WorldWideScience

Sample records for cysteine proteinase activity

  1. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  2. Cysteine proteinases and cystatins

    Directory of Open Access Journals (Sweden)

    Adeliana S. Oliveira

    2003-01-01

    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  3. Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles in proliferating and nonproliferating mammalian cells

    International Nuclear Information System (INIS)

    Korbelik, M.; Osmak, M.; Suhar, A.; Turk, V.; Skrk, J.

    1990-01-01

    Dynamics of postirradiation intracellular cysteine and aspartic proteinases profiles were examined in proliferating and nonproliferating Chinese hamster fibroblasts (V 79). The results show that there are significant alterations in cysteine and aspartic intracellular proteinases activity already in the early postirradiation period, which are different in proliferating and nonproliferating cells. Irradiation of the cells examined to low doses and up to 15 Gy induced an increase in cysteine proteinases activity in the early postexposure period, while at higher irradiation doses applied, the activity of these proteinases was decreased. These observations suggest that intracellular proteinases are actively participating in process involving recovery from radiation injury or cell killing. (orig.) [de

  4. Molecular cloning of a cysteine proteinase cDNA from the cotton boll weevil Anthonomus grandis (Coleoptera: Curculionidae).

    Science.gov (United States)

    De Oliveira Neto, Osmundo Brilhante; Batista, João Aguiar Nogueira; Rigden, Daniel John; Franco, Octávio Luiz; Fragoso, Rodrigo Rocha; Monteiro, Ana Carolina Santos; Monnerat, Rose Gomes; Grossi-De-Sa, Maria Fátima

    2004-06-01

    The cotton boll weevil (Anthonomus grandis) causes severe cotton crop losses in North and South America. This report describes the presence of cysteine proteinase activity in the cotton boll weevil. Cysteine proteinase inhibitors from different sources were assayed against total A. grandis proteinases but, unexpectedly, no inhibitor tested was particularly effective. In order to screen for active inhibitors against the boll weevil, a cysteine proteinase cDNA (Agcys1) was isolated from A. grandis larvae using degenerate primers and rapid amplification of cDNA ends (RACE) techniques. Sequence analysis showed significant homologies with other insect cysteine proteinases. Northern blot analysis indicated that the mRNA encoding the proteinase was transcribed mainly in the gut of larvae. No mRNA was detected in neonatal larvae, pupae, or in the gut of the adult insect, suggesting that Agcys1 is an important cysteine proteinase for larvae digestion. The isolated gene will facilitate the search for highly active inhibitors towards boll weevil larvae that may provide a new opportunity to control this important insect pest.

  5. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  6. Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants

    NARCIS (Netherlands)

    Creemers, L. B.; Hoeben, K. A.; Jansen, D. C.; Buttle, D. J.; Beertsen, W.; Everts, V.

    1998-01-01

    The involvement of cysteine proteinases in the degradation of soft connective tissue collagen was studied in cultured periosteal explants. Using cysteine proteinase inhibitors that were active intracellularly or extracellularly (Ep453 and Ep475, respectively), it was shown that over-all collagen

  7. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis

    Science.gov (United States)

    Hernández, Hilda M.; Marcet, Ricardo; Sarracent, Jorge

    2014-01-01

    Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis. PMID:25348828

  8. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime

    2015-01-01

    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464

  9. Circadian rhythms of cysteine proteinases and cystatins, potential tumour markers, in normal sera

    International Nuclear Information System (INIS)

    Cimerman, N.; Krasovec, M.; Mesko-Brguljan, P.; Suskovic, S.; Kos, J.

    2002-01-01

    Circadian day/night variations have been evidenced in all major groups of organisms and at all levels of organisation of the organism. Circadian intra-individual variations are known for a number of analyses in serum including tumour-associated markers. It was suggested that the serum levels of cysteine proteinases and their inhibitors may be of clinical importance for prognosis and diagnosis in cancer. Since known circadian rhythms are important for choosing the best sampling time, interpretation of the results of a diagnostic test, patient monitoring, and timing of a therapy, our objective was to establish 24-h variations of cysteine proteinases, cathepsins B, H, L, and their low molecular weight inhibitors, stefin A, stefin B, and cystatin C, in sera from healthy subjects. (author)

  10. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence.

    Science.gov (United States)

    Groten, Karin; Dutilleul, Christelle; van Heerden, Philippus D R; Vanacker, Hélène; Bernard, Stéphanie; Finkemeier, Iris; Dietz, Karl-Josef; Foyer, Christine H

    2006-02-20

    Redox factors contributing to nodule senescence were studied in pea. The abundance of the nodule cytosolic peroxiredoxin but not the mitochondrial peroxiredoxin protein was modulated by ascorbate. In contrast to redox-active antioxidants such as ascorbate and cytosolic peroxiredoxin that decreased during nodule development, maximal extractable nodule proteinase activity increased progressively as the nodules aged. Cathepsin-like activities were constant throughout development but serine and cysteine proteinase activities increased during senescence. Senescence-induced cysteine proteinase activity was inhibited by cysteine, dithiotreitol, or E-64. Senescence-dependent decreases in redox-active factors, particularly ascorbate and peroxiredoxin favour decreased redox-mediated inactivation of cysteine proteinases.

  11. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone

    NARCIS (Netherlands)

    Everts, Vincent; Korper, Wolf; Hoeben, Kees A.; Jansen, Ineke D. C.; Bromme, Dieter; Cleutjens, Kitty B. J. M.; Heeneman, Sylvia; Peters, Christoph; Reinheckel, Thomas; Saftig, Paul; Beertsen, Wouter

    2006-01-01

    Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous

  12. Putrescine-Dependent Re-Localization of TvCP39, a Cysteine Proteinase Involved in Trichomonas vaginalis Cytotoxicity

    OpenAIRE

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity...

  13. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...

  14. Partial purification and characterization of cysteine proteinase inhibitor from chicken plasma.

    Science.gov (United States)

    Rawdkuen, Saroat; Benjakul, Soottawat; Visessanguan, Wonnop; Lanier, Tyre C

    2006-08-01

    A high-molecular-weight cysteine proteinase inhibitor (CPI) was purified from chicken (Gallus gallus) plasma using polyethylene glycol (PEG) fractionation and affinity chromatography on carboxymethyl-papain-Sepharose-4B. The CPI was purified 96.8-fold with a yield of 28.9%. Based on inhibitory activity staining for papain, CPI was shown to have an apparent molecular mass of 122 kDa. No inhibitory activity was obtained under reducing condition, indicating that CPI from chicken plasma was stabilized by disulfide bonds. CPI was stable in temperature ranges from 40 to 70 degrees C for 10 min; however, more than 50% of the inhibitory activity towards papain was lost within 30 min of heating at 90 degrees C. CPI was stable in the presence of salt up to 3%. The purified CPI exhibited the inhibitory activity toward autolysis of arrowtooth flounder (Atheresthes stomias) and Pacific whiting (Merluccius productus) natural actomyosin (NAM) in a concentration-dependent manner.

  15. Cysteine peptidases and their inhibitors in breast and genital cancer.

    Directory of Open Access Journals (Sweden)

    Magdalena Milan

    2010-11-01

    Full Text Available Cysteine proteinases and their inhibitors probably play the main role in carcinogenesis and metastasis. The metastasis process need external proteolytic activities that pass several barriers which are membranous structures of the connective tissue which includes, the basement membrane of blood vessels. Activities of the proteinases are regulated by endogenous inhibitors and activators. The imbalance between cysteine proteinases and cystatins seems to be associated with an increase in metastatic potential in some tumors. It has also been reported that proteinase inhibitors, specific antibodies for these enzymes and inhibition of the urokinase receptor may prevent cancer cell invasion. Some proteinase inhibitor could serve as agents for cancer treatment.

  16. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  17. Protective role of purified cysteine proteinases against Fasciola gigantica infection in experimental animals.

    Science.gov (United States)

    El-Ahwany, Eman; Rabia, Ibrahim; Nagy, Faten; Zoheiry, Mona; Diab, Tarek; Zada, Suher

    2012-03-01

    Fascioliasis is one of the public health problems in the world. Cysteine proteinases (CP) released by Fasciola gigantica play a key role in parasite feeding, migration through host tissues, and in immune evasion. There has been some evidence from several parasite systems that proteinases might have potential as protective antigens against parasitic infections. Cysteine proteinases were purified and tested in vaccine trials of sheep infected with the liver fluke. Multiple doses (2 mg of CP in Freund's adjuvant followed by 3 booster doses 1 mg each at 4 week intervals) were injected intramuscularly into sheep 1 week prior to infect orally with 300 F. gigantica metacercariae. All the sheep were humanely slaughtered 12 weeks after the first immunization. Changes in the worm burden, ova count, and humoral and cellular responses were evaluated. Significant reduction was observed in the worm burden (56.9%), bile egg count (70.7%), and fecel egg count (75.2%). Immunization with CP was also found to be associated with increases of total IgG, IgG(1), and IgG(2) (P<0.05). Data showed that the serum cytokine levels of pro-inflammatory cytokines, IL-12, IFN-γ, and TNF-α, revealed significant decreases (P<0.05). However, the anti-inflammatory cytokine levels, IL-10, TGF-β, and IL-6, showed significant increases (P<0.05). In conclusion, it has been found that CP released by F. gigantica are highly important candidates for a vaccine antigen because of their role in the fluke biology and host-parasite relationships.

  18. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  19. Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes.

    Science.gov (United States)

    Varghese, Anju; Raina, O K; Nagar, Gaurav; Garg, Rajat; Banerjee, P S; Maharana, B R; Kollannur, Justin D

    2012-02-10

    Native cathepsin-L cysteine proteinase (28 kDa) was purified from the excretory secretory products of Fasciola gigantica and was used for sero-diagnosis of F. gigantica infection in buffaloes by Dot-enzyme-linked immunosorbent assay (Dot-ELISA). The test detected F. gigantica field infection in these animals with a sensitivity of ∼ 90%. No specific IgG antibody binding was displayed by sera obtained from 76 buffaloes considered to be Fasciola and other parasite-free by microscopic examination of faeces and necropsy examination of liver, rumen and intestine. Additionally, sera from 156 Fasciola-free buffaloes, yet infected with Gigantocotyle explanatum, Paramphistomum epiclitum, Gastrothylax spp., Strongyloides papillosus and hydatid cyst were all negative, indicating that F. gigantica cathepsin-L cysteine proteinase does not cross-react with these helminth parasites in natural infection of the host. The data indicated that cathepsin-L cysteine proteinase based Dot-ELISA reached ∼ 90% sensitivity and 100% specificity with relation to above parasites in the detection of bubaline fasciolosis. The present Dot-ELISA diagnostic assay is relevant to the field diagnosis of F. gigantica infection in buffaloes. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Developing novel anthelmintics from plant cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Stepek Gillian

    2008-09-01

    Full Text Available Abstract Intestinal helminth infections of livestock and humans are predominantly controlled by treatment with three classes of synthetic drugs, but some livestock nematodes have now developed resistance to all three classes and there are signs that human hookworms are becoming less responsive to the two classes (benzimidazoles and the nicotinic acetylcholine agonists that are licensed for treatment of humans. New anthelmintics are urgently needed, and whilst development of new synthetic drugs is ongoing, it is slow and there are no signs yet that novel compounds operating through different modes of action, will be available on the market in the current decade. The development of naturally-occurring compounds as medicines for human use and for treatment of animals is fraught with problems. In this paper we review the current status of cysteine proteinases from fruits and protective plant latices as novel anthelmintics, we consider some of the problems inherent in taking laboratory findings and those derived from folk-medicine to the market and we suggest that there is a wealth of new compounds still to be discovered that could be harvested to benefit humans and livestock.

  1. Co-factor activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  2. Complete amino acid sequence of bovine colostrum low-Mr cysteine proteinase inhibitor.

    Science.gov (United States)

    Hirado, M; Tsunasawa, S; Sakiyama, F; Niinobe, M; Fujii, S

    1985-07-01

    The complete amino acid sequence of bovine colostrum cysteine proteinase inhibitor was determined by sequencing native inhibitor and peptides obtained by cyanogen bromide degradation, Achromobacter lysylendopeptidase digestion and partial acid hydrolysis of reduced and S-carboxymethylated protein. Achromobacter peptidase digestion was successfully used to isolate two disulfide-containing peptides. The inhibitor consists of 112 amino acids with an Mr of 12787. Two disulfide bonds were established between Cys 66 and Cys 77 and between Cys 90 and Cys 110. A high degree of homology in the sequence was found between the colostrum inhibitor and human gamma-trace, human salivary acidic protein and chicken egg-white cystatin.

  3. A zymography analysis of proteinase activity present in Leptospira.

    Science.gov (United States)

    Madathiparambil, Madanan G; Cattavarayane, Sandhanakrishnan; Manickam, Gayathri D; Singh, Kavita; Perumana, Sudhakaran R; Sehgal, Subhash C

    2011-03-01

    Leptospirosis is a major public health problem caused by spirochete Leptospira which is an extracellular pathogen. During infection and invasion, the bacteria cross the physical barriers and later it encounter with the host defence mechanism. These processes may involve proteolytic degradation of the host tissue biomatrix. In an effort to understand the production and nature of Leptospiral proteinases, investigations were carried out using zymograpic methods. The results showed that the leptospires degrades different kind of protein substances such as gelatin, casein, and albumin. Gelatin zymography reveals that different serovars contain multiple gelatinases in the molecular weight range from 240 to 32 kDa. Studies using inhibitors suggested that the Leptospiral proteinases include metalloproteinases, serine or cysteine proteinases. The temperature sensitivity suggests that some of these proteinases are stable even at high temperatures. The presence of multiple gelatinases in Leptospira serovars suggests a critical role for these enzymes in Leptospiral invasion and pathogenesis.

  4. The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases.

    Science.gov (United States)

    Alderete, J F; Newton, E; Dennis, C; Neale, K A

    1991-12-01

    Patients with trichomoniasis have serum antibody to numerous T. vaginalis cysteine proteinases, indicating that the proteinases are expressed in vivo. It was important, therefore, to examine for the presence of soluble trichomonad proteinases and/or antibody to the proteinases in the vagina of infected women. Vaginal washes (VWs) from 20 women were examined for the presence of proteinases by electrophoresis using acrylamide co-polymerised with gelatin as the indicator system. Antibody to proteinases in VWs was detected by an immunoprecipitation assay involving protein A-bearing Staphylococcus aureus first coated with anti-human immunoglobulin G (IgG) antibody, which was then added to VWs. For VWs having soluble proteinases, the bacteria were used to determine whether immune complexes between antibody and proteinases were present. VWs without soluble proteinases were incubated with the anti-human IgG treated bacteria before adding to detergent extracts of T. vaginalis. Individual isolates from the patients examined in this study were also analysed by one- and two-dimensional electrophoresis for their proteinase content. Finally, VWs were from patients without any history of other sexually transmitted diseases (STDs) as well as from individuals having numerous other STDs, including yeast, group B streptococcus, chlamydia, and syphilis. Approximately one-third of patients had soluble proteinases in the VWs; the remaining two-thirds (70%) of patients and normal women had no detectable proteinases in VWs. Half of the patients without soluble proteinases had IgG which, when bound to S. aureus, immunoprecipitated many proteinases from a detergent extract of T. vaginalis. All soluble proteinases and those precipitated from trichomonal extracts were inhibited by inhibitors of cysteine proteinases. Finally, patients having trichomoniasis in addition to numerous other STD agents, including yeast, group B streptococcus, chlamydia, and syphilis did not have soluble proteinases

  5. "Purification and evaluation of somatic, excretory-secretory and Cysteine proteinase antigens of Fasciola Hepatica using IgG-ELISA in diagnosing Fascioliasis "

    Directory of Open Access Journals (Sweden)

    "Rokni MB

    2001-08-01

    Full Text Available Fasciolosis, or liver fluke disease, caused by parasites of the genus Fasciola is emerging as an important disease in man and animals, in the world and Iran, particularly in nortern parts. The economical losses in domestic animals are considerable. In the recent decade there were two major outbreaks of human fasciolosis in the Caspian region, northern part of Iran with 7000-10000 infected cases. Sicne it is impossible to diagnose fasciolosis in acute phase using coprological methods and even in chronic phases its sensitivity is low, evaluating and establishing a reliable and cost-effetive test is indispensable and notewortly.In the present survey, we produced and examined the sensitivity and specificity of liver fluke homogenate (LFH , excretory-secetory (ES and cysteine proteinase (CP antigens of F. hepatica using IgG-ELISA test. A 25-27 kilo Dalton coomassie blue-stained band was observed and using of specific inhibitors indicated that this antigen belongs to the class of cysteine proteinase. The sensitivity of LFH, ES and CP antigen in IgG-ELISa was 100% for each, while their specificity was 97.8%, 98.8% and 98.8% respectively. There was a significant difference in mean OD values between cases of proven fasciolosis and other true negative cases, including healthy control individuals and patients with other parasitic diseases.This present report is the first to demonstrate the purification and evaluation of F. hepatica cysteine proteinase antigen by IgG-ELISA test for the diagnosis of fasciolosis in Iran. In conclusion, the IgG-ELISa using ES and CP show high sensitivity and specificity and would be a valuable tool to diagnose human fasciolosis in Iran, particularly in endemic areas.

  6. [Concentration of cysteine proteinase inhibitors in urine, amniotic fluid and serum from women in pregnancy complicated by EPH-gestosis].

    Science.gov (United States)

    Karmowski, A; Sobiech, K A; Kertyńska, I; Terpiłowski, L; Słowińska-Lisowska, M; Pałczyński, B; Malik, B

    2000-10-01

    Cysteine proteinase inhibitors (IPC) concentration was measured by the modified Barrett method using papaine in urine, amniotic fluid and serum obtained from the healthy labored women and from labored women in pregnancy complicated by EPH-gestosis. It was noticed the statistically significant increase in the IPC concentration in the material from the pregnant women with EPH-gestosis comparing to the women, which pregnancy had the physiologically normal course.

  7. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  8. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval Western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris

    NARCIS (Netherlands)

    Bown, D.P.; Wilkinson, H.S.; Jongsma, M.A.; Gatehouse, J.A.

    2004-01-01

    Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by

  10. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris.

    Science.gov (United States)

    Reséndiz-Cardiel, Gerardo; Arroyo, Rossana; Ortega-López, Jaime

    2017-06-01

    The legumain-like cysteine proteinase TvLEGU-1 from Trichomonas vaginalis plays a major role in trichomonal cytoadherence. However, its structure-function characterization has been limited by the lack of a reliable recombinant expression platform to produce this protein in its native folded conformation. TvLEGU-1 has been expressed in Escherichia coli as inclusion bodies and all efforts to refold it have failed. Here, we describe the expression of the synthetic codon-optimized tvlegu-1 (tvlegu-1-opt) gene in Pichia pastoris strain X-33 (Mut+) under the inducible AOX1 promoter. The active TvLEGU-1 recombinant protein (rTvLEGU-1) was secreted into the medium when tvlegu-1-opt was fused to the Aspergillus niger alpha-amylase signal peptide. The rTvLEGU-1 secretion was influenced by the gene copy number and induction temperature. Data indicate that increasing tvlegu-1-opt gene copy number was detrimental for heterologous expression of the enzymatically active TvLEGU-1. Indeed, expression of TvLEGU-1 had a greater impact on cell viability for those clones with 26 or 29 gene copy number, and cell lysis was observed when the induction was carried out at 30 °C. The enzyme activity in the medium was higher when the induction was carried out at 16 °C and in P. pastoris clones with lower gene copy number. The results presented here suggest that both copy number and induction temperature affect the rTvLEGU-1 expression in its native-like and active conformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase.

    Science.gov (United States)

    Rawat, Reetika; Xu, Zeng-Fu; Yao, Kwok-Ming; Chye, Mee-Len

    2005-03-01

    We have previously shown that the expression of SmCP which encodes Solanum melongena cysteine proteinase is ethylene-inducible and is under circadian control. To understand the regulation of SmCP, a 1.34-kb SmCP 5'-flanking region and its deletion derivatives were analyzed for cis-elements using GUS and luc fusions and by in vitro binding assays. Analysis of transgenic tobacco transformed with SmCP promoter-GUS constructs confirmed that the promoter region -415/+54 containing Ethylene Responsive Element ERE(-355/-348) conferred threefold ethylene-induction of GUS expression, while -827/+54 which also contains ERE(-683/-676), produced fivefold induction. Using gel mobility shift assays, we demonstrated that each ERE binds nuclear proteins from both ethephon-treated and untreated 5-week-old seedlings, suggesting that different transcriptions factors bind each ERE under varying physiological conditions. Binding was also observed in extracts from senescent, but not young, fruits. The variation in binding at the EREs in fruits and seedlings imply that organ-specific factors may participate in binding. Analysis of transgenic tobacco expressing various SmCP promoter-luc constructs containing wild-type or mutant Evening Elements (EEs) confirmed that both conserved EEs at -795/-787 and -785/-777 are important in circadian control. We confirmed the binding of total nuclear proteins to EEs in gel mobility shift assays and in DNase I footprinting. Our results suggest that multiple proteins bind the EEs which are conserved in plants other than Arabidopsis and that functional EEs and EREs are present in the 5'-flanking region of a gene encoding cysteine proteinase.

  12. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  13. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    M.E. Pereira

    2005-11-01

    Full Text Available The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

  14. Immunological cross-reactivity of the major allergen from perennial ryegrass (Lolium perenne), Lol p I, and the cysteine proteinase, bromelain.

    Science.gov (United States)

    Pike, R N; Bagarozzi, D; Travis, J

    1997-04-01

    Antibodies prepared in rabbits against the major allergen from ryegrass (Lolium perenne), Lol p I, cross-reacted with the cysteine proteinase bromelain from pineapple and vice versa. Deglycosylation of the proteins showed that the cross-reaction was based on recognition of the carbohydrate moiety of the allergen, but for bromelain the cross-reaction was most likely due to a combination of factors. The results indicate that the carbohydrate residues from these allergens play an important role in cross-reactions found between them and possibly those from other species.

  15. Propeptide-mediated inhibition of cognate gingipain proteinases.

    Directory of Open Access Journals (Sweden)

    N Laila Huq

    Full Text Available Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism's cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB and the Lys-specific proteinase (Kgp, which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with K(i values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.

  16. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. Co...

  17. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Bertha Isabel Carvajal-Gamez

    Full Text Available Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB (an inhibitor of putrescine biosynthesis, diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  18. The TvLEGU-1, a Legumain-Like Cysteine Proteinase, Plays a Key Role in Trichomonas vaginalis Cytoadherence

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rendón-Gandarilla

    2013-01-01

    Full Text Available The goal of this paper was to characterize a Trichomonas vaginalis cysteine proteinase (CP legumain-1 (TvLEGU-1 and determine its potential role as a virulence factor during T. vaginalis infection. A 30-kDa band, which migrates in three protein spots (pI~6.3, ~6.5, and ~6.7 with a different type and level of phosphorylation, was identified as TvLEGU-1 by one- and two-dimensional Western blot (WB assays, using a protease-rich trichomonad extract and polyclonal antibodies produced against the recombinant TvLEGU-1 (anti-TvLEGU-1r. Its identification was confirmed by mass spectrometry. Immunofluorescence, cell binding, and WB assays showed that TvLEGU-1 is upregulated by iron at the protein level, localized on the trichomonad surface and in lysosomes and Golgi complex, bound to the surface of HeLa cells, and was found in vaginal secretions. Additionally, the IgG and Fab fractions of the anti-TvLEGU-1r antibody inhibited trichomonal cytoadherence up to 45%. Moreover, the Aza-Peptidyl Michael Acceptor that inhibited legumain proteolytic activity in live parasites also reduced levels of trichomonal cytoadherence up to 80%. In conclusion, our data show that the proteolytic activity of TvLEGU-1 is necessary for trichomonal adherence. Thus, TvLEGU-1 is a novel virulence factor upregulated by iron. This is the first report that a legumain-like CP plays a role in a pathogen cytoadherence.

  19. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora.

    Science.gov (United States)

    Franco, Octávio L; Grossi de Sá, Maria F; Sales, Maurício P; Mello, Luciane V; Oliveira, Adeliana S; Rigden, Daniel J

    2002-11-15

    Proteinase inhibitors are among the most promising candidates for expression by transgenic plants and consequent protection against insect predation. However, some insects can respond to the threat of the proteinase inhibitor by the production of enzymes insensitive to inhibition. Inhibitors combining more than one favorable activity are therefore strongly favored. Recently, a known small Kunitz trypsin inhibitor from Prosopis juliflora (PTPKI) has been shown to possess unexpected potent cysteine proteinase inhibitory activity. Here we show, by enzyme assay and gel filtration, that, unlike other Kunitz inhibitors with dual activities, this inhibitor is incapable of simultaneous inhibition of trypsin and papain. These data are most readily interpreted by proposing overlapping binding sites for the two enzymes. Molecular modeling and docking experiments favor an interaction mode in which the same inhibitor loop that interacts in a canonical fashion with trypsin can also bind into the papain catalytic site cleft. Unusual residue substitutions at the proposed interface can explain the relative rarity of twin trypsin/papain inhibition. Other changes seem responsible for the relative low affinity of PTPKI for trypsin. The predicted coincidence of trypsin and papain binding sites, once confirmed, would facilitate the search, by phage display for example, for mutants highly active against both proteinases. Copyright 2002 Wiley-Liss, Inc.

  20. Phospholipase and proteinase activities of Candida spp. isolates from vulvovaginitis in Iran.

    Science.gov (United States)

    Shirkhani, S; Sepahvand, A; Mirzaee, M; Anbari, K

    2016-09-01

    This study aims to characterize phospholipase and proteinase activities of Candida isolates from 82 vulvovaginal candidiasis (VVC) and to study the relationship of these activities with vulvovaginitis. Totally 82 Candida isolates from vagina samples of VVC patients were randomly collected over the period between September and December 2014 from hospitalized patients at the general hospitals of Lorestan province, Iran. Isolates were previously identified by conventional mycological methods. The phospholipase and proteinase activities were evaluated by Egg yolk agar, Tween 80 opacity medium and agar plate methods. The most common Candida species was identified Candida albicans (n=34, 41.5%), followed by Candida famata (n=13, 15.8%), Candida tropicalis (n=11, 13.4%), and Candida parapsilosis (n=9, 11%). The most phospholipase activity was observed in Candida colliculosa (40%), followed by C. famata (38.5%), and Candida krusei (33.3%). The findings revealed that the correlation between phospholipase production by Candida spp. and the presence of VVC was not found to be statistically significant (P=0.91). All Candida spp. exhibited considerable proteinase activity; so that 100% of C. colliculosa, C. parapsilosis, Candida kefyr, and Candida intermedia isolates produced high proteinase activity with Pz 4+ scores. There was a significant correlation between proteinase production by Candida spp. and the presence of VVC (P=0.009). The obtained findings revealed that Candida spp. isolates may produce both virulence factors, phospholipase and proteinase. Although the phospholipase production was only observed in <40% of the isolates; however there was a significant association between proteinase production by Candida spp. and VVC. Copyright © 2016. Published by Elsevier Masson SAS.

  1. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan

    2011-01-01

    hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...... classes. Remarkably, the single symbiont that is shared by species of the crown group of Atta and Acromyrmex leaf-cutting ants mostly showed metalloproteinase activity, suggesting that recurrent changes in enzyme production may have occurred throughout the domestication history of fungus-garden symbionts......Background: Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore...

  2. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  3. Detection of Aspartic Proteinase Activities Using Gel Zymography.

    Science.gov (United States)

    Perera, Handunge Kumudu Irani

    2017-01-01

    Gel zymography is a two-stage process where the proteins from the test sample are first separated by electrophoresis followed by the detection of the activity of hydrolytic enzymes. Many zymography procedures use sodium dodecyl sulfate (SDS) polyacrylamide gels copolymerized with an appropriate substrate. The procedure described here uses native polyacrylamide gel electrophoresis (PAGE) in the absence of both SDS and substrate. In order to visualize aspartic proteinase activity, the gel is impregnated in bovine hemoglobin at pH 3.0 for 15 min after the electrophoresis procedure. Subsequently, the gel is incubated in a humid container in the absence of hemoglobin for 1 h at 37 °C. At the end, the gel is stained with amido black and destained. Clear areas against a dark background corresponding to aspartic proteinase activities can be detected.

  4. High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen.

    Science.gov (United States)

    Turk, B.; Stoka, V.; Björk, I.; Boudier, C.; Johansson, G.; Dolenc, I.; Colic, A.; Bieth, J. G.; Turk, V.

    1995-01-01

    Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass,1 = 10.7-24.5 x 10(6) M-1 s-1 and kass,2 = 0.83-1.4 x 10(6) M-1 s-1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain. PMID:8528085

  5. Analysis of green kiwi fruit (Actinidia deliciosa cv. Hayward) proteinases by two-dimensional zymography and direct identification of zymographic spots by mass spectrometry.

    Science.gov (United States)

    Larocca, Marilena; Rossano, Rocco; Riccio, Paolo

    2010-11-01

    Proteinases present in kiwi fruits are potentially allergenic enzymes belonging to the papain family of cysteine proteinases. Actinidin is a prominent kiwi enzyme. The study of kiwi proteinases is important for the follow-up of fruit maturation, a deeper insight in the allergenic properties of individual proteins, and the application of kiwi proteinases for meat tenderisation and other industrial purposes. Kiwi crude extracts were analysed by two-dimensional zymography on gelatin-containing gels. The digestion by the reactivated proteolytic enzymes after electrophoresis resulted in insights into kiwi proteinases. A mixture of several enzyme isotypes with the same pI but different molecular mass was observed. Clear spots, corresponding to the proteolytic activities, were excised, digested with trypsin, and submitted to MALDI-ToF mass spectrometry for protein identification. The most representative enzyme was actinidin. The innovative achievements of the present study are the: (1) two-dimensional zymographic map of kiwi gelatinases without the need for extensive purification; and (2) direct identification of proteinase isotypes by means of direct MALDI-ToF MS analysis of the zymographic spots. 2010 Society of Chemical Industry

  6. Investigation of arginine A-specific cysteine proteinase gene expression profiling in clinical Porphyromonas gingivalis isolates against photokilling action of the photo-activated disinfection.

    Science.gov (United States)

    Pourhajibagher, Maryam; Ghorbanzadeh, Roghayeh; Bahador, Abbas

    2018-02-01

    Porphyromonas gingivalis is a significant root canal pathogen capable of causing endodontic infections, which during their treatment may receive sub-lethal doses of photo-activated disinfection (sPAD). As sPAD can influence microbial virulence, this study was designed to evaluate the effect of sPAD on gene expression level of arginine A-specific cysteine proteinase (rgpA), as one of the underlying virulence factors involved in the development of endodontic infection via P. gingivalis strains. To find out the sPAD against 16 clinical isolates of PAD-resistant P. gingivalis that were isolated in vivo, we used toluidine blue O (TBO), methylene blue (MB), and indocyanine green (ICG) as the photosensitizers, which were excited with specific wavelength of light in vitro. Quantitative real-time PCR (qRT-PCR) was then applied to monitor gene expression of rgpA in P. gingivalis isolates to characterize its virulence agent and understand the effect of sPAD on its pathogenicity. Maximal sPAD that could not decrease the count of P. gingivalis isolates were 6.25, 15.6, and 25 μg/mL at fluencies of 171.87, 15.6, and 93.75 J/cm 2 for TBO, ICG, and MB, respectively. ICG-sPAD could suppress the rgpA gene expression about 14-fold, while MB and TBO-mediated sPAD could cause the attenuation of rgpA expression about 4.9- and 11.6-fold, respectively. ICG-sPAD with the maximum ability to reduce rgpA gene expression compared with other photosensitizers can be an appropriate candidate for the treatment of endodontic infections.

  7. Proteinase activity in cell nuclei of rats exposed to γ-radiation and methyl nitrosourea

    International Nuclear Information System (INIS)

    Malakhova, L.V.; Surkenova, G.N.; Gaziev, A.I.

    1990-01-01

    Activity of nuclear proteinases in blood and liver cells of rats exposed to whole-body γ-irradiation (10 Gy) has been comparatively studied by the capacity of splitting the caseic substrate. Proteinase activity in nuclei of irradiated rat leukocytes was shown to increase by 2.5 times and to gradually decrease after 48 h reaching 150-160% as compared to the control. Two hours following a single injection of methyl nitrosourea the alteration in the activity of proteinases in nuclei of rat hepatocytes and leukocytes was different from the alteration of this index after γ-irradiation

  8. Assay of cysteine dioxygenase activity

    International Nuclear Information System (INIS)

    Bagley, P.J.; Stipanuk, M.H.

    1990-01-01

    It has been proposed that rat liver contains two cysteine dioxygenase enzymes which convert cysteine to cysteinesulfinic acid, one which is stimulated by NAD + and has a pH optimum of 6.8 and one which is not stimulated by NAD + and has a pH optimum of 9.0. This led the authors to reinvestigate assay conditions for measuring cysteine dioxygenase activity in rat liver homogenate. An HPLC method, using an anion exchange column (Dionex Amino-Pac trademark PA1 (4x250 mm)) was used to separate the [ 35 S]cysteinesulfinic acid produced from [ 35 S]cysteine in the incubation mixture. They demonstrated that inclusion of hydroxylamine prevented further metabolism of cysteinesulfinic acid. which occurred rapidly in the absence of hydroxylamine

  9. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    OpenAIRE

    Almeida-Reis, Rafael; Theodoro-Junior, Osmar A.; Oliveira, Bruno T. M.; Oliva, Leandro V.; Toledo-Arruda, Alessandra C.; Bonturi, Camila R.; Brito, Marlon V.; Lopes, Fernanda D. T. Q. S.; Prado, Carla M.; Florencio, Ariana C.; Martins, Mílton A.; Owen, Caroline A.; Leick, Edna A.; Oliva, Maria L. V.; Tibério, Iolanda F. L. C.

    2017-01-01

    Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.??C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respirator...

  10. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  11. [Ulysses retrotransposon aspartate proteinase (Drosophila virilis)].

    Science.gov (United States)

    Volkov, D A; Savvateeva, L V; Dergousova, N I; Rumsh, L D

    2002-01-01

    Retrotransposones are mobile genetic elements occurring in genomes of bacteria, plants or animals. Retrotransposones were found to contain nucleotide sequences encoding proteins which are homological to retroviral aspartic proteinases. Our research has been focused on Ulysses which is mobile genetic element found in Drosophila virilis. We suggested a primary structure of Ulysses proteinase using comparative analysis of amino acid sequences of retroviral proteinases and proteinases from retrotransposones. The appropriate cDNA fragment has been cloned and expressed in E. coli. The purification of recombinant protein (12 kD) has been carried out by affinity chromatography using pepstatine-agarose. The obtained protein has proteolytic activity at optimum pH 5.5 like the majority of aspartic proteinases.

  12. Detection and Characterization of Bacterial Proteinases Using Zymography.

    Science.gov (United States)

    Madanan, Madathiparambil G; Mechoor, Ambili

    2017-01-01

    Proteinases play a crucial role in invasion and pathogenesis of bacteria, especially the extracellular and membrane-bound forms. Analysis of these proteinases demands the isolation by retaining the enzymatic activity. The isolation procedures maintaining the native structure of the enzyme in its soluble form are also of extreme importance. The qualitative analyses of these proteinases are carried out by electrophoresis and zymography. Enzymatic characterization based on the effect of inhibitors and activators on gelatinase activity also can be assessed using this zymography. The membrane-bound proteinases can be isolated in their native and soluble form, still retaining the activity using 6-aminocaproic acid and sodium deoxycholate; the procedure of which is explained in this chapter.

  13. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    Science.gov (United States)

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus microplus involved in the generation of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Craik Charles S

    2010-07-01

    Full Text Available Abstract Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins. A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.

  15. Cysteine peroxidase activity in rat blood plasma | Razygraev ...

    African Journals Online (AJOL)

    The rat plasma found to be able to accelerate greatly the H2O2-dependent oxidation of cysteine. The activity was a characteristic of a protein fraction precipitated at 30—44% ammonium sulfate saturation, and the specific activity in protein fraction was significantly higher than in plasma. Cysteine:H2O2 oxidoreductase ...

  16. Inhibitory activity and conformational transition of alpha 1-proteinase inhibitor variants

    NARCIS (Netherlands)

    Schulze, A.J.; Huber, R.; Degryse, E.; Speck, D.; Bischoff, Rainer

    1991-01-01

    Several variants of alpha 1-proteinase inhibitor (alpha 1-PI) were investigated by spectroscopic methods and characterized according to their inhibitory activity. Replacement of Thr345 (P14) with Arg in alpha 1-PI containing an Arg residue in position 358 (yielding [Thr345----Arg,

  17. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions.

    Science.gov (United States)

    Bleischwitz, Marc; Albert, Markus; Fuchsbauer, Hans-Lothar; Kaldenhoff, Ralf

    2010-10-22

    Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. The study provides new information about molecular events during the parasitic plant--host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  18. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  19. Erythrocyte endogenous proteinase activity during blood bank storage.

    Science.gov (United States)

    de Angelis, V; de Matteis, M C; Orazi, B M; Santarossa, L; Della Toffola, L; Raineri, A; Vettore, L

    1990-01-01

    We studied proteolytic alterations of membrane proteins in ghosts derived from human red blood cells, preserved up to 35 days in the liquid state either as whole blood or with additive solution. The study was carried out by performing sodium dodecyl sulfate polyacrylamide gel electrophoresis of stromal proteins from erythrocytes, either previously treated with proteinase inhibitors or previously incubated in conditions promoting proteolysis. To differentiate the effect of erythrocyte from granulocyte proteinases, the investigation was also carried out in leukocyte-free red cell preparations. The results show: (1) the effects of endogenous proteinases on membrane proteins derived from red cells stored under blood bank conditions; (2) a decrease of proteolytic effects in ghosts derived from red cells which have been submitted to a longer storage; (3) a relevant influence of the red cell resuspending medium before lysis on the time-dependent onset and exhaustion of proteolysis in ghosts. The presence of increased proteolysis in ghosts could be regarded as a marker of molecular lesions induced in red cells by storage under blood bank conditions.

  20. Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies.

    Science.gov (United States)

    Prins, Anneke; van Heerden, Philippus D R; Olmos, Enrique; Kunert, Karl J; Foyer, Christine H

    2008-01-01

    The roles of cysteine proteinases (CP) in leaf protein accumulation and composition were investigated in transgenic tobacco (Nicotiana tabacum L.) plants expressing the rice cystatin, OC-1. The OC-1 protein was present in the cytosol, chloroplasts, and vacuole of the leaves of OC-1 expressing (OCE) plants. Changes in leaf protein composition and turnover caused by OC-1-dependent inhibition of CP activity were assessed in 8-week-old plants using proteomic analysis. Seven hundred and sixty-five soluble proteins were detected in the controls compared to 860 proteins in the OCE leaves. A cyclophilin, a histone, a peptidyl-prolyl cis-trans isomerase, and two ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase isoforms were markedly altered in abundance in the OCE leaves. The senescence-related decline in photosynthesis and Rubisco activity was delayed in the OCE leaves. Similarly, OCE leaves maintained higher leaf Rubisco activities and protein than controls following dark chilling. Immunogold labelling studies with specific antibodies showed that Rubisco was present in Rubisco vesicular bodies (RVB) as well as in the chloroplasts of leaves from 8-week-old control and OCE plants. Western blot analysis of plants at 14 weeks after both genotypes had flowered revealed large increases in the amount of Rubisco protein in the OCE leaves compared to controls. These results demonstrate that CPs are involved in Rubisco turnover in leaves under optimal and stress conditions and that extra-plastidic RVB bodies are present even in young source leaves. Furthermore, these data form the basis for a new model of Rubisco protein turnover involving CPs and RVBs.

  1. Bmcystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus

    International Nuclear Information System (INIS)

    Lima, Cassia A.; Sasaki, Sergio D.; Tanaka, Aparecida S.

    2006-01-01

    The bovine tick Rhipicephalus (Boophilus) microplus is a blood-sucking animal, which is responsible for Babesia spp and Anaplasma marginale transmission for cattle. From a B. microplus fat body cDNA library, 465 selected clones were sequenced randomly and resulted in 60 Contigs. An open reading frame (ORF) contains 98 amino acids named Bmcystatin, due to 70% amino acid identity to a classical type 1 cystatin from Ixodes scapularis tick (GenBank Accession No. DQ066227). The Bmcystatin amino acid sequence analysis showed two cysteine residues, theoretical pI of 5.92 and M r of 11kDa. Bmcystatin gene was cloned in pET 26b vector and the protein expressed using bacteria Escherichia coli BL21 SI. Recombinant Bmcystatin (rBmcystatin) purified by affinity chromatography on Ni-NTA-agarose column and ionic exchange chromatography on HiTrap Q column presented molecular mass of 11kDa, by SDS-PAGE and the N-terminal amino acid sequenced revealed unprocessed N-terminal containing part of pelB signal sequence. Purified rBmcystatin showed to be a C1 cysteine peptidase inhibitor with K i value of 0.1 and 0.6nM for human cathepsin L and VTDCE (vitellin degrading cysteine endopeptidase), respectively. The rBmcystatin expression analyzed by semi-quantitative RT-PCR confirmed the amplification of a specific DNA sequence (294bp) in the fat body and ovary cDNA preparation. On the other hand, a protein band was detected in the fat body, ovary, and the salivary gland extracts using anti-Bmcystatin antibody by Western blot. The present results suggest a possible role of Bmcystatin in the ovary, even though the gene was cloned from the fat body, which could be another site of this protein synthesis

  2. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  3. New aspartic proteinase of Ulysses retrotransposon from Drosophila virilis.

    Science.gov (United States)

    Volkov, D A; Dergousova, N I; Rumsh, L D

    2004-06-01

    This work is focused on the investigation of a proteinase of Ulysses mobile genetic element from Drosophila virilis. The primary structure of this proteinase is suggested based on comparative analysis of amino acid sequences of aspartic proteinases from retroviruses and retrotransposons. The corresponding cDNA fragment has been cloned and expressed in E. coli. The protein accumulated in inclusion bodies. The recombinant protein (12 kD) was subjected to refolding and purified by affinity chromatography on pepstatin-agarose. Proteolytic activity of the protein was determined using oligopeptide substrates melittin and insulin B-chain. It was found that the maximum of the proteolytic activity is displayed at pH 5.5 as for the majority of aspartic proteinases. We observed that hydrolysis of B-chain of insulin was totally inhibited by pepstatin A in the micromolar concentration range. The molecular weight of the monomer of the Ulysses proteinase was determined by MALDI-TOF mass-spectrometry.

  4. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Fuchsbauer Hans-Lothar

    2010-10-01

    Full Text Available Abstract Background Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. Results One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. Conclusions The study provides new information about molecular events during the parasitic plant - host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  5. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis.

    Science.gov (United States)

    Kong, Hee Jeong; Cho, Hyun Kook; Park, Eun-Mi; Hong, Gyeong-Eun; Kim, Young-Ok; Nam, Bo-Hye; Kim, Woo-Jin; Lee, Sang-Jun; Han, Hyon Sob; Jang, In-Kwon; Lee, Chang Hoon; Cheong, Jaehun; Choi, Tae-Jin

    2009-01-01

    Proteinase inhibitors play important roles in host defence systems involving blood coagulation and pathogen digestion. We isolated and characterized a cDNA clone for a Kazal-type proteinase inhibitor (KPI) from a hemocyte cDNA library of the oriental white shrimp Fenneropenaeus chinensis. The KPI gene consists of three exons and two introns. KPI cDNA contains an open reading frame of 396 bp, a polyadenylation signal sequence AATAAA, and a poly (A) tail. KPI cDNA encodes a polypeptide of 131 amino acids with a putative signal peptide of 21 amino acids. The deduced amino acid sequence of KPI contains two homologous Kazal domains, each with six conserved cysteine residues. The mRNA of KPI is expressed in the hemocytes of healthy shrimp, and the higher expression of KPI transcript is observed in shrimp infected with the white spot syndrome virus (WSSV), suggesting a potential role for KPI in host defence mechanisms.

  6. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  7. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    Science.gov (United States)

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Activated human CD4 T cells express transporters for both cysteine and cystine

    DEFF Research Database (Denmark)

    Levring, Trine Bøegh; Hansen, Ann Kathrine; Nielsen, Bodil Lisbeth

    2012-01-01

    Because naïve T cells are unable to import cystine due to the absence of cystine transporters, it has been suggested that T cell activation is dependent on cysteine generated by antigen presenting cells. The aim of this study was to determine at which phases during T cell activation exogenous...... cystine/cysteine is required and how T cells meet this requirement. We found that early activation of T cells is independent of exogenous cystine/cysteine, whereas T cell proliferation is strictly dependent of uptake of exogenous cystine/cysteine. Naïve T cells express no or very low levels of both...... cystine and cysteine transporters. However, we found that these transporters become strongly up-regulated during T cell activation and provide activated T cells with the required amount of cystine/cysteine needed for T cell proliferation. Thus, T cells are equipped with mechanisms that allow T cell...

  9. The induction of proteinases in corn and soybean by anoxia

    International Nuclear Information System (INIS)

    VanToai, T.; Hwang, Shihying

    1989-01-01

    This study characterized the anaerobic changes in proteinase activities in corn and soybean roots and to investigate the possibility that these changes might contribute to the differential anaerobiosis tolerance of the two species. After 24 h of anoxia, crude protein extracts from H60 corn and Keller soybean root tips (10cm) were assayed for proteinase activities at pH range from 4.5 to 9.5. Turnover of aberrant proteins was studied in seedlings labelled with 3 H-leucine for 12 h under: (a) puromycin (0.64 mM) in air, (b) ethanol (1%) in air, (c) nitrogen and (d) air. After the treatment, the labelled proteins remaining in roots were determined every 2 h for 6 h. In both corn and soybean, activities of alkali proteinases increased, and activities of acid proteinases declined under anoxia. Neutral proteinases increase in anoxic corn roots, but decline in anoxic soybean roots. The protein turnover rate in corn treated with puromycin, ethanol and nitrogen was much higher than in control roots. The protein turnover rate in soybean roots treated with puromycin, ethanol was similar to the rate of the control. The results indicated that: (a) anoxic corn can degrade aberrant proteins, but anoxic soybean cannot, (b) the degradation of aberrant proteins in anoxic corn is accomplished by neutral proteinases, and (c) the accumulation of aberrant proteins in soybean might contribute to the susceptibility of this species to anoxia

  10. Human seminal proteinase and prostate-specific antigen are the ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jbsc/033/02/0195-0207. Keywords. Kallikrein; prostate cancer biomarker; proteinase activity; seminal plasma; tumour proliferation and metastasis; therapeutic target. Abstract. Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and ...

  11. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    Science.gov (United States)

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  12. Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.

    OpenAIRE

    Himelbloom, B H; Hassan, H M

    1986-01-01

    Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.

  13. Antitumor Effects In Vitro and In Vivo and Mechanisms of Protection against Melanoma B16F10-Nex2 Cells By Fastuosain, a Cysteine Proteinase from Bromelia fastuosa

    Directory of Open Access Journals (Sweden)

    Carla A. Guimarães-Ferreira

    2007-09-01

    Full Text Available In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57BI/6 mice, fastuosain and bromelain injected intraperitoneally were protective, very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein -chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBSinjected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, cathepsins B and L crossreacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.

  14. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  15. Trypanoplasma borreli cysteine proteinase activities support a conservation of function with respect to digestion of host proteins in common carp

    NARCIS (Netherlands)

    Ruszczyk, Aleksandra; Forlenza, Maria; Joerink, Maaike; Ribeiro, Carla M. S.; Jurecka, Patrycja; Wiegertjes, Geert F.

    2008-01-01

    Trypanoplasma borreli is an extracellular parasite that is transmitted by a leech vector and is naturally found in the blood of cyprinid fish. High parasitemia and associated severe anemia together with splenomegaly are typical of infection of common carp, Cyprinus carpio L. Papain-like cysteine

  16. Trypanoplasma borreli cystein proteinase activities support a conservation of function with respect to digestion of host proteins in common carp

    NARCIS (Netherlands)

    Ruszczyk, A.; Forlenza, M.; Joerink, M.; Ribeiro, C.M.S.; Jurecka, P.M.; Wiegertjes, G.F.

    2008-01-01

    Trypanoplasma borreli is an extracellular parasite that is transmitted by a leech vector and is naturally found in the blood of cyprinid fish. High parasitemia and associated severe anemia together with splenomegaly are typical of infection of common carp, Cyprinus carpio L. Papain-like cysteine

  17. Chemoenzymatic Synthesis of Oligo(L-cysteine) for Use as a Thermostable Bio-Based Material.

    Science.gov (United States)

    Ma, Yinan; Sato, Ryota; Li, Zhibo; Numata, Keiji

    2016-01-01

    Oligomerization of thiol-unprotected L-cysteine ethyl ester (Cys-OEt) catalyzed by proteinase K in aqueous solution has been used to synthesize oligo(L-cysteine) (OligoCys) with a well-defined chemical structure and relatively large degree of polymerization (DP) up to 16-17 (average 8.8). By using a high concentration of Cys-OEt, 78.0% free thiol content was achieved. The thermal properties of OligoCys are stable, with no glass transition until 200 °C, and the decomposition temperature could be increased by oxidation. Chemoenzymatically synthesized OligoCys has great potential for use as a thermostable bio-based material with resistance to oxidation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PepJ is a new extracellular proteinase of Aspergillus nidulans.

    Science.gov (United States)

    Emri, T; Szilágyi, M; László, K; M-Hamvas, M; Pócsi, I

    2009-01-01

    Under carbon starvation, Aspergillus nidulans released a metallo-proteinase with activities comparable to those of PrtA, the major extracellular serine proteinase of the fungus. The relative molar mass of the enzyme was 19 kDa as determined with both denaturing and renaturing SDS PAGE, while its isoelectric point and pH and temperature optima were 8.6, 5.5 and 65 degrees C, respectively. The enzyme was stable at pH 3.5-10.5 and was still active at 95 degrees C in the presence of azocasein substrate. MALDI-TOF MS analysis demonstrated that the proteinase was encoded by the pepJ gene (locus ID AN7962.3), and showed high similarity to deuterolysin from Aspergillus oryzae. The size of the mature enzyme, its EDTA sensitivity and heat stability also supported the view that A. nidulans PepJ is a deuterolysin-type metallo-proteinase.

  19. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  20. Multiple forms of endopeptidase activity from jojoba seeds.

    Science.gov (United States)

    Wolf, M J; Storey, R D

    1990-01-01

    The cotyledons of 27 day post-germination jojoba seedlings (Simmondsia chinensis) contained five distinct endopeptidase activities separable by DEAE Bio-Gel and CM-cellulose ion exchange chromatography. The endopeptidases were purified 108- to 266-fold and their individuality was confirmed by activity-specific assays in native acrylamide gels along with differences in their Mr and catalytic properties. The five endopeptidases, which showed activity on model substrates and protein, were named EP Ia, EP Ib, EP II, EP III and EP IV. EP Ia was a serine proteinase with a pH optimum of ca 8 and Mr of 58,000. EP Ib, II and III were discrete cysteine proteinases showing pH optima of ca 6.8, 6.0 and 5.4 and Mr of 41,000, 47,000 and 35,000 respectively. EP IV was an aspartic acid proteinase with a ca pH optimum of 3.5 and Mr of 33,000.

  1. Retaining in-gel zymographic activity of cysteine proteases via a cysteine-supplemented running buffer.

    Science.gov (United States)

    Vootukuri Reddy, Sreekanth; Philpott, Mike P; Trigiante, Giuseppe

    2016-10-01

    Zymography is a powerful technique to separate and identify different enzymatic activities on a standard acrylamide gel. For oxidation prone enzymes such as cysteine proteases however, the oxidizing species generated by electrolysis of the gel running buffer may result in partial or complete inactivation, thus compromising the final readout. This can be only partially remedied by subsequent treatment of the gel with reducing agents. We demonstrate the generation of reactive oxidizing species during electrophoresis and discovered that supplementation of the gel running buffer with a minimum of 5 mM cysteine prevents enzyme inactivation and allows retention of proteolytic activity as measured by zymography on model substrate N α-benzoyl-l-arginine p-nitroanilide, without at the same time altering the mobilities of the gel proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Applicability of Yeast Extracellular Proteinases in Brewing: Physiological and Biochemical Aspects

    Science.gov (United States)

    Bilinski, Carl A.; Russell, Inge; Stewart, Graham G.

    1987-01-01

    A general screening survey for expression of extracellular acid proteinase production was performed on over 100 cultures belonging to the genus Saccharomyces. Although two strains of Saccharomyces cerevisiae showed positive extracellular proteinase phenotypes in plate tests, it was not possible to demonstrate proteolytic activities in cell-free culture supernatants in assays performed at beer pH values. Of several yeasts from other genera examined, Saccharomycopsis fibuligera and Torulopsis magnoliae produced extracellular proteinases with desirable properties. Proteolytic activities were detected in assays performed at beer pH values and at lower temperature. Brewer's wort served as a highly inducing medium for extracellular proteinase production, with T. magnoliae yielding enzyme of highest specific activity. In fact, commencement of enzyme production was detected shortly after the onset of exponential growth in brewer's wort. Inclusion of crude enzyme preparations in brewer's wort inoculated simultaneously with brewer's yeast reduced final ethanol yields slightly and was found to be effective in reducing chill haze formation in bottled beer. PMID:16347298

  3. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  4. Characterisation of proteolytic activity of excretory-secretory products from adult Strongylus vulgaris.

    Science.gov (United States)

    Caffrey, C R; Ryan, M F

    1994-04-01

    An excretory-secretory (ES) preparation derived from adult Strongylus vulgaris in vitro was assessed for proteolytic activity using azocasein and synthetic, fluorogenic, peptide substrates. Fractionation was by molecular sieve fast protein liquid chromatography (molecular sieve FPLC) and resolution by gelatin-substrate sodium dodecyl sulphate-polyacrylamide gel electrophoresis (gelatin-substrate SDS-PAGE). The cysteine proteinase activator, dithiothreitol (DTT), enhanced azocaseinolysis and hydrolysis of carbobenzoxy-phenylalanyl-arginine-7-amido-4-methylcoumarin (Z-Phe-Arg-NMec) by the ES preparation and was a requirement for the detection of carbobenzoxy-arginyl-arginine-7-amido-4-methylcoumarin (Z-Arg-Arg-NMec) hydrolysis. Assays of FPLC-eluted fractions, with DTT, detected a broad peak of azocaseinolytic activity (22-24 kDa) and two peaks (24 and 18 kDa) of hydrolysis using the synthetic substrates. Hydrolysis by these peaks of Z-Phe-Arg-NMec was 50-fold greater than that of Z-Arg-Arg-NMec suggesting that their specificities are more like papain or cathepsin L rather than cathepsin B. In gelatin-substrate SDS-PAGE, DTT was required to detect proteolysis by the ES preparation which was optimal at pH 6.0 and resolved into eight bands (87-29 kDa). Cysteine proteinase inhibitors were the most effective in all assays. Collectively, these data indicate that cysteine-class proteolytic activity predominates in the ES preparation of adult S. vulgaris.

  5. Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity.

    Science.gov (United States)

    Oliveira, Marco A S; Baura, Valter A; Aquino, Bruno; Huergo, Luciano F; Kadowaki, Marco A S; Chubatsu, Leda S; Souza, Emanuel M; Dixon, Ray; Pedrosa, Fábio O; Wassem, Roseli; Monteiro, Rose A

    2009-01-01

    Herbaspirillum seropedicae is an endophytic diazotrophic bacterium that associates with economically important crops. NifA protein, the transcriptional activator of nif genes in H. seropedicae, binds to nif promoters and, together with RNA polymerase-sigma(54) holoenzyme, catalyzes the formation of open complexes to allow transcription initiation. The activity of H. seropedicae NifA is controlled by ammonium and oxygen levels, but the mechanisms of such control are unknown. Oxygen sensitivity is attributed to a conserved motif of cysteine residues in NifA that spans the central AAA+ domain and the interdomain linker that connects the AAA+ domain to the C-terminal DNA binding domain. Here we mutagenized this conserved motif of cysteines and assayed the activity of mutant proteins in vivo. We also purified the mutant variants of NifA and tested their capacity to bind to the nifB promoter region. Chimeric proteins between H. seropedicae NifA, an oxygen-sensitive protein, and Azotobacter vinelandii NifA, an oxygen-tolerant protein, were constructed and showed that the oxygen response is conferred by the central AAA+ and C-terminal DNA binding domains of H. seropedicae NifA. We conclude that the conserved cysteine motif is essential for NifA activity, although single cysteine-to-serine mutants are still competent at binding DNA.

  6. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    Science.gov (United States)

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  7. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    International Nuclear Information System (INIS)

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward [ 3 H]-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics

  8. Functional specialization and evolution of leader proteinases in the family Closteroviridae.

    Science.gov (United States)

    Peng, C W; Peremyslov, V V; Mushegian, A R; Dawson, W O; Dolja, V V

    2001-12-01

    Members of the Closteroviridae and Potyviridae families of the plant positive-strand RNA viruses encode one or two papain-like leader proteinases. In addition to a C-terminal proteolytic domain, each of these proteinases possesses a nonproteolytic N-terminal domain. We compared functions of the several leader proteinases using a gene swapping approach. The leader proteinase (L-Pro) of Beet yellows virus (BYV; a closterovirus) was replaced with L1 or L2 proteinases of Citrus tristeza virus (CTV; another closterovirus), P-Pro proteinase of Lettuce infectious yellows virus (LIYV; a crinivirus), and HC-Pro proteinase of Tobacco etch virus (a potyvirus). Each foreign proteinase efficiently processed the chimeric BYV polyprotein in vitro. However, only L1 and P-Pro, not L2 and HC-Pro, were able to rescue the amplification of the chimeric BYV variants. The combined expression of L1 and L2 resulted in an increased RNA accumulation compared to that of the parental BYV. Remarkably, this L1-L2 chimera exhibited reduced invasiveness and inability to move from cell to cell. Similar analyses of the BYV hybrids, in which only the papain-like domain of L-Pro was replaced with those derived from L1, L2, P-Pro, and HC-Pro, also revealed functional specialization of these domains. In subcellular-localization experiments, distinct patterns were observed for the leader proteinases of BYV, CTV, and LIYV. Taken together, these results demonstrated that, in addition to a common proteolytic activity, the leader proteinases of closteroviruses possess specialized functions in virus RNA amplification, virus invasion, and cell-to-cell movement. The phylogenetic analysis suggested that functionally distinct L1 and L2 of CTV originated by a gene duplication event.

  9. The knockdown of each component of the cysteine proteinase-adhesin complex of Entamoeba histolytica (EhCPADH) affects the expression of the other complex element as well as the in vitro and in vivo virulence.

    Science.gov (United States)

    Ocádiz-Ruiz, Ramón; Fonseca, Wendy; Linford, Alicia S; Yoshino, Timothy P; Orozco, Esther; Rodríguez, Mario A

    2016-01-01

    Entamoeba histolytica is the protozoan parasite causative of human amoebiasis, disease responsible for 40 000-100 000 deaths annually. The cysteine proteinase-adhesin complex of this parasite (EhCPADH) is a heterodimeric protein formed by a cysteine protease (EhCP112) and an adhesin (EhADH) that plays an important role in the cytopathic mechanism of this parasite. The coding genes for EhCP112 and EhADH are adjacent in the E. histolytica genome, suggesting that their expression may be co-regulated, but this hypothesis has not yet been confirmed. Here, we performed the knockdown of EhCP112 and EhADH using gene-specific short-hairpin RNAs (shRNA), and the effect of these knockdowns on the expression of both complex components as well as on the in vitro and in vivo virulence was analysed. Results showed that the knockdown of one of the EhCPADH components produced a simultaneous downregulation of the other protein. Accordingly, a concomitant reduction in the overall expression of the complex was observed. The downregulation of each component also produced a significant decrease in the in vitro and in vivo virulence of trophozoites. These results demonstrated that the expression of EhCP112 and EhADH is co-regulated and confirmed that the EhCPADH complex plays an important role in E. histolytica virulence.

  10. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    Science.gov (United States)

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  11. Use of a Recombinant Cysteine Proteinase from Leishmania (Leishmania) infantum chagasi for the Immunotherapy of Canine Visceral Leishmaniasis

    Science.gov (United States)

    Ferreira, Josie Haydée Lima; Silva, Lucilene dos Santos; Longo-Maugéri, Ieda Maria; Katz, Simone; Barbiéri, Clara Lúcia

    2014-01-01

    Background A recombinant cysteine proteinase from Leishmania (Leishmania) infantum chagasi (rLdccys1) was previously shown to induce protective immune responses against murine and canine visceral leishmaniasis. These findings encouraged us to use rLdccys1 in the immunotherapy of naturally infected dogs from Teresina, Piauí, a region of high incidence of visceral leishmaniasis in Brazil. Methodology/Principal Findings Thirty naturally infected mongrel dogs displaying clinical signs of visceral leishmaniasis were randomly divided in three groups: one group received three doses of rLdccys1 in combination with the adjuvant Propionibacterium acnes at one month interval between each dose; a second group received three doses of P. acnes alone; a third group received saline. The main findings were: 1) dogs that received rLdccys1 with P. acnes did not display increase of the following clinical signs: weight loss, alopecia, onychogryphosis, cachexia, anorexia, apathy, skin lesions, hyperkeratosis, ocular secretion, and enlarged lymph nodes; they also exhibited a significant reduction in the spleen parasite load in comparison to the control dogs; 2) rLdccys1-treated dogs exhibited a significant delayed type cutaneous hypersensitivity elicited by the recombinant antigen, as well as high IgG2 serum titers and low IgG1 serum titers; sera from rLdccys1-treated dogs also contained high IFN-γ and low IL-10 concentrations; 3) control dogs exhibited all of the clinical signs of visceral leishmaniasis and had low serum IgG2 and IFN-γ levels and high concentrations of IgG1 and IL-10; 4) all of the dogs treated with rLdccys1 were alive 12 months after treatment, whereas dogs which received either saline or P. acnes alone died within 3 to 7 months. Conclusions/Significance These findings illustrate the potential use of rLdccys1 as an additional tool for the immunotherapy of canine visceral leishmaniasis and support further studies designed to improve the efficacy of this recombinant

  12. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  13. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  14. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  15. Screening and identification of host proteins interacting with Theileria annulata cysteine proteinase (TaCP by yeast-two-hybrid system

    Directory of Open Access Journals (Sweden)

    Shuaiyang Zhao

    2017-10-01

    Full Text Available Abstract Background Theileria annulata can infect monocytes/macrophages and B lymphocytes and causes severe lymphoproliferative disease in ruminants. Meanwhile, infection by T. annulata leads to the permanent proliferation of cell population through regulating signaling pathways of host cells. Cysteine proteinases (CPs are one kind of protein hydrolase and usually play critical roles in parasite virulence, host invasion, nutrition and host immune response. However, the biological function of T. annulata CP (TaCP is still unclear. In this study, a yeast-two-hybrid assay was performed to screen host proteins interacting with TaCP, to provide information to help our understanding of the molecular mechanisms between T. annulata and host cells. Methods The cDNA from purified bovine B cells was inserted into pGADT7-SfiI vector (pGADT7-SfiI-BcDNA, Prey plasmid for constructing the yeast two-hybrid cDNA library. TaCP was cloned into the pGBKT7 vector (pGBKT7-TaCP and was considered as bait plasmid after evaluating the expression, auto-activation and toxicity tests in the yeast strain Y2HGold. The yeast two-hybrid screening was carried out via co-transforming bait and prey plasmids into yeast strain Y2HGold. Sequences of positive preys were analyzed using BLAST, Gene Ontology, UniProt and STRING. Results Two host proteins, CRBN (Bos taurus cereblon transcript variant X2 and Ppp4C (Bos indicus protein phosphatase 4 catalytic subunit were identified to interact with TaCP. The results of functional analysis showed that the two proteins were involved in many cellular processes, such as ubiquitylation regulation, microtubule organization, DNA repair, cell apoptosis and maturation of spliceosomal snRNPs. Conclusions This study is the first to screen the host proteins of bovine B cells interacting with TaCP, and 2 proteins, CRBN and Ppp4C, were identified using yeast two-hybrid technique. The results of functional analysis suggest that the two proteins are

  16. Action of plant proteinase inhibitors on enzymes of physiopathological importance

    Directory of Open Access Journals (Sweden)

    Maria Luiza V. Oliva

    2009-09-01

    Full Text Available Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.Obtidas de sementes leguminosas, várias proteínas inibem proteinases de origem animal, incluindo humanas, e podem ser consideradas para o desenvolvimento de compostos com atividade biológica. Inibidores da família Bowman-Birk e da família Kunitz vegetal tem sido caracterizados em relação a especificidade para proteinase, estrutura primária e sitio reativo. O nosso grupo majoritariamente vem estudando o gênero Bauhinia, principalmente as espécies bauhinioides, rufa, ungulatae variegata. Em algumas espécies, mais de um inibidor com propriedades diferentes foi caracterizado. Embora tais proteínas apresentem alta similaridade estrutural, diferem quanto à inibição de proteinases, e foram exploradas em estudos utilizando diversos modelos biológicos.

  17. Cloning and sequence analysis of serine proteinase of Gloydius ussuriensis venom gland

    International Nuclear Information System (INIS)

    Sun Dejun; Liu Shanshan; Yang Chunwei; Zhao Yizhuo; Chang Shufang; Yan Weiqun

    2005-01-01

    Objective: To construct a cDNA library by using mRNA from Gloydius ussuriensis (G. Ussuriensis) venom gland, to clone and analyze serine proteinase gene from the cDNA library. Methods: Total RNA was isolated from venom gland of G. ussuriensis, mRNA was purified by using mRNA isolation Kit. The whole length cDNA was synthesized by means of smart cDNA synthesis strategy, and amplified by long distance PCR procedure, lately cDAN was cloned into vector pBluescrip-sk. The recombinant cDNA was transformed into E. coli DH5α. The cDNA of serine proteinase gene in the venom gland of G. ussuriensis was detected and amplified using the in situ hybridization. The cDNA fragment was inserted into pGEMT vector, cloned and its nucleotide sequence was determined. Results: The capacity of cDNA library of venom gland was above 2.3 x 10 6 . Its open reading frame was composed of 702 nucleotides and coded a protein pre-zymogen of 234 amino acids. It contained 12 cysteine residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with the thrombin-like enzyme genes of other snakes in the GenBank. the query sequence exhibited strong amino acid sequence homology of 85% to the serine proteas of T. gramineus, thrombin-like serine proteinase I of D. acutus and serine protease catroxase II of C. atrox respectively. Based on the amino acid sequences of other thrombin-like enzymes, the catalytic residues and disulfide bridges of this thrombin-like enzyme were deduced as follows: catalytic residues, His 41 , Asp 86 , Ser 180 ; and six disulfide bridges Cys 7 -Cys 139 , Cys 26 -Cys 42 , Cys 74 -Cys 232 , Cys 118 -Cys 186 , Cys 150 -Cys 165 , Cys 176 -Cys 201 . Conclusion: The capacity of cDNA library of venom gland is above 2.3 x 10 6 , overtop the level of 10 5 capicity. The constructed cDNA library of G. ussuriensis venom gland would be helpful platform to detect new target genes and further gene manipulate. The cloned serine

  18. The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut.

    Science.gov (United States)

    Beton, Daniela; Guzzo, Cristiane R; Ribeiro, Alberto F; Farah, Chuck S; Terra, Walter R

    2012-09-01

    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors.

    Science.gov (United States)

    Burtoloso, Antonio C B; de Albuquerque, Sérgio; Furber, Mark; Gomes, Juliana C; Gonçalez, Cristiana; Kenny, Peter W; Leitão, Andrei; Montanari, Carlos A; Quilles, José Carlos; Ribeiro, Jean F R; Rocha, Josmar R

    2017-02-01

    The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Anti-trypanosomal activity against the CL Brener strain of T. cruzi was observed in the 0.1 μM to 1 μM range for three nitrile-based cysteine protease inhibitors based on two scaffolds known to be associated with cathepsin K inhibition. The two compounds showing the greatest potency against the trypanosome were characterized by EC50 values (0.12 μM and 0.25 μM) that were an order of magnitude lower than the corresponding Ki values measured against cruzain, a recombinant form of cruzipain, in an enzyme inhibition assay. This implies that the anti-trypanosomal activity of these two compounds may not be explained only by the inhibition of the cruzain enzyme, thereby triggering a putative polypharmacological profile towards cysteine proteases.

  20. The Contribution of Proteinase-Activated Receptors to Intracellular Signaling, Transcellular Transport and Autophagy in Alzheimer´s Disease

    Czech Academy of Sciences Publication Activity Database

    Matěj, R.; Rohan, Z.; Holada, K.; Olejár, Tomáš

    2015-01-01

    Roč. 12, č. 1 (2015), s. 2-12 ISSN 1567-2050 Institutional support: RVO:67985823 Keywords : Alzheimer ´s Disease * autophagy * proteinase-activated receptors Subject RIV: EA - Cell Biology Impact factor: 3.145, year: 2015

  1. Stanniocalcin-1 Potently Inhibits the Proteolytic Activity of the Metalloproteinase Pregnancy-associated Plasma Protein-A

    DEFF Research Database (Denmark)

    Kløverpris, Søren; Mikkelsen, Jakob Hauge; Pedersen, Josefine Hvidkjær

    2015-01-01

    regulation in these species. Several physiological functions of STC1 have been reported, although many molecular details are still lacking. We here demonstrate that STC1 is an inhibitor of the metzincin metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), which modulates insulin-like growth...... that the homologous STC2 inhibits PAPP-A proteolytic activity, and that this depends on the formation of a covalent complex between the inhibitor and the proteinase, mediated by Cys-120 of STC2. We find that STC1 is unable to bind covalently to PAPP-A, in agreement with the absence of a corresponding cysteine residue....... It rather binds to PAPP-A with high affinity (KD = 75 pm). We further demonstrate that both STC1 and STC2 show inhibitory activity toward PAPP-A2, but not selected serine proteinases and metalloproteinases. We therefore conclude that the STCs are proteinase inhibitors, probably restricted in specificity...

  2. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  3. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    Science.gov (United States)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  4. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis...... and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg2+ and Ca2+ activated the proteinase, as did NaCl; however, Hg2+ Fe2+, and Zn2+ caused strong inhibition. The sequence of the first 20 N-terminal amino acids was NH2-Ala-Lys- Asn...

  5. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4).

    Science.gov (United States)

    Cunningham, Margaret R; McIntosh, Kathryn A; Pediani, John D; Robben, Joris; Cooke, Alexandra E; Nilsson, Mary; Gould, Gwyn W; Mundell, Stuart; Milligan, Graeme; Plevin, Robin

    2012-05-11

    Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.

  6. Effect of pH on the production of alkaline proteinase by alkalophilic Bacillus sp

    International Nuclear Information System (INIS)

    Kitada, Makio; Horikoshi, Koki

    1976-01-01

    The effect of the pH of the medium on the microbial growth and alkaline proteinase production, and on the uptake of various substances by alkalophilic Bacillus sp. No.8-1 were studied to investigate the physiological properties of alkalophilic bacteria. Both the microbial growth and alkaline proteinase production by replacement culture were maximum between pH 9 and 10. The alkaline proteinase production sources were also effective for the production. The uptake of various substances such as glucose, acetate, amino acids, and uracil, necessary for proteinase production by this strain, was maximum between pH 9 and 10. The uptake of α-aminoisobutyric acid, a nonmetabolizable amino acid analogue, was also maximum at pH 10. The pH-dependence of these substance was not due to their ionic forms being affected by extracellular pH. It was concluded from above results that good production of alkaline proteinase in alkaline media was due to the active uptake of various nutrients in this culture condition. (auth.)

  7. Cell-Wall-Bound Proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and Specificity for β-Casein

    Science.gov (United States)

    Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.

    1999-01-01

    Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997

  8. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.).

    Science.gov (United States)

    Llorente, Berta E; Brutti, Cristina B; Caffini, Néstor O

    2004-12-29

    The study of proteinase expression in crude extracts from different organs of the globe artichoke (Cynara scolymus L.) disclosed that enzymes with proteolytic and milk-clotting activity are mainly located in mature flowers. Maximum proteolytic activity was recorded at pH 5.0, and inhibition studies showed that only pepstatin, specific for aspartic proteinases, presented a significant inhibitory effect. Such properties, in addition to easy enzyme inactivation by moderate heating, make this crude protease extract potentially useful for cheese production. Adsorption with activated carbon, together with anion exchange and affinity chromatography, led to the isolation of a heterodimeric milk-clotting proteinase consisting of 30- and 15-kDa subunits. MALDI-TOF MS of the 15-kDa chain determined a 15.358-Da mass, and the terminal amino sequence presented 96% homology with the smaller cardosin A subunit. The amino terminal sequence of the 30-kDa chain proved to be identical to the larger cardosin A subunit. Electrophoresis evidenced proteinase self-processing that was confirmed by immunoblots presenting 62-, 30-, and 15-kDa bands.

  9. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A

    Science.gov (United States)

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-01-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity. PMID:26044846

  10. Proteinases of human epidermis; a possible mechanism for polymorphonuclear leukocyte chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Levine, N; Hatcher, V B; Lazarus, G S [Albert Einstein Coll. of Medicine, Bronx, N.Y. (USA); Montefiore Hospital, New York (USA); Duke Univ., Durham, N.C. (USA))

    1976-12-08

    Three neutral proteinases (EC 3.4.-,-) and cathepsin D have been identified in human epidermis utilizing a highly sensitive radioactive method. The proteinases were extracted in 1.0 M KCl and 0.1% Triton X-100 and separated by Sephadex G-75 chromatography. The neutral proteinase peaks were all inhibited by diisopropyl fluorophosphate and thus were serine proteinases. Incubation of the enzyme fractions with (/sup 3/H)diisopropyl fluorophosphate followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that the two larger molecular weight proteinases were enzyme mixtures. The small molecular weight (/sup 3/H)diisopropyl fluorophosphate proteinase migrated as a single band. Injection of the small molecular weight neutral proteinase into rabbit skin produced a polymorphonuclear leukocyte infiltration and edema. The reaction was not observed with the diisopropul fluorophosphate-inhibited enzyme fraction. The release of neutral proteinases may be one of the signal events in the epidermal inflammatory response.

  11. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  12. On the Dynamical Behavior of the Cysteine Dioxygenase-l-Cysteine Complex in the Presence of Free Dioxygen and l-Cysteine.

    Science.gov (United States)

    Pietra, Francesco

    2017-11-01

    In this work, viable models of cysteine dioxygenase (CDO) and its complex with l-cysteine dianion were built for the first time, under strict adherence to the crystal structure from X-ray diffraction studies, for all atom molecular dynamics (MD). Based on the CHARMM36 FF, the active site, featuring an octahedral dummy Fe(II) model, allowed us observing water exchange, which would have escaped attention with the more popular bonded models. Free dioxygen (O 2 ) and l-cysteine, added at the active site, could be observed being expelled toward the solvating medium under Random Accelerated Molecular Dynamics (RAMD) along major and minor pathways. Correspondingly, free dioxygen (O 2 ), added to the solvating medium, could be observed to follow the same above pathways in getting to the active site under unbiased MD. For the bulky l-cysteine, 600 ns of trajectory were insufficient for protein penetration, and the molecule was stuck at the protein borders. These models pave the way to free energy studies of ligand associations, devised to better clarify how this cardinal enzyme behaves in human metabolism. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Phylip, L H; Lees, W E; Brownsey, B G

    2001-01-01

    The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar...... by the nontarget aspartic proteinases, it was not cleaved by proteinase A. The random coil IA3 polypeptide escapes cleavage by being stabilized in a helical conformation upon interaction with the active site of proteinase A. This results, paradoxically, in potent selective inhibition of the target enzyme....

  14. pH-dependent processing of yeast procarboxypeptidase Y by proteinase A in vivo and in vitro

    DEFF Research Database (Denmark)

    Sørensen, S O; van den Hazel, H B; Kielland-Brandt, Morten

    1994-01-01

    Carboxypeptidase Y is a vacuolar enzyme from Saccharomyces cerevisiae. It enters the vacuole as a zymogen, procarboxypeptidase Y, which is immediately processed in a reaction involving two endoproteases, proteinase A and proteinase B. We have investigated the in vitro activation of purified proca...

  15. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Directory of Open Access Journals (Sweden)

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  16. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  17. The mitochondrial toxicity of cysteine-S-conjugates: Studies with pentachlorobutadienyl-L-cysteine

    International Nuclear Information System (INIS)

    Wallin, A.

    1990-01-01

    Nephrotoxic cysteine conjugates, arising from mercapturate biosynthesis, can perturb the mitochondrial membrane potential and calcium homeostasis in renal epithelial cells. Activation of these cysteine conjugates to reactive species by mitochondrial β-lyases results in covalent binding and mitochondrial damage. PCBC and related cysteine conjugates inhibit ADP-stimulated respiration in mitochondria respiring on alpha-ketoglutrate/malate and succinate indicating that both dehydrogenases may be targets. The respiratory inhibition is blocked by aminooxyacetic acid, an inhibitor of the β-lyase. Hence, metabolic activation is required implying that covalent binding of reactive intermediates may be important to the mitochondrial injury. Binding of 35 S-fragments has been found for 5 conjugates with varying degrees of mitochondrial toxicity. PCBC is more lipophilic and has a higher affinity for cellular membranes than other cysteine conjugates. PCBC rapidly depolarizes the inner membrane potential resulting in an inhibition of mitochondrial oxidative phosphorylation and calcium upon sequestration. Consequently, mitochondria and renal epithelial cells exposed to PCBC show a sudden release of calcium upon exposure to PCBC which is followed by a later increase in state 4 respiration leading to an inhibition of oxidative phosphorylation. The primary effect of other cysteine conjugates is an inhibition of the dehydrogenases, thus inhibiting state 3 respiration

  18. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.

    Science.gov (United States)

    Waag, Thilo; Gelhaus, Christoph; Rath, Jennifer; Stich, August; Leippe, Matthias; Schirmeister, Tanja

    2010-09-15

    Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure-activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Transport and activation of S-(1,2-dichlorovinyl)-L-cysteine and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine in rat kidney proximal tubules

    International Nuclear Information System (INIS)

    Zhang, G.H.; Stevens, J.L.

    1989-01-01

    An important step in understanding the mechanism underlying the tubular specificity of the nephrotoxicity of toxic cysteine conjugates is to identify the rate-limiting steps in their activation. The rate-limiting steps in the activation of toxic cysteine conjugates were characterized using isolated proximal tubules from the rat and 35S-labeled S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAC-DCVC) as model compounds. The accumulation by tubules of 35S radiolabel from both DCVC and NAC-DCVC was time and temperature dependent and was mediated by both Na+-dependent and independent processes. Kinetic studies with DCVC in the presence of sodium revealed the presence of two components with apparent Km and Vmax values of (1) 46 microM and 0.21 nmol/mg min and (2) 2080 microM and 7.3 nmol/mg.min. NAC-DVVC uptake was via a single system with apparent Km and Vmax values of 157 microM and 0.65 nmol/mg.min, respectively. Probenecid, an inhibitor of the renal organic anion transport system, inhibited accumulation of radiolabel from NAC-DCVC, but not from DCVC. The covalent binding of 35S label to cellular macromolecules was much greater from [35S]DCVC than from NAC-[35S]DCVC. Analysis of metabolites showed that a substantial amount of the cellular NAC-[35S]DCVC was unmetabolized while [35S]DCVC was rapidly metabolized to bound 35S-labeled material and unidentified products. The data suggest that DCVC is rapidly metabolized following transport, but that activation of NAC-DCVC depends on a slower rate of deacetylation. The results are discussed with regard to the segment specificity of cysteine conjugate toxicity and the role of disposition in vivo in the nephrotoxicity of glutathione conjugates

  20. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    Science.gov (United States)

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  1. Metabolic mapping of proteinase activity with emphasis on in situ zymography of gelatinases: review and protocols.

    Science.gov (United States)

    Frederiks, Wilma M; Mook, Olaf R F

    2004-06-01

    Proteases are essential for protein catabolism, regulation of a wide range of biological processes, and in the pathogenesis of many diseases. Several techniques are available to localize activity of proteases in tissue sections or cell preparations. For localization of the activity of matrix metalloproteinases, in situ zymography was introduced some decades ago. The procedure is based on zymography using SDS polyacrylamide gels containing gelatin, casein, or fibrin as substrate. For in situ zymography, either a photographic emulsion containing gelatin or a fluorescence-labeled proteinaceous macromolecular substrate is brought into contact with a tissue section or cell preparation. After incubation, enzymatic activity is revealed as white spots in a dark background or as black spots in a fluorescent background. However, this approach does not allow precise localization of proteinase activity because of limited sensitivity. A major improvement in sensitivity was achieved with the introduction of dye-quenched (DQ-)gelatin, which is gelatin that is heavily labeled with FITC molecules so that its fluorescence is quenched. After cleavage of DQ-gelatin by gelatinolytic activity, fluorescent peptides are produced that are visible against a weakly fluorescent background. The incubation with DQ-gelatin can be combined with simultaneous immunohistochemical detection of a protein on the same section. To draw valid conclusions from the findings with in situ zymography, specific inhibitors need to be used and the technique has to be combined with immunohistochemistry and zymography. In that case, in situ zymography provides data that extend our understanding of the role of specific proteinases in various physiological and pathological conditions.

  2. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    Science.gov (United States)

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato.

  3. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    Science.gov (United States)

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  4. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  5. The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Gottschalk Marcelo

    2010-02-01

    Full Text Available Abstract Background Streptococcus suis is a major swine pathogen and zoonotic agent that mainly causes septicemia, meningitis, and endocarditis. It has recently been suggested that proteinases produced by S. suis (serotype 2 are potential virulence determinants. In the present study, we screened a S. suis mutant library created by the insertion of Tn917 transposon in order to isolate a mutant deficient in a cell surface proteinase. We characterized the gene and assessed the proteinase for its potential as a virulence factor. Results Two mutants (G6G and M3G possessing a single Tn917 insertion were isolated. The affected gene coded for a protein (SSU0757 that shared a high degree of identity with Streptococccus thermophilus PrtS (95.9% and, to a lesser extent, with Streptococcus agalactiae CspA (49.5%, which are cell surface serine proteinases. The SSU0757 protein had a calculated molecular mass of 169.6 kDa and contained the catalytic triad characteristic of subtilisin family proteinases: motif I (Asp200, motif II (His239, and motif III (Ser568. SSU0757 also had the Gram-positive cell wall anchoring motif (Leu-Pro-X-Thr-Gly at the carboxy-terminus, which was followed by a hydrophobic domain. All the S. suis isolates tested, which belonged to different serotypes, possessed the gene encoding the SSU0757 protein. The two mutants devoid of subtilisin-like proteinase activity had longer generation times and were more susceptible to killing by whole blood than the wild-type parent strain P1/7. The virulence of the G6G and M3G mutants was compared to the wild-type strain in the CD1 mouse model. Significant differences in mortality rates were noted between the P1/7 group and the M3G and G6G groups (p Conclusion In summary, we identified a gene coding for a cell surface subtilisin-like serine proteinase that is widely distributed in S. suis. Evidences were brought for the involvement of this proteinase in S. suis virulence.

  6. Proteinases in excretory-secretory products of Toxocara canis second-stage larvae: zymography and modeling insights.

    Science.gov (United States)

    González-Páez, Gonzalo Ernesto; Alba-Hurtado, Fernando; García-Tovar, Carlos Gerardo; Argüello-García, Raúl

    2014-01-01

    Components released in excretory-secretory products of Toxocara canis larvae (TES) include phosphatidylethanolamine-binding proteins (TES26), mucins (TES120, MUC2-5), and C-type lectins (TES32, TES70) and their biochemical, immunological, and diagnostic properties have been extensively studied albeit proteinase activities towards physiological substrates are almost unknown. Proteolytic activities in TES samples were first analyzed by gel electrophoresis with gelatin as substrate. Major activities of ~400, 120, and 32 kDa in TES were relatively similar over a broad pH range (5.5-9.0) and all these were of the serine-type as leupeptin abolished gelatinolysis. Further, the ~400 kDa component degraded all physiological substrates tested (laminin, fibronectin, albumin, and goat IgG) and the 120 kDa component degraded albumin and goat IgG while proteinases of lower MW (45, 32, and 26 kDa) only degraded laminin and fibronectin, preferentially at alkaline pH (9.0). By protein modeling approaches using the known sequences of TES components, only TES26 and MUC4 displayed folding patterns significantly related to reference serine proteinases. These data suggest that most of serine proteinase activities secreted in vitro by infective larvae of T. canis have intriguing nature but otherwise help the parasite to affect multiple components of somatic organs and bodily fluids within the infected host.

  7. Evidence for the presence of proteolytically active secreted aspartic proteinase 1 of Candida parapsilosis in the cell wall

    Czech Academy of Sciences Publication Activity Database

    Vinterová, Zuzana; Šanda, Miloslav; Dostál, Jiří; Hrušková-Heidingsfeldová, Olga; Pichová, Iva

    2011-01-01

    Roč. 20, č. 12 (2011), s. 2004-2012 ISSN 0961-8368 R&D Projects: GA MŠk(CZ) LC531; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Candida parapsilosis * secreted aspartic proteinases * Sapp1p * cell wall * biotin * proteolytic activity Subject RIV: CE - Biochemistry Impact factor: 2.798, year: 2011

  8. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  9. Cathepsin L of Triatoma brasiliensis (Reduviidae, Triatominae): sequence characterization, expression pattern and zymography.

    Science.gov (United States)

    Waniek, Peter J; Pacheco Costa, Juliana E; Jansen, Ana M; Costa, Jane; Araújo, Catarina A C

    2012-01-01

    Triatoma brasiliensis is considered one of the main vectors of Chagas disease commonly found in semi-arid areas of northeastern Brazil. These insects use proteases, such as carboxypeptidase B, aminopeptidases and different cathepsins for blood digestion. In the present study, two genes encoding cathepsin L from the midgut of T. brasiliensis were identified and characterized. Mature T. brasiliensis cathepsin L-like proteinases (TBCATL-1, TBCATL-2) showed a high level of identity to the cathepsin L-like proteinases of other insects, with highest similarity to Rhodnius prolixus. Both cathepsin L transcripts were highly abundant in the posterior midgut region, the main region of the blood digestion. Determination of the pH in the whole intestine of unfed T. brasiliensis revealed alkaline conditions in the anterior midgut region (stomach) and acidic conditions in the posterior midgut region (small intestine). Gelatine in-gel zymography showed the activity of at least four distinct proteinases in the small intestine and the cysteine proteinase inhibitors transepoxysuccinyl-l-leucylamido-(4-guanidino)butane (E-64) and cathepsin B inhibitor and N-(l-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-l-isoleucyl-l-proline (CA-074) were employed to characterize enzymatic activity. E-64 fully inhibited cysteine proteinase activity, whereas in the samples treated with CA-074 residual proteinase activity was detectable. Thus, proteolytic activity could at least partially be ascribed to cathepsin L. Western blot analysis using specific anti cathepsin L antibodies confirmed the presence of cathepsin L in the lumen of the small intestine of the insects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  11. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.

    Directory of Open Access Journals (Sweden)

    Ann C Smigocki

    Full Text Available Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases.

  12. Probes of the catalytic site of cysteine dioxygenase.

    Science.gov (United States)

    Chai, Sergio C; Bruyere, John R; Maroney, Michael J

    2006-06-09

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.

  13. Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Silva, Carlos P; Alexandre, Daniel

    2012-01-01

    The seed-feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global...

  14. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Science.gov (United States)

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  15. L-Cysteine Administration Attenuates Pancreatic Fibrosis Induced by TNBS in Rats by Inhibiting the Activation of Pancreatic Stellate Cell

    Science.gov (United States)

    Hu, GuoYong; Shen, Jie; Wang, Feng; Xu, Ling; Dai, WeiQi; Xiong, Jie; Ni, JianBo; Guo, ChuanYong; Wan, Rong; Wang, XingPeng

    2012-01-01

    Background and Aims Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. Methods CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. Results The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. Conclusion L-cysteine

  16. Entamoeba histolytica Cysteine Proteinase 5 Evokes Mucin Exocytosis from Colonic Goblet Cells via αvβ3 Integrin.

    Directory of Open Access Journals (Sweden)

    Steve Cornick

    2016-04-01

    Full Text Available Critical to the pathogenesis of intestinal amebiasis, Entamoeba histolytica (Eh induces mucus hypersecretion and degrades the colonic mucus layer at the site of invasion. The parasite component(s responsible for hypersecretion are poorly defined, as are regulators of mucin secretion within the host. In this study, we have identified the key virulence factor in live Eh that elicits the fast release of mucin by goblets cells as cysteine protease 5 (EhCP5 whereas, modest mucus secretion occurred with secreted soluble EhCP5 and recombinant CP5. Coupling of EhCP5-αvβ3 integrin on goblet cells facilitated outside-in signaling by activating SRC family kinases (SFK and focal adhesion kinase that resulted in the activation/phosphorlyation of PI3K at the site of Eh contact and production of PIP3. PKCδ was activated at the EhCP5-αvβ3 integrin contact site that specifically regulated mucin secretion though the trafficking vesicle marker myristoylated alanine-rich C-kinase substrate (MARCKS. This study has identified that EhCP5 coupling with goblet cell αvβ3 receptors can initiate a signal cascade involving PI3K, PKCδ and MARCKS to drive mucin secretion from goblet cells critical in disease pathogenesis.

  17. High-performance liquid chromatography-fluorescence assay of pyruvic acid to determine cysteine conjugate beta-lyase activity : application to S-1,2-dichlorovinyl-L-cysteine and S-2-benzothiazolyl-L-cysteine

    NARCIS (Netherlands)

    Stijntjes, G.J.; te Koppele, J.M.; Vermeulen, N P

    1992-01-01

    An HPLC-fluorescence assay has been developed for the determination of the activity of rat renal cytosolic cysteine conjugate beta-lyase. The method is based on isocratic HPLC separation and fluorescence detection of pyruvic acid, derivatized with o-phenylenediamine (OPD), and is shown to be rapid,

  18. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  19. A preliminary neutron crystallographic study of proteinase K at pD 6.5

    Energy Technology Data Exchange (ETDEWEB)

    Gardberg, Anna S [ORNL; Blakeley, Matthew P. [Institut Laue-Langevin (ILL); Myles, Dean A A [ORNL

    2009-01-01

    AbstractA preliminary neutron crystallographic study of the proteolytic enzyme proteinase K is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the vapour-diffusion method. Data were collected to a resolution of 2.3 on the LADI-III diffractometer at the Institut Laue Langevin (ILL) in 2.5 days. The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, particularly at the active site. This information will contribute to further understanding of the molecular mechanisms underlying proteinase K's catalytic activity and to an enriched understanding of the subtilisin clan of serine proteases.

  20. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Jelínková-Slavíčková, Petra

    2004-01-01

    Roč. 8, 3,4 (2004), s. 108-110 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /5./. Praha, 01.10.2004-03.10.2004] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA ČR GP303/04/P070; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : serine proteinase * proteinase inhibitors * fertilization Subject RIV: CE - Biochemistry

  1. Zymography in Multiwells for Quality Assessment of Proteinases.

    Science.gov (United States)

    Mechoor, Ambili; Madanan, Madathiparambil G

    2017-01-01

    Zymography is a well-standardized protocol for the qualitative assessment and analysis of proteinases under specified conditions. However, analysis of a large number of samples simultaneously becomes a challenge when the zymography is carried out by the usual protocol of electrophoresis. This can be overcome by assaying the matrix-degrading proteinases in substrate-impregnated gels in multiwells. Enzymes are copolymerized with 300 mL of 10% acrylamide impregnated with gelatin substrate and incubated for 16 h. The gels are then stained with Coomassie blue, destained with water, and visualized with the naked eye. The intensity; if needed can be measured with a densitometer or gel documentation system. This method has been tested for bacterial collagenases as well as some matrix-degrading metalloproteinases that were purified from rat mammary gland. It can also be used to characterize the enzymes with respect to the type and concentration of the cations required for activity and the role of other regulatory molecules that may affect the enzyme activity. The added advantage of this method is that the electrophoresis set up and electricity is not needed for the procedure.

  2. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam [Dept. of Fine Chemistry, Cosmetic R and D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jino [Daebong LS. Ltd, Incheon (Korea, Republic of)

    2017-01-15

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ{sub 50}) of DBLS-21 was 51.1 min at 50 μM on {sup 1}O{sub 2} -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC{sub 50} ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics.

  3. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    International Nuclear Information System (INIS)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam; Park, Jino

    2017-01-01

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ_5_0) of DBLS-21 was 51.1 min at 50 μM on "1O_2 -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC_5_0 ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics

  4. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...... site cysteines and by removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. A cDNA clone of the barley key cysteine endoprotease...

  5. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned with and w......Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  6. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  7. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites.

    OpenAIRE

    Weiss, S J; Regiani, S

    1984-01-01

    Triggered neutrophils rapidly degraded labeled matrices secreted by cultured, venous endothelial cells via a process dependent on elastase but not oxygen metabolites. In the presence of high concentrations of alpha-1-proteinase inhibitor, the ability of the stimulated neutrophil to solubilize the matrix was impaired. However, at lower concentrations of alpha-1-proteinase inhibitor the neutrophil could enhance the degradative potential of its released elastase by a H2O2-dependent process. Coin...

  8. Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis.

    Science.gov (United States)

    Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha; Edgerton, Mira

    2015-07-01

    Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.

  9. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren

    2004-01-01

    the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection...

  10. Enzyme II/sup Mtl/ of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier

    International Nuclear Information System (INIS)

    Pas, H.H.; Robillard, G.T.

    1988-01-01

    The cysteine of the membrane-bound mannitol-specific enzyme II (EII/sup Mtl/) of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system have been labeled with 4-vinylpyridine. After proteolytic breakdown and reversed-phase HPLC, the peptides containing cysteines 110, 384, and 571 could be identified. N-Ethylmaleimide (NEM) treatment of the native unphosphorylated enzyme results in incorporation of one NEM label per molecule and loss of enzymatic activity. NEM treatment and inactivation prevented 4-vinylpyridine incorporation into the Cys-384-containing peptide, identifying this residue as the activity-linked cysteine. Both oxidation and phosphorylation of the native enzyme protected the enzyme against NEM labeling of Cys-384. Positive identification of the activity-linked cysteine was accomplished by inactivation with [ 14 C]iodoacetamide, proteolytic fragmentation, isolation of the peptide, and amino acid sequencing

  11. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.

    Science.gov (United States)

    Zang, X; Maizels, R M

    2001-03-01

    Serine proteinase inhibitors are encoded by a large gene family of long evolutionary standing. Recent discoveries of parasite proteins that inhibit human serine proteinases, together with the complete genomic sequence from Caenorhabditis elegans, have provided a set of new serine proteinase inhibitors from more primitive metazoan animals such as nematodes. The structural features (e.g. reactive centre residues), gene organization (including intron arrangements) and inhibitory function and targets (e.g. inflammatory and coagulation pathway proteinase) all contribute important new insights into proteinase inhibitor evolution. Some parasite products have evolved that block enzymes in the mammalian host, but the human host responds with a significant immune response to the parasite inhibitors. Thus, infection produces a finely balanced conflict between host and pathogen at the molecular level, and this might have accelerated the evolution of these proteins in parasitic species as well as their hosts.

  12. Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 activation in mice: Involvement of TRPV1 and T-type Ca2+ channels

    Directory of Open Access Journals (Sweden)

    Maho Tsubota

    2018-01-01

    Full Text Available We studied the pronociceptive role of proteinase-activated receptor-2 (PAR2 in mouse bladder. In female mice, intravesical infusion of the PAR2-activating peptide, SLIGRL-amide (SL, caused delayed mechanical hypersensitivity in the lower abdomen, namely ‘referred hyperalgesia’, 6–24 h after the administration. The PAR2-triggered referred hyperalgesia was prevented by indomethacin or a selective TRPV1 blocker, and restored by a T-type Ca2+ channel blocker. In human urothelial T24 cells, SL caused delayed prostaglandin E2 production and COX-2 upregulation. Our data suggest that luminal PAR2 stimulation in the bladder causes prostanoid-dependent referred hyperalgesia in mice, which involves the activation of TRPV1 and T-type Ca2+ channels.

  13. The role of cysteine residues in the sulphate transporter, SHST1: construction of a functional cysteine-less transporter.

    Science.gov (United States)

    Howitt, Susan M

    2005-05-20

    We investigated the role of cysteine residues in the sulphate transporter, SHST1, with the aim of generating a functional cysteine-less variant. SHST1 contains five cysteine residues and none was essential for function. However, replacement of C421 resulted in a reduction in transport activity. Sulphate transport by C205 mutants was dependent on the size of the residue at this position. Alanine at position 205 resulted in a complete loss of function whereas leucine resulted in a 3-fold increase in sulphate transport relative to wild type SHST1. C205 is located in a putative intracellular loop and our results suggest that this loop may be important for sulphate transport. By replacing C205 with leucine and the other four cysteine residues with alanine, we constructed a cysteine-less variant of SHST1 that has transport characteristics indistinguishable from wild type. This construct will be useful for further structure and function studies of SHST1.

  14. Effect of (L)-cysteine on acetaldehyde self-administration.

    Science.gov (United States)

    Peana, Alessandra T; Muggironi, Giulia; Fois, Giulia R; Zinellu, Manuel; Sirca, Donatella; Diana, Marco

    2012-08-01

    Acetaldehyde (ACD), the first metabolite of ethanol, has been implicated in several behavioural actions of alcohol, including its reinforcing effects. Recently, we reported that l-cysteine, a sequestrating agent of ACD, reduced oral ethanol self-administration and that ACD was orally self-administered. This study examined the effects of l-cysteine pre-treatment during the acquisition and maintenance phases of ACD (0.2%) self-administration as well as on the deprivation effect after ACD extinction and on a progressive ratio (PR) schedule of reinforcement. In a separate PR schedule of reinforcement, the effect of l-cysteine was assessed on the break-point produced by ethanol (10%). Furthermore, we tested the effect of l-cysteine on saccharin (0.2%) reinforcement. Wistar rats were trained to self-administer ACD by nose poking on a fixed ratio (FR1) schedule in 30-min daily sessions. Responses on an active nose-poke caused delivery of ACD solution, whereas responses on an inactive nose-poke had no consequences. l-cysteine reduced the acquisition (40 mg/kg), the maintenance and the deprivation effect (100 mg/kg) of ACD self-administration. Furthermore, at the same dose, l-cysteine (120 mg/kg) decreased both ACD and ethanol break point. In addition, l-cysteine was unable to suppress the different responses for saccharin, suggesting that its effect did not relate to an unspecific decrease in a general motivational state. Compared to saline, l-cysteine did not modify responses on inactive nose-pokes, suggesting an absence of a non-specific behavioural activation. Taken together, these results could support the hypotheses that ACD possesses reinforcing properties and l-cysteine reduces motivation to self-administer ACD. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  17. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  18. Cysteine proteinase activity in the development of arthritis in an adjuvant model of the rat

    NARCIS (Netherlands)

    Meijers, M. H.; Koopdonk-Kool, J.; Meacock, S. C.; van Noorden, C. J.; Bunning, R. A.; Billingham, M. E.

    1993-01-01

    Cathepsin B and L activity was studied histochemically in arthritic rat ankle joints using specific synthetic substrates in a post coupling method on unfixed and undecalcified cryostat sections of rat ankle joints. Activity was strongly increased in chondrocytes and cells of the inflamed synovium

  19. Role of the transsulfuration pathway and of gamma-cystathionase activity in the formation of cysteine and sulfate from methionine in rat hepatocytes

    International Nuclear Information System (INIS)

    Rao, A.M.; Drake, M.R.; Stipanuk, M.H.

    1990-01-01

    To assess the extent to which low hepatic gamma-cystathionase levels affect methionine flux to cysteine in hepatocytes, the effect of inhibition of gamma-cystathionase activity with propargylglycine on the metabolism of L-[ 35 S]methionine was determined in studies with freshly isolated rat hepatocytes. gamma-Cystathionase activity was inhibited 25%, 42%, 63% and 76% (maximal inhibition) by treatment with 2.5 mumol/L, 0.01 mmol/L, 0.02 mmol/L and 2 mmol/l propargylglycine, respectively. Inhibition of gamma-cystathionase activity with up to 0.02 mmol/L propargylglycine had no statistically significant effect on [ 35 S]glutathione, [ 35 S]sulfate or [ 35 S]cysteine formation from [ 35 S]methionine. However, treatment of cells with 2 mmol/L propargylglycine markedly inhibited the metabolism of [ 35 S]methionine to [ 35 S]glutathione by 93%, to [ 35 S]sulfate by 88% and to [ 35 S]cysteine by 89%; [ 35 S]cystathionine accumulation in these incubation systems was 60 times control. Hepatic gamma-cystathionase activity in premature infants has been reported to be about 23% of mature levels; this level of gamma-cystathionase activity may limit cysteine synthesis by the methionine transsulfuration pathway. No evidence for cysteine synthesis from serine and sulfide, which can be catalyzed by cystathionine beta-synthase, or for methionine metabolism by an S-adenosylmethionine-independent pathway was obtained

  20. Synthesis and Application of Aurophilic Poly(Cysteine and Poly(Cysteine-Containing Copolymers

    Directory of Open Access Journals (Sweden)

    David Ulkoski

    2017-10-01

    Full Text Available The redox capacity, as well as the aurophilicity of the terminal thiol side groups, in poly(Cysteine lend a unique characteristic to this poly(amino acid or polypeptide. There are two major application fields for this polymer: (i biomedical applications in drug delivery and surface modification of biomedical devices and (ii as coating for electrodes to enhance their electrochemical sensitivity. The intended application determines the synthetic route for p(Cysteine. Polymers to be used in biomedical applications are typically polymerized from the cysteine N-carboxyanhydride by a ring-opening polymerization, where the thiol group needs to be protected during the polymerization. Advances in this methodology have led to conditions under which the polymerization progresses as living polymerization, which allows for a strict control of the molecular architecture, molecular weight and polydispersity and the formation of block copolymers, which eventually could display polyphilic properties. Poly(Cysteine used as electrode coating is typically polymerized onto the electrode by cyclic voltammetry, which actually produces a continuous, pinhole-free film on the electrode via the formation of covalent bonds between the amino group of Cysteine and the carbon of the electrode. This resulting coating is chemically very different from the well-defined poly(Cysteine obtained by ring-opening polymerizations. Based on the structure of cysteine a significant degree of cross-linking within the coating deposited by cyclic voltammetry can be assumed. This manuscript provides a detailed discussion of the ring-opening polymerization of cysteine, a brief consideration of the role of glutathione, a key cysteine-containing tripeptide, and examples for the utilization of poly(Cysteine and poly(Cysteine-containing copolymers, in both, the biomedical as well as electrochemical realm.

  1. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.

    Science.gov (United States)

    Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S

    2009-05-04

    To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.

  2. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Directory of Open Access Journals (Sweden)

    Rafael Almeida-Reis

    2017-01-01

    Full Text Available Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group or saline (SAL group. One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group. Controls received saline and BbCI (SALBC group. After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  3. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  4. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    International Nuclear Information System (INIS)

    Odem, R.R.; Willand, J.L.; Polakoski, K.L.

    1990-01-01

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm

  5. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    Energy Technology Data Exchange (ETDEWEB)

    Odem, R.R.; Willand, J.L.; Polakoski, K.L. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1990-02-01

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm.

  6. [Inhibition by cysteine of the carbohydrate-binding activity of lectins from Ricinus communis, Canavalia ensiformis and Euonymus europaeus].

    Science.gov (United States)

    Dvorkin, V M

    1985-10-01

    Precipitation induced by different lectins has been studied in the presence of some aminoacids. It was shown that precipitates formed by lectins from Ricinus communis (RCA1), Canavalia ensiformis (Con A), Euonymus europaeus (Eel) in the presence of appropriate carbohydrate-containing molecules disappeared after cysteine addition, like after addition of specific carbohydrate precipitation inhibitors. It is assumed that cysteine residues of RCA1, Con A and Eel lectins are essential for their carbohydrate binding activity.

  7. Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-Like rCPB2.8.

    Directory of Open Access Journals (Sweden)

    Wagner A S Judice

    Full Text Available Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity.THE DATA ANALYSIS REVEALED THAT THE PRESENCE OF HEPARIN AFFECTS ALL STEPS OF THE ENZYME REACTION: (i it decreases 3.5-fold the k 1 and 4.0-fold the k -1, (ii it affects the acyl-enzyme accumulation with pronounced decrease in k 2 (2.7-fold, and also decrease in k 3 (3.5-fold. The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys(25-S(-/(His(163-Im(+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme.Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface.

  8. [Experimental approach to the prophylaxis and treatment of acute lung injury syndrome with proteinase inhibitors and corvitin].

    Science.gov (United States)

    Moĭbenko, O O; Kubyshkin, A V; Kharchenko, V Z; Horokhova, N Iu; Semenets', P F

    2003-01-01

    The results of a combined study of the proteolysis on a model of post-ischemic toxemia in rats showed a decrease in antiproteinase potential and an activation of proteolysis. The activation of proteolysis and inhibition of antiproteinases was observed not only in the blood, but also in the bronchoalveolar secretion. Those changes were accompanied with the changes in the morphological structure of the lungs. The data obtained have shown a high effectiveness of proteinase inhibitor (contrical) and an antioxidant of flavonoid group (corvetine). Those drugs decreased the morphological changes in the lungs and prevented the development of imbalance in proteinase-inhibitor system. The prophylactic effect was more considerable when both drugs were used in a combined way.

  9. Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-Like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox Active Cysteine1[W

    Science.gov (United States)

    Chibani, Kamel; Tarrago, Lionel; Gualberto, José Manuel; Wingsle, Gunnar; Rey, Pascal; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2012-01-01

    Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways. PMID:22523226

  10. Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    A.V Pérez

    2008-01-01

    Full Text Available A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg and fibrinogen (minimum coagulant dose = 4.2 µg in vitro, and promotes defibrin(ogenation in vivo (minimum defibrin(ogenating dose = 1.0 µg. In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

  11. Mandatory role of proteinase-activated receptor 1 in experimental bladder inflammation

    Directory of Open Access Journals (Sweden)

    Davis Carole A

    2007-03-01

    Full Text Available Abstract Background In general, inflammation plays a role in most bladder pathologies and represents a defense reaction to injury that often times is two edged. In particular, bladder neurogenic inflammation involves the participation of mast cells and sensory nerves. Increased mast cell numbers and tryptase release represent one of the prevalent etiologic theories for interstitial cystitis and other urinary bladder inflammatory conditions. The activity of mast cell-derived tryptase as well as thrombin is significantly increased during inflammation. Those enzymes activate specific G-protein coupled proteinase-activated receptors (PARs. Four PARs have been cloned so far, and not only are all four receptors highly expressed in different cell types of the mouse urinary bladder, but their expression is altered during experimental bladder inflammation. We hypothesize that PARs may link mast cell-derived proteases to bladder inflammation and, therefore, play a fundamental role in the pathogenesis of cystitis. Results Here, we demonstrate that in addition to the mouse urinary bladder, all four PA receptors are also expressed in the J82 human urothelial cell line. Intravesical administration of PAR-activating peptides in mice leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS, substance P, and antigen was strongly attenuated by PAR1-, and to a lesser extent, by PAR2-deficiency. Conclusion Our results reveal an overriding participation of PAR1 in bladder inflammation, provide a working model for the involvement of downstream signaling, and evoke testable hypotheses regarding the role of PARs in bladder inflammation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestations of cystitis.

  12. Modulation of ion transport across rat distal colon by cysteine

    Directory of Open Access Journals (Sweden)

    Martin eDiener

    2012-03-01

    Full Text Available The aim of this study was to identify the actions of stimulation of endogenous production of H2S by cysteine, the substrate for the two H2S-producing enzymes, cystathionin-beta-synthase and cystathionin-gamma-lyase, on ion transport across rat distal colon. Changes in short-circuit current (Isc induced by cysteine were measured in Ussing chambers. Free cysteine caused a concentration-dependent, transient fall in Isc, which was sensitive to amino-oxyacetate and beta-cyano-L-alanine, i.e. inhibitors of H2S-producing enzymes. In contrast, Na cysteinate evoked a biphasic change in Isc, i.e. an initial fall followed by a secondary increase, which was also reduced by these enzyme inhibitors. All responses were dependent on the presence of Cl- and inhibited by bumetanide, suggesting that free cysteine induces an inhibition of transcellular Cl- secretion, whereas Na cysteinate – after a transient inhibitory phase – activates anion secretion. The assumed reason for this discrepancy is a fall in the cytosolic pH induced by free cysteine, but not by Na cysteinate, as observed in isolated colonic crypts loaded with the pH-sensitive dye, BCECF. Intracellular acidification is known to inhibit epithelial K+ channels. Indeed, after preinhibition of basolateral K+ channels with tetrapentylammonium or Ba2+, the negative Isc induced by free cysteine was reduced significantly. In consequence, stimulation of endogenous H2S production by Na cysteinate causes, after a short inhibitory response, a delayed activation of anion secretion, which is missing in the case of free cysteine, probably due to the cytosolic acidification. In contrast, diallyl trisulfide, which is intracellularly converted to H2S, only evoked a monophasic increase in Isc without the initial fall observed with Na cysteinate. Consequently, time course and amount of produced H2S seem to strongly influence the functional response of the colonic epithelium evoked by this gasotransmitter.

  13. Enhancement of catalytic activity of enzymes by heating in anhydrous organic solvents: 3D structure of a modified serine proteinase at high resolution.

    Science.gov (United States)

    Sharma, S; Tyagi, R; Gupta, M N; Singh, T P

    2001-01-01

    For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar

  14. A novel nonsense mutation in cathepsin C gene in an Egyptian ...

    African Journals Online (AJOL)

    Background: Cathepsin C gene (CTSC) (MIM#602365) is a lysosomal cysteine proteinase coding gene which encodes for CTSC protein that plays a major role in the activation of granule serine proteases, particularly leukocyte elastase and granzymes A and B. This activity was proposed to play a role in epithelial ...

  15. Molecular cloning, expression and characterization of a serine proteinase inhibitor gene from Entamoeba histolytica.

    Science.gov (United States)

    Riahi, Yael; Siman-Tov, Rama; Ankri, Serge

    2004-02-01

    Serine proteinase inhibitors (serpins) are irreversible suicide inhibitors of proteinases that regulate a wide range of biological processes, including pathogen evasion of the host defence system. We report the cloning and characterization of a gene encoding a serpin from the protozoan parasite Entamoeba histolytica (Ehserp) that may function in this manner. The protein encoded by Ehserp contains 371 amino acids with a predicted mass of 42.6 kDa. Antibodies to a 42 kDa recombinant Ehserp react specifically with two bands of 42 and 49 kDa in trophozoite extracts. Ehserp has a cytoplasmic localization and is secreted by trophozoites incubated in the presence of mammalian cells, but not by resting trophozoites. A panel of mammalian serine proteinases was screened, but none of them was inhibited by the recombinant Ehserp. In contrast, the 49 kDa Ehserp present in the secretion product (SP) of activated macrophages interacted with human neutrophil cathepsin G to form a complex resistant to sodium dodecyl sulphate. We discuss the nature of the 42 and 49 kDa Ehserp and the possible roles that Ehserp may play in the survival of the parasite inside the host.

  16. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Tidemand, L.D.; Winther, J.R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter. As a refer......In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter...

  17. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  18. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans.

    Science.gov (United States)

    McGavigan, A K; O'Hara, H C; Amin, A; Kinsey-Jones, J; Spreckley, E; Alamshah, A; Agahi, A; Banks, K; France, R; Hyberg, G; Wong, C; Bewick, G A; Gardiner, J V; Lehmann, A; Martin, N M; Ghatei, M A; Bloom, S R; Murphy, K G

    2015-03-01

    High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.

  19. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    Science.gov (United States)

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  20. Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes

    NARCIS (Netherlands)

    Boerrigter, Ingrid J.; Buist, Girbe; Haandrikman, Alfred J.; Nijhuis, Monique; Reuver, Marjon B. de; Siezen, Roland J.; Venema, Gerhardus; Vos, Willem M. de; Kok, Jan

    Plasmids containing wild-type and hybrid proteinase genes were constructed from DNA fragments of the prtP genes of Lactococcus lactis strains Wg2 and SK11. These plasmids were introduced into the plasmid-free strain L. lactis MG1363. The serine proteinases produced by these L. lactis strains were

  1. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Tanaka, Kan; Ishihama, Akira

    2016-09-01

    YbaO is an uncharacterized AsnC-family transcription factor of Escherichia coli. In both Salmonella enterica and Pantoea ananatis, YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the yhaOM operon, located far from the ybaO gene on the E. coli genome, as a single regulatory target of YbaO. In both gel shift assay in vitro and reporter and Northern blot assays in vivo, YbaO was found to regulate the yhaOM promoter. The growth of mutants lacking either ybaO or its targets yhaOM was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type E. coli, but its production was not observed in each of the ybaO, yhaO and yhaM mutants. The yhaOM promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the yhaOM operon, which is involved in the detoxification of cysteine. We then propose the naming of ybaO as decR (regulator of detoxification of cysteine).

  2. Characterization of a New Cell Envelope Proteinase PrtP from Lactobacillus rhamnosus CGMCC11055.

    Science.gov (United States)

    Guo, Tingting; Ouyang, Xudong; Xin, Yongping; Wang, Yue; Zhang, Susu; Kong, Jian

    2016-09-21

    Cell envelope proteinases (CEPs) play essential roles in lactic acid bacteria growth in milk and health-promoting properties of fermented dairy products. The genome of Lactobacillus rhamnosus CGMCC11055 possesses two putative CEP genes prtP and prtR2, and the PrtP displays the distinctive domain organization from PrtR2 reported. The PrtP was purified and biochemically characterized. The results showed that the optimal activity occurred at 44 °C, pH 6.5. p-Amidinophenylmethylsulfonyl fluoride obviously inhibited enzymatic activity, suggesting PrtP was a member of serine proteinases. Under the optimal conditions, β-casein was a favorite substrate over αS1- and κ-casein, and 35 oligopeptides were identified in the β-casein hydrolysate, including the phosphoserine peptide and bioactive isoleucine-proline-proline. By analysis of the amino acid sequences of those oligopeptides, proline was the preferred residue at the breakdown site. Therefore, we speculated that PrtP was a new type of CEPs from Lb. rhamnosus.

  3. Proteinase K processing of rabbit muscle creatine kinase

    DEFF Research Database (Denmark)

    Leydier, C; Andersen, Jens S.; Couthon, F

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent...... of monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However...

  4. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    Science.gov (United States)

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate.

    Science.gov (United States)

    Christeller, J T; Farley, P C; Ramsay, R J; Sullivan, P A; Laing, W A

    1998-05-15

    Phloem exudate from squash fruit contains heat-inactivated material which inhibits pepsin activity. This inhibitory activity was purified by mild acid treatment, chromatography on trypsin-agarose, Sephadex G-75 and reverse-phase HPLC, resulting in the elution of three peaks with pepsin-inhibitory activity. N-terminal sequencing indicated a common sequence of MGPGPAIGEVIG and the presence of minor species with seven- or two-amino-acid N-terminal extensions beyond this point. Microheterogeneity in this end sequence was exhibited within and between two preparations. Internal sequencing of a major peak after a trypsin digestion gave the sequence FYNVVVLEK. The common N-terminal sequence was used to design a degenerate primer for 3' rapid amplification of cDNA ends and cDNA clones encoding two isoforms of the inhibitor were obtained. The open reading frames of both cDNAs encoded proteins (96% identical) which contained the experimentally determined internal sequence. The amino acid content calculated from the predicted amino acid sequence was very similar to that measured by amino acid analysis of the purified inhibitor. The two predicted amino acid sequences (96 residues) had neither similarity to any other aspartic proteinase inhibitor nor similarity to any other protein. The inhibitors have a molecular mass of 10,552 Da, measured by matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry and approximately 10,000 Da by SDS/PAGE, and behave as dimers of approximately 21,000 Da during chromatography on Superdex G-75 gel-filtration medium. The calculated molecular masses from the predicted amino acid sequences were 10,551 Da and 10,527 Da. The inhibitor was capable of inhibiting pepsin (Ki = 2 nM) and a secreted aspartic proteinase from the fungus Glomerella cingulata (Ki = 20 nM). The inhibitor, which is stable over acid and neutral pH, has been named squash aspartic proteinase inhibitor (SQAPI).

  6. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode.

    Science.gov (United States)

    Safavi, Afsaneh; Ahmadi, Raheleh; Mahyari, Farzaneh Aghakhani

    2014-04-01

    A linear sweep voltammetric method is used for direct simultaneous determination of L-cysteine and L-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for L-cysteine (0.62 V) and L-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0-450 and 5.0-700 μM and detection limits were estimated to be 0.298 and 4.258 μM for L-cysteine and L-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of L-cysteine and L-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.

  7. Random substitution of large parts of the propeptide of yeast proteinase A

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1995-01-01

    The yeast aspartic protease, proteinase A, has a 54 amino-acid propeptide, which is removed during activation of the zymogen in the vacuole. Apart from being involved inhibition/activation, the propeptide has been shown to be essential for formation of a stable active enzyme (van den Hazel, H. B...... of the mutants were subjected to a colony screen for ones exhibiting activity. A high frequency (around 1%) of active constructs was found, which indicates a very high tolerance for mutations in the propeptide. Thirty-nine functional mutant forms containing random sequence at either the N- or C-terminal half...

  8. Proteolytic activities in yeast after UV irradiation. Pt. 1

    International Nuclear Information System (INIS)

    Schwencke, J.; Moustacchi, E.

    1982-01-01

    Specific proteolytic activities are known to be induced in Escherichia coli following irradiation. Consequently it seemed of interest to investigate whether variations in proteinase activities occur in yeast. Among the five most well known proteinases of Saccharomyces cerevisiae, we have found that proteinase B activity increases up to three times in wild-type RAD + yeast cells after a dose of 50 Jm -2 of 254 nm ultraviolet light (40% survival). Carboxypeptidase Y and aminopeptidase I (leucin aminopeptidase) activities were only moderately increased. Proteinase A activity was only slightly enhanced, while aminopeptidase II (lysin aminopeptidase) was unaffected in both RAD + strains studied. The observed post UV-increase in proteinase B activity was inhibited by cycloheximide and was dose dependent. Increases in proteinase B levels were independent of the activation method used to destroy the proteinase B-inhibitor complex present in the crude yeast extracts. A standard method for comparison of the postirradiation levels among different proteinases, strains and methods of activation is presented. (orig.)

  9. Proteolytic activities in yeast after UV irradiation. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Schwencke, J.; Moustacchi, E.

    1982-04-01

    Specific proteolytic activities are known to be induced in Escherichia coli following irradiation. Consequently it seemed of interest to investigate whether variations in proteinase activities occur in yeast. Among the five most well known proteinases of Saccharomyces cerevisiae, we have found that proteinase B activity increases up to three times in wild-type RAD/sup +/ yeast cells after a dose of 50 Jm/sup -2/ of 254 nm ultraviolet light (40% survival). Carboxypeptidase Y and aminopeptidase I (leucin aminopeptidase) activities were only moderately increased. Proteinase A activity was only slightly enhanced, while aminopeptidase II (lysin aminopeptidase) was unaffected in both RAD/sup +/ strains studied. The observed post UV-increase in proteinase B activity was inhibited by cycloheximide and was dose dependent. Increases in proteinase B levels were independent of the activation method used to destroy the proteinase B-inhibitor complex present in the crude yeast extracts. A standard method for comparison of the postirradiation levels among different proteinases, strains and methods of activation is presented.

  10. Identification and activity of a lower eukaryotic serine proteinase inhibitor (serpin) from Cyanea capillata: analysis of a jellyfish serpin, jellypin.

    Science.gov (United States)

    Cole, Elisabeth B; Miller, David; Rometo, David; Greenberg, Robert M; Brömme, Dieter; Cataltepe, Sule; Pak, Stephen C; Mills, David R; Silverman, Gary A; Luke, Cliff J

    2004-09-21

    Delineating the phylogenetic relationships among members of a protein family can provide a high degree of insight into the evolution of domain structure and function relationships. To identify an early metazoan member of the high molecular weight serine proteinase inhibitor (serpin) superfamily, we initiated a cDNA library screen of the cnidarian, Cyanea capillata. We identified one serpin cDNA encoding for a full-length serpin, jellypin. Phylogenetic analysis using the deduced amino acid sequence showed that jellypin was most similar to the platyhelminthe Echinococcus multiocularis serpin and the clade P serpins, suggesting that this serpin evolved approximately 1000 million years ago (MYA). Modeling of jellypin showed that it contained all the functional elements of an inhibitory serpin. In vitro biochemical analysis confirmed that jellypin was an inhibitor of the S1 clan SA family of serine proteinases. Analysis of the interactions between the human serine proteinases, chymotrypsin, cathepsin G, and elastase, showed that jellypin inhibited these enzymes in the classical serpin manner, forming a SDS stable enzyme/inhibitor complex. These data suggest that the coevolution of serpin structure and inhibitory function date back to at least early metazoan evolution, approximately 1000 MYA.

  11. Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form

    DEFF Research Database (Denmark)

    Olsen, Johan G; Dagil, Robert; Niclasen, Louise Meinert

    2009-01-01

    Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing...

  12. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wei, H; Wei, Y; Tian, F; Niu, T; Yi, G

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  13. Molecular convergence of the parasitic plant species Cuscuta reflexa and Phelipanche aegyptiaca.

    Science.gov (United States)

    Rehker, Jan; Lachnit, Magdalena; Kaldenhoff, Ralf

    2012-08-01

    The parasitic plant species Cuscuta reflexa and Phelipanche aegyptiaca have independently developed parasitism, the former parasitizing on shoots and the latter attaching to roots. Regardless of these differences, the two species use similar organs, termed haustoria, to attach to the host plant. In this study, we show that this morphological similarity can be extended to the molecular level. An attAGP-promoter from Solanum lycopersicum, which is activated by Cuscuta infections, was also induced after infection by P. aegyptiaca. Furthermore, we show by validation of transcriptome sequencing data that the Phelipanche orthologue of a haustorium-specific Cuscuta gene, which codes for a cysteine proteinase, was activated in the early stages of Phelipanche invasion. Inhibition of the Phelipanche cysteine proteinase was achieved by 35S- or attAGP-promoter-driven expression of its intrinsic inhibitory polypeptide. A reduction in P. aegyptiaca infection rates during experiments in flower pots and in an in vitro polybag system in comparison to controls was recorded.

  14. Exposure to tobacco-derived materials induces overproduction of secreted proteinases in mast cells

    International Nuclear Information System (INIS)

    Small-Howard, Andrea; Turner, Helen

    2005-01-01

    Mast cells reside at interfaces with the environment, including the mucosa of the respiratory and gastrointestinal tracts. This localization exposes mast cells to inhaled, or ingested, environmental challenges. In the airways of smokers, resident immune cells will be in contact with the condensed components of cigarette smoke. Mast cells are of particular interest due to their ability to promote airway remodeling and mucus hypersecretion. Clinical data show increased levels of mast cell-secreted tryptase and increased numbers of degranulated mast cells in the lavage and bronchial tissue of smokers. Since mast cell-secreted proteinases (MCPTs), including tryptases, contribute to pathological airway remodeling, we investigated the relationship between mast cell proteinases and smoke exposure. We exposed a mast cell line to cigarette smoke condensate (CSC). We show that CSC exposure increases MCPT levels in mast cells using an assay for tryptase-type MCPT activity. We hypothesized that this increase in MCPT activity reflects a CSC-induced increase in the cytosolic pool of proteinase molecules, via stimulation of MCPT transcription. Transcript array data suggested that mRNA changes in response to CSC were limited in number and peaked after 3 h of CSC exposure. However, we noted marked transcriptional regulation of several MCPT genes. CSC-induced changes in the mRNA levels for MCPTs were confirmed using quantitative RT-PCR. Taken together, our data suggest that chronic exposure to cigarette smoke up-regulates MCPT levels in mast cells at both the protein and the mRNA level. We suggest that the pathological airway remodeling that has been described in clinical studies of smoke inhalation may be attributable to MCPT overproduction in vivo

  15. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    Science.gov (United States)

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  16. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification.

    Science.gov (United States)

    Wible, Ryan S; Sutter, Thomas R

    2017-03-20

    The unique biophysical and electronic properties of cysteine make this molecule one of the most biologically critical amino acids in the proteome. The defining sulfur atom in cysteine is much larger than the oxygen and nitrogen atoms more commonly found in the other amino acids. As a result of its size, the valence electrons of sulfur are highly polarizable. Unique protein microenvironments favor the polarization of sulfur, thus increasing the overt reactivity of cysteine. Here, we provide a brief overview of the endogenous generation of reactive oxygen and electrophilic species and specific examples of enzymes and transcription factors in which the oxidation or covalent modification of cysteine in those proteins modulates their function. The perspective concludes with a discussion of cysteine chemistry and biophysics, the hard and soft acids and bases model, and the proposal of the Soft Cysteine Signaling Network: a hypothesis proposing the existence of a complex signaling network governed by layered chemical reactivity and cross-talk in which the chemical modification of reactive cysteine in biological networks triggers the reorganization of intracellular biochemistry to mitigate spikes in endogenous or exogenous oxidative or electrophilic stress.

  17. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    International Nuclear Information System (INIS)

    Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara; Skern, Tim

    2013-01-01

    The foot-and-mouth disease virus leader proteinase (Lb pro ) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb pro L200F provide structural evidence for intramolecular self-processing. 15 N-HSQC measurements of Lb pro L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb pro , lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb pro , stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb pro and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb pro . - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes

  18. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.

    Science.gov (United States)

    Huang, Chien-Wei; Walker, Michelle E; Fedrizzi, Bruno; Gardner, Richard C; Jiranek, Vladimir

    2017-08-01

    An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae.

    Science.gov (United States)

    Johnson, D E; Brookhart, G L; Kramer, K J; Barnett, B D; McGaughey, W H

    1990-03-01

    Midgut homogenates from susceptible and resistant strains of the Indian meal moth, Plodia interpunctella, were compared for their ability to activate the entomocidal parasporal crystal protein from Bacillus thuringiensis. The properties of midgut proteinases from both types of larvae were also examined. Electrophoretic patterns of crystal protein from B. thuringiensis subspecies kurstaki (HD-1) and aizawai (HD-133 and HD-144) were virtually unchanged following digestion by either type of midgut homogenate. Changes in pH (9.5 to 11.5) or midgut homogenate concentration during digestion failed to substantially alter protein electrophoretic patterns of B. thuringiensis HD-1 crystal toxin. In vitro toxicity of crystal protein activated by either type of midgut preparation was equal toward cultured insect cells from either Manduca sexta or Choristoneura fumiferana. Electrophoresis of midgut extracts in polyacrylamide gels containing gelatin as substrate also yielded matching mobility patterns of proteinases from both types of midguts. Quantitation of midgut proteolytic activity using tritiated casein as a substrate revealed variation between midgut preparations, but no statistically significant differences between proteolytic activities from susceptible and resistant Indian meal moth larvae. Inhibition studies indicated that a trypsin-like proteinase with maximal activity at pH 10 is a major constituent of Indian meal moth midguts. The results demonstrated that midguts from susceptible and resistant strains of P. interpunctella are similar both in their ability to activate B. thuringiensis protoxin and in their proteolytic activity.

  20. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    Science.gov (United States)

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  1. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Bader Oliver

    2008-07-01

    Full Text Available Abstract Background Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. Results In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. Conclusion Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.

  2. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  3. Elimination of hydrogen sulphide and {beta} substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961); Desulfhydration et {beta} substitution de la cysteine catalysees par la cysteinelyase du sac vitellin et du jaune de l'oeuf de poule (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Chapeville, F; Fromageot, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the {beta}-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this {beta}-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the {beta}-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the {beta}-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [French] Le sac vitellin et le jaune d'oeufs embryonnes de poule renferment une enzyme activee par le phosphate de pyridoxal, qui ne contient pas de fer, de magnesium, de cuivre ce de calcium et qui confere une reactivite particuliere au carbone {beta} de la cysteine. Cette reactivite se manifeste par l'aptitude que possede le carbone {beta} a fixer diverses molecules soufrees dont le soufre est reducteur, telles que le sulfure, le sulfite ou la cysteine elle-meme. En l'absence de reactifs capables de reagir avec le carbone {beta}, le complexe actif enzyme-chaine tricarbonee et aminee s'hydrolyse en acide pyruvique et en ammoniaque. La liberation d'hydrogene sulfure apparait ainsi comme une consequence soit de la substitution du carbone {beta} de la cysteine, soit de la decomposition du complexe qu'elle forme avec l'enzyme etudiee. Cette derniere semble donc posseder une activite distincte de celle des desulfhydrases connues jusqu'a present. Nous proposons de l'appeler cysteinelyase. (auteurs)

  4. Characterization of the mature cell surface proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581.

    Science.gov (United States)

    Villegas, Josefina M; Brown, Lucía; Savoy de Giori, Graciela; Hebert, Elvira M

    2015-05-01

    The cell envelope-associated proteinase (CEP) of Lactobacillus delbrueckii subsp. lactis CRL 581 (PrtL) has an essential role in bacterial growth, contributes to the flavor and texture development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. The genome of L. delbrueckii subsp. lactis CRL 581 possesses only one gene that encodes PrtL, which consists of 1924 amino acids and is a multidomain protein anchored to the cell via its W domain. PrtL was extracted from the cell under high ionic strength conditions using NaCl, suggesting an electrostatic interaction between the proteinase and the cell envelope. The released PrtL was purified and biochemically characterized; its activity was maximal at temperatures between 37 and 40 °C and at pH between 7 and 8. Under optimal conditions, PrtL exhibited higher affinity for succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide than for succinyl-alanyl-glutamyl-prolyl-phenylalanine-p-nitroanilide, while methoxy-succinyl-arginyl-prolyl-tyrosyl-p-nitroanilide was not degraded. A similar α- and β-casein degradation pattern was observed with the purified and the cell envelope-bound proteinase. Finally, on the basis of its specificity towards caseins and the unique combination of amino acids at residues thought to be involved in substrate specificity, PrtL can be classified as a representative of a new group of CEP.

  5. Dietary L-cysteine improves the antioxidative potential and lipid metabolism in rats fed a normal diet.

    Science.gov (United States)

    Lee, Seulki; Han, Kyu-Ho; Nakamura, Yumi; Kawakami, Sakura; Shimada, Ken-ichiro; Hayakawa, Touru; Onoue, Hirotake; Fukushima, Michihiro

    2013-01-01

    L-cysteine works as a precursor of the antioxidant, glutathione. We investigated the effects of L-cysteine (1% and 2%) on lipid metabolism and the antioxidative system in rats fed a normal diet. Administering L-cysteine dependently decreased the food intake, fat mass weight and body weight dose. Dietary L-cysteine also decreased the triglyceride levels in the serum and liver. However, there were no significant differences in the hepatic TBARS and glutathione (GSH) levels among the groups. The activities of catalase and glutathione reductase in the rats receiving 2% L-cysteine were significantly higher (pL-cysteine dose-dependently affected the antioxidative enzyme activities, and the lipid levels in the serum and liver which might be related to the reduced food intake.

  6. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, Jutta [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria); Kontaxis, Georg [Max F. Perutz Laboratories, University of Vienna, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, A-1030 Vienna (Austria); Rancan, Chiara [Helmholtz Zentrum München, Department of Gene Vectors, Haematologikum, Marchioninistrasse 25, D-81377 Munich (Germany); Skern, Tim, E-mail: timothy.skern@meduniwien.ac.at [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria)

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.

  7. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli

    Science.gov (United States)

    2012-01-01

    Background Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli. Results Because the redox enzymes can reduce the disulfide that forms on proteins, we first tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coliL-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (ΔcysI and ΔcysJ) and the L-cysteine synthase gene (ΔcysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (ΔcysC or ΔcysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coliL-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell. Conclusions In this work, we showed that Grx1 and

  8. Cytotoxic T-Lymphocyte Antigen-2 alpha participates in axial ...

    African Journals Online (AJOL)

    Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2α) has been discovered and expressed in mouse activated T-cells and mast cells. Structurally, it is homologous to the proregion of mouse cathepsin L, a lysosomal cystein proteinase. Expressed recombinant CTLA-2α is shown to exhibit selective inhibition to cathepsin L and ...

  9. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    Science.gov (United States)

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The resistance of insects to plant proteinase inhibitors

    NARCIS (Netherlands)

    Jongsma, M.A.

    1995-01-01

    The research reported in this thesis describes the induction of proteinase inhibitor synthesis in solanaceous plants (tobacco and tomato), when lepidopteran larvae (Manduca sexta and Spodoptera exigua) are feeding on leaves. It is shown that the

  11. 21 CFR 184.1271 - L-Cysteine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine. 184.1271 Section 184.1271 Food and... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3... of total L-cysteine per 100 parts of flour in dough as a dough strengthener as defined in § 170.3(o...

  12. Electrostatic influence of local cysteine environments on disulfide exchange kinetics.

    Science.gov (United States)

    Snyder, G H; Cennerazzo, M J; Karalis, A J; Field, D

    1981-11-10

    The ionic strength dependence of the bimolecular rate constant for reaction of the negative disulfide 5,5'-dithiobis (2-nitrobenzoic acid) with cysteines in fragments of naturally occurring proteins was determined by stopped-flow spectroscopy. The Debye-Hückel relationship was applied to determine the effective charge at the cysteine and thereby determine the extent to which nearby neighbors in the primary sequence influence the kinetics. Corrections for the secondary salt effect on cysteine pKs were determined by direct spectrometric pH titration of sulfhydryl groups or by observation of the ionic strength dependence of kinetics of cysteine reaction with the neutral disulfide 2,2'-dithiodipyridine. Quantitative expressions was verified by model studies with N-acetyl-cystein. At ionic strengths equal to or greater than 20 mM, the net charge at the polypeptide cysteine site is the sum of the single negative charge of the thiolate anion and the charges of the amino acids immediately preceding and following the cysteine in the primary sequence. At lower ionic strengths, more distant residues influence kinetics. At pH 7.0, 23 degree C, and an ionic strength of 20 mM, rate constants for reaction of the negative disulfide with a cysteine having two positive neighbors, one positive and one neutral neighbor, or two neutral neighbors are 132000, 3350, and 367 s-1 M-1, respectively. This corresponds to a contribution to the activation energy of 0.65- 1.1 kcal/mol per ion pair involved in collision between the cysteine and disulfide regions. The results permit the estimation that cysteine local environments may provide a means of achieving a 10(6)-fold range in rate constants in disulfide exchange reactions in random-coil proteins. This range may prove useful in developing strategies for directing disulfide pairing in synthetic proteins.

  13. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    Science.gov (United States)

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  14. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  15. A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA.

    Science.gov (United States)

    Clark, S J; Templeton, M D; Sullivan, P A

    1997-04-01

    A secreted aspartic proteinase from Glomerella cingulata (GcSAP) was purified to homogeneity by ion exchange chromatography. The enzyme has an M, of 36000 as estimated by SDS-PAGE, optimal activity from pH 3.5 to pH 4.0 and is inhibited by pepstatin. The N-terminal sequence, 23 residues long, was used to design a gene-specific primer. This was used in 3' RACE (rapid amplification of cDNA ends) PCR to amplify a 1.2 kb fragment of the gcsap cDNA. A second gene-specific primer was designed and used in 5' RACE PCR to clone the 5' region. This yielded a 600 bp DNA fragment and completed the open reading frame. The gcsap open reading frame encodes a protein with a 78 residue prepro-sequence typical of other fungal secreted aspartic proteinases. Based on the deduced sequence, the mature enzyme contains 329 amino acids and shows approximately 40% identity to other fungal aspartic proteinases. Subsequent cloning and sequencing of gcsap fragments obtained from PCR with genomic DNA revealed a 73 bp intron beginning at nt 728. Southern analyses at medium and high stringency indicated that G. cingulata possesses one gene for the secreted aspartic proteinase, and Northern blots indicated that gene expression was induced by exogenous protein and repressed by ammonium salts. GcSAP is a putative pathogenicity factor of G. cingulata, and it will now be possible to create SAP-mutants and assess the role GcSAP plays in pathogenicity.

  16. A thermolabile aspartic proteinase from Mucor mucedo DSM 809: gene identification, cloning, and functional expression in Pichia pastoris.

    Science.gov (United States)

    Yegin, Sirma; Fernandez-Lahore, Marcelo

    2013-06-01

    In this study, the cDNA encoding the aspartic proteinase of Mucor mucedo DSM 809 has been identified by RNA ligased-mediated and oligo-capping rapid amplification of cDNA ends (RACE) technique. The gene contained an open reading frame of 1,200 bp and encoded for a signal peptide of 21 amino acid residues. Two N-glycosylation sites were observed within the identified sequence. The proteinase gene was cloned into the vector pGAPZαA and expressed in Pichia pastoris X-33 for the first time. The protein has been secreted in functionally active form into the culture medium. The expression system does not require any acid activation process. The factors affecting the expression level were optimized in shaking flask cultures. Maximum enzyme production was observed with an initial medium pH of 3.5 at 20 °C and 220 rpm shaking speed utilizing 4 % glucose as a carbon and energy source. The enzyme was purified with cation exchange chromatography and further studies revealed that the enzyme was secreted in glycosylated form. The purified enzyme exhibited remarkable sensitivity to thermal treatment and became completely inactivated after incubation at 55 °C for 10 min. These results indicated that the recombinant proteinase could be considered as a potential rennet candidate for the cheese-making industry.

  17. Highly selective and sensitive method for Cu2 + detection based on chiroptical activity of L-Cysteine mediated Au nanorod assemblies

    Science.gov (United States)

    Abbasi, Shahryar; Khani, Hamzeh

    2017-11-01

    Herein, we demonstrated a simple and efficient method to detect Cu2 + based on amplified optical activity in the chiral nanoassemblies of gold nanorods (Au NRs). L-Cysteine can induce side-by-side or end-to-end assembly of Au NRs with an evident plasmonic circular dichroism (PCD) response due to coupling between surface plasmon resonances (SPR) of Au NRs and the chiral signal of L-Cys. Because of the obvious stronger plasmonic circular dichrosim (CD) response of the side-by-side assembly compared with the end-to-end assemblies, SS assembled Au NRs was selected as a sensitive platform and used for Cu2 + detection. In the presence of Cu2 +, Cu2 + can catalyze O2 oxidation of cysteine to cystine. With an increase in Cu2 + concentration, the L-Cysteine-mediated assembly of Au NRs decreased because of decrease in the free cysteine thiol groups, and the PCD signal decreased. Taking advantage of this method, Cu2 + could be detected in the concentration range of 20 pM-5 nM. Under optimal conditions, the calculated detection limit was found to be 7 pM.

  18. Distinct Mechanism of Cysteine Oxidation-Dependent Activation and Cold Sensitization of Human Transient Receptor Potential Ankyrin 1 Channel by High and Low Oxaliplatin

    Directory of Open Access Journals (Sweden)

    Takahito Miyake

    2017-11-01

    Full Text Available Oxaliplatin, a third-generation platinum-based chemotherapeutic agent, displays unique acute peripheral neuropathy triggered or enhanced by cold, and accumulating evidence suggests that transient receptor potential ankyrin 1 (TRPA1 is responsible. TRPA1 is activated by oxaliplatin via a glutathione-sensitive mechanism. However, oxaliplatin interrupts hydroxylation of a proline residue located in the N-terminal region of TRPA1 via inhibition of prolyl hydroxylase (PHD, which causes sensitization of TRPA1 to reactive oxygen species (ROS. Furthermore, PHD inhibition endows cold-insensitive human TRPA1 (hTRPA1 with ROS-dependent cold sensitivity. Since cysteine oxidation and proline hydroxylation regulate its activity, their association with oxaliplatin-induced TRPA1 activation and acquirement of cold sensitivity were investigated in the present study. A high concentration of oxaliplatin (1 mM induced outward-rectifier whole-cell currents and increased the intracellular Ca2+ concentration in hTRPA1-expressing HEK293 cells, but did not increase the probability of hTRPA1 channel opening in the inside-out configuration. Oxaliplatin also induced the rapid generation of hydrogen peroxide, and the resultant Ca2+ influx was prevented in the presence of glutathione and in cysteine-mutated hTRPA1 (Cys641Ser-expressing cells, whereas proline-mutated hTRPA1 (Pro394Ala-expressing cells showed similar whole-cell currents and Ca2+ influx. By contrast, a lower concentration of oxaliplatin (100 μM did not increase the intracellular Ca2+ concentration but did confer cold sensitivity on hTRPA1-expressing cells, and this was inhibited by PHD2 co-overexpression. Cold sensitivity was abolished by the mitochondria-targeting ROS scavenger mitoTEMPO and was minimal in cysteine-mutated hTRPA1 (Cys641Ser or Cys665Ser-expressing cells. Thus, high oxaliplatin evokes ROS-mediated cysteine oxidation-dependent hTRPA1 activation independent of PHD activity, while a lower

  19. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  20. Cysteine Addition Promotes Sulfide Production and 4-Fold Hg(II)-S Coordination in Actively Metabolizing Escherichia coli.

    Science.gov (United States)

    Thomas, Sara A; Gaillard, Jean-François

    2017-04-18

    The bacterial uptake of mercury(II), Hg(II), is believed to be energy-dependent and is enhanced by cysteine in diverse species of bacteria under aerobic and anaerobic conditions. To gain insight into this Hg(II) biouptake pathway, we have employed X-ray absorption spectroscopy (XAS) to investigate the relationship between exogenous cysteine, cellular metabolism, cellular localization, and Hg(II) coordination in aerobically respiring Escherichia coli (E. coli). We show that cells harvested in exponential growth phase consistently display mixtures of 2-fold and 4-fold Hg(II) coordination to sulfur (Hg-S 2 and Hg-S 4 ), with added cysteine enhancing Hg-S 4 formation. In contrast, cells in stationary growth phase or cells treated with a protonophore causing a decrease in cellular ATP predominantly contain Hg-S 2 , regardless of cysteine addition. Our XAS results favor metacinnabar (β-HgS) as the Hg-S 4 species, which we show is associated with both the cell envelope and cytoplasm. Additionally, we observe that added cysteine abiotically oxidizes to cystine and exponentially growing E. coli degrade high cysteine concentrations (100-1000 μM) into sulfide. Thermodynamic calculations confirm that cysteine-induced sulfide biosynthesis can promote the formation of dissolved and particulate Hg(II)-sulfide species. This report reveals new complexities arising in Hg(II) bioassays with cysteine and emphasizes the need for considering changes in chemical speciation as well as growth stage.

  1. L-Cysteine Metabolism and Fermentation in Microorganisms.

    Science.gov (United States)

    Takagi, Hiroshi; Ohtsu, Iwao

    L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.

  2. Proteinase-Activated Receptor-1 and Immunomodulatory Effects of a PAR1-Activating Peptide in a Mouse Model of Prostatitis

    Science.gov (United States)

    Stanton, M. Mark; Nelson, Lisa K.; Benediktsson, Hallgrimur; Hollenberg, Morley D.; Buret, Andre G.; Ceri, Howard

    2013-01-01

    Background. Nonbacterial prostatitis has no established etiology. We hypothesized that proteinase-activated receptor-1 (PAR1) can play a role in prostatitis. We therefore investigated the effects of PAR1 stimulation in the context of a new model of murine nonbacterial prostatitis. Methods. Using a hapten (ethanol-dinitrobenzene sulfonic acid- (DNBS-)) induced prostatitis model with both wild-type and PAR1-null mice, we examined (1) the location of PAR1 in the mouse prostate and (2) the impact of a PAR1-activating peptide (TFLLR-NH2: PAR1-TF) on ethanol-DNBS-induced inflammation. Results. Ethanol-DNBS-induced inflammation was maximal at 2 days. In the tissue, PAR1 was expressed predominantly along the apical acini of prostatic epithelium. Although PAR1-TF on its own did not cause inflammation, its coadministration with ethanol-DNBS reduced all indices of acute prostatitis. Further, PAR1-TF administration doubled the prostatic production of interleukin-10 (IL-10) compared with ethanol-DNBS treatment alone. This enhanced IL-10 was not observed in PAR1-null mice and was not caused by the reverse-sequence receptor-inactive peptide, RLLFT-NH2. Surprisingly, PAR1-TF, also diminished ethanol-DNBS-induced inflammation in PAR1-null mice. Conclusions. PAR1 is expressed in the mouse prostate and its activation by PAR1-TF elicits immunomodulatory effects during ethanol-DNBS-induced prostatitis. However, PAR1-TF also diminishes ethanol-DNBS-induced inflammation via a non-PAR1 mechanism by activating an as-yet unknown receptor. PMID:24459330

  3. Alleviative effects of s-allyl cysteine and s-ethyl cysteine on MCD diet-induced hepatotoxicity in mice.

    Science.gov (United States)

    Lin, Chun-che; Yin, Mei-chin; Liu, Wen-hu

    2008-11-01

    Alleviative effects of s-allyl cysteine (SAC) and s-ethyl cysteine (SEC) upon methionine and choline deficient (MCD) diet-induced hepatotoxicity in mice were examined. SAC or SEC at 1g/L was added into drinking water for 7 weeks with MCD diet. MCD feeding significantly increased hepatic triglyceride and cholesterol levels, and elevated the activity of glucose-6-phosphate dehydrogenase (G6PDH), malic enzyme, fatty acid synthase (FAS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (P MCD feeding significantly lowered serum and hepatic glutathione (GSH) levels, increased malondialdehyde (MDA) and oxidized glutathione (GSSG) formation, and suppressed the activity and mRNA expression of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (P MCD feeding significantly enhanced the mRNA expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta1, matrix metalloproteinases-9 (MMP-9) and collagen-alpha1 (P MCD-induced hepatotoxicity.

  4. Purification and characterization of cell-envelope proteinase from ...

    African Journals Online (AJOL)

    user

    2012-10-18

    Oct 18, 2012 ... phenylmethylsulfonyl fluoride;. ACE, angiotensin-I-converting enzyme. Poolman, 1998). Cell-envelope proteinase (CEP) play an important role in the lactobacillus proteolytic system. CEPs are the critical enzyme in the system (Kunji et al., 1996), since it is the only enzyme that can initiate the breakdown of.

  5. Single residue mutation in active site of serine acetyltransferase isoform 3 from Entamoeba histolytica assists in partial regaining of feedback inhibition by cysteine.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar

    Full Text Available The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT and O-acetylserine sulfhydrylase (OASS are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by K(m, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3 shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.

  6. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.

    Science.gov (United States)

    Kawano, Yusuke; Ohtsu, Iwao; Takumi, Kazuhiro; Tamakoshi, Ai; Nonaka, Gen; Funahashi, Eri; Ihara, Masaki; Takagi, Hiroshi

    2015-02-01

    Using in silico analysis, the yciW gene of Escherichia coli was identified as a novel L-cysteine regulon that may be regulated by the transcriptional activator CysB for sulfur metabolic genes. We found that overexpression of yciW conferred tolerance to L-cysteine, but disruption of yciW increased L-cysteine production in E. coli. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Key Role of Cysteine Residues in Catalysis and Subcellular Localization of Sulfur Oxygenase-Reductase of Acidianus tengchongensis

    DEFF Research Database (Denmark)

    Chen, Z. W.; Jiang, C. Y.; She, Qunxin

    2005-01-01

    ). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant......Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system...... proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have...

  8. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine... ingredient is used to supply up to 0.009 part of total L-cysteine per 100 parts of flour in dough as a dough...

  9. Gelatin Zymography Using Leupeptin for the Detection of Various Cathepsin L Forms.

    Science.gov (United States)

    Hashimoto, Yoko

    2017-01-01

    Zymography is a highly sensitive method to assess the activities as well as molecular weights of enzymes in crude biological fluids and tissue extracts. Cathepsin L is a lysosomal cysteine proteinase that is optimally active at slightly acidic pH and is highly unstable in alkaline solutions such as electrode buffer (pH 8.3). Large amounts of cathepsin L are secreted by various cancer cells, where it promotes invasion and metastasis. Leupeptin is a tight-binding inhibitor of cysteine proteinases, and its complex with cathepsin L is stable in alkaline solutions. Moreover, leupeptin can be easily removed from the complex because it is a reversibly binding inhibitor. In addition, leupeptin is too small to influence the electrode migration distance of the complex with cathepsin L on a sodium dodecyl sulfate-polyacrylamide gel. Here, a novel gelatin zymography technique that employs leupeptin to detect pro-, intermediate, and mature cathepsin L forms on the basis of their gelatinolytic activities is described. Further, the differences in the glycosylation, phosphorylation, and processing statuses of lysosomal and secreted cathepsin L forms isolated from cultured HT 1080 cells are demonstrated using this method.

  10. Effect of oral antiseptic agents on phospholipase and proteinase enzymes of Candida albicans.

    Science.gov (United States)

    Uygun-Can, Banu; Kadir, Tanju; Gumru, Birsay

    2016-02-01

    Candida-associated denture stomatitis is the most prevalent form of oral candida infections among the denture wearers. Generally, antiseptic oral rinses used in the treatment of these infections are considered as an adjunct or alternative antifungal treatment. Studies have suggested that the intraoral concentrations of antiseptics decrease substantially to the sub-therapeutic levels on account of the dynamics of the oral cavity. This condition yields the question about the minimum antiseptic concentration that effect the character or pathogenesis of Candida during treatment. The extracellular phospholipase and proteinase enzymes of Candida albicans are regarded to have a crucial role in the pathogenesis of human fungal infections. Therefore, the aim of this study was to investigate the effect of different sub-therapeutic concentrations of chlorhexidine gluconate, hexetidine and triclosan on the production of these enzymes by C. albicans strains isolated from 20 patients with denture stomatitis. Phospholipase test was done by using Sabouraud dextrose agar with egg yolk, proteinase test was done by using bovine serum albumin agar. Phospholipase test was done by using Sabouraud dextrose agar with egg yolk, proteinase test was done by using bovine serum albumin agar. Exoenzyme production of 20 strains which were brief exposured to sub-therapeutic concentrations of three antiseptic agents decreased significantly compared with the strains that were not exposured with antiseptic values (pantiseptics (pantiseptic was compared, there were no significant differences between enzymatic activities (p>0.05). The results of this study show that sub-therapeutic levels of each antiseptic may modulate candidal exoenzyme production, consequently suppressing pathogenicity of C. albicans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins

    Directory of Open Access Journals (Sweden)

    Jennifer M Rothberg

    2013-10-01

    Full Text Available One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8 affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D cultures. For these studies, we used 1 3D reconstituted basement membrane overlay cultures of human carcinomas, 2 live cell imaging assays to assess proteolysis, and 3 in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.

  12. π-Clamp-mediated cysteine conjugation

    Science.gov (United States)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  13. Rethinking Cysteine Protective Groups: S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation.

    Science.gov (United States)

    Schäfer, Olga; Huesmann, David; Muhl, Christian; Barz, Matthias

    2016-12-12

    The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The H1 histone-specific proteinase is associated with nuclear matrix and stimulated by DNA containing breaks of denatured sites

    International Nuclear Information System (INIS)

    Gaziev, A.I.; Kutsyj, M.P.

    1988-01-01

    Discovery of proteinase in nuclear matrix specific of H1 histone and dependent presence of breaks or denatured sites in DNA permits to assume that the given enzyme, obviously, participates in replication and DNA repair, in regulation of genes expression. Removal of H1 histone by proteinase is, probably, necessary for procedure of these processes, and, obviously, this proteinase suffers conformational changes in the composition of the DNA-histone complex. H1 histone disintegration in nucleohistone containing damaged sites of DNA by specific proteinase, probably, represents one of the mechanisms for providing DNA repair in cells of higher organisms

  15. Evidence for cysteine sulfinate as a neurotransmitter

    International Nuclear Information System (INIS)

    Recasens, M.; Varga, V.; Nanopoulos, D.; Saadoun, F.; Vincendon, G.; Benavides, J.

    1982-01-01

    The Na + -independent binding of L-[ 3 H]cysteine sulfinate and L-[ 3 H]cysteine sulfinate uptake were investigated in rat brain membranes and vesicles. Specific binding of L-[ 3 H]cysteine sulfinate was saturable and occurred by a single high affinity process with a Ksub(b) of 100 nM +- 9 and a capacity (Bsub(max)) of 2.4 +- 0.22 pmol/mg protein. The regional distribution of the binding of L-[ 3 H]cysteine sulfinate in the brain was found to be heterogeneous. The rate of L-[ 3 H]cysteine sulfinate uptake shows a biphasic dependence on the concentration of L-cysteine sulfinate, corresponding to a high affinity (27.2 μM) and a low affinity (398 μM) transport system. The maximum L-[ 3 H]cysteine sulfinate uptake is reached at 2min and the uptake increases as a function of the sodium concentration. Chloride and potassium ions stimulate the uptake. (Auth.)

  16. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    Science.gov (United States)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  17. Zoanthid mucus as new source of useful biologically active proteins.

    Science.gov (United States)

    Guarnieri, Míriam Camargo; de Albuquerque Modesto, Jeanne Claíne; Pérez, Carlos Daniel; Ottaiano, Tatiana Fontes; Ferreira, Rodrigo da Silva; Batista, Fabrício Pereira; de Brito, Marlon Vilela; Campos, Ikaro Henrique Mendes Pinto; Oliva, Maria Luiza Vilela

    2018-03-01

    Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A 2 ), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A 2 , low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O + , B + , and A + erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching

  18. Protective Activity of N-acetyl-L-cysteine (NAC) against Cellular Oxidative Stress Induced by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain); Aroutiounian, Rouben [Yerevan State University, Yerevan (Armenia)

    2009-10-15

    Oxidative stress occurs due to numerous factors such as irradiation, redox decomposition by ions of hydroperoxides or hydrogen peroxide, and thermal decomposition of free radical initiators including peroxides and hyponitrites. The antioxidant and free-radical scavenger N-acetyl- L-cysteine (NAC) is used extensively as a conditional nutrient. NAC acts as a cysteine donor and maintains or even increases the intracellular levels of glutathione (GSH), a tripeptide which protects cells from toxins such as free-radicals. With regard to the radioprotective effects of NAC, the majority of studies have been performed in vitro. NAC were used to protect the Chinese hamster ovary (CHO) cells from radiationinduced apoptosis by controlling the enzyme that triggers programmed cell death. Some studies have successfully demonstrated sporadic radioprotection following low-level chronic administration of NAC, though the mode and optimal dose of NAC are yet to be fully determined. This study was designed to evaluate the effects of NAC in different doses on the activity levels of GSH and the cell viability in the fish cell line against ionizing radiation.

  19. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide

    Science.gov (United States)

    Ueki, Iori; Roman, Heather B.; Valli, Alessandro; Fieselmann, Krista; Lam, Jimmy; Peters, Rachel; Hirschberger, Lawrence L.

    2011-01-01

    Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO+/− mice) were crossed to generate CDO−/−, CDO+/−, and CDO+/+ mice. CDO−/− mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO−/− mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO−/− mice than in CDO+/− or CDO+/+ mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO−/− mice. H2S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H2S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H2S/sulfane sulfur levels and facilitate the use of H2S as a signaling molecule. PMID:21693692

  20. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  1. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide...

  2. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics

    DEFF Research Database (Denmark)

    Sigtryggsdóttir, Asta Rós; Papaleo, Elena; Thorbjarnardóttir, Sigríður H.

    2014-01-01

    activity of cold adapted enzymes when compared to homologues from thermophiles, reflects their higher molecular flexibility. To assess a potential difference in molecular flexibility between the two homologous proteinases, we have measured their Trp fluorescence quenching by acrylamide at different......The subtilisin-like serine proteinases, VPR, from a psychrotrophic Vibrio species and aqualysin I (AQUI) from the thermophile Thermus aquaticus, are structural homologues, but differ significantly with respect to stability and catalytic properties. It has been postulated that the higher catalytic...... to Trp (Y191W). A lower quenching effect of acrylamide on the intrinsic fluorescence of the thermophilic AQUI_Y191W was observed at all temperatures measured (10-55°C), suggesting that it possesses a more rigid structure than VPR. The MD analysis (Cα rmsf profiles) showed that even though VPR and AQUI...

  3. Negative modulation of the GABAA ρ1 receptor function by l-cysteine.

    Science.gov (United States)

    Beltrán González, Andrea N; Vicentini, Florencia; Calvo, Daniel J

    2018-01-01

    l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABA A ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABA A ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABA A ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABA A ρ1 receptors. © 2017 International Society for Neurochemistry.

  4. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2.

    Science.gov (United States)

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-03-10

    Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.

  5. Mutations at the cysteine codons of the recA gene of Escherichia coli

    International Nuclear Information System (INIS)

    Weisemann, J.M.; Weinstock, G.M.

    1988-01-01

    Each of the three cysteine residues in the Escherichia coli RecA protein was replaced with a number of other amino acids. To do this, each cysteine codon was first converted to a chain-terminating amber codon by oligonucleotide-directed mutagenesis. These amber mutants were then either assayed for function in different suppressor strains or reverted by a second round of mutagenesis with oligonucleotides that had random sequences at the amber codon. Thirty-three different amino acid substitutions were obtained. Mutants were tested for three functions of RecA: survival following UV irradiation, homologous recombination, and induction of the SOS response. It was found that although none of the cysteines is essential for activity, mutations at each of these positions can affect one or more of the activities of RecA, depending on the particular amino acid substitution. In addition, the cysteine at position 116 appears to be involved in the RecA-promoted cleavage of the LexA protein

  6. L-Cysteine metabolism and its nutritional implications.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Yang, Guan; Duan, Jielin; Huang, Xingguo; Fang, Rejun; Li, Chongyong; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Kim, Sung Woo; Wu, Guoyao

    2016-01-01

    L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities

    DEFF Research Database (Denmark)

    Delaissé, Jean-Marie; Andersen, Thomas L; Engsig, Michael T

    2003-01-01

    The best established proteolytic event of osteoclasts is bone matrix solubilization by the cysteine proteinase cathepsin K. Here, however, we draw the attention on osteoclastic activities depending on matrix metalloproteinases (MMPs). We discuss the observations supporting that MMPs contribute...... significantly to bone matrix solubilization in specific areas of the skeleton and in some developmental and pathological situations. Our discussion takes into account (1) the characteristics of the bone remodeling persisting in the absence of cathepsin K, (2) the ultrastructure of the resorption zone...... in response to inactivation of MMPs and of cathepsin K in different bone types, (3) bone resorption levels in MMP knockout mice compared to wild-type mice, (4) the identification of MMPs in osteoclasts and surrounding cells, and (5) the effect of different bone pathologies on the serum concentrations...

  8. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    Science.gov (United States)

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  9. Combined Effect of L-Cysteine and Vitamin E Injected Pre-Irradiation on Glucose-6-Phosphate Dehydrogenase Activity and Certain products of Glycolysis in Blood of Female Rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.; Kafafy, Y.A.; Ashry, O.M.

    1999-01-01

    The present work aims to evaluate the protective limits of L-cysteine and vitamin E combination against deleterious effects of gamma radiation on glucose-6-phosphate dehydrogenase activity, liver glycogen, blood glucose, pyruvic and lactic acids and their correlations in adult female rats. Mature female white rats were divided into four groups: 1- Control group. 2- Whole body gamma irradiated group at a dose level two Gy. 3-Group injected with 120 mg/100 g b.wt. L-cysteine+10 mg/100 g b.wt. vitamin E. 4- Group injected with cysteine+ vitamin E one hour before irradiation at 2 Gy dose level. Results revealed that combined administration of cysteine and vitamin E before gamma-irradiation have accelerated the radiation injury on liver glycogen, plasma glucose and G 6 Pd activity, while they showed a protective effect on lactic and pyruvic acids. This could be due to different mechanisms or a biphasic mechanism related to hormonal (like E 2 , T 3 and insulin), enzymatic or metabolic (e.g. oxidation/reduction, catabolic, anabolic factors) control

  10. Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione

    International Nuclear Information System (INIS)

    Salehzadeh, Hamid; Mokhtari, Banafsheh; Nematollahi, Davood

    2014-01-01

    Graphical abstract: 3,5-Di-tert-buthylcatechol was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at the glassy carbon and carbon nanotube modified glassy carbon electrode. - Highlights: • Selective electrochemical determination of homocysteine. • Catalytic electron transfer of 3,5-di-tert-buthylcatechol in the presence of homocysteine. • Michael type addition reaction of electrochemically generated 3,5-di-tert-buthyl-o-benzoquinone with glutathione. - Abstract: The electrochemical oxidation of 3,5-di-tert-buthylcatechol in the presence of homocysteine was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at a glassy carbon and a glassy carbon electrode modified with carbon nanotube. The results revealed that the electrochemically generated 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione exhibits high catalytic activity toward homocysteine oxidation at reduced over-potential and low catalytic activity for oxidation of cysteine. The catalytic activity 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione toward cysteine was suppressed in the presence of 4-N,N-dimethylaminocinnamaldehyde. Contrary to homocysteine and cysteine, the reaction of glutathione with 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione is a substituation reaction. This method exhibits three dynamic linear ranges of 2.5 to 10 μmol L −1 , 10 to 100 μmol L −1 and 100 to 1000 μmol L −1 , and a lower detection limit (3σ) of 0.89 ± 3.53% μmol L −1 for homocysteine

  11. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  12. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine.

    Science.gov (United States)

    Pinto, John T; Krasnikov, Boris F; Alcutt, Steven; Jones, Melanie E; Dorai, Thambi; Villar, Maria T; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J L

    2014-11-07

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Functional proteomic of Matrix Metallo-proteinases (MMP) dedicated to the detection of active forms of MMP in complex proteome

    International Nuclear Information System (INIS)

    David, A.

    2007-07-01

    The Matrix Metallo-proteinases (M.M.P.) represent a family of Zinc dependent extracellular proteinases able to cleave collectively all the proteins constituting the extracellular matrix. Currently, 23 human M.M.P. have been identified and are characterized by their sequence in amino-acids and their highly conserved 3 D structure. These enzymes are expressed constitutively during the tissue remodeling process. Their over-expression in various diseases tightly related to inflammatory processes (arthritis, emphysema, cancer) described M.M.P. as choice therapeutic targets. However, as the tissue remodeling implicates modification of cellular contacts, M.M.P. appear currently as proteins involved in signalling pathways. Recent works demonstrating that M.M.P. are able to cleave substrates, which are different than proteins constituting the extracellular matrix, reinforce this vision. In order to identify the individual role and the protein expression level of M.M.P. in pathological context, we developed a new technique of functional proteomics dedicated to the detection of active forms of M.M.P. in tumour samples. This technique relied on the development of a new photoaffinity probe, based on the structure of a potent phosphinic inhibitor of M.M.P., allowing targeting and isolating active forms of M.M.P. by photoaffinity labelling. Furthermore, as the new developed probe incorporated a radioactive element, photoaffinity labelling permitted to radiolabel the targeted proteins. This probe demonstrated in vitro its remarkable ability to covalently modify the h M.M.P.-12, with a singular cross-linking yield, determined at 42 %, displaying an extremely sensitive detection (2.5 fmoles of h M.M.P.-12). When added to complex proteome, the photoaffinity probe presents the same sensibility of detection for the h M.M.P.-12 (5 fmoles); importantly, in this case, h M.M.P.-12 represents only 0.001 % of the totality of the proteins present in the sample. Moreover, this technique allows

  14. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  15. Dicty_cDB: [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VF (Link to library) VFB862 (Link to dictyBase) - - - Contig-U16311-1 VFB862P (Link... to Original site) VFB862F 624 VFB862Z 720 VFB862P 1344 - - Show VFB862 Library VF (Link to library) Clone ID VFB862 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U16311-1 Original site URL http://dict...s) Value N U72746 |U72746.1 Dictyostelium discoideum cysteine proteinase (cprG) m...RNA, complete cds. 1209 0.0 5 U72745 |U72745.1 Dictyostelium discoideum cysteine proteinase (cprF) mRNA, com

  16. Identification of Tunisian Leishmania spp. by PCR amplification of cysteine proteinase B (cpb) genes and phylogenetic analysis.

    Science.gov (United States)

    Chaouch, Melek; Fathallah-Mili, Akila; Driss, Mehdi; Lahmadi, Ramzi; Ayari, Chiraz; Guizani, Ikram; Ben Said, Moncef; Benabderrazak, Souha

    2013-03-01

    Discrimination of the Old World Leishmania parasites is important for diagnosis and epidemiological studies of leishmaniasis. We have developed PCR assays that allow the discrimination between Leishmania major, Leishmania tropica and Leishmania infantum Tunisian species. The identification was performed by a simple PCR targeting cysteine protease B (cpb) gene copies. These PCR can be a routine molecular biology tools for discrimination of Leishmania spp. from different geographical origins and different clinical forms. Our assays can be an informative source for cpb gene studying concerning drug, diagnostics and vaccine research. The PCR products of the cpb gene and the N-acetylglucosamine-1-phosphate transferase (nagt) Leishmania gene were sequenced and aligned. Phylogenetic trees of Leishmania based cpb and nagt sequences are close in topology and present the classic distribution of Leishmania in the Old World. The phylogenetic analysis has enabled the characterization and identification of different strains, using both multicopy (cpb) and single copy (nagt) genes. Indeed, the cpb phylogenetic analysis allowed us to identify the Tunisian Leishmania killicki species, and a group which gathers the least evolved isolates of the Leishmania donovani complex, that was originated from East Africa. This clustering confirms the African origin for the visceralizing species of the L. donovani complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Differences in Entamoeba histolytica Cysteine Proteinase 5 Gene Isolated From Bandar Abbas and Tabriz, Iran

    Directory of Open Access Journals (Sweden)

    Sima Rostami

    2017-05-01

    Full Text Available Background: Amebiasis with up to 100 000 human deaths each year is the third cause of human deadly parasitic disease. With regard to the fact that cysteine protease 5 is known to be one of the most important pathogenicity factors of the Entamoeba histolytica and also, CP5 gene has been observed only in E. histolytica, hence we discriminated E. histolytica from E. dispar on CP5 gene by polymerase chain reaction (PCR and characterized CP5 gene variation in E. histolytica isolated from patients in both cold regions and tropical regions of Iran at molecular level. Materials and Methods: In the present study, a total of 2332 stool samples (1550 from Tabriz and 782 from Bandar Abbas were studied microscopically. DNA extraction and PCR method were performed on the positive specimens, infected with E. histolytica/E. dispar. Finally we characterized CP5 gene in E. histolytica isolates from 10 positive samples in the cold regions (Tabriz and 10 positive samples in the tropical regions (Bandar Abbas by sequencing and studied the polymorphism of the gene. Results: Of 1550 subjects studied from Tabriz and 782 from Bandar Abaas, 83/1550 (8.3% and 65/782 (5.35% persons were infected with E. histolytica/E. dispar, respectively. The molecular results on 20 E. histolytica PCR positive isolates from both regions revealed that nucleotides substitution and polymorphism on CP5 gene was more in samples from Bandar Abbas than those from Tabriz. Conclusion: Prevalence of amebiasis was high in the tropical region (Bandar Abbas compared with the cold region (Tabriz. In this study, CP5 gene variation in the pathogenicity and virulence of this parasite in the tropical region was higher than that in the cold region.

  18. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model.

    Science.gov (United States)

    Sallmann, Madleen; Kumar, Suresh; Chernev, Petko; Nehrkorn, Joscha; Schnegg, Alexander; Kumar, Devesh; Dau, Holger; Limberg, Christian; de Visser, Sam P

    2015-05-11

    Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up. However, little is known on the conversion mechanism and, so far, not even the structure of the actual product complex had been characterised, which is also unknown in case of the enzyme. In a multidisciplinary approach including density functional theory calculations and X-ray absorption spectroscopy, we have now determined the structure of the actual sulfinato complex for the first time. The Cys-SO2 (-) functional group was found to be bound in an η(2) -O,O-coordination mode, which, based on the excellent resemblance between model and enzyme, also provides the first support for a corresponding binding mode within the enzymatic product complex. Indeed, this is again confirmed by theory, which had predicted a η(2) -O,O-binding mode for synthetic as well as the natural enzyme. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Neuroprotective effect of S-allyl-l-cysteine derivatives against endoplasmic reticulum stress-induced cytotoxicity is independent of calpain inhibition.

    Science.gov (United States)

    Imai, Toru; Kosuge, Yasuhiro; Saito, Hiroaki; Uchiyama, Taketo; Wada, Taira; Shimba, Shigeki; Ishige, Kumiko; Miyairi, Shinichi; Makishima, Makoto; Ito, Yoshihisa

    2016-03-01

    S-allyl-l-cysteine (SAC) is known to have neuroprotective properties. We synthesized various SAC derivatives and tested their effects on endoplasmic reticulum stress-induced neurotoxicity in cultured hippocampal neurons (HPNs). Among the compounds tested, S-propyl-l-cysteine (SPC) exhibited the strongest neuroprotective activity in HPNs, followed by S-ethyl-l-cysteine (SEC) and S-methyl-l-cysteine (SMC). Unlike SAC and SMC, SPC and SEC did not have inhibitory activity on μ-calpain, suggesting that the mechanism underlying the protective activity of SPC and SEC differs from that of SAC. Copyright © 2016 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  20. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H

    2006-01-01

    OBJECTIVE: Both matrix metalloprotease (MMP) activity and cathepsin K (CK) activity have been implicated in cartilage turnover. We investigated the relative contribution of MMP activity and CK activity in cartilage degradation using ex vivo and in vivo models. METHODS: Bovine articular cartilage...... explants were stimulated with oncostatin M (OSM) 10 ng/ml and tumor necrosis factor-alpha (TNF-alpha) 20 ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans...... was measured from CK-deficient mice. RESULTS: OSM and TNF-alpha combined induced significant (Pcartilage degradation products measured by hydroxyproline and CTX-II compared to vehicle control. The cytokines potently induced MMP expression, assessed by zymography, and CK expression...

  1. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.

    Science.gov (United States)

    Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A

    2002-09-01

    Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.

  2. Influence of cysteine and selenodicysteine on the uptake of zinc by Chlorella vulgaris Beijerinck

    International Nuclear Information System (INIS)

    Czauderna, M.; Samochocka, K.

    1982-01-01

    The uptake of zinc labelled with radioactive 65 Zn in the presence of cysteine and selenodicysteine by Chlorella vulgaris was examined. The concentration of zinc ions in the medium was 20 mg per 1. The uptake yield was found to be enhanced by selenodicysteine. At concentration of 10 - 7 -10 - 6 M the growth rate of Chlorella vulgaris was accelerated by the latter, provided that the specific activity of 65 Zn was 3.7 MBq/1. At this specific zinc activity cysteine increased the uptake yield during the initial 50 h of the incubation process. At specific 65 Zn-activity of 55.5 MBq/1 selenodicysteine and cysteine only slightly influenced the zinc uptake by Chlorella vulgaris. No increment in the biomass was observed at this specific zinc radioactivity. (author)

  3. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids.

    Science.gov (United States)

    He, Xiaobo; Xia, Qingsu; Ma, Liang; Fu, Peter P

    2016-01-01

    Pyrrolizidine alkaloids (PAs) require metabolic activation to exert cytotoxicity, genotoxicity, and tumorigenicity. We previously reported that (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts are responsible for PA-induced liver tumor formation in rats. In this study, we determined that metabolism of riddelliine and monocrotaline by human or rat liver microsomes produced 7-cysteine-DHP and DHP. The metabolism of 7-glutathionyl-DHP by human and rat liver microsomes also generated 7-cysteine-DHP. Further, reaction of 7-cysteine-DHP with calf thymus DNA in aqueous solution yielded the described DHP-derived DNA adducts. This study represents the first report that 7-cysteine-DHP is a new PA metabolite that can lead to DNA adduct formation.

  4. Role of a cysteine residue in the active site of ERK and the MAPKK family

    International Nuclear Information System (INIS)

    Ohori, Makoto; Kinoshita, Takayoshi; Yoshimura, Seiji; Warizaya, Masaichi; Nakajima, Hidenori; Miyake, Hiroshi

    2007-01-01

    Kinases of mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated protein kinase (ERK), represent likely targets for pharmacological intervention in proliferative diseases. Here, we report that FR148083 inhibits ERK2 enzyme activity and TGFβ-induced AP-1-dependent luciferase expression with respective IC 50 values of 0.08 and 0.05 μM. FR265083 (1'-2' dihydro form) and FR263574 (1'-2' and 7'-8' tetrahydro form) exhibited 5.5-fold less and no activity, respectively, indicating that both the α,β-unsaturated ketone and the conformation of the lactone ring contribute to this inhibitory activity. The X-ray crystal structure of the ERK2/FR148083 complex revealed that the compound binds to the ATP binding site of ERK2, involving a covalent bond to Sγ of ERK2 Cys166, hydrogen bonds with the backbone NH of Met108, Nζ of Lys114, backbone C=O of Ser153, Nδ2 of Asn154, and hydrophobic interactions with the side chains of Ile31, Val39, Ala52, and Leu156. The covalent bond motif in the ERK2/FR148083 complex assures that the inhibitor has high activity for ERK2 and no activity for other MAPKs such as JNK1 and p38MAPKα/β/γ/δ which have leucine residues at the site corresponding to Cys166 in ERK2. On the other hand, MEK1 and MKK7, kinases of the MAPKK family which also can be inhibited by FR148083, contain a cysteine residue corresponding to Cys166 of ERK2. The covalent binding to the common cysteine residue in the ATP-binding site is therefore likely to play a crucial role in the inhibitory activity for these MAP kinases. These findings on the molecular recognition mechanisms of FR148083 for kinases with Cys166 should provide a novel strategy for the pharmacological intervention of MAPK cascades

  5. The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Silva, A.B.; Agostinho, S.M.L.; Barcia, O.E.; Cordeiro, G.G.O.; D'Elia, E.

    2006-01-01

    The effect of cysteine on the corrosion of 304L stainless steel in 1 mol l -1 H 2 SO 4 was studied using open-circuit potential measurements, anodic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). All the electrochemical measurements obtained in the presence of low cysteine concentration (10 -6 -10 -5 mol l -1 ) presented the same behaviour as those obtained in the absence of cysteine, a passivated steel surface. However, for higher cysteine concentrations (10 -4 -10 -2 mol l -1 ), a different behaviour was observed: the corrosion potential stabilized at a more negative value; an active region was observed in the anodic polarization curves and the electrochemical impedance diagrams showed an inductive loop at lower frequencies and a much lower polarization resistance. These results show that the presence of cysteine at high concentration turns the surface of 304L stainless steel electrochemically active, probably dissolving the passivation layer and promoting the stainless steel anodic dissolution. SEM experiments performed after immersion experiments at corrosion potential were in good agreement with the electrochemical results

  6. Biotechnological production of high specific activity L-35S-cysteine and L-35S-methionine by using a diploid yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Gajendiran, N.; Jayachandran, N.; Unny, V.K.P.; Thyagarajan, S.; Rao, B.S.

    1994-01-01

    High specific activity L- 3 5 S-cysteine and L- 35 S-methionine were synthesised by using a wild type diploid strain of baker's yeast-Saccharomyces cerevisiae. Yeast cells were grown in a sulphur depleted synthetic medium in which Na 2 3 5 SO 4 (50 mCi/ml) was supplemented as the sole sulphur source. The level of incorporation was 60% on an average. The protein hydrolysate of the cultured cells was subjected to paper and column chromatographic separations to get the individual L- 3 5 S-aminoacids. The radiochemical yields of cysteine and methionine were 6-7% and 18-20% respectively. The radiochemical purity of the products was >95%. The highest specific activity for the products obtained by employing this method was 1100 Ci/mmole from the starting material, Na 2 35 SO 4 , with a specific activity of 1350 Ci/mmole. (Author)

  7. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.

    2003-01-01

    centres in vitro, were ubiquitous at low levels, but the protein could not be detected. EST analysis showed that expression of genes for serpins with BSZx-type reactive centres in vegetative tissues is widespread in the plant kingdom, suggesting a common regulatory function. For BSZ4 and BSZ7, expression...... their irreversible inhibitory mechanism in the inhibition of exogenous proteinases capable of breaking down seed storage proteins, and in the defence of specific cell types in vegetative tissues.......Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (

  8. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  9. Expression of Proteinase-activated Receptor-2 in the Esophageal Mucosa of Gastroesophageal Reflux Disease Patients: A Histomorphologic and Immunohistochemical Study.

    Science.gov (United States)

    Abd El-Rehim, Dalia M; Fath El-Bab, Hanaa K; Kamal, Enas M

    2015-10-01

    Data are limited regarding the role of proteinase-activated receptor-2 (PAR-2) in the esophageal mucosa in gastroesophageal reflux disease (GERD) patients. Our aim was to study PAR-2 expression and its relationship with different GERD-related clinical and pathologic parameters. Histomorphologic alterations in eosophageal mucosa in nonerosive reflux disease (NERD) and erosive reflux disease (ERD) were also, evaluated. Endoscopic biopsies of the esophageal mucosa were obtained from 94 GERD patients and 20 participants for histopathologic analysis and PAR-2 immunohistochemical staining. The present study demonstrated significantly higher PAR-2 expression in GERD patients compared with control, whereas no significant differences were seen between NERD and ERD groups. PAR-2 expression significantly correlated with histologic score (r=0.572, Pstudy provides evidence for the major role of PAR-2 in the pathogenesis of GERD and GERD-associated mucosal alterations.

  10. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a

  11. Mass spectrometric analysis of L-cysteine metabolism: physiological role and fate of L-cysteine in the enteric protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo; Nozaki, Tomoyoshi

    2014-11-04

    L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of L-cysteine in E. histolytica. [U-(13)C3, (15)N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite, L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly

  12. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.

    Science.gov (United States)

    Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel

    2017-03-14

    Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.

  13. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. l-Cysteine improves antioxidant enzyme activity, post-thaw quality and fertility of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa.

    Science.gov (United States)

    Iqbal, S; Riaz, A; Andrabi, S M H; Shahzad, Q; Durrani, A Z; Ahmad, N

    2016-11-01

    The effects of l-cysteine in extender on antioxidant enzymes profile during cryopreservation, post-thaw quality parameters and in vivo fertility of Nili-Ravi buffalo bull spermatozoa were studied. Semen samples from 4 buffalo bulls were diluted in Tris-citric acid-based extender having different concentrations of l-cysteine (0.0, 0.5, 1.0, 2.0 and 3.0 mm) and frozen in 0.5-ml French straws. The antioxidative enzymes [catalase, super oxide dismutase and total glutathione (peroxidase and reductase)] were significantly higher (P l-cysteine as compared to other groups. Post-thaw total motility (%), progressive motility (%), rapid velocity (%), average path velocity (μm s -1 ), straight line velocity (μm s -1 ), curvilinear velocity (μm s -1 ), beat cross frequency (Hz), viable spermatozoa with intact plasmalemma (%), acrosome and DNA integrity (%) were higher with the addition of 2.0 mm l-cysteine as compared to other groups (P l-cysteine than in the control. In conclusion, the addition of 2.0 mm l-cysteine in extender improved the antioxidant enzymes profile, post-thaw quality and in vivo fertility of Nili-Ravi buffalo bull spermatozoa. © 2016 Blackwell Verlag GmbH.

  15. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  16. Serum proteinase inhibitors and other serum proteins in protein-energy malnutrition

    NARCIS (Netherlands)

    Schelp, F.P.; Migasena, P.; Pongpaew, P.; SCHREURS W.H.P

    1977-01-01

    1. The concentrations of serum protein albumin, prealbumin and transferrin were determined in twenty-eight cases of protein-energy malnutrition (PEM) with infection, together with the levels of serum proteinase inhibitors (PI), alpha1-antitrypsin (AT), alpha1-antichymotrypsin (Ach),

  17. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology.

    Science.gov (United States)

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van 't Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-11-01

    Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. OA was induced in wild-type (WT) and PAR2-deficient (PAR2 -/- ) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2 -/- mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2 -/- mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2 -/- mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2 -/- mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    Science.gov (United States)

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van ‘t Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-01-01

    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. PMID:26698846

  19. A novel potentiometric biosensor for selective L-cysteine determination using L-cysteine-desulfhydrase producing Trichosporon jirovecii yeast cells coupled with sulfide electrode

    International Nuclear Information System (INIS)

    Hassan, Saad S.M.; El-Baz, Ashraf F.; Abd-Rabboh, Hisham S.M.

    2007-01-01

    Trichosporon jirovecii yeast cells are used for the first time as a source of L-cysteine desulfhydrase enzyme (EC 4.4.1.1) and incorporated in a biosensor for determining L-cysteine. The cells are grown under cadmium stress conditions to increase the expression level of the enzyme. The intact cells are immobilized on the membrane of a solid-state Ag 2 S electrode to provide a simple L-cysteine responsive biosensor. Upon immersion of the sensor in L-cysteine containing solutions, L-cysteine undergoes enzymatic hydrolysis into pyruvate, ammonia and sulfide ion. The rate of sulfide ion formation is potentiometrically measured as a function of L-cysteine concentration. Under optimized conditions (phosphate buffer pH 7, temperature 37 ± 1 deg. C and actual weight of immobilized yeast cells 100 mg), a linear relationship between L-cysteine concentration and the initial rate of sulfide liberation (dE/dt) is obtained. The sensor response covers the concentration range of 0.2-150 mg L -1 (1.7-1250 μmol L -1 ) L-cysteine. Validation of the assay method according to the quality control/quality assurance standards (precision, accuracy, between-day variability, within-day reproducibility, range of measurements and lower limit of detection) reveals remarkable performance characteristics of the proposed biosensor. The sensor is satisfactorily utilized for determination of L-cysteine in some pharmaceutical formulations. The lower limit of detection is ∼1 μmol L -1 and the accuracy and precision of the method are 97.5% and ±1.1%, respectively. Structurally similar sulfur containing compounds such as glutathione, cystine, methionine, and D-cysteine do no interfere

  20. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    Directory of Open Access Journals (Sweden)

    Soichi Takeda

    2016-05-01

    Full Text Available A disintegrin and metalloproteinase (ADAM family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates.

  1. Protein cysteine oxidation in redox signaling

    DEFF Research Database (Denmark)

    Forman, Henry Jay; Davies, Michael J; Krämer, Anna C

    2017-01-01

    Oxidation of critical signaling protein cysteines regulated by H2O2 has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione. Previ...

  2. Recombinant protein to analyze autoantibodies to proteinase 3 in systemic vasculitis

    NARCIS (Netherlands)

    Rarok, AA; Huitema, MG; van der Leij, MJ; van der Geld, YM; Berthold, H; Schmitt, J; Stegeman, CA; Limburg, PC; Kallenberg, CGM

    2003-01-01

    The presence of antineutrophil cytoplasmic autoantibodies with specificity for proteinase 3 (PR3-ANCA) usually is detected by enzyme-linked immunosorbent assay (ELISA) with purified PR3 as a substrate. We studied the technical performance of direct and capture ELISA using a recombinant

  3. Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target.

    Directory of Open Access Journals (Sweden)

    Srinivasan Sundararaj

    Full Text Available Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs. Structural studies of the ICPs of Trypanosoma cruzi (chagasin and Plasmodium berghei (PbICP indicated that three loops (termed BC, DE, and FG are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.

  4. Pulse photolysis of NADH in the presence of cysteine

    International Nuclear Information System (INIS)

    Scheel, H.E.

    1976-01-01

    In the UV irradiation of NADH under anaerobic conditions, cysteine, which often acts as a radioprotective substance, has a sensitizing effect. With the aid of pulse photolysis, it was studied which reaction mechanisms in the presence or absence of cysteine are responsible for the damage to NADH in aqueous solution. In the absence of cysteine, the characteristic NADH absorption at 340 nm is reduced immediately after UV quanta have been absorbed by the adenine fraction of the molecules; in the presence of cysteine, a secondary reaction causes additional damage. The spectra of the intermediate products of NADH and cysteine have been recorded for different cysteine concentrations, and the reaction constants have been determined. These values suggest that the sensitizing effect is due to a reaction of NADH with radical anions produced by photolysis. (orig.) [de

  5. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming, E-mail: qmchen@scu.edu.cn

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  6. CHARACTERIZATION OF DANSYLATED CYSTEINE, GLUTATHIONE DISULFIDE, CYSTEINE AND CYSTINE BY NARROW BORE LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometric (RP-LC/ESI-MS) method has been developed to confirm the identity of dansylated derivatives of cysteine and glutathione, and their respective dimers. Cysteine, GSH, CSSC...

  7. Selective Cytotoxic Activity of Se-Methyl-Seleno-L-Cysteine- and Se-Polysaccharide-Containing Extracts from Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes).

    Science.gov (United States)

    Klimaszewska, Marzenna; Górska, Sandra; Dawidowski, Maciej; Podsadni, Piotr; Szczepanska, Agnieszka; Orzechowska, Emilia; Kurpios-Piec, Dagmara; Grosicka-Maciag, Emilia; Rahden-Staroń, Iwonna; Turło, Jadwiga

    2017-01-01

    Numerous formulations derived from the shiitake medicinal mushroom, Lentinus edodes, demonstrate anticancer activities. We hypothesized that isolates from selenium (Se)-enriched mycelia of L. edodes would possess stronger cancer-preventive properties than current preparations. The aim of this study was to investigate whether the presence of Se-methyl-seleno-L-cysteine in mycelial extracts of L. edodes affects their cytotoxic activity (makes them stronger) or whether they are as effective as Se-containing polysaccharides. Extracts were prepared from Se-containing mycelia under various conditions and assayed for cytotoxic activity in cancer (PC3 and HeLa) and normal (HMEC-1) cell lines. The chemical composition of the extracts was examined; specifically, the amounts of potentially cytotoxic Se compounds (methylselenocysteine, selenomethionine, and Se-containing polysaccharides) were measured. The relationship between extract composition and biological activity was characterized. Mycelial cultures were cultivated in a 10-L bioreactor in medium enriched with sodium selenite. Mycelial extracts were prepared either at 100°C or at 4°C in acidic solution. Total Se content was determined using the atomic absorption spectrometry method, and methylselenocysteine and selenomethionine contents were measured using reverse-phase high-performance liquid chromatography. Protein, carbohydrate, and polyphenolic contents were determined with spectrophotometric methods, and Se-containing polysaccharides were measured with the use of precipitation. Anticancer activity of mycelial extracts was examined using the MTT cell viability assay. Extracts containing Se-methyl-seleno-L-cysteine or Se-polysaccharides prepared at 4°C and 100°C, respectively, display moderate, time-dependent, specific cytotoxic activity in HeLa and PC3 cell lines. The effect in HeLa cells is more pronounced in the extract prepared at 4°C than at 100°C. The effect is almost equal for the PC3 cell line. However

  8. Controllable synthesis of TiO2 nanomaterials by assisting with l-cysteine and ethylenediamine

    KAUST Repository

    Tao, Yugui

    2013-11-21

    This paper reports a facile l-cysteine-assisted solvothermal synthesis of TiO2 nanomaterials using ethylenediamine (En) and distilled water as solvent. The influence of reaction time, temperature, l-cysteine and solvent was initially investigated. Results demonstrated the reaction temperature, l-cysteine and En significantly imposed impact on the phase and morphology of the particles. Amorphous nanosheets, mixed-crystal nanorods and pure anatase nanoparticles were controllably synthesized by varying reaction temperature. The formation of the amorphous nanosheets and mixed-crystal nanorods were directly affected by the presence of l-cysteine and En. And the presence of En distinctly affected the crystal phase of the products, which was rarely mentioned in other studies. Moreover, the photocatalytic activities of three typical samples were excellent. The possible formation mechanism of the sample was also discussed. © 2013 Springer Science+Business Media New York.

  9. Controllable synthesis of TiO2 nanomaterials by assisting with l-cysteine and ethylenediamine

    KAUST Repository

    Tao, Yugui; Cao, Ning; Pan, Jun; Sun, Yichen; Jin, Cheng; Song, Yang

    2013-01-01

    This paper reports a facile l-cysteine-assisted solvothermal synthesis of TiO2 nanomaterials using ethylenediamine (En) and distilled water as solvent. The influence of reaction time, temperature, l-cysteine and solvent was initially investigated. Results demonstrated the reaction temperature, l-cysteine and En significantly imposed impact on the phase and morphology of the particles. Amorphous nanosheets, mixed-crystal nanorods and pure anatase nanoparticles were controllably synthesized by varying reaction temperature. The formation of the amorphous nanosheets and mixed-crystal nanorods were directly affected by the presence of l-cysteine and En. And the presence of En distinctly affected the crystal phase of the products, which was rarely mentioned in other studies. Moreover, the photocatalytic activities of three typical samples were excellent. The possible formation mechanism of the sample was also discussed. © 2013 Springer Science+Business Media New York.

  10. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - From the field to the test tube and back

    DEFF Research Database (Denmark)

    Jutta, Papenbrock; Anja, Riemenschneider; Kamp, Anja

    2007-01-01

    focussed mainly on the release of H2S as defence strategy. In field experiments using different Brassica napus genotypes it was shown that the genetic differ- ences among Brassica genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field ex- periment demonstrated...... that sulfur supply and infection with Pyrenopeziza brassica influenced L-cysteine desulfhydrase activity in Brassica napus. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated...... in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research...

  11. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    Science.gov (United States)

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  12. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Science.gov (United States)

    Thiolloy, Sophie; Edwards, James R; Fingleton, Barbara; Rifkin, Daniel B; Matrisian, Lynn M; Lynch, Conor C

    2012-01-01

    Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment. To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry). Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry). Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1) the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay); and 2) that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays). Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  13. An osteoblast-derived proteinase controls tumor cell survival via TGF-beta activation in the bone microenvironment.

    Directory of Open Access Journals (Sweden)

    Sophie Thiolloy

    Full Text Available Breast to bone metastases frequently induce a "vicious cycle" in which osteoclast mediated bone resorption and proteolysis results in the release of bone matrix sequestered factors that drive tumor growth. While osteoclasts express numerous proteinases, analysis of human breast to bone metastases unexpectedly revealed that bone forming osteoblasts were consistently positive for the proteinase, MMP-2. Given the role of MMP-2 in extracellular matrix degradation and growth factor/cytokine processing, we tested whether osteoblast derived MMP-2 contributed to the vicious cycle of tumor progression in the bone microenvironment.To test our hypothesis, we utilized murine models of the osteolytic tumor-bone microenvironment in immunocompetent wild type and MMP-2 null mice. In longitudinal studies, we found that host MMP-2 significantly contributed to tumor progression in bone by protecting against apoptosis and promoting cancer cell survival (caspase-3; immunohistochemistry. Our data also indicate that host MMP-2 contributes to tumor induced osteolysis (μCT, histomorphometry. Further ex vivo/in vitro experiments with wild type and MMP-2 null osteoclast and osteoblast cultures identified that 1 the absence of MMP-2 did not have a deleterious effect on osteoclast function (cd11B isolation, osteoclast differentiation, transwell migration and dentin resorption assay; and 2 that osteoblast derived MMP-2 promoted tumor survival by regulating the bioavailability of TGFβ, a factor critical for cell-cell communication in the bone (ELISA, immunoblot assay, clonal and soft agar assays.Collectively, these studies identify a novel "mini-vicious cycle" between the osteoblast and metastatic cancer cells that is key for initial tumor survival in the bone microenvironment. In conclusion, the findings of our study suggest that the targeted inhibition of MMP-2 and/or TGFβ would be beneficial for the treatment of bone metastases.

  14. A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System

    DEFF Research Database (Denmark)

    Jusko, Monika; Potempa, Jan; Mizgalska, Danuta

    2015-01-01

    Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent...... release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin...... with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further...

  15. [Proteinase activity in Candida albicans strains isolated from the oral cavity of immunocompromised patients, with oral candidiasis and in healthy subjects].

    Science.gov (United States)

    Hernández-Solís, Sandra E; Rueda-Gordillo, Florencio; Rojas-Herrera, Rafael A

    2014-01-01

    Candida albicans has a variety of virulence factors, including secreted aspartyl proteases, which are determinant factors in the pathogenesis of this yeast in immunocompromised patients. Proteinase activity was identified in C. albicans strains isolated from the oral cavity of immunocompromised patients with cancer, diabetes and HIV+, with oral candidiasis and in healthy subjects. Two hundred and fifty C. albicans strains were analyzed, distributed in 5 different groups: patients with cancer, diabetes, HIV+, with oral candidiasis and healthy subjects. Proteolytic activity was identified in 46% of the strains from cancer patients, 54% from HIV+ patients, 60% from diabetics, 70% from oral candidiasis patients, and 42% from healthy subjects. Activity was higher in strains from immunocompromised and oral candidiasis patients than in healthy subjects. Differences were observed between the candidiasis-healthy, candidiasis-HIV+, and diabetic-healthy groups. No differences were observed between the oral candidiasis, diabetes and cancer patients, between the diabetes and HIV+ patients, or between the cancer patients, HIV+ patients and healthy subjects. The present results suggest that although secreted aspartyl proteases are important in the pathogenesis of C. albicans, their activity depends on host conditions. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. L-Cysteine and L-AP4 microinjections in the rat caudal ventrolateral medulla decrease arterial blood pressure.

    Science.gov (United States)

    Takemoto, Yumi

    2014-12-01

    The thiol amino acid L-cysteine increases arterial blood pressure (ABP) when injected into the cerebrospinal fluid space in conscious rats, indicating a pressor response to centrally acting L-cysteine. A prior synaptic membrane binding assay suggests that L-cysteine has a strong affinity for the L-2-amino-4-phosphonobutyric acid (L-AP4) binding site. The central action of L-cysteine may be vial-AP4 sensitive receptors. The present study investigated cardiovascular responses to L-cysteine and L-ap4 microinjected into the autonomic area of the caudal ventrolateral medulla (CVLM) where inhibitory neurons regulate ABP via pre-sympathetic vasomotor neurons. Both the injection of L-cysteine and L-AP4 in the CVLM sites identified with L-glutamate produced the same depressor and bradycardic responses in urethane-anesthetized rats. Neither a prior antagonist microinjection of MK801 for the N-methyl-D-aspartate (NMDA) receptor nor CNQX for the non-NMDA receptor attenuated the responses to L-cysteine, but the combination of the two receptor blocking with an additional prior injection abolished the response. In contrast, either receptor blockade alone abolished the response to L-AP4, indicating distinct mechanisms between responses to L-cysteine and L-AP4 in the CVLM. The results indicate that the CVLM is a central active site for L-cysteine's cardiovascular response. Central L-cysteine's action could be independent of the L-AP4 sensitive receptors. Cardiovascular regulation may involve endogenous L-cysteine in the CVLM. Further multidisciplinary examinations are required to elaborate on L-cysteine's functional roles in the CVLM. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants.

    Science.gov (United States)

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover ( Trifolium repens L.) Kunitz Proteinase Inhibitor ( Tr-KPI ) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1 , Tr-KPI2 , and Tr-KPI5 , was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1 , a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs , particularly Tr-KPI5 , have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  18. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L. Plants

    Directory of Open Access Journals (Sweden)

    Afsana Islam

    2017-10-01

    Full Text Available The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L. Kunitz Proteinase Inhibitor (Tr-KPI gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  19. Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS

    Science.gov (United States)

    Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu

    2018-01-01

    Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.

  20. Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS

    Science.gov (United States)

    Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu

    2018-05-01

    Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.

  1. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex

    Czech Academy of Sciences Publication Activity Database

    Benoni, Roberto; De Bei, O.; Paredi, G.; Hayes, C. S.; Franko, N.; Mozzarelli, A.; Bettati, S.; Campanini, B.

    2017-01-01

    Roč. 591, č. 9 (2017), s. 1212-1224 ISSN 0014-5793 Institutional support: RVO:61388963 Keywords : cysteine synthase * protein - protein interaction * serine acetyltransferase Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.623, year: 2016

  2. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  4. Pressor response to L-cysteine injected into the cisterna magna of conscious rats involves recruitment of hypothalamic vasopressinergic neurons.

    Science.gov (United States)

    Takemoto, Yumi

    2013-03-01

    The sulfur-containing non-essential amino acid L-cysteine injected into the cisterna magna of adult conscious rats produces an increase in blood pressure. The present study examined if the pressor response to L-cysteine is stereospecific and involves recruitment of hypothalamic vasopressinergic neurons and medullary noradrenergic A1 neurons. Intracisternally injected D-cysteine produced no cardiovascular changes, while L-cysteine produced hypertension and tachycardia in freely moving rats, indicating the stereospecific hemodynamic actions of L-cysteine via the brain. The double labeling immunohistochemistry combined with c-Fos detection as a marker of neuronal activation revealed significantly higher numbers of c-Fos-positive vasopressinergic neurons both in the supraoptic and paraventricular nuclei and tyrosine hydroxylase containing medullary A1 neurons, of L-cysteine-injected rats than those injected with D-cysteine as iso-osmotic control. The results indicate that the cardiovascular responses to intracisternal injection of L-cysteine in the conscious rat are stereospecific and include recruitment of hypothalamic vasopressinergic neurons both in the supraoptic and paraventricular nuclei, as well as of medullary A1 neurons. The findings may suggest a potential function of L-cysteine as an extracellular signal such as neuromodulators in central regulation of blood pressure.

  5. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine.

    Science.gov (United States)

    Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza

    2013-04-15

    A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The selenazal drug ebselen potently inhibits indoleamine 2,3-dioxygenase by targeting enzyme cysteine residues.

    Science.gov (United States)

    Terentis, Andrew C; Freewan, Mohammed; Sempértegui Plaza, Tito S; Raftery, Mark J; Stocker, Roland; Thomas, Shane R

    2010-01-26

    The heme enzyme indoleamine 2,3-dioxygenase (IDO) plays an important immune regulatory role by catalyzing the oxidative degradation of l-tryptophan. Here we show that the selenezal drug ebselen is a potent IDO inhibitor. Exposure of human macrophages to ebselen inhibited IDO activity in a manner independent of changes in protein expression. Ebselen inhibited the activity of recombinant human IDO (rIDO) with an apparent inhibition constant of 94 +/- 17 nM. Optical and resonance Raman spectroscopy showed that ebselen altered the active site heme of rIDO by inducing a transition of the ferric heme iron from the predominantly high- to low-spin form and by lowering the vibrational frequency of the Fe-CO stretch of the CO complex, indicating an opening of the distal heme pocket. Substrate binding studies showed that ebselen enhanced nonproductive l-tryptophan binding, while circular dichroism indicated that the drug reduced the helical content and protein stability of rIDO. Thiol labeling and mass spectrometry revealed that ebselen reacted with multiple cysteine residues of IDO. Removal of cysteine-bound ebselen with dithiothreitol reversed the effects of the drug on the heme environment and significantly restored enzyme activity. These findings indicate that ebselen inhibits IDO activity by reacting with the enzyme's cysteine residues that result in changes to protein conformation and active site heme, leading to an increase in the level of nonproductive substrate binding. This study highlights that modification of cysteine residues is a novel and effective means of inhibiting IDO activity. It also suggests that IDO is under redox control and that the enzyme represents a previously unrecognized in vivo target of ebselen.

  7. A S-cysteine conjugate, precursor of aroma of White Sauvignon

    Directory of Open Access Journals (Sweden)

    Takatoshi Tominaga

    1995-12-01

    Full Text Available 4-mercapto-4-methylpentan-2-one (4-MMP, a strongly odorant compound responsible for the « boxtree » or « broom plant » odour of the Sauvignon wines, can be enzymaticaly released in vitro from an odourless must extract. The enzyme source used is a cell-free extract of the gastrointestinal bacterium Eubacterium limosum. This crude preparation exhibits a cysteine β-lyase activity which requires the presence of pyridoxal phosphate. The release of 4-MMP is inhibited when the substrate is previously treated with N-hydroxysuccimide acetate which reacts with a primary amine. The same bacterial extract is also able to release 4-MMP, pyruvic acid and ammonium, from S-(4-méthylpentan-2-one-L-cysteine. On the other hand, the cleavage of S-(4-méthylpentan-2-oneD,L-homocysteine and S-(4-méthylpentan-2-one- glutathione is very limited. These results suggest that the precursor of 4-MMP in Sauvignon must is a S-cysteine conjugate. Such an aroma precursor in grapes or in other fruits has never been round berore.

  8. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  9. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    International Nuclear Information System (INIS)

    Khataee, Alireza; Movafeghi, Ali; Nazari, Fatemeh; Vafaei, Fatemeh; Dadpour, Mohammad Reza; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract

  10. The toxic effects of l-Cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, Alireza, E-mail: ar_khataee@yahoo.com [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Movafeghi, Ali [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Nazari, Fatemeh [University of Tabriz, Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry (Iran, Islamic Republic of); Vafaei, Fatemeh [University of Tabriz, Department of Plant Biology, Faculty of Natural Sciences (Iran, Islamic Republic of); Dadpour, Mohammad Reza [University of Tabriz, Department of Horticultural Science, Faculty of Agriculture (Iran, Islamic Republic of); Hanifehpour, Younes; Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [Yeungnam University, School of Mechanical Engineering (Korea, Republic of)

    2014-12-15

    Plants play an important role in the fate of nanoparticles in the environment through their uptake, bioaccumulation, and transfer to trophic chains. However, the impacts of nanoparticles on plants as essential components of all ecosystems are not well documented. In the present study, the toxic effects of l-Cysteine-capped CdS nanoparticles on Spirodela polyrrhiza as an aquatic higher plant species were studied. l-Cysteine-capped CdS nanoparticles were synthesized using hydrothermal method and their characteristics were determined by XRD, SEM, HR-TEM, and FT-IR techniques. The diameter of majority of synthesized nanoparticles was about 15–20 nm. Subsequently, the uptake of l-Cysteine-capped CdS nanoparticles by the plant species was confirmed using epifluorescence microscopy. The activity of peroxidase and superoxide dismutase as antioxidant enzymes was assayed and the relative frond number was calculated in the presence of different concentrations of l-Cysteine-capped CdS nanoparticles. The obtained results revealed the toxic effects of the synthesized nanoparticles on S. polyrrhiza, leading to growth reduction and significant changes in antioxidant enzymes’ activity.Graphical Abstract.

  11. Cysteine-containing peptides having antioxidant properties

    Science.gov (United States)

    Bielicki, John K [Castro Valley, CA

    2008-10-21

    Cysteine containing amphipathic alpha helices of the exchangeable apolipoproteins, as exemplified by apolipoprotein (apo) A-I.sub.Milano (R173C) and apoA-I.sub.Paris, (R151C) were found to exhibit potent antioxidant activity on phospholipid surfaces. The addition of a free thiol, at the hydrophobic/hydrophilic interface of an amphipathic alpha helix of synthetic peptides that mimic HDL-related proteins, imparts a unique antioxidant activity to these peptides which inhibits lipid peroxidation and protects phospholipids from water-soluble free radical initiators. These peptides can be used as therapeutic agents to combat cardiovascular disease, ischemia, bone disease and other inflammatory related diseases.

  12. Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis.

    Directory of Open Access Journals (Sweden)

    Khaled Alkhuder

    2009-01-01

    Full Text Available Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. Its ability to multiply and survive in macrophages is critical for its virulence. By screening a bank of HimarFT transposon mutants of the F. tularensis live vaccine strain (LVS to isolate intracellular growth-deficient mutants, we selected one mutant in a gene encoding a putative gamma-glutamyl transpeptidase (GGT. This gene (FTL_0766 was hence designated ggt. The mutant strain showed impaired intracellular multiplication and was strongly attenuated for virulence in mice. Here we present evidence that the GGT activity of F. tularensis allows utilization of glutathione (GSH, gamma-glutamyl-cysteinyl-glycine and gamma-glutamyl-cysteine dipeptide as cysteine sources to ensure intracellular growth. This is the first demonstration of the essential role of a nutrient acquisition system in the intracellular multiplication of F. tularensis. GSH is the most abundant source of cysteine in the host cytosol. Thus, the capacity this intracellular bacterial pathogen has evolved to utilize the available GSH, as a source of cysteine in the host cytosol, constitutes a paradigm of bacteria-host adaptation.

  13. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

    International Nuclear Information System (INIS)

    Kaczor, Marta; Sura, Piotr; Bronowicka-Adamska, Patrycja; Wróbel, Maria

    2013-01-01

    Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione – the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28 mg/L Pb(NO 3 ) 2 for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism – 3-mercaptopyruvate sulfurtransfearse, γ-cystathionase and rhodanese – were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to differences

  14. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kaczor, Marta [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Sura, Piotr [Department of Human Developmental Biology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Bronowicka-Adamska, Patrycja [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Wrobel, Maria, E-mail: mbwrobel@cyf-kr.edu.pl [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland)

    2013-02-15

    Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione - the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28 mg/L Pb(NO{sub 3}){sub 2} for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism - 3-mercaptopyruvate sulfurtransfearse, {gamma}-cystathionase and rhodanese - were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to

  15. Activation of mas-related G-protein-coupled receptors by the house dust mite cysteine protease Der p1 provides a new mechanism linking allergy and inflammation.

    Science.gov (United States)

    Reddy, Vemuri B; Lerner, Ethan A

    2017-10-20

    Cysteine and serine proteases function via protease-activated and mas-related G-protein-coupled receptors (Mrgprs) to contribute to allergy and inflammation. Der p1 is a cysteine protease and major allergen from the house dust mite and is associated with allergic rhinitis and allergic asthma. Der p1 activates protease-activated receptor 2 and induces the release of the pro-inflammatory cytokine IL-6 from cells. However, the possibility that Der p1 acts on Mrgprs has not been considered. We report here that ratiometric calcium imaging reveals that Der p1 activates the human receptor MRGPRX1 and the mouse homolog MrgprC11, implicated previously in itch. Der p1 cleavage of N-terminal receptor peptides followed by site-directed mutagenesis of the cleavage sites links receptor activation to specific amino acid residues. Der p1 also induced the release of IL-6 from heterologous cells expressing MRGPRX1. In summary, activation of Mrgprs by the allergen Der p1 may contribute to inflammation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  17. Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice.

    Science.gov (United States)

    Adebayo, Joseph O; Adewole, Kayode E; Krettli, Antoniana U

    2017-07-31

    Cysteine-stabilised peptides (CSP) are majorly explored for their bioactivities with applications in medicine and agriculture. Morinda lucida leaf is used indigenously for the treatment of malaria; it also contains CSP but the role of CSP in the antimalarial activity of the leaf has not been evaluated. This study was therefore performed to evaluate the antimalarial activity of partially purified cysteine-stabilised peptide extract (PPCPE) of Morinda lucida leaf and its possible augmentation of the antioxidant systems of liver and erythrocytes in murine malaria. PPCPE was prepared from Morinda lucida leaf. The activity of PPCPE was evaluated in vitro against Plasmodium falciparum W2 and its cytotoxicity against a BGM kidney cell line. PPCPE was also evaluated for its antimalarial activity and its effects on selected liver and erythrocyte antioxidant parameters in P. berghei NK65-infected mice. PPCPE was not active against P. falciparum W2 (IC 50 : >50µg/ml) neither was it cytotoxic (MLD 50 : >1000µg/ml). However, PPCPE was active against P. berghei NK65 in vivo, causing 51.52% reduction in parasitaemia at 31.25mg/Kg body weight on day 4 post-inoculation. PPCPE significantly reduced (P activities of glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase in a dose-dependent manner, which was significant (P antimalarial effect and that PPCPE may augment the antioxidant defense system to alleviate the reactive oxygen species-mediated complications of malaria. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Double blind test of L-cysteine for protection against radiation-induced side effects in man

    International Nuclear Information System (INIS)

    Ohshima, Toshimi; Tsukiyama, Iwao; Mio, Akihiko; Ito, Otomasa; Sugawara, Masatoshi.

    1977-01-01

    L-Cysteine (80 mg/capsule of active ingredient) or placebo (lactose) was administered to a total of 127 patients with breast cancer (postoperative irradiation) or uterine cervical cancer (post-operative and intracavitary irradiation). L-Cysteine was effective in 49.3% of all patients and in 52.0% of patients with breast cancer, the difference from the placebo group being statistically significant. Decrease in the white blood cell count was less in the group given L-cysteine than that given placebo, and this difference was significant especially in the 3rd week for all cases. Significant difference was also noted in the 2nd week for postoperative irradiation and in the 2nd and 3rd weeks for postoperative and intracavitary irradiation for uterine cervical cancer. Decrease of white blood cell count to less than 3,000 was significantly small in the group given L-cysteine than in the placebo group. The values of hematocrit and platelets remained within normal limits, but the values in the group treated with L-cysteine was considerably different (0.05< Po<0.10) from those in the placebo group during the 2nd, 4th, and 6th week. The blood sedimentation rate was more stable in the group given L-cysteine than in the placebo group, and considerably different (0.05< Po<0.10) in the 2nd week and significantly different in the 6th week compared to the control. Anorexia was significantly less in the group given L-cysteine, especially in the 3rd week. These results suggest that L-cysteine can serve as a protective agent against the side effects of radiotherapy. (J.P.N.)

  19. Double blind test of L-cysteine for protection against radiation-induced side effects in man

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, T; Tsukiyama, I; Mio, A [Tokyo Teishin Hospital (Japan); Ito, O; Sugawara, M

    1977-05-01

    L-Cysteine (80 mg/capsule of active ingredient) or placebo (lactose) was administered to a total of 127 patients with breast cancer (postoperative irradiation) or uterine cervical cancer (post-operative and intracavitary irradiation). L-Cysteine was effective in 49.3% of all patients and in 52.0% of patients with breast cancer, the difference from the placebo group being statistically significant. Decrease in the white blood cell count was less in the group given L-cysteine than that given placebo, and this difference was significant especially in the 3rd week for all cases. Significant difference was also noted in the 2nd week for postoperative irradiation and in the 2nd and 3rd weeks for postoperative and intracavitary irradiation for uterine cervical cancer. Decrease of white blood cell count to less than 3,000 was significantly small in the group given L-cysteine than in the placebo group. The values of hematocrit and platelets remained within normal limits, but the values in the group treated with L-cysteine was considerably different (0.05cysteine than in the placebo group, and considerably different (0.05cysteine, especially in the 3rd week. These results suggest that L-cysteine can serve as a protective agent against the side effects of radiotherapy.

  20. Disease: H01185 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available th aging, several familial forms of CAA reported to date. Hereditary cystatin C a...n cystatin C, which is an inhibitor of several cysteine proteinases. It has also been reported that mutation

  1. Antibacterial activity of antileukoprotease.

    Science.gov (United States)

    Hiemstra, P S; Maassen, R J; Stolk, J; Heinzel-Wieland, R; Steffens, G J; Dijkman, J H

    1996-01-01

    Antileukoprotease (ALP), or secretory leukocyte proteinase inhibitor, is an endogenous inhibitor of serine proteinases that is present in various external secretions. ALP, one of the major inhibitors of serine proteinases present in the human lung, is a potent reversible inhibitor of elastase and, to a lesser extent, of cathepsin G. In equine neutrophils, an antimicrobial polypeptide that has some of the characteristics of ALP has been identified (M. A. Couto, S. S. L. Harwig, J. S. Cullor, J. P. Hughes, and R. I. Lehrer, Infect. Immun. 60:5042-5047, 1992). This report, together with the cationic nature of ALP, led us to investigate the antimicrobial activity of ALP. ALP was shown to display marked in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. On a molar basis, the activity of ALP was lower than that of two other cationic antimicrobial polypeptides, lysozyme and defensin. ALP comprises two homologous domains: its proteinase-inhibitory activities are known to be located in the second COOH-terminal domain, and the function of its first NH2-terminal domain is largely unknown. Incubation of intact ALP or its isolated first domain with E. coli or S. aureus resulted in killing of these bacteria, whereas its second domain displayed very little antibacterial activity. Together these data suggest a putative antimicrobial role for the first domain of ALP and indicate that its antimicrobial activity may equip ALP to contribute to host defense against infection. PMID:8890201

  2. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold.

    Science.gov (United States)

    Fernandez, Francisco J; de Vries, Dominique; Peña-Soler, Esther; Coll, Miquel; Christen, Philipp; Gehring, Heinz; Vega, M Cristina

    2012-02-01

    The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for β-decarboxylation of l-aspartate increased fromcat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Molecular detection and in vitro antioxidant activity of S-allyl-L-cysteine (SAC) extracted from Allium sativum.

    Science.gov (United States)

    Sun, Y-E; Wang, W-D

    2016-06-30

    It is well known that Allium sativum has potential applications to clinical treatment of various cancers due to its remarkable ability in eliminating free radicals and increasing metabolism. An allyl-substituted cysteine derivative - S-allyl-L-cysteine (SAC) was separated and identified from Allium sativum. The extracted SAC was reacted with 1-pyrenemethanol to obtain pyrene-labelled SAC (Py-SAC) to give SAC fluorescence properties. Molecular detection of Py-SAC was conducted by steady-state fluorescence spectroscopy and time-resolved fluorescence method to quantitatively measure concentrations of Py-SAC solutions. The ability of removing 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical using Py-SAC was determined through oxygen radical absorbance capacity (ORAC). Results showed the activity of Py-SAC and Vitamin C (VC) with ORAC as index, the concentrations of Py-SAC and VC were 58.43 mg/L and 5.72 mg/L respectively to scavenge DPPH, and 8.16 mg/L and 1.67 mg/L to scavenge •OH respectively. Compared with VC, the clearance rates of Py-SAC to scavenge DPPH were much higher, Py-SAC could inhibit hydroxyl radical. The ability of removing radical showed a dose-dependent relationship within the scope of the drug concentration.

  4. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Fluoresence quenching of riboflavin in aqueous solution by methionin and cystein

    International Nuclear Information System (INIS)

    Droessler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P.

    2003-01-01

    The fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes of riboflavin in methanol, DMSO, water, and aqueous solutions of the sulphur atom containing amino acids methionin and cystein have been determined. In methanol, DMSO, and water (pH=4-8) only dynamic fluorescence reduction due to intersystem crossing and internal conversion is observed. In aqueous methionin solutions of pH=5.25-9 a pH independent static and dynamic fluorescence quenching occurs probably due to riboflavin anion-methionin cation pair formation. In aqueous cystein solutions (pH range from 4.15 to 9) the fluorescence quenching increases with rising pH due to cystein thiolate formation. The cystein thiol form present at low pH does not react with neutral riboflavin. Cystein thiolate present at high pH seems to react with neutral riboflavin causing riboflavin deprotonation (anion formation) by cystein thiolate reduction to the cystein thiol form

  6. Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies.

    Science.gov (United States)

    Bartsakoulia, Marina; Mϋller, Juliane S; Gomez-Duran, Aurora; Yu-Wai-Man, Patrick; Boczonadi, Veronika; Horvath, Rita

    2016-08-30

    Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.

  7. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    Directory of Open Access Journals (Sweden)

    Yiannis N Kallis

    Full Text Available Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1 is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.

  8. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa

    Science.gov (United States)

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K. T.; Liu, Chuan Fa; Tam, James P.

    2016-01-01

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases. PMID:27991569

  9. Identification of a Serine Proteinase Homolog (Sp-SPH) Involved in Immune Defense in the Mud Crab Scylla paramamosain

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001

  10. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  11. Arsenic compound-induced increases in glutathione levels in cultured Chinese hamster V79 cells and mechanisms associated with changes in {gamma}-glutamylcysteine synthetase activity, cystine uptake and utilization of cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01 (Japan)

    1997-11-01

    Increases in the glutathione (GSH) level in cultured Chinese hamster V79 cells incubated with arsenic compounds were investigated in terms of changes in the activity of {gamma}-glutamylcysteine synthetase ({gamma}-GCS), rate of cystine uptake, and utilization of cysteine. Arsenite at subtoxic concentrations caused a marked increase of the GSH level at 8 h after addition and then declined. Increase in the GSH level caused by arsenite was associated with an increase in the rate of cystine uptake, but not in {gamma}-GCS activity. Increase in the rate of uptake of cystine was attributed mainly to an increase in the utilization of cysteine in the synthesis of GSH. Dimethylarsinic acid (DMAA) also caused an increase in the GSH level in a time- and concentration-dependent manner. Increase in the GSH level was accompanied by increases in {gamma}-GCS activity and in the uptake of cystine. DMAA caused a reduction in the rate of utilization of cysteine for protein synthesis while enhancing the rate of cysteine utilization for GSH synthesis. Cycloheximide inhibited increases in {gamma}-GCS activity caused by DMAA and in the rate of cystine uptake caused by arsenite and DMAA. The cystine transport system is suggested to be induced by arsenite and DMAA with {gamma}-GCS induced in cells incubated with DMAA. Among the arsenic compounds, methylarsonic acid (MAA) was not effective in causing an increase in the GSH level. Accordingly, increases in the GSH level caused by arsenite and DMAA may be specific phenomena in which the cells responded to the arsenicals by increasing the GSH level. (orig.) With 13 figs., 1 tab., 47 refs.

  12. Generation of antibodies against disintegrin and cysteine-rich domains by DNA immunization: An approach to neutralize snake venom-induced haemorrhage

    Directory of Open Access Journals (Sweden)

    Sidgi Syed Anwer Abdo Hasson

    2017-03-01

    Conclusions: Antibodies generated against the E. ocellatus venom prothrombin activator-like metalloprotease and disintegrin-cysteine-rich domains modulated and inhibited the catalytic activity both in vitro and in vivo of venom metalloproteinase disintegrin cysteine rich molecules. Thus, generating of venom specific-toxin antibodies by DNA immunization offer a more rational treatment of snake envenoming than conventional antivenom.

  13. Cysteine homeostasis plays an essential role in plant immunity.

    Science.gov (United States)

    Álvarez, Consolación; Bermúdez, M Ángeles; Romero, Luis C; Gotor, Cecilia; García, Irene

    2012-01-01

    Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  14. The PR-1 domain accounts for the anti-angiogenic activity of a cysteine-rich secretory protein member from the buccal glands of Lampetra japonica.

    Science.gov (United States)

    Duan, Dandan; Wang, Hongyan; Zhou, Rong; Jiang, Qi; Xiao, Rong

    2018-02-01

    Previous studies have shown that cysteine-rich buccal gland protein (CRBGP) from buccal glands of Lampetra japonica could suppress angiogenesis in chick chorioallantoic membrane models. As CRBGP is composed of a pathogenesis-related group 1 (PR-1) domain and a cysteine-rich domain (CRD), which domain accounts for the effects of CRBGP on anti-angiogenesis? In the present study, recombinant PR-1 and CRD (rL-PR-1 and rL-CRD) were obtained. MTT assays showed rL-PR-1 inhibited the proliferation of HUVECs significantly in a dose-dependent manner with an IC 50 of 2μM, while rL-CRD had no obviously inhibitory effect on the proliferation of HUVECs, suggested that PR-1 is the main function domain on the anti-angiogenic activity of CRBGP. Similar to CRBGP, rL-PR-1 induced apoptosis in HUVECs in a mitochondrial-dependent pathway by affecting the level of BAX, BCL2 and caspase 3. Also, the cytotoxic property of rL-PR-1 might be one of the factors which suppressed the proliferation of HUVECs. Furthermore, rL-PR-1 blocked the adhesion, migration, invasion and tube formation of HUVECs by disturbing the cytoskeleton arrangement and down-regulating the level of matrix metallo-peptidase 2. In summary, rL-PR-1 has the anti-angiogenic activity which would provide the information on the functions and mechanisms of cysteine-rich secretory protein family members. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Purification and biochemical characterization of asclepain c I from the latex of Asclepias curassavica L.

    Science.gov (United States)

    Liggieri, Constanza; Arribére, M Cecilia; Trejo, Sebastián A; Canals, Francesc; Avilés, Francesc X; Priolo, Nora S

    2004-08-01

    In this work we report the isolation, purification and characterization of a new protease from latex of Asclepias curassavica L. Crude extract (CE) was obtained by gathering latex on 0.1 M citric-phosphate buffer with EDTA and cysteine with subsequent ultracentrifugation. Proteolytic assays were made on casein or azocasein as substrates. Caseinolytic activity was completely inhibited by E-64. Stability at different temperatures, optimum pH and ionic strength were evaluated by measuring the residual caseinolytic activity at different times after the incubation. CE showed the highest caseinolytic activity at pH 8.5 in the presence of 12 mM cysteine. CE was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by SDS-PAGE, were isolated. The major purified protease (asclepain cI) showed a molecular mass of 23.2 kDa by mass spectrometry and a pI higher than 9.3. The N-terminal sequence showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-aminoacid-p-nitrophenyl esters, the enzyme showed higher preference for the glutamine derivative. Determinations of kinetic parameter (km and Kcat) were performed with PFLNA.

  16. Saccharomyces cerevisiae proteinase A excretion and wine making.

    Science.gov (United States)

    Song, Lulu; Chen, Yefu; Du, Yongjing; Wang, Xibin; Guo, Xuewu; Dong, Jian; Xiao, Dongguang

    2017-11-09

    Proteinase A (PrA), the major protease in Saccharomyces cerevisiae, plays an essential role in zymogen activation, sporulation, and other physiological processes in vivo. The extracellular secretion of PrA often occurs during alcoholic fermentation, especially in the later stages when the yeast cells are under stress conditions, and affects the quality and safety of fermented products. Thus, the mechanism underlying PrA excretion must be explored to improve the quality and safety of fermented products. This paper briefly introduces the structure and physiological function of PrA. Two transport routes of PrA, namely, the Golgi-to-vacuole pathway and the constitutive Golgi-to-plasma membrane pathway, are also discussed. Moreover, the research history and developments on the mechanism of extracellular PrA secretion are described. In addition, it is briefly discussed that calcium homeostasis plays an important role in the secretory pathway of proteins, implying that the regulation of PrA delivery to the plasma membrane requires the involvement of calcium ion. Finally, this review focuses on the effects of PrA excretion on wine making (including Chinese rice wine, grape wine, and beer brewage) and presents strategies to control PrA excretion.

  17. Identification of B cell recognized linear epitopes in a snake venom serine proteinase from the central American bushmaster Lachesis stenophrys.

    Science.gov (United States)

    Madrigal, M; Alape-Girón, A; Barboza-Arguedas, E; Aguilar-Ulloa, W; Flores-Díaz, M

    2017-12-15

    Snake venom serine proteinases are toxins that perturb hemostasis acting on proteins from the blood coagulation cascade, the fibrinolytic or the kallikrein-kinin system. Despite the relevance of these enzymes in envenomations by viper bites, the characterization of the antibody response to these toxins at the molecular level has not been previously addressed. In this work surface-located B cell recognized linear epitopes from a Lachesis stenophrys venom serine proteinase (UniProt accession number Q072L7) were predicted using an artificial neuronal network at the ABCpred server, the corresponding peptides were synthesized and their immunoreactivity was analyzed against a panel of experimental and therapeutic antivenoms. A molecular model of the L. stenophrys enzyme was built using as a template the structure of the D. acutus Dav-PA serine proteinase (Q9I8X1), which displays the highest degree of sequence similarity to the L. stenophrys enzyme among proteins of known 3D structure, and the surface-located epitopes were identified in the protein model using iCn3D. A total of 13 peptides corresponding to the surface exposed predicted epitopes from L. stenophrys serine proteinase were synthesized and, their reactivity with a rabbit antiserum against the recombinant enzyme and a panel of antivenoms was evaluated by a capture ELISA. Some of the epitopes recognized by monospecific and polyspecific antivenoms comprise sequences overlapping motifs conserved in viper venom serine proteinases. The identification and characterization of relevant epitopes recognized by B cells in snake venom toxins may provide valuable information for the preparation of immunogens that help in the production of improved therapeutic antivenoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Secreted aspartate proteinases, a virulence factor of Candida spp.: Occurrence among clinical isolates

    Czech Academy of Sciences Publication Activity Database

    Hamal, P.; Dostál, Jiří; Raclavský, V.; Krylová, M.; Pichová, Iva; Hrušková-Heidingsfeldová, Olga

    2004-01-01

    Roč. 49, č. 4 (2004), s. 491-496 ISSN 0015-5632 R&D Projects: GA MZd NI6485 Institutional research plan: CEZ:AV0Z4055905 Keywords : Candida spp. * aspartate proteinases * RAPD typing Subject RIV: CE - Biochemistry Impact factor: 1.034, year: 2004

  19. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  20. Identification of a serine proteinase homolog (Sp-SPH involved in immune defense in the mud crab Scylla paramamosain.

    Directory of Open Access Journals (Sweden)

    Qiu-xia Zhang

    Full Text Available Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH, originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus, bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN, and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05, and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05. Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  1. SARS-coronavirus spike S2 domain flanked by cysteine residues C822 and C833 is important for activation of membrane fusion

    International Nuclear Information System (INIS)

    Madu, Ikenna G.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    The S2 domain of the coronavirus spike (S) protein is known to be responsible for mediating membrane fusion. In addition to a well-recognized cleavage site at the S1-S2 boundary, a second proteolytic cleavage site has been identified in the severe acute respiratory syndrome coronavirus (SARS-CoV) S2 domain (R797). C-terminal to this S2 cleavage site is a conserved region flanked by cysteine residues C822 and C833. Here, we investigated the importance of this well conserved region for SARS-CoV S-mediated fusion activation. We show that the residues between C822-C833 are well conserved across all coronaviruses. Mutagenic analysis of SARS-CoV S, combined with cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for the core-conserved residues C822, D830, L831, and C833. Based on available predictive models, we propose that the conserved domain flanked by cysteines 822 and 833 forms a loop structure that interacts with components of the SARS-CoV S trimer to control the activation of membrane fusion.

  2. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  3. Kinetics and mechanism of reduction of iron(iii) kojic acid complex by hydroquinone and l-cysteine

    International Nuclear Information System (INIS)

    Hussain, Z.; Perviaz, M.; Kazmi, S.A.; Johnson, A.S.; Offiong, O.E.

    2014-01-01

    The effect of pH on the kinetics of reduction of iron(III) kojic acid complex by hydroquinone (H/sub 2/Q) and L-cysteine (L-Cys) was studied in the pH range of 2.34 - 4.03 for H/sub 2/Q and 3.04 - 5.5 for L-cysteine at ionic strength of 0.5 M and at 35 degree C. The pseudo-first order rate constants for the reduction of Fe(KA)3 by L-cysteine and hydroquinone increase linearly with increasing reductant concentration, indicating first-order kinetics in reductant concentration. However, whereas the rate of reduction by H2Q increases with increasing pH, an opposite trend was observed in the case of reduction by L-cysteine. Plausible rate laws and mechanisms have been proposed in line with these observations. Activation parameters (delta H no and delta S no) were evaluated for the reduction of iron (III) kojic acid complex by cysteine and the values obtained are 35.25 kJmol-1, -141.4 JK-1mol-1 and 28.14 kJmol-1 , 161.2 JK-1mol-1 for pH 4.5 and 3.52 respectively. (author)

  4. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Porntip Pinlaor

    Full Text Available The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa, prosegment (95 aa, and mature protease (213 aa. BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%, Paragonimus westermani (58%, Schistosoma mansoni and S. japonicum (52%, and with vertebrate cathepsin F (51%. Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of approximately 3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and

  5. Expression of recombinant proteinase 3, the autoantigen in Wegener's granulomatosis, in insect cells

    NARCIS (Netherlands)

    Van der Geld, YM; Smook, MLF; Huitema, MG; Harmsen, MC; Limburg, PC; Kallenberg, CGM

    2002-01-01

    Proteinase 3 (PR3) is the major autoantigen for anti-neutrophil cytoplasmic antibodies (ANCA) in patients with Wegener's granulomatosis. Little is known about the major antigenic sites on PR3. To facilitate epitope mapping, PR3 was cloned in insect cells using a baculovirus expression system. Four

  6. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    Science.gov (United States)

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  7. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds.

    Science.gov (United States)

    Kim, Won-Seok; Chronis, Demosthenis; Juergens, Matthew; Schroeder, Amy C; Hyun, Seung Won; Jez, Joseph M; Krishnan, Hari B

    2012-01-01

    Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58-74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22-32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman-Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.

  8. Acetaldehyde Removal from Indoor Air through Chemical Absorption Using L-Cysteine

    Directory of Open Access Journals (Sweden)

    Miyuki Noguchi

    2010-09-01

    Full Text Available The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, L-lysine, L-methionine, L-cysteine, and L-cystine were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, L-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn’t show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid L-cysteine, a gel containing L-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The L-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and L-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and L-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  9. Parameters optimization defined by statistical analysis for cysteine-dextran radiolabeling with technetium tricarbonyl core

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Nunez, Eutimio Gustavo, E-mail: eutimiocu@yahoo.co [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Linkowski Faintuch, Bluma; Teodoro, Rodrigo; Pereira Wiecek, Danielle; Gomes da Silva, Natanael [Radiopharmacy Center, Institute of Energetic and Nuclear Research, Sao Paulo, SP 05508-000 (Brazil); Papadopoulos, Minas [Institute of Radioisotopes, Radiodiagnostic Products, National Center for Scientific Research ' Demokritos' , Athens (Greece); Pelecanou, Maria [Institute of Biology, National Center for Scientific Research ' Demokritos' , Athens (Greece); Pirmettis, Ioannis [Institute of Radioisotopes, Radiodiagnostic Products, National Center for Scientific Research ' Demokritos' , Athens (Greece); Santos Oliveira Filho, Renato de [Faculty of Medicine, Federal University of Sao Paulo, SP (Brazil); Duatti, Adriano [Department of Radiological Sciences, University of Ferrara, Ferrara (Italy); Pasqualini, Roberto [CIS Bio International, Gif sur Yvette (France)

    2011-04-15

    The objective of this study was the development of a statistical approach for radiolabeling optimization of cysteine-dextran conjugates with Tc-99m tricarbonyl core. This strategy has been applied to the labeling of 2-propylene-S-cysteine-dextran in the attempt to prepare a new class of tracers for sentinel lymph node detection, and can be extended to other radiopharmaceuticals for different targets. The statistical routine was based on three-level factorial design. Best labeling conditions were achieved. The specific activity reached was 5 MBq/{mu}g.

  10. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  11. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    Science.gov (United States)

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  12. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  13. A Facile synthesis of superparamagnetic Fe3O4 nanofibers with superior peroxidase-like catalytic activity for sensitive colorimetric detection of L-cysteine

    Science.gov (United States)

    Chen, Sihui; Chi, Maoqiang; Zhu, Yun; Gao, Mu; Wang, Ce; Lu, Xiaofeng

    2018-05-01

    Superaramagnetic Fe3O4 nanomaterials are good candidates as enzyme mimics due to their excellent catalytic activity, high stability and facile synthesis. However, the morphology of Fe3O4 nanomaterials has much influence on their enzyme-like catalytic activity. In this work, we have developed a simple polymer-assisted thermochemical reduction approach to prepare Fe3O4 nanofibers for peroxidase-like catalytic applications. The as-prepared Fe3O4 nanofibers show a higher catalytic activity than commercial Fe3O4 nanoparticles. The steady-state kinetic assay result shows that the Michaelis-Menten constant value of the as-obtained Fe3O4 nanofibers is similar to that of horseradish peroxidase (HRP), indicating their superior affinity to the 3,3‧,5,5‧-tetramethylbenzidine (TMB) and H2O2 substrate. Based on the outstanding catalytic activity, a sensing platform for the detection of L-cysteine has been performed and the limit of detection is as low as 0.028 μM. In addition, an excellent selectivity toward L-cysteine over other types of amino acids, glucose and metal ions has been achieved as well. This work offers an original means for the fabrication of superparamagnetic Fe3O4 nanofibers and demonstrates their delightful potential applications in the fields of biosensing, environmental monitoring, and medical diagnostics.

  14. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease.

    Science.gov (United States)

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2012-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  16. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    Science.gov (United States)

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  17. Measuring site occupancy: a new perspective on cysteine oxidation.

    Science.gov (United States)

    Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna; Williamson, James; Roepstorff, Peter

    2014-10-01

    Site occupancy is an extremely important aspect of quantification of protein modifications. Knowing the degree of modification of each oxidised cysteine residue is critical to understanding the biological role of these modifications. Yet modification site occupancy is very often overlooked, in part because there are very few analytical tools that allow such measurements. Here we present a new strategy, which provides quantitative analysis of cysteine S-nitrosylation (SNO) and S-sulfenylation (SOH) simultaneously at the resolution of single cysteine and allows for determination of relative oxidation occupancy of the modification site. We show that, on one hand, heavily modified cysteines are not necessarily involved in the response to oxidative stress. On the other hand residues with low modification level can be dramatically affected by mild oxidative imbalance. We make use of high resolution mass spectrometry. The method relies on differential reduction of "total" cysteines, SNO cysteines and SOH cysteines with TCEP, sodium ascorbate and sodium arsenite respectively followed by iodoTMT(TM) alkylation. Enrichment of iodoTMT(TM)-containing peptides is performed using anti-TMT antibody. In vivo model of mild oxidative stress in Escherichia coli is used. To induce endogenous SNO bacteria were grown anaerobically in minimal media supplemented with fumarate or nitrate. Short-term treatment with submilimolar levels of hydrogen peroxide were used to induce SOH. We have quantified 114 SNO/SOH modified peptides corresponding to 90 proteins. Only 6 modified peptides changed significantly under mild oxidative stress. Quantitative information allowed us to determine relative modification site occupancy of each identified modified residue and pin point heavily modified ones. The method proved to be precise and sensitive enough to detect and quantify endogenous levels of oxidative stress on proteome-wide scale and brings a new perspective on the role of the modification site

  18. Emission of hydrogen sulfide by leaf tissue in response to L-cysteine

    International Nuclear Information System (INIS)

    Sekiya, J.; Schmidt, A.; Wilson, L.G.; Filner, P.

    1982-01-01

    Leaf discs and detached leaves exposed to L-cysteine emitted a volatile sulfur compound which was proven by gas chromatography to be H 2 S. This phenomenon was demonstrated in all nine species tested (Cucumis sativus, Cucurbita pepo, Nicotiana tabacum, Coleus blumei, Beta vulgaris, Phaseolus vulgaris, Medicago sativa, Hordeum vulgare, and Gossypium hirsutum). The emission of volatile sulfur by cucumber leaves occurred in the dark at a similar rate to that in the light. The emission of leaf discs reached the maximal rate, more than 40 picomoles per minute per square centimeter, 2 to 4 hours after starting exposure to L-cysteine; then it decreased. In the case of detached leaves, the maximum occurred 5 to 10 h after starting exposure. The average emission rate of H 2 S during the first 4 hours from leaf discs of cucurbits in response to 10 millimolar L-cysteine, was usually more than 40 picomoles per minute per square centimeter, i.e. 0.24 micromoles per hour per square decimeter. Leaf discs exposed to 1 millimolar L-cysteine emitted only 2% as much as did the discs exposed to 10 millimolar L-cysteine. The emission from leaf discs and from detached leaves lasted for at least 5 and 15 hours, respectively. However, several hours after the maximal emission, injury of the leaves, manifested as chlorosis, was evident. H 2 S emission was a specific consequence of exposure to L-cysteine; neither D-cysteine nor L-cysteine elicited H 2 S emission. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate dependent enzymes, inhibited the emission. In a cell free system from cucumber leaves, H 2 S formation and its release occurred in response to L-cysteine. Feeding experiments with [ 35 S]t-cysteine showed that most of the sulfur in H 2 S was derived from sulfur in the L-cysteine supplied

  19. Vacuolar processing enzyme in plant programmed cell death

    Directory of Open Access Journals (Sweden)

    Noriyuki eHatsugai

    2015-04-01

    Full Text Available Vacuolar processing enzyme (VPE is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an orthologue of animal asparaginyl endopeptidase (AEP/VPE/legumain. VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1.

  20. Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyunjoo; Lee, Juwon; Noh, Jinseok; Kong, Kwanghoon [Chung-Ang Univ., Seoul (Korea, Republic of)

    2012-12-15

    To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the K{sub m}{sup CDNB} value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

  1. Proteolytic activities in yeast after UV irradiation. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Schwencke, J.; Moustacchi, E.

    1982-04-01

    When the levels of three common yeast proteinases in exponentially growing cells of mutants blocked in different repair pathways are compared to that of isogenic wild-type cells, it can be seen that the level of proteinase B is enhanced in the mutants whereas the levels of leucin aminopeptidase (Leu.AP) and lysine aminopeptidase (Lys.AP) are similar in all strains. As in its corresponding wild type, the level of proteinase B activity is further enhanced after UV-irradiation in a mutant blocked in excision-repair (rad1-3). In contrast, following the same treatment the level of proteinase B remains almost constant in a mutant blocked in a general error-prone repair system (rad6-1) and in a mutant defective in a more specific mutagenic repair pathway (pso2-1). Cycloheximide, an inhibitor of protein synthesis, blocks the post-UV enhancement in proteinase B activity observed in rad1-3 indicating that, as in the wild-type cells, an inducible process is involved. The levels of Lys.AP and Leu.AP are, respectively, either unaffected or only moderately increased following UV-treatment of the repair defective mutants, as in wild-type strains.

  2. Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model

    Science.gov (United States)

    Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.

    2013-01-01

    One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874

  3. Protein modification by acrolein: Formation and stability of cysteine adducts

    OpenAIRE

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2009-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to iden...

  4. Genomic characterization and expression profiles upon bacterial infection of a novel cystatin B homologue from disk abalone (Haliotis discus discus).

    Science.gov (United States)

    Premachandra, H K A; Wan, Qiang; Elvitigala, Don Anushka Sandaruwan; De Zoysa, Mahanama; Choi, Cheol Young; Whang, Ilson; Lee, Jehee

    2012-12-01

    Cystatins are a large family of cysteine proteinase inhibitors which are involved in diverse biological and pathological processes. In the present study, we identified a gene related to cystatin superfamily, AbCyt B, from disk abalone Haliotis discus discus by expressed sequence tag (EST) analysis and BAC library screening. The complete cDNA sequence of AbCyt B is comprised of 1967 nucleotides with a 306 bp open reading frame (ORF) encoding for 101 amino acids. The amino acid sequence consists of a single cystatin-like domain, which has a cysteine proteinase inhibitor signature, a conserved Gly in N-terminal region, QVVAG motif and a variant of PW motif. No signal peptide, disulfide bonds or carbohydrate side chains were identified. Analysis of deduced amino acid sequence revealed that AbCyt B shares up to 44.7% identity and 65.7% similarity with the cystatin B genes from other organisms. The genomic sequence of AbCyt B is approximately 8.4 Kb, consisting of three exons and two introns. Phylogenetic tree analysis showed that AbCyt B was closely related to the cystatin B from pacific oyster (Crassostrea gigas) under the family 1.Functional analysis of recombinant AbCyt B protein exhibited inhibitory activity against the papain, with almost 84% inhibition at a concentration of 3.5 μmol/L. In tissue expression analysis, AbCyt B transcripts were expressed abundantly in the hemocyte, gill, mantle, and digestive tract, while weakly in muscle, testis, and hepatopancreas. After the immune challenge with Vibrio parahemolyticus, the AbCyt B showed significant (P<0.05) up-regulation of relative mRNA expression in gill and hemocytes at 24 and 6 h of post infection, respectively. These results collectively suggest that AbCyst B is a potent inhibitor of cysteine proteinases and is also potentially involved in immune responses against invading bacterial pathogens in abalone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Functional cardiovascular action of L-cysteine microinjected into pressor sites of the rostral ventrolateral medulla of the rat.

    Science.gov (United States)

    Takemoto, Yumi

    2014-04-01

    The endogenous sulfur-containing amino acid L-cysteine injected into the cerebrospinal fluid space of the cisterna magna increases arterial blood pressure (ABP) and heart rate (HR) in the freely moving rat. The present study examined (1) cardiovascular responses to L-cysteine microinjected into the rostral ventrolateral medulla (RVLM), where a group of neurons regulate activities of cardiovascular sympathetic neurons and (2) involvement of ionotropic excitatory amino acid (iEAA) receptors in response. In the RVLM of urethane-anesthetized rats accessed ventrally and identified with pressor responses to L-glutamate (10 mM, 34 nl), microinjections of L-cysteine increased ABP and HR dose dependently (3-100 mM, 34 nl). The cardiovascular responses to L-cysteine (30 mM) were not attenuated by a prior injection of either antagonist alone, MK801 (20 mM, 68 nl) for the NMDA type of iEAA receptors, or CNQX (2 mM) for the non-NMDA type. However, inhibition of both NMDA and non-NMDA receptors with additional prior injection of either antagonist completely blocked those responses to L-cysteine. The results indicate that L-cysteine has functional cardiovascular action in the RVLM of the anesthetized rat, and the responses to L-cysteine involve both NMDA and non-NMDA receptors albeit in a mutually exclusive parallel fashion. The findings may suggest endogenous roles of L-cysteine indirectly via iEAA receptors in the neuronal network of the RVLM for cardiovascular regulation in physiological and pathological situations.

  6. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    Directory of Open Access Journals (Sweden)

    Isabelle Russier-Antoine

    2016-10-01

    Full Text Available Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.

  7. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.

    Science.gov (United States)

    Duan, X; Li, X; Xue, Q; Abo-el-Saad, M; Xu, D; Wu, R

    1996-04-01

    We introduced the potato proteinase inhibitor II (PINII) gene (pin2) into several Japonica rice varieties, and regenerated a large number of transgenic rice plants. Wound-inducible expression of the pin2 gene driven by its own promoter, together with the first intron of the rice actin 1 gene (act1), resulted in high-level accumulation of the PINII protein in the transgenic plants. The introduced pin2 gene was stably inherited in the second, third, and fourth generations, as shown by molecular analyses. Based on data from the molecular analyses, several homozygous transgenic lines were obtained. Bioassay for insect resistance with the fifth-generation transgenic rice plants showed that transgenic rice plants had increased resistance to a major rice insect pest, pink stem borer (Sesamia inferens). Thus, introduction of an insecticidal proteinase inhibitor gene into cereal plants can be used as a general strategy for control of insect pests.

  8. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  9. Photocontrol of the mitotic kinesin Eg5 using a novel S-trityl-L-cysteine analogue as a photochromic inhibitor.

    Science.gov (United States)

    Ishikawa, Kumiko; Tohyama, Kanako; Mitsuhashi, Shinya; Maruta, Shinsaku

    2014-04-01

    Because the mitotic kinesin Eg5 is essential for the formation of bipolar spindles during eukaryotic cell division, it has been considered as a potential target for cancer treatment. A number of specific and potent inhibitors of Eg5 are known. S-trityl-L-cysteine is one of the inhibitors of Eg5 whose molecular mechanism of inhibition was well studied. The trityl group of S-trityl-L-cysteine was shown to be a key moiety required for potent inhibition. In this study, we synthesized a novel photochromic S-trityl-L-cysteine analogue, 4-(N-(2-(N-acetylcysteine-S-yl) acetyl) amino)-4'- (N-(2-(N-(triphenylmethyl)amino)acetyl)amino)azobenzene (ACTAB), composed of a trityl group, azobenzene and N-acetyl-L-cysteine, which exhibits cis-trans photoisomerization in order to photocontrol the function of Eg5. ACTAB exhibited cis-trans photoisomerization upon alternating irradiation at two different wavelengths in the visible range, 400 and 480 nm. ACTAB induced reversible changes in the inhibitory activity of ATPase and motor activities correlating with the cis-trans photoisomerization. Compared with cis-ACTAB, trans-ACTAB reduced ATPase activity and microtubule gliding velocity more significantly. These results suggest that ACTAB could be used as photochromic inhibitor of Eg5 to achieve photocontrol of living cells.

  10. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-01-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  11. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nikhil, E-mail: nkumar.phd2011.bt@nitrr.ac.in; Upadhyay, Lata Sheo Bachan, E-mail: contactlataupadhyay@gmail.com

    2016-11-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month.

  12. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  13. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.

    Science.gov (United States)

    Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S

    2012-11-01

    One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.

  14. Parameters optimization defined by statistical analysis for cysteine-dextran radiolabeling with technetium tricarbonyl core.

    Science.gov (United States)

    Núñez, Eutimio Gustavo Fernández; Faintuch, Bluma Linkowski; Teodoro, Rodrigo; Wiecek, Danielle Pereira; da Silva, Natanael Gomes; Papadopoulos, Minas; Pelecanou, Maria; Pirmettis, Ioannis; de Oliveira Filho, Renato Santos; Duatti, Adriano; Pasqualini, Roberto

    2011-04-01

    The objective of this study was the development of a statistical approach for radiolabeling optimization of cysteine-dextran conjugates with Tc-99m tricarbonyl core. This strategy has been applied to the labeling of 2-propylene-S-cysteine-dextran in the attempt to prepare a new class of tracers for sentinel lymph node detection, and can be extended to other radiopharmaceuticals for different targets. The statistical routine was based on three-level factorial design. Best labeling conditions were achieved. The specific activity reached was 5 MBq/μg. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.

    Science.gov (United States)

    Li, R; Kast, J

    2017-01-01

    Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.

  16. Enhanced biocatalytic production of L-cysteine by Pseudomonas sp. B-3 with in situ product removal using ion-exchange resin.

    Science.gov (United States)

    Wang, Pu; He, Jun-Yao; Yin, Jiang-Feng

    2015-03-01

    Bioconversion of DL-2-amino-Δ(2)-thiazoline-4-carboxylic acid (DL-ATC) catalyzed by whole cells of Pseudomonas sp. was successfully applied for the production of L-cysteine. It was found, however, like most whole-cell biocatalytic processes, the accumulated L-cysteine produced obvious inhibition to the activity of biocatalyst and reduced the yield. To improve L-cysteine productivity, an anion exchange-based in situ product removal (ISPR) approach was developed. Several anion-exchange resins were tested to select a suitable adsorbent used in the bioconversion of DL-ATC for the in situ removal of L-cysteine. The strong basic anion-exchange resin 201 × 7 exhibited the highest adsorption capacity for L-cysteine and low adsorption for DL-ATC, which is a favorable option. With in situ addition of 60 g L(-1) resin 201 × 7, the product inhibition can be reduced significantly and 200 mmol L(-1) of DL-ATC was converted to L-cysteine with 90.4 % of yield and 28.6 mmol L(-1 )h(-1) of volumetric productivity. Compared to the bioconversion without the addition of resin, the volumetric productivity of L-cysteine was improved by 2.27-fold using ISPR method.

  17. Molecular Structures and Dynamics of the Stepwise Activation Mechanism of a Matrix Metalloproteinase Zymogen: Challenging the Cysteine Switch Dogma

    International Nuclear Information System (INIS)

    Rosenblum, G.; Meroueh, S.; Toth, M.; Fisher, J.; Fridman, R.; Mobashery, S.; Sagi, I.

    2007-01-01

    Activation of matrix metalloproteinase zymogen (pro-MMP) is a vital homeostatic process, yet its molecular basis remains unresolved. Using stopped-flow X-ray spectroscopy of the active site zinc ion, we determined the temporal sequence of pro-MMP-9 activation catalyzed by tissue kallikrein protease in milliseconds to several minutes. The identity of three intermediates seen by X-ray spectroscopy was corroborated by molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. The cysteine-zinc interaction that maintains enzyme latency is disrupted via active-site proton transfers that mediate transient metal-protein coordination events and eventual binding of water. Unexpectedly, these events ensue as a direct result of complexation of pro-MMP-9 and kallikrein and occur before proteolysis and eventual dissociation of the pro-peptide from the catalytic site. Here we demonstrate the synergism among long-range protein conformational transitions, local structural rearrangements, and fine atomic events in the process of zymogen activation.

  18. Host tissue destruction by Entamoeba histolytica: molecules mediating adhesion, cytolysis, and proteolysis

    Directory of Open Access Journals (Sweden)

    Rolf D. Horstmann

    1992-01-01

    Full Text Available Entamoeba histolytica, the protozoan parasite causing human amoebisis, has recently been found to comprise two genetically distinct forms, potentially pathogenic and constitutively nonpathogenic ones. Host tissue destruction by pathogenic forms is belived to result from cell functions mediaed by a lectin-type adherence receptor, a pore-forming peptide involved in host cell lysis, and abundant expression of cysteine proteinase(s. Isolation and molecular cloning of these amoeba products have provided the tools for structural analyses and manipulations of cell functions including comparisons between pathogenic and nonpathogenic forms.

  19. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    Directory of Open Access Journals (Sweden)

    Peng Sang

    2016-02-01

    Full Text Available To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy landscapes (FELs at the high solvent temperatures exhibit a more rugged surface, broader spanning range, and higher minimum free energy level than do those at the low solvent temperatures. Comparison between the dynamic hydrogen bond (HB numbers reveals that the high solvent temperatures intensify the competitive HB interactions between water molecules and protein surface atoms, and this in turn exacerbates the competitive HB interactions between protein internal atoms, thus enhancing the conformational flexibility and facilitating the collective motions of the protein. A refined FEL model was proposed to explain the role of the solvent mobility in facilitating the cascade amplification of microscopic motions of atoms and atomic groups into the global collective motions of the protein.

  20. Preparation and application of L-cysteine-doped Keggin polyoxometalate microtubes

    International Nuclear Information System (INIS)

    Shen Yan; Peng Jun; Zhang Huanqiu; Meng Cuili; Zhang Fang

    2012-01-01

    L-cysteine-doped tungstosilicate (Lcys-SiW 12 ) microtubes are prepared, and the amount of L-cysteine doped in the microtubes can be tuned to some extent. The as-prepared Lcys-SiW 12 microtubes are sensitive to ammonia gas exhibited through the distinct color change of the microtubes from light purple to dark blue after exposing to ammonia gas. A possible mechanism of the coloration is that the adsorbed ammonia molecules increase the basicity of the Lcys-SiW 12 microtubes and promote the redox reaction between L-cysteine and polyoxometalate. This is a pH-dependent solid–solid redox reaction, which is triggered by proton capture agent. The Lcys-SiW 12 microtubes show application in chemical sensors for alkaline gases. - Graphical abstract: The Lcys-SiW 12 microtubes were formed during transformation of the monolacunary Keggin-type [α-SiW 11 O 39 ] 8− to the saturated Keggin-type [α-SiW 12 O 40 ] 4− , meanwhile L-cysteine molecules were doped during the growth of the microtubes. Highlights: ► L-cysteine-doped polyoxometalate microtubes are prepared. ► Amount of L-cysteine doped in the microtubes can be tuned to some extent. ► Lcys-SiW 12 microtubes can be applied as a sensor for detecting alkaline gases. ► This is a proton capture agent-triggered solid–solid redox reaction.

  1. The human cystatin M/E gene (CST6): exclusion candidate gene for harlequin ichthyosis.

    NARCIS (Netherlands)

    Zeeuwen, P.L.J.M.; Dale, B.A.; Jongh, G.J. de; Vlijmen-Willems, I.M.J.J. van; Fleckman, P.; Kimball, J.R.; Stephens, K.; Schalkwijk, J.

    2003-01-01

    Cystatin M/E is a recently discovered cysteine proteinase inhibitor whose expression is largely confined to cutaneous epithelia. In human skin it is expressed in sweat glands, hair follicles, and stratum granulosum of the epidermis where it presumably acts as a substrate for transglutaminase. Very

  2. Inhibition of growth hormone and prolactin secretion by a serine proteinase inhibitor

    International Nuclear Information System (INIS)

    Rappay, G.; Nagy, I.; Makara, G.B.; Horvath, G.; Karteszi, M.; Bacsy, E.; Stark, E.

    1984-01-01

    The action of the tripeptide aldehyde t-butyloxycarbonyl-DPhe-Pro-Arg-H (boc-fPR-H), belonging to a family of serine proteinase inhibitors, on the release of immunoreactive prolactin (iPRL) and growth hormone (iGH) has been studied. In rat anterior pituitary cell cultures and pituitary quarters 1 mM boc-fPR-H inhibited basal iPRL and iGH release. Thyroliberin-induced iPRL release by cultured cells was also markedly inhibited with a concomitant accumulation of intracellular iPRL. During the short- and long-term exposure of cells to boc-fPR-H there were no changes in total cell protein contents and in activities of some lysosomal marker enzymes. The marked inhibition of basal as well as stimulated hormone release in the presence of the enzyme inhibitor might suggest that at least a portion of the hormones is released via a proteolytic enzyme-dependent process

  3. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine.

    Science.gov (United States)

    Miura, Yukari; Inai, Miyuki; Honda, Sari; Masuda, Akiko; Masuda, Toshiya

    2014-10-01

    The effect of polyphenols and related phenolic compounds on the reduction of metmyoglobin (MetMb) to oxymyoglobin (MbO2), in the presence of cysteine, was investigated. Caffeic acid, dihydrocaffeic acid, and hydroxtyrosol (600 μmol/L) did not show any reducing activity individually. However, their highly potent activity in the reduction of MetMb to MbO2 was observed in the presence of equimolar amounts of cysteine. On the basis of the analytical results for the redox reaction products generated during the MetMb-reducing reaction of caffeic acid, we proposed a mechanism for the polyphenol-mediated reduction of MetMb. As per the proposed mechanism, the antioxidant polyphenols having a catechol substructure can effectively reduce MetMb to MbO2 with chemical assistance from nucleophilic reactive thiol compounds such as cysteine. Moreover, cysteine-coupled polyphenols such as cysteinylcaffeic acids (which are coupling products of caffeic acid and cysteine) can be used as preserving agents for retaining the fresh meat color, because of their powerful reducing effect on MetMb. The reduction of MetMb to MbO2 changes the color of meat from brown to the more desirable bright red.

  4. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    Science.gov (United States)

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  5. The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64

    NARCIS (Netherlands)

    Everts, V.; Beertsen, W.; Tigchelaar-Gutter, W.

    1985-01-01

    Using morphometric methods the effects of the thiol-proteinase inhibitors leupeptin and E-64 on the digestion of intracytoplasmic collagen fibrils were studied in cultured mouse bone explants. Both drugs caused a dose-dependent increase of lysosomal structures containing cross-banded collagen

  6. Compatibility of chewing gum excipients with the amino acid L-cysteine and stability of the active substance in directly compressed chewing gum formulation.

    Science.gov (United States)

    Kartal, Alma; Björkqvist, Mikko; Lehto, Vesa-Pekka; Juppo, Anne Mari; Marvola, Martti; Sivén, Mia

    2008-09-01

    Using L-cysteine chewing gum to eliminate carcinogenic acetaldehyde in the mouth during smoking has recently been introduced. Besides its efficacy, optimal properties of the gum include stability of the formulation. However, only a limited number of studies exist on the compatibility of chewing gum excipients and stability of gum formulations. In this study we used the solid-state stability method, Fourier transform infrared spectroscopy and isothermal microcalorimetry to investigate the interactions between L-cysteine (as a free base or as a salt) and excipients commonly used in gum. These excipients include xylitol, sorbitol, magnesium stearate, Pharmagum S, Every T Toco and Smily 2 Toco. The influence of temperature and relative humidity during a three-month storage period on gum formulation was also studied. Cysteine alone was stable at 25 degrees C/60% RH and 45 degrees C/75% RH whether stored in open or closed glass ambers. As a component of binary mixtures, cysteine base remained stable at lower temperature and humidity but the salt form was incompatible with all the studied excipients. The results obtained with the different methods corresponded with each other. At high temperature and humidity, excipient incompatibility with both forms of cysteine was obvious. Such sensitivity to heat and humidity during storage was also seen in studies on gum formulations. It was also found that cysteine is sensitive to high pressure and increase in temperature induced by compression. The results suggest that the final product should be well protected from temperature and humidity and, for example, cooling process before compression should be considered.

  7. The M358R variant of α_1-proteinase inhibitor inhibits coagulation factor VIIa

    International Nuclear Information System (INIS)

    Sheffield, William P.; Bhakta, Varsha

    2016-01-01

    The naturally occurring M358R mutation of the plasma serpin α_1-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10"2 M"−"1sec"−"1. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  8. Inhibition of Glutathione Synthesis Induced by Exhaustive Running Exercise via the Decreased Influx Rate of L-Cysteine in Rat Erythrocytes.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Zhou, Shuai; Yu, Zhenhai; Zhao, Dongmei; Wang, Zhiqiang; Li, Yuling; Yan, Jingtong; Cai, Yu; Zhang, Wenqian

    2016-01-01

    The main purpose of this study was to investigate the effect of exhaustive exercise on L-cysteine uptake and its effect on erythrocyte glutathione (GSH) synthesis and metabolism. Rats were divided into three groups: sedentary control (C), exhaustive running exercise (ERE) and moderate running exercise (MRE) (n=12 rats/group). We determined the L-cysteine efflux and influx in vitro in rat erythrocytes and its relationship with GSH synthesis. Total anti-oxidant potential of plasma was measured in terms of the ferric reducing ability of plasma (FRAP) values for each exercise group. In addition, the glucose metabolism enzyme activity of erythrocytes was also measured under in vitro incubation conditions. Biochemical studies confirmed that exhaustive running exercise significantly increased oxidative damage parameters in thiobarbituric acid reactive substances (TBARS) and methemoglobin levels. Pearson correlation analysis suggested that L-cysteine influx was positively correlated with erythrocyte GSH synthesis and FRAP values in both the control and exercise groups. In vitro oxidation incubation significantly decreased the level of glucose metabolism enzyme activity in the control group. We presented evidence of the exhaustive exercise-induced inhibition of GSH synthesis due to a dysfunction in L-cysteine transport. In addition, oxidative stress-induced changes in glucose metabolism were the driving force underlying decreased L-cysteine uptake in the exhaustive exercise group. © 2016 The Author(s) Published by S. Karger AG, Basel.

  9. A novel colorimetric assay for rapid detection of cysteine and Hg²⁺ based on gold clusters.

    Science.gov (United States)

    Wang, Yi-Wei; Tang, Shurong; Yang, Huang-Hao; Song, Hongbo

    2016-01-01

    Inhibition and recovery of the catalytic activity of bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) is observed for the first time by introduction of cysteine and Hg(2+). The prepared BSA-AuNCs possess highly intrinsic peroxidase-like activity. It can catalyze the oxidation of 3, 3, 5, 5-tetramethylbenzidine by H2O2 to produce a blue colored product. Based on this phenomenon, a new colorimetric assay for rapid, selective and sensitive detection of cysteine and Hg(2+) in aqueous solution has been demonstrated. The interaction process between target molecule and BSA-AuNCs is very fast, so that the whole test can be completed within ten minutes. Moreover, the fabricated colorimetric sensor is simple and cost-effective, without the need of nucleic acid based recognition element and complicated washing, separation and labeling process, thus holds great promise for routine analysis of cysteine and Hg(2+) in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Adsorption Dynamics and Self-Assembled L-cysteine on Au(100)

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Nazmutdinov, Renat R.; Yan, Jiawei

    As the only amino acid with a functional thiol group, L - cysteine offers a strong perspective both for binding to gold and other metals, and for gentle immobilization of biomolecules. Binding to single - crystal, atomically planar surfaces offers the additional perspective that bound L - cysteine...... can be structurally mapped at the single - molecule level . In this work, we have followed the adsorption of L - cysteine on single - crystal Au(100) by measuring the electrode potential dynamics during the adsorption process. In situ STM revealed the structure of the self - assembled ordered layers...

  11. The protective role of Gamma-Tocopherol and zinc cysteine against oxidative stress induced by gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Anis, L.M.

    2004-01-01

    The present study aimed to evaluate the capability of α tocopherol (naturally occurring antioxidant) and zinc cysteine against radiation induced oxidative stress. α Tocopherol was dissolved in corn oil and g, to the animals for ten successive days at a dose of 20 mg/kg b weight/day. Zinc cysteine was delivered to rats via intraperitoneal inject at a concentration of 25 mg/kg body weight/day for two successive days, rats were exposed to whole body gamma irradiation at a dose level of Gy. The activities of super oxide dismutase (SOD) and catalase and also concentrations of reduced glutathione (GSH) and malonaldehyde (Mi . were determined in the blood. The levels of metallothionein, zinc and copper were estimated in the serum, liver and kidney of the tested animals. The obtained results revealed that administration of a-tocopherol and zinc cysteine before gamma radiation exposure diminish significantly the decrease in blood SOD and catalase activities as compared to untreated irradiated rats. Also, the decrease in blood GSH concentration was less manifested and the decrease in the level of MDA was significant. The pre-gamma irradiation administration of zinc cysteine induced significant changes in the levels of metallothionein compared to both a-tocopherol supplemented and gamma irradiated rat groups. The amelioration occurred in the levels of zinc and copper postulated the positive role of vitamin E and zinc cysteine in alleviating all the levels of these elements

  12. Determination of free and total cyst(e)ine in plasma of dogs and cats.

    Science.gov (United States)

    Tôrres, Cristina L; Miller, Joshua W; Rogers, Quinton R

    2004-01-01

    In human blood, the amino acid cysteine forms disulfide bonds with itself and with other sulfhydryl compounds in their free form and with sulfhydryls in protein. Protein-bound cysteine is lost when plasma proteins are removed before amino acid analysis. The purpose of this study was to assess the time course and extent of cyst(e)ine (cysteine + half-cystine) loss in dog and cat plasma. An equal volume of 6% sulfosalicylic acid was added to plasma aliquots at 0, 2, 4, 10, 16, 24, 36, 48, 60, and 72 hours after separation of blood cells. Tris-2-carboxyethyl-phosphine hydrochloride (TCEP - HCl), a reducing agent, was used to regenerate total plasma cyst(e)ine after 3 months of sample storage (-20 degrees C). Initial free cyst(e)ine concentrations (mean +/- SEM) were higher in canine plasma (77 +/- 4 micromol/L) than in feline plasma (37 +/- 3 micromol/L). Free plasma cyst(e)ine concentrations in dogs and cats decreased after first-order kinetics, with a half-life of 23 and 69 hours, respectively. Total plasma cysteine after TCEP - HCl treatment was similar for dogs (290 micromol/L) and cats (296 micromol/L), but the percentage of free cysteine was higher (P = .02) in dogs (27%) than in cats (13%). Over half of the cyst(e)ine, homocysteine, cysteinylglycine, and glutathione were bound in vivo to plasma proteins. These results emphasize the importance of removing plasma proteins within 1 hour after blood collection for reliable assay of free plasma cyst(e)ine.

  13. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Science.gov (United States)

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Fasciola gigantica cathepsin L proteinase-based synthetic peptide for immunodiagnosis and prevention of sheep fasciolosis

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; El Ridi, R.; Salah, M.; Wagih, A.; Aziz, H. W.; Tallima, H.; El Shafie, M. H.; Khalek, T. A.; Ammou, F. F. A.; Strongylis, C.; Moussis, V.; Tsikaris, V.

    2008-01-01

    Roč. 90, č. 3 (2008), s. 349-357 ISSN 0006-3525 Institutional research plan: CEZ:AV0Z40550506 Keywords : cathepsin L proteinase * peptides * sequential oligopeptide carriers * synthetic peptide vaccine * Fasciiola gigantica Subject RIV: CC - Organic Chemistry Impact factor: 2.823, year: 2008

  15. Systematic Design of Trypsin Cleavage Site Mutated Exendin4-Cysteine 1, an Orally Bioavailable Glucagon-Like Peptide-1 Receptor Agonist

    Directory of Open Access Journals (Sweden)

    Wenbo Sai

    2017-03-01

    Full Text Available Exendin-4 is a strong therapeutic candidate for the treatment of metabolic syndrome. Related receptor agonist drugs have been on the market since 2005. However, technical limitations and the pain caused by subcutaneous injection have severely limited patient compliance. The goal of the study is to investigate a biologically active exendin-4 analog could be administered orally. Using intraperitoneal glucose tolerance tests, we discovered that exendin4-cysteine administered by oral gavage had a distinct hypoglycemic effect in C57BL/6J mice. Using Rosetta Design and Amber, we designed and screened a series of exendin4-cysteine analogs to identify those that retained biological activity while resisting trypsin digestion. Trypsin Cleavage Site Mutated Exendin4-cysteine 1 (TSME-1, an analog whose bioactivity was similar to exendin-4 and was almost completely resistant to trypsin, was screened out. In addition, TSME-1 significantly normalized the blood glucose levels and the availability of TSME-1 was significantly higher than that of exendin-4 and exendin4-cysteine. Collectively orally administered TSME-1, a trypsin-resistant exendin-4 analog obtained by the system, is a strong candidate for future treatments of type 2 diabetes.

  16. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-01-01

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  17. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo.

    Science.gov (United States)

    Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E

    2017-07-01

    Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Studies of a novel cysteine sulfoxide lyase from Petiveria alliacea: the first heteromeric alliinase.

    Science.gov (United States)

    Musah, Rabi A; He, Quan; Kubec, Roman; Jadhav, Abhijit

    2009-11-01

    A novel alliinase (EC 4.4.1.4) was detected and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The isolated enzyme is a heteropentameric glycoprotein composed of two alpha-subunits (68.1 kD each), one beta-subunit (56.0 kD), one gamma-subunit (24.8 kD), and one delta-subunit (13.9 kD). The two alpha-subunits are connected by a disulfide bridge, and both alpha- and beta-subunits are glycosylated. The enzyme has an isoelectric point of 4.78 and pH and temperature optima of 8.0 and approximately 52 degrees C, respectively. Its activation energy with its natural substrate S-benzyl-l-cysteine sulfoxide is 64.6 kJ mol(-1). Kinetic studies showed that both K(m) and V(max) vary as a function of substrate structure, with the most preferred substrates being the naturally occurring P. alliacea compounds S-benzyl-l-cysteine sulfoxide and S-2-hydroxyethyl-l-cysteine sulfoxide. The alliinase reacts with these substrates to produce S-benzyl phenylmethanethiosulfinate and S-(2-hydroxyethyl) 2-hydroxyethanethiosulfinate, respectively.

  19. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity.

    Science.gov (United States)

    Soares, A M S; Carvalho, L P; Melo, E J T; Costa, H P S; Vasconcelos, I M; Oliveira, J T A

    2015-06-01

    Toxoplasma gondii is a parasite of great medical and veterinary importance that has worldwide distribution and causes toxoplasmosis. There are few treatments available for toxoplasmosis and the search for plant extracts and compounds with anti-Toxoplasma activity is of utmost importance for the discovery of new active drugs. The objective of this study was to investigate the action of a protein extract and a protease inhibitor enriched fraction from J. curcas seed cake on developing tachyzoites of T. gondii-infected Vero cells. The protein extract (JcCE) was obtained after solubilization of the J. curcas seed cake with 100 mM sodium borate buffer, pH 10, centrifugation and dialysis of the resulting supernatant with the extracting buffer. JcCE was used for the in vitro assays of anti-Toxoplasma activity at 0.01, 0.1, 0.5, 1.5, 3.0 and 5.0 mg/ml concentration for 24 h. The results showed that JcCE reduced the percentage of infection and the number of intracellular parasites, but had no effect on the morphology of Vero cells up to 3.0 mg/mL. The cysteine protease inhibitor enriched fraction, which was obtained after chromatography of JcCE on Sephadex G-75 and presented a unique protein band following SDS-PAGE, reduced both the number of T. gondii infected cells and intracellular parasites. These results suggest that both JcCE and the cysteine protease inhibitor enriched fraction interfere with the intracellular growth of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Negative effect of combined cysteine and glutathione in soy lecithin-based extender on post-thawed ram spermatozoa.

    Science.gov (United States)

    Zhandi, Mahdi; Sharafi, Mohsen

    2015-09-01

    This study was conducted to evaluate the effect of combined cysteine and glutathione in soy lecithin-based semen extender on post-thawed ram sperm quality. A total of 28 ejaculates were collected twice a week (from four rams) during breeding season. In each replicate, semen samples (n = 4, one ejaculate for each ram) were pooled and divided into three equal parts, and each part was diluted with one of following extender: (1) soy lecithin-based extender containing no cysteine and no glutathione (C0-G0), (2) soy lecithin-based extender containing cysteine (5 mM) and glutathione (5 mM) (C5-G5), and (3) soy lecithin-based extender containing cysteine (10 mM) and glutathione (10 mM) (C10-G10). After freeze-thawing process, motility and velocity parameters, plasma membrane integrity and functionality, mitochondrial activity, and apoptosis features of spermatozoa were evaluated. The obtained results showed that total and progressive motility, plasma membrane integrity and functionality, and live post-thawed spermatozoa was lower in C10-G10 extender compared to C0-G0 and C5-G5 extenders (P 0.05). In conclusion, it seems that high concentration of combined cysteine and glutathione in soy lecithin-based semen extender has a detrimental effect of post-thawed ram sperm quality.

  1. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  2. Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; Ligtenberg, Antoon; White, Mitchell R.

    2006-01-01

    We previously found that scavenger receptor cysteine-rich gp-340 (glycoprotein-340), isolated from lung or saliva, directly inhibits human IAVs (influenza A viruses). We now show that salivary gp-340 has broad antiviral activity against human, equine and porcine IAV strains. Although lung...

  3. Cysteine 138 mutation in HIV-1 Nef from patients with delayed disease progression

    DEFF Research Database (Denmark)

    Tolstrup, Martin; Laursen, Alex Lund; Gerstoft, J.

    2006-01-01

    on the delayed disease status. However, the results demonstrate a high incidence of a single amino acid polymorphism (cysteine 138) in HIV-1 Nef. The allelic frequency of cysteine 138 between the delayed disease progression group and the progressor group was found to be statistically significant (P = 0.......0139). The phylogeny of isolates was investigated and the variants harbouring the cysteine 138 mutation clustered independently. CONCLUSION: The present study describes a viral genetic polymorphism related to AIDS disease progression. The polymorphism (cysteine 138) has previously been reported to confer decreased...... viral replication (Premkumar DR, et al. AIDS Res Hum Retroviruses 1996; 12(4): 337-45). A sequence database search for comparative mutations revealed a high frequency of cysteine 138 in patients with reported SP AIDS...

  4. A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica.

    Science.gov (United States)

    Zhong, Jian; Wang, Wenhong; Yang, Xiaomei; Yan, Xiuwen; Liu, Rui

    2013-01-01

    Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI.

    Science.gov (United States)

    Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty

    2012-12-18

    The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.

  6. Cationic ferritin uptake by cultured anterior pituitary cells treated with the proteinase inhibitor, BOC-DPhe-Phe-Lys-H.

    Science.gov (United States)

    Gaál, G; Bácsy, E; Rappay, G

    1988-01-01

    Cultured cells from the anterior pituitary glands of adult rats were treated with the tripeptide aldehyde proteinase inhibitor, BOC-DPhe-Phe-Lys-H. The addition of this tripeptide aldehyde decreased the in vitro release of prolactin to 25% of the control value, while the release of growth hormone in the same cultures decreased to 33% of the control value. Prolactin immunostaining was stronger in semithin sections of proteinase-inhibitor-treated cultures than in control sections. After 2 h treatment with the inhibitor, prolactin- and growth hormone-containing secretory granules were numerous, and the number of crinophagic vacuoles had increased. In the presence of the inhibitor, the overall cytoarchitecture of parenchymal cells was well preserved, and the pathway of the uptake of cationic ferritin appeared to be unaffected.

  7. Cysteine and hydrogen sulfide in the regulation of metabolism:Insights from genetics and pharmacology

    OpenAIRE

    Carter, Roderick N; Morton, Nicholas M

    2016-01-01

    Abstract Obesity and diabetes represent a significant and escalating worldwide health burden. These conditions are characterized by abnormal nutrient homeostasis. One such perturbation is altered metabolism of the sulphur?containing amino acid cysteine. Obesity is associated with elevated plasma cysteine, whereas diabetes is associated with reduced cysteine levels. One mechanism by which cysteine may act is through its enzymatic breakdown to produce hydrogen sulphide (H2S), a gasotransmitter ...

  8. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (Canada); Bhakta, Varsha [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada)

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  9. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.

    Science.gov (United States)

    Mahmoud, Y I; Sayed, S S

    2016-07-01

    Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.

  10. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.

  11. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4.

    Directory of Open Access Journals (Sweden)

    Byoung-Kuk Na

    2010-10-01

    Full Text Available Multiple cysteine proteases of malaria parasites are required for maintenance of parasite metabolic homeostasis and egress from the host erythrocyte. In Plasmodium falciparum these proteases appear to mediate the processing of hemoglobin and aspartic proteases (plasmepsins in the acidic food vacuole and the hydrolysis of erythrocyte structural proteins at neutral pH. Two cysteine proteases, vivapain (VX-2 and VX-3 have been characterized in P. vivax, but comprehensive studies of P. vivax cysteine proteases remain elusive.We characterized a novel cysteine protease of P. vivax, VX-4, of which orthologs appears to have evolved differentially in primate plasmodia with strong cladistic affinity toward those of rodent Plasmodium. Recombinant VX-4 demonstrated dual substrate specificity depending on the surrounding micro-environmental pH. Its hydrolyzing activity against benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA and Z-Phe-Arg-MCA was highest at acidic pH (5.5, whereas that against Z-Arg-Arg-MCA was maximal at neutral pH (6.5-7.5. VX-4 preferred positively charged amino acids and Gln at the P1 position, with less strict specificity at P3 and P4. P2 preferences depended on pH (Leu at pH 5.5 and Arg at pH 7.5. Three amino acids that delineate the S2 pocket were substituted in VX-4 compared to VX-2 and VX-3 (Ala90, Gly157 and Glu180. Replacement of Glu180 abolished activity against Z-Arg-Arg-MCA at neutral pH, indicating the importance of this amino acid in the pH-dependent substrate preference. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. VX-4 showed maximal activity against actin at neutral pH, and that against P. vivax plasmepsin 4 and hemoglobin was detected at neutral/acidic and acidic pH, respectively.VX-4 demonstrates pH-dependent substrate switching, which might offer an efficient mechanism for the specific cleavage of different substrates in different intracellular

  12. Depletion of circulating cyst(e)ine by oral and intravenous mesna.

    Science.gov (United States)

    Stofer-Vogel, B.; Cerny, T.; Küpfer, A.; Junker, E.; Lauterburg, B. H.

    1993-01-01

    The sulfhydryl status of normal and tumour cells is critically important in determining their susceptibility to various cytostatic agents. As a sulfhydryl compound, mesna (sodium 2-mercaptoethane-sulfonate) which is used in large doses to prevent haemorrhagic cystitis associated with certain chemotherapeutic regimens might derange cellular thiol homeostasis. In order to investigate the effects of mesna on the concentrations of thiols in plasma, cysteine, glutathione and their disulfides were measured by HPLC following the oral and intravenous administration of mesna to healthy volunteers. After 7.3 mmol mesna i.v. free cysteine rose from 8.2 (95% CI 7.0-9.4) nmol ml-1 to 53.6 (47.4-59.8) nmol ml-1 at 5 min, most likely due to reduction of circulating cystine by the sulfhydryl drug. This initial rise was followed by a marked decrease of total cyst(e)ine in plasma from 276 (215-337) nmol ml-1 to a nadir of 102 (89-115) nmol ml-1 between 30-120 min after infusion, most likely due to an increased uptake of cysteine into cells and an increased urinary excretion of cyst(e)ine. Qualitatively similar changes were seen after oral mesna. The present data indicate that mesna depletes circulating cyst(e)ine and may thereby markedly alter the sulfhydryl status of cells in vivo although the drug itself is not taken up by most cells. PMID:8353049

  13. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Science.gov (United States)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  14. INCREASING THE THERMOSTABILITY OF THE NEUTRAL PROTEINASE OF BACILLUS-STEAROTHERMOPHILUS BY IMPROVEMENT OF INTERNAL HYDROGEN-BONDING

    NARCIS (Netherlands)

    EIJSINK, VGH; VRIEND, G; VANDERZEE, [No Value; VANDENBURG, B; VENEMA, G

    1992-01-01

    In an attempt to increase the thermostability of the neutral proteinase of Bacillus stearothermophilus the buried Ala-170 was replaced by serine. Molecular-dynamics simulations showed that Ser-170 stabilizes the enzyme by formation of an internal hydrogen bond. In addition, the hydroxy group of

  15. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Emilia Marttila

    2014-07-01

    Full Text Available Treponema denticola is an important periodontal pathogen capable of tissue invasion. Its chymotrypsin-like proteinase (CTLP can degrade a number of basement membrane components in vitro, thus suggesting a contribution to tissue invasion by the spirochete. The aim of this study was to analyze the localization of CTLP in chronic periodontitis tissues ex vivo. A polyclonal antibody specific to T. denticola cell-bound CTLP was used to detect the spirochetes in the gingival tissues of patients with moderate to severe chronic periodontitis (n=25 by immunohistochemistry and periodic acid-Schiff staining (PAS. The presence of T. denticola in the periodontal tissue samples was analyzed by PCR. Periodontal tissue samples of 12 of the 25 patients were found to be positive for T. denticola by PCR. Moreover, CTLP could be detected in the periodontal tissues of all these patients by immunohistochemistry. In the epithelium, the CTLP was mostly intracellular. Typically, the positive staining could be seen throughout the whole depth of the epithelium. When detected extracellularly, CTLP was localized mainly as granular deposits. The connective tissue stained diffusely positive in four cases. The positive staining co-localized with the PAS stain in nine cases. T. denticola and its CTLP could be detected in diseased human periodontium both intra- and extracellularly. The granular staining pattern was suggestive of the presence of T. denticola bacteria, whereas the more diffused staining pattern was indicative of the recent presence of the bacterium and shedding of the cell-bound proteinase.

  16. Evaluation of matrix metalloproteinase and cysteine cathepsin activity in dentin hybrid layer by gelatin zymography.

    Science.gov (United States)

    Mahalaxmi, Sekar; Madhubala, Manavalan Madhana; Jayaraman, Mahendran; Sathyakumar, Shanmugasundaram

    2016-01-01

    The aim of this study was to comparatively assess the gelatinolytic activity of matrix metalloproteinases(MMPs) and Cysteine Cathepsins (CCs) in the adhesive interface using etch and rinse adhesive at different time intervals using zymographic technique. Twenty freshly extracted non-carious human third molars were used in this study. Occlusal surfaces were ground flat and 1mm thick horizontal dentin slabs were obtained from each tooth using a diamond disc. The dentin surface was polished with 600-grit silicon-carbide paper. Five out of 20 samples were directly pulverized. In the remaining fifteen samples, the dentin was etched and adhesive was applied and light cured according to the manufacturer's instructions. A 1mm thick flowable composite was build up and light cured. Bonded specimens were cut vertically into 3 to 4 dentin slabs by means of diamond disc to expose the adhesive/dentin interfaces. These were then ground down to 500 µm thick resin-dentin interface using a hard tissue microtome. These sections were then pulverised into powder. Following this, every five samples were subjected to zymographic analysis after 1 day, 7 days and 21 days. Zymograms showed clear, thicker bands on all three isoforms in the etched samples compared to control samples at 1st and 7th day intervals and became inactive at 21st day for all three isoforms. MMP 9 activity was relatively higher when compared to CCs and MMP 2. Etch and rinse adhesive activated MMPs and CCs within the hybrid layer that remained active till 7th day and no gelatinolytic activity was found on 21st day and MMPs are more active compared to CCs and MMP-2.

  17. Novel Kazal-type proteinase inhibitors from the skin secretion of the Splendid leaf frog, Cruziohyla calcarifer

    Directory of Open Access Journals (Sweden)

    Carolina Proaño-Bolaños

    2017-06-01

    Full Text Available Peptidase inhibitors have an important role controlling a variety of biological processes. Here, we employed a peptidomic approach including molecular cloning, tandem mass spectrometry and enzymatic assays to reveal 7 Kazal-type proteinase inhibitors (CCKPs (18 variants in the skin secretion of the unexplored frog, Cruziohyla calcarifer. All 18 proteins shared the Kazal pattern C-X(7-C-X(6,7-C-X(6,7-Y-X(3-C-X(2-C-X(15-21-C and 3 disulphide bridges. Based on structural comparative analysis, we deemed trypsin and chymotrypsin inhibitory activity in CCKP-1, 4 and CCKP 2, 5, 7, respectively. These peptidase inhibitors presumably play a role to control the balance between other functional peptides produced in the amphibian skin secretions.

  18. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R. [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States); Hao, Quan [MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853-8001 (United States); Stipanuk, Martha H., E-mail: mhs6@cornell.edu [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States)

    2005-11-01

    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC 1.13.11.20) is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  19. Nafion/lead nitroprusside nanoparticles modified carbon ceramic electrode as a novel amperometric sensor for L-cysteine.

    Science.gov (United States)

    Razmi, H; Heidari, H

    2009-05-01

    This work describes the electrochemical and electrocatalytic properties of carbon ceramic electrode (CCE) modified with lead nitroprusside (PbNP) nanoparticles as a new electrocatalyst material. The structure of deposited film on the CCE was characterized by energy dispersive X-ray (EDX), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The cyclic voltammogram (CV) of the PbNP modified CCE showed two well-defined redox couples due to [Fe(CN)5NO](3-)/[Fe(CN)5NO](2-) and Pb(IV)/Pb(II) redox reactions. The modified electrode showed electrocatalytic activity toward the oxidation of L-cysteine and was used as an amperometric sensor. Also, to reduce the fouling effect of L-cysteine and its oxidation products on the modified electrode, a thin film of Nafion was coated on the electrode surface. The sensor response was linearly changed with L-cysteine concentration in the range of 1 x 10(-6) to 6.72 x 10(-5)mol L(-1) with a detection limit (signal/noise ratio [S/N]=3) of 0.46 microM. The sensor sensitivity was 0.17 microA (microM)(-1), and some important advantages such as simple preparation, fast response, good stability, interference-free signals, antifouling properties, and reproducibility of the sensor for amperometric determination of L-cysteine were achieved.

  20. L-CYSTEINE INFLUENCE ON THE PHYSICAL PROPERTIES OF BREAD FROM HIGH EXTRACTION FLOURS WITH NORMAL GLUTEN

    Directory of Open Access Journals (Sweden)

    Alexandru Stoica

    2010-01-01

    Full Text Available Reducing agents like L-cysteine are used in bread baking of strong flours, with short gluten to reduce mixing andfermentation time. The aim of this study is to determine if L-cysteine may be an improving agent for the quality of breadobtained from high extraction flours with normal gluten.The tested high extraction flour was analyzed by determination of several quality indicators such as wet gluten content,gluten deformation index, moisture, ash, Falling Number index and alveogram parameters of dough. The resultsindicate that flour has a normal gluten network, is “good” for bread making and has a normal α-amylase activity.After its addition to dough, L-cysteine improves the physical properties of bread made with high extraction flour. Theobserved increase for bread volume was maximum 10%, for porosity maximum 5,75% and for elasticity maximum2,58%, comparing with reference bread.The proposed solution can be assimilated into pan bread making technology.

  1. Detection of Acetaldehyde in the Esophageal Tissue among Healthy Male Subjects after Ethanol Drinking and Subsequent L-Cysteine Intake.

    Science.gov (United States)

    Okata, Hideki; Hatta, Waku; Iijima, Katsunori; Asanuma, Kiyotaka; Tsuruya, Atsuki; Asano, Naoki; Koike, Tomoyuki; Hamada, Shin; Nakayama, Toru; Masamune, Atsushi; Shimosegawa, Tooru

    2018-04-01

    Ethanol is oxidized by alcohol dehydrogenase to acetaldehyde, a recognized carcinogen for the esophagus. However, no previous study has measured the acetaldehyde levels in the esophageal tissue. L-cysteine has been shown to reduce the acetaldehyde levels in the saliva; however, it is unknown whether L-cysteine intake affects the acetaldehyde concentration in the esophageal tissue. The aim of this study was to measure the acetaldehyde concentration in the esophageal tissue after ethanol drinking and evaluate the effect of L-cysteine intake on the acetaldehyde levels in the esophagus. We enrolled 10 male subjects with active acetaldehyde dehydrogenase-2*1/*1 (ALDH2*1/*1) genotype and 10 male subjects with the inactive acetaldehyde dehydrogenase-2*1/*2 (ALDH2*1/*2) genotype, the mean ages of whom were 25.6 and 27.9 years, respectively. In this prospective, single-blind, placebo-controlled study using L-cysteine and placebo lozenges (first and second examination), saliva and blood were collected before and after ethanol drinking. Esophageal tissue was obtained by endoscopic biopsy at 60 minutes after drinking, and the acetaldehyde and ethanol concentrations were measured. The acetaldehyde concentration of the saliva was significantly lower in those taking L-cysteine than in those taking the placebo. Acetaldehyde in the esophageal tissue was detected only in those taking L-cysteine lozenges. There were no correlations between the acetaldehyde concentrations in the esophageal tissue and saliva or blood. In conclusion, we detected acetaldehyde in the human esophageal tissue after ethanol drinking. Unexpectedly, intake of L-cysteine lozenges appears to contribute to detection of acetaldehyde in the esophageal tissue.

  2. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  3. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  4. The propeptide is required for in vivo formation of stable active yeast proteinase A and can function even when not covalently linked to the mature region

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1993-01-01

    The PEP4-encoded aspartate protease proteinase A from Saccharomyces cerevisiae is synthesized as a zymogen (Ammerer, G., Hunter, C. P., Rothman, J. H., Saari, G. C., Valls, L. A., and Stevens, T. H. (1986) Mol. Cell. Biol. 6, 2490-2499; Woolford, C. A., Daniels, L. B., Park, F. J., Jones, E. W., ...... folding of the mature region, even when the propeptide and the mature region are not covalently linked....

  5. Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)?

    Institute of Scientific and Technical Information of China (English)

    Ronnie Von Santos Veloso; Eliseu José G.Pereira; Raul Narciso C.Guedes; Maria Goreti A.Oliveira

    2013-01-01

    Insecticides cause a range of sub-lethal effects on targeted insects,which are frequently detrimental to them.However,targeted insects are able to cope with insecticides within sub-lethal ranges,which vary with their susceptibility.Here we assessed the response of three strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera:Curculionidae) to sub-lethal exposure to the pyrethoid insecticide cypermethrin.We expected enzyme induction associated with cypermethrin resistance since it would aid the resistant insects in surviving such exposure.Lower respiration rate and lower activity were also expected in insecticide-resistant insects since these traits are also likely to favor survivorship under insecticide exposure.Curiously though,cypermethrin did not affect activity of digestive and energy metabolism enzymes,and even reduced the activity of some enzymes (particularly for cellulase and cysteine-proteinase activity in this case).There was strain variation in response,which may be (partially) related to insecticide resistance in some strains.Sub-lethal exposure to cypermethrin depressed proteolytic and mainly cellulolytic activity in the exposed insects,which is likely to impair their fitness.However,such exposure did not affect respiration rate and walking behavior of the insects (except for the susceptible strain where walking activity was reduced).Walking activity varies with strain and may minimize insecticide exposure,which should be a concern,particularly if associated with (physiological) insecticide resistance.

  6. 35S cystein chlorhydrate preparation

    International Nuclear Information System (INIS)

    Emiliozzi, R.; Pichat, P.; Herbert, M.

    1960-01-01

    35 S cystein chlorhydrate has been prepared with a quantitative yield by electrolytic reduction of 35 S cystin in hydrochloric medium on a vibrating mercury cathode. Reprint of a paper published in Bulletin de la Societe chimique de France, no. 2653, 4. quarter 1959, p. 1544-1545 [fr

  7. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    Science.gov (United States)

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  8. Identification of Placental Aspartic Proteinase in the Eurasian Beaver (Castor fiber L.).

    Science.gov (United States)

    Lipka, Aleksandra; Panasiewicz, Grzegorz; Majewska, Marta; Paukszto, Lukasz; Bieniek-Kobuszewska, Martyna; Szafranska, Bozena

    2018-04-18

    Aspartic proteinases (AP) form a multigenic group widely distributed in various organisms and includes pepsins (pep), cathepsins D and E, pregnancy associated glycoproteins (PAGs) as well as plant, fungal, and retroviral proteinases. This study describes the transcript identification and expression localization of the AP within the discoid placenta of the Castor fiber . We identified 1257 bp of the AP cDNA sequence, encoding 391 amino acids (aa) of the polypeptide precursor composed of 16 aa signal peptide, 46 aa pro-piece, and 329 aa of the mature protein. Within the AP precursor, one site of potential N -glycosylation (NPS 119–121 ) and two Asp residues (D) specific for the catalytic cleft of AP were identified (VLFDTGSSNLWV 91–102 and GIVDTGTSLLTV 277–288 ). The highest homology of the identified placental AP nucleotide and aa sequence was to mouse pepsinogen C (75.8% and 70.1%, respectively). Identified AP also shared high homology with other superfamily members: PAGs, cathepsins, and napsins. The AP identified in this study was named as pepsinogen/PAG-Like (pep/PAG-L). Diversified pep/PAG-L protein profiles with a dominant 58 kDa isoform were identified. Immune reactive signals of the pep/PAG-L were localized within the trophectodermal cells of the beaver placenta. This is the first report describing the placental AP (pep/PAG-L) in the C. fiber .

  9. Resolution of oxidative stress by thioredoxin reductase: Cysteine versus selenocysteine

    Directory of Open Access Journals (Sweden)

    Brian Cunniff

    2014-01-01

    Full Text Available Thioredoxin reductase (TR catalyzes the reduction of thioredoxin (TRX, which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1–4, thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1 and mitochondrial TR2 (Sec-TR2 that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2. In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP, but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic

  10. Mutagenicity and cytotoxicity of two regioisomeric mercapturic acids and cysteine S-conjugates of trichloroethylene.

    NARCIS (Netherlands)

    Commandeur, J.N.M.; Boogaard, P.J.; Mulder, G.J.; Vermeulen, N.P.E.

    1991-01-01

    The mutagenicity, cytotoxicity and metabolism of two regioisomic l-cysteine- and N-acetyl-l-cysteine-S-conjugates of trichloroethylene were studied. The 1,2-dichlorovinyl(1,2-DCV) isomers of both the cysteine conjugate and the mercapturate were much stronger mutagens in the Ames test with Salmonella

  11. Analysis of S-nitrosothiols via Copper Cysteine (2C) and Copper Cysteine - Carbon Monoxide (3C) Methods

    Science.gov (United States)

    Rogers, Stephen C.; Gibbons, Lindsey B.; Griffin, Sherraine; Doctor, Allan

    2012-01-01

    This chapter summarizes the principles of RSNO measurement in the gas phase, utilizing ozone-based chemiluminescence and the copper cysteine (2C) ± carbon monoxide (3C) reagent. Although an indirect method for quantifying RSNOs, this assay represents one of the most robust methodologies available. It exploits the NO• detection sensitivity of ozone based chemiluminscence, which is within the range required to detect physiological concentrations of RSNO metabolites. Additionally, the specificity of the copper cysteine (2C and 3C) reagent for RSNOs negates the need for sample pretreatment, thereby minimizing the likelihood of sample contamination (false positive results), NO species inter-conversion, or the loss of certain highly labile RSNO species. Herein, we outline the principles of this methodology, summarizing key issues, potential pitfalls and corresponding solutions. PMID:23116707

  12. The inhibition of NF-kappaB activation pathways and the induction of apoptosis by dithiocarbamates in T cells are blocked by the glutathione precursor N-acetyl-L-cysteine

    OpenAIRE

    Fernandez, P C; Machado, J; Heussler, Volker; Botteron, C; Palmer, G H; Dobbelaere, D A

    1999-01-01

    Nuclear factor-kappaB regulates genes that control immune and inflammatory responses and are involved in the pathogenesis of several diseases, including AIDS and cancer. It has been proposed that reactive oxygen intermediates participate in NF-kappaB activation pathways, and compounds with putative antioxidant activity such as N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) have been used interchangeably to demonstrate this point. We examined their effects, separately and com...

  13. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    Science.gov (United States)

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached

  14. Electronic structures of the L-cysteine film on dental alloys

    International Nuclear Information System (INIS)

    Ogawa, K.; Tsujibayashi, T.; Takahashi, K.; Azuma, J.; Kakimoto, K.; Kamada, M.

    2011-01-01

    Research highlights: → The electronic structures of dental alloys and L-cysteine film were studied by PES. → The density of states in the dental alloy originates from Au and Cu as constituents. → The Cu-3d states contribute dominantly to the occupied states near the Fermi level. → The electronic structure of L-cysteine thin film is different from the thick film. → The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  15. Electronic structures of the L-cysteine film on dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: e7141@cc.saga-u.ac.jp [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Tsujibayashi, T. [Department of Physics, Osaka Dental University, Osaka 573-1121 (Japan); Takahashi, K.; Azuma, J. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Kakimoto, K. [Department of Geriatric Dentistry, Osaka Dental University, Osaka 573-1121 (Japan); Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

    2011-04-15

    Research highlights: {yields} The electronic structures of dental alloys and L-cysteine film were studied by PES. {yields} The density of states in the dental alloy originates from Au and Cu as constituents. {yields} The Cu-3d states contribute dominantly to the occupied states near the Fermi level. {yields} The electronic structure of L-cysteine thin film is different from the thick film. {yields} The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  16. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics.

    Science.gov (United States)

    Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo

    2017-11-01

    ( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.

  17. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Katja E. Menger

    2015-06-01

    Full Text Available Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT, to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster.

  18. [Protective Effect of S-isopentenyl-L-cysteine against DNA Damage in Irradiated Mice].

    Science.gov (United States)

    Zheng, Qi-sheng; Yu, Guang-yun; He, Xin; Jiang, Ming; Chu, Xiao-fei; Zhao, Shu-yi; Fan, Sai-jun; Liu, Pei-xun

    2015-10-01

    To evaluate the protective effect of S-isopentenyl-L-cysteine,a new cysteine derivative,on DNA damage induced by radiation by using acute radiation injury animal models. Forty ICR mice were randomly divided into five groups:the control group,1.0Gy gamma irradiation group,1.0Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,7.2Gy gamma irradiation group,and 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,with 8 mice in each group.The comet assay and bone marrow polychromatic micronucleus experiments were performed to evaluate the double-strand DNA breaks in ICR mice exposed to 1.0 and 7.2Gy gamma-ray, respectively. The tail DNA percentage,tail length,tail moment,and olive tail moment of peripheral blood lymphocytes in 7.2Gy gamma irradiation group were significantly higher than that of the control group (PL-cysteine group was significantly less than that of 7.2Gy gamma irradiation group (PL-cysteine before irradiation,the micronucleus rate of ICR mice exposed to 1.0 and 7.2Gy gamma-ray decreased from (39.5000 ± 3.3141)‰ to (28.1667±4.1345)‰ (P=0.033) and from (76.5000 ± 4.6242)‰ to (22.8333 ± 3.6553)‰(P=0.000),respectively. The bone marrow polychromatic micronucleus experiment indicated that the value of polychromatic erythrocyte (PCE)/normochromatic erythrocyte(NCE) of ICR mice exposed to 1.0 and 7.2Gy gamma-ray was less than the control group(PL-cysteine before irradiation was significantly higher than the corresponding groups (PL-cysteine has a good protective effect against DNA damage induced by radiation.

  19. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  20. Transamination of cysteine-sulfinic acid by extracts of oat leaves

    International Nuclear Information System (INIS)

    Perez-Milan, H.; Schuack, J.; Fromageot, P.

    1960-01-01

    An aqueous extract of oat leaves catalyses a transamination between cysteine-sulfinic acid and α-ketoglutaric acid. Under the conditions utilized pyruvic acid is not an acceptor of the amino group. Neither cysteic nor aspartic acid are a substrate for the transaminase of cysteine-sulfinic acid. Reprint of a paper published in Biochimica et Biophysica Acta, Vol. 36, 1959, p. 73-83 [fr

  1. Brewer’s spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Science.gov (United States)

    do Nascimento, Rodrigo Pires; Junior, Nelson Alves; Coelho, Rosalie Reed Rodrigues

    2011-01-01

    Brewer’s spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates. PMID:24031767

  2. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles

    DEFF Research Database (Denmark)

    Serafimova, Iana M; Pufall, Miles A; Krishnan, Shyam

    2012-01-01

    Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we...... of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted...

  3. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  4. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    International Nuclear Information System (INIS)

    Bezerra, A. G.; Barison, A.; Oliveira, V. S.; Foti, L.; Krieger, M. A.; Dhalia, R.; Viana, I. F. T.; Schreiner, W. H.

    2012-01-01

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV–Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the μM range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation–reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V 2 O 5 form.

  5. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  6. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    International Nuclear Information System (INIS)

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-01-01

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  7. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong, E-mail: yerong24@fudan.edu.cn

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  8. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    Science.gov (United States)

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.

  9. Antimalarial Activity of Azadipeptide Nitriles

    OpenAIRE

    Löser, Reik; Gut, Jiri; Rosenthal, Philip J.; Frizler, Maxim; Gütschow, Michael; Andrews, Katherine T.

    2009-01-01

    Azadipeptide nitriles – novel cysteine protease inhibitors – display structure-dependent antimalarial activity against both chloroquine-sensitive and chloroquine-resistant lines of cultured Plasmodium falciparum malaria parasites. Inhibition of parasite’s haemoglobin-degrading cysteine proteases was also investigated, revealing the azadipeptide nitriles as potent inhibitors of falcipain-2 and -3. A correlation between the cysteine protease-inhibiting activity and the antimalarial potential of...

  10. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    Science.gov (United States)

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  11. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  12. Preparation, Crystallization and X-ray Diffraction Analysis to 1.5 A Resolution of Rat Cysteine Dioxygenase, a Mononuclear Iron Enzyme Responsible for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Hao, Q.; Stipanuk, M.

    2005-01-01

    Cysteine dioxygenase (CDO; EC 1.13.11.20) is an {approx}23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O2, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Angstroms resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Angstrom, {alpha} = {beta} = {gamma} = 90. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  13. Ca2+-dependent proteolytic activity in crab claw muscle: effects of inhibitors and specificity for myofibrillar proteins

    International Nuclear Information System (INIS)

    Mykles, D.L.; Skinner, D.M.

    1983-01-01

    The claw closer muscle of the Bermuda land crab, Gecarcinus lateralis, undergoes a sequential atrophy and restoration during each molting cycle. The role of Ca 2+ -dependent proteinases in the turn-over of myofibrillar protein in normal anecdysial (intermolt) claw muscle is described. Crab Ca 2+ -dependent proteinase degrades the myofibrillar proteins actin, myosin heavy and light chains, paramyosin, tropomyosin, and troponin-T and -I. Ca 2+ -dependent proteinase activity in whole homogenates and 90,000 x g supernatant fractions from muscle homogenates has been characterized with respect to Ca 2+ requirement, substrate specificity, and effects of proteinase inhibitors. The enzyme is inhibited by antipain, leupeptin, E-64, and iodoacetamide; it is insensitive to pepstatin A. The specificity of crab Ca 2+ -dependent proteinase was examined with native myosin with normal ATPase activity as well as with radioiodinated myosin and radioiodinated hemolymph proteins. Hydrolysis of 125 I-myosin occurs in two phases, both Ca 2+ -dependent: (1) heavy chain (M/sub r/ = 200,000) is cleaved into four large fragments (M/sub r/ = 160,000, 110,000, 73,000, 60,000) and numerous smaller fragments; light chain (M/sub r/ = 18,000) is cleaved to a 15,000-Da fragment; (2) the fragments produced in the first phase are hydrolyzed to acid-soluble material. Although radioiodinated native hemolymph proteins are not susceptible to the Ca 2+ -dependent proteinase, those denatured by carboxymethylation are degraded. These data suggest that crab Ca 2+ -dependent proteinase is involved in turnover of myofibrillar protein in normal muscle and muscle undergoing proecdysial atrophy

  14. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  15. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back.

    Science.gov (United States)

    Papenbrock, J; Riemenschneider, A; Kamp, A; Schulz-Vogt, H N; Schmidt, A

    2007-09-01

    Due to the clean air acts and subsequent reduction of emission of gaseous sulfur compounds sulfur deficiency became one of the major nutrient disorders in Northern Europe. Typical sulfur deficiency symptoms can be diagnosed. Especially plants of the Cruciferae family are more susceptible against pathogen attack. Sulfur fertilization can in part recover or even increase resistance against pathogens in comparison to sulfur-deficient plants. The term sulfur-induced resistance (SIR) was introduced, however, the molecular basis for SIR is largely unknown. There are several sulfur-containing compounds in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research focussed mainly on the release of H2S as defence strategy. In field experiments using different BRASSICA NAPUS genotypes it was shown that the genetic differences among BRASSICA genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field experiment demonstrated that sulfur supply and infection with PYRENOPEZIZA BRASSICA influenced L-cysteine desulfhydrase activity in BRASSICA NAPUS. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated and partially analyzed from the model plant ARABIDOPSIS THALIANA. However, it cannot be excluded that H2S is also released in a partial back reaction of O-acetyl-L-serine(thiol)lyase or enzymes not yet characterized. For the exact determination of the H2S concentration in the cell a H2S-specific microsensor was used the first time for plant cells. The transfer of the results obtained for application back on BRASSICA was initiated.

  16. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  17. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  18. Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis

    Czech Academy of Sciences Publication Activity Database

    Merkerová, M.; Dostál, Jiří; Hradilek, Martin; Pichová, Iva; Hrušková-Heidingsfeldová, Olga

    2006-01-01

    Roč. 6, č. 7 (2006), s. 1018-1026 ISSN 1567-1356 R&D Projects: GA ČR(CZ) GA203/05/0038; GA ČR(CZ) GA303/04/0432; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z40550506 Keywords : aspartic proteinase * Candida parapsilosis * zymogen conversion Subject RIV: CE - Biochemistry Impact factor: 2.274, year: 2006

  19. L-Cysteine ethyl ester reverses the deleterious effects of morphine on, arterial blood-gas chemistry in tracheotomized rats.

    Science.gov (United States)

    Mendoza, James; Passafaro, Rachael; Baby, Santhosh; Young, Alex P; Bates, James N; Gaston, Benjamin; Lewis, Stephen J

    2013-10-01

    This study determined whether the membrane-permeable ventilatory stimulant, L-cysteine ethylester (L-CYSee), reversed the deleterious actions of morphine on arterial blood-gas chemistry in isoflurane-anesthetized rats. Morphine (2 mg/kg, i.v.) elicited sustained decreases in arterial blood pH, pO₂ and sO₂, and increases in pCO₂ (all responses indicative of hypoventilation) and alveolar-arterial gradient (indicative of ventilation-perfusion mismatch). Injections of L-CYSee (100 μmol/kg, i.v.) reversed the effects of morphine in tracheotomized rats but were minimally active in non-tracheotomized rats. L-cysteine or L-serine ethylester (100 μmol/kg, i.v.) were without effect. It is evident that L-CYSee can reverse the negative effects of morphine on arterial blood-gas chemistry and alveolar-arterial gradient but that this positive activity is negated by increases in upper-airway resistance. Since L-cysteine and L-serine ethylester were ineffective, it is evident that cell penetrability and the sulfur moiety of L-CYSee are essential for activity. Due to its ready penetrability into the lungs, chest wall muscle and brain, the effects of L-CYSee on morphine-induced changes in arterial blood-gas chemistry are likely to involve both central and peripheral sites of action. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  1. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  2. Synthesis and characterization of a cysteine xyloglucan conjugate as mucoadhesive polymer

    Directory of Open Access Journals (Sweden)

    Mangesh Bhalekar

    2013-06-01

    Full Text Available The aim of this study was to improve the mucoadhesive potential of xyloglucan polymer by the covalent attachment of cysteine as thiol moiety. The parent polymer xyloglucan was chemically modified by introducing sulphydryl bearing compound L-cysteine HCl. Different batches of xyloglucan-cysteine conjugates were prepared at varying reaction pH (2-6 and evaluated for optimum thiol incorporation, disulphide group content, swelling behavior, rheological properties and mucoadhesive properties. The obtained conjugates characterized in vitro by quantification of immobilized thiol groups; showed maximum thiol incorporation on xyloglucan (7.67 ± 0.14 % at pH 5. The disulphide group content was found maximum (2.83 ± 0.12 at pH 6. The water uptake at end of 4 h was 5.0 for xyloglucan and was found to decrease in thiolated derivatives with increase in thiolation. Mucoadhesion studies revealed that mucoadhesion of xyloglucan-cysteine conjugate increased more than twice compared to the unmodified polymer. The viscosity of thiomer was more than that of xyloglucan because of formation of disulphide bonds.

  3. Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Knudsen, Lotte Bjerre; Garibay, Patrick W.

    2013-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C......-terminally truncated GLP-1R. Single cysteines were initially substituted with alanine, and functionally redundant cysteines were subsequently changed simultaneously. Our results indicate that Cys174, Cys226, Cys296 and Cys403 are important for the GLP-1-mediated response, whereas Cys236, Cys329, Cys341, Cys347, Cys438...... that the membrane proximal part of the C-terminal is involved in receptor expression at the cell surface. The results show that seven cysteines and more than half of the C-terminal tail can be removed from GLP-1R without compromising GLP-1 binding or function....

  4. Identification and characterization of MOR-CP, a cysteine protease induced by ozone and developmental senescence in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Ahmad, Rafiq; Zuily-Fodil, Yasmine; Passaquet, Chantal; Bethenod, Olivier; Roche, Romain; Repellin, Anne

    2014-08-01

    Among the different classes of endoproteases, cysteine proteases are consistently associated with senescence, defense signaling pathways and cellular responses to abiotic stresses. The objectives of this work were to study the effects of various concentrations of ozone on gene expression and enzymatic activity for papain-like cysteine proteases (PLCPs), in the leaves of maize plants grown under field conditions. Leaves from ranks 12 and 10 (cob leaf) were harvested regularly over a long-term artificial ozone fumigation experiment (50 d). Tissues were tested for transcriptional and activity changes concerning cysteine proteases, using qRT-PCR for the newly identified ozone-responsive PLCP gene (Mor-CP) and synthetic oligopeptide Boc-Val-Leu-Lys-AMC as a PLCP-specific substrate, respectively. Results showed that developmental senescence induced a significant and progressive rise in CP activity, only in the older leaves 10 and had no effect on Mor-CP gene expression levels. On the other hand, ozone dramatically enhanced Mor-CP mRNA levels and global PLCP enzymatic activity in leaves 12 and 10, particularly toward the end of the treatment. Ozone impact was more pronounced in the older leaves 10. Together, these observations concurred to conclude that ozone stress enhances natural senescence processes, such as those related to proteolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Main: 1EQK [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1EQK イネ Rice Oryza sativa L. Cysteine Proteinase Inhibitor-I Oryza Sativa Molecule: Oryzacystatin-I; Chai...n: A; Engineered: Yes Hydrolase Inhibitor K.Nagata, N.Kudo, K.Abe, S.Arai, M.Tanokura ...K.Nagata, N.Kudo, K.Abe, S.Arai, M.Tanokura Three-Dimensional Solution Structure Of Oryzacystatin-I, A Cyste

  6. Detection of l-Cysteine in wheat flour by Raman microspectroscopy combined chemometrics of HCA and PCA.

    Science.gov (United States)

    Cebi, Nur; Dogan, Canan Ekinci; Develioglu, Ayşen; Yayla, Mediha Esra Altuntop; Sagdic, Osman

    2017-08-01

    l-Cysteine is deliberately added to various flour types since l-Cysteine has enabled favorable baking conditions such as low viscosity, increased elasticity and rise during baking. In Turkey, usage of l-Cysteine as a food additive isn't allowed in wheat flour according to the Turkish Food Codex Regulation on food additives. There is an urgent need for effective methods to detect l-Cysteine in wheat flour. In this study, for the first time, a new, rapid, effective, non-destructive and cost-effective method was developed for detection of l-Cysteine in wheat flour using Raman microscopy. Detection of l-Cysteine in wheat flour was accomplished successfully using Raman microscopy combined chemometrics of PCA (Principal Component Analysis) and HCA (Hierarchical Cluster Analysis). In this work, 500-2000cm -1 spectral range (fingerprint region) was determined to perform PCA and HCA analysis. l-Cysteine and l-Cystine were determined with detection limit of 0.125% (w/w) in different wheat flour samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Artificial Cysteine Bridges on the Surface of Green Fluorescent Protein Affect Hydration of Its Transition and Intermediate States].

    Science.gov (United States)

    Melnik, T N; Nagibina, G S; Surin, A K; Glukhova, K A; Melnik, B S

    2018-01-01

    Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4-6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.

  8. Cysteine as a non toxic corrosion inhibitor for copper alloys in conservation

    DEFF Research Database (Denmark)

    Gravgaard, Mari; van Lanschot, Jettie

    2012-01-01

    studies of colour changes in the corrosion products. The results obtained in this article demonstrate that cysteine could be a non-toxic alternative to BTA. Cysteine performed as well as BTA on pre-corroded coupons with bronze disease in high humidity and showed acceptable results during testing...

  9. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    NARCIS (Netherlands)

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.

    Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth

  10. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    Science.gov (United States)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  11. Exoenzyme activity and possibility identification of Candida dubliniensis among Candida albicans species isolated from vaginal candidiasis.

    Science.gov (United States)

    Jafari, Maryam; Salari, Samira; Pakshir, Keyvan; Zomorodian, Kamiar

    2017-09-01

    Vulvovaginal candidiasis (VVC) or vaginal candidiasis is a common fungal infection of the genitals causing inflammation, irritation, itching, and vaginal discharge. Common yeast infections are caused by the yeast species C. albicans. However, there are other species of Candida such as C. dubliniensis which are considered as the causative agents of this infection. Hydrolytic enzymes such as proteinase and coagulase are known as virulence factors. The aim of this study was the molecular confirmation and differentiation of C. dubliniensis among C. albicans strains isolated from women with vulvovaginal candidiasis by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) and the evaluation of proteinase and coagulase activities. A total of 100 C. albicans strains isolated from women with vulvovaginal candidiasis referred to Shiraz medical clinics were enrolled in the study. All the isolates were primarily identified by conventional methods. PCR-RFLP method was used for the confirmation and identification of C. albicans and C. dubliniensis. Moreover, in vitro proteinase and coagulase activities of these isolates were evaluated using bovine serum albumin media and classical rabbit plasma tube test. As a result, PCR-RFLP identified 100% of the isolates as C. albicans, and no C. dubliniensis could be identified in this study. 84% of the isolates showed proteinase activity, whereas coagulase activity was only detected in 5% of the isolates. This study reveals that C. dubliniensis plays no role in vaginal candidiasis in Iranian patients. Proteinase production could be an essential virulence factor in C. albicans pathogenicity, but coagulase activity has less potential in this matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  13. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  14. Cysteine: a conditionally essential amino acid in low-birth-weight preterm infants?

    NARCIS (Netherlands)

    Riedijk, Maaike A.; van Beek, Ron H. T.; Voortman, Gardi; de Bie, Henrica M. A.; Dassel, Anne C. M.; van Goudoever, Johannes B.

    2007-01-01

    Cyst(e)ine can be synthesized de novo from methionine and serine and is, therefore, a nonessential amino acid in human adults. Several studies have suggested that cyst(e)ine might be a conditionally essential amino acid in preterm infants because of biochemical immaturity. No data are available on

  15. Comparison of the response of serum ceruloplasmin and cholesterol, and of tissue ascorbic acid, metallothionein, and nonprotein sulfhydryl in rats to the dietary level of cystine and cysteine.

    Science.gov (United States)

    Yang, B S; Yamazaki, M; Wan, Q; Kato, N

    1996-12-01

    The effects were compared of the addition of graded levels of L-cystine and of L-cysteine (0.3, 3, or 5%) to a 10% casein diet on several metabolic parameters in rats. The growth-promoting effect of cystine was equivalent to that of cysteine. Supplementation of these two amino acids elevated serum cholesterol, liver ascorbic acid, liver nonprotein sulfhydryl (SH) and kidney metallothionein, and reduced the activity of serum ceruloplasmin. The responses of serum cholesterol, liver nonprotein SH, and serum ceruloplasmin to cystine were greater than of those to cysteine. When the basal diet was supplemented with 0.3% of these amino acids, the elevation of liver ascorbic acid by cystine supplementation was less than that by cysteine supplementation. However, when supplemented with 5% of these amino acids, the elevation of liver ascorbic acid by cystine was greater than that by cysteine. There was no difference in the influence of cystine and cysteine on kidney metallothionein. This study demonstrates that dietary cystine and cysteine had the same influence on growth, but had a differential influence on such metabolic parameters as liver nonprotein SH, serum ceruloplasmin, serum cholesterol, and tissue ascorbic acid.

  16. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    Science.gov (United States)

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  17. Transcriptome Analysis of Maize Immature Embryos Reveals the Roles of Cysteine in Improving Agrobacterium Infection Efficiency

    Science.gov (United States)

    Liu, Yan; Zhang, Zhiqiang; Fu, Junjie; Wang, Guoying; Wang, Jianhua; Liu, Yunjun

    2017-01-01

    Maize Agrobacterium-mediated transformation efficiency has been greatly improved in recent years. Antioxidants, such as, cysteine, can significantly improve maize transformation frequency through improving the Agrobacterium infection efficiency. However, the mechanism underlying the transformation improvement after cysteine exposure has not been elucidated. In this study, we showed that the addition of cysteine to the co-cultivation medium significantly increased the Agrobacterium infection efficiency of hybrid HiII and inbred line Z31 maize embryos. Reactive oxygen species contents were higher in embryos treated with cysteine than that without cysteine. We further investigated the mechanism behind cysteine-related infection efficiency increase using transcriptome analysis. The results showed that the cysteine treatment up-regulated 939 genes and down-regulated 549 genes in both Z31 and HiII. Additionally, more differentially expressed genes were found in HiII embryos than those in Z31 embryos, suggesting that HiII was more sensitive to the cysteine treatment than Z31. GO analysis showed that the up-regulated genes were mainly involved in the oxidation reduction process. The up-regulation of these genes could help maize embryos to cope with the oxidative stress stimulated by Agrobacterium infection. The down-regulated genes were mainly involved in the cell wall and membrane metabolism, such as, aquaporin and expansin genes. Decreased expression of these cell wall integrity genes could loosen the cell wall, thereby improving the entry of Agrobacterium into plant cells. This study offers insight into the role of cysteine in improving Agrobacterium-mediated transformation of maize immature embryos. PMID:29089955

  18. Mechanism of S-oxygenation by a cysteine dioxygenase model complex

    OpenAIRE

    Kumar, Devesh; Sastry, G. Narahari; Goldberg, David P.; de Visser, Sam P.

    2011-01-01

    In this work we present the first computational study on a biomimetic cysteine dioxygenase model complex, [FeII(LN3S)]+ where LN3S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O2 was examined by density functional theory (DFT) methods, and compared to results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet and quintet spi...

  19. The effect of cysteine on electrodeposition of gold nanoparticle

    International Nuclear Information System (INIS)

    Dolati, A.; Imanieh, I.; Salehi, F.; Farahani, M.

    2011-01-01

    Highlights: → Cysteine was found as an appropriate additive for electrodeposition of gold nanoparticles. → The deposition mechanism of gold nanoparticle was determined as instantaneous nucleation. → Oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits. - Abstract: The most applications of gold nanoparticles are in the photo-electronical accessories and bio-chemical sensors. Chloride solution with cysteine additive was used as electrolyte in gold nanoparticles electrodeposition. The nucleation and growing mechanism were studied by electrochemical techniques such as cyclic voltammetry and chronoamperometry, in order to obtain a suitable nano structure. The deposition mechanism was determined as instantaneous nucleation and the dimension of particles was controlled in nanometric particle size range. Atomic Force Microscope was used to evaluate the effect of cysteine on the morphology and topography of gold nanoparticles. Finally the catalytic property of gold nanoparticle electrodeposited was studied in KOH solution, where oxygen reduction on the gold nanoparticle surface was eight times greater than that on the conventional gold deposits.

  20. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    Science.gov (United States)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  1. Cyst(e)ine imbalance and its effect on methionine precursor utilization in chicks.

    Science.gov (United States)

    Dilger, R N; Baker, D H

    2008-08-01

    Five 9- or 12-d chick growth bioassays were done in batteries using 2 Met-deficient diets: a purified AA-based diet containing (by analysis, as-fed) 20.3% CP, 0.12% Met, and 0.05% cyst(e)ine; and an AA-fortified corn-peanut meal diet containing (by analysis, as-fed) 19.0% CP, 0.22% Met, and 0.23% cyst(e) ine. Feed-grade DL-Met (dl-M; 99%) was compared with feed-grade DL-OH-Met, Ca (OH-M; 84%). When the purified diet was modified to contain 0.12% Met and 0.20% or greater cyst(e)ine, slope-ratio assays involving graded dosing of DL-M (0, 404, 808, and 1,212 mg of DL-M/kg) or isosulfurous levels of OH-M resulted in linear (P ine [i.e., 0.12% Met, 0.12% cyst(e)ine]. When this diet was supplemented with either 404 mg of DL-M/kg or 476 mg of OH-M/kg, BW gain and G:F responded (P 0.10). Assays 4 and 5 used the corn-peanut meal basal diet containing 0.22% total Met and 0.23% total cyst(e)ine. In both assays, addition of either 465 mg of DL-M/kg or 554 mg of OH-M/kg resulted in increased (P ine concentration. In the absence of excess cyst(e)ine, BW gain responses to DL-M and OH-M were similar, but when 0.10% excess cyst(e)ine was provided as L-cystine or feather meal, DL-M responses tended to exceed those of OH-M. Moreover, this small excess of dietary cyst(e)ine, regardless of source, depressed (P ine, when included in Met-deficient diets, has the potential to be both anorexigenic and pernicious to OH-M utilization.

  2. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Tina Zavašnik-Bergant

    Full Text Available Dendritic cells (DC play a pivotal role as antigen presenting cells (APC and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70 during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.

  3. Studies of a Novel Cysteine Sulfoxide Lyase from Petiveria alliacea: The First Heteromeric Alliinase1[W][OA

    Science.gov (United States)

    Musah, Rabi A.; He, Quan; Kubec, Roman; Jadhav, Abhijit

    2009-01-01

    A novel alliinase (EC 4.4.1.4) was detected and purified from the roots of the Amazonian medicinal plant Petiveria alliacea. The isolated enzyme is a heteropentameric glycoprotein composed of two α-subunits (68.1 kD each), one β-subunit (56.0 kD), one γ-subunit (24.8 kD), and one δ-subunit (13.9 kD). The two α-subunits are connected by a disulfide bridge, and both α- and β-subunits are glycosylated. The enzyme has an isoelectric point of 4.78 and pH and temperature optima of 8.0 and approximately 52°C, respectively. Its activation energy with its natural substrate S-benzyl-l-cysteine sulfoxide is 64.6 kJ mol−1. Kinetic studies showed that both Km and Vmax vary as a function of substrate structure, with the most preferred substrates being the naturally occurring P. alliacea compounds S-benzyl-l-cysteine sulfoxide and S-2-hydroxyethyl-l-cysteine sulfoxide. The alliinase reacts with these substrates to produce S-benzyl phenylmethanethiosulfinate and S-(2-hydroxyethyl) 2-hydroxyethanethiosulfinate, respectively. PMID:19789290

  4. Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, N.V.; Karachevtsev, M.V.; Leontiev, V.S.; Karachevtsev, V.A., E-mail: karachevtsev@ilt.kharkov.ua

    2017-01-15

    The enhancement of the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes suspended with single-stranded DNA (ssDNA) in water observed after amino acids doping is the largest at cysteine addition. The PL intensity increased through the passivation of p-defects on the carbon nanotube sidewall by the cysteine molecules due to thiol group. The effect of several external factors on the cysteine-induced enhancement of PL from carbon nanotubes covered with ssDNA was studied: UV irradiation, tip or bath sonication treatment of the suspension, the ionic strength and pH of aqueous suspension. It turned out that all these factors have an essential influence on the dependence of the PL enhancement on the cysteine concentration through inducing of additional defects on nanotube as well as a change of the nanotube surface coverage with polymer. The obtained experimental results demonstrated that PL from carbon nanotubes can be exploited successfully for the monitoring of cysteine concentration in aqueous solution. - Highlights: • Cysteine doping enhances carbon nanotube emission more than other amino acids do. • SWNT emission dependence on cysteine concentration is tuned by UV irradiation and pH. • Type of sonication treatment influences SWNT PL dependence on cysteine concentration. • Polymer coverage and defectiveness of nanotubes effect on nanotube emission. • Graphic abstract.

  5. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    NARCIS (Netherlands)

    S. Zindel (Stephan); W.E. Kaman (Wendy); S. Fröls (Sabrina); F. Pfeifer (Felicitas); A. Peters (Annette); J.P. Hays (John); H.-L. Fuchsbauer (Hans-Lothar)

    2013-01-01

    textabstractA novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus

  6. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    International Nuclear Information System (INIS)

    Wang, Dapeng; Gao, Lixin; Zhang, Daquan; Yang, Dong; Wang, Hongxia; Lin, Tong

    2016-01-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  7. The effect of L-cysteine on the portion-selective uptake of cadmium in the renal proximal tubule

    International Nuclear Information System (INIS)

    Murakami, Masataka; Sano, Kenichi; Webb, M.

    1987-01-01

    Cadmium (Cd), co-administered with an excess of L-cysteine, accumulates rapidly in the kidneys of the rat. After subcutaneous (s.c.) injection of 3 μmol CdCl 2 /kg body wt the concentrations of Cd in the blood and kidneys increase with the dose of cysteine over the range 0.06-5.0 mmol/kg body wt. At cysteine doses of less than 1.5 mmol/kg body wt the ratio of the concentrations of Cd in the outer medulla and cortex of the kidney remains the same as that after the injection of Cd alone. This ratio, however, is more than doubled at dose levels of 5-10 mmol cysteine/kg body wt. Hepatic uptake of Cd is unaffected by doses of cysteine below 1.5 mmol/kg body wt but decreases markedly at higher doses. In animals that are dosed simultaneously with 5 mmol cysteine/kg body wt, renal uptake of 109 Cd is known to occur in the straight segments of the proximal tubules. At a dose level of less than 1.5 mmol cysteine/kg body wt the present autoradiographical studies show that 109 Cd is taken up predominantly by the proximal convoluted tubules of the kidney cortex. At the critical dose level (1.5 mmol/kg body wt), cysteine decreases the retention of Cd at the s.c. injection site, but probably has little effect on the distribution of Cd between protein and other carrier molecules in the blood. This distribution, however, is altered at higher cysteine dose levels. It is suggested that, under the latter conditions, stable Cd-cysteine complexes are formed in the blood and are filtered readily through the glomeruli. These complexes are taken up in the kidney at the sites of cysteine reabsorption which, by studies with L-[ 35 S]-cysteine, are identified as the straight segments of the proximal tubules. (orig.)

  8. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.

    Science.gov (United States)

    Liu, Han; Fang, Guochen; Wu, Hui; Li, Zhimin; Ye, Qin

    2018-05-01

    L-cysteine is an amino acid with important physiological functions and has a wide range of applications in medicine, food, animal feed, and cosmetics industry. In this study, the L-cysteine synthesis in Escherichia coliEscherichia coli is divided into four modules: the transport module, sulfur module, precursor module, and degradation module. The engineered strain LH03 (overexpression of the feedback-insensitive cysE and the exporter ydeD in JM109) accumulated 45.8 mg L -1 of L-cysteine in 48 hr with yield of 0.4% g/g glucose. Further modifications of strains and culture conditions which based on the rational metabolic engineering and modular strategy improved the L-cysteine biosynthesis significantly. The engineered strain LH06 (with additional overexpression of serA, serC, and serB and double mutant of tnaA and sdaA in LH03) produced 620.9 mg L -1 of L-cysteine with yield of 6.0% g/g glucose, which increased the production by 12 times and the yield by 14 times more than those of LH03 in the original condition. In fed-batch fermentation performed in a 5-L reactor, the concentration of L-cysteine achieved 5.1 g L -1 in 32 hr. This work demonstrates that the combination of rational metabolic engineering and module strategy is a promising approach for increasing the L-cysteine production in E. coli. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Alliinase and cysteine synthase transcription in developing garlic (Allium sativum L.) over time.

    Science.gov (United States)

    Mitrová, Katarina; Svoboda, Pavel; Milella, Luigi; Ovesná, Jaroslava

    2018-06-15

    Garlic is a valuable source of healthy compounds, including secondary metabolites rich in sulphur such as cysteine sulphoxides (CSOs). Here, we present new qRT-PCR assays analysing the transcription of two genes encoding key enzymes in CSO biosynthetic pathways (cysteine synthase and alliinase) in developing garlic. We also identified a set of genes (ACT I, GAPDH, and TUB) to use as transcription normalisation controls. We showed that the (normalised) transcription of both enzymes was highest during sprouting and decreased significantly in fully developed leaves, which are the major CSO-producing organs. Transcriptional activity further declined at the end of the growing season. Different cultivars show similar sulphur metabolism gene expression when European garlics were compared to Chinese and American genotypes. The qRT-PCR assays presented are also suitable for investigating the effects of agricultural practices on CSO formation in garlic to satisfy consumer demands. Copyright © 2017. Published by Elsevier Ltd.

  10. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus

    DEFF Research Database (Denmark)

    Willumsen, B M; Norris, K; Papageorge, A G

    1984-01-01

    localization. We have now further characterized the post-translational processing of these mutants and have also studied two C-terminal v-rasH point mutants: one encodes serine in place of cysteine-186, the other threonine for valine-187. The Thr-187 mutant was transformation-competent, and its p21 protein...... not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell-encoded ras proteins also contain this cysteine, we conclude that this amino acid residue...

  11. Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase.

    Directory of Open Access Journals (Sweden)

    Hatem Tallima

    2017-03-01

    Full Text Available Schistosomiasis, a severe disease caused by parasites of the genus Schistosoma, is prevalent in 74 countries, affecting more than 250 million people, particularly children. We have previously shown that the Schistosoma mansoni gut-derived cysteine peptidase, cathepsin B1 (SmCB1, administered without adjuvant, elicits protection (>60% against challenge infection of S. mansoni or S. haematobium in outbred, CD-1 mice. Here we compare the immunogenicity and protective potential of another gut-derived cysteine peptidase, S. mansoni cathepsin L3 (SmCL3, alone, and in combination with SmCB1. We also examined whether protective responses could be boosted by including a third non-peptidase schistosome secreted molecule, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH, with the two peptidases.While adjuvant-free SmCB1 and SmCL3 induced type 2 polarized responses in CD-1 outbred mice those elicited by SmCL3 were far weaker than those induced by SmCB1. Nevertheless, both cysteine peptidases evoked highly significant (P < 0.005 reduction in challenge worm burden (54-65% as well as worm egg counts and viability. A combination of SmCL3 and SmCB1 did not induce significantly stronger immune responses or higher protection than that achieved using each peptidase alone. However, when the two peptidases were combined with SG3PDH the levels of protection against challenge S. mansoni infection reached 70-76% and were accompanied by highly significant (P < 0.005 decreases in worm egg counts and viability. Similarly, high levels of protection were achieved in hamsters immunized with the cysteine peptidase/SG3PDH-based vaccine.Gut-derived cysteine peptidases are highly protective against schistosome challenge infection when administered subcutaneously without adjuvant to outbred CD-1 mice and hamsters, and can also act to enhance the efficacy of other schistosome antigens, such as SG3PDH. This cysteine peptidase-based vaccine should now be advanced to experiments in

  12. Elastase-induced emphysema: retention of instilled proteinase in the rat

    International Nuclear Information System (INIS)

    Sandhaus, R.A.; Janoff, A.

    1982-01-01

    Airway instillation of proteinases with the ability to degrade elastin has been used to produce disease in the rat analogous to human pulmonary emphysema. This study examined the retention, localization, and fate of endotracheally instilled elastase using 125 I labeled enzyme and immunoperoxidase histochemistry. Porcine pancreatic elastase labeled with 125 I was detected in rat lungs through 96 h after instillation; over half of the label was still present after 7 h. Similar results were obtained when elastase was reacted with a specific, catalytic site inactivator prior to instillation. Trypsin and denatured elastase, however, were cleared much more rapidly from the lung (less than half of the label present after 30 min). When lungs were homogenized after instillation of active elastase, the soluble fraction contained elastase bound to rat alpha1-antitrypsin. In addition, a small amount of label (less than 10%) appeared bound to insoluble components for extended periods of time. Using immunoperoxidase histochemistry, it was found that exogenous elastase was rapidly contained with pulmonary alveolar macrophages, as well as associated with alveolar septums and other parenchymal structures. Similar results were obtained with elastase from both porcine pancreas and human neutrophils. These results suggest that exogenous elastase in the rat, and perhaps endogenous elastolytic enzymes in humans, may have several fates in the lungs: complex formation with endogenous inhibitors, containment within the macrophage, and/or association with connective tissue targets

  13. Purification and characterization of a serine protease (CPM-2) with fibrinolytic activity from the dung beetles.

    Science.gov (United States)

    Ahn, Mi Young; Hahn, Bum-Soo; Ryu, Kang Sun; Hwang, Jae Sam; Kim, Yeong Shik

    2005-07-01

    Catharsius protease-2 (CPM-2) was isolated from the body of dung beetles, Catharsius molossus, using a three step purification process (ammonium sulfate fractionation, gel filtration on Bio-Gel P-60, and affinity chromatography on DEAE Affi-Gel blue). The purified CPM-2, having a molecular weight of 24 kDa, was assessed homogeneously by SDS-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of CPM-2 was composed of X Val Gln Asp Phe Val Glu Glu Ile Leu. CPM-2 was inactivated by Cu2+ and Zn2+ and strongly inhibited by typical serine proteinase inhibitors such as TLCK, soybean trypsin inhibitor, aprotinin, benzamidine, and alpha1-antitrypsin. However, EDTA, EGTA, cysteine, beta-mercaptoethanol, E64, and elastatinal had little effect on enzyme activity. In addition, antiplasmin and antithrombin III were not sensitive to CPM-2. Based on the results of a fibrinolytic activity test, CPM-2 readily cleaved Aalpha- and Bbeta-chains of fibrinogen and fibrin, and gamma-chain of fibrinogen more slowly. The nonspecific action of the enzyme resulted in extensive hydrolysis, releasing a variety of fibrinopeptides of fibrinogen and fibrin. Polyclonal antibodies of CPM-2 were reactive to the native form of antigen. The ELISA was applied to detect quantities, in nanograms, of the antigen in CPM-2 protein.

  14. Engineered disulfide bonds increase active-site local stability and reduce catalytic activity of a cold-adapted alkaline phosphatase.

    Science.gov (United States)

    Asgeirsson, Bjarni; Adalbjörnsson, Björn Vidar; Gylfason, Gudjón Andri

    2007-06-01

    Alkaline phosphatase is an extracellular enzyme that is membrane-bound in eukaryotes but resides in the periplasmic space of bacteria. It normally carries four cysteine residues that form two disulfide bonds, for instance in the APs of Escherichia coli and vertebrates. An AP variant from a Vibrio sp. has only one cysteine residue. This cysteine is second next to the nucleophilic serine in the active site. We have individually modified seven residues to cysteine that are on two loops predicted to be within a 5 A radius. Four of them formed a disulfide bond to the endogenous cysteine. Thermal stability was monitored by circular dichroism and activity measurements. Global stability was similar to the wild-type enzyme. However, a significant increase in heat-stability was observed for the disulfide-containing variants using activity as a measure, together with a large reduction in catalytic rates (k(cat)) and a general decrease in Km values. The results suggest that a high degree of mobility near the active site and in the helix carrying the endogenous cysteine is essential for full catalytic efficiency in the cold-adapted AP.

  15. Targeting cysteine residues of human immunodeficiency virus type 1 protease by reactive free radical species.

    Science.gov (United States)

    Basu, A; Sehajpal, P K; Ogiste, J S; Lander, H M

    1999-01-01

    Nitric oxide (NO) is a naturally occurring free radical with many functions. The oxidized form of NO, the nitrosonium ion, reacts with the thiol group of cysteine residues resulting in their modification to S-nitrosothiols. The human immunodeficiency virus type 1 (HIV-1) protease (HIV-PR) has two cysteine residues that are conserved amongst different viral isolates found in patients with acquired immunodeficiency syndrome (AIDS). In an active dimer, these residues are located near the surface of the protease. We have found that treatment of HIV-PR with different NO congeners results in loss of its proteolytic activity and simultaneous formation of S-nitrosothiols. Sodium nitroprusside inhibited HIV-PR up to 70% and S-nitroso-N-acetylpenicillamine completely inhibited the protease within 5 min of treatment. The pattern of inhibition by NO donors is comparable to its inhibition by N-acetyl pepstatin. Using electrospray ionization-mass spectrometry, we identified the modification of HIV-PR by NO as that of S-nitrosation. Our findings point towards a possible role of NO in mediating resistance to HIV-1 infection.

  16. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jicheng; Gaffrey, Matthew J.; Qian, Wei-Jun

    2017-01-01

    Protein cysteine thiols play a crucial role in redox signaling, regulation of enzymatic activity and protein function, and maintaining redox homeostasis in living systems. The unique chemical reactivity of thiol groups makes cysteine susceptible to oxidative modifications by reactive oxygen and nitrogen species to form a broad array of reversible and irreversible protein post-translational modifications (PTMs). The reversible modifications in particular are one of the major components of redox signaling and are involved in regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in health and diseases has been increasingly recognized. Herein, we review the recent advances of quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including the general considerations of sample processing, various chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for addressing specific biological questions. Although some technological limitations remain, redox proteomics is paving the way towards a better understanding of redox signaling and regulation in human health and diseases.

  17. Obtaining of transgenic papaya plants var. Maradol roja that carry out the rice oryzacystatin gene

    Directory of Open Access Journals (Sweden)

    Milady F. Mendoza

    2004-10-01

    Full Text Available Papaya (Carica papaya L., is severely affected by Papaya Ringspot virus, which belongs to plant potyvirus group. A recent strategy for pest control produced by this virus is the transformation with genes encoding cysteine proteinase inhibitors. Rice oryzacistatin gene encoding for cystatins, was inserted in a pCAMBIA binary vector, for genetic transformation of papaya somatic embryos var. Maradol roja, mediated by gene gun. Gene integration was confirmed by means of polimerase chain reaction using the primers designed from gene bar sequence. Forty out of eighty in vitro transgenic papaya lines amplified a 402 fragment which correspond to the expecting size. Key words: Carica papaya, genetic engineering, potyvirus, proteinase inhibitor

  18. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  19. Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng; Gao, Lixin [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Daquan, E-mail: zhangdaquan@shiep.edu.cn [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Yang, Dong [School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Wang, Hongxia; Lin, Tong [Institute for Frontier Materials, Deakin University, Geelong, VIC 3216 (Australia)

    2016-02-01

    The corrosion inhibition of L-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of L-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that L-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that L-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the L-cysteine molecule and the sp-orbital of Aluminium. - Highlights: • L-cysteine was used as corrosion inhibitor for Al alloy in alkaline solution. • Adsorption of L-cysteine on Al alloy surface obeyed the amended Langmuir's isotherm. • L-cysteine molecules interacted with the carboxyl groups on the Al alloy surface. • A strong orbital hybridization occurred between the reactive sites in L-cysteine and Al.

  20. Effect of free cysteine on the denaturation and aggregation of holo α-lactalbumin

    DEFF Research Database (Denmark)

    Nielsen, Line R.; Lund, Marianne N.; Davies, Michael J.

    2018-01-01

    α-Lactalbumin (α-LA) is a key commercial whey protein for nutritional purposes. The holo protein (calcium saturated) is considered the most heat stable whey protein, capable of refolding from unfolded states under many conditions. This is due to the absence of free thiols (cysteine residues......) that are typically involved in thermal aggregation and thiol–disulphide exchange reactions of other whey proteins. Heating (0–120 min at 90 °C, pH 7.0) holo α-LA generates free thiols through thermal cleavage of disulphide bonds, resulting in aggregates comprising unfolded α-LA species. The addition of free cysteine...... promotes the formation of soluble aggregates, effectively decreasing the holding time required to reach a particular aggregate size in a dose-dependent manner (0.35–1.4 mM cysteine). Excess cysteine (≥14 mM) causes a destabilisation of α-LA, shown by decreased denaturation temperature and gel formation...