WorldWideScience

Sample records for cysteine protease type

  1. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    Science.gov (United States)

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  2. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  3. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  4. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned with and w......Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  5. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  6. Targeting cysteine residues of human immunodeficiency virus type 1 protease by reactive free radical species.

    Science.gov (United States)

    Basu, A; Sehajpal, P K; Ogiste, J S; Lander, H M

    1999-01-01

    Nitric oxide (NO) is a naturally occurring free radical with many functions. The oxidized form of NO, the nitrosonium ion, reacts with the thiol group of cysteine residues resulting in their modification to S-nitrosothiols. The human immunodeficiency virus type 1 (HIV-1) protease (HIV-PR) has two cysteine residues that are conserved amongst different viral isolates found in patients with acquired immunodeficiency syndrome (AIDS). In an active dimer, these residues are located near the surface of the protease. We have found that treatment of HIV-PR with different NO congeners results in loss of its proteolytic activity and simultaneous formation of S-nitrosothiols. Sodium nitroprusside inhibited HIV-PR up to 70% and S-nitroso-N-acetylpenicillamine completely inhibited the protease within 5 min of treatment. The pattern of inhibition by NO donors is comparable to its inhibition by N-acetyl pepstatin. Using electrospray ionization-mass spectrometry, we identified the modification of HIV-PR by NO as that of S-nitrosation. Our findings point towards a possible role of NO in mediating resistance to HIV-1 infection.

  7. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    Science.gov (United States)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  8. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...... site cysteines and by removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. A cDNA clone of the barley key cysteine endoprotease...

  9. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB.

    Directory of Open Access Journals (Sweden)

    Jörg Schröder

    Full Text Available Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.

  10. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  11. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  12. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  13. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  14. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  15. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    Science.gov (United States)

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  16. Identification of cysteine proteases and screening of cysteine protease inhibitors in biological samples by a two-dimensional gel system of zymography and reverse zymography.

    Science.gov (United States)

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-11-18

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.

  17. Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target.

    Directory of Open Access Journals (Sweden)

    Srinivasan Sundararaj

    Full Text Available Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs. Structural studies of the ICPs of Trypanosoma cruzi (chagasin and Plasmodium berghei (PbICP indicated that three loops (termed BC, DE, and FG are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.

  18. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  19. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors.

    Science.gov (United States)

    Burtoloso, Antonio C B; de Albuquerque, Sérgio; Furber, Mark; Gomes, Juliana C; Gonçalez, Cristiana; Kenny, Peter W; Leitão, Andrei; Montanari, Carlos A; Quilles, José Carlos; Ribeiro, Jean F R; Rocha, Josmar R

    2017-02-01

    The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Anti-trypanosomal activity against the CL Brener strain of T. cruzi was observed in the 0.1 μM to 1 μM range for three nitrile-based cysteine protease inhibitors based on two scaffolds known to be associated with cathepsin K inhibition. The two compounds showing the greatest potency against the trypanosome were characterized by EC50 values (0.12 μM and 0.25 μM) that were an order of magnitude lower than the corresponding Ki values measured against cruzain, a recombinant form of cruzipain, in an enzyme inhibition assay. This implies that the anti-trypanosomal activity of these two compounds may not be explained only by the inhibition of the cruzain enzyme, thereby triggering a putative polypharmacological profile towards cysteine proteases.

  20. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  1. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Porntip Pinlaor

    Full Text Available The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa, prosegment (95 aa, and mature protease (213 aa. BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%, Paragonimus westermani (58%, Schistosoma mansoni and S. japonicum (52%, and with vertebrate cathepsin F (51%. Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of approximately 3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and

  3. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  4. Cloning and characterization of a novel cysteine protease gene ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    Cysteine proteases can be found in the animal and plant kingdoms as well as in some viruses and bacteria. They have been implemented in many ..... in developing resistance against pathogens and insects in other crops. Acknowledgments.

  5. Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.

    OpenAIRE

    Himelbloom, B H; Hassan, H M

    1986-01-01

    Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.

  6. Isolation and molecular characterization of cathepsin L-like cysteine protease cDNAs from Western flower thrips (Frankliniella occidentalis)

    NARCIS (Netherlands)

    Kuipers, A.G.J.; Jongsma, M.A.

    2004-01-01

    Cysteine proteases are predominant in thrips guts (TGs) and, therefore, a suitable target for selecting effective protease inhibitors against western flower thrips (Frankliniella occidentalis). We report the isolation of four full-length cysteine protease cDNA clones from thrips in a two-step PCR

  7. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    International Nuclear Information System (INIS)

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-01-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity

  8. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    Energy Technology Data Exchange (ETDEWEB)

    Nishikado, Hideto [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko [Laboratory of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Ogawa, Hideoki; Okumura, Ko [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan); Takai, Toshiro, E-mail: t-takai@juntendo.ac.jp [Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo (Japan)

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  9. Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases.

    Science.gov (United States)

    Shivaprasad, H V; Rajesh, R; Nanda, B L; Dharmappa, K K; Vishwanath, B S

    2009-05-04

    To validate the scientific basis of plant latex to stop bleeding on fresh cuts. Cysteine protease(s) from Asclepias curassavica (Asclepiadaceae) plant latex was assessed for pro-coagulant and thrombin like activities. A waxy material from the latex of Asclepias curassavica latex was removed by freezing and thawing. The resulted latex enzyme fraction was assayed for proteolytic activity using denatured casein as substrate. Its coagulant activity and thrombin like activity were determined using citrated plasma and pure fibrinogen, respectively. Inhibition studies were performed using specific protease inhibitors to know the type of protease. The latex enzyme fraction exhibited strong proteolytic activity when compared to trypsin and exerted pro-coagulant action by reducing plasma clotting time from 195 to 58 s whereas trypsin reduced clotting time marginally from 195 to 155 s. The pro-coagulant activity of this enzyme fraction was exerted by selectively hydrolyzing A alpha and B beta subunits of fibrinogen to form fibrin clot when pure fibrinogen was used as substrate as assessed by fibrinogen-agarose plate method and fibrinogen polymerization assay. Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of thrombin-induced fibrin clot and mimic thrombin like action. The proteolytic activity including thrombin like activity of Asclepias curassavica latex enzyme fraction was completely inhibited by iodoaceticacid (IAA). Cysteine proteases from Asclepias curassavica latex exhibited strong pro-coagulant action and were found to be specific in its action (Thrombin like). This could be the basis for the use of plant latex in pharmacological applications that justify their use as folk medicine.

  10. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    Science.gov (United States)

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  11. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism

    Directory of Open Access Journals (Sweden)

    Lee Young Ah

    2014-01-01

    Full Text Available Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs contain large amounts of cysteine proteases (CPs, one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2 did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis.

  12. Biochemical properties of a novel cysteine protease of Plasmodium vivax, vivapain-4.

    Directory of Open Access Journals (Sweden)

    Byoung-Kuk Na

    2010-10-01

    Full Text Available Multiple cysteine proteases of malaria parasites are required for maintenance of parasite metabolic homeostasis and egress from the host erythrocyte. In Plasmodium falciparum these proteases appear to mediate the processing of hemoglobin and aspartic proteases (plasmepsins in the acidic food vacuole and the hydrolysis of erythrocyte structural proteins at neutral pH. Two cysteine proteases, vivapain (VX-2 and VX-3 have been characterized in P. vivax, but comprehensive studies of P. vivax cysteine proteases remain elusive.We characterized a novel cysteine protease of P. vivax, VX-4, of which orthologs appears to have evolved differentially in primate plasmodia with strong cladistic affinity toward those of rodent Plasmodium. Recombinant VX-4 demonstrated dual substrate specificity depending on the surrounding micro-environmental pH. Its hydrolyzing activity against benzyloxycarbonyl-Leu-Arg-4-methyl-coumaryl-7-amide (Z-Leu-Arg-MCA and Z-Phe-Arg-MCA was highest at acidic pH (5.5, whereas that against Z-Arg-Arg-MCA was maximal at neutral pH (6.5-7.5. VX-4 preferred positively charged amino acids and Gln at the P1 position, with less strict specificity at P3 and P4. P2 preferences depended on pH (Leu at pH 5.5 and Arg at pH 7.5. Three amino acids that delineate the S2 pocket were substituted in VX-4 compared to VX-2 and VX-3 (Ala90, Gly157 and Glu180. Replacement of Glu180 abolished activity against Z-Arg-Arg-MCA at neutral pH, indicating the importance of this amino acid in the pH-dependent substrate preference. VX-4 was localized in the food vacuoles and cytoplasm of the erythrocytic stage of P. vivax. VX-4 showed maximal activity against actin at neutral pH, and that against P. vivax plasmepsin 4 and hemoglobin was detected at neutral/acidic and acidic pH, respectively.VX-4 demonstrates pH-dependent substrate switching, which might offer an efficient mechanism for the specific cleavage of different substrates in different intracellular

  13. Structural Insights of the Cysteine Protease Heynein from Induction and Characterization of Non-native Intermediate States

    Directory of Open Access Journals (Sweden)

    Basant K. Patel

    2010-12-01

    Full Text Available Cysteine proteases are vital to cell physiology and many plants secrete these proteases for defense purposes. Many recent studies have reported unusually high stabilities for several plant cysteine proteases which possibly enable these proteases to function under adverse environmental conditions. Here, we have examined the conformational features of a new plant cysteine protease heynein using spectroscopic tools to understand the basis for its robust functional stability. The studies revealed structural integrity over a wide range of pH (2.5-12.0, temperature (65 oC and urea (8M. However, at pH 2.0, the protein gets acid-unfolded (UA -state with exposed hydrophobic patches, which upon addition of more protons (pH 0.5 or anions (0.5 M KCl and 0.2 M Na2 SO4 yields conformationally distinct refolded intermediates respectively termed: A-, I 1 - and I 2 -states. Strikingly, a high methanol level drives the UA -state into a predominantly -sheet rich conformation (O-state. We observed three-state unfolding kinetics of the I 2 -state by urea, possibly suggesting presence of two domains in the heynein molecule.

  14. Crystallization and preliminary crystallographic studies of a cysteine protease inhibitor from the human nematode parasite Ascaris lumbricoides

    International Nuclear Information System (INIS)

    Liu, Sanling; Dong, Jianmei; Mei, Guoqiang; Liu, Guiyun; Xu, Wei; Su, Zhong; Liu, Jinsong

    2011-01-01

    A recombinant cysteine protease inhibitor from the human nematode parasite A. lumbricoides has been overexpressed in E. coli, purified and crystallized. Diffraction data were collected to 2.1 Å resolution. The cysteine protease inhibitor from Ascaris lumbricoides, a roundworm that lives in the human intestine, may be involved in the suppression of human immune responses. Here, the molecular cloning, protein expression and purification, preliminary crystallization and crystallographic characterization of the cysteine protease inhibitor from A. lumbricoides are reported. The rod-shaped crystal belonged to space group C2, with unit-cell parameters a = 99.40, b = 37.52, c = 62.92 Å, β = 118.26°. The crystal diffracted to 2.1 Å resolution and contained two molecules in the asymmetric unit

  15. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    LENUS (Irish Health Repository)

    Thornton, Roibeard F

    2010-04-23

    Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  16. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Kagawa Todd F

    2010-04-01

    Full Text Available Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  17. Retaining in-gel zymographic activity of cysteine proteases via a cysteine-supplemented running buffer.

    Science.gov (United States)

    Vootukuri Reddy, Sreekanth; Philpott, Mike P; Trigiante, Giuseppe

    2016-10-01

    Zymography is a powerful technique to separate and identify different enzymatic activities on a standard acrylamide gel. For oxidation prone enzymes such as cysteine proteases however, the oxidizing species generated by electrolysis of the gel running buffer may result in partial or complete inactivation, thus compromising the final readout. This can be only partially remedied by subsequent treatment of the gel with reducing agents. We demonstrate the generation of reactive oxidizing species during electrophoresis and discovered that supplementation of the gel running buffer with a minimum of 5 mM cysteine prevents enzyme inactivation and allows retention of proteolytic activity as measured by zymography on model substrate N α-benzoyl-l-arginine p-nitroanilide, without at the same time altering the mobilities of the gel proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3.

    Directory of Open Access Journals (Sweden)

    Shoba Subramanian

    Full Text Available The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P(1 - P(4 amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P(2 position. Second, with overlapping peptides spanning alpha and beta globin and proteolysis-dependent (18O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P(2 Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents.

  19. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  20. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri

    Directory of Open Access Journals (Sweden)

    Moisés Martínez-Castillo

    2015-01-01

    Full Text Available Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C employing conditioned medium (CM and total crude extracts (TCEs of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.

  1. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis

    DEFF Research Database (Denmark)

    Halls, C.E.; Rogers, S. W.; Ouffattole, M.

    2006-01-01

    proaleurain maturation protease and of papain when assayed at pH 4.5 but not at pH 6.3. In a pull-down assay, the inhibitor bound tightly to papain, but only weakly to the aspartate protease pepsin. When the cauliflower protease inhibitor was transiently expressed in tobacco suspension culture protoplasts...

  2. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Directory of Open Access Journals (Sweden)

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  3. Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.

    Science.gov (United States)

    Waag, Thilo; Gelhaus, Christoph; Rath, Jennifer; Stich, August; Leippe, Matthias; Schirmeister, Tanja

    2010-09-15

    Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure-activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    Science.gov (United States)

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  5. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  6. Detection of cysteine protease in Taenia solium-induced brain granulomas in naturally infected pigs

    DEFF Research Database (Denmark)

    Mkupasi, Ernatus Martin; Sikasunge, Chummy Sikalizyo; Ngowi, Helena Aminiel

    2013-01-01

    In order to further characterize the immune response around the viable or degenerating Taenia solium cysts in the pig brain, the involvement of cysteine protease in the immune evasion was assessed. Brain tissues from 30 adult pigs naturally infected with T. solium cysticercosis were subjected...... protease may play a role in inducing immune evasion through apoptosis around viable T. solium cysts....

  7. Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-Like rCPB2.8.

    Directory of Open Access Journals (Sweden)

    Wagner A S Judice

    Full Text Available Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity.THE DATA ANALYSIS REVEALED THAT THE PRESENCE OF HEPARIN AFFECTS ALL STEPS OF THE ENZYME REACTION: (i it decreases 3.5-fold the k 1 and 4.0-fold the k -1, (ii it affects the acyl-enzyme accumulation with pronounced decrease in k 2 (2.7-fold, and also decrease in k 3 (3.5-fold. The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys(25-S(-/(His(163-Im(+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme.Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface.

  8. Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco.

    Science.gov (United States)

    Shukla, Pawan; Singh, Naveen Kumar; Kumar, Dilip; Vijayan, Sambasivam; Ahmed, Israr; Kirti, Pulugurtha Bharadwaja

    2014-06-01

    Usable male sterility systems have immense potential in developing hybrid varieties in crop plants, which can also be used as a biological safety containment to prevent horizontal transgene flow. Barnase-Barstar system developed earlier was the first approach to engineer male sterility in plants. In an analogous situation, we have evolved a system of inducing pollen abortion and male sterility in transgenic tobacco by expressing a plant gene coding for a protein with known developmental function in contrast to the Barnase-Barstar system, which deploys genes of prokaryotic origin, i.e., from Bacillus amyloliquefaciens. We have used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, Arachis diogoi differentially expressed when it was challenged with the late leaf spot pathogen, Phaeoisariopsis personata. Arachis diogoi cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of AdCP transgenic plants showed ablated tapetum and complete pollen abortion in three transgenic lines. Furthermore, transcript analysis displayed the expression of cysteine protease in these male sterile lines and the expression of the protein was identified in western blot analysis using its polyclonal antibody raised in the rabbit system.

  9. Structure of the Mature Streptococcal Cysteine Protease Exotoxin mSpeB in Its Active Dimeric Form

    DEFF Research Database (Denmark)

    Olsen, Johan G; Dagil, Robert; Niclasen, Louise Meinert

    2009-01-01

    Invasive infections of Streptococcus pyogenes are dependent on the cysteine protease streptococcal pyrogenic exotoxin B. Previous structures of the enzyme have not disclosed the proper active-site configuration. Here, the crystal structure of the mature enzyme is presented to 1.55 A, disclosing...

  10. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    Directory of Open Access Journals (Sweden)

    Amol Bhargava

    Full Text Available Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1, suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK. Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  11. Transgenic soybean plants overexpressing O-acetylserine sulfhydrylase accumulate enhanced levels of cysteine and Bowman-Birk protease inhibitor in seeds.

    Science.gov (United States)

    Kim, Won-Seok; Chronis, Demosthenis; Juergens, Matthew; Schroeder, Amy C; Hyun, Seung Won; Jez, Joseph M; Krishnan, Hari B

    2012-01-01

    Soybeans provide an excellent source of protein in animal feed. Soybean protein quality can be enhanced by increasing the concentration of sulfur-containing amino acids. Previous attempts to increase the concentration of sulfur-containing amino acids through the expression of heterologous proteins have met with limited success. Here, we report a successful strategy to increase the cysteine content of soybean seed through the overexpression of a key sulfur assimilatory enzyme. We have generated several transgenic soybean plants that overexpress a cytosolic isoform of O-acetylserine sulfhydrylase (OASS). These transgenic soybean plants exhibit a four- to tenfold increase in OASS activity when compared with non-transformed wild-type. The OASS activity in the transgenic soybeans was significantly higher at all the stages of seed development. Unlike the non-transformed soybean plants, there was no marked decrease in the OASS activity even at later stages of seed development. Overexpression of cytosolic OASS resulted in a 58-74% increase in protein-bound cysteine levels compared with non-transformed wild-type soybean seeds. A 22-32% increase in the free cysteine levels was also observed in transgenic soybeans overexpressing OASS. Furthermore, these transgenic soybean plants showed a marked increase in the accumulation of Bowman-Birk protease inhibitor, a cysteine-rich protein. The overall increase in soybean total cysteine content (both free and protein-bound) satisfies the recommended levels required for the optimal growth of monogastric animals.

  12. Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB)

    DEFF Research Database (Denmark)

    van der Post, Sjoerd; Subramani, Durai B; Bäckström, Malin

    2013-01-01

    that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme...

  13. A cysteine protease inhibitor of plasmodium berghei is essential for exo-erythrocytic development.

    Directory of Open Access Journals (Sweden)

    Christine Lehmann

    2014-08-01

    Full Text Available Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP. Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.

  14. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation

    OpenAIRE

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2015-01-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, ...

  15. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth

    NARCIS (Netherlands)

    S. Zindel (Stephan); W.E. Kaman (Wendy); S. Fröls (Sabrina); F. Pfeifer (Felicitas); A. Peters (Annette); J.P. Hays (John); H.-L. Fuchsbauer (Hans-Lothar)

    2013-01-01

    textabstractA novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus

  16. Identification and characterization of MOR-CP, a cysteine protease induced by ozone and developmental senescence in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Ahmad, Rafiq; Zuily-Fodil, Yasmine; Passaquet, Chantal; Bethenod, Olivier; Roche, Romain; Repellin, Anne

    2014-08-01

    Among the different classes of endoproteases, cysteine proteases are consistently associated with senescence, defense signaling pathways and cellular responses to abiotic stresses. The objectives of this work were to study the effects of various concentrations of ozone on gene expression and enzymatic activity for papain-like cysteine proteases (PLCPs), in the leaves of maize plants grown under field conditions. Leaves from ranks 12 and 10 (cob leaf) were harvested regularly over a long-term artificial ozone fumigation experiment (50 d). Tissues were tested for transcriptional and activity changes concerning cysteine proteases, using qRT-PCR for the newly identified ozone-responsive PLCP gene (Mor-CP) and synthetic oligopeptide Boc-Val-Leu-Lys-AMC as a PLCP-specific substrate, respectively. Results showed that developmental senescence induced a significant and progressive rise in CP activity, only in the older leaves 10 and had no effect on Mor-CP gene expression levels. On the other hand, ozone dramatically enhanced Mor-CP mRNA levels and global PLCP enzymatic activity in leaves 12 and 10, particularly toward the end of the treatment. Ozone impact was more pronounced in the older leaves 10. Together, these observations concurred to conclude that ozone stress enhances natural senescence processes, such as those related to proteolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The structure of classical swine fever virus N(pro: a novel cysteine Autoprotease and zinc-binding protein involved in subversion of type I interferon induction.

    Directory of Open Access Journals (Sweden)

    Keerthi Gottipati

    Full Text Available Pestiviruses express their genome as a single polypeptide that is subsequently cleaved into individual proteins by host- and virus-encoded proteases. The pestivirus N-terminal protease (N(pro is a cysteine autoprotease that cleaves between its own C-terminus and the N-terminus of the core protein. Due to its unique sequence and catalytic site, it forms its own cysteine protease family C53. After self-cleavage, N(pro is no longer active as a protease. The released N(pro suppresses the induction of the host's type-I interferon-α/β (IFN-α/β response. N(pro binds interferon regulatory factor-3 (IRF3, the key transcriptional activator of IFN-α/β genes, and promotes degradation of IRF3 by the proteasome, thus preventing induction of the IFN-α/β response to pestivirus infection. Here we report the crystal structures of pestivirus N(pro. N(pro is structurally distinct from other known cysteine proteases and has a novel "clam shell" fold consisting of a protease domain and a zinc-binding domain. The unique fold of N(pro allows auto-catalysis at its C-terminus and subsequently conceals the cleavage site in the active site of the protease. Although many viruses interfere with type I IFN induction by targeting the IRF3 pathway, little information is available regarding structure or mechanism of action of viral proteins that interact with IRF3. The distribution of amino acids on the surface of N(pro involved in targeting IRF3 for proteasomal degradation provides insight into the nature of N(pro's interaction with IRF3. The structures thus establish the mechanism of auto-catalysis and subsequent auto-inhibition of trans-activity of N(pro, and its role in subversion of host immune response.

  18. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions.

    Science.gov (United States)

    Bleischwitz, Marc; Albert, Markus; Fuchsbauer, Hans-Lothar; Kaldenhoff, Ralf

    2010-10-22

    Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. The study provides new information about molecular events during the parasitic plant--host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  19. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Fuchsbauer Hans-Lothar

    2010-10-01

    Full Text Available Abstract Background Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. Results One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. Conclusions The study provides new information about molecular events during the parasitic plant - host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  20. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, William J. [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Kirby, Jonathan M. [Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Thiyagarajan, Nethaji [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Chambers, Christopher J.; Davies, Abigail H. [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Roberts, April K.; Shone, Clifford C. [Public Health England, Porton Down, Salisbury SP4 0JG (United Kingdom); Acharya, K. Ravi, E-mail: bsskra@bath.ac.uk [University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.

  1. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    International Nuclear Information System (INIS)

    Bradshaw, William J.; Kirby, Jonathan M.; Thiyagarajan, Nethaji; Chambers, Christopher J.; Davies, Abigail H.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2014-01-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA) into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism

  2. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  3. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis.

    Science.gov (United States)

    Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai

    2014-07-01

    Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. © 2014 American Society of Plant Biologists. All rights reserved.

  4. Activation of mas-related G-protein-coupled receptors by the house dust mite cysteine protease Der p1 provides a new mechanism linking allergy and inflammation.

    Science.gov (United States)

    Reddy, Vemuri B; Lerner, Ethan A

    2017-10-20

    Cysteine and serine proteases function via protease-activated and mas-related G-protein-coupled receptors (Mrgprs) to contribute to allergy and inflammation. Der p1 is a cysteine protease and major allergen from the house dust mite and is associated with allergic rhinitis and allergic asthma. Der p1 activates protease-activated receptor 2 and induces the release of the pro-inflammatory cytokine IL-6 from cells. However, the possibility that Der p1 acts on Mrgprs has not been considered. We report here that ratiometric calcium imaging reveals that Der p1 activates the human receptor MRGPRX1 and the mouse homolog MrgprC11, implicated previously in itch. Der p1 cleavage of N-terminal receptor peptides followed by site-directed mutagenesis of the cleavage sites links receptor activation to specific amino acid residues. Der p1 also induced the release of IL-6 from heterologous cells expressing MRGPRX1. In summary, activation of Mrgprs by the allergen Der p1 may contribute to inflammation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Cysteine protease inhibition by nitrile-based inhibitors: a computational study

    Science.gov (United States)

    Quesne, Matthew G.; Ward, Richard A.; de Visser, Sam P.

    2013-01-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical vs. electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism. PMID:24790966

  6. The Cysteine Protease CEP1, a Key Executor Involved in Tapetal Programmed Cell Death, Regulates Pollen Development in Arabidopsis[W][OPEN

    Science.gov (United States)

    Zhang, Dandan; Liu, Di; Lv, Xiaomeng; Wang, Ying; Xun, Zhili; Liu, Zhixiong; Li, Fenglan; Lu, Hai

    2014-01-01

    Tapetal programmed cell death (PCD) is a prerequisite for pollen grain development in angiosperms, and cysteine proteases are the most ubiquitous hydrolases involved in plant PCD. We identified a papain-like cysteine protease, CEP1, which is involved in tapetal PCD and pollen development in Arabidopsis thaliana. CEP1 is expressed specifically in the tapetum from stages 5 to 11 of anther development. The CEP1 protein first appears as a proenzyme in precursor protease vesicles and is then transported to the vacuole and transformed into the mature enzyme before rupture of the vacuole. cep1 mutants exhibited aborted tapetal PCD and decreased pollen fertility with abnormal pollen exine. A transcriptomic analysis revealed that 872 genes showed significantly altered expression in the cep1 mutants, and most of them are important for tapetal cell wall organization, tapetal secretory structure formation, and pollen development. CEP1 overexpression caused premature tapetal PCD and pollen infertility. ELISA and quantitative RT-PCR analyses confirmed that the CEP1 expression level showed a strong relationship to the degree of tapetal PCD and pollen fertility. Our results reveal that CEP1 is a crucial executor during tapetal PCD and that proper CEP1 expression is necessary for timely degeneration of tapetal cells and functional pollen formation. PMID:25035401

  7. Characterization of Thermo- and Detergent Stable Antigenic Glycosylated Cysteine Protease of Euphorbia nivulia Buch.-Ham. and Evaluation of Its Ecofriendly Applications

    Directory of Open Access Journals (Sweden)

    Shamkant B. Badgujar

    2013-01-01

    Full Text Available An antigenic glycosylated cysteine protease has been purified from the latex of Euphorbia nivulia Buch.-Ham. It exhibits remarkable protease activity in the presence of metal ions, oxidizing agents, organic solvents, and detergents. This enzyme showed potential role in leather processing industry due to its dehairing activity for animal hide without hydrolyzing fibrous proteins, producing, by this way, a better quality product. The enzyme can also be used for silver recovering from X-ray plates. In addition, the stability (temperature and surfactants and hydrolysis of blood stain data also revealed its application in detergent industries. Agriculturally, this protease finds application in biocontrol process against the infectious management of root knot nematode, Meloidogyne incognita. Biologically, it shows noticeable wound healing, haemostatic and antibacterial activity.

  8. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    Science.gov (United States)

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.

  9. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide

    International Nuclear Information System (INIS)

    Bradshaw, William J.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2015-01-01

    Two structures of Cwp84, a cysteine protease from the S-layer of C. difficile, are presented after propeptide cleavage. They reveal the movement of three loops, two in the active-site groove and one on the surface of the lectin-like domain, exposing a hydrophobic pocket. In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely to be of significant importance to host–pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket

  10. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  11. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2.

    Directory of Open Access Journals (Sweden)

    André N Mueller

    2013-02-01

    Full Text Available The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi.

  12. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses.

    Science.gov (United States)

    Rodríguez-Herva, José J; González-Melendi, Pablo; Cuartas-Lanza, Raquel; Antúnez-Lamas, María; Río-Alvarez, Isabel; Li, Ziduo; López-Torrejón, Gema; Díaz, Isabel; Del Pozo, Juan C; Chakravarthy, Suma; Collmer, Alan; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2012-05-01

    The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression. © 2012 Blackwell Publishing Ltd.

  13. Generation of an antibody that recognizes Plasmodium chabaudi cysteine protease (chabaupain-1) in both sexual and asexual parasite life cycle and evaluation of chabaupain-1 vaccine potential.

    Science.gov (United States)

    Armada, Ana; Gazarini, Marcos L; Gonçalves, Lídia M; Antunes, Sandra; Custódio, Ana; Rodrigues, Armanda; Almeida, António J; Silveira, Henrique; Rosário, Virgílio do; Santos-Gomes, Gabriela; Domingos, Ana

    2013-09-01

    Malaria cysteine proteases have been shown to be immunogenic and are being exploited as serodiagnostic markers, drug and vaccine targets. Several Plasmodium spp. cysteine proteases have been described and the best characterized of these are the falcipains, a family of papain-family enzymes. Falcipain-2 and falcipain-3 act in concert with other proteases to hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. Falcipain-1 has less similarity to the other falcipains and its physiological role in parasite asexual blood stage still remains uncertain. Immunolocalization studies using an antibody developed against the Plasmodium chabaudi recombinant chabaupain-1, the falcipain-1 ortholog, were performed confirming its cellular localization in both erythrocyte and mosquito ookinete stage. Immunostaining of chabaupain-1 preferentially in apical portion of parasite ookinete suggests that this protease may be related with parasite egression from mosquito midgut. Immune responses to chabaupain-1 were evaluated using two different adjuvants, chitosan nanoparticles and hydroxide aluminum. Mice immunized with the recombinant protein alone or in association with nanoparticles were challenged with P. chabaudi showing that immunization with the recombinant protein confers partial protection to blood stage infection in BALB/c animal model. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens.

    Science.gov (United States)

    López-García, B; Hernández, M; Segundo, B S

    2012-07-01

    This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0.3 μmol l(-1) of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  15. Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins

    Directory of Open Access Journals (Sweden)

    Jennifer M Rothberg

    2013-10-01

    Full Text Available One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8 affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D cultures. For these studies, we used 1 3D reconstituted basement membrane overlay cultures of human carcinomas, 2 live cell imaging assays to assess proteolysis, and 3 in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.

  16. Small ring constrained peptidomimetics. Synthesis of epoxy peptidomimetics, inhibitors of cysteine proteases.

    Science.gov (United States)

    Demarcus, M; Ganadu, M L; Mura, G M; Porcheddu, A; Quaranta, L; Reginato, G; Taddei, M

    2001-02-09

    Different dipeptide analogues containing an oxirane ring in the place of the peptidic bond were prepared starting from naturally occurring amino acids. N-Fmoc-amino aldehydes were transformed into the corresponding methoxyvinyl derivatives through a Wittig reaction, and the addition of PhSeCl gave a series of different alpha-phenylselenyl aldehydes. Mukajiama reaction with silylketene acetals gave an intermediate product that was finally transformed into the desired oxiranyl peptidomimetics. Following this strategy we were able to control three new contiguous stereocenters starting from the enantiomerically pure amino acid. The dipeptide analogues could be used in SPPS on a SASRIN resin as the final epoxides were relatively unstable under acidic conditions. Moreover the synthesis of the single dipeptide mimetics was carried out on solid phase to generate a small library of epoxy peptidomimetics. Some of the products prepared in this work resulted as time-dependent reversible inhibitors of cysteine protease.

  17. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Tina Zavašnik-Bergant

    Full Text Available Dendritic cells (DC play a pivotal role as antigen presenting cells (APC and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70 during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.

  18. Identification of Cysteine Proteases and Screening of Cysteine Protease Inhibitors in Biological Samples by a Two-Dimensional Gel System of Zymography and Reverse Zymography

    OpenAIRE

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-01-01

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the fi rst-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic...

  19. Cysteine and aspartic proteases cathepsins B and D determine the invasiveness of MCF10A neoT cells

    International Nuclear Information System (INIS)

    Premzl, J.; Kos, J.

    2003-01-01

    Background. Lysosomal cathepsins B and D have been reported to play a role in various processes leading to progression of malignant disease. In ras-transformed MCF10A neoT cells both enzymes show similar vesicular distribution in perinuclear and peripheral cytoplasmic regions. Results. The co-localization of cathepsins B and D in some vesicles as defined by confocal microscopy supports their co-ordinate activity in the proteolytic cascade. On the other hand, we showed that stefin A, an endogenous intracellular inhibitor of cysteine proteases, did not co-localize with cathepsin B and is presumably not involved in regulation of its enzymatic activity within the vesicles. Intracellular localization of both enzymes was confined to similar vesicles as the fluorescent degradation products of DQ-collagen IV either in individual cells or cell spheroids. The capability of these two enzymes to degrade collagen and other components of extracellular matrix is further supported by the results of Matrigel invasion assay. We showed that specific intracellular (CA-074 Me) and extracellular (CA-074) inhibitors of cathepsin B and pepstatin A, an inhibitor of cathepsin D, significantly reduced invasion of MCF10A neoT cells. Our results also show that in contrast to some other studies the activation peptide of pro-cathepsin D exhibited no mitogenic effect on MCF10A neoT, MCF-7 or HEK-293 cells. Conclusion. We conclude that lysosomal cysteine proteases cathepsins B and D predominantly participate in degradation of extracellular matrix and facilitate invasion of tumour cells. (author)

  20. Light Activation of a Cysteine Protease Inhibitor: Caging of a Peptidomimetic Nitrile with RuII(bpy)2

    Science.gov (United States)

    Respondek, Tomasz; Garner, Robert N.; Herroon, Mackenzie K.; Podgorski, Izabela; Turro, Claudia; Kodanko, Jeremy J.

    2013-01-01

    A novel method for caging protease inhibitors is described. The complex [RuII(bpy)2(1)2](PF6)2 (2) was prepared from the nitrile-based peptidomimetic inhibitor Ac-Phe-NHCH2CN (1). 1H NMR, UV-vis and IR spectroscopic and mass spectrometric data confirm that two equiv of inhibitor 1 bind to RuII through the nitrile functional group. Complex 2 shows excellent stability in aqueous solution in the dark and fast release of 1 upon irradiation with visible light. Due to binding to the RuII center, the nitriles of complex 2 are caged, and 2 does not act as a potent enzyme inhibitor. However, when 2 is irradiated, it releases 1 that inhibits the cysteine proteases papain and cathepsins B, K and L, up to two times more potently than 1 alone. Ratios for IC50 values for 2 range from 6:1 to 33:1 under dark vs. light conditions, against isolated enzymes and in human cell lysates, confirming a high level of photoinduced enzyme inhibition is obtained with this method. PMID:21973207

  1. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity.

    Science.gov (United States)

    Soares, A M S; Carvalho, L P; Melo, E J T; Costa, H P S; Vasconcelos, I M; Oliveira, J T A

    2015-06-01

    Toxoplasma gondii is a parasite of great medical and veterinary importance that has worldwide distribution and causes toxoplasmosis. There are few treatments available for toxoplasmosis and the search for plant extracts and compounds with anti-Toxoplasma activity is of utmost importance for the discovery of new active drugs. The objective of this study was to investigate the action of a protein extract and a protease inhibitor enriched fraction from J. curcas seed cake on developing tachyzoites of T. gondii-infected Vero cells. The protein extract (JcCE) was obtained after solubilization of the J. curcas seed cake with 100 mM sodium borate buffer, pH 10, centrifugation and dialysis of the resulting supernatant with the extracting buffer. JcCE was used for the in vitro assays of anti-Toxoplasma activity at 0.01, 0.1, 0.5, 1.5, 3.0 and 5.0 mg/ml concentration for 24 h. The results showed that JcCE reduced the percentage of infection and the number of intracellular parasites, but had no effect on the morphology of Vero cells up to 3.0 mg/mL. The cysteine protease inhibitor enriched fraction, which was obtained after chromatography of JcCE on Sephadex G-75 and presented a unique protein band following SDS-PAGE, reduced both the number of T. gondii infected cells and intracellular parasites. These results suggest that both JcCE and the cysteine protease inhibitor enriched fraction interfere with the intracellular growth of T. gondii. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Emily N. [Univ. of Tennessee College of Veterinary Medicine, Knoxville, TN (United States); Giannone, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kania, Stephen A. [The Univ. of Tennessee College of Veterinary Medicine, Knoxville, TN (United States); Tolbert, M. Katherine [Univ. of Tennessee College of Veterinary Medicine, Knoxville, TN (United States)

    2017-08-01

    Tritrichomonas foetus (T. foetus) is a flagellated protozoan parasite that is recognized as a significant cause of diarrhea in domestic cats with a prevalence rate as high as 30%. No drugs have been shown to consistently eliminate T. foetus infection in all cats. Cysteine proteases (CPs) have been identified as mediators of T. foetus-induced adhesion-dependent cytotoxicity to the intestinal epithelium. These CPs represent novel targets for the treatment of feline trichomonosis. However, cats also produce CPs that are part of life-critical systems. Thus, parasitic CPs need to be selectively targeted to reduce the potential for host toxicity. Previous studies have demonstrated the importance of a specific CP, CP30, in mediating bovine and human trichomonad cytopathogenicity. This CP has also recently been identified in feline T. foetus, although the function of this protease in the feline genotype remains unknown. Furthermore, the study objectives were to characterize the presence of CP30 in feline T. foetus isolates and to evaluate the effect of targeted inhibition of CP30 on feline T. foetus-induced adhesion dependent cytotoxicity.

  3. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B C; Henriksen, K; Wulf, H

    2006-01-01

    OBJECTIVE: Both matrix metalloprotease (MMP) activity and cathepsin K (CK) activity have been implicated in cartilage turnover. We investigated the relative contribution of MMP activity and CK activity in cartilage degradation using ex vivo and in vivo models. METHODS: Bovine articular cartilage...... explants were stimulated with oncostatin M (OSM) 10 ng/ml and tumor necrosis factor-alpha (TNF-alpha) 20 ng/ml in the presence or absence of the broad-spectrum MMP inhibitor GM6001 and the cysteine protease inhibitor, E64. Cartilage degradation was evaluated in the conditioned medium by glycosaminoglycans...... was measured from CK-deficient mice. RESULTS: OSM and TNF-alpha combined induced significant (Pcartilage degradation products measured by hydroxyproline and CTX-II compared to vehicle control. The cytokines potently induced MMP expression, assessed by zymography, and CK expression...

  4. Sequence differences in the diagnostic region of the cysteine protease 8 gene of Tritrichomonas foetus parasites of cats and cattle.

    Science.gov (United States)

    Sun, Zichen; Stack, Colin; Šlapeta, Jan

    2012-05-25

    In order to investigate the genetic variation between Tritrichomonas foetus from bovine and feline origins, cysteine protease 8 (CP8) coding sequence was selected as the polymorphic DNA marker. Direct sequencing of CP8 coding sequence of T. foetus from four feline isolates and two bovine isolates with polymerase chain reaction successfully revealed conserved nucleotide polymorphisms between feline and bovine isolates. These results provide useful information for CP8-based molecular differentiation of T. foetus genotypes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Cysteine Protease (Capparin from Capsules of Caper (Capparis spinosa

    Directory of Open Access Journals (Sweden)

    Yasar Demir

    2008-01-01

    Full Text Available Proteases are enzymes that perform very important functions in organisms and are used for a variety of objectives in vitro. In recent years, proteases have been used for clinical, pharmaceutical (alimentary digestion, anti-inflammatory, etc. and industrial applications (cheese production, meat tenderizing, leather tanning. In this research, a protease has been purified from capsules of caper (Capparis spinosa and characterized. Caper plants have been used for food and medicine since ancient times. The plant grows abundantly in certain regions of Turkey. Ammonium sulphate fractionation and a CM Sephadex column were used for purification of the enzyme. The purification enzyme has an optimum pH=5.0 and its optimum temperature was 60 °C. The vmax and Km values determined by Lineweaver-Burk graphics were 1.38 μg/(L·min and 0.88 μg/L, respectively. The purification degree and the molecular mass of the enzyme (46 kDa were determined by SDS-PAGE and gel filtration chromatography. It was investigated whether the purified and characterized protease could cause milk to congeal or digest chicken and cow meat. The results show that protease can be used for industrial production.

  6. Effect of poloxamer 407 administration on the serum lipids profile, anxiety level and protease activity in the heart and liver of mice

    Science.gov (United States)

    Johnston, Thomas P.; Dubrovina, Nina I.; Kisarova, Yana A.; Zhanaeva, Svetlana Ya.; Cherkanova, Marina S.; Filjushina, Elena E.; Alexeenko, Tatyana V.; Machova, Eva; Zhukova, Natalya A.

    2013-01-01

    Chronic administration of the poloxamer 407 (P-407), a block copolymer, to elevate serum lipids in mice is a well-established mouse model of hyperlipidemia and atherosclerosis. We tested the hypothesis that the activity of several types of proteases in heart and liver tissue is changed in the early stages of atherosclerosis development. Additionally, we evaluated whether increased serum lipids would induce anxiety in mice, as determined by using a ‘plus-maze’ test. The mice were administered P-407 by intraperitoneal injection twice a week for one month. P-407 administration to mice resulted in a marked increase in total serum cholesterol, atherogenic non-HDL-cholesterol, and especially in total triglycerides, and it also increased anxiety. Morphological changes observed in P-407-treated mice included contractile type changes in cardiomyocytes and foamy macrophages in liver. A significant increase of cysteine proteases cathepsin B and cathepsin L (at 24 h) and aspartate protease cathepsin D (at both 24 h and 5 days) was determined in heart tissue following P-407 administration. However, no changes were noted in heart matrix metalloproteinase activity. The activity of cysteine and aspartate proteases was significantly increased in liver at both 24 hours and 5 days after P-407 administration. In conclusion, administration of P-407 to mice for one month resulted in increased anxiety, and more importantly, there was an increase in the activity of heart and liver proteases secondary to sustained dyslipidemia. It is suggested that heart and liver cysteine and aspartate proteases may represent potential therapeutic targets in the early stages of atherosclerosis. PMID:24170975

  7. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  8. TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4.

    Science.gov (United States)

    Cardoso, Thyago Hermylly Santana; Freitas, Ana Camila Oliveira; Andrade, Bruno Silva; Sousa, Aurizangela Oliveira de; Santiago, André da Silva; Koop, Daniela Martins; Gramacho, Karina Peres; Alvim, Fátima Cerqueira; Micheli, Fabienne; Pirovani, Carlos Priminho

    2015-01-01

    The interaction amongst papain-like cysteine-proteases (PLCP) and their substrates and inhibitors, such as cystatins, can be perceived as part of the molecular battlefield in plant-pathogen interaction. In cacao, four cystatins were identified and characterized by our group. We identified 448 proteases in cacao genome, whereof 134 were cysteine-proteases. We expressed in Escherichia coli a PLCP from cacao, named TcCYSPR04. Immunoblottings with anti-TcCYSPR04 exhibited protein increases during leaf development. Additional isoforms of TcCYSPR04 appeared in senescent leaves and cacao tissues infected by Moniliophthora perniciosa during the transition from the biotrophic to the saprophytic phase. TcCYSPR04 was induced in the apoplastic fluid of Catongo and TSH1188 cacao genotypes, susceptible and resistant to M. perniciosa, respectively, but greater intensity and additional isoforms were observed in TSH1188. The fungal protein MpNEP induced PLCP isoform expression in tobacco leaves, according to the cross reaction with anti-TcCYSPR04. Several protein isoforms were detected at 72 hours after treatment with MpNEP. We captured an active PLCP from cacao tissues, using a recombinant cacao cystatin immobilized in CNBr-Sepharose. Mass spectrometry showed that this protein corresponds to TcCYSPR04. A homology modeling was obtained for both proteins. In order to become active, TcCYSPR04 needs to lose its inhibitory domain. Molecular docking showed the physical-chemical complementarities of the interaction between the cacao enzyme and its inhibitor. We propose that TcCYSPR04 and its interactions with cacao cystatins are involved in the senescence and necrosis events related to witches' broom symptoms. This molecular interaction may be the target for future interventions to control witches' broom disease.

  9. Identification of Cleavage Sites Recognized by the 3C-Like Cysteine Protease within the Two Polyproteins of Strawberry Mottle Virus

    Directory of Open Access Journals (Sweden)

    Hélène Sanfaçon

    2017-04-01

    Full Text Available Strawberry mottle virus (SMoV, family Secoviridae, order Picornavirales is one of several viruses found in association with strawberry decline disease in Eastern Canada. The SMoV genome consists of two positive-sense single-stranded RNAs, each encoding one large polyprotein. The RNA1 polyprotein (P1 includes the domains for a putative helicase, a VPg, a 3C-like cysteine protease and an RNA-dependent RNA polymerase at its C-terminus, and one or two protein domains at its N-terminus. The RNA2 polyprotein (P2 is predicted to contain the domains for a movement protein (MP and one or several coat proteins at its N-terminus, and one or more additional domains for proteins of unknown function at its C-terminus. The RNA1-encoded 3C-like protease is presumed to cleave the two polyproteins in cis (P1 and in trans (P2. Using in vitro processing assays, we systematically scanned the two polyproteins for cleavage sites recognized by this protease. We identified five cis-cleavage sites in P1, with cleavage between the putative helicase and VPg domains being the most efficient. The presence of six protein domains in the SMoV P1, including two upstream of the putative helicase domain, is a feature shared with nepoviruses but not with comoviruses. Results from trans-cleavage assays indicate that the RNA1-encoded 3C-like protease recognized a single cleavage site, which was between the predicted MP and coat protein domains in the P2 polyprotein. The cleavage site consensus sequence for the SMoV 3C-like protease is AxE (E or Q/(G or S.

  10. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  11. A cysteine protease (cathepsin Z) from disk abalone, Haliotis discus discus: Genomic characterization and transcriptional profiling during bacterial infections.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Lee, Sukkyoung; Kim, Myoung-Jin; Lee, Jehee

    2017-09-05

    Cathepsin Z (CTSZ) is lysosomal cysteine protease of the papain superfamily. It participates in the host immune defense via phagocytosis, signal transduction, cell-cell communication, proliferation, and migration of immune cells such as monocytes, macrophages, and dendritic cells. Hence, CTSZ is also acknowledged as an acute-phase protein in host immunity. In this study, we sought to identify the CTSZ homolog from disk abalone (AbCTSZ) and characterize it at the molecular, genomic, and transcriptional levels. AbCTSZ encodes a protein with 318 amino acids and a molecular mass of 36kDa. The structure of AbCTSZ reveals amino acid sequences that are characteristic of the signal sequence, pro-peptide, peptidase-C1 papain family cysteine protease domain, mini-loop, HIP motif, N-linked glycosylation sites, active sites, and conserved Cys residues. A pairwise comparison revealed that AbCTSZ shared the highest amino acid homology with its molluscan counterpart from Crassostrea gigas. A multiple alignment analysis revealed the conservation of functionally crucial elements of AbCTSZ, and a phylogenetic study further confirmed a proximal evolutionary relationship with its invertebrate counterparts. Further, an analysis of AbCTSZ genomic structure revealed seven exons separated by six introns, which differs from that of its vertebrate counterparts. Quantitative real time PCR (qPCR) detected the transcripts of AbCTSZ in early developmental stages and in eight different tissues. Higher levels of AbCTSZ transcripts were found in trochophore, gill, and hemocytes, highlighting its importance in the early development and immunity of disk abalone. In addition, we found that viable bacteria (Vibrio parahaemolyticus and Listeria monocytogenes) and bacterial lipopolysaccharides significantly modulated AbCTSZ transcription. Collectively, these lines of evidences suggest that AbCTSZ plays an indispensable role in the innate immunity of disk abalone. Copyright © 2017. Published by Elsevier

  12. Arabidopsis ATG4 cysteine proteases specificity toward ATG8 substrates

    Science.gov (United States)

    Park, Eunsook; Woo, Jongchan; Dinesh-Kumar, SP

    2014-01-01

    Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes. PMID:24658121

  13. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  14. The Tr-cp 14 cysteine protease in white clover (Trifolium repens) is localized to the endoplasmic reticulum and is associated with programmed cell death during development of tracheary elements

    DEFF Research Database (Denmark)

    Mulisch, Maria; Asp, Torben; Krupinska, Karin

    2013-01-01

    family of cysteine proteases with homology to XCP1 and XCP2 from Arabidopsis thaliana and p48h-17 from Zinnia elegans, which previously have been reported to be associated with tracheary element differentiation. The proform as well as the processed form of the protein was detected in petioles, flowers....... Immunogold studies suggest that the protease prior to the burst of the vacuole was associated to the ER cisternae. After disruption of the tonoplast, it was found in the cytoplasm, and, in later stages, associated with disintegrating material dispersed throughout the cell....

  15. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation.

    Science.gov (United States)

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2016-02-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, both in terms of hazing potential and total protein decrease, was significantly higher than PBR-pa, in all the seven unfined, white wines used. Among the wines tested, Sauvignon Blanc, given its total protein content as well as its very high intrinsic instability, was selected as a control wine to evaluate the effect of the treatment on wine as to its soluble protein profile, phenolic composition, mineral component, and sensory properties. The treatment in a PBR containing immobilised bromelain appeared effective in decreasing both wine hazing potential and total protein amount, while it did not significantly affect the phenol compounds, the mineral component nor the sensory quality of wine. The enzymatic treatment in PBR was shown to be a specific and mild technique for use as an alternative to bentonite fining for white wine protein stabilisation.

  16. Reversible Cysteine Protease Inhibitors Show Promise for a Chagas Disease Cure

    Science.gov (United States)

    Beaulieu, Christian; Black, W. Cameron; Isabel, Elise; Vasquez-Camargo, Fabio; Nath-Chowdhury, Milli; Massé, Frédéric; Mellon, Christophe; Methot, Nathalie

    2014-01-01

    The cysteine protease cruzipain is essential for the viability, infectivity, and virulence of Trypanosoma cruzi, the causative agent of Chagas disease. Thus, inhibitors of cruzipain are considered promising anti-T. cruzi chemotherapeutic agents. Reversible cruzipain inhibitors containing a nitrile “warhead” were prepared and demonstrated 50% inhibitory concentrations (IC50s) as potent as 1 nM in baculovirus-generated cruzipain enzyme assays. In epimastigote and intracellular amastigote in vitro assays, the most potent compounds demonstrated antiparasitic behavior in the 5 to 10 μM IC50 range; however, trypomastigote production from the amastigote form was ∼90 to 95% inhibited at 2 μM. Two key compounds, Cz007 and Cz008, with IC50s of 1.1 and 1.8 nM, respectively, against the recombinant enzyme were tested in a murine model of acute T. cruzi infection, with oral dosing in chow for 28 days at doses from 3 to 50 mg/kg of body weight. At 3 mg/kg of Cz007 and 3 mg/kg of Cz008, the blood parasitemia areas under the concentration-time curves were 16% and 25% of the untreated group, respectively. At sacrifice, 24 days after immunosuppression with cyclophosphamide, parasite presence in blood, heart, and esophagus was evaluated. Based on negative quantitative PCR results in all three tissues, cure rates in surviving animals were 90% for Cz007 at 3 mg/kg, 78% for Cz008 at 3 mg/kg, and 71% for benznidazole, the control compound, at 50 mg/kg. PMID:24323474

  17. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Kishor Duwadi

    Full Text Available Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10 were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER, suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.

  18. Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE.

    Science.gov (United States)

    Scala, Angela; Rescifina, Antonio; Micale, Nicola; Piperno, Anna; Schirmeister, Tanja; Maes, Louis; Grassi, Giovanni

    2018-02-01

    In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8ΔCTE, fused benzo[b]thiophenes and β,β'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20 μm). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-topology. Based on the predicted physicochemical and ADME-Tox properties, compound 2b has been identified as a new drug-like, non-mutagen, non-carcinogen, and non-neurotoxic lead candidate. © 2017 John Wiley & Sons A/S.

  19. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  20. Density functional theory and quantum mechanics/molecular mechanics study of cysteine protease inhibition by nitrile-based inhibitors.

    Directory of Open Access Journals (Sweden)

    Sam P De Visser

    2013-12-01

    Full Text Available Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.

  1. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  2. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao; Scott, Ken; Hemar, Yacine; Zhang, Huoming; Otter, Don

    2018-01-01

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named 'tamarillin'.

  3. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica.

    Science.gov (United States)

    Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi

    2012-12-01

    Cysteine proteases are important antigens in the liver fluke genus Fasciola, essential for infection, protection and nutrition. While their biochemistry, biological roles and application as vaccines have been thoroughly studied there is a lack of data concerning their regulation. In the present study we have continued our investigation of cysteine protease inhibitors in Fasciola gigantica and demonstrate, in comparison with FgStefin-1 and human cystatin C, that a second type 1 cystatin of the parasite, FgStefin-2, has been evolutionary adapted to block cathepsin B. The protein, which unusually for a type 1 cystatin carries a signal peptide, is expressed from the metacercarial to adult stage and located in the epithelial cells of the intestinal tract in all stages and in the prostate gland cells in adults. Both cell types may contribute to the released FgStefin-2 observed in the ES product of the parasite. Distinct isoforms of cathepsin B are essential for host tissue penetration during the early infection process and FgStefin-2 may act as key regulator, required to protect the minute juvenile from autoproteolysis. Expression in the prostate gland in the adult stage suggests an additional regulative role of cysteine protease activity in the reproductive system. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Inhibitory effects of bromelain, a cysteine protease derived from pineapple stem (Ananas comosus), on intestinal motility in mice.

    Science.gov (United States)

    Borrelli, F; Capasso, R; Severino, B; Fiorino, F; Aviello, G; De Rosa, G; Mazzella, M; Romano, B; Capasso, F; Fasolino, I; Izzo, A A

    2011-08-01

    Bromelain (BR) is a cysteine protease with inhibitory effects on intestinal secretion and inflammation. However, its effects on intestinal motility are largely unexplored. Thus, we investigated the effect of this plant-derived compound on intestinal contractility and transit in mice. Contractility in vitro was evaluated by stimulating the mouse isolated ileum, in an organ bath, with acetylcholine, barium chloride, or electrical field stimulation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine. Transit was also evaluated in pathophysiologic states induced by the pro-inflammatory compound croton oil or by the diabetogenic agent streptozotocin. Bromelain inhibited the contractions induced by different spasmogenic compounds in the mouse ileum with similar potency. The antispasmodic effect was reduced or counteracted by the proteolytic enzyme inhibitor, gabexate (15 × 10(-6)  mol L(-1) ), protease-activated receptor-2 (PAR-2) antagonist, N(1) -3-methylbutyryl-N(4) -6-aminohexanoyl-piperazine (10(-4) mol L(-1) ), phospholipase C (PLC) inhibitor, neomycin (3 × 10(-3) mol L(-1) ), and phosphodiesterase 4 (PDE4) inhibitor, rolipram (10(-6)  mol L(-1) ). In vivo, BR preferentially inhibited motility in pathophysiologic states in a PAR-2-antagonist-sensitive manner. Our data suggest that BR inhibits intestinal motility - preferentially in pathophysiologic conditions - with a mechanism possibly involving membrane PAR-2 and PLC and PDE4 as intracellular signals. Bromelain could be a lead compound for the development of new drugs, able to normalize the intestinal motility in inflammation and diabetes. © 2011 Blackwell Publishing Ltd.

  5. Delay of Iris flower senescence by protease inhibitors

    NARCIS (Netherlands)

    Pak, C.; Doorn, van W.G.

    2005-01-01

    asterisk inside a circle sign Visible senescence of the flag tepals in Iris x hollandica (cv. Blue Magic) was preceded by a large increase in endoprotease activity. Just before visible senescence about half of total endoprotease activity was apparently due to cysteine proteases, somewhat less than

  6. Differential processing of Arabidopsis ubiquitin-like Atg8 autophagy proteins by Atg4 cysteine proteases

    Science.gov (United States)

    Woo, Jongchan; Park, Eunsook; Dinesh-Kumar, S. P.

    2014-01-01

    Autophagy is a highly conserved biological process during which double membrane bound autophagosomes carry intracellular cargo material to the vacuole or lysosome for degradation and/or recycling. Autophagosome biogenesis requires Autophagy 4 (Atg4) cysteine protease-mediated processing of ubiquitin-like Atg8 proteins. Unlike single Atg4 and Atg8 genes in yeast, the Arabidopsis genome contains two Atg4 (AtAtg4a and AtAtg4b) and nine Atg8 (AtAtg8a–AtAtg8i) genes. However, we know very little about specificity of different AtAtg4s for processing of different AtAtg8s. Here, we describe a unique bioluminescence resonance energy transfer-based AtAtg8 synthetic substrate to assess AtAtg4 activity in vitro and in vivo. In addition, we developed a unique native gel assay of superhRLUC catalytic activity assay to monitor cleavage of AtAtg8s in vitro. Our results indicate that AtAtg4a is the predominant protease and that it processes AtAtg8a, AtAtg8c, AtAtg8d, and AtAtg8i better than AtAtg4b in vitro. In addition, kinetic analyses indicate that although both AtAtg4s have similar substrate affinity, AtAtg4a is more active than AtAtg4b in vitro. Activity of AtAtg4s is reversibly inhibited in vitro by reactive oxygen species such as H2O2. Our in vivo bioluminescence resonance energy transfer analyses in Arabidopsis transgenic plants indicate that the AtAtg8 synthetic substrate is efficiently processed and this is AtAtg4 dependent. These results indicate that the synthetic AtAtg8 substrate is used efficiently in the biogenesis of autophagosomes in vivo. Transgenic Arabidopsis plants expressing the AtAtg8 synthetic substrate will be a valuable tool to dissect autophagy processes and the role of autophagy during different biological processes in plants. PMID:24379391

  7. HvPap-1 C1A Protease Participates Differentially in the Barley Response to a Pathogen and an Herbivore

    Directory of Open Access Journals (Sweden)

    Mercedes Diaz-Mendoza

    2017-09-01

    Full Text Available Co-evolutionary processes in plant–pathogen/herbivore systems indicate that protease inhibitors have a particular value in biotic interactions. However, little is known about the defensive role of their targets, the plant proteases. C1A cysteine proteases are the most abundant enzymes responsible for the proteolytic activity during different processes like germination, development and senescence in plants. To identify and characterize C1A cysteine proteases of barley with a potential role in defense, mRNA and protein expression patterns were analyzed in response to biotics stresses. A barley cysteine protease, HvPap-1, previously related to abiotic stresses and grain germination, was particularly induced by flagellin or chitosan elicitation, and biotic stresses such as the phytopathogenic fungus Magnaporthe oryzae or the phytophagous mite Tetranychus urticae. To elucidate the in vivo participation of this enzyme in defense, transformed barley plants overexpressing or silencing HvPap-1 encoding gene were subjected to M. oryzae infection or T. urticae infestation. Whereas overexpressing plants were less susceptible to the fungus than silencing plants, the opposite behavior occurred to the mite. This unexpected result highlights the complexity of the regulatory events leading to the response to a particular biotic stress.

  8. PROTEOLYTIC PROCESSING OF VON WILLEBRAND FACTOR BY ADAMTS13 AND LEUKOCYTE PROTEASES

    Directory of Open Access Journals (Sweden)

    Stefano Lancellotti

    2013-09-01

    Full Text Available ADAMTS13 is a 190 kDa zinc protease encoded by a gene located on chromosome 9q34.   This protease specifically hydrolyzes von Willebrand factor (VWF multimers, thus causing VWF size reduction. ADAMTS13 belongs to the A Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats (ADAMTS family, involved in proteolytic processing of many matrix proteins. ADAMTS13 consists of numerous domains including a metalloprotease domain, a disintegrin domain, several thrombospondin type 1 (TSP1 repeats, a cysteine-rich domain, a spacer domain and 2 CUB (Complement c1r/c1s, sea Urchin epidermal growth factor, and Bone morphogenetic protein domains. ADAMTS13 cleaves a single peptide bond (Tyr1605-Met1606 in the central A2 domain of the VWF molecule. This proteolytic cleavage is essential to reduce the size of ultra-large VWF polymers, which, when exposed to high shear stress in the microcirculation, are prone to form with platelets clumps, which cause severe syndromes called thrombotic microangiopathies (TMAs. In this review, we a discuss the current knowledge of structure-function aspects of ADAMTS13 and its involvement in the pathogenesis of TMAs, b address the recent findings concerning proteolytic processing of VWF multimers by different proteases, such as the leukocyte-derived serine and metallo-proteases and c indicate the direction of future investigations

  9. Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus.

    Science.gov (United States)

    Gould, Emily N; Giannone, Richard; Kania, Stephen A; Tolbert, M Katherine

    2017-09-15

    Tritrichomonas foetus (T. foetus) is a flagellated protozoan parasite that is recognized as a significant cause of diarrhea in domestic cats with a prevalence rate as high as 30%. No drugs have been shown to consistently eliminate T. foetus infection in all cats. Cysteine proteases (CPs) have been identified as mediators of T. foetus-induced adhesion-dependent cytotoxicity to the intestinal epithelium. These CPs represent novel targets for the treatment of feline trichomonosis. However, cats also produce CPs that are part of life-critical systems. Thus, parasitic CPs need to be selectively targeted to reduce the potential for host toxicity. Previous studies have demonstrated the importance of a specific CP, CP30, in mediating bovine and human trichomonad cytopathogenicity. This CP has also recently been identified in feline T. foetus, although the function of this protease in the feline genotype remains unknown. Therefore, the study objectives were to characterize the presence of CP30 in feline T. foetus isolates and to evaluate the effect of targeted inhibition of CP30 on feline T. foetus-induced adhesion dependent cytotoxicity. The presence of CP30 in feline T. foetus isolates was identified by In gel zymography and proteomic analysis, indirect immunofluorescence (IF), and flow cytometry using a rabbit polyclonal antibody that targets bovine T. foetus CP30 (α-CP30). The effect of inhibition of CP30 activity on T. foetus adhesion and cytotoxicity was determined using CFSE-labeled feline T. foetus and crystal violet spectrophotometric assays in a previously validated co-culture model. CP30 expression was confirmed in all feline T. foetus isolates tested by all assays. Targeted inhibition of feline T. foetus CP30 resulted in decreased T. foetus adhesion to and cytotoxicity towards IPEC-J2 monolayers compared to rabbit IgG-treated T. foetus isolates. These studies establish that CP30 is expressed by feline T. foetus isolates and may be an important virulence factor

  10. Purification and biochemical characterization of a 22-kDa stable cysteine- like protease from the excretory-secretory product of the liver fluke Fasciola hepatica by using conventional techniques.

    Science.gov (United States)

    Hemici, Ahmed; Benerbaiha, Roumaila Sabrina; Bendjeddou, Dalila

    2017-11-15

    This study describes the purification and characterization of a stable protease activity isolated from Fasciola hepatica adult worms maintained in vitro by employing acetone precipitation (40-60%) followed by a gel filtration through Sephadex G-100 and DEAE- cellulose ion exchange column. Through this three-step purification, the enzyme was purified 11-fold with a specific activity of 1893.9U/mg and 31.5% recovery. After the final ultrafiltration step, the purification fold was increased up to 13.1 and the overall activity yield reached a rate of 18.8%. The MW of the purified protease was estimated by reducing SDS-PAGE to be 22kDa while the proteolytic activity detection was carried out by zymography on non-denaturing SDS-PAGE containing the casein as substrate. Using this substrate, the protease showed extreme proteolytic activity at pH 5.5 and temperature 35-40°C and was highly stable over a wide range of pH, from 5.0 to 10.0. In addition to its preference for the Z-Phe-Arg-AMC fluorogenic substrate resulting in maximum proteolytic activity (99.7%) at pH 7.0, the pure protease exhibited highest cleavage activity against hemoglobin and casein substrates at pH 5.5 (85.6% and 82.8%, respectively). The K m values obtained for this protease were 5.4, 13, 160 and approximately 1000μM using respectively the fluorogenic substrate Z-Phe-Arg-AMC, hemoglobin, casein and albumin. The protease activity was completely inhibited either by E-64 inhibitor (5mM) or iodoacetamide (10mM), indicating its cysteine nature. The usefulness of the purified protease as an antigen was studied by immunoblotting. Thus, sera from sheep experimentally infected with F. hepatica recognized the protease band at 2 weeks post-infection (WPI) and strongly at 7 WPI. The early detection of antibodies anti- F. hepatica suggests the application of this molecule as a specific epitope for the serodiagnosis of fascioliasis disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Efficient Absorption of X-Hydroxyproline (Hyp)-Gly after Oral Administration of a Novel Gelatin Hydrolysate Prepared Using Ginger Protease.

    Science.gov (United States)

    Taga, Yuki; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2016-04-13

    Recent studies have reported that oral intake of gelatin hydrolysate has various beneficial effects, such as reduction of joint pain and lowering of blood sugar levels. In this study, we produced a novel gelatin hydrolysate using a cysteine-type ginger protease having unique substrate specificity with preferential peptide cleavage with Pro at the P2 position. Substantial amounts of X-hydroxyproline (Hyp)-Gly-type tripeptides were generated up to 2.5% (w/w) concomitantly with Gly-Pro-Y-type tripeptides (5%; w/w) using ginger powder. The in vivo absorption of the ginger-degraded gelatin hydrolysate was estimated using mice. The plasma levels of collagen-derived oligopeptides, especially X-Hyp-Gly, were significantly high (e.g., 2.3-fold for Glu-Hyp-Gly, p < 0.05) compared with those of the control gelatin hydrolysate, which was prepared using gastrointestinal proteases and did not contain detectable X-Hyp-Gly. This study demonstrated that orally administered X-Hyp-Gly was effectively absorbed into the blood, probably due to the high protease resistance of this type of tripeptide.

  12. Producing armyworm (spodoptera sp.) Bioinsecticide based on cysteine protease of red ginger (zingiber officinale var. Rubrum)

    Science.gov (United States)

    Afnan, N. T.; Nur, D. F.; Utami, T. S.; Sahlan, M.; Wijanarko, A.; Hermansyah, H.

    2018-03-01

    Armyworm (Spodoptera sp.) is highly polyphagous defoliator on various horticulture and grain plants. Various chemical insecticides have been created to control it. There is a need to create an eco-friendly and specific insecticide which only affect armyworm’s nervous system. This research investigates cysteine-protease’s enzyme activity of red ginger (Zingiber officinale var. Rubrum) which is called zingibain. Its catalytic site matches with residue site in armyworm’s body so it can be used as bioinsecticide raw material which meets the criterias above. Fresh red ginger rhizomes were washed and extracted. The juice was then deposited in low temperature and centrifuged to get rid of its starch content. It was filtrated to remove large contaminants and poured into Potassium Phospate buffer. The liquid was then centrifuged again for 30 minutes before collecting the supernatant. Fresh leaves were then dipped into crude ginger protease extract and fed to fourth instar-armyworms. Leaves dipped into non-diluted extract were barely eaten by armyworm while the 50% and 25% dilution was half eaten and most eaten. The crude red ginger extract was not strong enough to kill them although the research showed its enzymatic activity reaches up to 169 PU. It still needs improvement to be produced as commercial bioinsecticide.

  13. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14.

    Directory of Open Access Journals (Sweden)

    Takayuki Shindo

    Full Text Available Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa. In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.

  14. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Timmerman J André B

    2006-03-01

    Full Text Available Abstract House dust mite allergens (HDM cause bronchoconstriction in asthma patients and induce an inflammatory response in the lungs due to the release of cytokines, chemokines and additional mediators. The mechanism how HDM components achieve this is largely unknown. The objective of this study was to assess whether HDM components of Dermatophagoides pteronissinus with protease activity (Der p 1 and unknown enzymatic activity (Der p 2, Der p 5 induce biological responses in a human airway-derived epithelial cell line (A549, and if so, to elucidate the underlying mechanism(s of action. A549 cells were incubated with HDM extract, Der p 1, recombinant Der p 2 and recombinant Der p 5. Cell desquamation was assessed by microscopy. The proinflammatory cytokines, IL-6 and IL-8, were measured by ELISA. Intracellular Ca2+ levels were assessed in A549 cells and in mouse fibroblasts expressing the human protease activated receptor (PAR1, PAR2 or PAR4. HDM extract, Der p 1 and Der p 5 dose-dependently increased the production of IL-6 and IL-8. Added simultaneously, Der p 1 and Der p 5 further increased the production of IL-6 and IL-8. The action of Der p 1 was blocked by cysteine-protease inhibitors, while that of Der p 5 couldn't be blocked by either serine- or cysteine protease inhibitors. Der p 5 only induced cell shrinking, whereas HDM extract and Der p1 also induced cell desquamation. Der p 2 had no effect on A549 cells. Der p 1's protease activity causes desquamation and induced the release of IL6 and IL-8 by a mechanism independent of Ca2+ mobilisation and PAR activation. Der p 5 exerts a protease-independent activation of A549 that involves Ca2+ mobilisation and also leads to the production of these cytokines. Together, our data indicate that allergens present in HDM extracts can trigger protease-dependent and protease-independent signalling pathways in A549 cells.

  15. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development.

    Directory of Open Access Journals (Sweden)

    Violeta Morin

    Full Text Available Proteolysis of sperm histones in the sea urchin male pronucleus is the consequence of the activation at fertilization of a maternal cysteine protease. We previously showed that this protein is required for male chromatin remodelling and for cell-cycle progression in the newly formed embryos. This enzyme is present in the nucleus of unfertilized eggs and is rapidly recruited to the male pronucleus after insemination. Interestingly, this cysteine-protease remains co-localized with chromatin during S phase of the first cell cycle, migrates to the mitotic spindle in M-phase and is re-located to the nuclei of daughter cells after cytokinesis. Here we identified the protease encoding cDNA and found a high sequence identity to cathepsin proteases of various organisms. A phylogenetical analysis clearly demonstrates that this sperm histone protease (SpHp belongs to the cathepsin L sub-type. After an initial phase of ubiquitous expression throughout cleavage stages, SpHp gene transcripts become restricted to endomesodermic territories during the blastula stage. The transcripts are localized in the invaginating endoderm during gastrulation and a gut specific pattern continues through the prism and early pluteus stages. In addition, a concomitant expression of SpHp transcripts is detected in cells of the skeletogenic lineage and in accordance a pharmacological disruption of SpHp activity prevents growth of skeletal rods. These results further document the role of this nuclear cathepsin L during development.

  16. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin mo...

  17. Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia.

    Science.gov (United States)

    Byrne, D P; Potempa, J; Olczak, T; Smalley, J W

    2013-06-01

    Haem (iron protoporphyrin IX) is both an essential growth factor and a virulence regulator of the periodontal pathogens Porphyromonas gingivalis and Prevotella intermedia, which acquire it through the proteolytic degradation of haemoglobin and other haem-carrying plasma proteins. The haem-binding lipoprotein HmuY haemophore and the gingipain proteases of P. gingivalis form a unique synthrophic system responsible for capture of haem from haemoglobin and methaemalbumin. In this system, methaemoglobin is formed from oxyhaemoglobin by the activities of gingipain proteases and serves as a facile substrate from which HmuY can capture haem. This study examined the possibility of cooperation between HmuY and the cysteine protease interpain A (InpA) of Pr. intermedia in the haem acquisition process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to be resistant to proteolysis and so able to cooperate with InpA to extract haem from haemoglobin, which was proteolytically converted to methaemoglobin by the protease. Spectroscopic pH titrations showed that both the iron(II) and iron(III) protoporphyrin IX-HmuY complexes were stable over the pH range 4-10, demonstrating that the haemophore could function over a range of pH that may be encountered in the dental plaque biofilm. This is the first demonstration of a bacterial haemophore working in conjunction with a protease from another bacterial species to acquire haem from haemoglobin and may represent mutualism between P. gingivalis and Pr. intermedia co-inhabiting the periodontal pocket. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  18. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  19. Cathepsins: Proteases that are vital for survival but can also be fatal.

    Science.gov (United States)

    Patel, Seema; Homaei, Ahmad; El-Seedi, Hesham R; Akhtar, Nadeem

    2018-06-06

    The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Molecular cloning and tissue-specific expression analysis of mouse spinesin, a type II transmembrane serine protease 5

    International Nuclear Information System (INIS)

    Watanabe, Yoshihisa; Okui, Akira; Mitsui, Shinichi; Kawarabuki, Kentaro; Yamaguchi, Tatsuyuki; Uemura, Hidetoshi; Yamaguchi, Nozomi

    2004-01-01

    We have previously reported novel serine proteases isolated from cDNA libraries of the human and mouse central nervous system (CNS) by PCR using degenerate oligodeoxyribonucleotide primers designed on the basis of the serine protease motifs, AAHC and DSGGP. Here we report a newly isolated serine protease from the mouse CNS. This protease is homologous (77.9% identical) to human spinesin type II transmembrane serine protease 5. Mouse spinesin (m-spinesin) is also composed of (from the N-terminus) a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger-receptor-like domain, and a serine protease domain, as is h-spinesin. We also isolated type 1, type 2, and type 3 variant cDNAs of m-spinesin. Full-length spinesin (type 4) and type 3 contain all the domains, whereas type 1 and type 2 variants lack the cytoplasmic, transmembrane, and scavenger-receptor-like domains. Subcellular localization of the variant forms was analyzed using enhanced green fluorescent protein (EGFP) fusion proteins. EGFP-type 4 fusion protein was predominantly localized to the ER, Golgi apparatus, and plasma membrane, whereas EGFP-type 1 was localized to the cytoplasm, reflecting differential classification of m-spinesin variants into transmembrane and cytoplasmic types. We analyzed the distribution of m-spinesin variants in mouse tissues, using RT-PCR with variant-specific primer sets. Interestingly, transmembrane-type spinesin, types 3 and 4, was specifically expressed in the spinal cord, whereas cytoplasmic type, type 1, was expressed in multiple tissues, including the cerebrum and cerebellum. Therefore, m-spinesin variants may have distinct biological functions arising from organ-specific variant expression

  1. Genome-wide comparative analysis of papain-like cysteine protease family genes in castor bean and physic nut.

    Science.gov (United States)

    Zou, Zhi; Huang, Qixing; Xie, Guishui; Yang, Lifu

    2018-01-10

    Papain-like cysteine proteases (PLCPs) are a class of proteolytic enzymes involved in many plant processes. Compared with the extensive research in Arabidopsis thaliana, little is known in castor bean (Ricinus communis) and physic nut (Jatropha curcas), two Euphorbiaceous plants without any recent whole-genome duplication. In this study, a total of 26 or 23 PLCP genes were identified from the genomes of castor bean and physic nut respectively, which can be divided into nine subfamilies based on the phylogenetic analysis: RD21, CEP, XCP, XBCP3, THI, SAG12, RD19, ALP and CTB. Although most of them harbor orthologs in Arabidopsis, several members in subfamilies RD21, CEP, XBCP3 and SAG12 form new groups or subgroups as observed in other species, suggesting specific gene loss occurred in Arabidopsis. Recent gene duplicates were also identified in these two species, but they are limited to the SAG12 subfamily and were all derived from local duplication. Expression profiling revealed diverse patterns of different family members over various tissues. Furthermore, the evolution characteristics of PLCP genes were also compared and discussed. Our findings provide a useful reference to characterize PLCP genes and investigate the family evolution in Euphorbiaceae and species beyond.

  2. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  3. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  4. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    Science.gov (United States)

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  6. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS.

    Science.gov (United States)

    Neustadt, Madlen; Costina, Victor; Kupfahl, Claudio; Buchheidt, Dieter; Eckerskorn, Christoph; Neumaier, Michael; Findeisen, Peter

    2009-06-01

    Early diagnosis of life-threatening invasive aspergillosis in neutropenic patients remains challenging because current laboratory methods have limited diagnostic sensitivity and/or specificity. Aspergillus species are known to secrete various pathogenetically relevant proteases and the monitoring of their protease activity in serum specimens might serve as a new diagnostic approach.For the characterization and identification of secreted proteases, the culture supernatant of Aspergillus fumigatus was fractionated using free flow electrophoresis (Becton Dickinson). Protease activity of separated fractions was measured using fluorescently labeled reporter peptides. Fractions were also co-incubated in parallel with various protease inhibitors that specifically inhibit a distinct class of proteases e.g. metallo- or cysteine-proteases. Those fractions with high protease activity were further subjected to LC-MS/MS analysis for protease identification. The highest protease activity was measured in fractions with an acidic pH range. The results of the 'inhibitor-panel' gave a clear indication that it is mainly metallo- and serine-proteases that are involved in the degradation of reporter peptides. Furthermore, several proteases were identified that facilitate the optimization of reporter peptides for functional protease profiling as a diagnostic tool for invasive aspergillosis.

  7. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells.

    Science.gov (United States)

    Železnik, Tajana Zajc; Kadin, Andrey; Turk, Vito; Dolenc, Iztok

    2015-09-18

    Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  9. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    Science.gov (United States)

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  10. Protease activation involved in resistance of human cells to x-ray cell killing

    International Nuclear Information System (INIS)

    Zhang, Hong-Chang; Takahashi, Shuji; Karata, Kiyonobu; Kita, Kazuko; Suzuki, Nobuo

    2003-01-01

    Little is known of proteases that play roles in the early steps of X-ray irradiation response. In the present study, we first searched for proteases whose activity is induced in human RSa-R cells after X-ray irradiation. The activity was identified as fibrinolytic, using 125 I-labeled fibrin as a substrate. Protease samples were prepared by lysation of cells with a buffer containing MEGA-8. RSa-R cells showed an increased level of protease activity 10 min after X-ray (up to 3 Gy) irradiation. We next examined whether this protease inducibility is causally related with the X-ray susceptibility of cells. Leupeptin, a serine-cysteine protease inhibitor, inhibited the protease activity in samples obtained from X-ray-irradiated RSa-R cells. Treatment of RSa-R cells with the inhibitor before and after X-ray irradiation resulted in an increased susceptibility of the cells to X-ray cell killing. However, the treatment of cells with other inhibitors tested did not modulate the X-ray susceptibility. These results suggest that leupeptin-sensitive proteases are involved in the resistance of human cells to X-ray cell killing. (author)

  11. Substrate Specificity of Cysteine Proteases Beyond the S2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L

    Directory of Open Access Journals (Sweden)

    Ileana Corvo

    2018-04-01

    Full Text Available Cysteine proteases are widespread in all life kingdoms, being central to diverse physiological processes based on a broad range of substrate specificity. Paralogous Fasciola hepatica cathepsin L proteases are essential to parasite invasion, tissue migration and reproduction. In spite of similarities in their overall sequence and structure, these enzymes often exhibit different substrate specificity. These preferences are principally determined by the amino acid composition of the active site's S2 subsite (pocket of the enzyme that interacts with the substrate P2 residue (Schetcher and Berger nomenclature. Although secreted FhCL1 accommodates aliphatic residues in the S2 pocket, FhCL2 is also efficient in cleaving proline in that position. To understand these differences, we engineered the FhCL1 S2 subsite at three amino acid positions to render it identical to that present in FhCL2. The substitutions did not produce the expected increment in proline accommodation in P2. Rather, they decreased the enzyme's catalytic efficiency toward synthetic peptides. Nonetheless, a change in the P3 specificity was associated with the mutation of Leu67 to Tyr, a hinge residue between the S2 and S3 subsites that contributes to the accommodation of Gly in S3. Molecular dynamic simulations highlighted changes in the spatial distribution and secondary structure of the S2 and S3 pockets of the mutant FhCL1 enzymes. The reduced affinity and catalytic efficiency of the mutant enzymes may be due to a narrowing of the active site cleft that hinders the accommodation of substrates. Because the variations in the enzymatic activity measured could not be exclusively allocated to those residues lining the active site, other more external positions might modulate enzyme conformation, and, therefore, catalytic activity.

  12. Synthetic siRNAs effectively target cystein protease 12 and α-actinin transcripts in Trichomonas vaginalis.

    Science.gov (United States)

    Ravaee, Roya; Ebadi, Parimah; Hatam, Gholamreza; Vafafar, Arghavan; Ghahramani Seno, Mohammad Mahdi

    2015-10-01

    The flagellated protozoan Trichomonas vaginalis (T. vaginalis) causes trichomoniasis, a reproductive tract infection, in humans. Trichomoniasis is the most common non-viral sexually transmitted disease worldwide. In addition to direct consequences such as infertility and abortion, there are indications that trichomoniasis favours development of prostate cancer and it has also been associated with increased risk of spreading human immunodeficiency virus and papillomavirus infections. Reports from around the world show that the rate of drug resistance in T. vaginalis is increasing, and therefore new therapeutic approaches have to be developed. Studying molecular biology of T. vaginalis will be quite helpful in identifying new drugable targets. RNAi is a powerful technique which allows biologist to specifically target gene products (i.e. mRNA) helping them in unravelling gene functions and biology of systems. However, due to lack of some parts of the required intrinsic RNAi machinery, the RNAi system is not functional in all orders of life. Here, by using synthetic siRNAs targeting two genes, i.e. α-actinin and cystein protease 12 (cp12), we demonstrate T. vaginalis cells are amenable to RNAi experiments conducted by extrinsic siRNAs. Electroporation of siRNAs targeting α-actinin or cp12 into T. vaginalis cells resulted in, respectively, 48-67% and 33-72% downregulation of the cognate transcripts compared to the T. vaginalis cells received siRNAs targeting GL2 luciferase as a control. This finding is helpful in that it demonstrates the potential of using extrinsically induced RNAi in studies on molecular biology of T. vaginalis such as those aiming at identifying new drug targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference.

    Directory of Open Access Journals (Sweden)

    Louise Ford

    Full Text Available Cathepsin-like enzymes have been identified as potential targets for drug or vaccine development in many parasites, as their functions appear to be essential in a variety of important biological processes within the host, such as molting, cuticle remodeling, embryogenesis, feeding and immune evasion. Functional analysis of Caenorhabditis elegans cathepsin L (Ce-cpl-1 and cathepsin Z (Ce-cpz-1 has established that both genes are required for early embryogenesis, with Ce-cpl-1 having a role in regulating in part the processing of yolk proteins. Ce-cpz-1 also has an important role during molting.RNA interference assays have allowed us to verify whether the functions of the orthologous filarial genes in Brugia malayi adult female worms are similar. Treatment of B. malayi adult female worms with Bm-cpl-1, Bm-cpl-5, which belong to group Ia of the filarial cpl gene family, or Bm-cpz-1 dsRNA resulted in decreased numbers of secreted microfilariae in vitro. In addition, analysis of the intrauterine progeny of the Bm-cpl-5 or Bm-cpl Pro dsRNA- and siRNA-treated worms revealed a clear disruption in the process of embryogenesis resulting in structural abnormalities in embryos and a varied differential development of embryonic stages.Our studies suggest that these filarial cathepsin-like cysteine proteases are likely to be functional orthologs of the C. elegans genes. This functional conservation may thus allow for a more thorough investigation of their distinct functions and their development as potential drug targets.

  14. Characterization of the secreted cathepsin B cysteine proteases family of the carcinogenic liver fluke Clonorchis sinensis.

    Science.gov (United States)

    Chen, Wenjun; Wang, Xiaoyun; Lv, Xiaoli; Tian, Yanli; Xu, Yanquan; Mao, Qiang; Shang, Mei; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2014-09-01

    Clonorchis sinensis excretory/secretory products (ESP) have gained high attentions because of their potential to be vaccine candidates and drug targets in C. sinensis prevention. In this study, we extensively profiled the characteristics of four C. sinensis cathepsin B cysteine proteases (CsCB1, CsCB2, CsCB3, and CsCB4). Bioinformatics analysis showed all CsCBs contained signal peptides at the N-terminal. Functional domains and residues were found in CsCB sequences. We expressed four CsCBs and profiled immune responses followed by vaccine trials. Recombinant CsCBs could induce high IgG titers, indicating high immunogenicity of CsCB family. Additionally, ELISA results showed that both IgG1 and IgG2a levels apparently increased post-immunization with all four CsCBs, showing that combined Th1/Th2 immune responses were triggered by CsCB family. Both Real-time polymerase chain reaction (RT-PCR) and Western blotting confirmed that four CsCBs have distinct expression patterns in C. sinensis life stages. More importantly, we validated our hypothesis that CsCBs were C. sinensis excretory/secretory products. CsCBs could be recognized by C. sinensis-infected sera throughout the infection period, indicating that secreted CsCBs are immune triggers during C. sinensis infection. The protective effect was assessed by comparing the worm burden and egg per gram (EPG) between CsCB group and control group, showing that worm burden (P sinensis excretory/secretory products that may regulate host immune responses.

  15. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    Science.gov (United States)

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  16. The role of cysteine residues in the sulphate transporter, SHST1: construction of a functional cysteine-less transporter.

    Science.gov (United States)

    Howitt, Susan M

    2005-05-20

    We investigated the role of cysteine residues in the sulphate transporter, SHST1, with the aim of generating a functional cysteine-less variant. SHST1 contains five cysteine residues and none was essential for function. However, replacement of C421 resulted in a reduction in transport activity. Sulphate transport by C205 mutants was dependent on the size of the residue at this position. Alanine at position 205 resulted in a complete loss of function whereas leucine resulted in a 3-fold increase in sulphate transport relative to wild type SHST1. C205 is located in a putative intracellular loop and our results suggest that this loop may be important for sulphate transport. By replacing C205 with leucine and the other four cysteine residues with alanine, we constructed a cysteine-less variant of SHST1 that has transport characteristics indistinguishable from wild type. This construct will be useful for further structure and function studies of SHST1.

  17. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    Science.gov (United States)

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular

  18. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.

    Science.gov (United States)

    Huang, Chien-Wei; Walker, Michelle E; Fedrizzi, Bruno; Gardner, Richard C; Jiranek, Vladimir

    2017-08-01

    An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-07-14

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 {mu}M). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one.

  20. Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae)

    International Nuclear Information System (INIS)

    Torricelli, Elena; Gorbi, Gessica; Pawlik-Skowronska, Barbara; Di Toppi, Luigi Sanita; Corradi, Maria Grazia

    2004-01-01

    Two strains of the unicellular green alga Scenedesmus acutus with different sensitivity to hexavalent chromium were compared for their tolerance of cadmium, by means of growth and recovery tests, and determination of cysteine, reduced glutathione and phytochelatin content, after short-term exposure to various cadmium concentrations (from 1.125 to 27 μM). Growth experiments showed that, after 7-day treatments with cadmium, the chromium-tolerant strain reached a significantly higher cell density and, after 24-h exposure to Cd, was able to resume growth significantly better than the wild type. Constitutive level of cysteine was higher in the chromium-tolerant strain, while glutathione levels were similar in the two strains. The higher content of cysteine and the maintenance of both reduced glutathione and phytochelatin high levels in the presence of cadmium, support the higher cadmium co-tolerance of the chromium-tolerant strain in comparison with the wild type one

  1. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli

    Science.gov (United States)

    2012-01-01

    Background Escherichia coli has two L-cysteine biosynthetic pathways; one is synthesized from O-acetyl L-serine (OAS) and sulfate by L-cysteine synthase (CysK), and another is produced via S-sulfocysteine (SSC) from OAS and thiosulfate by SSC synthase (CysM). SSC is converted into L-cysteine and sulfite by an uncharacterized reaction. As thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and NrdH) are known as reductases of peptidyl disulfides, overexpression of such reductases might be a good way for improving L-cysteine production to accelerate the reduction of SSC in E. coli. Results Because the redox enzymes can reduce the disulfide that forms on proteins, we first tested whether these enzymes catalyze the reduction of SSC to L-cysteine. All His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into L-cysteine in vitro. Overexpression of Grx1 and NrdH enhanced a 15-40% increase in the E. coliL-cysteine production. On the other hand, disruption of the cysM gene cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting that its improvement was due to the efficient reduction of SSC under the fermentative conditions. Moreover, L-cysteine production in knockout mutants of the sulfite reductase genes (ΔcysI and ΔcysJ) and the L-cysteine synthase gene (ΔcysK) each decreased to about 50% of that in the wild-type strain. Interestingly, there was no significant difference in L-cysteine production between wild-type strain and gene deletion mutant of the upstream pathway of sulfite (ΔcysC or ΔcysH). These results indicate that sulfite generated from the SSC reduction is available as the sulfur source to produce additional L-cysteine molecule. It was finally found that in the E. coliL-cysteine producer that co-overexpress glutaredoxin (NrdH), sulfite reductase (CysI), and L-cysteine synthase (CysK), there was the highest amount of L-cysteine produced per cell. Conclusions In this work, we showed that Grx1 and

  2. Characterization and milk coagulating properties of Cynanchum otophyllum Schneid. proteases.

    Science.gov (United States)

    Luo, Jie; Xiao, Chen; Zhang, Hao; Ren, Fazheng; Lei, Xingen; Yang, Zibiao; Yu, Zhengquan

    2018-04-01

    The herbaceous plant Cynanchum otophyllum Schneid. is widely used as a milk coagulant to make a Chinese traditional milk product, milk cake. However, the milk-clotting compounds and their mechanism remain unclear. In this study, crude proteases were extracted from the dried leaves of Cynanchum otophyllum Schneid. using citric acid-phosphate buffer and then partially purified by weak anion exchange chromatography. Two proteases, QA and QC, with molecular weights of 14 and 27 kDa, respectively, were shown to exhibit milk-clotting activity. A study of the effects of pH and temperature on the milk-clotting activity and proteolytic activity of the proteases showed that they exhibited good pH stability from pH 5.5 to 7.5 and good thermal stability at temperatures from 50 to 70°C. The QA and QC were the cysteine proteases, able to hydrolyze β-casein and κ-casein completely, and α-casein partially. The cleavage site on κ-casein determined by Orbitrap (Thermo Fisher Scientific, San Jose, CA) analysis showed that QA and QC could cleave κ-casein at Ser132-Thr133. Overall, the results suggest that the Cynanchum otophyllum Schneid. proteases are a promising milk-clotting enzyme that could be used for manufacturing milk cake and cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Jan Dvorák

    2009-06-01

    Full Text Available Blood flukes of the genus Schistosoma are platyhelminth parasites that infect 200 million people worldwide. Digestion of nutrients from the host bloodstream is essential for parasite development and reproduction. A network of proteolytic enzymes (proteases facilitates hydrolysis of host hemoglobin and serum proteins.We identified a new cathepsin L termed SmCL3 using PCR strategies based on S. mansoni EST sequence data. An ortholog is present in Schistosoma japonicum. SmCL3 was heterologously expressed as an active enzyme in the yeast, Pichia pastoris. Recombinant SmCL3 has a broad pH activity range against peptidyl substrates and is inhibited by Clan CA protease inhibitors. Consistent with a function in degrading host proteins, SmCL3 hydrolyzes serum albumin and hemoglobin, is localized to the adult gastrodermis, and is expressed mainly in those life stages infecting the mammalian host. The predominant form of SmCL3 in the parasite exists as a zymogen, which is unusual for proteases. This zymogen includes an unusually long prodomain with alpha helical secondary structure motifs. The striking specificity of SmCL3 for amino acids with large aromatic side chains (Trp and Tyr at the P2 substrate position, as determined with positional scanning-synthetic combinatorial library, is consistent with a molecular model that shows a large and deep S2 pocket. A sequence similarity network (SSN view clusters SmCL3 and other cathepsins L in accordance with previous large-scale phylogenetic analyses that identify six super kingdoms.SmCL3 is a gut-associated cathepsin L that may contribute to the network of proteases involved in degrading host blood proteins as nutrients. Furthermore, this enzyme exhibits some unusual sequence and biophysical features that may result in additional functions. The visualization of network inter-relationships among cathepsins L suggests that these enzymes are suitable 'marker sequences' for inclusion in future phylogenetic analyses.

  4. Survey of the rubber tree genome reveals a high number of cysteine protease-encoding genes homologous to Arabidopsis SAG12.

    Science.gov (United States)

    Zou, Zhi; Liu, Jianting; Yang, Lifu; Xie, Guishui

    2017-01-01

    Arabidopsis thaliana SAG12, a senescence-specific gene encoding a cysteine protease, is widely used as a molecular marker for the study of leaf senescence. To date, its potential orthologues have been isolated from several plant species such as Brassica napus and Nicotiana tabacum. However, little information is available in rubber tree (Hevea brasiliensis), a rubber-producing plant of the Euphorbiaceae family. This study presents the identification of SAG12-like genes from the rubber tree genome. Results showed that an unexpected high number of 17 rubber orthologues with a single intron were found, contrasting the single copy with two introns in Arabidopsis. The gene expansion was also observed in another two Euphorbiaceae plants, castor bean (Ricinus communis) and physic nut (Jatropha curcas), both of which contain 8 orthologues. In accordance with no occurrence of recent whole-genome duplication (WGD) events, most duplicates in castor and physic nut were resulted from tandem duplications. In contrast, the duplicated HbSAG12H genes were derived from tandem duplications as well as the recent WGD. Expression analysis showed that most HbSAG12H genes were lowly expressed in examined tissues except for root and male flower. Furthermore, HbSAG12H1 exhibits a strictly senescence-associated expression pattern in rubber tree leaves, and thus can be used as a marker gene for the study of senescence mechanism in Hevea.

  5. Positive selection pressure introduces secondary mutations at Gag cleavage sites in human immunodeficiency virus type 1 harboring major protease resistance mutations

    DEFF Research Database (Denmark)

    Banke, S.; Lillemark, M.R.; Gerstoft, J.

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) specifically target the HIV-1 protease enzyme. Mutations in the enzyme can result in PI resistance (termed PI mutations); however, mutations in the HIV-1 gag region, the substrate for the protease enzyme, might also lead to PI ...

  6. Inhibitors of cysteine cathepsin and calpain do not prevent ultraviolet-B-induced apoptosis in human keratinocytes and HeLa cells

    DEFF Research Database (Denmark)

    Bang, Bo; Baadsgaard, Ole; Skov, Lone

    2004-01-01

    been demonstrated to play a role in the execution of programmed cell death induced by other stimuli, e.g. TNF-alpha. The purpose of the present study was therefore to investigate whether inhibitors of cysteine cathepsins and calpains could prevent UVB-induced apoptosis in HeLa cells and keratinocytes....... This was done by investigating the effect of the irreversible cysteine protease inhibitor zFA-fmk, the cathepsin B inhibitor CA-074-Me and the calpain inhibitor ALLN on the viability of UVB-irradiated human keratinocytes and HeLa cells. At concentrations of 10 microM and above zVAD-fmk conferred partial dose......-dependent protection against UVB-induced apoptosis in HeLa cells and keratinocytes. Moreover, caspase-3 activity was completely blocked at zVAD-fmk concentrations of 1 microM in HeLa cells. This indicates that caspase-independent mechanisms could be involved in UVB-induced apoptosis. However, the protease inhibitors z...

  7. Molecular cloning of the large subunit of the high-Ca2+-requiring form of human Ca2+-activated neutral protease

    International Nuclear Information System (INIS)

    Imajoh, Shinobu; Aoki, Kazumasa; Ohno, Shigeo; Emori, Yasufumi; Kawasaki, Hiroshi; Sugihara, Hidemitsu; Suzuki, Koichi

    1988-01-01

    A nearly full-length cDNA clone for the large subunit of high-Ca 2+ -requiring Ca 2+ -activated neutral protease (mCANP) from human tissues has been isolated. The deduced protein, determined for the first time as an mCANP, has essentially the same structural features as those revealed previously for the large subunits of the low-Ca 2+ -requiring form (μCANP). Namely, the protein, comprising 700 amino acid residues, is characterized by four domains, containing a cysteine protease like domain and a Ca 2+ -binding domain. The overall amino acid sequence similarities of the mCANP large subunit with those of human μCANP and chicken CANP are 62% and 66%, respectively. These values are slightly lower than that observed between μCANP and chicken CANP (70%). Local sequence similarities vary with the domain, 73-78% in the cysteine protease like domain and 48-65% in the Ca 2+ -binding domain. These results suggest that CANPs with different Ca 2+ sensitivities share a common evolutionary origin and that their regulatory mechanisms are similar except for the Ca 2+ concentrations required for activation

  8. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus.

    Science.gov (United States)

    Salles, Hévila Oliveira; Braga, Ana Carolina Linhares; Nascimento, Maria Thayana dos Santos Canuto do; Sousa, Ana Márjory Paiva; Lima, Adriano Rodrigues; Vieira, Luiz da Silva; Cavalcante, Antônio Cézar Rocha; Egito, Antonio Silvio do; Andrade, Lúcia Betânia da Silva

    2014-01-01

    Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (Albizia lebbeck, Ipomoea asarifolia, Jatropha curcas, Libidibia ferrea, Moringa oleifera and Ricinus communis (P0.05, Bonferroni test). Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties.

  9. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus

    Directory of Open Access Journals (Sweden)

    Hévila Oliveira Salles

    Full Text Available Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (0.05, Bonferroni test. Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties.

  10. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  11. Effect of sorghum type and malting on production of free amino nitrogen in conjunction with exogenous protease enzymes.

    Science.gov (United States)

    Dlamini, Bhekisisa C; Buys, Elna M; Taylor, John R N

    2015-01-01

    Sorghum types suitable for brewing and bioethanol production are required. The effect of sorghum type (white non-tannin versus white type II tannin) on free amino nitrogen (FAN) production from sorghum grain and malt using exogenous protease enzymes was investigated over extended incubation at moderate temperature (45 °C). With grain in the absence of exogenous proteases, white non-tannin sorghum produced substantially higher levels of FAN than white type II tannin sorghum, due to the tannins in the latter. Incubating sorghum grain with neutral proteinase and amino-peptidase in combination improved FAN production. The two sorghum types produced similar FAN levels when malted and incubated in the absence of the exogenous proteases. When both sorghums were malted and incubated with neutral proteinase alone substantially more FAN yield (124-126 mg 100 g(-1)) occurred than with grains (61-84 mg 100 g(-1)). The combination of amino-peptidase and proteinase did not improve FAN further. Neither, did malting influence wort free amino acid profile. Group B amino acids constituted the highest percentage (42-47%). With grain, white non-tannin sorghum plus proteinase and amino-peptidase yields the highest FAN, with malt both white non-tannin and white type II tannin sorghums plus proteinase yield the highest FAN. © 2014 Society of Chemical Industry.

  12. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule

    DEFF Research Database (Denmark)

    Holm, Dorte; Fink, Dorte Rosenbek; Grønlund, Jørn

    2009-01-01

    We have cloned and characterized a novel murine transmembrane molecule, mSCART1 belonging to the scavenger receptor cysteine-rich superfamily. The cDNA encodes a polypeptide chain of 989 amino acids, organized as a type I transmembrane protein that contains eight extracellular SRCR domains followed...

  13. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy.

    Science.gov (United States)

    Musante, Luca; Tataruch, Dorota; Gu, Dongfeng; Liu, Xinyu; Forsblom, Carol; Groop, Per-Henrik; Holthofer, Harry

    2015-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  14. Proteases and Protease Inhibitors of Urinary Extracellular Vesicles in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Luca Musante

    2015-01-01

    Full Text Available Diabetic nephropathy (DN is one of the major complications of diabetes mellitus (DM, leads to chronic kidney disease (CKD, and, ultimately, is the main cause for end-stage kidney disease (ESKD. Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  15. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  16. Comparative analysis of procoagulant and fibrinogenolytic activity of crude protease fractions of turmeric species.

    Science.gov (United States)

    Shivalingu, B R; Vivek, H K; Nafeesa, Zohara; Priya, B S; Swamy, S Nanjunda

    2015-08-22

    Turmeric rhizome is a traditional herbal medicine, which has been widely used as a remedy to stop bleeding on fresh cuts and for wound healing by the rural and tribal population of India. To validate scientific and therapeutic application of turmeric rhizomes to stop bleeding on fresh cuts and its role in wound healing process. The water extracts of thoroughly scrubbed and washed turmeric rhizomes viz., Curcuma aromatica Salisb., Curcuma longa L., Curcuma caesia Roxb., Curcuma amada Roxb. and Curcuma zedoria (Christm.) Roscoe. were subjected to salting out and dialysis. The dialyzed crude enzyme fractions (CEFs) were assessed for proteolytic activity using casein as substrate and were also confirmed by caseinolytic zymography. Its coagulant activity and fibrinogenolytic activity were assessed using human citrated plasma and fibrinogen, respectively. The type of protease(s) in CEFs was confirmed by inhibition studies using specific protease inhibitors. The CEFs of C. aromatica, C. longa and C. caesia showed 1.89, 1.21 and 1.07 folds higher proteolytic activity, respectively, compared to papain. In contrast to these, C. amada and C. zedoria exhibited moderate proteolytic activity. CEFs showed low proteolytic activities compared to trypsin. The proteolytic activities of CEFs were confirmed by caseinolytic zymography. The CEFs of C. aromatica, C. longa and C. caesia showed complete hydrolysis of Aα, Bβ and γ subunits of human fibrinogen, while C. amada and C. zedoria showed partial hydrolysis. The CEFs viz., C. aromatica, C. longa, C. caesia, C. amada and C. zedoria exhibited strong procoagulant activity by reducing the human plasma clotting time from 172s (Control) to 66s, 84s 88s, 78s and 90s, respectively. The proteolytic activity of C. aromatica, C. longa, C. caesia and C. amada was inhibited (>82%) by PMSF, suggesting the possible presence of a serine protease(s). However, C. zedoria showed significant inhibition (60%) against IAA and moderate inhibition (30

  17. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato.

    Science.gov (United States)

    Stork, Ines; Gartemann, Karl-Heinz; Burger, Annette; Eichenlaub, Rudolf

    2008-09-01

    Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.

  18. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    Science.gov (United States)

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  19. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    Science.gov (United States)

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  20. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling.

    Science.gov (United States)

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) type III effector AvrBsT triggers programmed cell death (PCD) and activates the hypersensitive response (HR) in plants. Here, we isolated and identified the plasma membrane localized pathogenesis-related (PR) protein 4c gene (CaPR4c) from pepper (Capsicum annuum) leaves undergoing AvrBsT-triggered HR cell death. CaPR4c encodes a protein with a signal peptide and a Barwin domain. Recombinant CaPR4c protein expressed in Escherichia coli exhibited cysteine protease-inhibitor activity and ribonuclease (RNase) activity. Subcellular localization analyses revealed that CaPR4c localized to the plasma membrane in plant cells. CaPR4c expression was rapidly and specifically induced by avirulent Xcv (avrBsT) infection. Transient expression of CaPR4c caused HR cell death in pepper leaves, which was accompanied by enhanced accumulation of H2 O2 and significant induction of some defense-response genes. Deletion of the signal peptide from CaPR4c abolished the induction of HR cell death, indicating a requirement for plasma membrane localization of CaPR4c for HR cell death. CaPR4c silencing in pepper disrupted both basal and AvrBsT-triggered resistance responses, and enabled Xcv proliferation in infected leaves. H2 O2 accumulation, cell-death induction, and defense-response gene expression were distinctly reduced in CaPR4c-silenced pepper. CaPR4c overexpression in transgenic Arabidopsis plants conferred greater resistance against infection by Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. These results collectively suggest that CaPR4c plays an important role in plant cell death and defense signaling. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Identification of an archaeal presenilin-like intramembrane protease.

    Science.gov (United States)

    Torres-Arancivia, Celia; Ross, Carolyn M; Chavez, Jose; Assur, Zahra; Dolios, Georgia; Mancia, Filippo; Ubarretxena-Belandia, Iban

    2010-09-29

    The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs). The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP) without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.

  2. Interaction of protein C inhibitor with the type II transmembrane serine protease enteropeptidase.

    Directory of Open Access Journals (Sweden)

    Thomas A Prohaska

    Full Text Available The serine protease inhibitor protein C inhibitor (PCI is expressed in many human tissues and exhibits broad protease reactivity. PCI binds glycosaminoglycans and certain phospholipids, which modulate its inhibitory activity. Enteropeptidase (EP is a type II transmembrane serine protease mainly found on the brush border membrane of epithelial cells in the duodenum, where it activates trypsinogen to initiate the digestion of food proteins. Some active EP is also present in duodenal fluid and has been made responsible for causing pancreatitis in case of duodeno-pancreatic reflux. Together with its substrate trypsinogen, EP is furthermore present in the epidermis and in some cancer cells. In this report, we show that PCI inhibited EP with an apparent 2nd order rate constant of 4.48 × 10(4 M(-1 s(-1. Low molecular weight (LMWH and unfractionated heparin (UFH slightly reduced the inhibitory effect of PCI. The SI (stoichiometry of inhibition value for the inhibition of EP by PCI was 10.8 in the absence and 17.9 in the presence of UFH (10 U/ml. By inhibiting trypsin, chymotrypsin, and additionally EP, PCI might play a role in the protection of the pancreas from autodigestion. Furthermore the interaction of PCI with EP may influence the regulation of epithelial differentiation.

  3. Identification of an archaeal presenilin-like intramembrane protease.

    Directory of Open Access Journals (Sweden)

    Celia Torres-Arancivia

    Full Text Available BACKGROUND: The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs. The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. METHODOLOGY AND PRINCIPAL FINDINGS: We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. CONCLUSIONS AND SIGNIFICANCE: Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.

  4. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    Science.gov (United States)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  5. Cysteine Cathepsins in the secretory vesicle produce active peptides: Cathepsin L generates peptide neurotransmitters and cathepsin B produces beta-amyloid of Alzheimer's disease.

    Science.gov (United States)

    Hook, Vivian; Funkelstein, Lydiane; Wegrzyn, Jill; Bark, Steven; Kindy, Mark; Hook, Gregory

    2012-01-01

    Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis.

    Science.gov (United States)

    Kadek, Alan; Tretyachenko, Vyacheslav; Mrazek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, Martial; Schriemer, David C; Man, Petr

    2014-03-01

    Carnivorous plants of the genus Nepenthes produce their own aspartic proteases, nepenthesins, to digest prey trapped in their pitchers. Nepenthesins differ significantly in sequence from other aspartic proteases in the animal or even plant kingdoms. This difference, which also brings more cysteine residues into the structure of these proteases, can be a cause of uniquely high temperature and pH stabilities of nepenthesins. Their detailed structure characterization, however, has not previously been possible due to low amounts of protease present in the pitcher fluid and also due to limited accessibility of Nepenthes plants. In the present study we describe a convenient way for obtaining high amounts of nepenthesin-1 from Nepenthes gracilis using heterologous production in Escherichia coli. The protein can be easily refolded in vitro and its characteristics are very close to those described for a natural enzyme isolated from the pitcher fluid. Similarly to the natural enzyme, recombinant nepenthesin-1 is sensitive to denaturing and reducing agents. It also has maximal activity around pH 2.5, shows unusual stability at high pH and its activity is not irreversibly inhibited even after prolonged incubation in the basic pH range. On the other hand, temperature stability of the recombinant enzyme is lower in comparison with the natural enzyme, which can be attributed to missing N-glycosylation in the recombinant protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Primary structure of human pancreatic protease E determined by sequence analysis of the cloned mRNA

    International Nuclear Information System (INIS)

    Shen, W.; Fletcher, T.S.; Largman, C.

    1987-01-01

    Although protease E was isolated from human pancreas over 10 years ago, its amino acid sequence and relationship to the elastases have not been established. The authors report the isolation of a cDNA clone for human pancreatic protease E and determination of the nucleic acid sequence coding for the protein. The deduced amino acid sequence contains all of the features common to serine proteases. The substrate binding region is highly homologous to those of porcine and rat elastases 1, explaining the similar specificity for alanine reported for protease E and these elastases. However, the amino acid sequence outside the substrate binding region is less than 50% conserved, and there is a striking difference in the overall net charge for protease E (6-) and elastases 1 (8+). These findings confirm that protease E is a new member of the serine protease family. They have attempted to identify amino acid residues important for the interaction between elastases and elastin by examining the amino acid sequence differences between elastases and protease E. In addition to the large number of surface charge changes which are outside the substrate binding region, there are several changes which might be crucial for elastolysis: Leu-73/Arg-73; Arg-217A/Ala-217A; Arg-65A/Gln-65A; and the presence of two new cysteine residues (Cys-98 and Cys-99B) which computer modeling studies predict could form a new disulfide bond, not previously observed for serine proteases. They also present evidence which suggests that human pancreas does not synthesize a basic, alanine-specific elastase similar to porcine elastase 1

  8. The Occurrence of Type S1A Serine Proteases in Sponge and Jellyfish

    Science.gov (United States)

    Rojas, Ana; Doolittle, Russell F.

    2003-01-01

    Although serine proteases are found in all kinds of cellular organisms and many viruses, the classic "chymotrypsin family" (Group S1A by th e 1998 Barrett nomenclature) has an unusual phylogenetic distribution , being especially common in animals, entirely absent from plants and protists, and rare among fungi. The distribution in Bacteria is larg ely restricted to the genus Streptomyces, although a few isolated occ urrences in other bacteria have been reported. The family may be enti rely absent from Archaea. Although more than a thousand sequences have been reported for enzymes of this type from animals, none of them ha ve been from early diverging phyla like Porifera or Cnidaria, We now report the existence of Group SlA serine proteases in a sponge (phylu m Porifera) and a jellyfish (phylum Cnidaria), making it safe to conc lude that all animal groups possess these enzymes.

  9. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Encapsulation of protease from Aspergillus oryzae and lipase from Thermomyces lanuginoseus using alginate and different copolymer types

    Directory of Open Access Journals (Sweden)

    Truong Thi Mong Thu

    2016-05-01

    Full Text Available Although the application of enzymes in food as a food processing aid and enzyme supplement is of interest and widely used, the enzymes can be easily deactivated or lose their activity due to many causes such as pH and moisture as well as through the introduction of incompatible ingredients during food processing and storage. These problems can be solved by the encapsulation technique, especially in a gel matrix. The influences were studied of the alginate concentration, types of copolymer and their concentrations on the bead size, encapsulation yield (EY, encapsulation efficiency (EE, leakage and the retention of enzyme activity during storage period of encapsulated protease from Aspergillus oryzae and lipase from Thermomyces lanuginosus beads. A solution of purified protease or lipase was encapsulated in calcium alginate-chitosan beads (CACB, calcium alginate-xanthan gum beads (CAXB and calcium alginate-maltodextrin beads (CAMB using the extrusion method. Increasing the alginate and copolymer concentrations in the solution increased the bead size, EY, EE and the retention of enzyme activity during the storage period and reduced leakage of both the encapsulated protease and lipase. In addition, different types of copolymer significantly (p ≤ 0.05 affected these properties of both encapsulated enzymes. Furthermore, protease encapsulated using 2.0% alginate and 0.2% chitosan provided the highest EY (81.7% and EE (77.2% with a bead size of 1.85 mm and 8.1% leakage. The retention of encapsulated protease activity and the shelf-life of encapsulated enzyme which was expressed as half-life, the time required for the enzyme activity to decrease by half (thalf life were 75.8% and 27.2 wk, respectively after storage at 4 °C for 10 wk. For lipase, encapsulation using 2.0% alginate and 0.4% xanthan gum provided the highest EY (42.5% and EE (43.9% and the bead size and leakage were 1.81 mm and 6.2%, respectively. The retention of encapsulated

  11. Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria.

    Science.gov (United States)

    Sessenwein, Jessica L; Baker, Corey C; Pradhananga, Sabindra; Maitland, Megan E; Petrof, Elaine O; Allen-Vercoe, Emma; Noordhof, Curtis; Reed, David E; Vanner, Stephen J; Lomax, Alan E

    2017-11-29

    Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K + currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain. SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human

  12. Synthesis and Application of Aurophilic Poly(Cysteine and Poly(Cysteine-Containing Copolymers

    Directory of Open Access Journals (Sweden)

    David Ulkoski

    2017-10-01

    Full Text Available The redox capacity, as well as the aurophilicity of the terminal thiol side groups, in poly(Cysteine lend a unique characteristic to this poly(amino acid or polypeptide. There are two major application fields for this polymer: (i biomedical applications in drug delivery and surface modification of biomedical devices and (ii as coating for electrodes to enhance their electrochemical sensitivity. The intended application determines the synthetic route for p(Cysteine. Polymers to be used in biomedical applications are typically polymerized from the cysteine N-carboxyanhydride by a ring-opening polymerization, where the thiol group needs to be protected during the polymerization. Advances in this methodology have led to conditions under which the polymerization progresses as living polymerization, which allows for a strict control of the molecular architecture, molecular weight and polydispersity and the formation of block copolymers, which eventually could display polyphilic properties. Poly(Cysteine used as electrode coating is typically polymerized onto the electrode by cyclic voltammetry, which actually produces a continuous, pinhole-free film on the electrode via the formation of covalent bonds between the amino group of Cysteine and the carbon of the electrode. This resulting coating is chemically very different from the well-defined poly(Cysteine obtained by ring-opening polymerizations. Based on the structure of cysteine a significant degree of cross-linking within the coating deposited by cyclic voltammetry can be assumed. This manuscript provides a detailed discussion of the ring-opening polymerization of cysteine, a brief consideration of the role of glutathione, a key cysteine-containing tripeptide, and examples for the utilization of poly(Cysteine and poly(Cysteine-containing copolymers, in both, the biomedical as well as electrochemical realm.

  13. Indispensable Role of Proteases in Plant Innate Immunity.

    Science.gov (United States)

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  14. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-08-01

    Eighteen tripeptides that fit into the thermally vibrating active site of cathepsin K were discovered by alternating artificial intelligence and molecular simulation. The 18 tripeptides fit the active site better than the cysteine protease inhibitor E64, and a better inhibitor of cathepsin K could be designed considering these tripeptides. Among the 18 tripeptides, Phe-Arg-Asp and Tyr-Arg-Asp fit the active site the best and their structural similarity should be considered in the design process. Interesting factors emerged from the structure of the decision tree, and its structural information will guide exploration of potential inhibitor molecules for proteases.

  15. Mosaic serine proteases in the mammalian central nervous system.

    Science.gov (United States)

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  16. Preparation and application of L-cysteine-doped Keggin polyoxometalate microtubes

    International Nuclear Information System (INIS)

    Shen Yan; Peng Jun; Zhang Huanqiu; Meng Cuili; Zhang Fang

    2012-01-01

    L-cysteine-doped tungstosilicate (Lcys-SiW 12 ) microtubes are prepared, and the amount of L-cysteine doped in the microtubes can be tuned to some extent. The as-prepared Lcys-SiW 12 microtubes are sensitive to ammonia gas exhibited through the distinct color change of the microtubes from light purple to dark blue after exposing to ammonia gas. A possible mechanism of the coloration is that the adsorbed ammonia molecules increase the basicity of the Lcys-SiW 12 microtubes and promote the redox reaction between L-cysteine and polyoxometalate. This is a pH-dependent solid–solid redox reaction, which is triggered by proton capture agent. The Lcys-SiW 12 microtubes show application in chemical sensors for alkaline gases. - Graphical abstract: The Lcys-SiW 12 microtubes were formed during transformation of the monolacunary Keggin-type [α-SiW 11 O 39 ] 8− to the saturated Keggin-type [α-SiW 12 O 40 ] 4− , meanwhile L-cysteine molecules were doped during the growth of the microtubes. Highlights: ► L-cysteine-doped polyoxometalate microtubes are prepared. ► Amount of L-cysteine doped in the microtubes can be tuned to some extent. ► Lcys-SiW 12 microtubes can be applied as a sensor for detecting alkaline gases. ► This is a proton capture agent-triggered solid–solid redox reaction.

  17. Comparative analysis of immune effects in mice model: Clonorchis sinensis cysteine protease generated from recombinant Escherichia coli and Bacillus subtilis spores.

    Science.gov (United States)

    Wu, Zhanshuai; Tang, Zeli; Shang, Mei; Zhao, Lu; Zhou, Lina; Kong, Xiangzhan; Lin, Zhipeng; Sun, Hengchang; Chen, Tingjin; Xu, Jin; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2017-07-01

    Clonorchiasis remains a nonnegligible public health problem in endemic areas. Cysteine protease of Clonorchis sinensis (CsCP) plays indispensable roles in the parasitic physiology and pathology, and has been exploited as a promising drug and vaccine candidate. In recent years, development of spore-based vaccines against multiple pathogens has attracted many investigators' interest. In previous studies, the recombinant Escherichia coli (BL21) and Bacillus subtilis spores expressing CsCP have been successfully constructed, respectively. In this study, the immune effects of CsCP protein purified from recombinant BL21 (rCsCP) and B. subtilis spores presenting CsCP (B.s-CsCP) in Balb/c mice model were conducted with comparative analysis. Levels of specific IgG, IgG1 and IgG2a were significantly increased in sera from both rCsCP and B.s-CsCP intraperitoneally immunized mice. Additionally, recombinant spores expressing abundant fusion CsCP (0.03125 pg/spore) could strongly enhance the immunogenicity of CsCP with significantly higher levels of IgG and isotypes. Compared with rCsCP alone, intraperitoneal administration of mice with spores expressing CsCP achieved a better effect of fighting against C. sinensis infection by slowing down the process of fibrosis. Our results demonstrated that a combination of Th1/Th2 immune responses could be elicited by rCsCP, while spores displaying CsCP prominently induced Th1-biased specific immune responses, and the complex cytokine network maybe mediates protective immune responses against C. sinensis. This work further confirmed that the usage of B. subtilis spores displaying CsCP is an effective way to against C. sinensis.

  18. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  19. Mutations in serine protease inhibitor Kazal type 1 are strongly associated with chronic pancreatitis

    OpenAIRE

    Drenth, J P H; te Morsche, R; Jansen, J B M J

    2002-01-01

    Background: Although chronic pancreatitis is associated with risk factors such as alcoholism, hyperparathyroidism, and hypertriglyceridaemia, little is known of the actual aetiology of the disease. It is thought that inappropriate activation of trypsinogen causes pancreatitis, and indeed in cases of hereditary pancreatitis mutations of cationic trypsinogen (PRSS1) have been described. As serine protease inhibitor Kazal type 1 (SPINK1) is a potent natural inhibitor of pancreatic trypsin activi...

  20. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    Science.gov (United States)

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic

  1. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  2. Cellular processing of the amyloidogenic cystatin C variant of hereditary cerebral hemorrhage with amyloidosis, Icelandic type

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Merz, G S; Schwenk, V

    1999-01-01

    of an amyloidogenic mutation on the intracellular processing of its protein product. The protein, a mutant of the cysteine protease inhibitor cystatin C, is the amyloid precursor protein in Hereditary Cerebral Hemorrhage with Amyloidosis--Icelandic type (HCHWA-I). The amyloid fibers are composed of mutant cystatin C...... (L68Q) that lacks the first 10 amino acids. We have previously shown that processing of wild-type cystatin C entails formation of a transient intracellular dimer that dissociates prior to secretion, such that extracellular cystatin C is monomeric. We report here that the cystatin C mutation engenders...

  3. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium.

    Science.gov (United States)

    Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng

    2014-06-04

    . Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets.

  4. Activity, specificity, and probe design for the smallpox virus protease K7L.

    Science.gov (United States)

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  5. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats.

    Science.gov (United States)

    Salman, Zenat K; Refaat, Rowaida; Selima, Eman; El Sarha, Ashgan; Ismail, Menna A

    2013-08-15

    Increasing evidence has established causative links between obesity, chronic inflammation and insulin resistance; the core pathophysiological feature in type 2 diabetes mellitus. This study was designed to examine whether the combination of L-cysteine and metformin would provide additional benefits in reducing oxidative stress, inflammation and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Male Wistar rats were fed a high-fat diet (HFD) for 8 weeks to induce insulin resistance after which they were rendered diabetic with low-dose streptozotocin. Diabetic rats were treated with metformin (300 mg/kg/day), L-cysteine (300 mg/kg/day) and their combination along with HFD for another 2 weeks. Control rats were fed normal rat chow throughout the experiment. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index (HOMA-IR) and serum free fatty acids (FFAs) were measured. Serum levels of the inflammatory markers; monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP) and nitrite/nitrate were also determined. The liver was isolated and used for determination of malondialdehyde (MDA), reduced glutathione (GSH), caspase-3 and cytochrome c levels. The hypoglycemic effect of the combination therapy exceeded that of metformin and L-cysteine monotherapies with more improvement in insulin resistance. All treated groups exhibited significant reductions in serum FFAs, oxidative stress and inflammatory parameters, caspase-3 and cytochrome c levels compared to untreated diabetic rats with the highest improvement observed in the combination group. In conclusion, the present results clearly suggest that L-cysteine can be strongly considered as an adjunct to metformin in management of type 2 diabetes. © 2013 Elsevier B.V. All rights reserved.

  6. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode.

    Science.gov (United States)

    Safavi, Afsaneh; Ahmadi, Raheleh; Mahyari, Farzaneh Aghakhani

    2014-04-01

    A linear sweep voltammetric method is used for direct simultaneous determination of L-cysteine and L-cysteine disulfide (cystine) based on carbon ionic liquid electrode. With carbon ionic liquid electrode as a high performance electrode, two oxidation peaks for L-cysteine (0.62 V) and L-cysteine disulfide (1.3 V) were observed with a significant separation of about 680 mV (vs. Ag/AgCl) in phosphate buffer solution (pH 6.0). The linear ranges were obtained as 1.0-450 and 5.0-700 μM and detection limits were estimated to be 0.298 and 4.258 μM for L-cysteine and L-cysteine disulfide, respectively. This composite electrode was applied for simultaneous determination of L-cysteine and L-cysteine disulfide in two real samples, artificial urine and nutrient broth. Satisfactory results were obtained which clearly indicate the applicability of the proposed electrode for simultaneous determination of these compounds in complex matrices.

  7. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... compared with that of wild-type B. licheniformis CICIM B5102. Key word: Alkaline protease, Bacillus amyloliquefaciens, Bacillus licheniformis. INTRODUCTION. Proteases are one of the most important industrial enzyme groups, accounting for approximately 60% of the total enzyme sales (Beg et al., 2003).

  8. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species.

    Science.gov (United States)

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J; Paton, Lois; Woof, Jenny M; von Pawel-Rammingen, Ulrich

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use.

  9. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  10. Acetaldehyde Removal from Indoor Air through Chemical Absorption Using L-Cysteine

    Directory of Open Access Journals (Sweden)

    Miyuki Noguchi

    2010-09-01

    Full Text Available The irreversible removal of acetaldehyde from indoor air via a chemical reaction with amino acids was investigated. To compare effectiveness, five types of amino acid (glycine, L-lysine, L-methionine, L-cysteine, and L-cystine were used as the reactants. First, acetaldehyde-laden air was introduced into aqueous solutions of each amino acid and the removal abilities were compared. Among the five amino acids, L-cysteine solution showed much higher removal efficiency, while the other amino acids solutions didn’t show any significant differences from the removal efficiency of water used as a control. Next, as a test of the removal abilities of acetaldehyde by semi-solid L-cysteine, a gel containing L-cysteine solution was put in a fluororesin bag filled with acetaldehyde gas, and the change of acetaldehyde concentration was measured. The L-cysteine-containing gel removed 80% of the acetaldehyde in the air within 24 hours. The removal ability likely depended on the unique reaction whereby acetaldehyde and L-cysteine rapidly produce 2-methylthiazolidine-4-carboxylic acid. These results suggested that the reaction between acetaldehyde and L-cysteine has possibilities for irreversibly removing toxic acetaldehyde from indoor air.

  11. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification.

    Science.gov (United States)

    Wible, Ryan S; Sutter, Thomas R

    2017-03-20

    The unique biophysical and electronic properties of cysteine make this molecule one of the most biologically critical amino acids in the proteome. The defining sulfur atom in cysteine is much larger than the oxygen and nitrogen atoms more commonly found in the other amino acids. As a result of its size, the valence electrons of sulfur are highly polarizable. Unique protein microenvironments favor the polarization of sulfur, thus increasing the overt reactivity of cysteine. Here, we provide a brief overview of the endogenous generation of reactive oxygen and electrophilic species and specific examples of enzymes and transcription factors in which the oxidation or covalent modification of cysteine in those proteins modulates their function. The perspective concludes with a discussion of cysteine chemistry and biophysics, the hard and soft acids and bases model, and the proposal of the Soft Cysteine Signaling Network: a hypothesis proposing the existence of a complex signaling network governed by layered chemical reactivity and cross-talk in which the chemical modification of reactive cysteine in biological networks triggers the reorganization of intracellular biochemistry to mitigate spikes in endogenous or exogenous oxidative or electrophilic stress.

  12. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    Full Text Available Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc, a disease-associated isoform of the host-encoded cellular protein (PrP(C. Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc. However, PrP(Sc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C and PrP(Sc by means of differential centrifugation. The conformational solubility and stability assay (CSSA was then developed by measuring PrP(Sc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M, followed by sheep scrapie (2.2 M and by MM2 sCJD (1.6 M. In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc conformational stabilities of protease-resistant and protease-sensitive PrP(Sc and that it is a valuable tool

  13. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    International Nuclear Information System (INIS)

    Bezerra, A. G.; Barison, A.; Oliveira, V. S.; Foti, L.; Krieger, M. A.; Dhalia, R.; Viana, I. F. T.; Schreiner, W. H.

    2012-01-01

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV–Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the μM range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation–reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V 2 O 5 form.

  14. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  15. Optical Absorption and Electric Resistivity of an l-Cysteine Film

    Science.gov (United States)

    Kamada, Masao; Hideshima, Takuya; Azuma, Junpei; Yamamoto, Isamu; Imamura, Masaki; Takahashi, Kazutoshi

    2016-12-01

    The optical and electric properties of an l-cysteine film have been investigated to understand its applicability to bioelectronics. The fundamental absorption is the allowed transition having the threshold at 5.8 eV and the absorption is due to the charge-transfer type transition from sulfur-3sp to oxygen-2p and/or carbon-2p states, while absorptions more than 9 eV can be explained with intra-atomic transitions in the functional groups. The electric resistivity is 2.0 × 104 Ω m at room temperature and increases as the sample temperature decreases. The results indicate that the l-cysteine film is a p-type semiconductor showing the hole conduction caused by the sulfur-3sp occupied states and unknown impurity or defect states as acceptors. The electron affinity of the l-cysteine film is derived as ≦-0.3 eV.

  16. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    International Nuclear Information System (INIS)

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-01-01

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with 14 C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition

  17. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens?

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Utsch, Lara; Lutter, René; van Ree, Ronald

    2017-01-01

    Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2,

  18. Two Kazal-type protease inhibitors from Macrobrachium nipponense and Eriocheir sinensis: comparative analysis of structure and activities.

    Science.gov (United States)

    Qian, Ye-Qing; Li, Ye; Yang, Fan; Yu, Yan-Qin; Yang, Jin-Shu; Yang, Wei-Jun

    2012-03-01

    Kazal-type inhibitors (KPIs) play important roles in many biological and physiological processes, such as blood clotting, the immune response and reproduction. In the present study, two male reproductive tract KPIs, termed Man-KPI and Ers-KPI, were identified in Macrobrachium nipponense and Eriocheir sinensis, respectively. The inhibitory activities of recombinant Man-KPI and Ers-KPI against chymotrypsin, elastase, trypsin and thrombin were determined. The results showed that both of them strongly inhibit chymotrypsin and elastase. Kinetic studies were performed to elucidate their inhibition mechanism. Furthermore, individual domains were also expressed to learn further which domain contributes to the inhibitory activities of intact KPIs. Only Man-KPI_domain3 is active in the inhibition of chymotrypsin and elastase. Meanwhile, Ers-KPI_domain2 and 3 are responsible for inhibition of chymotrypsin, and Ers-KPI_domains2, 3 and 4 are responsible for the inhibition of elastase. Meanwhile, the inhibitory activities of these two KPIs toward Macrobrachium rosenbergii, M. nipponense and E. sinensis sperm were compared with that of the Kazal-type peptidase inhibitor (MRPINK) characterized from the M. rosenbergii reproductive tract in a previous study. The results demonstrated that KPIs can completely inhibit the gelatinolytic activities of sperm proteases from their own species, while different levels of cross-inhibition were observed between KPI and proteases from different species. These results may provide new perspective to further clarify the mechanism of KPI-proteases interaction in the male reproductive system. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Antimalarial Activity of Azadipeptide Nitriles

    OpenAIRE

    Löser, Reik; Gut, Jiri; Rosenthal, Philip J.; Frizler, Maxim; Gütschow, Michael; Andrews, Katherine T.

    2009-01-01

    Azadipeptide nitriles – novel cysteine protease inhibitors – display structure-dependent antimalarial activity against both chloroquine-sensitive and chloroquine-resistant lines of cultured Plasmodium falciparum malaria parasites. Inhibition of parasite’s haemoglobin-degrading cysteine proteases was also investigated, revealing the azadipeptide nitriles as potent inhibitors of falcipain-2 and -3. A correlation between the cysteine protease-inhibiting activity and the antimalarial potential of...

  20. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Ratia, Kiira; Pegan, Scott; Takayama, Jun; Sleeman, Katrina; Coughlin, Melissa; Baliji, Surendranath; Chaudhuri, Rima; Fu, Wentao; Prabhakar, Bellur S.; Johnson, Michael E.; Baker, Susan C.; Ghosh, Arun K.; Mesecar, Andrew D. (Loyola); (Purdue); (UIC)

    2008-10-27

    We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC{sub 50} value of 20 {mu}M, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC{sub 50} of 15 {mu}M and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.

  1. Invasion of melanoma cells into dermal connective tissue in vitro: evidence for an important role of cysteine proteases.

    NARCIS (Netherlands)

    Dennhofer, R.; Kurschat, P.; Zigrino, P.; Klose, A.; Bosserhoff, A.; Muijen, G.N.P. van; Krieg, T.; Mauch, C.; Hunzelmann, N.

    2003-01-01

    Invasion of melanoma cells into the dermal connective tissue is a major characteristic in the complex process of metastasis. Proteases play an important role in tumor cell invasion as these enzymes are able to degrade most components of the extracellular matrix (ECM), and thus enable cells to

  2. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  3. Biochemical analysis of a papain-like protease isolated from the latex of Asclepias curassavica L.

    Science.gov (United States)

    Liggieri, Constanza; Obregon, Walter; Trejo, Sebastian; Priolo, Nora

    2009-02-01

    Most of the species belonging to Asclepiadaceae family usually secrete an endogenous milk-like fluid in a network of laticifer cells in which sub-cellular organelles intensively synthesize proteins and secondary metabolites. A new papain-like endopeptidase (asclepain c-II) has been isolated and characterized from the latex extracted from petioles of Asclepias curassavica L. (Asclepiadaceae). Asclepain c-II was the minor proteolytic component in the latex, but showed higher specific activity than asclepain c-I, the main active fraction previously studied. Both enzymes displayed quite distinct biochemical characteristics, confirming that they are different enzymes. Crude extract was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry, were isolated. Asclepain c-II displayed a molecular mass of 23,590 Da, a pI higher than 9.3, maximum proteolytic activity at pH 9.4-10.2, and showed poor thermostability. The activity of asclepain c-II is inhibited by cysteine proteases inhibitors like E-64, but not by any other protease inhibitors such as 1,10-phenantroline, phenylmethanesulfonyl fluoride, and pepstatine. The Nterminal sequence (LPSFVDWRQKGVVFPIRNQGQCGSCWTFSA) showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-amino acid-p-nitrophenyl esters, the enzyme exhibited higher preference for the glutamine derivative. Determinations of kinetic parameters were performed with N-alpha-CBZ-L-Gln-p-nitrophenyl ester as substrate: K(m)=0.1634 mM, k(cat)=121.48 s(-1), and k(cat)/K(m)=7.4 x 10(5) s(-1)/mM.

  4. Earthworm Protease

    Directory of Open Access Journals (Sweden)

    Rong Pan

    2010-01-01

    Full Text Available The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibriniolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP. The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate proenzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  5. Earthworm Protease

    International Nuclear Information System (INIS)

    Pan, R.; Zhang, Z.; He, R.

    2010-01-01

    The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibrinolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP). The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate pro enzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  6. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  7. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming, E-mail: qmchen@scu.edu.cn

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  8. S-Allyl cysteine improves nonalcoholic fatty liver disease in type 2 diabetes Otsuka Long-Evans Tokushima Fatty rats via regulation of hepatic lipogenesis and glucose metabolism

    OpenAIRE

    Takemura, Shigekazu; Minamiyama, Yukiko; Kodai, Shintaro; Shinkawa, Hiroji; Tsukioka, Takuma; Okada, Shigeru; Azuma, Hideki; Kubo, Shoji

    2013-01-01

    It is important to prevent and improve diabetes mellitus and its complications in a safe and low-cost manner. S-Allyl cysteine, an aged garlic extract with antioxidant activity, was investigated to determine whether S-allyl cysteine can improve type 2 diabetes in Otsuka Long-Evans Tokushima Fatty rats with nonalcoholic fatty liver disease. Male Otsuka Long-Evans Tokushima Fatty rats and age-matched Long-Evans Tokushima Otsuka rats were used and were divided into two groups at 29 weeks of age....

  9. Fluctuating partially native-like topologies in the acid denatured ensemble of autolysis resistant HIV-1 protease.

    Science.gov (United States)

    Rout, Manoj Kumar; Hosur, Ramakrishna V

    2009-02-01

    Folding, in-vivo, starts from a denatured state and thus the nature of the denatured state would play an important role in directing the folding of a protein. We report here NMR characterization of the acid-denatured state of a mutant of HIV-1 protease, designed to prevent autolysis (Q7K, L33I, L63I) and to prevent cysteine oxidation (C67A and C95A). Secondary chemical shifts, TALOS analysis of chemical shifts and (15)N relaxation data (R(1), R(2), NOE) coupled with AABUF and hydrophobicity calculations, suggest formation of hydrophobic clusters and possibility of some partially native-like topologies in the acid denatured state of the protease. The structural and dynamics characteristics of the acid denatured PR seem to be considerably different from those of the guanidine or urea denatured states of some variants of PR. These would have implications for the folding and auto-processing of the enzyme in-vivo.

  10. 21 CFR 184.1271 - L-Cysteine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine. 184.1271 Section 184.1271 Food and... Substances Affirmed as GRAS § 184.1271 L-Cysteine. (a) L-Cysteine is the chemical L-2-amino-3... of total L-cysteine per 100 parts of flour in dough as a dough strengthener as defined in § 170.3(o...

  11. The mitochondrial toxicity of cysteine-S-conjugates: Studies with pentachlorobutadienyl-L-cysteine

    International Nuclear Information System (INIS)

    Wallin, A.

    1990-01-01

    Nephrotoxic cysteine conjugates, arising from mercapturate biosynthesis, can perturb the mitochondrial membrane potential and calcium homeostasis in renal epithelial cells. Activation of these cysteine conjugates to reactive species by mitochondrial β-lyases results in covalent binding and mitochondrial damage. PCBC and related cysteine conjugates inhibit ADP-stimulated respiration in mitochondria respiring on alpha-ketoglutrate/malate and succinate indicating that both dehydrogenases may be targets. The respiratory inhibition is blocked by aminooxyacetic acid, an inhibitor of the β-lyase. Hence, metabolic activation is required implying that covalent binding of reactive intermediates may be important to the mitochondrial injury. Binding of 35 S-fragments has been found for 5 conjugates with varying degrees of mitochondrial toxicity. PCBC is more lipophilic and has a higher affinity for cellular membranes than other cysteine conjugates. PCBC rapidly depolarizes the inner membrane potential resulting in an inhibition of mitochondrial oxidative phosphorylation and calcium upon sequestration. Consequently, mitochondria and renal epithelial cells exposed to PCBC show a sudden release of calcium upon exposure to PCBC which is followed by a later increase in state 4 respiration leading to an inhibition of oxidative phosphorylation. The primary effect of other cysteine conjugates is an inhibition of the dehydrogenases, thus inhibiting state 3 respiration

  12. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  13. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.

    Directory of Open Access Journals (Sweden)

    Chunxiang Yao

    Full Text Available Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2, react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat, an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a 'Tandem Mass Tag' (TMT labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation.

  14. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  15. Key Role of Cysteine Residues in Catalysis and Subcellular Localization of Sulfur Oxygenase-Reductase of Acidianus tengchongensis

    DEFF Research Database (Denmark)

    Chen, Z. W.; Jiang, C. Y.; She, Qunxin

    2005-01-01

    ). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant......Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system...... proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have...

  16. Coxsackievirus B3 2A protease promotes encephalomyocarditis virus replication.

    Science.gov (United States)

    Song, Qin-Qin; Lu, Ming-Zhi; Song, Juan; Chi, Miao-Miao; Sheng, Lin-Jun; Yu, Jie; Luo, Xiao-Nuan; Zhang, Lu; Yao, Hai-Lan; Han, Jun

    2015-10-02

    To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Optimization and characterization of alkaline protease and carboxymethyl-cellulase produced by Bacillus pumillus grown on Ficus nitida wastes

    Directory of Open Access Journals (Sweden)

    Eman Zakaria Gomaa

    2013-01-01

    Full Text Available The potentiality of 23 bacterial isolates to produce alkaline protease and carboxymethyl-cellulase (CMCase on Ficus nitida wastes was investigated. Bacillus pumillus ATCC7061 was selected as the most potent bacterial strain for the production of both enzymes. It was found that the optimum production of protease and CMCase were recorded at 30 °C, 5% Ficus nitida leaves and incubation period of 72 h. The best nitrogen sources for protease and CMCase production were yeast extract and casein, respectively. Also maximum protease and CMCase production were reported at pH 9 and pH 10, respectively. The enzymes possessed a good stability over a pH range of 8-10, expressed their maximum activities at pH10 and temperature range of 30-50 °C, expressed their maximum activities at 50 °C. Ions of Hg2+, Fe2+ and Ag+ showed a stimulatory effect on protease activity and ions of Fe2+, Mg2+, Ca2+, Cu2+ and Ag+ caused enhancement of CMCase activity. The enzymes were stable not only towards the nonionic surfactants like Triton X-100 and Tween 80 but also the strong anionic surfactant, SDS. Moreover, the enzymes were not significantly inhibited by EDTA or cystein. Concerning biotechnological applications, the enzymes retained (51-97% of their initial activities upon incubation in the presence of commercials detergents for 1 h. The potential use of the produced enzymes in the degradation of human hair and cotton fabric samples were also assessed.

  18. Transcription factor DecR (YbaO) controls detoxification of L-cysteine in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Tanaka, Kan; Ishihama, Akira

    2016-09-01

    YbaO is an uncharacterized AsnC-family transcription factor of Escherichia coli. In both Salmonella enterica and Pantoea ananatis, YbaO homologues were identified to regulate the adjacent gene encoding cysteine desulfhydrase for detoxification of cysteine. Using the genomic SELEX (systematic evolution of ligands by exponential enrichment) screening system, we identified the yhaOM operon, located far from the ybaO gene on the E. coli genome, as a single regulatory target of YbaO. In both gel shift assay in vitro and reporter and Northern blot assays in vivo, YbaO was found to regulate the yhaOM promoter. The growth of mutants lacking either ybaO or its targets yhaOM was delayed in the presence of cysteine, indicating involvement of these genes in cysteine detoxification. In the major pathway of cysteine degradation, hydrogen sulfide is produced in wild-type E. coli, but its production was not observed in each of the ybaO, yhaO and yhaM mutants. The yhaOM promoter was activated in the presence of cysteine, implying the role of cysteine in activation of YbaO. Taken together, we propose that YbaO is the cysteine-sensing transcriptional activator of the yhaOM operon, which is involved in the detoxification of cysteine. We then propose the naming of ybaO as decR (regulator of detoxification of cysteine).

  19. Microenvironmental Regulation of Mammary Carcinogenesis

    Science.gov (United States)

    2009-06-01

    F. et al., A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J Am Chem Soc 128 (17...based probe for the papain family cysteine protease dipeptidyl peptidase I/Cathepsin C. J Am Chem Society, 128: 5616- 5617. 39. Tan TT, Coussens LM...Bogyo, M. A selective activity-based probe for the papain family cysteine protease dipeptidyl peptidase I/cathepsin C. J Am Chem Soc 128, 5616-7

  20. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  1. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  2. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  3. L-Cysteine Metabolism and Fermentation in Microorganisms.

    Science.gov (United States)

    Takagi, Hiroshi; Ohtsu, Iwao

    L-Cysteine is an important amino acid both biologically and commercially. Although most amino acids are industrially produced by microbial fermentation, L-cysteine has been mainly produced by protein hydrolysis. Due to environmental and safety problems, synthetic or biotechnological products have been preferred in the market. Here, we reviewed L-cysteine metabolism, including biosynthesis, degradation, and transport, and biotechnological production (including both enzymatic and fermentation processes) of L-cysteine. The metabolic regulation of L-cysteine including novel sulfur metabolic pathways found in microorganisms is also discussed. Recent advancement in biochemical studies, genome sequencing, structural biology, and metabolome analysis has enabled us to use various approaches to achieve direct fermentation of L-cysteine from glucose. For example, worldwide companies began to supply L-cysteine and its derivatives produced by bacterial fermentation. These companies successfully optimized the original metabolism of their private strains. Basically, a combination of three factors should be required for improving L-cysteine fermentation: that is, (1) enhancing biosynthesis: overexpression of the altered cysE gene encoding feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening degradation: knockout of the genes encoding L-cysteine desulfhydrases, and (3) exploiting export system: overexpression of the gene involved in L-cysteine transport. Moreover, we found that "thiosulfate" is much more effective sulfur source than commonly used "sulfate" for L-cysteine production in Escherichia coli, because thiosulfate is advantageous for saving consumption of NADPH and relating energy molecules.

  4. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    OpenAIRE

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-01-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritona...

  5. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  6. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

    Science.gov (United States)

    Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R

    2013-12-01

    Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

  7. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  8. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine monohydrochloride. 184.1272 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1272 L-Cysteine monohydrochloride. (a) L-Cysteine... ingredient is used to supply up to 0.009 part of total L-cysteine per 100 parts of flour in dough as a dough...

  9. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp

    Czech Academy of Sciences Publication Activity Database

    Jedličková, L.; Dvořáková, H.; Dvořák, J.; Kašný, M.; Ulrychová, Lenka; Vorel, J.; Žárský, V.; Mikeš, L.

    2018-01-01

    Roč. 11, Mar 6 (2018), č. článku 142. ISSN 1756-3305 R&D Projects: GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : cysteine peptidase * protease * cathepsin * S2 subsite * haematophagy * blood digestion Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.080, year: 2016 https:// parasites andvectors.biomedcentral.com/ articles /10.1186/s13071-018-2666-2

  10. Assay of cysteine dioxygenase activity

    International Nuclear Information System (INIS)

    Bagley, P.J.; Stipanuk, M.H.

    1990-01-01

    It has been proposed that rat liver contains two cysteine dioxygenase enzymes which convert cysteine to cysteinesulfinic acid, one which is stimulated by NAD + and has a pH optimum of 6.8 and one which is not stimulated by NAD + and has a pH optimum of 9.0. This led the authors to reinvestigate assay conditions for measuring cysteine dioxygenase activity in rat liver homogenate. An HPLC method, using an anion exchange column (Dionex Amino-Pac trademark PA1 (4x250 mm)) was used to separate the [ 35 S]cysteinesulfinic acid produced from [ 35 S]cysteine in the incubation mixture. They demonstrated that inclusion of hydroxylamine prevented further metabolism of cysteinesulfinic acid. which occurred rapidly in the absence of hydroxylamine

  11. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    Science.gov (United States)

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  12. On the Dynamical Behavior of the Cysteine Dioxygenase-l-Cysteine Complex in the Presence of Free Dioxygen and l-Cysteine.

    Science.gov (United States)

    Pietra, Francesco

    2017-11-01

    In this work, viable models of cysteine dioxygenase (CDO) and its complex with l-cysteine dianion were built for the first time, under strict adherence to the crystal structure from X-ray diffraction studies, for all atom molecular dynamics (MD). Based on the CHARMM36 FF, the active site, featuring an octahedral dummy Fe(II) model, allowed us observing water exchange, which would have escaped attention with the more popular bonded models. Free dioxygen (O 2 ) and l-cysteine, added at the active site, could be observed being expelled toward the solvating medium under Random Accelerated Molecular Dynamics (RAMD) along major and minor pathways. Correspondingly, free dioxygen (O 2 ), added to the solvating medium, could be observed to follow the same above pathways in getting to the active site under unbiased MD. For the bulky l-cysteine, 600 ns of trajectory were insufficient for protein penetration, and the molecule was stuck at the protein borders. These models pave the way to free energy studies of ligand associations, devised to better clarify how this cardinal enzyme behaves in human metabolism. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. π-Clamp-mediated cysteine conjugation

    Science.gov (United States)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  14. Rethinking Cysteine Protective Groups: S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation.

    Science.gov (United States)

    Schäfer, Olga; Huesmann, David; Muhl, Christian; Barz, Matthias

    2016-12-12

    The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation in synthetic polypeptides, thus bypassing additional protective group cleavage steps. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi

    2016-09-02

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.

  16. Evidence for cysteine sulfinate as a neurotransmitter

    International Nuclear Information System (INIS)

    Recasens, M.; Varga, V.; Nanopoulos, D.; Saadoun, F.; Vincendon, G.; Benavides, J.

    1982-01-01

    The Na + -independent binding of L-[ 3 H]cysteine sulfinate and L-[ 3 H]cysteine sulfinate uptake were investigated in rat brain membranes and vesicles. Specific binding of L-[ 3 H]cysteine sulfinate was saturable and occurred by a single high affinity process with a Ksub(b) of 100 nM +- 9 and a capacity (Bsub(max)) of 2.4 +- 0.22 pmol/mg protein. The regional distribution of the binding of L-[ 3 H]cysteine sulfinate in the brain was found to be heterogeneous. The rate of L-[ 3 H]cysteine sulfinate uptake shows a biphasic dependence on the concentration of L-cysteine sulfinate, corresponding to a high affinity (27.2 μM) and a low affinity (398 μM) transport system. The maximum L-[ 3 H]cysteine sulfinate uptake is reached at 2min and the uptake increases as a function of the sodium concentration. Chloride and potassium ions stimulate the uptake. (Auth.)

  17. ZUFSP Deubiquitylates K63-Linked Polyubiquitin Chains to Promote Genome Stability

    DEFF Research Database (Denmark)

    Haahr, Peter; Borgermann, Nikoline; Guo, Xiaohu

    2018-01-01

    Deubiquitylating enzymes (DUBs) enhance the dynamics of the versatile ubiquitin (Ub) code by reversing and regulating cellular ubiquitylation processes at multiple levels. Here we discovered that the uncharacterized human protein ZUFSP (zinc finger with UFM1-specific peptidase domain protein/C6orf......113/ZUP1), which has been annotated as a potentially inactive UFM1 protease, and its fission yeast homolog Mug105 define a previously unrecognized class of evolutionarily conserved cysteine protease DUBs. Human ZUFSP selectively interacts with and cleaves long K63-linked poly-Ub chains by means...... establish ZUFSP as a new type of linkage-selective cysteine peptidase DUB with a role in genome maintenance pathways....

  18. Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor

    DEFF Research Database (Denmark)

    Underwood, Christina Rye; Knudsen, Lotte Bjerre; Garibay, Patrick W.

    2013-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) belongs to family B of the G-protein coupled receptors (GPCRs), and has become a promising target for the treatment of type 2 diabetes. Here we describe the development and characterization of a fully functional cysteine-deprived and C......-terminally truncated GLP-1R. Single cysteines were initially substituted with alanine, and functionally redundant cysteines were subsequently changed simultaneously. Our results indicate that Cys174, Cys226, Cys296 and Cys403 are important for the GLP-1-mediated response, whereas Cys236, Cys329, Cys341, Cys347, Cys438...... that the membrane proximal part of the C-terminal is involved in receptor expression at the cell surface. The results show that seven cysteines and more than half of the C-terminal tail can be removed from GLP-1R without compromising GLP-1 binding or function....

  19. Electronic structure of the L-cysteine films on dental alloys studied by ultraviolet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ogawa, K; Takahashi, K; Azuma, J; Kamada, M; Tsujibayashi, T; Ichimiya, M

    2013-01-01

    The valence electronic structures of the dental alloys, type 1, type 3, K14, and MC12 and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The electronic states of the MC12 dental alloy originate dominantly from Cu 3d states and Pd 4d states around the top of the valence bands, while the 4∼7-eV electronic structure of MC12 originates from the Ag 4d states. The peak shift and the change in shape due to alloying are observed in all the dental alloys. For the L-cysteine thin films, new peak or structure observed around 2 eV on all the dental alloys is suggested to be due to the bonding of S 3sp orbitals with the dental alloy surfaces. The Cu-S bond as well as the Au-S and Au-O bonds may cause the change in the electronic structure of the L-cysteine on type 1, type 3 and K14. For MC12, the interaction with L-cysteine may be dominantly due to the Pd-S, Cu-S, and Ag-O bonds, while the contribution of the Ag-S bond is small.

  20. Reduction of Guanosyl Radical by Cysteine and Cysteine-Glycine Studied by Time-Resolved CIDNP

    NARCIS (Netherlands)

    Morozova, O.B.; Kaptein, R.; Yurkovskaya, A.V.

    2012-01-01

    As a model for chemical DNA repair, reduction of guanosyl radicals in the reaction with cysteine or the dipeptide cysteine-glycine has been studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). Radicals were generated photochemically by pulsed laser irradiation of a

  1. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients.

    Science.gov (United States)

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard; Schemann, Michael

    2018-01-01

    The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin-the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to

  2. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  3. Aspartic Protease Zymography Case Study: Detection of Fungal Acid Proteases by Zymography.

    Science.gov (United States)

    Kernaghan, Gavin; Mayerhofer, Michael

    2017-01-01

    This chapter describes a method for the production and characterization of fungal acid proteases. Protease production is induced by growth on BSA media over a pH gradient and protein levels are monitored over time with the Bradford assay. Once protein is depleted, the media is purified and proteases are characterized by gelatin zymography using acrylamide and buffers at near-neutral pH. Maintaining pH levels below those found in traditional zymographic systems avoids the potential loss of activity that may occur in aspartic proteases under alkaline conditions.

  4. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    , directed against blood coagulation factors, are in clinical trials as anticoagulant drugs. Several of the studies on protease-binding aptamers have been pioneering and trend-setting in the field. The work with protease-binding aptamers also demonstrates many interesting examples of non-standard selection......Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...

  5. L-Cysteine metabolism and its nutritional implications.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Yang, Guan; Duan, Jielin; Huang, Xingguo; Fang, Rejun; Li, Chongyong; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Kim, Sung Woo; Wu, Guoyao

    2016-01-01

    L-Cysteine is a nutritionally semiessential amino acid and is present mainly in the form of L-cystine in the extracellular space. With the help of a transport system, extracellular L-cystine crosses the plasma membrane and is reduced to L-cysteine within cells by thioredoxin and reduced glutathione (GSH). Intracellular L-cysteine plays an important role in cellular homeostasis as a precursor for protein synthesis, and for production of GSH, hydrogen sulfide (H(2)S), and taurine. L-Cysteine-dependent synthesis of GSH has been investigated in many pathological conditions, while the pathway for L-cysteine metabolism to form H(2)S has received little attention with regard to prevention and treatment of disease in humans. The main objective of this review is to highlight the metabolic pathways of L-cysteine catabolism to GSH, H(2)S, and taurine, with special emphasis on therapeutic and nutritional use of L-cysteine to improve the health and well-being of animals and humans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  7. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14

    Science.gov (United States)

    Leong, L. E.-C.; Walker, P. A.; Porter, A. G.

    1992-08-01

    The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.

  8. Correlation of secreted protein acidic and rich in cysteine with diabetic nephropathy

    OpenAIRE

    Li, Lei; Song, Hai-Yan; Liu, Kai; An, Meng-Meng

    2015-01-01

    To detect the serum concentrations of secreted protein acidic and rich in cysteine (SPARC) in patients with diabetic nephropathy and SPARC mRNA and protein expressions in renal tissue of db/db mice (C57BL/KsJ, diabetic nephropathy mice), thus preliminary exploration on the role of secreted protein acidic riches in cysteine in the development of diabetic nephropathy were carried out. Serum SPARC levels in normal subjects, patients with type 2 diabetes mellitus (without diabetic nephropathy), c...

  9. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-08-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon/sup -/ cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes (/sup 3/H)methyl-casein to acid-soluble products in the presence of ATP and Mg/sup 2 +/. ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles.

  10. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    International Nuclear Information System (INIS)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-01-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon - cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes [ 3 H]methyl-casein to acid-soluble products in the presence of ATP and Mg 2+ . ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles

  11. Detection of l-Cysteine in wheat flour by Raman microspectroscopy combined chemometrics of HCA and PCA.

    Science.gov (United States)

    Cebi, Nur; Dogan, Canan Ekinci; Develioglu, Ayşen; Yayla, Mediha Esra Altuntop; Sagdic, Osman

    2017-08-01

    l-Cysteine is deliberately added to various flour types since l-Cysteine has enabled favorable baking conditions such as low viscosity, increased elasticity and rise during baking. In Turkey, usage of l-Cysteine as a food additive isn't allowed in wheat flour according to the Turkish Food Codex Regulation on food additives. There is an urgent need for effective methods to detect l-Cysteine in wheat flour. In this study, for the first time, a new, rapid, effective, non-destructive and cost-effective method was developed for detection of l-Cysteine in wheat flour using Raman microscopy. Detection of l-Cysteine in wheat flour was accomplished successfully using Raman microscopy combined chemometrics of PCA (Principal Component Analysis) and HCA (Hierarchical Cluster Analysis). In this work, 500-2000cm -1 spectral range (fingerprint region) was determined to perform PCA and HCA analysis. l-Cysteine and l-Cystine were determined with detection limit of 0.125% (w/w) in different wheat flour samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Serine Protease Variants Encoded by Echis ocellatus Venom Gland cDNA: Cloning and Sequencing Analysis

    Directory of Open Access Journals (Sweden)

    S. S. Hasson

    2010-01-01

    Full Text Available Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent.

  13. The mimivirus R355 gene product: preliminary crystallographic analysis of a putative ubiquitin-like protein-specific protease

    International Nuclear Information System (INIS)

    Jeudy, Sandra; Lartigue, Audrey; Mansuelle, Pascal; Ogata, Yuki; Abergel, Chantal

    2010-01-01

    The genome sequence of mimivirus, the largest known double-stranded DNA virus, encodes a putative protease: the R355 gene product. Its expression in E. coli, its crystallization and the preliminary phasing of a MAD data set using the selenium signal present in a crystal of recombinant selenomethionine-substituted protein are reported. The complete genome sequence of the largest known double-stranded DNA virus, mimivirus, reveals the presence of a gene (denoted R355) that potentially encodes a cysteine protease that is expressed late (after 6 h) in the infectious cycle of the virus. In order to verify a sequence-based functional prediction and understand its role during the infectious process, the R355 protein was produced to assay its proteolytic activity and solve its three-dimensional structure. Here, the preliminary crystallographic analysis of the recombinant viral protein is reported. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with a monomer in the asymmetric unit. A MAD data set was used for preliminary phasing using the selenium signal from a selenomethionine-substituted protein crystal

  14. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  15. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  16. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell...

  17. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  19. Synthesis and Biological Evaluation of a Chitobiose-Based Peptide N-Glycanase Inhibitor Library

    NARCIS (Netherlands)

    Witte, Martin D.; Horst, Danielle; Wiertz, Emmanuel J.H.J.; Marel, Gijsbert A. van der; Overkleeft, Herman S.

    2009-01-01

    Peptide N-glycanase (PNGase), the enzyme responsible for the deglycosylation of N-linked glycoproteins, has an active site related to that of cysteine proteases. Chitiobiose was equipped with electrophilic traps often used in cysteine protease inhibitors, and the resulting compounds were evaluated

  20. Functional cardiovascular action of L-cysteine microinjected into pressor sites of the rostral ventrolateral medulla of the rat.

    Science.gov (United States)

    Takemoto, Yumi

    2014-04-01

    The endogenous sulfur-containing amino acid L-cysteine injected into the cerebrospinal fluid space of the cisterna magna increases arterial blood pressure (ABP) and heart rate (HR) in the freely moving rat. The present study examined (1) cardiovascular responses to L-cysteine microinjected into the rostral ventrolateral medulla (RVLM), where a group of neurons regulate activities of cardiovascular sympathetic neurons and (2) involvement of ionotropic excitatory amino acid (iEAA) receptors in response. In the RVLM of urethane-anesthetized rats accessed ventrally and identified with pressor responses to L-glutamate (10 mM, 34 nl), microinjections of L-cysteine increased ABP and HR dose dependently (3-100 mM, 34 nl). The cardiovascular responses to L-cysteine (30 mM) were not attenuated by a prior injection of either antagonist alone, MK801 (20 mM, 68 nl) for the NMDA type of iEAA receptors, or CNQX (2 mM) for the non-NMDA type. However, inhibition of both NMDA and non-NMDA receptors with additional prior injection of either antagonist completely blocked those responses to L-cysteine. The results indicate that L-cysteine has functional cardiovascular action in the RVLM of the anesthetized rat, and the responses to L-cysteine involve both NMDA and non-NMDA receptors albeit in a mutually exclusive parallel fashion. The findings may suggest endogenous roles of L-cysteine indirectly via iEAA receptors in the neuronal network of the RVLM for cardiovascular regulation in physiological and pathological situations.

  1. Human Kunitz-type protease inhibitor engineered for enhanced matrix retention extends longevity of fibrin biomaterials.

    Science.gov (United States)

    Briquez, Priscilla S; Lorentz, Kristen M; Larsson, Hans M; Frey, Peter; Hubbell, Jeffrey A

    2017-08-01

    Aprotinin is a broad-spectrum serine protease inhibitor used in the clinic as an anti-fibrinolytic agent in fibrin-based tissue sealants. However, upon re-exposure, some patients suffer from hypersensitivity immune reactions likely related to the bovine origin of aprotinin. Here, we aimed to develop a human-derived substitute to aprotinin. Based on sequence homology analyses, we identified the Kunitz-type protease inhibitor (KPI) domain of human amyloid-β A4 precursor protein as being a potential candidate. While KPI has a lower intrinsic anti-fibrinolytic activity than aprotinin, we reasoned that its efficacy is additionally limited by its fast release from fibrin material, just as aprotinin's is. Thus, we engineered KPI variants for controlled retention in fibrin biomaterials, using either covalent binding through incorporation of a substrate for the coagulation transglutaminase Factor XIIIa or through engineering of extracellular matrix protein super-affinity domains for sequestration into fibrin. We showed that both engineered KPI variants significantly slowed plasmin-mediated fibrinolysis in vitro, outperforming aprotinin. In vivo, our best engineered KPI variant (incorporating the transglutaminase substrate) extended fibrin matrix longevity by 50%, at a dose at which aprotinin did not show efficacy, thus qualifying it as a competitive substitute of aprotinin in fibrin sealants. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Structure of the Integral Membrane Protein CAAX Protease Ste24p

    Energy Technology Data Exchange (ETDEWEB)

    Pryor Jr., Edward E. [Membrane Protein Structural Biology Consortium (United States); Univ. of Virginia, Charlottesville, VA (United States); Horanyi, Peter S. [Membrane Protein Structural Biology Consortium (United States); Univ. of Virginia, Charlottesville, VA (United States); Clark, Kathleen M. [Membrane Protein Structural Biology Consortium (United States); Univ. of Rochester School of Medicine and Dentistry, Rochester, NY (United States); Fedoriw, Nadia [Membrane Protein Structural Biology Consortium (United States); Univ. of Rochester School of Medicine and Dentistry, Rochester, NY (United States); Connelly, Sara M. [Membrane Protein Structural Biology Consortium (United States); Univ. of Rochester School of Medicine and Dentistry, Rochester, NY (United States); Koszelak-Rosenblum, Mary [Membrane Protein Structural Biology Consortium (United States); Hauptman-Woodward Inst., Buffalo, NY (United States); Zhu, Guangyu [Membrane Protein Structural Biology Consortium (United States); Hauptman-Woodward Inst., Buffalo, NY (United States); Malkowski, Michael G. [Membrane Protein Structural Biology Consortium (United States); Hauptman-Woodward Inst., Buffalo, NY (United States); State Univ. of New York, Buffalo, NY (United States); Wiener, Michael C. [Membrane Protein Structural Biology Consortium (United States); Univ. of Virginia, Charlottesville, VA (United States); Dumont, Mark E. [Membrane Protein Structural Biology Consortium (United States); Univ. of Rochester School of Medicine and Dentistry, Rochester, NY (United States)

    2012-10-26

    Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a -factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavity containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.

  3. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    Science.gov (United States)

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  4. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  5. Tuning the carbon nanotube photoluminescence enhancement at addition of cysteine through the change of external conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, N.V.; Karachevtsev, M.V.; Leontiev, V.S.; Karachevtsev, V.A., E-mail: karachevtsev@ilt.kharkov.ua

    2017-01-15

    The enhancement of the photoluminescence (PL) from the semiconducting single-walled carbon nanotubes suspended with single-stranded DNA (ssDNA) in water observed after amino acids doping is the largest at cysteine addition. The PL intensity increased through the passivation of p-defects on the carbon nanotube sidewall by the cysteine molecules due to thiol group. The effect of several external factors on the cysteine-induced enhancement of PL from carbon nanotubes covered with ssDNA was studied: UV irradiation, tip or bath sonication treatment of the suspension, the ionic strength and pH of aqueous suspension. It turned out that all these factors have an essential influence on the dependence of the PL enhancement on the cysteine concentration through inducing of additional defects on nanotube as well as a change of the nanotube surface coverage with polymer. The obtained experimental results demonstrated that PL from carbon nanotubes can be exploited successfully for the monitoring of cysteine concentration in aqueous solution. - Highlights: • Cysteine doping enhances carbon nanotube emission more than other amino acids do. • SWNT emission dependence on cysteine concentration is tuned by UV irradiation and pH. • Type of sonication treatment influences SWNT PL dependence on cysteine concentration. • Polymer coverage and defectiveness of nanotubes effect on nanotube emission. • Graphic abstract.

  6. Mass spectrometric analysis of L-cysteine metabolism: physiological role and fate of L-cysteine in the enteric protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Jeelani, Ghulam; Sato, Dan; Soga, Tomoyoshi; Watanabe, Haruo; Nozaki, Tomoyoshi

    2014-11-04

    L-cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress. However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of L-cysteine in E. histolytica. [U-(13)C3, (15)N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid (MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demonstrated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress. Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite, L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid during trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly

  7. Study of the histochemical detection of cysteine desulfhydrase in the vitellin sac of birds (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Khau Van Kien, L.

    1961-01-01

    We have developed a method for the histochemical detection of cysteine desulfhydrase in the vitellin sac of the chicken embryo. The enzyme is localized in the presence of a lead salt by lead sulphide formed in situ from hydrogen sulphide liberated from the cysteine. The micrographs obtained are histological and show the presence of the enzyme in the different types of endoderm cell. (authors) [fr

  8. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    Science.gov (United States)

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Probes of the catalytic site of cysteine dioxygenase.

    Science.gov (United States)

    Chai, Sergio C; Bruyere, John R; Maroney, Michael J

    2006-06-09

    The first major step of cysteine catabolism, the oxidation of cysteine to cysteine sulfinic acid, is catalyzed by cysteine dioxygenase (CDO). In the present work, we utilize recombinant rat liver CDO and cysteine derivatives to elucidate structural parameters involved in substrate recognition and x-ray absorption spectroscopy to probe the interaction of the active site iron center with cysteine. Kinetic studies using cysteine structural analogs show that most are inhibitors and that a terminal functional group bearing a negative charge (e.g. a carboxylate) is required for binding. The substrate-binding site has no stringent restrictions with respect to the size of the amino acid. Lack of the amino or carboxyl groups at the alpha-carbon does not prevent the molecules from interacting with the active site. In fact, cysteamine is shown to be a potent activator of the enzyme without being a substrate. CDO was also rendered inactive upon complexation with the metal-binding inhibitors azide and cyanide. Unlike many non-heme iron dioxygenases that employ alpha-keto acids as cofactors, CDO was shown to be the only dioxygenase known to be inhibited by alpha-ketoglutarate.

  11. Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex.

    Science.gov (United States)

    Trejo, Sebastián A; López, Laura M I; Caffini, Néstor O; Natalucci, Claudia L; Canals, Francesc; Avilés, Francesc X

    2009-07-01

    Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZalpha vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.

  12. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  13. Photoelectron spectroscopic study on the electronic structures of the dental gold alloys and their interaction with L-cysteine

    International Nuclear Information System (INIS)

    Ogawa, Koji; Takahashi, Kazutoshi; Azuma, Junpei; Kamada, Masao; Tsujibayashi, Toru; Ichimiya, Masayoshi; Fujimoto, Hitoshi; Sumimoto, Michinori

    2011-01-01

    The valence electronic structures of the dental gold alloys, type 1, type 3, and K14, and their interaction with L-cysteine have been studied by ultraviolet photoelectron spectroscopy with synchrotron radiation. It was found that the electronic structures of the type-1 and type-3 dental alloys are similar to that of polycrystalline Au, while that of the K14 dental alloy is much affected by Cu. The peak shift and the change in shape due to alloying are observed in all the dental alloys. It is suggested that the new peak observed around 2 eV for the L-cysteine thin films on all the dental alloys may be due to the bonding of S 3sp orbitals with the dental alloy surfaces, and the Cu-S bond, as well as the Au-S and Au-O bonds, may cause the change in the electronic structure of the L-cysteine on the alloys.

  14. Cysteine-mediated gene expression and characterization of the CmbR regulon in Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Muhammad Afzal

    2016-12-01

    Full Text Available In this study, we investigated the transcriptomic response of Streptococcus pneumoniae D39 to cysteine. Transcriptome comparison of the D39 wild-type strain grown at a restricted concentration of cysteine (0.03 mM to one grown at a high concentration of cysteine (50 mM in chemically-define medium (CDM revealed elevated expression of various genes/operons, i.e. spd-0150, metQ, spd-0431, metEF, gshT, spd-0618, fhs, tcyB, metB-csd, metA, spd-1898, yvdE, and cysK, likely to be involved in the transport and utilization of cysteine and/or methionine. Microarray-based data were further confirmed by quantitative RT-PCR. Promoter lacZ-fusion studies and quantitative RT-PCR data showed that the transcriptional regulator CmbR acts as a transcriptional repressor of spd-0150, metEF, gshT, spd-0618, tcyB, metA, and yvdE, putatively involved in cysteine uptake and utilization. The operator site of CmbR in the promoter regions of CmbR-regulated genes is predicted and confirmed by mutating or deleting CmbR operator sites from the promoter regions of these genes.

  15. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  16. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    Science.gov (United States)

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  17. A novel potentiometric biosensor for selective L-cysteine determination using L-cysteine-desulfhydrase producing Trichosporon jirovecii yeast cells coupled with sulfide electrode

    International Nuclear Information System (INIS)

    Hassan, Saad S.M.; El-Baz, Ashraf F.; Abd-Rabboh, Hisham S.M.

    2007-01-01

    Trichosporon jirovecii yeast cells are used for the first time as a source of L-cysteine desulfhydrase enzyme (EC 4.4.1.1) and incorporated in a biosensor for determining L-cysteine. The cells are grown under cadmium stress conditions to increase the expression level of the enzyme. The intact cells are immobilized on the membrane of a solid-state Ag 2 S electrode to provide a simple L-cysteine responsive biosensor. Upon immersion of the sensor in L-cysteine containing solutions, L-cysteine undergoes enzymatic hydrolysis into pyruvate, ammonia and sulfide ion. The rate of sulfide ion formation is potentiometrically measured as a function of L-cysteine concentration. Under optimized conditions (phosphate buffer pH 7, temperature 37 ± 1 deg. C and actual weight of immobilized yeast cells 100 mg), a linear relationship between L-cysteine concentration and the initial rate of sulfide liberation (dE/dt) is obtained. The sensor response covers the concentration range of 0.2-150 mg L -1 (1.7-1250 μmol L -1 ) L-cysteine. Validation of the assay method according to the quality control/quality assurance standards (precision, accuracy, between-day variability, within-day reproducibility, range of measurements and lower limit of detection) reveals remarkable performance characteristics of the proposed biosensor. The sensor is satisfactorily utilized for determination of L-cysteine in some pharmaceutical formulations. The lower limit of detection is ∼1 μmol L -1 and the accuracy and precision of the method are 97.5% and ±1.1%, respectively. Structurally similar sulfur containing compounds such as glutathione, cystine, methionine, and D-cysteine do no interfere

  18. Protein cysteine oxidation in redox signaling

    DEFF Research Database (Denmark)

    Forman, Henry Jay; Davies, Michael J; Krämer, Anna C

    2017-01-01

    Oxidation of critical signaling protein cysteines regulated by H2O2 has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione. Previ...

  19. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    Science.gov (United States)

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of ginger protease can be used as a functional food for patients with type 2 diabetes.

  20. Cysteine Biosynthesis Controls Serratia marcescens Phospholipase Activity.

    Science.gov (United States)

    Anderson, Mark T; Mitchell, Lindsay A; Mobley, Harry L T

    2017-08-15

    Serratia marcescens causes health care-associated opportunistic infections that can be difficult to treat due to a high incidence of antibiotic resistance. One of the many secreted proteins of S. marcescens is the PhlA phospholipase enzyme. Genes involved in the production and secretion of PhlA were identified by screening a transposon insertion library for phospholipase-deficient mutants on phosphatidylcholine-containing medium. Mutations were identified in four genes ( cyaA , crp , fliJ , and fliP ) that are involved in the flagellum-dependent PhlA secretion pathway. An additional phospholipase-deficient isolate harbored a transposon insertion in the cysE gene encoding a predicted serine O -acetyltransferase required for cysteine biosynthesis. The cysE requirement for extracellular phospholipase activity was confirmed using a fluorogenic phospholipase substrate. Phospholipase activity was restored to the cysE mutant by the addition of exogenous l-cysteine or O -acetylserine to the culture medium and by genetic complementation. Additionally, phlA transcript levels were decreased 6-fold in bacteria lacking cysE and were restored with added cysteine, indicating a role for cysteine-dependent transcriptional regulation of S. marcescens phospholipase activity. S. marcescens cysE mutants also exhibited a defect in swarming motility that was correlated with reduced levels of flhD and fliA flagellar regulator gene transcription. Together, these findings suggest a model in which cysteine is required for the regulation of both extracellular phospholipase activity and surface motility in S. marcescens IMPORTANCE Serratia marcescens is known to secrete multiple extracellular enzymes, but PhlA is unusual in that this protein is thought to be exported by the flagellar transport apparatus. In this study, we demonstrate that both extracellular phospholipase activity and flagellar function are dependent on the cysteine biosynthesis pathway. Furthermore, a disruption of cysteine

  1. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  2. Pulse photolysis of NADH in the presence of cysteine

    International Nuclear Information System (INIS)

    Scheel, H.E.

    1976-01-01

    In the UV irradiation of NADH under anaerobic conditions, cysteine, which often acts as a radioprotective substance, has a sensitizing effect. With the aid of pulse photolysis, it was studied which reaction mechanisms in the presence or absence of cysteine are responsible for the damage to NADH in aqueous solution. In the absence of cysteine, the characteristic NADH absorption at 340 nm is reduced immediately after UV quanta have been absorbed by the adenine fraction of the molecules; in the presence of cysteine, a secondary reaction causes additional damage. The spectra of the intermediate products of NADH and cysteine have been recorded for different cysteine concentrations, and the reaction constants have been determined. These values suggest that the sensitizing effect is due to a reaction of NADH with radical anions produced by photolysis. (orig.) [de

  3. Effect of (L)-cysteine on acetaldehyde self-administration.

    Science.gov (United States)

    Peana, Alessandra T; Muggironi, Giulia; Fois, Giulia R; Zinellu, Manuel; Sirca, Donatella; Diana, Marco

    2012-08-01

    Acetaldehyde (ACD), the first metabolite of ethanol, has been implicated in several behavioural actions of alcohol, including its reinforcing effects. Recently, we reported that l-cysteine, a sequestrating agent of ACD, reduced oral ethanol self-administration and that ACD was orally self-administered. This study examined the effects of l-cysteine pre-treatment during the acquisition and maintenance phases of ACD (0.2%) self-administration as well as on the deprivation effect after ACD extinction and on a progressive ratio (PR) schedule of reinforcement. In a separate PR schedule of reinforcement, the effect of l-cysteine was assessed on the break-point produced by ethanol (10%). Furthermore, we tested the effect of l-cysteine on saccharin (0.2%) reinforcement. Wistar rats were trained to self-administer ACD by nose poking on a fixed ratio (FR1) schedule in 30-min daily sessions. Responses on an active nose-poke caused delivery of ACD solution, whereas responses on an inactive nose-poke had no consequences. l-cysteine reduced the acquisition (40 mg/kg), the maintenance and the deprivation effect (100 mg/kg) of ACD self-administration. Furthermore, at the same dose, l-cysteine (120 mg/kg) decreased both ACD and ethanol break point. In addition, l-cysteine was unable to suppress the different responses for saccharin, suggesting that its effect did not relate to an unspecific decrease in a general motivational state. Compared to saline, l-cysteine did not modify responses on inactive nose-pokes, suggesting an absence of a non-specific behavioural activation. Taken together, these results could support the hypotheses that ACD possesses reinforcing properties and l-cysteine reduces motivation to self-administer ACD. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  5. Defense response in non-genomic model species: methyl jasmonate exposure reveals the passion fruit leaves' ability to assemble a cocktail of functionally diversified Kunitz-type trypsin inhibitors and recruit two of them against papain.

    Science.gov (United States)

    Botelho-Júnior, Sylvio; Machado, Olga L T; Fernandes, Kátia V S; Lemos, Francisco J A; Perdizio, Viviane A; Oliveira, Antônia E A; Monteiro, Leandro R; Filho, Mauri L; Jacinto, Tânia

    2014-08-01

    Multiplicity of protease inhibitors induced by predators may increase the understanding of a plant's intelligent behavior toward environmental challenges. Information about defense mechanisms of non-genomic model plant passion fruit (Passiflora edulis Sims) in response to predator attack is still limited. Here, via biochemical approaches, we showed its flexibility to build-up a broad repertoire of potent Kunitz-type trypsin inhibitors (KTIs) in response to methyl jasmonate. Seven inhibitors (20-25 kDa) were purified from exposed leaves by chromatographic techniques. Interestingly, the KTIs possessed truncated Kunitz motif in their N-terminus and some of them also presented non-consensus residues. Gelatin-Native-PAGE established multiple isoforms for each inhibitor. Significant differences regarding inhibitors' activity toward trypsin and chymotrypsin were observed, indicating functional polymorphism. Despite its rarity, two of them also inhibited papain, and such bifunctionality suggests a recruiting process onto another mechanistic class of target protease (cysteine-type). All inhibitors acted strongly on midgut proteases from sugarcane borer, Diatraea saccharalis (a lepidopteran insect) while in vivo assays supported their insecticide properties. Moreover, the bifunctional inhibitors displayed activity toward midgut proteases from cowpea weevil, Callosobruchus maculatus (a coleopteran insect). Unexpectedly, all inhibitors were highly effective against midgut proteases from Aedes aegypti a dipteran insect (vector of neglected tropical diseases) opening new avenues for plant-derived PIs for vector control-oriented research. Our results reflect the KTIs' complexities in passion fruit which could be wisely exploited by influencing plant defense conditions. Therefore, the potential of passion fruit as source of bioactive compounds with diversified biotechnological application was strengthened.

  6. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    Science.gov (United States)

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating

  7. CHANGES IN LEVELS OF ACTIVITY OF SERINE PROTEASES ACCOMPANY THE EXPOSURE OF COMMON BEAN (PHASEOLUS VULGARIS L. TO WATER DEFICIT

    Directory of Open Access Journals (Sweden)

    M. Budič

    2008-09-01

    Full Text Available A wide variety of proteolytic enzymes exist in plants. On their levels depends protein turnover, a fundamental component in plant development and adaptation to environmental conditions. Cysteine proteases have frequently been reported to be influenced by drought, but only a few serine proteases (SP, among them the trypsin-like enzyme and two aminopeptidases from bean leaves (Bartels and Sunkar, 2005; Hieng et al., 2004. Our starting point was to identify proteolytic activities assigned to SPs that change with drought and then to characterize the corresponding proteases. A quantitative, analytical one-step method was used to separate endopeptidases and aminopeptidases active against a range of substrates in leaf extracts of plants grown in the field (FC. The influence of drought was determined for those of these activities which were confirmed as SPs, based on their inhibition by specific inhibitors. Under water deficit in plants grown under controlled conditions (CC their levels changed in different ways. The levels of SP activities in FC plants, observed during a period of relative drought, were similar to those measured in mildly stressed CC plants. The partial characterisations of some of these SPs will be presented. Our results point to a number of roles for different SPs in the plant response to water stress, which could range from enhanced protein turnover to limited proteolysis at specific sites.

  8. CHARACTERIZATION OF DANSYLATED CYSTEINE, GLUTATHIONE DISULFIDE, CYSTEINE AND CYSTINE BY NARROW BORE LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometric (RP-LC/ESI-MS) method has been developed to confirm the identity of dansylated derivatives of cysteine and glutathione, and their respective dimers. Cysteine, GSH, CSSC...

  9. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  11. Protease-activated receptor-1 impairs host defense in murine pneumococcal pneumonia: a controlled laboratory study

    NARCIS (Netherlands)

    Schouten, Marcel; van't Veer, Cornelis; Roelofs, Joris J. T. H.; Levi, Marcel; van der Poll, Tom

    2012-01-01

    Streptococcus pneumoniae is the most common causative pathogen in community-acquired pneumonia. Protease-activated receptor-1 (PAR-1) is expressed by multiple cell types present in the lungs and can be activated by various proteases generated during acute inflammation. The cellular effect of PAR-1

  12. A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system.

    Science.gov (United States)

    Geadkaew, Amornrat; Kosa, Nanthawat; Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi

    2014-09-01

    Cystatins are functional as intra- and extracellular inhibitors of cysteine proteases and are expressed as single or multi-domain proteins. We have previously described two single domain type 1 cystatins in the trematode Fasciola gigantica that are released into the parasite's intestinal tract and exhibit inhibitory activity against endogenous and host cathepsin L and B proteases. In contrast, the here presented 170kDa multi-domain cystatin (FgMDC) comprises signal peptide and 12 tandem repeated cystatin-like domains with similarity to type 2 single domain cystatins. The domains show high sequence divergence with identity values often 120kDa molecular mass in immunoblots of parasite crude extracts and ES product with different banding patterns for each antiserum demonstrating complex processing of the proprotein. The four domains with the highest conserved QVVAG motifs were expressed in Escherichia coli and the refolded recombinant proteins blocked cysteine protease activity in the parasite's ES product. Strikingly, immunohistochemical analysis using seven domain-specific antisera localized FgMDC in testis lobes and sperm. It is speculated that the processed cystatin-like domains have function analogous to the mammalian group of male reproductive tissue-specific type 2 cystatins and are functional in spermiogenesis and fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD.

    Directory of Open Access Journals (Sweden)

    Lin Qu

    2011-09-01

    Full Text Available Toll-like receptor 3 (TLR3 and cytosolic RIG-I-like helicases (RIG-I and MDA5 sense viral RNAs and activate innate immune signaling pathways that induce expression of interferon (IFN through specific adaptor proteins, TIR domain-containing adaptor inducing interferon-β (TRIF, and mitochondrial antiviral signaling protein (MAVS, respectively. Previously, we demonstrated that hepatitis A virus (HAV, a unique hepatotropic human picornavirus, disrupts RIG-I/MDA5 signaling by targeting MAVS for cleavage by 3ABC, a precursor of the sole HAV protease, 3C(pro, that is derived by auto-processing of the P3 (3ABCD segment of the viral polyprotein. Here, we show that HAV also disrupts TLR3 signaling, inhibiting poly(I:C-stimulated dimerization of IFN regulatory factor 3 (IRF-3, IRF-3 translocation to the nucleus, and IFN-β promoter activation, by targeting TRIF for degradation by a distinct 3ABCD processing intermediate, the 3CD protease-polymerase precursor. TRIF is proteolytically cleaved by 3CD, but not by the mature 3C(pro protease or the 3ABC precursor that degrades MAVS. 3CD-mediated degradation of TRIF depends on both the cysteine protease activity of 3C(pro and downstream 3D(pol sequence, but not 3D(pol polymerase activity. Cleavage occurs at two non-canonical 3C(pro recognition sequences in TRIF, and involves a hierarchical process in which primary cleavage at Gln-554 is a prerequisite for scission at Gln-190. The results of mutational studies indicate that 3D(pol sequence modulates the substrate specificity of the upstream 3C(pro protease when fused to it in cis in 3CD, allowing 3CD to target cleavage sites not normally recognized by 3C(pro. HAV thus disrupts both RIG-I/MDA5 and TLR3 signaling pathways through cleavage of essential adaptor proteins by two distinct protease precursors derived from the common 3ABCD polyprotein processing intermediate.

  14. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Zhou

    Full Text Available Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 10(5 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%, Flavobacterium (21.0% and Lacinutrix (16.2%. Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea.

  15. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  16. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  17. Production, purification and characterization of an aspartic protease from Aspergillus foetidus.

    Science.gov (United States)

    Souza, Paula Monteiro; Werneck, Gabriela; Aliakbarian, Bahar; Siqueira, Felix; Ferreira Filho, Edivaldo Ximenes; Perego, Patrizia; Converti, Attilio; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa

    2017-11-01

    An acidic thermostable protease was extracellularly produced either in shake flask or in stirred tank bioreactor by an Aspergillus foetidus strain isolated from the Brazilian savanna soil using different nitrogen sources. Its maximum activity (63.7 U mL -1 ) was obtained in a medium containing 2% (w/v) peptone. A cultivation carried out in a 5.0 L stirred-tank bioreactor provided a maximum protease activity 9% lower than that observed in Erlenmeyer flasks, which was obtained after a significantly shorter (by 16-29%) time. Protease purification by a combination of gel-filtration chromatography resulted in a 16.9-fold increase in specific activity (248.1 U g -1 ). The estimated molecular weight of the purified enzyme was 50.6 kDa, and the optimal pH and temperature were 5.0 and 55 °C, respectively. The enzyme was completely inhibited by pepstatin A, and its activity enhanced by some metals. According to the inhibition profiles, it was confirmed that the purified acid protease belongs to the aspartic protease type. These results are quite promising for future development of large-scale production of such protease, which can be useful in biotechnological applications requiring high enzyme activity and stability under acidic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg

    Directory of Open Access Journals (Sweden)

    Finne Jukka

    2006-02-01

    Full Text Available Abstract Background Flow cytometry based adherence assay is a potentially powerful but little used method in the study of bacterial binding to host structures. We have previously characterized a glycoprotein-binding activity in Streptococcus pyogenes called 'strepadhesin' binding to thyroglobulin, submaxillar mucin, fetuin and asialofetuin. We have identified surface-associated pullulanase (PulA and cysteine protease (SpeB as carriers of strepadhesin activity. In the present paper, we investigated the use of flow cytometry as a method to study the binding of Rgg, SpeB and PulA knock-out strains to cultured human epithelial cells. Results Streptococcal mutants were readily labelled with CFDA-SE and their binding to epithelial cells could be effectively studied by flow cytometry. A strain deficient in Rgg expression showed increased binding to the analyzed epithelial cell lines of various origin. Inactivation of SpeB had no effect on the adhesion, while PulA knock-out strains displayed decreased binding to the cell lines. Conclusion These results suggest that the flow cytometric assay is a valuable tool in the analysis of S. pyogenes adherence to host cells. It appears to be an efficient and sensitive tool for the characterization of interactions between the bacteria and the host at the molecular level. The results also suggest a role for Rgg regulated surface molecules, like PulA, in the adhesion of S. pyogenes to host cells.

  19. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2.

    Science.gov (United States)

    Nakatsu, Daiki; Horiuchi, Yuta; Kano, Fumi; Noguchi, Yoshiyuki; Sugawara, Taichi; Takamoto, Iseki; Kubota, Naoto; Kadowaki, Takashi; Murata, Masayuki

    2015-03-10

    Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.

  20. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation

    DEFF Research Database (Denmark)

    Kousted, Tina Mostrup; Skjoedt, K; Petersen, S V

    2013-01-01

    abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between...

  1. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity

    Czech Academy of Sciences Publication Activity Database

    Lindsten, K.; Kondrová, Taťána; Konvalinka, Jan; Masucci, M. G.; Dantuma, N. P.

    2001-01-01

    Roč. 45, č. 9 (2001), s. 2616-2622 ISSN 0066-4804 R&D Projects: GA ČR GA303/98/1559 Grant - others:HHMI(US) 75195-540801; ECTM(XE) ERBFMRXCT960026 Institutional research plan: CEZ:AV0Z4055905 Keywords : HIV-1 * protease activity Subject RIV: CE - Biochemistry Impact factor: 4.562, year: 2001

  2. Substrate optimization and clinical validation of reporter peptides for MS-based protease profiling in serum specimens: a new approach for diagnosis of malignant disease.

    Science.gov (United States)

    Yepes, Diego; Jacob, Anette; Dauber, Marc; Costina, Victor; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter

    2011-07-01

    The progression of many solid tumors is characterized by the release of tumor-associated proteases, such as cancer procoagulant, MMP2 and MMP7. Consequently, the detection of tumor-specific proteolytic activity in serum specimens has recently been proposed as a new diagnostic tool in oncology. However, tumor-associated proteases are highly diluted in serum specimens and it is challenging to identify substrates that are specifically cleaved. In this study, we describe the systematic optimization of a synthetic peptide substrate using a positional scanning synthetic combinatorial library (PS-SCL) approach. The initial reporter peptide (RP) comprises of the cleavage site, WKPYDAAD, that is part of the coagulation factor X, the natural substrate of the tumor-associated cysteine protease cancer procoagulant (EC 3.4.22.26). Specifically, the amino acid substitution of aspartatic acid (D) in position P1' against asparagine (N) improved the processing of respective RPs in serum specimens from patients with colorectal tumors compared to healthy controls. Proteolytic fragments of RPs accumulated during prolonged incubation with serum specimens and were quantified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Finally, the optimized RP with the cleaved motif WKPYNAAD was combined with the RPs, VPLSLTMG and IPVSLRSG, that were cleaved by the tumor-associated proteases, MMP2 and MMP7, respectively. The diagnostic accuracy of MS-based protease profiling was evaluated for this triplex RP mix in a cohort of 50 serum specimens equally divided into colorectal cancer patients and healthy control individuals. Multiparametric analysis showed an AUC value of 0.90 for the receiver operating characteristic curve and was superior to the classification accuracy of the single markers. Our results demonstrate that RPs for MS-based protease profiling can systematically be optimized with a PS-SCL. Furthermore, the combination of different RPs can

  3. Oral delivery of Bacillus subtilis spores expressing cysteine protease of Clonorchis sinensis to grass carp (Ctenopharyngodon idellus): Induces immune responses and has no damage on liver and intestine function.

    Science.gov (United States)

    Tang, Zeli; Sun, Hengchang; Chen, TingJin; Lin, Zhipeng; Jiang, Hongye; Zhou, Xinyi; Shi, Cunbin; Pan, Houjun; Chang, Ouqin; Ren, Pengli; Yu, Jinyun; Li, Xuerong; Xu, Jin; Huang, Yan; Yu, Xinbing

    2017-05-01

    Clonorchis sinensis (C. sinensis) is a fish-borne trematode. Human can be infected by ingestion of C. sinensis metacercariae parasitized in grass carp (Ctenopharyngodon idella). For induction of effective oral immune responses, spores of Bacillus subtilis (B. subtilis) WB600 were utilized as vehicle to delivery CsCP (cysteine protease of C. sinensis) cooperated with CotC (B.s-CotC-CP), one of coat proteins, to the gastrointestinal tract. After routine culture of 8-12 h in LB medium, B. subtilis containing CotC-CsCP was transferred into the sporulation culture medium. SDS-PAGE, western blotting and the growth curve indicated that the best sporulation time of recombinant WB600 was 24-30 h at 37 °C with continuous shaking (250 rpm). Grass carp were fed with three levels of B.s-CotC-CP (1 × 10 6 , 1 × 10 7 , and 1 × 10 8  CFU g -1 ) incorporated in the basal pellets diet. The commercial pellets or supplemented with spores just expressing CotC (1 × 10 7  CFU g -1 ) were served as control diet. Our results showed that grass carp orally immunized with the feed-based B.s-CotC-CP developed a strong specific immune response with significantly (P sinensis in fish body. Therefore, this study demonstrated that the feed-based recombinant spores could trigger high levels of mucosal and humoral immunity, and would be a promising candidate vaccine against C. sinensis metacercariae formation in freshwater fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Cooper, James W; Kunert, Karl J; Foyer, Christine H

    2015-04-01

    Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Molecular and Functional Characterization of Mouse S5D-SRCRB: A New Group B Member of the Scavenger Receptor Cysteine-Rich Superfamily

    DEFF Research Database (Denmark)

    Miró-Julià, Cristina; Roselló, Sandra; Martínez, Vanesa G

    2011-01-01

    The scavenger receptor cysteine-rich superfamily (SRCR-SF) members are transmembrane and/or secreted receptors exhibiting one or several repeats of a cysteine-rich protein module of ∼100 aa, named scavenger receptor cysteine-rich (SRCR). Two types of SRCR domains (A or B) have been reported, which...... differ in the number of coding exons and intradomain cysteines. Although no unifying function has been reported for SRCR-SF members, recognition of pathogen-associated molecular patterns (PAMPs) was recently shown for some of them. In this article, we report the structural and functional characterization...

  6. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  7. Study on the relationship of protease production and luminescence in Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2006-07-01

    To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.

  8. Impact of cysteine variants on the structure, activity, and stability of recombinant human α-galactosidase A

    Science.gov (United States)

    Qiu, Huawei; Honey, Denise M; Kingsbury, Jonathan S; Park, Anna; Boudanova, Ekaterina; Wei, Ronnie R; Pan, Clark Q; Edmunds, Tim

    2015-01-01

    Recombinant human α-galactosidase A (rhαGal) is a homodimeric glycoprotein deficient in Fabry disease, a lysosomal storage disorder. In this study, each cysteine residue in rhαGal was replaced with serine to understand the role each cysteine plays in the enzyme structure, function, and stability. Conditioned media from transfected HEK293 cells were assayed for rhαGal expression and enzymatic activity. Activity was only detected in the wild type control and in mutants substituting the free cysteine residues (C90S, C174S, and the C90S/C174S). Cysteine-to-serine substitutions at the other sites lead to the loss of expression and/or activity, consistent with their involvement in the disulfide bonds found in the crystal structure. Purification and further characterization confirmed that the C90S, C174S, and the C90S/C174S mutants are enzymatically active, structurally intact and thermodynamically stable as measured by circular dichroism and thermal denaturation. The purified inactive C142S mutant appeared to have lost part of its alpha-helix secondary structure and had a lower apparent melting temperature. Saturation mutagenesis study on Cys90 and Cys174 resulted in partial loss of activity for Cys174 mutants but multiple mutants at Cys90 with up to 87% higher enzymatic activity (C90T) compared to wild type, suggesting that the two free cysteines play differential roles and that the activity of the enzyme can be modulated by side chain interactions of the free Cys residues. These results enhanced our understanding of rhαGal structure and function, particularly the critical roles that cysteines play in structure, stability, and enzymatic activity. PMID:26044846

  9. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  10. Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione

    International Nuclear Information System (INIS)

    Salehzadeh, Hamid; Mokhtari, Banafsheh; Nematollahi, Davood

    2014-01-01

    Graphical abstract: 3,5-Di-tert-buthylcatechol was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at the glassy carbon and carbon nanotube modified glassy carbon electrode. - Highlights: • Selective electrochemical determination of homocysteine. • Catalytic electron transfer of 3,5-di-tert-buthylcatechol in the presence of homocysteine. • Michael type addition reaction of electrochemically generated 3,5-di-tert-buthyl-o-benzoquinone with glutathione. - Abstract: The electrochemical oxidation of 3,5-di-tert-buthylcatechol in the presence of homocysteine was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at a glassy carbon and a glassy carbon electrode modified with carbon nanotube. The results revealed that the electrochemically generated 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione exhibits high catalytic activity toward homocysteine oxidation at reduced over-potential and low catalytic activity for oxidation of cysteine. The catalytic activity 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione toward cysteine was suppressed in the presence of 4-N,N-dimethylaminocinnamaldehyde. Contrary to homocysteine and cysteine, the reaction of glutathione with 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione is a substituation reaction. This method exhibits three dynamic linear ranges of 2.5 to 10 μmol L −1 , 10 to 100 μmol L −1 and 100 to 1000 μmol L −1 , and a lower detection limit (3σ) of 0.89 ± 3.53% μmol L −1 for homocysteine

  11. Processing Proteases

    DEFF Research Database (Denmark)

    Ødum, Anders Sebastian Rosenkrans

    -terminal of the scissile bond, leaving C-terminal fusions to have non-native C-termini after processing. A solution yielding native C-termini would allow novel expression and purification systems for therapeutic proteins and peptides.The peptidyl-Lys metallopeptidase (LysN) of the fungus Armillaria mellea (Am) is one...... of few known proteases to have substrate specificity for the C-terminal side of the scissile bond. LysN exhibits specificity for lysine, and has primarily been used to complement trypsin in to proteomic studies. A working hypothesis during this study was the potential of LysN as a processing protease...

  12. Modulation of ion transport across rat distal colon by cysteine

    Directory of Open Access Journals (Sweden)

    Martin eDiener

    2012-03-01

    Full Text Available The aim of this study was to identify the actions of stimulation of endogenous production of H2S by cysteine, the substrate for the two H2S-producing enzymes, cystathionin-beta-synthase and cystathionin-gamma-lyase, on ion transport across rat distal colon. Changes in short-circuit current (Isc induced by cysteine were measured in Ussing chambers. Free cysteine caused a concentration-dependent, transient fall in Isc, which was sensitive to amino-oxyacetate and beta-cyano-L-alanine, i.e. inhibitors of H2S-producing enzymes. In contrast, Na cysteinate evoked a biphasic change in Isc, i.e. an initial fall followed by a secondary increase, which was also reduced by these enzyme inhibitors. All responses were dependent on the presence of Cl- and inhibited by bumetanide, suggesting that free cysteine induces an inhibition of transcellular Cl- secretion, whereas Na cysteinate – after a transient inhibitory phase – activates anion secretion. The assumed reason for this discrepancy is a fall in the cytosolic pH induced by free cysteine, but not by Na cysteinate, as observed in isolated colonic crypts loaded with the pH-sensitive dye, BCECF. Intracellular acidification is known to inhibit epithelial K+ channels. Indeed, after preinhibition of basolateral K+ channels with tetrapentylammonium or Ba2+, the negative Isc induced by free cysteine was reduced significantly. In consequence, stimulation of endogenous H2S production by Na cysteinate causes, after a short inhibitory response, a delayed activation of anion secretion, which is missing in the case of free cysteine, probably due to the cytosolic acidification. In contrast, diallyl trisulfide, which is intracellularly converted to H2S, only evoked a monophasic increase in Isc without the initial fall observed with Na cysteinate. Consequently, time course and amount of produced H2S seem to strongly influence the functional response of the colonic epithelium evoked by this gasotransmitter.

  13. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies.

    Science.gov (United States)

    Maseko, Sibusiso B; Natarajan, Satheesh; Sharma, Vikas; Bhattacharyya, Neelakshi; Govender, Thavendran; Sayed, Yasien; Maguire, Glenn E M; Lin, Johnson; Kruger, Hendrik G

    2016-06-01

    Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Many studies have targeted HIV-1 protease for the development of drugs against AIDS. Recombinant HIV-1 protease is used to screen new drugs from synthetic compounds or natural substances. Along with the wild type (C-SA) we also over-expressed and characterized two mutant forms from patients that had shown resistance to protease inhibitors. Using recombinant DNA technology, we constructed three recombinant plasmids in pGEX-6P-1 and expressed them containing a sequence encoding wild type HIV protease and two mutants (I36T↑T contains 100 amino acids and L38L↑N↑L contains 101 amino acids). These recombinant proteins were isolated from inclusion bodies by using QFF anion exchange and GST trap columns. In SDS-PAGE, we obtained these HIV proteases as single bands of approximately 11.5, 11.6 and 11.7 kDa for the wild type, I36T↑Tand L38L↑N↑L mutants, respectively. The enzyme was recovered efficiently (0.25 mg protein/L of Escherichia coli culture) and had high specific activity of 2.02, 2.20 and 1.33 μmol min(-1) mg(-1) at an optimal pH of 5 and temperature of 37 °C for the wild type, I36T↑T and L38L↑N↑L, respectively. The method employed here provides an easy and rapid purification of the HIV-1(C-SA) protease from the inclusion bodies, with high yield and high specific activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  15. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam [Dept. of Fine Chemistry, Cosmetic R and D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jino [Daebong LS. Ltd, Incheon (Korea, Republic of)

    2017-01-15

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ{sub 50}) of DBLS-21 was 51.1 min at 50 μM on {sup 1}O{sub 2} -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC{sub 50} ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics.

  16. Synthesis, antioxidative and whitening effects of novel cysteine derivatives

    International Nuclear Information System (INIS)

    Ha, Ji Hoon; Kim, Kyoung Mi; Jeong, Yoon Ju; Park, Young Min; Lee, Jae Young; Park, Soo Nam; Park, Jino

    2017-01-01

    Recently, development of biocompatibility functional cosmetic agents as antioxidant or whitening agent has increased. In this study, synthetic cysteine derivatives (DBLS-21, -24, and -33) were developed containing syringic acid and cysteine moieties (l-cysteine ethyl ester, N-acetyl cysteine methyl ester, and N-acetyl cysteine ethyl ester), and their antioxidative and whitening activities were evaluated. The cellular protective effect (τ_5_0) of DBLS-21 was 51.1 min at 50 μM on "1O_2 -induced hemolysis of erythrocytes. This activity was slightly higher than that of α-tocopherol (43.6 min) as a lipophilic antioxidant. In the melanogenesis inhibitory effect, DBLS-21, -24, and -33 was 1.6-, 1.8-, and 2.5-fold higher than arbutin, respectively. In particular, DBLS-21 and -33 was 112.8- and 6.1-fold higher than arbutin, respectively (293.4 μM) on tyrosinase inhibition activity (IC_5_0 ). But DBLS-24 had no tyrosinase inhibitory activity. These results suggest that cysteine derivatives possess potential for use as an antioxidant agent (DBLS-21) and whitening agents (all derivatives) in cosmetics

  17. Cysteine proteases of pathogenic organisms

    National Research Council Canada - National Science Library

    Robinson, Mark W; Dalton, J. P

    2011-01-01

    .... Written by leading researchers from Europe, Australia and North America, this book is essential reading for students and professionals interested in human medicine and infectious disease research...

  18. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  19. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres.

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  20. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  1. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.

    Science.gov (United States)

    Maddur, Ashoka A; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G W; Olson, Steven T

    2013-11-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.

  2. Electrostatic influence of local cysteine environments on disulfide exchange kinetics.

    Science.gov (United States)

    Snyder, G H; Cennerazzo, M J; Karalis, A J; Field, D

    1981-11-10

    The ionic strength dependence of the bimolecular rate constant for reaction of the negative disulfide 5,5'-dithiobis (2-nitrobenzoic acid) with cysteines in fragments of naturally occurring proteins was determined by stopped-flow spectroscopy. The Debye-Hückel relationship was applied to determine the effective charge at the cysteine and thereby determine the extent to which nearby neighbors in the primary sequence influence the kinetics. Corrections for the secondary salt effect on cysteine pKs were determined by direct spectrometric pH titration of sulfhydryl groups or by observation of the ionic strength dependence of kinetics of cysteine reaction with the neutral disulfide 2,2'-dithiodipyridine. Quantitative expressions was verified by model studies with N-acetyl-cystein. At ionic strengths equal to or greater than 20 mM, the net charge at the polypeptide cysteine site is the sum of the single negative charge of the thiolate anion and the charges of the amino acids immediately preceding and following the cysteine in the primary sequence. At lower ionic strengths, more distant residues influence kinetics. At pH 7.0, 23 degree C, and an ionic strength of 20 mM, rate constants for reaction of the negative disulfide with a cysteine having two positive neighbors, one positive and one neutral neighbor, or two neutral neighbors are 132000, 3350, and 367 s-1 M-1, respectively. This corresponds to a contribution to the activation energy of 0.65- 1.1 kcal/mol per ion pair involved in collision between the cysteine and disulfide regions. The results permit the estimation that cysteine local environments may provide a means of achieving a 10(6)-fold range in rate constants in disulfide exchange reactions in random-coil proteins. This range may prove useful in developing strategies for directing disulfide pairing in synthetic proteins.

  3. GS-8374, a Prototype Phosphonate-Containing Inhibitor of HIV-1 Protease, Effectively Inhibits Protease Mutants with Amino Acid Insertions

    Czech Academy of Sciences Publication Activity Database

    Grantz Šašková, Klára; Kožíšek, Milan; Stray, K.; Jong de, D.; Řezáčová, Pavlína; Brynda, Jiří; Maarseveen van, N. M.; Nijhuis, M.; Cihlář, T.; Konvalinka, Jan

    2014-01-01

    Roč. 88, č. 6 (2014), s. 3586-3590 ISSN 0022-538X R&D Projects: GA ČR GAP207/11/1798 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : virus type-1 protease * antiviral activity * drug resistance Subject RIV: EE - Microbiology, Virology Impact factor: 4.439, year: 2014

  4. Advances in protease engineering for laundry detergents.

    Science.gov (United States)

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fluoresence quenching of riboflavin in aqueous solution by methionin and cystein

    International Nuclear Information System (INIS)

    Droessler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P.

    2003-01-01

    The fluorescence quantum distributions, fluorescence quantum yields, and fluorescence lifetimes of riboflavin in methanol, DMSO, water, and aqueous solutions of the sulphur atom containing amino acids methionin and cystein have been determined. In methanol, DMSO, and water (pH=4-8) only dynamic fluorescence reduction due to intersystem crossing and internal conversion is observed. In aqueous methionin solutions of pH=5.25-9 a pH independent static and dynamic fluorescence quenching occurs probably due to riboflavin anion-methionin cation pair formation. In aqueous cystein solutions (pH range from 4.15 to 9) the fluorescence quenching increases with rising pH due to cystein thiolate formation. The cystein thiol form present at low pH does not react with neutral riboflavin. Cystein thiolate present at high pH seems to react with neutral riboflavin causing riboflavin deprotonation (anion formation) by cystein thiolate reduction to the cystein thiol form

  6. Cysteine Supplementation May be Beneficial in a Subgroup of Mitochondrial Translation Deficiencies.

    Science.gov (United States)

    Bartsakoulia, Marina; Mϋller, Juliane S; Gomez-Duran, Aurora; Yu-Wai-Man, Patrick; Boczonadi, Veronika; Horvath, Rita

    2016-08-30

    Mitochondrial encephalomyopathies are severe, relentlessly progressive conditions and there are very few effective therapies available to date. We have previously suggested that in two rare forms of reversible mitochondrial disease (reversible infantile respiratory chain deficiency and reversible infantile hepatopathy) supplementation with L-cysteine can improve mitochondrial protein synthesis, since cysteine is required for the 2-thiomodification of mitochondrial tRNAs. We studied whether supplementation with L-cysteine or N-acetyl-cysteine (NAC) results in any improvement of the mitochondrial function in vitro in fibroblasts of patients with different genetic forms of abnormal mitochondrial translation. We studied in vitro in fibroblasts of patients carrying the common m.3243A>G and m.8344A>G mutations or autosomal recessive mutations in genes affecting mitochondrial translation, whether L-cysteine or N-acetyl-cysteine supplementation have an effect on mitochondrial respiratory chain function. Here we show that supplementation with L-cysteine, but not with N-acetyl-cysteine partially rescues the mitochondrial translation defect in vitro in fibroblasts of patients carrying the m.3243A>G and m.8344A>G mutations. In contrast, N-acetyl-cysteine had a beneficial effect on mitochondrial translation in TRMU and MTO1 deficient fibroblasts. Our results suggest that L-cysteine or N-acetyl-cysteine supplementation may be a potential treatment for selected subgroups of patients with mitochondrial translation deficiencies. Further studies are needed to explore the full potential of cysteine supplementation as a treatment for patients with mitochondrial disease.

  7. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    Directory of Open Access Journals (Sweden)

    Jeong Hee Kim

    Full Text Available This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s. The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  8. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Science.gov (United States)

    2009-01-01

    Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co

  9. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2009-03-01

    Full Text Available Abstract Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW and LexA (hoxW. In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer

  10. Understanding serine proteases implications on Leishmania spp lifecycle.

    Science.gov (United States)

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sequence Quality Analysis Tool for HIV Type 1 Protease and Reverse Transcriptase

    OpenAIRE

    DeLong, Allison K.; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W.; Kantor, Rami

    2012-01-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802...

  12. A genomic survey of proteases in Aspergilli

    NARCIS (Netherlands)

    Budak, Sebnem Ozturkoglu; Zhou, M.; Brouwer, Carlo; Wiebenga, A.; Benoit, Isabelle; Di Falco, Marcos; Tsang, Adrian; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide

  13. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u......PA) plays an important role in plasminogen activation system, which has many physiological and pathological functions and is closely associated with the metastasis of tumor cells. Based on a mono-cyclic peptidic inhibitor of murine uPA (muPA), mupain-1, which was screened out from a phage-display library...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor...

  14. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  15. Cysteine homeostasis plays an essential role in plant immunity.

    Science.gov (United States)

    Álvarez, Consolación; Bermúdez, M Ángeles; Romero, Luis C; Gotor, Cecilia; García, Irene

    2012-01-01

    Cysteine is the metabolic precursor of essential biomolecules such as vitamins, cofactors, antioxidants and many defense compounds. The last step of cysteine metabolism is catalysed by O-acetylserine(thiol)lyase (OASTL), which incorporates reduced sulfur into O-acetylserine to produce cysteine. In Arabidopsis thaliana, the main OASTL isoform OAS-A1 and the cytosolic desulfhydrase DES1, which degrades cysteine, contribute to the cytosolic cysteine homeostasis. • Meta-analysis of the transcriptomes of knockout plants for OAS-A1 and for DES1 show a high correlation with the biotic stress series in both cases. • The study of the response of knockout mutants to plant pathogens shows that des1 mutants behave as constitutive systemic acquired resistance mutants, with high resistance to biotrophic and necrotrophic pathogens, salicylic acid accumulation and WRKY54 and PR1 induction, while oas-a1 knockout mutants are more sensitive to biotrophic and necrotrophic pathogens. However, oas-a1 knockout mutants lack the hypersensitive response associated with the effector-triggered immunity elicited by Pseudomonas syringae pv. tomato DC3000 avrRpm1. • Our results highlight the role of cysteine as a crucial metabolite in the plant immune response. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  17. Suboptimal inhibition of protease activity in human immunodeficiency virus type 1: Effects on virion morphogenesis and RNA maturation

    International Nuclear Information System (INIS)

    Moore, Michael D.; Fu, William; Soheilian, Ferri; Nagashima, Kunio; Ptak, Roger G.; Pathak, Vinay K.; Hu, Wei-Shau

    2008-01-01

    Protease activity within nascently released human immunodeficiency virus type 1 (HIV-1) particles is responsible for the cleavage of the viral polyproteins Gag and Gag-Pol into their constituent parts, which results in the subsequent condensation of the mature conical core surrounding the viral genomic RNA. Concomitant with viral maturation is a conformational change in the packaged viral RNA from a loosely associated dimer into a more thermodynamically stable form. In this study we used suboptimal concentrations of two protease inhibitors, lopinavir and atazanavir, to study their effects on Gag polyprotein processing and on the properties of the RNA in treated virions. Analysis of the treated virions demonstrated that even with high levels of inhibition of viral infectivity (IC 90 ), most of the Gag and Gag-Pol polyproteins were processed, although slight but significant increases in processing intermediates of Gag were detected. Drug treatments also caused a significant increase in the proportion of viruses displaying either immature or aberrant mature morphologies. The aberrant mature particles were characterized by an electron-dense region at the viral periphery and an electron-lucent core structure in the viral center, possibly indicating exclusion of the genomic RNA from these viral cores. Intriguingly, drug treatments caused only a slight decrease in overall thermodynamic stability of the viral RNA dimer, suggesting that the dimeric viral RNA was able to mature in the absence of correct core condensation

  18. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... suggest the suitability of the enzyme for applications in peptide synthesis, detergent formulation and ... The cell free supernatant was recovered as crude enzyme preparation and used for further studies. Assay of protease activity. Protease activity was ... Effect of pH on growth and protease production.

  19. Comparative characterization of protease activity in cultured spotted rose snapper juveniles (Lutjanus guttatus

    Directory of Open Access Journals (Sweden)

    Emyr Peña

    2015-09-01

    Full Text Available Partial characterizations of digestive proteases were studied in three life stages of spotted rose snapper: early (EJ, middle (MJ and late juvenile (LJ with corresponding average weights of 21.3 ± 2.6 g (3 months after hatching, MAH, 190 ± 4.4 g (7 MAH, and 400 ± 11.5 g (12 MAH. At sampling points, the digestive tract was dissected into the stomach (St, pyloric caeca (PC, and the intestine in three sections (proximal (PI, middle (MI and distal intestine (DI. The effect of pH and temperature and specific inhibitors were evaluated for acid and alkaline proteases. Total acid and alkaline protease activity showed a tendency to increase with juvenile life stage of fish while trypsin activity decreased. Differences were found in acid and alkaline protease activities at different pH and temperatures during juvenile stages. Pepstatin A inhibited total activity in the stomach extract in all juvenile stages. Activity in total alkaline protease inhibition was significantly higher in EJ using TLCK, PMSF, SBTI, Phen and Ovo than in MJ and LJ, while no significant differences were found with TPCK inhibition. Therefore increases in protease activities with fish growth through juvenile stages in which a substitution or diversification in the type of alkaline enzymes exist. These results lead a better comprehension of changes in digestive potential of Lutjanidae fish.

  20. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans.

    Science.gov (United States)

    McGavigan, A K; O'Hara, H C; Amin, A; Kinsey-Jones, J; Spreckley, E; Alamshah, A; Agahi, A; Banks, K; France, R; Hyberg, G; Wong, C; Bewick, G A; Gardiner, J V; Lehmann, A; Martin, N M; Ghatei, M A; Bloom, S R; Murphy, K G

    2015-03-01

    High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may have a role in driving protein-induced satiety. We tested the effects of a range of amino acids on food intake in rodents and identified l-cysteine as the most anorexigenic. Using rodents we further studied the effect of l-cysteine on food intake, behaviour and energy expenditure. We proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on gastric emptying and gut hormone release. The effect of l-cysteine on appetite scores and gut hormone release was then investigated in humans. l-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal administration. This effect did not appear to be secondary to behavioural or aversive side effects. l-Cysteine increased neuronal activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food intake in transgenic ghrelin-overexpressing mice. Repeated l-cysteine administration decreased food intake in rats and obese mice. l-Cysteine reduced hunger and plasma acyl ghrelin levels in humans. Further work is required to determine the chronic effect of l-cysteine in rodents and humans on appetite and body weight, and whether l-cysteine contributes towards protein-induced satiety.

  1. Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman-Birk type protease inhibitor from rice bean

    Science.gov (United States)

    This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...

  2. Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion.

    Directory of Open Access Journals (Sweden)

    V M Sangeetha

    Full Text Available BACKGROUND: Expansion of hematopoietic stem/progenitor cells (HSPCs is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB derived CD34(+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. CONCLUSION/SIGNIFICANCE: Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant

  3. Unusual specific heat of almost dry L-cysteine and L-cystine amino acids.

    Science.gov (United States)

    Ishikawa, M S; Lima, T A; Ferreira, F F; Martinho, H S

    2015-03-01

    A detailed quantitative analysis of the specific heat in the 0.5- to 200-K temperature range for almost dry L-cysteine and its dimer, L-cystine, amino acids is presented. We report the occurrence of a sharp first-order transition at ∼76 K for L-cysteine associated with the thiol group ordering which was successfully modeled with the two-dimensional Ising model. We demonstrated that quantum rotors, two-level systems (TLS), Einstein oscillators, and acoustic phonons (the Debye model) are essential ingredients to correctly describe the overall experimental data. Our analysis pointed out the absence of the TLS contribution to the low temperature specific heat of L-cysteine. This result was similar to that found in other noncrystalline amorphous materials, e.g., amorphous silicon, low density amorphous water, and ultrastable glasses. L-cystine presented an unusual nonlinear acoustic dispersion relation ω(q)=vq0.95 and a Maxwell-Boltzmann-type distribution of tunneling barriers. The presence of Einstein oscillators with ΘE∼70 K was common in both systems and adequately modeled the boson peak contributions.

  4. Extracellular proteases of Trichoderma species. A review.

    Science.gov (United States)

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  5. Elimination of hydrogen sulphide and β substitution in cystein, catalyzed by the cysteine-lyase of hens yolk-sac and yolk (1961)

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1961-01-01

    The yolk of incubated hen's eggs contains a pyridoxal phosphate activated enzyme, free of iron, copper, magnesium and calcium. This enzyme activates the β-carbon atom of cysteine. Its reactivity is demonstrated by the ease with which this β-carbon fixes various sulfur containing substances in which the sulfur has reducing properties: inorganic sulfide, sulfide or cysteine itself. In the absence of substances able to react with the β-carbon atom, the active complex, consisting of the enzyme and the aminated tri-carbon chain, is hydrolysed to pyruvic acid and ammonia. The liberation of hydrogen sulfide thus appears to be the consequence either of the substitution of the β-carbon atom of cysteine or of the decomposition of the complex which this aminoacid forms with the enzyme studied. The latter seems therefore to possess an activity which differs from the activity of the desulfhydrases as yet known. We suggest to call this enzyme cystein-lyase. (authors) [fr

  6. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  7. DC type 2 polarization depends on both the allergic status of the individual and protease activity of Per a 10.

    Science.gov (United States)

    Goel, Chhavi; Gaur, S N; Bhati, Gaurav; Arora, Naveen

    2015-10-01

    Cockroach proteases are important risk factors for asthma development in predisposed individuals. In the present study, effect of allergic status of patients on DCs polarization in response to protease allergen Per a 10 was investigated. Cockroach-allergic, other-allergic patients and healthy individuals were selected following the guidelines of ATS/ARIA. Monocyte-derived dendritic cells (DCs) were generated from the selected individuals and stimulated with Per a 10. Flow cytometric analysis showed a significantly high expression of CD80 and CD86 on DCs from cockroach-allergic patients after Per a 10 stimulation as compared to healthy individuals or other-allergic patients (PPer a 10 induced comparable level of CD83 expression on DCs from all the 3 groups, showing it was irrespective of the allergic status. CD40 expression was significantly low (PPer a 10 induced lower CD40 expression on DCs than the heat-inactivated Per a 10 (PPer a 10 stimulated DC cultures was significantly higher than in heat-inactivated Per a 10 (PPer a 10-stimulated DCs than heat-inactivated Per a 10-stimulated DCs. Per a 10-stimulated DCs from cockroach-allergic patients secreted high levels of IL-5, IL-6, TNF-α than that from healthy individuals or other-allergic patients (PPer a 10-stimulated DCs from cockroach-allergic patients induced increased secretions of IL-4, IL-5, IL-6, TNF-α and low IL-12 by T cells as compared to those from other groups (PPer a 10 allergen, polarization of DCs shifts toward type 2 in cockroach-allergic patients but not in the healthy individuals or other-allergic patients. In conclusion, both allergic status of the individual and protease activity of Per a 10 are important parameters that participate in DCs polarization. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    Science.gov (United States)

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  9. Activities of the human immunodeficiency virus type 1 (HIV-1) protease inhibitor nelfinavir mesylate in combination with reverse transcriptase and protease inhibitors against acute HIV-1 infection in vitro.

    Science.gov (United States)

    Patick, A K; Boritzki, T J; Bloom, L A

    1997-10-01

    Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W. R. Greco, G. Bravo, and J. C. Parsons, Pharm. Rev. 47:331-385, 1995) and by the method of M. N. Prichard and C. Shipman (Antiviral Res. 14:181-206, 1990). Both analytical methods yielded similar results and showed that the two-drug combinations of nelfinavir with the reverse transcriptase inhibitors ZDV, 3TC, ddI, d4T, and ddC and the three-drug combination with ZDV and 3TC resulted in additive to statistically significant synergistic interactions. In a similar manner, the combination of nelfinavir with the three protease inhibitors resulted in additive (ritonavir and saquinavir) to slightly antagonistic (indinavir) interactions. In all combinations, minimal cellular cytotoxicity was observed with any drug alone and in combination. These results suggest that administration of combinations of the appropriate doses of nelfinavir with other currently approved antiretroviral therapeutic agents in vivo may result in enhanced antiviral activity with no associated increase in cellular cytotoxicity.

  10. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  11. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Márquez-García, Belén; Comadira, Gloria; Fernandez-Garcia, Nieves; Olmos, Enrique; Schnaubelt, Daniel; Kunert, Karl J; Foyer, Christine H

    2014-09-01

    Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  13. Measuring site occupancy: a new perspective on cysteine oxidation.

    Science.gov (United States)

    Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna; Williamson, James; Roepstorff, Peter

    2014-10-01

    Site occupancy is an extremely important aspect of quantification of protein modifications. Knowing the degree of modification of each oxidised cysteine residue is critical to understanding the biological role of these modifications. Yet modification site occupancy is very often overlooked, in part because there are very few analytical tools that allow such measurements. Here we present a new strategy, which provides quantitative analysis of cysteine S-nitrosylation (SNO) and S-sulfenylation (SOH) simultaneously at the resolution of single cysteine and allows for determination of relative oxidation occupancy of the modification site. We show that, on one hand, heavily modified cysteines are not necessarily involved in the response to oxidative stress. On the other hand residues with low modification level can be dramatically affected by mild oxidative imbalance. We make use of high resolution mass spectrometry. The method relies on differential reduction of "total" cysteines, SNO cysteines and SOH cysteines with TCEP, sodium ascorbate and sodium arsenite respectively followed by iodoTMT(TM) alkylation. Enrichment of iodoTMT(TM)-containing peptides is performed using anti-TMT antibody. In vivo model of mild oxidative stress in Escherichia coli is used. To induce endogenous SNO bacteria were grown anaerobically in minimal media supplemented with fumarate or nitrate. Short-term treatment with submilimolar levels of hydrogen peroxide were used to induce SOH. We have quantified 114 SNO/SOH modified peptides corresponding to 90 proteins. Only 6 modified peptides changed significantly under mild oxidative stress. Quantitative information allowed us to determine relative modification site occupancy of each identified modified residue and pin point heavily modified ones. The method proved to be precise and sensitive enough to detect and quantify endogenous levels of oxidative stress on proteome-wide scale and brings a new perspective on the role of the modification site

  14. Emission of hydrogen sulfide by leaf tissue in response to L-cysteine

    International Nuclear Information System (INIS)

    Sekiya, J.; Schmidt, A.; Wilson, L.G.; Filner, P.

    1982-01-01

    Leaf discs and detached leaves exposed to L-cysteine emitted a volatile sulfur compound which was proven by gas chromatography to be H 2 S. This phenomenon was demonstrated in all nine species tested (Cucumis sativus, Cucurbita pepo, Nicotiana tabacum, Coleus blumei, Beta vulgaris, Phaseolus vulgaris, Medicago sativa, Hordeum vulgare, and Gossypium hirsutum). The emission of volatile sulfur by cucumber leaves occurred in the dark at a similar rate to that in the light. The emission of leaf discs reached the maximal rate, more than 40 picomoles per minute per square centimeter, 2 to 4 hours after starting exposure to L-cysteine; then it decreased. In the case of detached leaves, the maximum occurred 5 to 10 h after starting exposure. The average emission rate of H 2 S during the first 4 hours from leaf discs of cucurbits in response to 10 millimolar L-cysteine, was usually more than 40 picomoles per minute per square centimeter, i.e. 0.24 micromoles per hour per square decimeter. Leaf discs exposed to 1 millimolar L-cysteine emitted only 2% as much as did the discs exposed to 10 millimolar L-cysteine. The emission from leaf discs and from detached leaves lasted for at least 5 and 15 hours, respectively. However, several hours after the maximal emission, injury of the leaves, manifested as chlorosis, was evident. H 2 S emission was a specific consequence of exposure to L-cysteine; neither D-cysteine nor L-cysteine elicited H 2 S emission. Aminooxyacetic acid, an inhibitor of pyridoxal phosphate dependent enzymes, inhibited the emission. In a cell free system from cucumber leaves, H 2 S formation and its release occurred in response to L-cysteine. Feeding experiments with [ 35 S]t-cysteine showed that most of the sulfur in H 2 S was derived from sulfur in the L-cysteine supplied

  15. SwissProt search result: AK242832 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242832 J090067L13 (Q8BGV9) Cysteine protease APG4D (EC 3.4.22.-) (Autophagy 4 homolog D) (Auto...phagin-4) (Autophagy-related cysteine endopeptidase 4) (AUT-like 4 cysteine endopeptidase) APG4D_MOUSE 2e-39 ...

  16. SwissProt search result: AK242832 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242832 J090067L13 (Q811C2) Cysteine protease APG4C (EC 3.4.22.-) (Autophagy 4 homolog C) (Auto...phagin-3) (Autophagy-related cysteine endopeptidase 3) (AUT-like 3 cysteine endopeptidase) APG4C_MOUSE 4e-37 ...

  17. SwissProt search result: AK110731 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110731 002-170-E10 (Q8BGV9) Cysteine protease APG4D (EC 3.4.22.-) (Autophagy 4 homolog D) (Auto...phagin-4) (Autophagy-related cysteine endopeptidase 4) (AUT-like 4 cysteine endopeptidase) APG4D_MOUSE 7e-33 ...

  18. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The macromolecular complex of ICP and falcipain-2 from Plasmodium: preparation, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Hansen, Guido; Schwarzloh, Britta; Rennenberg, Annika; Heussler, Volker T.; Hilgenfeld, Rolf

    2011-01-01

    The macromolecular complex of ICP (inhibitor of cysteine proteases) from P. berghei and falcipain-2 from P. falciparum has been prepared and crystallized, and a diffraction data set has been collected to a resolution of 2.6 Å. The malaria parasite Plasmodium depends on the tight control of cysteine-protease activity throughout its life cycle. Recently, the characterization of a new class of potent inhibitors of cysteine proteases (ICPs) secreted by Plasmodium has been reported. Here, the recombinant production, purification and crystallization of the inhibitory C-terminal domain of ICP from P. berghei in complex with the P. falciparum haemoglobinase falcipain-2 is described. The 1:1 complex was crystallized in space group P4 3 , with unit-cell parameters a = b = 71.15, c = 120.09 Å. A complete diffraction data set was collected to a resolution of 2.6 Å

  20. Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model

    Science.gov (United States)

    Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.

    2013-01-01

    One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874

  1. Protein modification by acrolein: Formation and stability of cysteine adducts

    OpenAIRE

    Cai, Jian; Bhatnagar, Aruni; Pierce, William M.

    2009-01-01

    The toxicity of the ubiquitous pollutant and endogenous metabolite, acrolein, is due in part to covalent protein modifications. Acrolein reacts readily with protein nucleophiles via Michael addition and Schiff base formation. Potential acrolein targets in protein include the nucleophilic side chains of cysteine, histidine, and lysine residues as well as the free amino terminus of proteins. Although cysteine is the most acrolein-reactive residue, cysteine-acrolein adducts are difficult to iden...

  2. Post-translational regulation and trafficking of the granulin-containing protease RD21 of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Christian Gu

    Full Text Available RD21-like proteases are ubiquitous, plant-specific papain-like proteases typified by carrying a C-terminal granulin domain. RD21-like proteases are involved in immunity and associated with senescence and various types of biotic and abiotic stresses. Here, we interrogated Arabidopsis RD21 regulation and trafficking by site-directed mutagenesis, agroinfiltration, western blotting, protease activity profiling and protein degradation. Using an introduced N-glycan sensor, deglycosylation experiments and glyco-engineered N. benthamiana plants, we show that RD21 passes through the Golgi where it becomes fucosylated. Our studies demonstrate that RD21 is regulated at three post-translational levels. Prodomain removal is not blocked in the catalytic Cys mutant, indicating that RD21 is activated by a proteolytic cascade. However, RD21 activation in Arabidopsis does not require vacuolar processing enzymes (VPEs or aleurain-like protease AALP. In contrast, granulin domain removal requires the catalytic Cys and His residues and is therefore autocatalytic. Furthermore, SDS can (re-activate latent RD21 in Arabidopsis leaf extracts, indicating the existence of a third layer of post-translational regulation, possibly mediated by endogenous inhibitors. RD21 causes a dominant protease activity in Arabidopsis leaf extracts, responsible for SDS-induced proteome degradation.

  3. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  4. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  5. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    Directory of Open Access Journals (Sweden)

    Isabelle Russier-Antoine

    2016-10-01

    Full Text Available Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.

  6. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    Directory of Open Access Journals (Sweden)

    Werner Smidt

    Full Text Available The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1 infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS. Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  7. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    Science.gov (United States)

    Smidt, Werner

    2013-01-01

    The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  8. The TvLEGU-1, a Legumain-Like Cysteine Proteinase, Plays a Key Role in Trichomonas vaginalis Cytoadherence

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rendón-Gandarilla

    2013-01-01

    Full Text Available The goal of this paper was to characterize a Trichomonas vaginalis cysteine proteinase (CP legumain-1 (TvLEGU-1 and determine its potential role as a virulence factor during T. vaginalis infection. A 30-kDa band, which migrates in three protein spots (pI~6.3, ~6.5, and ~6.7 with a different type and level of phosphorylation, was identified as TvLEGU-1 by one- and two-dimensional Western blot (WB assays, using a protease-rich trichomonad extract and polyclonal antibodies produced against the recombinant TvLEGU-1 (anti-TvLEGU-1r. Its identification was confirmed by mass spectrometry. Immunofluorescence, cell binding, and WB assays showed that TvLEGU-1 is upregulated by iron at the protein level, localized on the trichomonad surface and in lysosomes and Golgi complex, bound to the surface of HeLa cells, and was found in vaginal secretions. Additionally, the IgG and Fab fractions of the anti-TvLEGU-1r antibody inhibited trichomonal cytoadherence up to 45%. Moreover, the Aza-Peptidyl Michael Acceptor that inhibited legumain proteolytic activity in live parasites also reduced levels of trichomonal cytoadherence up to 80%. In conclusion, our data show that the proteolytic activity of TvLEGU-1 is necessary for trichomonal adherence. Thus, TvLEGU-1 is a novel virulence factor upregulated by iron. This is the first report that a legumain-like CP plays a role in a pathogen cytoadherence.

  9. Supermarket Proteases.

    Science.gov (United States)

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  10. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  11. Cysteine peroxidase activity in rat blood plasma | Razygraev ...

    African Journals Online (AJOL)

    The rat plasma found to be able to accelerate greatly the H2O2-dependent oxidation of cysteine. The activity was a characteristic of a protein fraction precipitated at 30—44% ammonium sulfate saturation, and the specific activity in protein fraction was significantly higher than in plasma. Cysteine:H2O2 oxidoreductase ...

  12. Effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits in the hippocampus of streptozotocin-induced type 1 diabetes mellitus rats.

    Science.gov (United States)

    Zhang, Songyun; Li, Hongyan; Zhang, Lihui; Li, Jie; Wang, Ruiying; Wang, Mian

    2017-02-15

    Increasing evidence demonstrates an association between diabetes and hippocampal neuron damage. This study aimed to determine the effects of troxerutin on cognitive deficits and glutamate cysteine ligase subunits (GCLM and GCLC) in the hippocampus of streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. At 12weeks after streptozotocin injection, T1DM rats were randomly divided into 4 groups (n=15 each group) to receive no treatment (T1DM), saline (T1DM+saline), alpha-lipoic acid (T1DM+alpha-lipoic acid), and troxerutin (T1DM+troxerutin), respectively, for 6weeks. Meanwhile, 10 control animals (NC group) were assessed in parallel. Learning performance was evaluated by the Morris water maze. After treatment, hippocampi were collected for pathological examination by hematoxylin and eosin (H&E) staining. Next, hippocampal superoxide dismutase (SOD) activity, and malondialdehyde (MDA) and glutathione (GSH) levels were assessed. Finally, glutamate cysteine ligase catalytic (GCLC) and glutamate cysteine ligase modifier (GCLM) subunit mRNA and protein levels were quantified by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Compared with T1DM and T1DM+saline groups, escape latency was overtly reduced in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Significantly increased GCLM and GCLC mRNA levels, GCLC protein amounts, SOD activity, and GSH levels, and reduced MDA amounts were observed in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. In T1DM and T1DM+saline groups, H&E staining showed less pyramidal cells in the hippocampus, with disorganized layers, karyopyknosis, decreased endochylema, and cavitation, effects relieved in T1DM+alpha-lipoic acid and T1DM+troxerutin groups. Troxerutin alleviates oxidative stress and promotes learning in streptozotocin-induced T1DM rats, a process involving GCLC expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-01-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  14. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nikhil, E-mail: nkumar.phd2011.bt@nitrr.ac.in; Upadhyay, Lata Sheo Bachan, E-mail: contactlataupadhyay@gmail.com

    2016-11-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month.

  15. SwissProt search result: AK242832 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242832 J090067L13 (Q8C9S8) Cysteine protease APG4A (EC 3.4.22.-) (Autophagy 4 homolog A) (Auto...phagin-2) (Autophagy-related cysteine endopeptidase 2) (AUT-like 2 cysteine endopeptidase) APG4A_MOUSE 2e-47 ...

  16. SwissProt search result: AK069012 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069012 J023002M16 (Q8C9S8) Cysteine protease APG4A (EC 3.4.22.-) (Autophagy 4 homolog A) (Auto...phagin-2) (Autophagy-related cysteine endopeptidase 2) (AUT-like 2 cysteine endopeptidase) APG4A_MOUSE 4e-48 ...

  17. SwissProt search result: AK110731 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110731 002-170-E10 (Q8C9S8) Cysteine protease APG4A (EC 3.4.22.-) (Autophagy 4 homolog A) (Auto...phagin-2) (Autophagy-related cysteine endopeptidase 2) (AUT-like 2 cysteine endopeptidase) APG4A_MOUSE 2e-36 ...

  18. Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.

    Science.gov (United States)

    Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S

    2012-11-01

    One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.

  19. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    Science.gov (United States)

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  1. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  2. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  4. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide

    Science.gov (United States)

    Ueki, Iori; Roman, Heather B.; Valli, Alessandro; Fieselmann, Krista; Lam, Jimmy; Peters, Rachel; Hirschberger, Lawrence L.

    2011-01-01

    Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO+/− mice) were crossed to generate CDO−/−, CDO+/−, and CDO+/+ mice. CDO−/− mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO−/− mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO−/− mice than in CDO+/− or CDO+/+ mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO−/− mice. H2S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H2S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H2S/sulfane sulfur levels and facilitate the use of H2S as a signaling molecule. PMID:21693692

  5. The Effect of Exogenous Protease in Broiler Diets on the Apparent Ileal Digestibility of Amino Acids and on Protease Activity in Jejunum

    Directory of Open Access Journals (Sweden)

    Vojtěch Rada

    2016-01-01

    Full Text Available The objective of this study was to evaluate the effect of a mono-component commercial serine protease supplement in broiler diets on apparent ileal amino acid digestibility and protease activity. A total of 150 male (28 d old ROSS 308 were randomly placed into 30 battery pens and divided into 5 treatment groups with 6 replicates each. The experiment was performed for 7 days. Five dietary treatments were used: 2 standard protein diets without (SP and with protease (SP + P formulated 20.7 % CP, 2 lower-protein diets (19.9 % CP without (LP and with protease (LP + P and one lower‑protein diet with protease and with doubled rapeseed meal (RSM content (SP-RSM + P compared with the other treatments. Lower-protein diets were formulated with a 4 % decrease in the relative CP value compared with the standard protein diet. Enzyme protease was added to the diets at a concentration of 200 ppm (15,000 PROT units per kg. The diets contained 0.3 % Cr2O3 to facilitate the estimation of apparent AA digestibility and overall apparent ileal crude protein digestibility. Mono-component protease had no effect on apparent ileal AA digestibility or jejunum protease activity if diets contained the same level of RSM. The supplement of exogenous protease did not affect (P > 0.05 the apparent ileal AA digestibility coefficients if a higher RSM level was used. The CP level influenced (P < 0.05 only the coefficients of the apparent ileal AA digestibility of Pro and Arg. The RSM level (P < 0.01 had significant effects on protease activity in the jejunum.

  6. Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.

    Science.gov (United States)

    Li, R; Kast, J

    2017-01-01

    Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.

  7. Bleogens: Cactus-Derived Anti-Candida Cysteine-Rich Peptides with Three Different Precursor Arrangements

    Directory of Open Access Journals (Sweden)

    Shining Loo

    2017-12-01

    Full Text Available Cysteine-rich peptides (CRPs play important host-defense roles in plants. However, information concerning CRPs in the Cactaceae (cactus family is limited, with only a single cactus-derived CRP described to date. Here, we report the identification of 15 novel CRPs with three different precursor architectures, bleogens pB1-15 from Pereskia bleo of the Cactaceae family. By combining proteomic and transcriptomic methods, we showed that the prototype, bleogen pB1, contained 36 amino acid residues, a six-cysteine motif typical of the six-cysteine-hevein-like peptide (6C-HLP family, and a type I two-domain precursor consisting of an endoplasmic reticulum (ER and a mature domain. In contrast, the precursors of the other 14 bleogens contained a type II three-domain architecture with a propeptide domain inserted between the ER and the mature bleogen domain. Four of these 14 bleogens display a third type of architecture with a tandemly repeating bleogen domain. A search of the Onekp database revealed that <1% plant species possess three different precursor architectures for the biosynthesis of 6C-HLPs, including Lophophora williamsii, Pereskia aculeate, Portulaca cryptopetala, Portulaca oleracea, Portulaca suffruticosa, and Talinum sp. NMR analysis confirmed that bleogen pB1 has cystine-knot disulfide connectivity as well as a two-beta-sheet and a four-loop structural fold that is similar to other 6C-HLPs. Sequence analysis, structural studies, and in silico modeling revealed that bleogen pB1 has a cation-polar-cation motif, a signature heparin-binding motif that was confirmed by heparin affinity chromatography. Cell-based assays showed that bleogen pB1 is non-toxic to mammalian cells but functions as an anti-Candida peptide. Taken together, our findings provide insight into the occurrence, functions and precursor architectures of CRPs in the cactus family.

  8. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC 50 >1 mM) on the activities of five major isoforms of human CYP in vitro.

  9. Negative modulation of the GABAA ρ1 receptor function by l-cysteine.

    Science.gov (United States)

    Beltrán González, Andrea N; Vicentini, Florencia; Calvo, Daniel J

    2018-01-01

    l-Cysteine is an endogenous sulfur-containing amino acid with multiple and varied roles in the central nervous system, including neuroprotection and the maintenance of the redox balance. However, it was also suggested as an excitotoxic agent implicated in the pathogenesis of neurological disorders such as Parkinson's and Alzheimer's disease. l-Cysteine can modulate the activity of ionic channels, including voltage-gated calcium channels and glutamatergic NMDA receptors, whereas its effects on GABAergic neurotransmission had not been studied before. In the present work, we analyzed the effects of l-cysteine on responses mediated by homomeric GABA A ρ1 receptors, which are known for mediating tonic γ-aminobutyric acid (GABA) responses in retinal neurons. GABA A ρ1 receptors were expressed in Xenopus laevis oocytes and GABA-evoked chloride currents recorded by two-electrode voltage-clamp in the presence or absence of l-cysteine. l-Cysteine antagonized GABA A ρ1 receptor-mediated responses; inhibition was dose-dependent, reversible, voltage independent, and susceptible to GABA concentration. Concentration-response curves for GABA were shifted to the right in the presence of l-cysteine without a substantial change in the maximal response. l-Cysteine inhibition was insensitive to chemical protection of the sulfhydryl groups of the ρ1 subunits by the irreversible alkylating agent N-ethyl maleimide. Our results suggest that redox modulation is not involved during l-cysteine actions and that l-cysteine might be acting as a competitive antagonist of the GABA A ρ1 receptors. © 2017 International Society for Neurochemistry.

  10. SwissProt search result: AK069012 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069012 J023002M16 (Q8WYN0) Cysteine protease APG4A (EC 3.4.22.-) (Autophagy 4 homolog A) (hAPG4A) (Auto...phagin-2) (Autophagy-related cysteine endopeptidase 2) (AUT-like 2 cysteine endopeptidase) APG4A_HUMAN 3e-46 ...

  11. SwissProt search result: AK242832 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK242832 J090067L13 (Q8WYN0) Cysteine protease APG4A (EC 3.4.22.-) (Autophagy 4 homolog A) (hAPG4A) (Auto...phagin-2) (Autophagy-related cysteine endopeptidase 2) (AUT-like 2 cysteine endopeptidase) APG4A_HUMAN 2e-45 ...

  12. Development and clinical application in arthritis of a new immunoassay for serum type IIA procollagen NH2 propeptide.

    Science.gov (United States)

    Rousseau, Jean-Charles; Sandell, Linda J; Delmas, Pierre D; Garnero, Patrick

    2004-01-01

    Type II collagen, the most abundant protein of cartilage matrix, is synthesized as a procollagen molecule including the N-(PIINP) and C-(PIICP) propeptides at each end. Type II procollagen is produced in two forms as the result of alternative RNA splicing. One form (IIA) includes and the other form (IIB) excludes a 69-amino acid cysteine-rich globular domain encoded by exon 2 in PIINP. During the process of synthesis, these N-propeptides are removed by specific proteases and released in the circulation, and their levels are believed to reflect type II collagen synthesis. In this chapter we describe the development of a specific enzyme-linked immunosorbent assay (ELISA) for the measurement of the IIA form of PIINP (PIIANP) in serum based on a polyclonal antibody raised against recombinant human exon 2 fusion protein of type II procollagen. We show that this ELISA is highly specific for circulating PIIANP and has adequate technical precision. In patients with knee osteoarthritis and rheumatoid arthritis, serum PIIANP was decreased by 53% (p type IIA collagen synthesis is altered in these arthritic diseases. The measurement of serum PIIANP may be useful for the clinical investigation of patients with joint diseases.

  13. Development and evaluation of a phenotypic assay monitoring resistance formation to protease inhibitors in HIV-1-infected patients.

    Science.gov (United States)

    Gehringer, Heike; Von der Helm, Klaus; Seelmeir, Sigrid; Weissbrich, Benedikt; Eberle, Josef; Nitschko, Hans

    2003-05-01

    A novel phenotypic assay, based on recombinant expression of the HIV-1-protease was developed and evaluated; it monitors the formation of resistance to protease inhibitors. The HIV-1 protease-encoding region from the blood sample of patients was amplified, ligated into the expression vector pBD2, and recombinantly expressed in Escherichia coli TG1 cells. The resulting recombinant enzyme was purified by a newly developed one-step acid extraction protocol. The protease activity was determined in presence of five selected HIV protease inhibitors and the 50% inhibitory concentration (IC(50)) to the respective protease inhibitors determined. The degree of resistance was expressed in terms of x-fold increase in IC(50) compared to the IC(50) value of an HIV-1 wild type protease preparation. The established test system showed a reproducible recombinant expression of each individual patients' HIV-1 protease population. Samples of nine clinically well characterised HIV-1-infected patients with varying degrees of resistance were analysed. There was a good correlation between clinical parameters and the results obtained by this phenotypic assay. For the majority of patients a blind genotypic analysis of the patients' protease domain revealed a fair correlation to the results of the phenotypic assay. In a minority of patients our phenotypic results diverged from the genotypic ones. This novel phenotypic assay can be carried out within 8-10 days, and offers a significant advantage in time to the current employed phenotypic tests.

  14. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  15. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C.

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis

  16. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  17. Structure of HIV-1 protease determined by neutron crystallography

    International Nuclear Information System (INIS)

    Adachi, Motoyasu; Kuroki, Ryota

    2009-01-01

    HIV-1 protease is an aspartic protease, and plays an essential role in replication of HIV. To develop HIV-1 protease inhibitors through structure-based drug design, it is necessary to understand the catalytic mechanism and inhibitor recognition of HIV-1 protease. We have determined the crystal structure of HIV-1 protease in complex with KNI-272 to 1.9 A resolution by neutron crystallography in combination with 1.4 A resolution X-ray diffraction data. The results show that the carbonyl group of hydroxymethylcarbonyl (HMC) in KNI-272 forms a hydrogen bonding interaction with protonated Asp 25 and the hydrogen atom from the hydroxyl group of HMC forms a hydrogen bonding interaction with the deprotonated Asp125. This is the first neutron report for HIV-1/inhibitor complex and shows directly the locations of key hydrogen atoms in catalysis and in the binding of a transition-state analog. The results confirm key aspect of the presumed catalytic mechanism of HIV-1 protease and will aid in the further development of protease inhibitors. (author)

  18. Resolution of oxidative stress by thioredoxin reductase: Cysteine versus selenocysteine

    Directory of Open Access Journals (Sweden)

    Brian Cunniff

    2014-01-01

    Full Text Available Thioredoxin reductase (TR catalyzes the reduction of thioredoxin (TRX, which in turn reduces mammalian typical 2-Cys peroxiredoxins (PRXs 1–4, thiol peroxidases implicated in redox homeostasis and cell signaling. Typical 2-Cys PRXs are inactivated by hyperoxidation of the peroxidatic cysteine to cysteine-sulfinic acid, and regenerated in a two-step process involving retro-reduction by sulfiredoxin (SRX and reduction by TRX. Here transient exposure to menadione and glucose oxidase was used to examine the dynamics of oxidative inactivation and reactivation of PRXs in mouse C10 cells expressing various isoforms of TR, including wild type cytoplasmic TR1 (Sec-TR1 and mitochondrial TR2 (Sec-TR2 that encode selenocysteine, as well as mutants of TR1 and TR2 in which the selenocysteine codon was changed to encode cysteine (Cys-TR1 or Cys-TR2. In C10 cells endogenous TR activity was insensitive to levels of hydrogen peroxide that hyperoxidize PRXs. Expression of Sec-TR1 increased TR activity, reduced the basal cytoplasmic redox state, and increased the rate of reduction of a redox-responsive cytoplasmic GFP probe (roGFP, but did not influence either the rate of inactivation or the rate of retro-reduction of PRXs. In comparison to roGFP, which was reduced within minutes once oxidants were removed reduction of 2-Cys PRXs occurred over many hours. Expression of wild type Sec-TR1 or Sec-TR2, but not Cys-TR1 or TR2, increased the rate of reduction of PRXs and improved cell survival after menadione exposure. These results indicate that expression levels of TR do not reduce the severity of initial oxidative insults, but rather govern the rate of reduction of cellular factors required for cell viability. Because Sec-TR is completely insensitive to cytotoxic levels of hydrogen peroxide, we suggest TR functions at the top of a redox pyramid that governs the oxidation state of peroxiredoxins and other protein factors, thereby dictating a hierarchy of phenotypic

  19. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from bacillus thuringiensis: effect on insecticidal crystal proteins.

    Science.gov (United States)

    Tan, Y; Donovan, W P

    2001-11-17

    The aprA gene encoding alkaline protease A (AprA) was cloned from Bacillus thuringiensis subsp. kurstaki, and the cloned gene was used to construct aprA-deleted (aprA1) strains of B. thuringiensis. An aprA1 strain of B. thuringiensis that contained the wild-type gene for neutral protease A (nprA(+)) displayed levels of extracellular proteolytic activity that were similar to those of an aprA(+)nprA(+) strain. However, when EDTA was included in the protease assay to inhibit NprA activity the aprA1nprA(+) strain displayed only 2% of the extracellular proteolytic activity of the aprA(+)nprA(+) strain. A strain that was deleted for both aprA and nprA (aprA1nprA3 strain) failed to produce detectable levels of proteolytic activity either in the presence or absence of EDTA in the assay. Compared with the aprA(+)nprA(+) strain the aprA1nprA(+) strain yielded 10% more full-length Cry1Bb crystal protein and the aprA1nprA3 strain yielded 25% more full-length Cry1Bb protein. No significant differences were seen in the 50% lethal dose of Cry1Bb protein from aprA(+)nprA(+) and aprA1nprA3 strains against three species of lepidopteran insects. These results suggest that enhanced yield of certain crystal proteins can be obtained by deletion of the genes aprA and nprA which are the major extracellular proteases of B. thuringiensis.

  20. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  1. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Directory of Open Access Journals (Sweden)

    Suman Kumar Nandy

    Full Text Available Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  2. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  3. Cysteine proteases from bloodfeeding arthropod ectoparasites

    Czech Academy of Sciences Publication Activity Database

    Sojka, Daniel; Francischetti, I.M.B.; Calvo, E.; Kotsyfakis, Michalis

    2011-01-01

    Roč. 712, - (2011), s. 177-191 ISSN 0065-2598 R&D Projects: GA AV ČR IAA600960910; GA AV ČR IAA600960811; GA AV ČR KJB600960911; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : TICK HAEMAPHYSALIS-LONGICORNIS * PROLIXUS STAL HEMIPTERA * YELLOW-FEVER MOSQUITO * BLOOD-MEAL DIGESTION * L-LIKE ENZYME * BOOPHILUS-MICROPLUS * RHODNIUS-PROLIXUS * CATHEPSIN-B * ASPARAGINYL ENDOPEPTIDASES/LEGUMAINS * PROTEOLYTIC ACTIVATION Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.093, year: 2011

  4. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    cysteine proteases inhibitor named as cystatin B (Pennacchio et al 1996). Mice deficient for cystatin ... nal precursor cells and therefore has been suggested as a novel molecular target for cancer drug ... Lysosomal serine protease. 204500.

  5. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection.

    Directory of Open Access Journals (Sweden)

    Matthew J Kesic

    Full Text Available Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs human airway trypsin-like protease (HAT and transmembrane protease, serine 2 (TMPRSS2, whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI. Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.

  6. Pengaruh PH dan Suhu terhadap Aktivitas Protease Penicillium SP.

    OpenAIRE

    Yusriah, Yusriah; Kuswytasari, Nengah Dwianita

    2013-01-01

    Tujuan penelitian ini adalah untuk mengetahui pengaruh pH dan suhu terhadap aktivitas protease pada Penicillium sp.3 T3f2. Selanjutnya, isolat Penicillium sp. di kultur dalam media produksi protease untuk menghasilkan protease. Suhu yang digunakan adalah 300 – 500C sedangkan pH-nya 4 – 8. Aktivitas protease ditentukan dan diukur dengan spektrofotometer pada panjang gelombang 275 nm, dengan kasein sebagai substrat. Berdasarkan uji ANOVA yang dilanjutkan dengan uji Duncan dengan taraf kepercaya...

  7. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model.

    Science.gov (United States)

    Sallmann, Madleen; Kumar, Suresh; Chernev, Petko; Nehrkorn, Joscha; Schnegg, Alexander; Kumar, Devesh; Dau, Holger; Limberg, Christian; de Visser, Sam P

    2015-05-11

    Cysteine dioxygenase is a unique nonheme iron enzyme that is involved in the metabolism of cysteine in the body. It contains an iron active site with an unusual 3-His ligation to the protein, which contrasts with the structural features of common nonheme iron dioxygenases. Recently, some of us reported a truly biomimetic model for this enzyme, namely a trispyrazolylborato iron(II) cysteinato complex, which not only has a structure very similar to the enzyme-substrate complex but also represents a functional model: Treatment of the model with dioxygen leads to cysteine dioxygenation, as shown by isolating the cysteine part of the product in the course of the work-up. However, little is known on the conversion mechanism and, so far, not even the structure of the actual product complex had been characterised, which is also unknown in case of the enzyme. In a multidisciplinary approach including density functional theory calculations and X-ray absorption spectroscopy, we have now determined the structure of the actual sulfinato complex for the first time. The Cys-SO2 (-) functional group was found to be bound in an η(2) -O,O-coordination mode, which, based on the excellent resemblance between model and enzyme, also provides the first support for a corresponding binding mode within the enzymatic product complex. Indeed, this is again confirmed by theory, which had predicted a η(2) -O,O-binding mode for synthetic as well as the natural enzyme. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adsorption Dynamics and Self-Assembled L-cysteine on Au(100)

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Nazmutdinov, Renat R.; Yan, Jiawei

    As the only amino acid with a functional thiol group, L - cysteine offers a strong perspective both for binding to gold and other metals, and for gentle immobilization of biomolecules. Binding to single - crystal, atomically planar surfaces offers the additional perspective that bound L - cysteine...... can be structurally mapped at the single - molecule level . In this work, we have followed the adsorption of L - cysteine on single - crystal Au(100) by measuring the electrode potential dynamics during the adsorption process. In situ STM revealed the structure of the self - assembled ordered layers...

  9. Functional protease profiling for diagnosis of malignant disease.

    Science.gov (United States)

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular Structures and Dynamics of the Stepwise Activation Mechanism of a Matrix Metalloproteinase Zymogen: Challenging the Cysteine Switch Dogma

    International Nuclear Information System (INIS)

    Rosenblum, G.; Meroueh, S.; Toth, M.; Fisher, J.; Fridman, R.; Mobashery, S.; Sagi, I.

    2007-01-01

    Activation of matrix metalloproteinase zymogen (pro-MMP) is a vital homeostatic process, yet its molecular basis remains unresolved. Using stopped-flow X-ray spectroscopy of the active site zinc ion, we determined the temporal sequence of pro-MMP-9 activation catalyzed by tissue kallikrein protease in milliseconds to several minutes. The identity of three intermediates seen by X-ray spectroscopy was corroborated by molecular dynamics simulations and quantum mechanics/molecular mechanics calculations. The cysteine-zinc interaction that maintains enzyme latency is disrupted via active-site proton transfers that mediate transient metal-protein coordination events and eventual binding of water. Unexpectedly, these events ensue as a direct result of complexation of pro-MMP-9 and kallikrein and occur before proteolysis and eventual dissociation of the pro-peptide from the catalytic site. Here we demonstrate the synergism among long-range protein conformational transitions, local structural rearrangements, and fine atomic events in the process of zymogen activation.

  11. Determination of free and total cyst(e)ine in plasma of dogs and cats.

    Science.gov (United States)

    Tôrres, Cristina L; Miller, Joshua W; Rogers, Quinton R

    2004-01-01

    In human blood, the amino acid cysteine forms disulfide bonds with itself and with other sulfhydryl compounds in their free form and with sulfhydryls in protein. Protein-bound cysteine is lost when plasma proteins are removed before amino acid analysis. The purpose of this study was to assess the time course and extent of cyst(e)ine (cysteine + half-cystine) loss in dog and cat plasma. An equal volume of 6% sulfosalicylic acid was added to plasma aliquots at 0, 2, 4, 10, 16, 24, 36, 48, 60, and 72 hours after separation of blood cells. Tris-2-carboxyethyl-phosphine hydrochloride (TCEP - HCl), a reducing agent, was used to regenerate total plasma cyst(e)ine after 3 months of sample storage (-20 degrees C). Initial free cyst(e)ine concentrations (mean +/- SEM) were higher in canine plasma (77 +/- 4 micromol/L) than in feline plasma (37 +/- 3 micromol/L). Free plasma cyst(e)ine concentrations in dogs and cats decreased after first-order kinetics, with a half-life of 23 and 69 hours, respectively. Total plasma cysteine after TCEP - HCl treatment was similar for dogs (290 micromol/L) and cats (296 micromol/L), but the percentage of free cysteine was higher (P = .02) in dogs (27%) than in cats (13%). Over half of the cyst(e)ine, homocysteine, cysteinylglycine, and glutathione were bound in vivo to plasma proteins. These results emphasize the importance of removing plasma proteins within 1 hour after blood collection for reliable assay of free plasma cyst(e)ine.

  12. Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines.

    Science.gov (United States)

    Saibi, Walid; Zouari, Nabil; Masmoudi, Khaled; Brini, Faiçal

    2016-04-01

    Dehydrins are claimed to stabilize macromolecules against freezing damage, dehydration, ionic or osmotic stresses, thermal stress and re-folding yield. However, their precise function remains unknown. In this context, we report the behavior of protease activities in dehydrin transgenic Arabidopsis lines against the wild type plant under salt stress (100mM NaCl). Indeed, proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. We proved that durum wheat DHN-5 modulates the activity of some proteases, summarized on the promotion of the Cysteinyl protease and the decrease of the Aspartyl protease activity. This fact is also upgraded in salt stress conditions. We conclude that the dehydrin transgenic context encodes salinity tolerance in transgenic lines through the modulation of the interaction not only at transcriptional level but also at protein level and also with the impact of salt stress as an endogenous and exogenous effector on some biocatalysts like proteases. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Unusual hydrogen bonding in L-cysteine hydrogen fluoride.

    Science.gov (United States)

    Minkov, V S; Ghazaryan, V V; Boldyreva, E V; Petrosyan, A M

    2015-08-01

    L-Cysteine hydrogen fluoride, or bis(L-cysteinium) difluoride-L-cysteine-hydrogen fluoride (1/1/1), 2C3H8NO2S(+)·2F(-)·C3H7NO2S·HF or L-Cys(+)(L-Cys···L-Cys(+))F(-)(F(-)...H-F), provides the first example of a structure with cations of the 'triglycine sulfate' type, i.e. A(+)(A···A(+)) (where A and A(+) are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter-ion. The salt crystallizes in the monoclinic system with the space group P2(1). The dimeric (L-Cys···L-Cys(+)) cation and the dimeric (F(-)···H-F) anion are formed via strong O-H···O or F-H···F hydrogen bonds, respectively, with very short O···O [2.4438 (19) Å] and F···F distances [2.2676 (17) Å]. The F···F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O-H···F type, formed by a L-cysteinium cation and a fluoride ion. The corresponding O···F distance of 2.3412 (19) Å seems to be the shortest among O-H···F and F-H···O hydrogen bonds known to date. The single-crystal X-ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above-mentioned hydrogen bonds.

  14. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    Energy Technology Data Exchange (ETDEWEB)

    Yedidi, Ravikiran S. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Muhuhi, Joseck M. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Liu, Zhigang [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Bencze, Krisztina Z. [Department of Chemistry, Fort Hays State University, Hays, KS 67601 (United States); Koupparis, Kyriacos [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); O’Connor, Carrie E.; Kovari, Iulia A. [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Spaller, Mark R. [Department of Chemistry, Wayne State University, Detroit, MI 48202 (United States); Kovari, Ladislau C., E-mail: kovari@med.wayne.edu [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States)

    2013-09-06

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.

  15. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    International Nuclear Information System (INIS)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang; Bencze, Krisztina Z.; Koupparis, Kyriacos; O’Connor, Carrie E.; Kovari, Iulia A.; Spaller, Mark R.; Kovari, Ladislau C.

    2013-01-01

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC 50 : 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the 15 N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC 50 : 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of 15 N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV

  16. The role of protease-activated receptor type 2 in nociceptive signaling and pain

    Czech Academy of Sciences Publication Activity Database

    Mrózková, Petra; Paleček, Jiří; Špicarová, Diana

    2016-01-01

    Roč. 65, č. 3 (2016), s. 357-367 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12058; GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LH15279; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : protease-activated receptor (PAR2) * signaling pathways * nociception * pain * spinal cord Subject RIV: FH - Neurology Impact factor: 1.461, year: 2016

  17. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  18. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    Science.gov (United States)

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not

  19. Isolasi, Seleksi Dan Opttmasi Produksi Protease Daribeberapaisolat Bakteri*(isolation, Selection and Optimalization of Protease Production of Some Bacterial Isolates)

    OpenAIRE

    Naiola, Elidar; Widhyastuti, Nunuk

    2002-01-01

    Thirty-seven out of sixty-one bacterial isolates from various sources of samples were screened for protease production. The isolate of ISO PL3 could produce the highest enzyme activity, and it was used as a standard bacterial strain in this observation. For any reason,we implemented ISO PL2 to study the optimum condition for producing bacterial protease. Result shows that the maximum protease activity was obtained in a medium containing 100 gram of rice brand in a liter tofu liquid waste. The...

  20. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant.

    Science.gov (United States)

    Hagag, Shelly; Kubitschek-Barreira, Paula; Neves, Gabriela W P; Amar, David; Nierman, William; Shalit, Itamar; Shamir, Ron; Lopes-Bezerra, Leila; Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.

  1. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease.

    Science.gov (United States)

    Iwata, Yuji; Ashida, Makoto; Hasegawa, Chisa; Tabara, Kazuki; Mishiba, Kei-Ichiro; Koizumi, Nozomu

    2017-08-01

    The unfolded protein response (UPR) is a homeostatic cellular response conserved in eukaryotic cells to alleviate the accumulation of unfolded proteins in the endoplasmic reticulum (ER). Arabidopsis bZIP28 is a membrane-bound transcription factor activated by proteolytic cleavage in response to ER stress, thereby releasing its cytosolic portion containing the bZIP domain from the membrane to translocate into the nucleus where it induces the transcription of genes encoding ER-resident molecular chaperones and folding enzymes. It has been widely recognized that the proteolytic activation of bZIP28 is mediated by the sequential cleavage of site-1 protease (S1P) and site-2 protease (S2P). In the present study we provide evidence that bZIP28 protein is cleaved by S2P, but not by S1P. We demonstrated that wild-type and s1p mutant plants produce the active, nuclear form of bZIP28 in response to the ER stress inducer tunicamycin. In contrast, tunicamycin-treated s2p mutants do not accumulate the active, nuclear form of bZIP28. Consistent with these observations, s2p mutants, but not s1p mutants, exhibited a defective transcriptional response of ER stress-responsive genes and significantly higher sensitivity to tunicamycin. Interestingly, s2p mutants accumulate two membrane-bound bZIP28 fragments with a shorter ER lumen-facing C-terminal domain. Importantly, the predicted cleavage sites are located far from the canonical S1P recognition motif previously described. We propose that ER stress-induced proteolytic activation of bZIP28 is mediated by the sequential actions of as-yet-unidentified protease(s) and S2P, and does not require S1P. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  3. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    Science.gov (United States)

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    Science.gov (United States)

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  5. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae: A Putative Target for Control of Citrus Huanglongbing.

    Directory of Open Access Journals (Sweden)

    Taíse Fernanda da Silva Ferrara

    Full Text Available Huanglonbing (HLB is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB. DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM. The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM and CaneCPI-4 (Ki = 0.05 nM and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM. RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  6. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    Science.gov (United States)

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  7. Evolutionary Loss of Activity in De-Ubiquitylating Enzymes of the OTU Family.

    Directory of Open Access Journals (Sweden)

    Marcell Louis

    Full Text Available Understanding function and specificity of de-ubiquitylating enzymes (DUBs is a major goal of current research, since DUBs are key regulators of ubiquitylation events and have been shown to be mutated in human diseases. Most DUBs are cysteine proteases, relying on a catalytic triad of cysteine, histidine and aspartate to cleave the isopeptide bond between two ubiquitin units in a poly-ubiquitin chain. We have discovered that the two Drosophila melanogaster homologues of human OTUD4, CG3251 and Otu, contain a serine instead of a cysteine in the catalytic OTU (ovarian tumor domain. DUBs that are serine proteases instead of cysteine- or metallo-proteases have not been described. In line with this, neither CG3251 nor Otu protein were active to cleave ubiquitin chains. Re-introduction of a cysteine in the catalytic center did not render the enzymes active, indicating that further critical features for ubiquitin binding or cleavage have been lost in these proteins. Sequence analysis of OTUD4 homologues from various other species showed that within this OTU subfamily, loss of the catalytic cysteine has occurred frequently in presumably independent events, as well as gene duplications or triplications, suggesting DUB-independent functions of OTUD4 proteins. Using an in vivo RNAi approach, we show that CG3251 might function in the regulation of Inhibitor of Apoptosis (IAP-antagonist-induced apoptosis, presumably in a DUB-independent manner.

  8. Activated human CD4 T cells express transporters for both cysteine and cystine

    DEFF Research Database (Denmark)

    Levring, Trine Bøegh; Hansen, Ann Kathrine; Nielsen, Bodil Lisbeth

    2012-01-01

    Because naïve T cells are unable to import cystine due to the absence of cystine transporters, it has been suggested that T cell activation is dependent on cysteine generated by antigen presenting cells. The aim of this study was to determine at which phases during T cell activation exogenous...... cystine/cysteine is required and how T cells meet this requirement. We found that early activation of T cells is independent of exogenous cystine/cysteine, whereas T cell proliferation is strictly dependent of uptake of exogenous cystine/cysteine. Naïve T cells express no or very low levels of both...... cystine and cysteine transporters. However, we found that these transporters become strongly up-regulated during T cell activation and provide activated T cells with the required amount of cystine/cysteine needed for T cell proliferation. Thus, T cells are equipped with mechanisms that allow T cell...

  9. Antiviral Potential of a Novel Compound CW-33 against Enterovirus A71 via Inhibition of Viral 2A Protease

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2015-06-01

    Full Text Available Enterovirus A71 (EV-A71 in the Picornaviridae family causes hand-foot-and-mouth disease, aseptic meningitis, severe central nervous system disease, even death. EV-A71 2A protease cleaves Type I interferon (IFN-α/β receptor 1 (IFNAR1 to block IFN-induced Jak/STAT signaling. This study investigated anti-EV-A7l activity and synergistic mechanism(s of a novel furoquinoline alkaloid compound CW-33 alone and in combination with IFN-β Anti-EV-A71 activities of CW-33 alone and in combination with IFN-β were evaluated by inhibitory assays of virus-induced apoptosis, plaque formation, and virus yield. CW-33 showed antiviral activities with an IC50 of near 200 µM in EV-A71 plaque reduction and virus yield inhibition assays. While, anti-EV-A71 activities of CW-33 combined with 100 U/mL IFN-β exhibited a synergistic potency with an IC50 of approximate 1 µM in plaque reduction and virus yield inhibition assays. Molecular docking revealed CW-33 binding to EV-A71 2A protease active sites, correlating with an inhibitory effect of CW33 on in vitro enzymatic activity of recombinant 2A protease IC50 = 53.1 µM. Western blotting demonstrated CW-33 specifically inhibiting 2A protease-mediated cleavage of IFNAR1. CW-33 also recovered Type I IFN-induced Tyk2 and STAT1 phosphorylation as well as 2',5'-OAS upregulation in EV-A71 infected cells. The results demonstrated CW-33 inhibiting viral 2A protease activity to reduce Type I IFN antagonism of EV-A71. Therefore, CW-33 combined with a low-dose of Type I IFN could be applied in developing alternative approaches to treat EV-A71 infection.

  10. Detection of protease activity in cells and animals.

    Science.gov (United States)

    Verdoes, Martijn; Verhelst, Steven H L

    2016-01-01

    Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  12. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Analysis of salivary protease spectrum in chronic periodontitis].

    Science.gov (United States)

    Qian, Li; Xuedong, Zhou; Yaping, Fan; Tengyu, Yang; Songtao, Wu; Yu, Yu; Jiao, Chen; Ping, Zhang; Yun, Feng

    2017-02-01

    This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (Pchronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.

  14. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.

    Science.gov (United States)

    Arjune, Sita; Schwarz, Guenter; Belaidi, Abdel A

    2015-01-01

    Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.

  15. Expression and Characterization of Coprothermobacter proteolyticus Alkaline Serine Protease

    Directory of Open Access Journals (Sweden)

    Tanveer Majeed

    2013-01-01

    Full Text Available A putative protease gene (aprE from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated that the enzyme had optimal activity under alkaline conditions (pH 8–10. In addition, the enzyme had an elevated optimum temperature (60°C. The protease was also stable in the presence of many surfactants and oxidant. Thus, the C. proteolyticus protease has potential applications in industries such as the detergent market.

  16. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus.

    Science.gov (United States)

    Balasubramanian, Sivaraman A; Pye, David C; Willcox, Mark D P

    2013-03-01

    Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  17. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  18. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Oh, Jungmin; Li, Xi-Hui; Kim, Soo-Kyong; Lee, Joon-Hee

    2017-06-30

    Protease IV (PIV), a key virulence factor of Pseudomonas aeruginosa is a secreted lysyl-endopeptidase whose expression is induced by quorum sensing (QS). We found that PIV expressed in QS mutant has severe reduction of activity in culture supernatant (CS), even though it is overexpressed to high level. PIV purified from the QS mutant (M-PIV) had much lower activity than the PIV purified from wild type (P-PIV). We found that the propeptide cleaved from prepro-PIV was co-purified with M-PIV, but never with P-PIV. Since the activity of M-PIV was restored by adding the CS of QS-positive and PIV-deficient strain, we hypothesized that the propeptide binds to and inhibits PIV, and is degraded to activate PIV by a QS-dependent factor. In fact, the CS of the QS-positive and PIV-deficient strain was able to degrade the propeptide. Since the responsible factor should be a QS-dependently expressed extracellular protease, we tested QS-dependent proteases of P. aeruginosa and found that LasB (elastase) can degrade the propeptide and activate M-PIV. We purified the propeptide of PIV and confirmed that the propeptide can bind to and inhibit PIV. We suggest that PIV is post-secretionally activated through the extracellular degradation of the propeptide by LasB, a QS-dependent protease.

  19. Role of cysteine residues in the carboxyl-terminus of the follicle-stimulating hormone receptor in intracellular traffic and postendocytic processing

    Directory of Open Access Journals (Sweden)

    Brenda Melo-Nava

    2016-07-01

    Full Text Available Posttranslational modifications occurring during the biosynthesis of G protein-coupled receptors include glycosylation and palmitoylation at conserved cysteine residues located in the carboxyl-terminus (Ctail of the receptor. In a number of these receptors, these modifications play an important role in receptor function and particularly, in intracellular trafficking. In the present study, the three cysteine residues present in the carboxyl-terminus of the human FSHR were replaced with glycine by site-directed mutagenesis. Wild-type and mutant (Cys627/629/655Gly FSHRs were then transiently expressed in HEK-293 cells and analyzed for cell-surface plasma membrane expression, agonist-stimulated signaling and internalization, and postendocytic processing in the abscence and presence of lysosome and/or proteasome inhibitors. Compared with the wild-type FSHR, the triple mutant FSHR exhibited ~70% reduction in plasma membrane expression as well as a profound attenuation in agonist-stimulated cAMP production and ERK1/2 phosphorylation. Incubation of HEK-293 cells expressing the wild-type FSHR with 2-bromopalmitate (palmitoylation inhibitor for 6 h, decreased plasma membrane expression of the receptor by ~30%. The internalization kinetics and β-arrestin 1 and 2 recruitment were similar between the wild-type and triple mutant FSHR as disclosed by assays performed in non-equilibrium binding conditions and by confocal microscopy. Cells expressing the mutant FSHR recycled the internalized FSHR back to the plasma membrane less efficiently than those expressing the wild-type FSHR, an effect that was counteracted by proteasome but not by lysosome inhibition. These results indicate that replacement of the cysteine residues present in the carboxyl-terminus of the FSHR, impairs receptor trafficking from the endoplasmic reticulum/Golgi apparatus to the plasma membrane and its recycling from endosomes back to the cell surface following agonist

  20. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor

    Directory of Open Access Journals (Sweden)

    Hamid Mukhtar

    2012-09-01

    Full Text Available We describe the simultaneous production of Bacillus subtilis based proteases and alpha amylase using a computer controlled laboratory scale 7.5 L batch bioreactor. The present strain is the first to be reported that concomitantly produces these two industrially important enzymes. The growth and sporulation of Bacillus subtilis was monitored and maximum production of alkaline protease and alpha amylase was found to coincide with maximum sporulation. Two types of proteases were detected in the fermentation broth; a neutral and an alkaline protease most active in a pH range of 7.0-8.0 and 8.0-10, respectively. Maximum production of proteases was observed at an incubation temperature of 37ºC while that of alpha amylase was observed at 40ºC. The optimum aeration and agitation levels for protease production were 0.6 L/L/min and 200rpm, respectively, and for alpha amylase were 0.6 L/L/min and 150 rpm. The kinetic parameters Yp/x and qp were also found to be significant at the given fermentation conditions.

  1. Cysteine 138 mutation in HIV-1 Nef from patients with delayed disease progression

    DEFF Research Database (Denmark)

    Tolstrup, Martin; Laursen, Alex Lund; Gerstoft, J.

    2006-01-01

    on the delayed disease status. However, the results demonstrate a high incidence of a single amino acid polymorphism (cysteine 138) in HIV-1 Nef. The allelic frequency of cysteine 138 between the delayed disease progression group and the progressor group was found to be statistically significant (P = 0.......0139). The phylogeny of isolates was investigated and the variants harbouring the cysteine 138 mutation clustered independently. CONCLUSION: The present study describes a viral genetic polymorphism related to AIDS disease progression. The polymorphism (cysteine 138) has previously been reported to confer decreased...... viral replication (Premkumar DR, et al. AIDS Res Hum Retroviruses 1996; 12(4): 337-45). A sequence database search for comparative mutations revealed a high frequency of cysteine 138 in patients with reported SP AIDS...

  2. Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of rhinovirus.

    Science.gov (United States)

    Loxham, M; Smart, D E; Bedke, N J; Smithers, N P; Filippi, I; Blume, C; Swindle, E J; Tariq, K; Howarth, P H; Holgate, S T; Davies, D E

    2018-03-01

    CX3CL1 has been implicated in allergen-induced airway CD4 + T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding-this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.

  3. Tunable protease-activatable virus nanonodes.

    Science.gov (United States)

    Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae

    2014-05-27

    We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.

  4. Suppressing IL-36-driven inflammation using peptide pseudosubstrates for neutrophil proteases.

    Science.gov (United States)

    Sullivan, Graeme P; Henry, Conor M; Clancy, Danielle M; Mametnabiev, Tazhir; Belotcerkovskaya, Ekaterina; Davidovich, Pavel; Sura-Trueba, Sylvia; Garabadzhiu, Alexander V; Martin, Seamus J

    2018-03-07

    Sterile inflammation is initiated by molecules released from necrotic cells, called damage-associated molecular patterns (DAMPs). Members of the extended IL-1 cytokine family are important DAMPs, are typically only released through necrosis, and require limited proteolytic processing for activation. The IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, are expressed as inactive precursors and have been implicated as key initiators of psoriatic-type skin inflammation. We have recently found that IL-36 family cytokines are proteolytically processed and activated by the neutrophil granule-derived proteases, elastase, and cathepsin G. Inhibitors of IL-36 processing may therefore have utility as anti-inflammatory agents through suppressing activation of the latter cytokines. We have identified peptide-based pseudosubstrates for cathepsin G and elastase, based on optimal substrate cleavage motifs, which can antagonize activation of all three IL-36 family cytokines by the latter proteases. Human psoriatic skin plaques displayed elevated IL-36β processing activity that could be antagonized by peptide pseudosubstrates specific for cathepsin G. Thus, antagonists of neutrophil-derived proteases may have therapeutic potential for blocking activation of IL-36 family cytokines in inflammatory conditions such as psoriasis.

  5. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  6. Cysteine and hydrogen sulfide in the regulation of metabolism:Insights from genetics and pharmacology

    OpenAIRE

    Carter, Roderick N; Morton, Nicholas M

    2016-01-01

    Abstract Obesity and diabetes represent a significant and escalating worldwide health burden. These conditions are characterized by abnormal nutrient homeostasis. One such perturbation is altered metabolism of the sulphur?containing amino acid cysteine. Obesity is associated with elevated plasma cysteine, whereas diabetes is associated with reduced cysteine levels. One mechanism by which cysteine may act is through its enzymatic breakdown to produce hydrogen sulphide (H2S), a gasotransmitter ...

  7. Variation in CAPN10 in relation to type 2 diabetes, obesity and quantitative metabolic traits

    DEFF Research Database (Denmark)

    Jensen, Dorit P; Urhammer, Søren A; Eiberg, Hans

    2006-01-01

    = 4659 normoglycemic and glucose-tolerant control subjects), however, no significant associations of the SNP43 or the SNP44 variant with T2D were found. Neither were the two variants associated with obesity, and no association of either variant with diabetes-related quantitative traits was found......The first type 2 diabetes (T2D) gene to be identified in a genome wide scan followed by positional cloning was CAPN10 encoding the cysteine protease calpain-10. Subsequently, a large number of studies have investigated variation in CAPN10 in relation to T2D. Two CAPN10 single nucleotide...... in a study involving a population-based sample of 5698 middle-aged subjects. Meta-analyses, however, of the present and previously published studies involving 15,368 (SNP43) or 13,628 (SNP44) subjects yielded odds ratios of 1.09 (95% CI 1.02-1.16, p = 0.007) and 1.15 (1.07-1.23, p = 0.0002), respectively...

  8. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  9. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    Science.gov (United States)

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  11. Synthesis of glycinamides using protease immobilized magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Abha Sahu

    2016-12-01

    Full Text Available In the present investigation, Bacillus subtilis was isolated from slaughterhouse waste and screened for the production of protease enzyme. The purified protease was successfully immobilized on magnetic nanoparticles (MNPs and used for the synthesis of series of glycinamides. The binding and thermal stability of protease on MNPs was confirmed by FTIR spectroscopy and TGA analysis. The surface morphology of MNPs before and after protease immobilization was carried out using SEM analysis. XRD pattern revealed no phase change in MNPs after enzyme immobilization. The processing parameters for glycinamides synthesis viz. temperature, pH, and time were optimized using Response Surface Methodology (RSM by using Design Expert (9.0.6.2. The maximum yield of various amides 2 butyramidoacetic acid (AMD-1,83.4%, 2-benzamidoacetic acid (AMD-2,80.5% and 2,2′((carboxymethyl amino-2-oxoethyl-2-hydroxysuccinylbis(azanediyldiacetic acid (AMD-3,80.8% formed was observed at pH-8, 50 °C and 30 min. The synthesized immobilized protease retained 70% of the initial activity even after 8 cycles of reuse.

  12. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  13. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    Science.gov (United States)

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  14. Regulation of Adrenal Aldosterone Production by Serine Protease Prostasin

    Directory of Open Access Journals (Sweden)

    Takehiro Ko

    2010-01-01

    Full Text Available A serine protease prostasin has been demonstrated to have a pivotal role in the activation of the epithelial sodium channel. Systemic administration of adenovirus carrying human prostasin gene in rats resulted in an increase in plasma prostasin and aldosterone levels. However, the mechanism by which the elevation of prostasin levels in the systemic circulation stimulated the plasma aldosterone levels remains unknown. Therefore, we examined if prostasin increases the aldosterone synthesis in a human adrenocortical cell line (H295R cells. Luciferase assay using CYP11B2 promoter revealed that prostasin significantly increased the transcriptional activity of CYP11B2. Prostasin significantly increased both CYP11B2 mRNA expression and aldosterone production in a dose-dependent manner. Surprisingly, treatment with camostat mesilate, a potent prostasin inhibitor, had no effect on the aldosterone synthesis by prostasin and also a protease-dead mutant of prostasin significantly stimulated the aldosterone production. A T-type/L-type calcium channel blocker and a protein kinase C (PKC inhibitor significantly reduced the aldosterone synthesis by prostasin. Our findings suggest a stimulatory effect of prostasin on the aldosterone synthesis by adrenal gland through the nonproteolytic action and indicate a new role of prostasin in the systemic circulation.

  15. Effects of L-cysteine on lead acetate induced neurotoxicity in albino mice.

    Science.gov (United States)

    Mahmoud, Y I; Sayed, S S

    2016-07-01

    Lead is a toxic heavy metal that adversely affects nervous tissues; it often occurs as an environmental pollutant. We investigated histological changes in the cerebral cortex, hippocampus and cerebellum of adult albino mice following exposure to lead acetate. We also studied the possible ameliorative effect of the chelating agent, L-cysteine, on lead-induced neurotoxicity. We divided albino mice into six groups: 1) vehicle-only control, 2) L-cysteine control, 3 and 4) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, and 5 and 6) treated for 7 days with 20 and 40 mg/kg lead acetate, respectively, followed by 50 mg/kg L-cysteine for 7 days. Lead acetate administration caused disorganization of cell layers, neuronal loss and degeneration, and neuropil vacuolization. Brain sections from lead-intoxicated mice treated with L-cysteine showed fewer pathological changes; the neuropil showed less vacuolization and the neurons appeared less damaged. L-cysteine at the dose we used only marginally alleviated lead-induced toxicity.

  16. Optimization of alkaline protease production and its fibrinolytic ...

    African Journals Online (AJOL)

    Optimization of alkaline protease production and its fibrinolytic activity from the ... nitrogen sources and sodium chloride concentration for protease production by the ... exploited to assist in protein degradation in various industrial processes.

  17. Optimizing PHB and Protease Production by Box Behnken Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2013-04-01

    Full Text Available Mixed culture is more suitable to adapt more flexible fermentation process and produce different product simultaneously. In this study a mixed Bacillus culture was investigated for their ability to produce the bioplastic "Polyhydroxybutyrate" and both of the mesophilic and the thermophilic proteases in one flask. Box-Behnken experimental design was used. The produced amount of PHB has been increased significantly. Meanwhile there is a competition between PHB and proteases. The maximum produced amount of PHB using Box-Behnken design was 2.82 g/l/48 h with protease activity equal to 41.9 Units/ml/48 h for thermophilic proteases and 99.65 Units/ml/48 h for mesophilic proteases. Excel solver was used for extra-optimization for the optimum conditions obtained from Box-Behnken experiments and its model. The maximum PHB obtained after using Excel solver was 2.88 g/l/48 h. The maximum mesophilic and thermophilic activities obtained at the same PHB production conditions were 175.68 and 243.38 Units/ml respectively. The model accuracy as obtained from Excel solver was 118.8%, which prove the power of the experimental design in optimizing such complicated process. The strategies used in this study are recommended for the production of PHB and different proteases simultaneously using Bacillus mixed culture. ABSTRAK: Kultur campuran adalah lebih sesuai bagi proses penapaian yang fleksibel dan ia boleh menghasilkan produk yang berbeza secara serentak. Dalam kajian ini keupayaan  menghasilkan "Polyhydroxybutyrate" bioplastik serta mesofilik dan termofilik protease dalam satu flask oleh  kultur Bacillus campuran telah disiasat. Eksperimen rekabentuk Box-Behnken telah digunakan. Jumlah PHB yang dikeluarkan meningkat dengan ketara dan terdapat persaingan antara PHB dan protease. Jumlah keluaran PHB maksima menggunakan rekabentuk Box-Behnken adalah 2.82 g/l/48 jam dengan aktiviti protease sama dengan 41.9 Unit/ml/48 jam untuk protease termofilik dan 99.65 Unit

  18. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli.

    Science.gov (United States)

    Kolb, Philipp; Vorreiter, Jolanta; Habicht, Jüri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of (1)H-(15)N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in (13)C/(15)N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.

  19. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... protease production was 37°C at pH 9, with 2% inoculum in the medium for 24 h. .... Positive. Catalase test. Positive ... The enzyme activity gradually decreases from ... Effect of temperature on protease production by Pseudomonas fluorescens. 0 .... between RNA polymerase and upstream promotes DNA.

  20. Depletion of circulating cyst(e)ine by oral and intravenous mesna.

    Science.gov (United States)

    Stofer-Vogel, B.; Cerny, T.; Küpfer, A.; Junker, E.; Lauterburg, B. H.

    1993-01-01

    The sulfhydryl status of normal and tumour cells is critically important in determining their susceptibility to various cytostatic agents. As a sulfhydryl compound, mesna (sodium 2-mercaptoethane-sulfonate) which is used in large doses to prevent haemorrhagic cystitis associated with certain chemotherapeutic regimens might derange cellular thiol homeostasis. In order to investigate the effects of mesna on the concentrations of thiols in plasma, cysteine, glutathione and their disulfides were measured by HPLC following the oral and intravenous administration of mesna to healthy volunteers. After 7.3 mmol mesna i.v. free cysteine rose from 8.2 (95% CI 7.0-9.4) nmol ml-1 to 53.6 (47.4-59.8) nmol ml-1 at 5 min, most likely due to reduction of circulating cystine by the sulfhydryl drug. This initial rise was followed by a marked decrease of total cyst(e)ine in plasma from 276 (215-337) nmol ml-1 to a nadir of 102 (89-115) nmol ml-1 between 30-120 min after infusion, most likely due to an increased uptake of cysteine into cells and an increased urinary excretion of cyst(e)ine. Qualitatively similar changes were seen after oral mesna. The present data indicate that mesna depletes circulating cyst(e)ine and may thereby markedly alter the sulfhydryl status of cells in vivo although the drug itself is not taken up by most cells. PMID:8353049

  1. Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity toward serine proteases.

    Science.gov (United States)

    Cohen, Itay; Naftaly, Si; Ben-Zeev, Efrat; Hockla, Alexandra; Radisky, Evette S; Papo, Niv

    2018-04-16

    High structural and sequence similarity within protein families can pose significant challenges to the development of selective inhibitors, especially toward proteolytic enzymes. Such enzymes usually belong to large families of closely similar proteases and may also hydrolyze, with different rates, protein- or peptide-based inhibitors. To address this challenge, we employed a combinatorial yeast surface display library approach complemented with a novel pre-equilibrium, competitive screening strategy for facile assessment of the effects of multiple mutations on inhibitor association rates and binding specificity. As a proof of principle for this combined approach, we utilized this strategy to alter inhibitor/protease association rates and to tailor the selectivity of the amyloid β-protein precursor Kunitz protease inhibitor domain (APPI) for inhibition of the oncogenic protease mesotrypsin, in the presence of three competing serine proteases, anionic trypsin, cationic trypsin and kallikrein-6. We generated a variant, designated APPI P13W/M17G/I18F/F34V , with up to 30-fold greater specificity relative to the parental APPI M17G/I18F/F34V protein, and 6500- to 230 000-fold improved specificity relative to the wild-type APPI protein in the presence of the other proteases tested. A series of molecular docking simulations suggested a mechanism of interaction that supported the biochemical results. These simulations predicted that the selectivity and specificity are affected by the interaction of the mutated APPI residues with nonconserved enzyme residues located in or near the binding site. Our strategy will facilitate a better understanding of the binding landscape of multispecific proteins and will pave the way for design of new drugs and diagnostic tools targeting proteases and other proteins. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Science.gov (United States)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  3. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.

    Science.gov (United States)

    Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A

    2002-09-01

    Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.

  4. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  5. Economic Methods of Ginger Protease'sextraction and Purification

    Science.gov (United States)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  6. Purification and characterization of protease from Bacillus cereus ...

    African Journals Online (AJOL)

    Among them, SU12 isolate was selected due to its high enzyme production ... growth and protease production which includes different carbon and nitrogen sources, ... organism for the industrial production of the extracellular protease enzyme.

  7. [The effect of enzymatic treatment using proteases on properties of persistent sodium current in CA1 pyramidal neurons of rat hippocampus].

    Science.gov (United States)

    Lun'ko, O O; Isaiev, D S; Maxymiuk, O P; Kryshtal', O O; Isaieva, O V

    2014-01-01

    We investigated the effect of proteases, widely used for neuron isolation in electrophysiological studies, on the amplitude and kinetic characteristics of persistent sodium current (I(NaP)) in hippocampal CA1 pyramidal neurons. Properties of I(NaP) were studied on neurons isolated by mechanical treatment (control group) and by mechanical and enzymatic treatment using pronase E (from Streptomyces griseus) or protease type XXIII (from Aspergillus oryzae). We show that in neurons isolated with pronase E kinetic of activation and density of I(NaP) was unaltered. Enzymatic treatment with protease type XXIII did not alter I(NaP) activation but result in significant decrease in I(NaP) density. Our data indicates that enzymatic treatment using pronase E for neuron isolation is preferable for investigation of I(NaP).

  8. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... Full Length Research Paper. Purification and ... ting into small peptides and free amino acids, which can ... Isolated strain was cultured in synthetic medium- casein (SMC; ... Protease activity was assayed by sigma's non-specific protease ... following buffers: 0.05 M citrate-phosphate buffer (pH 5 to 6), Tris-.

  9. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  10. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R. [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States); Hao, Quan [MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853-8001 (United States); Stipanuk, Martha H., E-mail: mhs6@cornell.edu [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States)

    2005-11-01

    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC 1.13.11.20) is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  11. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  12. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.

    Science.gov (United States)

    Chung, Heaseung Sophia; Murray, Christopher I; Venkatraman, Vidya; Crowgey, Erin L; Rainer, Peter P; Cole, Robert N; Bomgarden, Ryan D; Rogers, John C; Balkan, Wayne; Hare, Joshua M; Kass, David A; Van Eyk, Jennifer E

    2015-10-23

    S-nitrosylation (SNO), an oxidative post-translational modification of cysteine residues, responds to changes in the cardiac redox-environment. Classic biotin-switch assay and its derivatives are the most common methods used for detecting SNO. In this approach, the labile SNO group is selectively replaced with a single stable tag. To date, a variety of thiol-reactive tags have been introduced. However, these methods have not produced a consistent data set, which suggests an incomplete capture by a single tag and potentially the presence of different cysteine subpopulations. To investigate potential labeling bias in the existing methods with a single tag to detect SNO, explore if there are distinct cysteine subpopulations, and then, develop a strategy to maximize the coverage of SNO proteome. We obtained SNO-modified cysteine data sets for wild-type and S-nitrosoglutathione reductase knockout mouse hearts (S-nitrosoglutathione reductase is a negative regulator of S-nitrosoglutathione production) and nitric oxide-induced human embryonic kidney cell using 2 labeling reagents: the cysteine-reactive pyridyldithiol and iodoacetyl based tandem mass tags. Comparison revealed that <30% of the SNO-modified residues were detected by both tags, whereas the remaining SNO sites were only labeled by 1 reagent. Characterization of the 2 distinct subpopulations of SNO residues indicated that pyridyldithiol reagent preferentially labels cysteine residues that are more basic and hydrophobic. On the basis of this observation, we proposed a parallel dual-labeling strategy followed by an optimized proteomics workflow. This enabled the profiling of 493 SNO sites in S-nitrosoglutathione reductase knockout hearts. Using a protocol comprising 2 tags for dual-labeling maximizes overall detection of SNO by reducing the previously unrecognized labeling bias derived from different cysteine subpopulations. © 2015 American Heart Association, Inc.

  13. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  14. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1.

    Science.gov (United States)

    Miyaji, T; Otta, Y; Nakagawa, T; Watanabe, T; Niimura, Y; Tomizuka, N

    2006-03-01

    The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.

  15. Effects of Mucuna pruriens protease inhibitors on Echis carinatus venom.

    Science.gov (United States)

    Hope-Onyekwere, Nnadozie Stanley; Ogueli, Godwin Ifeanyi; Cortelazzo, Alessio; Cerutti, Helena; Cito, Annarita; Aguiyi, John C; Guerranti, Roberto

    2012-12-01

    The medicinal plant Mucuna pruriens, with reputed anti-snake venom properties has been reported to contain a kunitz-type trypsin inhibitor. This study was undertaken to further evaluate the protease inhibitory potential of gpMuc, a multiform glycoprotein, and other protein fractions from M. pruriens seeds against trypsin, chymotrypsin, Echis carinatus snake venom, ecarin and thrombin. The results showed that gpMuc inhibited both trypsin and chymotrypsin activities and was thermally stable, maintaining its trypsin inhibitory activity at temperatures of up to 50°C. Its structural conformation was also maintained at pH ranges of 4-7. Immunoreactivity study confirms that it contains protease-recognizing epitope on one of its isoforms. The whole protein extract of M. pruriens seeds inhibited prothrombin activation by ecarin and whole E. carinatus venom, and also thrombin-like activity using chromogenic assay. Copyright © 2012 John Wiley & Sons, Ltd.

  16. 35S cystein chlorhydrate preparation

    International Nuclear Information System (INIS)

    Emiliozzi, R.; Pichat, P.; Herbert, M.

    1960-01-01

    35 S cystein chlorhydrate has been prepared with a quantitative yield by electrolytic reduction of 35 S cystin in hydrochloric medium on a vibrating mercury cathode. Reprint of a paper published in Bulletin de la Societe chimique de France, no. 2653, 4. quarter 1959, p. 1544-1545 [fr

  17. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    Science.gov (United States)

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  18. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    Science.gov (United States)

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  19. Ninety-nine is not enough: molecular characterization of inhibitor-resistant human immunodeficiency virus type 1 protease mutants with insertions in the flap region

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Grantz Šašková, Klára; Řezáčová, Pavlína; Brynda, Jiří; Maarseveen van, N. M.; De Jongh, D.; Boucher, Ch. A. B.; Kagan, R. M.; Nijhuis, M.; Konvalinka, Jan

    2008-01-01

    Roč. 82, č. 12 (2008), s. 5869-5878 ISSN 0022-538X R&D Projects: GA MŠk 1M0508; GA MZd NR8571 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : HIV protease inhibitors * aspartic proteases * viral resistance * insertions Subject RIV: CE - Biochemistry Impact factor: 5.308, year: 2008

  20. Bacillus amyloliquefaciens SUBSP. plantarum PROBIOTIC STRAINS AS PROTEASE PRODUCERS

    Directory of Open Access Journals (Sweden)

    E. V. Маtseliukh

    2015-04-01

    Full Text Available Proteases from probiotic strains of the genus Bacillus, just like the antibiotics, bacteriocins and other hydrolytic enzymes, are one of the main factors that determine their biological activity. The aim of this work was to study the synthesis and biochemical properties of proteases from two strains Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 that included in the probiotic Endosporin. The cultivation of strains was carried out in flasks under rotating for two days. The influence of physico-chemical parameters of the reaction medium on proteolytic activity was studied on partially purified protease preparations. Lytic activity was determined by turbidimetric method. On the second day of cultivation B. amyloliquefaciens subsp. plantarum UCM В-5139 and UCM В-5140 synthesized the metal-dependent peptidase and serine protease, respectively. The optimum conditions of their action were the following: temperature 37–40 °C and pH 6.5–7.0. Isolated proteases are able to lyse the living cells of Staphylococcus aureus and Candida albicans. Thus we demonstrated that B. amyloliquefaciens subsp. plantarum UCM B-5140 and UCM B-5139, included in the probiotic veterinary preparation Endosporin, produced proteolytic enzymes that hydrolyze the native insoluble proteins (elastin, fibrin and collagen. These enzymes belong to the group of neutral metal-dependent and serine proteases. They are active under physiological conditions against gram-positive bacteria and yeasts. The application of these proteases in biotechnology is considered.

  1. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... Key words: Production, alkaline protease, Bacillus subtilis, animal wastes, enzyme activity. ... Generally, alkaline proteases are produced using submerged fermentation .... biopolymer concentrations were reported to have an influence ... adding nitrogenous compounds stimulate microorganism growth and ...

  2. Mutagenicity and cytotoxicity of two regioisomeric mercapturic acids and cysteine S-conjugates of trichloroethylene.

    NARCIS (Netherlands)

    Commandeur, J.N.M.; Boogaard, P.J.; Mulder, G.J.; Vermeulen, N.P.E.

    1991-01-01

    The mutagenicity, cytotoxicity and metabolism of two regioisomic l-cysteine- and N-acetyl-l-cysteine-S-conjugates of trichloroethylene were studied. The 1,2-dichlorovinyl(1,2-DCV) isomers of both the cysteine conjugate and the mercapturate were much stronger mutagens in the Ames test with Salmonella

  3. Analysis of S-nitrosothiols via Copper Cysteine (2C) and Copper Cysteine - Carbon Monoxide (3C) Methods

    Science.gov (United States)

    Rogers, Stephen C.; Gibbons, Lindsey B.; Griffin, Sherraine; Doctor, Allan

    2012-01-01

    This chapter summarizes the principles of RSNO measurement in the gas phase, utilizing ozone-based chemiluminescence and the copper cysteine (2C) ± carbon monoxide (3C) reagent. Although an indirect method for quantifying RSNOs, this assay represents one of the most robust methodologies available. It exploits the NO• detection sensitivity of ozone based chemiluminscence, which is within the range required to detect physiological concentrations of RSNO metabolites. Additionally, the specificity of the copper cysteine (2C and 3C) reagent for RSNOs negates the need for sample pretreatment, thereby minimizing the likelihood of sample contamination (false positive results), NO species inter-conversion, or the loss of certain highly labile RSNO species. Herein, we outline the principles of this methodology, summarizing key issues, potential pitfalls and corresponding solutions. PMID:23116707

  4. Mutant INS-gene induced diabetes of youth: proinsulin cysteine residues impose dominant-negative inhibition on wild-type proinsulin transport.

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2010-10-01

    Full Text Available Recently, a syndrome of Mutant INS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.

  5. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6.

    Science.gov (United States)

    Lam, Ming Quan; Nik Mut, Nik Nurhidayu; Thevarajoo, Suganthi; Chen, Sye Jinn; Selvaratnam, Chitra; Hussin, Huszalina; Jamaluddin, Haryati; Chong, Chun Shiong

    2018-02-01

    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg 2+ , Mn 2+ , Cd 2+ , and Al 3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K + , Ca 2+ , Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ , and Fe 3+ ). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.

  6. Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hyunjoo; Lee, Juwon; Noh, Jinseok; Kong, Kwanghoon [Chung-Ang Univ., Seoul (Korea, Republic of)

    2012-12-15

    To elucidate the roles of cysteine residues in rice Phi-class GST F3, in this study, all three cysteine residues were replaced with alanine by site-directed mutagenesis in order to obtain mutants C22A, C73A and C77A. Three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Cys73 and Cys77 residues in OsGSTF3 with alanine did not affect the glutathione conjugation activities, showing non-essentiality of these residues. On the other hand, the substitution of Cys22 residue with alanine resulted in approximately a 60% loss of specific activity toward ethacrynic acid. Moreover, the K{sub m}{sup CDNB} value of the mutant C22A was approximately 2.2 fold larger than that of the wild type. From these results, the evolutionally conserved cysteine 22 residue seems to participate rather in the structural stability of the active site in OsGSTF3 by stabilizing the electrophilic substrates-binding site's conformation than in the substrate binding directly.

  7. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  8. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  9. The Degradome database: mammalian proteases and diseases of proteolysis.

    Science.gov (United States)

    Quesada, Víctor; Ordóñez, Gonzalo R; Sánchez, Luis M; Puente, Xose S; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.

  10. Electronic structures of the L-cysteine film on dental alloys

    International Nuclear Information System (INIS)

    Ogawa, K.; Tsujibayashi, T.; Takahashi, K.; Azuma, J.; Kakimoto, K.; Kamada, M.

    2011-01-01

    Research highlights: → The electronic structures of dental alloys and L-cysteine film were studied by PES. → The density of states in the dental alloy originates from Au and Cu as constituents. → The Cu-3d states contribute dominantly to the occupied states near the Fermi level. → The electronic structure of L-cysteine thin film is different from the thick film. → The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  11. Electronic structures of the L-cysteine film on dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K., E-mail: e7141@cc.saga-u.ac.jp [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Tsujibayashi, T. [Department of Physics, Osaka Dental University, Osaka 573-1121 (Japan); Takahashi, K.; Azuma, J. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan); Kakimoto, K. [Department of Geriatric Dentistry, Osaka Dental University, Osaka 573-1121 (Japan); Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

    2011-04-15

    Research highlights: {yields} The electronic structures of dental alloys and L-cysteine film were studied by PES. {yields} The density of states in the dental alloy originates from Au and Cu as constituents. {yields} The Cu-3d states contribute dominantly to the occupied states near the Fermi level. {yields} The electronic structure of L-cysteine thin film is different from the thick film. {yields} The bonding between Cu-3d and S-3sp states are formed at the interface. - Abstract: Metal-organic interfaces have been attracting continuous attention in many fields including basic biosciences. The surface of dental alloys could be one of such interfaces since they are used in a circumstance full of organic compounds such as proteins and bacteria. In this work, electronic structures of Au-dominant dental alloys, which have Ag and Cu besides Au, and those of L-cysteine on the dental alloys have been studied by photoelectron spectroscopy with synchrotron radiation. It was found that the density of states in the dental alloy originate from gold and copper as constituents, and the Cu-3d states contribute dominantly to the occupied states near the Fermi level. It was also found that the electronic structure of the L-cysteine thin film on the dental alloy is different from that of the L-cysteine thick film. The result indicates the formation of the orbital bonding between Cu-3d and S-3sp states in the thin film on the dental alloy.

  12. Oral Administration of (S)-Allyl-l-Cysteine and Aged Garlic Extract to Rats: Determination of Metabolites and Their Pharmacokinetics.

    Science.gov (United States)

    Park, Taehoon; Oh, Ju-Hee; Lee, Joo Hyun; Park, Sang Cheol; Jang, Young Pyo; Lee, Young-Joo

    2017-11-01

    ( S )-Allyl-l-cysteine is the major bioactive compound in garlic. ( S )-Allyl-l-cysteine is metabolized to ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide after oral administration. An accurate LC-MS/MS method was developed and validated for the simultaneous quantification of ( S )-allyl-l-cysteine and its metabolites in rat plasma, and the feasibility of using it in pharmacokinetic studies was tested. The analytes were quantified by multiple reaction monitoring using an atmospheric pressure ionization mass spectrometer. Because significant quantitative interference was observed between ( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine as a result of the decomposition of N -acetyl-( S )-allyl-l-cysteine at the detector source, chromatographic separation was required to discriminate ( S )-allyl-l-cysteine and its metabolites on a reversed-phase C 18 analytical column with a gradient mobile phase consisting of 0.1% formic acid and acetonitrile. The calibration curves of ( S )-allyl-l-cysteine, ( S )-allyl-l-cysteine sulfoxide, N -acetyl-( S )-allyl-l-cysteine, and N -acetyl-( S )-allyl-l-cysteine sulfoxide were linear over each concentration range, and the lower limits of quantification were 0.1 µg/mL [( S )-allyl-l-cysteine and N -acetyl-( S )-allyl-l-cysteine] and 0.25 µg/mL [( S )-allyl-l-cysteine sulfoxide and N -acetyl-( S )-allyl-l-cysteine sulfoxide]. Acceptable intraday and inter-day precisions and accuracies were obtained at three concentration levels. The method satisfied the regulatory requirements for matrix effects, recovery, and stability. The validated LC-MS/MS method was successfully used to determine the concentration of ( S )-allyl-l-cysteine and its metabolites in rat plasma samples after the administration of ( S )-allyl-l-cysteine or aged garlic extract. Georg Thieme Verlag KG Stuttgart · New York.

  13. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Katja E. Menger

    2015-06-01

    Full Text Available Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT, to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster.

  14. [Protective Effect of S-isopentenyl-L-cysteine against DNA Damage in Irradiated Mice].

    Science.gov (United States)

    Zheng, Qi-sheng; Yu, Guang-yun; He, Xin; Jiang, Ming; Chu, Xiao-fei; Zhao, Shu-yi; Fan, Sai-jun; Liu, Pei-xun

    2015-10-01

    To evaluate the protective effect of S-isopentenyl-L-cysteine,a new cysteine derivative,on DNA damage induced by radiation by using acute radiation injury animal models. Forty ICR mice were randomly divided into five groups:the control group,1.0Gy gamma irradiation group,1.0Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,7.2Gy gamma irradiation group,and 7.2Gy gamma irradiation combined with S-isopentenyl-L-cysteine group,with 8 mice in each group.The comet assay and bone marrow polychromatic micronucleus experiments were performed to evaluate the double-strand DNA breaks in ICR mice exposed to 1.0 and 7.2Gy gamma-ray, respectively. The tail DNA percentage,tail length,tail moment,and olive tail moment of peripheral blood lymphocytes in 7.2Gy gamma irradiation group were significantly higher than that of the control group (PL-cysteine group was significantly less than that of 7.2Gy gamma irradiation group (PL-cysteine before irradiation,the micronucleus rate of ICR mice exposed to 1.0 and 7.2Gy gamma-ray decreased from (39.5000 ± 3.3141)‰ to (28.1667±4.1345)‰ (P=0.033) and from (76.5000 ± 4.6242)‰ to (22.8333 ± 3.6553)‰(P=0.000),respectively. The bone marrow polychromatic micronucleus experiment indicated that the value of polychromatic erythrocyte (PCE)/normochromatic erythrocyte(NCE) of ICR mice exposed to 1.0 and 7.2Gy gamma-ray was less than the control group(PL-cysteine before irradiation was significantly higher than the corresponding groups (PL-cysteine has a good protective effect against DNA damage induced by radiation.

  15. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mixed carbohydrase and protease enzyme product. 184... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1027 Mixed carbohydrase and protease enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes...

  16. Structural basis for the ATP-independent proteolytic activity of LonB proteases and reclassification of their AAA+ modules.

    Science.gov (United States)

    An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin

    2015-10-01

    Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.

  17. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  18. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  19. Systematic Design of Trypsin Cleavage Site Mutated Exendin4-Cysteine 1, an Orally Bioavailable Glucagon-Like Peptide-1 Receptor Agonist

    Directory of Open Access Journals (Sweden)

    Wenbo Sai

    2017-03-01

    Full Text Available Exendin-4 is a strong therapeutic candidate for the treatment of metabolic syndrome. Related receptor agonist drugs have been on the market since 2005. However, technical limitations and the pain caused by subcutaneous injection have severely limited patient compliance. The goal of the study is to investigate a biologically active exendin-4 analog could be administered orally. Using intraperitoneal glucose tolerance tests, we discovered that exendin4-cysteine administered by oral gavage had a distinct hypoglycemic effect in C57BL/6J mice. Using Rosetta Design and Amber, we designed and screened a series of exendin4-cysteine analogs to identify those that retained biological activity while resisting trypsin digestion. Trypsin Cleavage Site Mutated Exendin4-cysteine 1 (TSME-1, an analog whose bioactivity was similar to exendin-4 and was almost completely resistant to trypsin, was screened out. In addition, TSME-1 significantly normalized the blood glucose levels and the availability of TSME-1 was significantly higher than that of exendin-4 and exendin4-cysteine. Collectively orally administered TSME-1, a trypsin-resistant exendin-4 analog obtained by the system, is a strong candidate for future treatments of type 2 diabetes.

  20. Transamination of cysteine-sulfinic acid by extracts of oat leaves

    International Nuclear Information System (INIS)

    Perez-Milan, H.; Schuack, J.; Fromageot, P.

    1960-01-01

    An aqueous extract of oat leaves catalyses a transamination between cysteine-sulfinic acid and α-ketoglutaric acid. Under the conditions utilized pyruvic acid is not an acceptor of the amino group. Neither cysteic nor aspartic acid are a substrate for the transaminase of cysteine-sulfinic acid. Reprint of a paper published in Biochimica et Biophysica Acta, Vol. 36, 1959, p. 73-83 [fr