum is a traditional Chinese medicinal herb used in clinical medicine to nourish the liver and kidney. However, in recent years, there have been increased reports of clinical adverse reactions associated with Polygonum multiflorum preparations, especially due to liver injury. The cocktail method can be used to assess the influence of Polygonum multiflorum on the activity of cytochrome P450 (CYP450) isoforms CYP2B6, CYP2C19, CYP2C9, CYP1A2, CYP3A4, and CYP2D6, which were reflected by changes in pharmacokinetic parameters in six specific probe drugs: bupropion, omeprazole, tolbutamide, phenacetin, midazolam, and metoprolol. Comprised the experimental rats were randomly divided into five groups: control group, alcohol extraction A group, alcohol extraction B group, water extraction A group, and water extraction B group. Each group five male rats and five female rats. Each of the groups received treatments by gavage as follows: control group was given normal saline, alcohol extraction A group was given 15 g/kg alcohol extract of Polygonum multiflorum (E15), alcohol extraction B group was given with 30 g/kg alcohol extract (E30), water extraction A group was given 15 g/kg water extract (W15), and water extraction B group was given 30 g/kg water extract (W30). The extract solution was orally administered once a day for 28 consecutive days. The mixture of six probe drugs was given by gavage, and blood samples were collected through the tail vein at different time points. Probe drug concentration in rat plasma was measured by liquid chromatography-mass spectrometry (LC-MS). In the treatment and control groups, Polygonum multiflorum alcoholic extract inhibited the activity of CYP2C19 and CYP2C9 and induced the activity of CYP1A2. Polygonum multiflorum aquous extract inhibited the activity of CYP2B6, CYP2C19, CYP2C9, CYP1A2, and CYP2D6. Pathological sections showed that in the alcohol extract group the liver was degenerated inconspicuously, and in the water

  5. Structural and enzymatic parameters that determine alkyl dehydrogenation/hydroxylation of capsaicinoids by cytochrome p450 enzymes.

    Science.gov (United States)

    Reilly, Christopher A; Yost, Garold S

    2005-04-01

    Previous studies on the metabolism of capsaicinoids, natural products isolated from chili peppers, demonstrated the production of unique macrocyclic, alkyl dehydrogenated, omega-, and omega-1-hydroxylated products. This study investigated the structural and enzymatic parameters that direct selective alkyl dehydrogenation and hydroxylation of capsaicinoids, using a variety of structurally related capsaicinoid analogs and cytochrome P450 (P450) enzymes. CYP2C9 preferentially catalyzed alkyl dehydrogenation, whereas CYP2E1 and 3A4 catalyzed omega- and omega-1-hydroxylation, respectively. Analysis of incubations containing various P450s and structural variants of capsaicin by liquid chromatography-tandem mass spectrometry demonstrated similarities in the rate of capsaicinoid metabolism, but marked differences in the metabolite profiles. Production of macrocyclic and omega-1-hydroxylated metabolites from the various capsaicinoids was dependent on the structure of the alkyl terminus and P450 enzyme. A tertiary carbon at the omega-1 position, coupled to an adjacent unsaturated bond at the omega-2,3 position, enhanced the formation of the macrocyclic and dehydrogenated metabolites and were requisite structural features for omega-1-hydroxylated product formation. Conversely, substrates lacking these structural features were efficiently oxidized to the omega-hydroxylated metabolite. These data were consistent with our hypothesis that metabolism of the alkyl portion of capsaicinoids was governed, in part, by the stability and propensity to form an intermediate radical and a carbocation, and a direct interaction between the alkyl terminus and the heme of many P450 enzymes. These results provided valuable insights into potential mechanisms by which P450s metabolize capsaicinoids and highlight critical chemical features that may also govern the metabolism of structurally related compounds including fatty acids, monoter-penes, and isoprenoids.

  6. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams).

    Science.gov (United States)

    Pua, Eng-Chong; Lee, Yi-Chuan

    2003-02-13

    As part of a study to understand the molecular basis of fruit ripening, this study reports the isolation and characterization of a banana cytochrome P450 (P450) cDNA, designated as MAP450-1, which was associated with fruit ripening of banana. MAP450-1 encoded a single polypeptide of 507 amino acid residues that shared an overall identity of 27-45% with that of several plant P450s, among which MAP450-1 was most related phylogenetically to the avocado P450 CYP71A1. The polypeptide that possessed residue domains conserved in all P450s was classified as CYP71N1. Expression of CYP71N1 varied greatly between banana organs. Transcripts were detected only in peel and pulp of the ripening fruit and not in unripe fruit tissues at all developmental stages or other organs (root, leaf, ovary and flower). During ripening, transcripts were barely detectable in pre-climacteric and climacteric fruits but, as ripening progressed, they began to accumulate and reached a maximum in post-climacteric fruits. CYP71N1 expression in pre-climacteric fruit could be upregulated by exogenous application of ethylene (1-5 ppm) and treatment of overripe fruit with exogenous sucrose (50-300 mM) but not glucose downregulated the expression. These results indicate that P450s may not play a role in fruit development and its expression is associated with ripening, which may be regulated, in part, by ethylene and/or sucrose, at the transcript level.

  7. Deletion of P399{sub E}401 in NADPH cytochrome P450 oxidoreductase results in partial mixed oxidase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E., E-mail: christa.flueck@dkf.unibe.ch [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Mallet, Delphine [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Hofer, Gaby [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland); Samara-Boustani, Dinane [Hopital Necker-Enfants malades, Paris (France); Leger, Juliane [Hopital Robert Debre, Paris (France); Polak, Michel [Hopital Necker-Enfants malades, Paris (France); Morel, Yves [Service d' Endocrinologie Moleculaire et Maladies Rares, Hospices Civils de Lyon, Bron (France); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, University Children' s Hospital, Bern (Switzerland)

    2011-09-09

    Highlights: {yields} Mutations in human POR cause congenital adrenal hyperplasia. {yields} We are reporting a novel 3 amino acid deletion mutation in POR P399{sub E}401del. {yields} POR mutation P399{sub E}401del decreased P450 activities by 60-85%. {yields} Impairment of steroid metabolism may be caused by multiple hits. {yields} Severity of aromatase inhibition is related to degree of in utero virilization. -- Abstract: P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399{sub E}401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399{sub E}401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17{alpha}-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399{sub E}401 revealed reduced stability and flexibility of the mutant. In conclusion, P399{sub E}401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399{sub E}401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.

  8. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease.

    Science.gov (United States)

    Winqvist, O; Gustafsson, J; Rorsman, F; Karlsson, F A; Kämpe, O

    1993-01-01

    Autoimmune polyendocrine syndrome type I (APS I) and idiopathic Addison's disease are both disorders with adrenal insufficiency but with differences in genetic background, clinical presentation, and extent of extraadrenal manifestations. In this study the major adrenal autoantigen identified with sera from patients with APS I was characterized by analyses using indirect immunofluorescence, Western blots of adrenal subcellular fractions and of recombinant proteins, immunoprecipitations of [35S]methionine-labeled lysates of a human steroid-producing cell line, and studies of enzymatic activity. Sera from patients with APS I, identifying cells in adrenal glands and testes involved in steroid synthesis, reacted in Western blots with a 53-kD antigen, which comigrated with the cytochrome P450 cholesterol side chain cleavage enzyme (SCC). The sera also immunoprecipitated this protein from lysates of radiolabeled adrenal cells. The enzymatic activity of SCC was inhibited by the APS I sera but not by control sera. Sera from patients with idiopathic Addison's disease did not react with the SCC. The results show that the autoimmune responses towards adrenal tissue in patients suffering from APS I and Addison's disease are remarkably selective and suggest that a determination of the antigen involved in a patient with autoimmune adrenal insufficiency will have diagnostic as well as prognostic implications. Images PMID:8227354

  9. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase Gene Superfamilies in Predatory Mite Metaseiulus occidentalis.

    Directory of Open Access Journals (Sweden)

    Ke Wu

    Full Text Available Pesticide-resistant populations of the predatory mite Metaseiulus (= Typhlodromus or Galendromus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae have been used in the biological control of pest mites such as phytophagous Tetranychus urticae. However, the pesticide resistance mechanisms in M. occidentalis remain largely unknown. In other arthropods, members of the glutathione-S-transferase (GST, cytochrome P450 (CYP and carboxyl/cholinesterase (CCE gene superfamilies are involved in the diverse biological pathways such as the metabolism of xenobiotics (e.g. pesticides in addition to hormonal and chemosensory processes. In the current study, we report the identification and initial characterization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urticae. The distribution of genes in the GST and CCE superfamilies in M. occidentalis differs significantly from those of insects and resembles that of T. urticae. Specifically, we report the presence of the Mu class GSTs, and the J' and J" clade CCEs that, within the Arthropoda, appear unique to Acari. Interestingly, the majority of CCEs in the J' and J" clades contain a catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-specific CCE clades that may participate in detoxification of xenobiotics. The current study of genes in these superfamilies provides preliminary insights into the potential molecular components that may be involved in pesticide metabolism as well as hormonal/chemosensory processes in the agriculturally important M. occidentalis.

  10. Mechanisms of. pi. -bond oxidation by cytochrome p-450: acetylenes as probes

    Energy Technology Data Exchange (ETDEWEB)

    Komives, E.A.

    1987-01-01

    Phenylacetylene and biphenylacetylene are oxidized by microsomal and purified P-450 to the corresponding arylacetic acids. During this transformation, the acetylenic hydrogen undergoes a 1,2 shift which causes a kinetic isotope effect of 1.8 on the overall enzymatic rate. The same products and kinetic isotope effects are observed when the arylacetylenes are oxidized by m-chloroperbenzoic acid. Suicide inactivation of P-450 by the arylacetylenes, which occurs simultaneously with metabolite formation, is insensitive to isotopic substitution so the partition ratio changes from 26 for phenylacetylene of 14 for (1-/sup 2/H) phenylacetylene.

  11. Effects of acetone and fasting on cytochrome P-450 and xenobiotic metabolism in intact and hypophysectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.T.; Simonet, L.

    1987-05-01

    Hypophysectomized and intact male and female rats were fasted for 24-48 hrs or given acetone (5ml/kg body weight) in order to evaluate the effects of these treatments on hepatic microsomal cytochrome P-450 and xenobiotic metabolism. Fasting and acetone treatment resulted in a significant increase (p < 0.05) in total P-450 in intact female rats. However, there was no significant changes in P-450 in microsomes from fasted or acetone-treated hypophysectomized rats. Fasting and acetone treatment resulted in significant increases in nitrosamine metabolism in intact rats. This effect was markedly reduced in the hypophysectomized rat. When intact male rats were fasted or treated with acetone there was a significant increase in P-450 in microsomes from acetone treated rats. Aryl hydrocarbon hydroxylase activity was significantly increased in both intact and hypophysectomized male and female rats treated with acetone. These results suggest that the pituitary gland or some product markedly influences acetone-stimulated nitrosamine metabolism.

  12. Cytochrome P450 IA2 activity in man measured by caffeine metabolism: effect of smoking, broccoli and exercise.

    Science.gov (United States)

    Vistisen, K; Loft, S; Poulsen, H E

    1991-01-01

    The activity of 3 enzymes related to the bioactivation of toxic compounds and the development of cancer--cytochrome P450 IA2, N-acetyl transferase (NAT), and xanthine oxidase (XO)--can be measured from the ratios of formed metabolites excreted into urine. In the 3 experiments that comprised this study, subjects received at least 1 cup of coffee 2- 6 hours before spot urine samples were taken. The subjects included 335 healthy male and female volunteers who provided information on tobacco, caffeine, and broccoli intake in the preceding 2 weeks, 23 healthy men who exercised 8 hours/day for 30 days, and 9 subjects whose diet included green beans and broccoli. As expected, the ratio reflecting P450 IA2 activity was 66% and 70% higher, respectively, in men and women who smoked at least 10 cigarettes/day compared to male and female nonsmokers. The XO ratio also was significantly increased in smokers. 30 days of vigorous physical exercise increased the P450 IA2 ratio by 50% and the XO ratio by over 100%. Broccoli induced a 19% increase in P450 IA2 activity, while pregnancy and oral contraceptive use reduced this ratio by 29% and 20%, respectively. Since these ratios appear to yield reliable indicators of enzyme activity, prospective studies of their association with cancer development are recommended.

  13. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    Science.gov (United States)

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including Km, Vmax, and CLint were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  14. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: evolutionary implications.

    Science.gov (United States)

    Rewitz, Kim F; Gilbert, Lawrence I

    2008-02-25

    In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow-CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals.

  15. Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, Natasha M.; Meneely, Kathleen M.; Bart, Aaron G.; Stephens, Eva S.; Battaile, Kevin P.; Scott, Emily E. (Kansas); (HWMRI)

    2013-11-20

    Human xenobiotic-metabolizing cytochrome P450 (CYP) enzymes can each bind and monooxygenate a diverse set of substrates, including drugs, often producing a variety of metabolites. Additionally, a single ligand can interact with multiple CYP enzymes, but often the protein structural similarities and differences that mediate such overlapping selectivity are not well understood. Even though the CYP superfamily has a highly canonical global protein fold, there are large variations in the active site size, topology, and conformational flexibility. We have determined how a related set of three human CYP enzymes bind and interact with a common inhibitor, the muscarinic receptor agonist drug pilocarpine. Pilocarpine binds and inhibits the hepatic CYP2A6 and respiratory CYP2A13 enzymes much more efficiently than the hepatic CYP2E1 enzyme. To elucidate key residues involved in pilocarpine binding, crystal structures of CYP2A6 (2.4 {angstrom}), CYP2A13 (3.0 {angstrom}), CYP2E1 (2.35 {angstrom}), and the CYP2A6 mutant enzyme, CYP2A6 I208S/I300F/G301A/S369G (2.1 {angstrom}) have been determined with pilocarpine in the active site. In all four structures, pilocarpine coordinates to the heme iron, but comparisons reveal how individual residues lining the active sites of these three distinct human enzymes interact differently with the inhibitor pilocarpine.

  16. Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: Evolutionary implications

    Directory of Open Access Journals (Sweden)

    Gilbert Lawrence I

    2008-02-01

    Full Text Available Abstract Background In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E. Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs. In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. Results To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow-CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Conclusion Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals.

  17. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway1[OPEN

    Science.gov (United States)

    Nakayasu, Masaru; Ohyama, Kiyoshi; Saito, Kazuki

    2016-01-01

    α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry. PMID:27307258

  18. 2,5-Dimethoxyamphetamine-derived designer drugs: studies on the identification of cytochrome P450 (CYP) isoenzymes involved in formation of their main metabolites and on their capability to inhibit CYP2D6.

    Science.gov (United States)

    Ewald, Andreas H; Maurer, Hans H

    2008-12-15

    The designer drugs 4-methyl-2,5-dimethoxy-amphetamine (DOM), 4-iodo-2,5-dimethoxy-amphetamine (DOI), 4-chloro-2,5-dimethoxy-amphetamine (DOC), 4-bromo-2,5-dimethoxy-amphetamine (DOB), 4-bromo-2,5-dimethoxy-methamphetamine (MDOB), and 2,4,5-trimethoxy-amphetamine (TMA-2) are potent serotonin 5HT(2) receptor agonists and have appeared on the illicit drug market. These drugs are mainly metabolized by O-demethylation or in case of DOM by hydroxylation of the methyl moiety. In an initial activity screening using microsomes of insect cells heterologously expressing human CYPs, CYP2D6 was found to be the only CYP isoenzyme involved in the above-mentioned main metabolic steps whereas the amounts of metabolites formed were very small. As inhibition of CYP2D6 by other amphetamines had been described, the inhibitory effects of the 2,5-dimethoxyamphetamine derivatives were studied using insect cell microsomes with heterologously expressed human CYP2D6 and pooled human liver microsomes (HLM) as enzyme sources and dextromethorphan O-demethylation as probe reaction. All studied drugs were observed to be non-mechanism-based competitive inhibitors of CYP2D6 with inhibition constants (K(i)) from 7.1 to 296microM using recombinant CYP2D6 and 2.7-19.9microM using HLM. For comparison, the K(i) values for quinidine and fluoxetine were 0.0092 and 8.2microM using recombinant CYP2D6 and 0.019 and 0.93microM using HLM. As the K(i) values of the drugs were much higher than that of quinidine and, with the exception of DOI, higher than that of fluoxetine, interactions with other CYP2D6 substrates are possible but rather unlikely.

  19. Fluorescence Quenching of (Dimethylamino)naphthalene Dyes Badan and Prodan by Tryptophan in Cytochromes P450 and Micelles

    Science.gov (United States)

    2015-01-01

    Fluorescence of 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes Badan and Prodan is quenched by tryptophan in Brij 58 micelles as well as in two cytochrome P450 proteins (CYP102, CYP119) with Badan covalently attached to a cysteine residue. Formation of nonemissive complexes between a dye molecule and tryptophan accounts for about 76% of the fluorescence intensity quenching in micelles, the rest is due to diffusive encounters. In the absence of tryptophan, fluorescence of Badan-labeled cytochromes decays with triexponential kinetics characterized by lifetimes of about 100 ps, 700–800 ps, and 3 ns. Site mutation of a histidine residue in the vicinity of the Badan label by tryptophan results in shortening of all three decay lifetimes. The relative amplitude of the fastest component increases at the expense of the two slower ones. The average quenching rate constants are 4.5 × 108 s–1 (CYP102) and 3.7 × 108 s–1 (CYP119), at 288 K. Cyclic voltammetry of Prodan in MeCN shows a reversible reduction peak at −1.85 V vs NHE that becomes chemically irreversible and shifts positively upon addition of water. A quasireversible reduction at −0.88 V was observed in an aqueous buffer (pH 7.3). The excited-state reduction potential of Prodan (and Badan) is estimated to vary from about +0.6 V (vs NHE) in polar aprotic media (MeCN) to approximately +1.6 V in water. Tryptophan quenching of Badan/Prodan fluorescence in CYPs and Brij 58 micelles is exergonic by ≤0.5 V and involves tryptophan oxidation by excited Badan/Prodan, coupled with a fast reaction between the reduced dye and water. Photoreduction is a new quenching mechanism for 2-(N,N-dimethylamino)-6-propionylnaphthalene dyes that are often used as solvatochromic polarity probes, FRET donors and acceptors, as well as reporters of solvation dynamics. PMID:25079965

  20. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans

    NARCIS (Netherlands)

    Lammers, Laureen A.; Achterbergh, Roos; de Vries, Emmely M.; van Nierop, F. Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Boelen, Anita; Romijn, Johannes A.; Mathôt, Ron A. A.

    2015-01-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug

  1. Spectrophotometric activity microassay for pure and recombinant cytochrome P450-type nitric oxide reductase

    CSIR Research Space (South Africa)

    Garny, S

    2014-02-01

    Full Text Available Nitric oxide reductase (NOR) of the P450 oxidoreductase family accepts electrons directly from its cofactor, NADH, to reduce two nitric oxide (NO) molecules to one nitrous oxide molecule and water. The enzyme plays a key role in removal of radical...

  2. An expression tag toolbox for microbial production of membrane bound plant cytochromes P450

    DEFF Research Database (Denmark)

    Vazquez Albacete, Dario; Cavaleiro, Mafalda; Christensen, Ulla

    2017-01-01

    tag chimeras of the model plant P450 CYP79A1 in different Escherichia coli strains. Using a high-throughput screening platform based on C-terminal GFP fusions, we identify several highly expressing and robustly performing chimeric designs. Analysis of long-term cultures by flow cytometry showed...

  3. Radical rebound mechanism in cytochrome P-450-catalyzed hydroxylation of the multifaceted radical clocks alpha- and beta-thujone.

    Science.gov (United States)

    He, Xiang; de Montellano, Paul R Ortiz

    2004-09-17

    Alpha-thujone (1alpha) and beta-thujone (1beta) were used to investigate the mechanism of hydrocarbon hydroxylation by cytochromes P-450(cam) (CYP101) and P-450(BM3) (CYP102). The thujones are hydroxylated by these enzymes at various positions, but oxidation at C-4 gives rise to both rearranged and unrearranged hydroxylation products. Rearranged products result from the formation of a radical intermediate that can undergo either inversion of stereochemistry or ring opening of the adjacent cyclopropane ring. Both of these rearrangements, as well as a C-4 desaturation reaction, are observed. The ring opening clock gives oxygen rebound rates that range from 0.2 x 10(10) to 2.8 x 10(10) s(-1) for the different substrate and enzyme combinations. The C-4 inversion reaction provides independent confirmation of a radical intermediate. The phenol product expected if a C-4 cationic rather than radical intermediate is formed is not detected. The results are consistent with a two-state process and provide support for a radical rebound but not a hydroperoxide insertion mechanism for cytochrome P-450 hydroxylation.

  4. A glycine insertion in the estrogen-related receptor (ERR) is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster.

    Science.gov (United States)

    Sun, Weilin; Valero, M Carmen; Seong, Keon Mook; Steele, Laura D; Huang, I-Ting; Lee, Chien-Hui; Clark, John M; Qiu, Xinghui; Pittendrigh, Barry R

    2015-01-01

    Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.

  5. A glycine insertion in the estrogen-related receptor (ERR is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Weilin Sun

    Full Text Available Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT resistant strains the glucocorticoid receptor-like (GR-like potential transcription factor binding motifs (TFBMs have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR in D. melanogaster is an estrogen-related receptor (ERR gene, which has two predicted alternative splice isoforms (ERRa and ERRb. Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G. Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.

  6. Crystal Structure of a Phenol-coupling P450 Monooxygenase Involved in Teicoplanin Biosynthesis

    Science.gov (United States)

    Li, Zhi; Rupasinghe, Sanjeewa G.; Schuler, Mary A.; Nair, Satish K.

    2011-01-01

    The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2 Å resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron-bound water molecule. Sequence comparisons with other phenol-coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross-linking mechanisms that occur during glycopeptide antibiotics biosynthesis. PMID:21445994

  7. Crystal structure of a phenol-coupling P450 monooxygenase involved in teicoplanin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Rupasinghe, Sanjeewa G.; Schuler, Mary A.; Nair, Satish K. (UIUC)

    2012-02-08

    The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2-{angstrom} resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron-bound water molecule. Sequence comparisons with other phenol-coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross-linking mechanisms that occur during glycopeptide antibiotics biosynthesis.

  8. Molecular evolution of the insect Halloween family of cytochrome P450s: phylogeny, gene organization and functional conservation.

    Science.gov (United States)

    Rewitz, Kim F; O'Connor, Michael B; Gilbert, Lawrence I

    2007-08-01

    The insect molting hormone, 20-hydroxyecdysone (20E), is a major modulator of the developmental processes resulting in molting and metamorphosis. During evolution selective forces have preserved the Halloween genes encoding cytochrome P450 (P450) enzymes that mediate the biosynthesis of 20E. In the present study, we examine the phylogenetic relationships of these P450 genes in holometabolous insects belonging to the orders Hymenoptera, Coleoptera, Lepidoptera and Diptera. The analyzed insect genomes each contains single orthologs of Phantom (CYP306A1), Disembodied (CYP302A1), Shadow (CYP315A1) and Shade (CYP314A1), the terminal hydroxylases. In Drosophila melanogaster, the Halloween gene spook (Cyp307a1) is required for the biosynthesis of 20E, although a function has not yet been identified. Unlike the other Halloween genes, the ancestor of this gene evolved into three paralogs, all in the CYP307 family, through gene duplication. The genomic stability of these paralogs varies among species. Intron-exon structures indicate that D. melanogaster Cyp307a1 is a mRNA-derived paralog of spookier (Cyp307a2), which is the ancestral gene and the closest ortholog of the coleopteran, lepidopteran and mosquito CYP307A subfamily genes. Evolutionary links between the insect Halloween genes and vertebrate steroidogenic P450s suggest that they originated from common ancestors, perhaps destined for steroidogenesis, before the deuterostome-arthropod split. Conservation of putative substrate recognition sites of orthologous Halloween genes indicates selective constraint on these residues to prevent functional divergence. The results suggest that duplications of ancestral P450 genes that acquired novel functions may have been an important mechanism for evolving the ecdysteroidogenic pathway.

  9. A cytochrome P450 monooxygenase commonly used for negative selection in transgenic plants causes growth anomalies by disrupting brassinosteroid signaling

    Directory of Open Access Journals (Sweden)

    Manivasagam Sindhu

    2011-04-01

    Full Text Available Abstract Background Cytochrome P450 monooxygenases form a large superfamily of enzymes that catalyze diverse reactions. The P450SU1 gene from the soil bacteria Streptomyces griseolus encodes CYP105A1 which acts on various substrates including sulfonylurea herbicides, vitamin D, coumarins, and based on the work presented here, brassinosteroids. P450SU1 is used as a negative-selection marker in plants because CYP105A1 converts the relatively benign sulfonyl urea pro-herbicide R7402 into a highly phytotoxic product. Consistent with its use for negative selection, transgenic Arabidopsis plants were generated with P450SU1 situated between recognition sequences for FLP recombinase from yeast to select for recombinase-mediated excision. However, unexpected and prominent developmental aberrations resembling those described for mutants defective in brassinosteroid signaling were observed in many of the lines. Results The phenotypes of the most affected lines included severe stunting, leaf curling, darkened leaves characteristic of anthocyanin accumulation, delayed transition to flowering, low pollen and seed yields, and delayed senescence. Phenotype severity correlated with P450SU1 transcript abundance, but not with transcript abundance of other experimental genes, strongly implicating CYP105A1 as responsible for the defects. Germination and seedling growth of transgenic and control lines in the presence and absence of 24-epibrassinolide indicated that CYP105A1 disrupts brassinosteroid signaling, most likely by inactivating brassinosteroids. Conclusions Despite prior use of this gene as a genetic tool, deleterious growth in the absence of R7402 has not been elaborated. We show that this gene can cause aberrant growth by disrupting brassinosteroid signaling and affecting homeostasis.

  10. Application of cytochrome P450 BM3 mutants as biocatalysts for the profiling of estrogen receptor binding metabolites of the mycotoxin zearalenone

    NARCIS (Netherlands)

    Reinen, J.; Kalma, L.; Begheijn, S; Heus, F.A.H.; Commandeur, J.N.M.; Vermeulen, N.P.E.

    2011-01-01

    The estrogenic mycotoxin zearalenone (ZEN) can undergo hepatic reductive metabolism to form the estrogenic α and β isomers of zearalenol. ZEN also undergoes cytochrome P450 monooxygenase (P450)-mediated oxidative metabolism to form monohydroxylated products, but until now nothing is known about the

  11. Development of an on-line high performance liquid chromatography detection system for human cytochrome P450 1A2 inhibitors in extracts of natural products

    NARCIS (Netherlands)

    Jeurissen, S.M.F.; Claassen, F.W.; Havlik, J.; Bouwmans, E.E.; Cnubben, N.H.P.; Sudhölter, E.J.R.; Rietjens, I.M.C.M.; Beek, T.A. van

    2007-01-01

    An on-line HPLC screening method for detection of inhibitors of human cytochrome P450 1A2 in extracts was developed. HPLC separation of extracts is connected to a continuous methoxyresorufin-O-demethylation (MROD) assay in which recombinant human P450 1A2 converts methoxyresorufin to its fluorescent

  12. Differential transcription of cytochrome P450s and glutathione S transferases in DDT-susceptible and resistant Drosophila melanogaster strains in response to DDT and oxidative stress

    Science.gov (United States)

    Metabolic DDT resistance in Drosophila melanogaster has previously been associated with constitutive over-transcription of cytochrome P450s. Increased P450 activity has also been associated with increased oxidative stress. In contrast, over-transcription of glutathione S transferases (GSTs) has been...

  13. Urinary thiodiacetic acid. A selective biomarker for the cytochrome P450-catalyzed oxidation of 1,2-dibromoethane in the rat

    NARCIS (Netherlands)

    Wormhoudt, L.W.; Commandeur, J N; Ploemen, J.P.H.T.M.; Abdoelgafoer, R.S.; Makansi, A.; van Bladeren, P.J.; Vermeulen, N P

    1,2-Dibromoethane (1,2-DBE) is a carcinogenic compound that is metabolized both by cytochrome P450 (P450) and glutathione S-transferase (GST) enzymes, and that has been used by us as a model compound to study interindividual variability in biotransformation reactions. In this study, the excretion of

  14. Selecting of a cytochrome P450cam SeSaM library with 3-chloroindole and endosulfan – Identification of mutants that dehalogenate 3-chloroindole

    DEFF Research Database (Denmark)

    Kammoonah, Shaima; Prasad, Brinda; Balaraman, Priyadarshini