WorldWideScience

Sample records for cystatin gene family

  1. Cystatin C (CST3), the candidate gene for hereditary cystatin C amyloid angiopathy (HCCAA), and other members of the cystatin gene family are clustered on chromosome 20p11. 2

    Energy Technology Data Exchange (ETDEWEB)

    Schnittger, S.; Gopal Rao, V.V.N.; Hansmann, I. (Universitaet Goettingen (Germany)); Abrahamson, M. (Univ. of Lund (Sweden))

    1993-04-01

    The cystatin C gene (CST3) encodes a low-molecular-weight cysteine proteinase inhibitor belonging to family II of the cystatin superfamily and is mutated in cases of hereditary cystatin C amyloid angiopathy (HCCAA). CST3, which along with other family II cystatin genes is a member of the cystatin gene family, has been assigned to chromosome 20. To investigate the genomic organization on chromosome 20, the CST3 gene and related sequences were regionally mapped by fluorescence in situ hybridization (FISH), Southern blot, and pulsed-field gel electrophoresis (PFGE) analysis using the CDNA cystatin C probe C6a and three genomic probes, C3E1, C3E2, and C3E2-2. Probe C3E2-2, which like probe C3E2 is specific for CST3, hybridized to only one HindIII and one XbaI fragment on Southern blots and to a 300-kb BssHII PFGE fragment. FISH with probe C3E2 mapped this locus to chromosome 20p11.2, with an FL-pter value of 0.37 [+-] 0.07 on the physical map. Probe C3E1 containing the most conserved cystatin gene exon (exon 1) and its flanking sequences hybridized with more fragments, e.g., to eight XbaI and nine HindIII fragments on conventional Southern blots and to eight SmaI, two BssHII (900 and 300 kb), and two Notl fragments after PFGE. FISH with C3E1 revealed only one single site at 20p11.2 with an FL-pter value of 0.37 [+-] 0.04, identical to that obtained with C3E2. From these results it is concluded that (1) exon 1 and its flanking sequences are preferentially conserved within the cystatin gene family and that (2) CST3 and probably seven other members of the cystatin gene family are clustered within an at maximum 1.2-Mb segment on chromosome 20p11.2. 45 refs., 5 figs., 1 tab.

  2. Cloning, Characterization and Primary Function Study of a Novel Gene, Cymgl, Related to Family 2 Cystatins

    Institute of Scientific and Technical Information of China (English)

    Yang XIANG; Dong-Song NIE; Jian WANG; Xiao-Jun TAN; Yun DENG; Shu-Wei LUO; Guang-Xiu LU

    2005-01-01

    Cystatins are cysteine proteinase inhibitors. We found two expression sequence tags (ESTs),CA463109 and AV042522, from a mouse testis library using Digital differential display (DDD). By electrical hybridization, a novel gene, Cymgl (GenBank accession No. AY600990), which has a full length of 0.78 kb,and contains four exons and three introns, was cloned from a mouse testis cDNA library. The gene is located in the 2G3 area of chromosome 2. The full cDNA encompasses the entire open reading frame, encoding 141amino acid residues. The protein has a cysteine protease inhibitor domain that is related to the family 2cystatins but lacks critical consensus sites important for cysteine protease inhibition. These characteristics are seen in the CRES subfamily, which are related to the family 2 cystatins and are expressed specifically in the male reproductive tract. CYMG1 has a 44% (48/108) identity with mouse CRES and 30% (42/140)identity with mouse cystatin C. Northern blot analysis showed that the Cymgl is specifically expressed in adult mouse testes. Cell location studies showed that the GFP-tagged CYMG1 protein was localized in the cytoplasm of HeLa cells. Immunohistochemistry revealed that the CYMG1 protein was expressed in mouse testes spermatogonium, spermatocytes, round spermatids, elongating spermatids and spermatozoa. RT-PCR results also showed that Cymgl was expressed in mouse testes and spermatogonium. The Cymgl expression level varied in different developmental stages: it was low 1 week postpartum, steadily increased 2 to 5 weeks postpartum, and was highest 7 weeks postpartum. The expression level at 5 weeks postpartum was maintained during 13 to 57 weeks postpartum. The Cymgl expression level in the testes over different developmental stages correlates with the mouse spermatogenesis and sexual maturation process. All these indicate that Cymgl might play an important role in mouse spermatogenesis and sexual maturation.

  3. Comprehensive analysis of cystatin family genes suggests their putative functions in sexual reproduction, embryogenesis, and seed formation.

    Science.gov (United States)

    Zhao, Peng; Zhou, Xue-mei; Zou, Jie; Wang, Wei; Wang, Lu; Peng, Xiong-bo; Sun, Meng-xiang

    2014-09-01

    Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell-cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation.

  4. Evolutionary Analysis of the Cystatin Family in Three Schistosoma Species

    Directory of Open Access Journals (Sweden)

    Yesid eCuesta-Astroz

    2014-07-01

    Full Text Available The cystatin family comprises cysteine protease inhibitors distributed in 3 subfamilies (I25A-C. Family members lacking cystatin activity are currently unclassified. Little is known about the evolution of Schistosoma cystatins, their physiological roles, and expression patterns in the parasite life cycle. The present study aimed at identifying cystatin homologs in the predicted proteome of three Schistosoma species and other Platyhelminthes. We analyzed the amino acid sequence diversity focused in the identification of protein signatures and to establish evolutionary relationships among Schistosoma and experimentally validated human cystatins. Gene expression patterns were obtained from different development stages in S. mansoni using microarray data. In Schistosoma, only I25A and I25B proteins were identified, reflecting little functional diversification. I25C and unclassified subfamily members were not identified in Platyhelminthes species here analyzed. The resulting phylogeny placed cystatins in different clades, reflecting their molecular diversity. Our findings suggest that Schistosoma cystatins are very divergent from their human homologs, especially regarding the I25B subfamily. Schistosoma cystatins also differ significantly from other Platyhelminthes homologs. Finally, transcriptome data publicly available indicated that I25A and I25B genes are constitutively expressed thus could be essential for schistosome life cycle progression. In summary, this study provides insights into the evolution, classification, and functional diversification of cystatins in Schistosoma and other Platyhelminthes, improving our understanding of parasite biology and opening new frontiers in the identification of novel therapeutic targets against helminthiases.

  5. Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination.

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-11-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds.

  6. Cres2 and Cres3: new members of the cystatin-related epididymal spermatogenic subgroup of family 2 cystatins.

    Science.gov (United States)

    Hsia, Nelson; Cornwall, Gail A

    2003-03-01

    The cystatin-related epididymal spermatogenic (CRES) and recently identified testatin and cystatin T proteins define a new subgroup within the family 2 cystatins of cysteine protease inhibitors. Members of the CRES subgroup are predominantly expressed in reproductive tissues and lack critical cystatin active-site sequences implying divergent functions. To determine whether there are additional members of the subgroup, we searched nucleotide databases and identified two novel genes that we designated Cres2 and Cres3. These genes, like other subgroup members, encode proteins with four conserved cysteine residues and predicted molecular weights characteristic of family 2 cystatins but have divergent cystatin inhibitory sequences. Furthermore, the genes exhibited reproductive-specific expression with Cres2 exclusively expressed in the epithelial cells of the proximal and midcaput epididymal regions and Cres3 expressed in the proximal caput epididymal epithelium, Sertoli cells of the testis, and early follicles and corpora lutea in the ovary. Additional studies showed that, like Cres, both Cres2 and Cres3 genes are dependent on testicular factors for epididymal expression. Taken together, CRES2 and CRES3 represent new members of a subgroup of cystatin family 2 proteins that likely carry out tissue-specific functions distinct from that of typical cystatins.

  7. Cloning of a novel gene, Cymg1, related to family 2 cystatins and expressed at specific stages of mouse testis development

    Indian Academy of Sciences (India)

    Y. Xiang; D. S. Nie; G. X. Lu

    2004-12-01

    We have cloned a novel gene, Cymg1 (GenBank accession number AY600990), from a mouse testis cDNA library. Cymg1 is located in 2G3 of mouse chromosome 2. The cDNA includes an open reading frame that encodes 141 amino acid residues. The encoded polypeptide has a cysteine protease inhibitor domain found in the family 2 cystatins but lacks critical consensus sites important for cysteine protease inhibition. These characteristics are seen in the proteins of the CRES subfamily of the family 2 cystatins which are expressed specifically in the reproductive tract. CYMG1 protein shows 44% identity with mouse CRES and 30% identity with mouse cystatin C. Northern blot analysis showed that the Cymg1 gene was specifically expressed in adult mouse testis. RT-PCR also showed that Cymg1 was expressed in testis and spermatogonial cells. Cymg1 expression level varied in the different developmental stages of mouse testis, and were coincidental with spermatogenesis and sex maturation. These results indicate that Cymg1 may play important roles in mouse spermatogenesis and sex maturation

  8. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    Science.gov (United States)

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  9. Evolution of C, D and S-type cystatins in mammals: an extensive gene duplication in primates.

    Science.gov (United States)

    de Sousa-Pereira, Patrícia; Abrantes, Joana; Pinheiro, Ana; Colaço, Bruno; Vitorino, Rui; Esteves, Pedro J

    2014-01-01

    Cystatins are a family of inhibitors of cysteine peptidases that comprises the salivary cystatins (D and S-type cystatins) and cystatin C. These cystatins are encoded by a multigene family (CST3, CST5, CST4, CST1 and CST2) organized in tandem in the human genome. Their presence and functional importance in human saliva has been reported, however the distribution of these proteins in other mammals is still unclear. Here, we performed a proteomic analysis of the saliva of several mammals and studied the evolution of this multigene family. The proteomic analysis detected S-type cystatins (S, SA, and SN) in human saliva and cystatin D in rat saliva. The evolutionary analysis showed that the cystatin C encoding gene is present in species of the most representative mammalian groups, i.e. Artiodactyla, Rodentia, Lagomorpha, Carnivora and Primates. On the other hand, D and S-type cystatins are mainly retrieved from Primates, and especially the evolution of S-type cystatins seems to be a dynamic process as seen in Pongo abelii genome where several copies of CST1-like gene (cystatin SN) were found. In Rodents, a group of cystatins previously identified as D and S has also evolved. Despite the high divergence of the amino acid sequence, their position in the phylogenetic tree and their genome organization suggests a common origin with those of the Primates. These results suggest that the D and S type cystatins have emerged before the mammalian radiation and were retained only in Primates and Rodents. Although the mechanisms driving the evolution of cystatins are unknown, it seems to be a dynamic process with several gene duplications evolving according to the birth-and-death model of evolution. The factors that led to the appearance of a group of saliva-specific cystatins in Primates and its rapid evolution remain undetermined, but may be associated with an adaptive advantage.

  10. Evolution of C, D and S-type cystatins in mammals: an extensive gene duplication in primates.

    Directory of Open Access Journals (Sweden)

    Patrícia de Sousa-Pereira

    Full Text Available Cystatins are a family of inhibitors of cysteine peptidases that comprises the salivary cystatins (D and S-type cystatins and cystatin C. These cystatins are encoded by a multigene family (CST3, CST5, CST4, CST1 and CST2 organized in tandem in the human genome. Their presence and functional importance in human saliva has been reported, however the distribution of these proteins in other mammals is still unclear. Here, we performed a proteomic analysis of the saliva of several mammals and studied the evolution of this multigene family. The proteomic analysis detected S-type cystatins (S, SA, and SN in human saliva and cystatin D in rat saliva. The evolutionary analysis showed that the cystatin C encoding gene is present in species of the most representative mammalian groups, i.e. Artiodactyla, Rodentia, Lagomorpha, Carnivora and Primates. On the other hand, D and S-type cystatins are mainly retrieved from Primates, and especially the evolution of S-type cystatins seems to be a dynamic process as seen in Pongo abelii genome where several copies of CST1-like gene (cystatin SN were found. In Rodents, a group of cystatins previously identified as D and S has also evolved. Despite the high divergence of the amino acid sequence, their position in the phylogenetic tree and their genome organization suggests a common origin with those of the Primates. These results suggest that the D and S type cystatins have emerged before the mammalian radiation and were retained only in Primates and Rodents. Although the mechanisms driving the evolution of cystatins are unknown, it seems to be a dynamic process with several gene duplications evolving according to the birth-and-death model of evolution. The factors that led to the appearance of a group of saliva-specific cystatins in Primates and its rapid evolution remain undetermined, but may be associated with an adaptive advantage.

  11. Characterization and expression of a novel cystatin gene from Schistosoma japonicum.

    Science.gov (United States)

    He, Baohua; Cai, Guobin; Ni, Yonghui; Li, Ying; Zong, Hongying; He, Li

    2011-08-01

    Cystatins are a family of cysteine protease inhibitors that play a crucial role in the immune evasion from their host and in the adaptation to host defence. Here, we isolated a full-length cDNA sequence inferred to encode a novel cystatin gene from a blood fluke, Schistosoma japonicum. The cDNA, designated SjCystatin, comprised an open reading frame (ORF) of 306 bp, and encoded 101 amino acids with a predicted molecular weight of 11.3 kDa. This predicted protein shared a significant degree of sequence identity with the type I cystatin (stefin) of Schistosoma mansoni and Homo sapiens. These proteins exhibited a typical cystatin topology, including the absence of disulfide bonds and three conserved catalytic motifs, Gly at the N-terminus (Gly(6)), Gln-X-Val-X-Gly motif (Q(49)VVAG(53)) and an LP pair at the C-terminus (L(76)P(77)). The SjCystatin gene spanned 376 bp and contained three exons. The positions of two introns were conserved between the cystatin genes of trematodes and their vertebrate hosts. Reverse transcription polymerase chain reaction confirmed the transcription of SjCystatin in the egg, schistosomula and adult stages of S. japonicum. The encoding ORF region was cloned into pET-28a (+) prokaryotic expression vector. After purification, the recombinant protein SjCystatin (recSjCystatin), expressed in Escherichia coli, was used to immunize animals and produce its specific polyclonal antibody. Western blot analysis revealed that the native SjCystatin was expressed in the egg and adult stages. The enzyme activity assay of the recSjCystatin showed that it inhibited the proteolytic activity of papain. SjCystatin protein was mainly localized on the miracidium within eggs. Immunohistochemistry revealed that SjCystatin mainly localized in the epithelial cells lining the gut as well as the tegument on the surface of adult worms. The conserved genomic DNA structure among cystatin homologues of trematode and their vertebrate host emphasized the characteristics

  12. Modelling family 2 cystatins and their interaction with papain.

    Science.gov (United States)

    Nandy, Suman Kumar; Bhuyan, Rajabrata; Seal, Alpana

    2013-01-01

    Cystatins are extensively studied cysteine protease inhibitors, found in wide range of organisms with highly conserved structural folds. S-type of cystatins is well known for their abundance in saliva, high selectivity and poorer activity towards host cysteine proteases in comparison to their immediate ancestor cystatin C. Despite more than 90% sequence similarity, the members of this group show highly dissimilar binding affinity towards papain. Cystatin M/E is a potent inhibitor of legumain and papain like cysteine proteases and recognized for its involvement in skin barrier formation and potential role as a tumor suppressor gene. However, the structures of these proteins and their complexes with papain or legumain are still unknown. In the present study, we have employed computational methods to get insight into the interactions between papain and cystatins. Three-dimensional structures of the cystatins are generated by homology modelling, refined with molecular dynamics simulation, validated through numerous web servers and finally complexed with papain using ZDOCK algorithm in Discovery Studio. A high degree of shape complementarity is observed within the complexes, stabilized by numerous hydrogen bonds (HB) and hydrophobic interactions. Using interaction energy, HB and solvent accessible surface area analyses, we have identified a series of key residues that may be involved in papain-cystatin interaction. Differential approaches of cystatins towards papain are also noticed which are possibly responsible for diverse inhibitory activity within the group. These findings will improve our understanding of fundamental inhibitory mechanisms of cystatin and provide clues for further research.

  13. Search for Nodulation and Nodule Development-Related Cystatin Genes in the Genome of Soybean (Glycine max).

    Science.gov (United States)

    Yuan, Songli; Li, Rong; Wang, Lei; Chen, Haifeng; Zhang, Chanjuan; Chen, Limiao; Hao, Qingnan; Shan, Zhihui; Zhang, Xiaojuan; Chen, Shuilian; Yang, Zhonglu; Qiu, Dezhen; Zhou, Xinan

    2016-01-01

    Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development, and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97-245 amino acid residues, different isoelectric points (pI) and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals, and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS)-specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16) was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to nodulation and

  14. Walking, cloning, and mapping with YACs in 3q27: Localization of five ESTs including three members of the cystatin gene family and identification of CpG islands

    Energy Technology Data Exchange (ETDEWEB)

    James, L.A.; Ogilvie, D.J.; Anand, R. [Zeneca Pharmaceuticals, Cheshire (United Kingdom)] [and others

    1996-03-05

    Using yeast artificial chromosomes, we have generated a high-resolution physical map for 2.7 Mb of human chromosomal region 3q27. The YAC clones group into three contigs, one of which has also been linked to the CEPH YAC contig map of human chromosome 3. Fluorescence in situ hybridization has been used to order the contigs on the chromosome and to estimate the distance between them. Expressed sequence tags for five genes, including three members of the cystatin gene family and a gene thought to be involved in B-cell non-Hodgkin lymphoma, have been placed within the YAC contigs, and 12 putative CpG islands have been identified. These YACs provide a useful resource to complete the physical mapping of 3q27 and to begin identification and characterization of further genes that are located there. 27 refs., 1 fig., 1 tab.

  15. Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases.

    Science.gov (United States)

    Carrillo, Laura; Martinez, Manuel; Ramessar, Koreen; Cambra, Inés; Castañera, Pedro; Ortego, Felix; Díaz, Isabel

    2011-01-01

    Phytocystatins are inhibitors of cysteine-proteases from plants putatively involved in plant defence based on their capability of inhibit heterologous enzymes. We have previously characterised the whole cystatin gene family members from barley (HvCPI-1 to HvCPI-13). The aim of this study was to assess the effects of barley cystatins on two phytophagous spider mites, Tetranychus urticae and Brevipalpus chilensis. The determination of proteolytic activity profile in both mite species showed the presence of the cysteine-proteases, putative targets of cystatins, among other enzymatic activities. All barley cystatins, except HvCPI-1 and HvCPI-7, inhibited in vitro mite cathepsin L- and/or cathepsin B-like activities, HvCPI-6 being the strongest inhibitor for both mite species. Transgenic maize plants expressing HvCPI-6 protein were generated and the functional integrity of the cystatin transgene was confirmed by in vitro inhibitory effect observed against T. urticae and B. chilensis protein extracts. Feeding experiments impaired on transgenic lines performed with T. urticae impaired mite development and reproductive performance. Besides, a significant reduction of cathepsin L-like and/or cathepsin B-like activities was observed when the spider mite fed on maize plants expressing HvCPI-6 cystatin. These findings reveal the potential of barley cystatins as acaricide proteins to protect plants against two important mite pests.

  16. Identification and characterization of a Cystatin gene from Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Li, Fengmei; Gai, Xuemei; Wang, Lingling; Song, Linsheng; Zhang, Huan; Qiu, Limei; Wang, Mengqiang; Siva, Vinu S

    2010-09-01

    Cystatins are a superfamily of proteins as reversible inhibitor of cysteine proteinases which play essential roles in a spectrum of physiological and immunological processes. In this study, a novel member of Cystatin superfamily was identified from Chinese mitten crab Eriocheir sinensis (designated EsCystatin) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of EsCystatin was of 1486 bp, consisting of a 5'-terminal untranslated region (UTR) of 92 bp, a 3' UTR of 1034 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 360 bp encoded a polypeptide of 120 amino acids with the theoretical isoelectric point of 5.48 and the predicted molecular weight of 13.39 kDa. A signal Cystatin-like domain (Gly(25) to Lys(112)) was found in the putative amino acid sequences of EsCystatin. Similar to other Cystatins, the conserved central Q(70)VVSG(74) motif was located in the Cystatin-like domain of EsCystatin. But EsCystatin lacked of signal peptide and disulphide bond. The EsCystatin exhibited homology with the other known Cystatins from invertebrates and higher vertebrates, and it was clustered into Cystatin family 1 in the phylogenetic tree. The mRNA transcripts of EsCystatin were mainly expressed in hemolymph, gill, hepatopancreas, gonad and muscle, and also marginally detectable in heart. After Listonella anguillarum challenge, the relative expression level of EsCystatin in hemolymph was down-regulated to 0.6-fold (P Cystatin family, was a potent inhibitor of papain and involved in immune response versus invading microorganisms.

  17. Cystatin superfamily.

    Science.gov (United States)

    Ochieng, Josiah; Chaudhuri, Gautam

    2010-02-01

    Cystatins, the classical inhibitors of C1 cysteine proteinases, have been extensively studied and reviewed in the literature. Over the last 20 years, however, proteins containing cystatin domains but lacking protease inhibitory activities have been identified, and most likely more will be described in the near future. These proteins together with family 1, 2, and 3 cystatins constitute the cystatin superfamily. Mounting evidence points to the new roles that some members of the superfamily have acquired over the course of their evolution. This review is focused on the roles of cystatins in: 1) tumorigenesis, 2) stabilization of matrix metalloproteinases, 3) glomerular filtration rate, 4) immunomodulation, and 5) neurodegenerative diseases. It is the goal of this review to get as many investigators as possible to take a second look at the cystatin superfamily regarding their potential involvement in serious human ailments.

  18. Differential induction of two different cystatin genes during pathogenesis of Karnal bunt (Tilletia indica) in wheat under the influence of jasmonic acid.

    Science.gov (United States)

    Dutt, Shriparna; Gaur, Vikram Singh; Taj, Gohar; Kumar, Anil

    2012-09-10

    In the present study, expression patterns of two different wheat cystatins (WCs) were studied under the influence of jasmonate signaling in triggering resistance against Karnal bunt (KB). Cystatins are cysteine proteinase inhibitors (CPI) constituting a multigene family which regulate the activity of endo- and/or exogenous cysteine proteinases (CP). Two wheat varieties HD-29 (resistant, R) and WH-542 (susceptible, S) were pre-conditioned with jasmonate and then artificially inoculated with sporidial suspension of Tilletia indica to study its influence in inducing defense by regulating cystatin genes. On the transcriptional level, WC4 and WC5 gave different temporal expression patterns. Expression of WC4 was higher in boot emergence stage which is most susceptible to KB and then slowly declined in both varieties. Expression of WC5 showed an entirely reverse pattern of expression, which kept on rising as the grains matured. Cystatin activity determination by inhibitor assay gave higher activity in resistant variety and under JA treatment. Estimation of specific activity of total cystatin at different days after inoculation (DAI) showed that JA positively induced cystatin expression in both varieties but R variety always registered a greater cystatin expression than the susceptible one (Pcystatin activity which gradually decreased 7 DAI when compared with the un-inoculated plants. Based on these findings it is clearly demonstrated that jasmonate acts as a potential activator of induced resistance by up-regulating cystatin expression and provides the conditioning effect prior to infection through the maintenance of critical balance of CP/CPI interaction. However, different cystatin genes show different temporal expression patterns and may play different roles at various developmental stages of the grain.

  19. Cystatins in immune system.

    Science.gov (United States)

    Magister, Spela; Kos, Janko

    2013-01-01

    Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion.

  20. Molecular cloning and characterization of novel cystatin gene in leaves Cakile maritima halophyte.

    Science.gov (United States)

    Megdiche, Wided; Passaquet, Chantal; Zourrig, Walid; Zuily Fodil, Yasmine; Abdelly, Chedly

    2009-05-01

    Cakile maritima (Brassicaceae) is a halophyte that thrives on dunes along Mediterranean seashores, with high tolerance to salty and dry environments. We have previously shown that there is great morphological and physiological diversity between ecotypes. We investigated the expression of cysteine protease inhibitor (cystatin) genes in the response to hydric and saline constraints, as cystatins are known to participate in the response to environmental constraints in plants. We isolated, from C. maritime, a new cystatin cDNA (CmC) that encodes a 221 amino acid protein with a calculated molecular mass of 25 kDa. It displays a moderate-to-high amino acid sequence similarity with previously reported phytocystatin genes. The predicted protein is hydrophilic, with only one hydrophobic region, just at its N-terminus, and a calculated isoelectric point of 6.7. Sequence analysis revealed a monocystatin structure with one cystatin-like domain. The predicted protein CmC contains the main conserved motifs characteristic of the plant cystatins, and a putative site of phosphorylation by casein kinase II (TPSD). As some cystatins, it contains a C-terminal extension of 106 amino acid residues, with several conserved cystatin motifs. The expression was constitutive in non-stressed plants, with different levels between the ecotypes, and without apparent relation to the climatic area of origin. Augmented expression was observed under severe salinity except in the ecotype from the arid region. Water deficit also increased CmC expression in two ecotypes, with the highest value observed in the ecotype from the humid region. These results indicate that C. maritima responds to high salinity and water deficit by expressing a cystatin gene that is a known component of defense against abiotic constraints or biotic aggression and survival machinery.

  1. Silencing of cystatin M in metastatic oral cancer cell line MDA-686Ln by siRNA increases cysteine proteinases and legumain activities, cell proliferation and in vitro invasion.

    NARCIS (Netherlands)

    Vigneswaran, N.; Wu, J.; Nagaraj, N.; James, R.; Zeeuwen, P.L.J.M.; Zacharias, W.

    2006-01-01

    Cystatins are inhibitors of lysosomal cysteine proteinases. Cystatin M demonstrates more diverse tissue distribution, target specificity and biological function than other cystatins from the same family. We utilized small interference RNAs (siRNA) to silence cystatin M gene expression in a metastati

  2. Jasmonate signal induced expression of cystatin genes for providing resistance against Karnal bunt in wheat.

    Science.gov (United States)

    Dutt, Shriparna; Pandey, Dinesh; Kumar, Anil

    2011-06-01

    Two wheat varieties HD-29 (resistant, R) and WH-542 (susceptible, S) were pretreated with jasmonic acid (JA) or jasmonate and then artificially inoculated with sporidial suspension of Tilletia indica to study its influence in reducing Karnal bunt (KB) infection by regulating cystatin gene expression. JA was found to improve the plant defense against KB as its exogenous application resulted in decrease in coefficient of infection (CI) in both susceptible and resistant varieties following pathogen inoculation. Transcript profiling of wheat cystatin genes at different days after inoculation (DAI) showed that JA pretreatment positively induced cystatin gene expression in both varieties with greater induction of expression in resistant variety than the susceptible one (Pcystatin genes, WC2, WC3 and WCMD was observed with their increased expression at 1DAI in the boot emergence stage which is most susceptible to KB and then slowly declined gradually at 3, 7 and 15 DAI in both the varieties. Except WC2, higher expression of other two cystatins viz. WC3 and WCMD at 1DAI showed higher response (Pcystatin by inhibitor assay were found to be consistent with those of transcript profiling. These findings suggest that jasmonic acid (JA) may act as a potential activator of induced resistance against Karnal bunt of wheat by upregulating cystatin gene expression.

  3. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  4. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases. PMID:27764212

  5. Molecular cloning and gene expression analysis of cystatin C-like proteins in spinyhead croaker Collichthys lucidus.

    Science.gov (United States)

    Song, W; Jiang, K J; Zhang, F Y; Zhao, M; Ma, L B

    2016-03-24

    Cystatins are natural tight-binding reversible inhibitors of cysteine proteases. In this study, a cDNA library was constructed from Collichthys lucidus using the SMART technique. A complete cDNA sequence with high identity to the conserved sequence of the cystatin C gene was cloned from the library using EST analysis and rapid amplification of cDNA ends (RACE), then subjected to further investigation. The full-length cDNA of cystatin C from C. lucidus (Clcys) was 699 bp long, including a 5'-terminal untranslated region (5'-UTR) of 52 bp, a 3'-UTR of 290 bp, and an open-reading frame of 357 bp. The gene encoded a polypeptide of 118 amino acids, constituting a predicted molecular weight of 12.875 kDa and a theoretical isoelectric point of 8.81. The amino acid sequence of Clcys possessed typical features of type II cystatins and had the highest identity with cystatin C of Pseudosciaena crocea (89%); therefore, it clustered with the cystatin C group in the UPGMA phylogenetic tree. Quantitative real-time reverse transcription analysis revealed that the highest expression was found in the kidney, followed by the liver, heart, and testis, with the lowest expression in muscle. Interestingly, Clcys had relatively low identity with cystatin C genes from other fish and mammals, and its expression pattern did not possess features of a housekeeping gene. Based on these findings, we suspect that the classification of cystatins in fish is somewhat confusing, and the identification of more cystatin gene sequences is needed before a definite conclusion can be drawn.

  6. Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.

    Science.gov (United States)

    Ferrer-Mayorga, Gemma; Alvarez-Díaz, Silvia; Valle, Noelia; De Las Rivas, Javier; Mendes, Marta; Barderas, Rodrigo; Canals, Francesc; Tapia, Olga; Casal, J Ignacio; Lafarga, Miguel; Muñoz, Alberto

    2015-10-30

    Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.

  7. Molecular characterization and expression analysis of a novel cystatin-like gene in a hypoxia-tolerant Indian catfish, Clarias batrachus [Linnaeus, 1758].

    Science.gov (United States)

    Mohindra, Vindhya; Tripathi, Ratnesh K; Singh, Akanksha; Singh, Balvinder

    2013-02-01

    A novel member of Cystatin superfamily was identified from Indian catfish, Clarias batrachus, in response to oxidation stress induced by environmental hypoxia. Integrated genomic approaches, expression profiling and computational techniques showed that CbCystatin had putative cystatin/monelin like domain and might be a transmembrane and/or intermediate protein in signaling pathways. CbCystatin was found to be clustered into family 2 Cystatins. At transcriptional level, its expression was significantly up-regulated in response to short as well as long periods (more than 20 fold) of hypoxia, suggesting its positive association with oxygen concentrations lower than physiological concentrations.

  8. Cystatins of parasitic organisms.

    Science.gov (United States)

    Klotz, Christian; Ziegler, Thomas; Daniłowicz-Luebert, Emilia; Hartmann, Susanne

    2011-01-01

    The cystatin superfamily comprises several groups of protease inhibitors. In this chapter we will focus on I25 family members, which consist predominantly of the type 2 cystatins. Recently, a wealth of information on these molecules and their activities has been described. Parasite cystatins are shown to have dual functions via interaction with both parasite and host proteases. Thereby, parasite cystatins are not only essentially involved in the regulation of physiological processes during parasite development, but also represent important pathogenicity factors. Interestingly, some studies indicate that parasite cystatins evolved exceptional immuno-modulatory properties. these capacities could be exploited to interfere with unwanted immune responses in unrelated human inflammatory diseases. We highlight the different biological roles of parasite cystatins and the anticipated future developments.

  9. Two secreted cystatins of the soft tick Ornithodoros moubata: differential expression pattern and inhibitory specificity.

    Science.gov (United States)

    Grunclová, Lenka; Horn, Martin; Vancová, Marie; Sojka, Daniel; Franta, Zdenek; Mares, Michael; Kopácek, Petr

    2006-12-01

    Two genes coding for cysteine peptidase inhibitors of the cystatin family (Om-cystatin 1 and 2) were isolated from a gut-specific cDNA library of the soft tick Ornithodoros moubata. Both cystatins were clearly down-regulated after a blood meal. Om-cystatin 1 is mainly expressed in the tick gut, while Om-cystatin 2 mRNA was also found in other tick tissues. Authentic Om-cystatin 2 was significantly more abundant than Om-cystatin 1 in the gut contents of fasting ticks and was associated with hemosome-derived residual bodies accumulated in the gut lumen. Om-cystatin 2 was also expressed by type 2 secretory cells in the salivary glands of unfed ticks. The inhibitory specificity of recombinant Om-cystatins 1 and 2 was tested with mammalian cysteine peptidases, as well as endogenous cysteine peptidases present in the tick gut. Both cystatins efficiently inhibited papain-like peptidases, including cathepsin B and H, but differed significantly in their affinity towards cathepsin C and failed to block asparaginyl endopeptidase. Our results suggest that the secreted cystatin isoinhibitors are involved in the regulation of multiple proteolytic targets in the tick digestive system and tick-host interaction.

  10. Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1)

    Energy Technology Data Exchange (ETDEWEB)

    Lalioti, M.D.; Mirotsou, M.; Rossier, C. [Univ. Hospital of Geneva (Switzerland)] [and others

    1997-02-01

    Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G{r_arrow}C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G{r_arrow}T and 2575A{r_arrow}G, probably represent polymorphic variants. In addition, a tandem repeat in the 5{prime} UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene. 23 refs., 5 figs., 3 tabs.

  11. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  12. Epigenetic regulation of cystatins in cancer.

    Science.gov (United States)

    Rivenbark, Ashley G; Coleman, William B

    2009-01-01

    Cystatins function as cysteine protease inhibitors, are expressed in numerous cell types, and regulate a number of physiological processes. Four cystatins have been extensively studied: cystatin A, cystatin B, cystatin C, and cystatin M. Aberrant regulation of cystatins occurs in a number of diseases, including cancer and certain neurodegenerative disorders. Recent advances in the understanding of cystatin function suggest that these proteins may regulate promotion or suppression of tumor growth, invasion, and metastasis. Cancer is a disease of abnormal gene expression and cancer cells exhibit aberrant epigenetic events (such as DNA methylation), leading to gene silencing. Cystatins are epigenetically silenced through DNA methylation-dependent mechanisms in several forms of cancer, including breast, pancreatic, brain, and lung. These findings suggest that DNA methylation-dependent epigenetic mechanisms may play an important role in the loss of cystatin gene expression and protein function during neoplastic transformation and/or tumor progression. This review summarizes the biological processes in which cystatins function, focuses on the neoplastic events that involve aberrant regulation of cystatins, and discusses the possible epigenetic regulation of cystatins in cancer.

  13. Inhibition of invasion and metastasis of MHCC97H cells by expression of snake venom cystatin through reduction of proteinases activity and epithelial-mesenchymal transition.

    Science.gov (United States)

    Tang, Nanhong; Xie, Qun; Wang, Xiaoqian; Li, Xiujin; Chen, Yanlin; Lin, Xu; Lin, Jianyin

    2011-05-01

    Snake venom cystatin (sv-cystatin) is a member of the cystatin family of cysteine protease inhibitors. To further evaluate the possibility of sv-cystatin in cancer therapy, this study examined the effects of sv-cystatin on the invasion and metastasis of liver cancer cells (MHCC97H) in vitro and in vivo as well as the underlying mechanism. sv-cystatin cDNA was transfected into MHCC97H cells and the anti-invasion and antimetastasis effects of sv-cystatin were determined using migration and matrigel invasion assays and a lung-metastasis mice model. The results suggest that sv-cyst clone (sv-cystatin expression in MHCC97H cells) delayed the invasion and metastasis in vitro and in vivo compared to the parental, mock and si-sv-cyst clone cells (inhibited sv-cystatin expression by siRNA). The decreased activities of cathepsin B, MMP-2 and MMP-9 and EMT change index including higher E-cadherin, lower N-cadherin and decreased Twist activity were observed in the sv-cyst clone, which contributes to the change in invasion and metastasis ability of MHCC97H cells. This study provides evidence that expression of the sv-cystatin gene in MHCC97H cells inhibits tumor cell invasion and metastasis through the reduction of the proteinases activity and Epithelial-Mesenchymal Transition (EMT), which might contribute to the anticancer research of the sv-cystatin protein.

  14. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance.

    Science.gov (United States)

    Wang, Yuguang; Zhan, Yanan; Wu, Chuan; Gong, Shilong; Zhu, Ning; Chen, Sixue; Li, Haiying

    2012-08-01

    An open reading frame encoding a cysteine protease inhibitor, cystatin was isolated from the buds of sugar beet monosomic addition line M14 (BvM14) using 5'-/3'-RACE method. It encoded a polypeptide of 104 amino acids with conserved G and PW motifs, the consensus phytocystatin sequence LARFAV and the active site QVVAG. The protein showed significant homology to other plant cystatins. BvM14-cystatin was expressed ubiquitously in roots, stems, leaves and flower tissues with relatively high abundance in developing stems and roots. It was found to be localized in the nucleus, cytoplasm and plasma membrane. Recombinant BvM14-cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Salt-stress treatment induced BvM14-cystatin transcript levels in the M14 seedlings. Homozygous Arabidopsis plants over-expressing BvM14-cystatin showed enhanced salt tolerance. Taken together, these data improved understanding of the functions of BvM14-cystatin and highlighted the possibility of employing the cystatin in engineering plants for enhanced salt tolerance.

  15. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family.

    Science.gov (United States)

    Ibelli, Adriana Mércia Guaratini; Hermance, Meghan M; Kim, Tae Kwon; Gonzalez, Cassandra Lee; Mulenga, Albert

    2013-05-01

    The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick

  16. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    Energy Technology Data Exchange (ETDEWEB)

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  17. Cystatins: biochemical and structural properties, and medical relevance.

    Science.gov (United States)

    Turk, Vito; Stoka, Veronika; Turk, Dusan

    2008-05-01

    The cystatin superfamily comprises a large group of the cystatin domain containing proteins, present in a wide variety of organisms, including humans. Cystatin inhibitory activity is vital for the delicate regulation of normal physiological processes by limiting the potentially highly destructive activity of their target proteases such as the papain (C1) family, including cysteine cathepsins. Some of the cystatins also inhibit the legumain (C13) family of enzymes. Failures in biological mechanisms controlling protease activities result in many diseases such as neurodegeneration, cardiovascular diseases, osteoporosis, arthritis, and cancer. Cystatins have been classified into three types: the stefins, the cystatins and the kininogens, although other cystatin-related proteins, such as CRES proteins, are emerging. The stefins are mainly intracellular proteins, whereas the cystatins and the kininogens are extracellular. The cystatins are tight binding and reversible inhibitors. The basic mechanism of interaction between cystatins and their target proteases has been established, based mainly on the crystal structures of various cathepsins, stefins and cystatins and their enzyme-inhibitor complexes. Cystatins, as rather non-selective inhibitors, discriminate only slightly between endo- and exopeptidases. They are also prone to form amyloids. The levels of some stefins and cystatins in tissue and body fluids can serve as relatively reliable markers for a variety of diseases. In this review we summarize present knowledge about cystatins and their role in some diseases.

  18. Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1.

    Science.gov (United States)

    Bilodeau, Mélanie; MacRae, Tara; Gaboury, Louis; Laverdure, Jean-Philippe; Hardy, Marie-Pierre; Mayotte, Nadine; Paradis, Véronique; Harton, Sébastien; Perreault, Claude; Sauvageau, Guy

    2009-10-19

    The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del(16qB3Delta/+)). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del(16qB3Delta/16qB3Delta)) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del(16qB3Delta/16qB3Delta) animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del(16qB3Delta/16qB3Delta) hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the

  19. Basal expression studies of cystatins during specific growth stages of wheat spikes for defining their possible role in differential and stage dependent immunity against Karnal bunt (Tilletia indica).

    Science.gov (United States)

    Purwar, Shalini; Marla, Soma S; Singh, U S; Kumar, Anil

    2010-03-01

    Two genotypes showing differential immunity against Karnal bunt (Tilletia indica) were used to investigate the role of three members of cystatin gene family in growth stage dependent immunity in wheat (Triticum aestivum L.). Three members of cystatin gene family (WC1, WC2, and WC4) were cloned and sequenced. Analysis of sequenced data showed that there was 76-99% nucleotide and protein sequence identity between different genes of the wheat cystatin. In silico amino acid sequence analysis revealed the presence of a conserved signature pattern of residues and also the functional domains were presumed to be actively involved in imparting cysteine protease inhibition capability. The semi-quantitative and quantitative levels of these members were measured by means of RT-PCR, northern blotting, western blotting, and by ELISA techniques. The members of cystatin gene family were expressed in both resistant (HD 29) and susceptible genotypes (WH 542); however, the expression level was significantly (P 0.05) in contrary to WC1 family whose expression gradually increased from S(v) to S(2) stage. According to the intensity of the detected band in RT PCR, northern blot and western blot, WC1 family seems to be expressed more than the other gene families. The immunoassay results further showed that WC1 protein was abundantly expressed in resistant genotype and high expression was observed at the S2 stage as compared to susceptible genotype (P cystatin gene family in differential and stage dependent immunity against KB.

  20. Molecular cloning and characterization of cystatin, a cysteine protease inhibitor, from bufo melanostictus.

    Science.gov (United States)

    Liu, Wa; Ji, Senlin; Zhang, A-Mei; Han, Qinqin; Feng, Yue; Song, Yuzhu

    2013-01-01

    Cystatins are efficient inhibitors of papain-like cysteine proteinases, and they serve various important physiological functions. In this study, a novel cystatin, Cystatin-X, was cloned from a cDNA library of the skin of Bufo melanostictus. The single nonglycosylated polypeptide chain of Cystatin-X consisted of 102 amino acid residues, including seven cysteines. Evolutionary analysis indicated that Cystatin-X can be grouped with family 1 cystatins. It contains cystatin-conserved motifs known to interact with the active site of cysteine proteinases. Recombinant Cystatin-X expressed and purified from Escherichia coli exhibited obvious inhibitory activity against cathepsin B. rCystatin-X at a concentration of 8 µM inhibited nearly 80% of cathepsin B activity within 15 s, and about 90% of cathepsin B activity within 15 min. The Cystatin-X identified in this study can play an important role in host immunity and in the medical effect of B. melanostictus.

  1. Cystatins--Extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells.

    Science.gov (United States)

    Wallin, Hanna; Bjarnadottir, Maria; Vogel, Lotte K; Wassélius, Johan; Ekström, Ulf; Abrahamson, Magnus

    2010-11-01

    Cystatins are present in mammals, birds, fish, insects, plants, fungi and protozoa and constitute a large protein family, with most members sharing a cysteine protease inhibitory function. In humans 12 functional cystatins exist, forming three groups based on molecular organisation and distribution in the organism. The type 1 cystatins (A and B) are known as intracellular, type 2 cystatins (C, D, E/M, F, G, S, SN and SA) extracellular and type 3 cystatins (L- and H-kininogen) intravascular proteins. The present paper is focused on the human cystatins and especially those of type 2, which are directed (with signal peptides) for cellular export following translation. Results indicating existence of systems for significant internalisation of type 2 cystatins from the extracellular to intracellular compartments are reviewed. Data showing that human neuroblastoma cell lines generally secrete high levels, but also contain high amounts of cystatin C are presented. Culturing of these cells in medium containing cystatin C at concentrations found in body fluids resulted in increased intracellular cystatin C, as a result of an uptake process. At immunofluorescence cytochemistry a pronounced vesicular cystatin C staining was observed. The simplistic denotation of the type 2 cystatins as extracellular inhibitors is thus challenged, and possible biological functions of the internalised cystatins are discussed. To illustrate the special case of high cellular cystatin content seen in cells of patients with hereditary cystatin C amyloid angiopathy, expression vectors for wild-type and L68Q mutated cystatin C were used to transfect SK-N-BE(2) cells. Clones overexpressing the two variants showed increased secreted levels of cystatin C. Within the cells the L68Q variant appeared to mainly localise to the endoplasmic reticulum rather than to acidic vesicular organelles, indicating limitations in the transport out from the cell rather than increased uptake as explanation for the

  2. Skin deposits in hereditary cystatin C amyloidosis

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Blöndal, H; Gudmundsson, G

    1990-01-01

    Clinically normal skin from 47 individuals aged 9-70 years was investigated. Cystatin C amyloid deposits were found in various locations of the skin by light and/or electron microscopy, in all 12 patients with a clinical history of hereditary cystatin C amyloidosis (HCCA). Six asymptomatic...... individuals, who had the Alu 1 restriction fragment length polymorphism (RFLP) marker reported to cosegregate with the disease, also had cystatin C amyloid deposits in the skin. Three asymptomatic individuals (age 17-46) belonging to the HCCA families were without amyloid in the skin but had Alu 1 RFLP marker...

  3. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion.

    Directory of Open Access Journals (Sweden)

    Abhilasha Gupta

    Full Text Available Cell-cell adhesion is paramount in providing and maintaining multicellular structure and signal transmission between cells. In the skin, disruption to desmosomal regulated intercellular connectivity may lead to disorders of keratinization and hyperproliferative disease including cancer. Recently we showed transgenic mice overexpressing desmoglein 2 (Dsg2 in the epidermis develop hyperplasia. Following microarray and gene network analysis, we demonstrate that Dsg2 caused a profound change in the transcriptome of keratinocytes in vivo and altered a number of genes important in epithelial dysplasia including: calcium-binding proteins (S100A8 and S100A9, members of the cyclin protein family, and the cysteine protease inhibitor cystatin A (CSTA. CSTA is deregulated in several skin cancers, including squamous cell carcinomas (SCC and loss of function mutations lead to recessive skin fragility disorders. The microarray results were confirmed by qPCR, immunoblotting, and immunohistochemistry. CSTA was detected at high level throughout the newborn mouse epidermis but dramatically decreased with development and was detected predominantly in the differentiated layers. In human keratinocytes, knockdown of Dsg2 by siRNA or shRNA reduced CSTA expression. Furthermore, siRNA knockdown of CSTA resulted in cytoplasmic localization of Dsg2, perturbed cytokeratin 14 staining and reduced levels of desmoplakin in response to mechanical stretching. Both knockdown of either Dsg2 or CSTA induced loss of cell adhesion in a dispase-based assay and the effect was synergistic. Our findings here offer a novel pathway of CSTA regulation involving Dsg2 and a potential crosstalk between Dsg2 and CSTA that modulates cell adhesion. These results further support the recent human genetic findings that loss of function mutations in the CSTA gene result in skin fragility due to impaired cell-cell adhesion: autosomal-recessive exfoliative ichthyosis or acral peeling skin syndrome.

  4. Identification and partial characterization of a gut Rhipicephalus appendiculatus cystatin.

    Science.gov (United States)

    Imamura, Saiki; Konnai, Satoru; Yamada, Shinji; Parizi, Luís F; Githaka, Naftaly; Vaz, Itabajara da S; Murata, Shiro; Ohashi, Kazuhiko

    2013-02-01

    Vaccines are among the alternative tick control methods expected to replace at least in part the volumes of chemical acaricides currently used worldwide. However, a vaccination approach depends on a host immune response against proteins that are essential to tick physiology. The cystatin family is a protein class recently investigated to compose an effective antigen in a tick vaccine. In this study, a cDNA from Rhipicephalus appendiculatus with high sequence similarity to cystatins type 2 was identified by random sequencing analysis and called R. appendiculatus cystatin 1 (Ra-cyst-1). DNA sequence analysis showed that the cloned Ra-cyst-1 has a 423-bp open reading frame and codified to a 140-amino acid polypeptide. The putative mature protein consists of 115 amino acid residues with a deduced molecular weight of 12.8kDa. The highly conserved G (P-I), QxVxG (P-II), and PW (P-III) type 2 cystatins motifs are present in Ra-cyst-1 cDNA. RT-PCR analysis showed that the Ra-cyst-1 gene is expressed in nymph, male, and female midgut following blood feeding, but not in the salivary glands of fed females. In addition, Western blot revealed that recombinant Ra-cyst-1 was not recognized by sera derived from rabbits infested with ticks, suggesting that this cystatin is not secreted into the host during infestation. We hypothesize that Ra-cyst-1 may play a role in the tick feeding process and could be a concealed antigen candidate in further anti-tick vaccination trials.

  5. The role of cystatins in tick physiology and blood feeding.

    Science.gov (United States)

    Schwarz, Alexandra; Valdés, James J; Kotsyfakis, Michalis

    2012-06-01

    Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.

  6. Cystatins - Extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Wallin, Hanna; Bjarnadottir, Maria; Vogel, Lotte

    2010-01-01

    Cystatins are present in mammals, birds, fish, insects, plants, fungi and protozoa and constitute a large protein family, with most members sharing a cysteine protease inhibitory function. In humans 12 functional cystatins exist, forming three groups based on molecular organisation and distribution...

  7. Pyramiding rice cystatin genes (OCI and OCII) in potato (Solanum tuberosum L cv. Jelica)

    Science.gov (United States)

    One of the major advances being used in current biotechnology to improve disease and pest control is the introduction of more than one beneficial gene into transgenic plants. Proteinase inhibitors oryzacystatins I and II (OCI and OCII) show potential in controlling pests that utilize cysteine prote...

  8. Sequence characterization and immunogenicity of cystatins from the cattle tick Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Parizi, Luís F; Githaka, Naftaly W; Acevedo, Carolina; Benavides, Uruguaysito; Seixas, Adriana; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko; Masuda, Aoi; da Silva Vaz, Itabajara

    2013-12-01

    Various classes of endopeptidases and their inhibitors facilitate blood feeding and digestion in ticks. Cystatins, a family of tight-binding and reversible inhibitors of cysteine endopeptidases, have recently been found in several tick tissues. Moreover, vaccine trials using tick cystatins have been found to induce protective immune responses against tick infestation. However, the mode of action of tick cystatins is still poorly understood, limiting the elucidation of their physiological role. Against this background, we have investigated sequence characteristics and immunogenic properties of 5 putative cystatins from Rhipicephalus (Boophilus) microplus from Brazil and Uruguay. The similarity of the deduced amino acid sequences among cystatins from the Brazilian tick strain was 27-42%, all of which had a secretory signal peptide. The cystatin motif (QxVxG), a glycine in the N-terminal region, and the PW motif in the second hairpin loop in the C-terminal region are highly conserved in all 5 cystatins identified in this study. Four cysteine residues in the C terminus characteristic of type 2 cystatins are also present. qRT-PCR revealed differential expression patterns among the 5 cystatins identified, as well as variation in mRNA transcripts present in egg, larva, gut, salivary glands, ovary, and fat body tissues. One R. microplus cystatin showed 97-100% amino acid similarity between Brazilian and Uruguayan isolates. Furthermore, by in silico analysis, antigenic amino acid regions from R. microplus cystatins showed high degrees of homology (54-92%) among Rhipicephalus spp. cystatins. Three Brazilian R. microplus cystatins were expressed in Escherichia coli, and immunogenicity of the recombinant proteins were determined by vaccinating mice. Western blotting using mice sera indicated cross-reactivity between the cystatins, suggesting shared epitopes. The present characterization of Rhipicephalus spp. cystatins represents an empirical approach in an effort to evaluate

  9. Skin deposits in hereditary cystatin C amyloidosis

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Blöndal, H; Gudmundsson, G

    1990-01-01

    Clinically normal skin from 47 individuals aged 9-70 years was investigated. Cystatin C amyloid deposits were found in various locations of the skin by light and/or electron microscopy, in all 12 patients with a clinical history of hereditary cystatin C amyloidosis (HCCA). Six asymptomatic...... individuals, who had the Alu 1 restriction fragment length polymorphism (RFLP) marker reported to cosegregate with the disease, also had cystatin C amyloid deposits in the skin. Three asymptomatic individuals (age 17-46) belonging to the HCCA families were without amyloid in the skin but had Alu 1 RFLP marker....... Skin from 12 individuals who served as controls and skin from 14 close relatives of the patients was negative for amyloid. Punch biopsy of the skin is a simple procedure which is of value for the diagnosis of HCCA, even before the appearance of clinical symptoms. This method might also be of use...

  10. Gene Cluster Statistics with Gene Families

    Science.gov (United States)

    Durand, Dannie

    2009-01-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such “gene clusters” is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  11. Molecular Cloning and Sequence Analysis on cDNA of Cystatin Gene from Tea Leaves%茶树巯基蛋白酶抑制剂基因的cDNA克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    王朝霞; 李叶云; 江昌俊; 余有本

    2005-01-01

    对多种已知植物巯基蛋白酶抑制剂(cystatin)基因的氨基酸序列进行比对分析,根据其高度保守的氨基酸序列设计一对简并引物,并从茶树品种龙井43鲜叶中提取总RNA,用RT-PCR法扩增出-204 bp的cDNA特异片段,然后通过3'/5'RACE的方法,分别扩增出3'端和5'端的序列,从而获得茶树巯基蛋白酶抑制剂基因的cDNA全长序列,所得序列全长627 bp,编码101个氨基酸,分子量约11.062 KDa.该基因在推测的氨基酸序列中含有巯基蛋白酶抑制剂家族中高度保守的、与其活性有关的QXVXG结构,且经Blast分析表明,该基因序列与其他植物巯基蛋白酶抑制剂基因的氨基酸序列同源性为54%~77%.%Two degenerate primers were designed according to the conserved region among the known plant cystatins. A cDNA fragment of 204 bp was amplified by RT-PCR (reverse transcription polymerase chain reaction)of total RNA extracted from fresh leaves of Tea plant (Camellia sinensis cv Longjing43). A full-length cDNA of the cystatin gene was obtained by 3'/5'RACE (rapid amplification of cDNA ends). The cDNA sequence of this 627 bp clone contained an open reading frame encoding a polypeptide of 101 amino acid residues with a predicable molecular mass of 11.026 KDa. The deduced amino acid sequence contained the motif QXVXG conserved among most members of the cystatin superfamily. By using the program of Blast on GenBank database, the sequence presented a high match with the cystatin genes from other plants, such as European chestnut, Cassava, Cowpea,Tomato, Soybean et al. All researched out sequences were all cystatins, so we can conclude that the cloned sequence is a member of cystatin gene from Tea plant.

  12. C1A cysteine protease-cystatin interactions in leaf senescence.

    Science.gov (United States)

    Díaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; González-Melendi, Pablo; Martínez, Manuel; Díaz, Isabel

    2014-07-01

    Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.

  13. Cloning and characterisation of novel cystatins from elapid snake venom glands.

    Science.gov (United States)

    Richards, Renée; St Pierre, Liam; Trabi, Manuela; Johnson, Lambro A; de Jersey, John; Masci, Paul P; Lavin, Martin F

    2011-04-01

    Snake venoms contain a complex mixture of polypeptides that modulate prey homeostatic mechanisms through highly specific and targeted interactions. In this study we have identified and characterised cystatin-like cysteine-protease inhibitors from elapid snake venoms for the first time. Novel cystatin sequences were cloned from 12 of 13 elapid snake venom glands and the protein was detected, albeit at very low levels, in a total of 22 venoms. One highly conserved isoform, which displayed close sequence identity with family 2 cystatins, was detected in each elapid snake. Crude Austrelaps superbus (Australian lowland copperhead) snake venom inhibited papain, and a recombinant form of A. superbus cystatin inhibited cathepsin L ≅ papain > cathepsin B, with no inhibition observed for calpain or legumain. While snake venom cystatins have truncated N-termini, sequence alignment and structural modelling suggested that the evolutionarily conserved Gly-11 of family 2 cystatins, essential for cysteine protease inhibition, is conserved in snake venom cystatins as Gly-3. This was confirmed by mutagenesis at the Gly-3 site, which increased the dissociation constant for papain by 10(4)-fold. These data demonstrate that elapid snake venom cystatins are novel members of the type 2 family. The widespread, low level expression of type 2 cystatins in snake venom, as well as the presence of only one highly conserved isoform in each species, imply essential housekeeping or regulatory roles for these proteins.

  14. Cystatins as calpain inhibitors: engineered chicken cystatin- and stefin B-kininogen domain 2 hybrids support a cystatin-like mode of interaction with the catalytic subunit of mu-calpain.

    Science.gov (United States)

    Díaz, B G; Gross, S; Assfalg-Machleidt, I; Pfeiler, D; Gollmitzer, N; Gabrijelcic-Geiger, D; Stubbs, M T; Fritz, H; Auerswald, E A; Machleidt, W

    2001-01-01

    Within the cystatin superfamily, only kininogen domain 2 (KD2) is able to inhibit mu- and m-calpain. In an attempt to elucidate the structural requirements of cystatins for calpain inhibition, we constructed recombinant hybrids of human stefin B (an intracellular family 1 cystatin) with KD2 and deltaL110 deletion mutants of chicken cystatin-KD2 hybrids. Substitution of the N-terminal contact region of stefin B by the corresponding KD2 sequence resulted in a calpain inhibitor of Ki = 188 nM. Deletion of L110, which forms a beta-bulge in family 1 and 2 cystatins but is lacking in KD2, improved inhibition of mu-calpain 4- to 8-fold. All engineered cystatins were temporary inhibitors of calpain due to slow substrate-like cleavage of a single peptide bond corresponding to Gly9-Ala10 in chicken cystatin. Biomolecular interaction analysis revealed that, unlike calpastatin, the cystatin-type inhibitors do not bind to the calmodulin-like domain of the small subunit of calpain, and their interaction with the mu-calpain heterodimer is completely prevented by a synthetic peptide comprising subdomain B of calpastatin domain 1. Based on these results we propose that (i) cystatin-type calpain inhibitors interact with the active site of the catalytic domain of calpain in a similar cystatin-like mode as with papain and (ii) the potential for calpain inhibition is due to specific subsites within the papain-binding regions of the general cystatin fold.

  15. The Insect SNMP Gene Family

    Science.gov (United States)

    2009-01-01

    B 1 ( b o v ) Clade 3 - SNMPs Clade 2 Clade 1 CD36 Insect (Holometabola) CD36 Gene family Holometabola Phylogeny (11 Orders) Tribolium castaneum...melanogaster genes (see Nichols and Vogt, 2008). Bootstrap support (1000 replicates) is indicated for the major clades. B. Phylogeny of holometabolous...A. aegypti eggs were graciously provided by Mark Brown (University of Georgia, Department of Entomology) and raised on a larval diet (pond fish food

  16. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties.

    Science.gov (United States)

    Martínez, M; López-Solanilla, E; Rodríguez-Palenzuela, P; Carbonero, P; Díaz, I

    2003-10-01

    The recombinant barley cystatin Hv-CPI inhibited the growth of three phytopathogenic fungi (Botrytis cinerea, Colletotrichum graminicola, and Plectosphaerella cucumerina) and the saprotrophic fungus Trichoderma viride. Several mutants of barley cystatin were generated by polymerase chain reaction approaches and both their antifungal and their cysteine-proteinase inhibitory properties investigated. Point mutants R38-->G, Q63-->L, and Q63-->P diminished their capacity for inhibiting papain and cathepsin B, retaining their antifungal properties. However, mutant C68-->G was more active for papain and cathepsin B than the wild type. These results indicate that in addition to the consensus cystatin-reactive site, Q63-V64-V65-A66-G67, the A37-R38-F39-A40-V41 region, common to all cereal cystatins, and the C68 residue are important for barley cystatin activity. On the other hand, the K92-->P mutant is inactive as a fungicide, but still retains measurable inhibitory activity for papain and cathepsin B. Against B. cinerea, the antifungal effect of Hv-CPI and of its derived mutants does not always correlate with their activities as proteinase inhibitors, because the Q63-->P mutant is inactive as a cystatin, while still inhibiting fungal growth, and the K92-->P mutant shows the reciprocal effects. These data indicate that inhibition of plant-pathogenic fungi by barley cystatin is not associated with its cysteine-proteinase inhibitory activity. Moreover, these results are corroborated by the absence of inhibition of intra- and extramycelia-proteinase activities by barley cystatin and by other well-known inhibitors of cysteine-proteinase activity in the fungal zymograms of B. cinerea.

  17. Cathepsins and cystatin C in atherosclerosis and obesity.

    Science.gov (United States)

    Lafarge, Jean-Charles; Naour, Nadia; Clément, Karine; Guerre-Millo, Michèle

    2010-11-01

    Given the increasing prevalence of human obesity worldwide, there is an urgent need for a better understanding of the molecular mechanisms linking obesity to metabolic and cardiovascular diseases. Our knowledge is nevertheless limited regarding molecules linking adipose tissue to downstream complications. The importance of cathepsins was brought to light in this context. Through a large scale transcriptomic analysis, our group recently identified the gene encoding cathepsin S as one of the most deregulated gene in the adipose tissue of obese subjects and positively correlated with body mass index. Other members of the cathepsin family are expressed in the adipose tissue, including cathepsin K and cathepsin L. Given their implication in atherogenesis, these proteases could participate into the well established deleterious relationship between enlarged adipose tissue and increased cardiovascular risk. Here, we review the clinical and experimental evidence relevant to the role of cathepsins K, L and S and their most abundant endogenous inhibitor, cystatin C, in atherosclerosis and in obesity.

  18. Comparative analysis of cystatin superfamily in platyhelminths.

    Directory of Open Access Journals (Sweden)

    Aijiang Guo

    Full Text Available The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW, a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.

  19. Comparative analysis of cystatin superfamily in platyhelminths.

    Science.gov (United States)

    Guo, Aijiang

    2015-01-01

    The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.

  20. The plant ADH gene family.

    Science.gov (United States)

    Strommer, Judith

    2011-04-01

    The structures, evolution and functions of alcohol dehydrogenase gene families and their products have been scrutinized for half a century. Our understanding of the enzyme structure and catalytic activity of plant alcohol dehydrogenase (ADH-P) is based on the vast amount of information available for its animal counterpart. The probable origins of the enzyme from a simple β-coil and eventual emergence from a glutathione-dependent formaldehyde dehydrogenase have been well described. There is compelling evidence that the small ADH gene families found in plants today are the survivors of multiple rounds of gene expansion and contraction. To the probable original function of their products in the terminal reaction of anaerobic fermentation have been added roles in yeast-like aerobic fermentation and the production of characteristic scents that act to attract animals that serve as pollinators or agents of seed dispersal and to protect against herbivores.

  1. Biological variation of cystatin C

    DEFF Research Database (Denmark)

    Reinhard, Mark; Erlandsen, Erland; Randers, Else

    2009-01-01

    Introduction: Cystatin C has been investigated as a marker of the glomerular filtration rate. However, previous studies have reported conflicting results concerning the biological variation of cystatin C. The aim of the present study was to evaluate the biological variation of cystatin C...... available for analysis. Serum cystatin C was measured using Dade Behring N Latex Cystatin C assay and serum creatinine by an enzymatic method (Roche). Results: The mean serum concentration of cystatin C was 0.70 mg/l (range 0.44-1.09) and the mean serum creatinine was 77 µmol/l (range 54......-100). The analytical variance (CVA) was 2.0% for cystatin C and 1.6% for creatinine. The intra-individual variance (CVI) was greater for cystatin C than for creatinine (8.6% vs. 4.7%). The inter-individual variance (CVG) was similar for both analytes (cystatin C 15.1% vs. creatinine 14.4%). Accordingly, the index...

  2. A physiologically regulated multidomain cystatin of wheat shows stage-dependent immunity against Karnal Bunt (Tilletia indica).

    Science.gov (United States)

    Purwar, Shalini; Sundaram, Shanthy; Verma, Praveen; Srivastava, Shaili; Kumar, Anil

    2012-12-01

    To identify novel components of basal resistance against the Tellitia indica of wheat, breeding for disease resistance was carried out on resistant and susceptible genotype of Karnal Bunt. The different members of wheat cystatin gene families were cloned, and their role in triggering differential resistance through co-expression was analyzed in our lab. The multidomain wheat cystatin (WCM) is a proteinase inhibitor characterized by cloning the gene from susceptible (WH542) and resistant genotype (HD 29). A WCM cDNA was isolated from both genotypes and sequenced. The WCM had a highly conserved N-terminal cystatin domain and a long C-terminal extension containing a second region, which exhibited similarity to the cystatin domain. The expression level was significantly (P > 0.001) higher in resistant compared to susceptible genotype at all the physiological stages of wheat spikes. In order to characterize the biochemical properties of WCM, the coding sequence was expressed in Escherichia coli using pET expression vector. The recombinant WCM was purified from soluble fraction of the cell extract by using affinity chromatography. WCM, with 23 KDa molecular mass, showed cysteine proteinase inhibitory activity against papain (Ki 3.039 × 10(-7) M) as determined by using BAPNA as substrate. Furthermore, it was able to arrest the fungal mycelial growth of T. indica. Hyphae growth was inhibited, and morphological changes such as swelling and fragmentation of the fungus were observed. Overall, these observations suggest an endogenous high expression of cystatin, possibly associated with the resistance of wheat against Karnal bunt.

  3. Cloning, expression and characterisation of a type II cystatin from Schistosoma japonicum, which could regulate macrophage activation.

    Science.gov (United States)

    Yang, Xiao; Liu, Ju; Yue, Yuan; Chen, Wei; Song, Man; Zhan, Ximei; Wu, Zhongkai

    2014-11-01

    Cystatin play an important role in parasite immune evasion. It is involved in many immune responses processes regulations such as inhibiting antigen presentation, modifying cytokines production and macrophage polarization. In recent years, more and more cystatins were used in treating some inflammatory diseases such as asthma and inflammation bowel diseases; however, cystatins from Schistosoma japonicum were rarely studied. In the present study, we have cloned a cystatin from the adult stage of Schistosoma japonicum, named as SjCystatin, and its sequence shares conserved domains with other type II family cystatins. It was further verified by enzyme inhibition assays. SjCystatin retained its inhibitory activity under a wide range of pH values and temperatures, can maintain its inhibitory activity at pH 6.5-7.5 and 37 °C, respectively. Then, we investigated the effects of SjCystatin on the lipopolysaccharide (LPS)-induced activated RAW264.7. Results showed that SjCystatin inhibit LPS-induced nitric oxide production in a dose-dependent manner. LPS-induced TNF-α and IL-6 production began to be inhibited at least 6 h after SjCystatin stimulation. SjCystatin significantly increased IL-10 production at 6 h after stimulation and its effect on IL-10 production diminished quickly. These results imply that SjCystatin can induce M2 macrophage polarization and can be expected to serve as a potential drug source for the medication of inflammatory disorders like other cystatins.

  4. Cystatin F regulates proteinase activity in IL-2-activated natural killer cells.

    Science.gov (United States)

    Maher, Katarina; Konjar, Spela; Watts, Colin; Turk, Boris; Kopitar-Jerala, Natasa

    2014-01-01

    Cystatin F is a unique member of the cystatin family of cysteine protease inhibitors, which is synthesized as an inactive dimer and it is activated by N-terminal cleavage in the endolysosomes. It is expressed in the cells of the immune system: myeloid cells and the cells involved in target cell killing: natural killer (NK) cells and cytotoxic T cells (CTLs). Upon activation of the NK cells with interleukin 2 (IL-2), cystatin F was found upregulated and co-localized in cytotoxic granules with cathepsin C (CatC) and CatV. However, cystatin F inhibits the CatC in cells only when its N-terminal part is processed. Although cystatin F could inhibit both CatV and CatC, the IL-2 stimulation of the YT cells resulted in an increased CatV activity, while the CatC activity was unchanged. The incubation of IL-2 activated NK cells with a cysteine proteinase inhibitor E-64d increased the cystatin F dimer formation. Our results suggest that cystatin F not only inhibits CatV, but it is processed by the CatV in order to inhibit the CatC activity in cytotoxic granules. The regulation of the CatC activity in the cytotoxic granules of the NK cells by the cystatin F could be important for the processing and activation of granule-associated serine proteases - granzymes.

  5. Microglial cystatin F expression is a sensitive indicator for ongoing demyelination with concurrent remyelination.

    Science.gov (United States)

    Ma, Jianmei; Tanaka, Kenji F; Shimizu, Takahiro; Bernard, Claude C A; Kakita, Akiyoshi; Takahashi, Hitoshi; Pfeiffer, Steven E; Ikenaka, Kazuhiro

    2011-05-01

    Demyelination coincides with numerous changes of gene expression in the central nervous system (CNS). Cystatin F, which is a papain-like lysosomal cysteine proteinase inhibitor that is normally expressed by immune cells and not in the brain, is massively induced in the CNS during acute demyelination. We found that microglia, which are monocyte/macrophage-lineage cells in the CNS, express cystatin F only during demyelination. By using several demyelinating animal models and the spinal cord tissues from multiple sclerosis (MS) patients, we examined spatiotemporal expression pattern of cystatin F by in situ hybridization and immunohistochemistry. We found that the timing of cystatin F induction matches with ongoing demyelination, and the places with cystatin F expression overlapped with the remyelinating area. Most interestingly, cystatin F induction ceased in chronic demyelination, in which remyelinating ability was lost. These findings demonstrate that the expression of cystatin F indicates the occurrence of ongoing demyelination/remyelination and the absence of cystatin F expression indicates the cessation of remyelination in the demyelinating area.

  6. Cystatin C is downregulated in prostate cancer and modulates invasion of prostate cancer cells via MAPK/Erk and androgen receptor pathways.

    Directory of Open Access Journals (Sweden)

    Barbara Wegiel

    Full Text Available Cystatin C is believed to prevent tumor progression by inhibiting the activities of a family of lysosomal cysteine proteases. However, little is known about the precise mechanism of cystatin C function in prostate cancer. In the present study, we examined the expression of cystatin C and its association with matrix metalloproteinases 2 (MMP2 and androgen receptor (AR in a tissue microarray comparing benign and malignant specimens from 448 patients who underwent radical prostatectomy for localized prostate cancer. Cystatin C expression was significantly lower in cancer specimens than in benign tissues (p<0.001 and there was a statistically significant inverse correlation between expression of cystatin C and MMP2 (r(s (2 = -0.056, p = 0.05. There was a clear trend that patients with decreased level of cystatin C had lower overall survival. Targeted inhibition of cystatin C using specific siRNA resulted in an increased invasiveness of PC3 cells, whereas induction of cystatin C overexpression greatly reduced invasion rate of PC3 in vitro. The effect of cystatin C on modulating the PC3 cell invasion was provoked by Erk2 inhibitor that specifically inhibited MAPK/Erk2 activity. This suggests that cystatin C may mediate tumor cell invasion by modulating the activity of MAPK/Erk cascades. Consistent with our immunohistochemical findings that patients with low expression of cystatin C and high expression of androgen receptor (AR tend to have worse overall survival than patients with high expression of cystatin C and high AR expression, induced overexpression of AR in PC3 cells expressing cystatin C siRNA greatly enhanced the invasiveness of PC3 cells. This suggests that there may be a crosstalk between cystatin C and AR-mediated pathways. Our study uncovers a novel role for cystatin C and its associated cellular pathways in prostate cancer invasion and metastasis.

  7. Phenotypic performance of transgenic potato (Solanum tuberosum L.) plants with pyramided rice cystatin genes (OCI and OCII)

    Science.gov (United States)

    The evaluation of transgenic plants commonly carried out under controlled conditions in culture rooms and greenhouses can give valuable information about the influence of introduced genes on transgenic plant phenotype. However, an overall assessment of plant performance can only be made by testing t...

  8. The evolution of mammalian gene families.

    Directory of Open Access Journals (Sweden)

    Jeffery P Demuth

    Full Text Available Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic "revolving door" of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives.

  9. Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1).

    Science.gov (United States)

    Yang, A H; Yeh, K W

    2005-06-01

    A cDNA clone, designated CeCPI, encoding a novel phytocystatin was isolated from taro corms (Colocasia esculenta) using both degenerated primers/RT-PCR amplification and 5'-/3'-RACE extension. The full-length cDNA gene is 1,008 bp in size, encodes 206 amino acid residues, with a deduced molecular weight of 29 kDa. It contains a conserved reactive site motif Gln-Val-Val-Ser-Gly of cysteine protease inhibitors, and another consensus ARFAV sequence for phytocystatin. Sequence analysis revealed that CeCPI is phylogenetically closely related to Eudicots rather than to Monocots, despite taro belonging to Monocot. Recombinant GST-CeCPI fusion protein was overexpressed in Escherichia coli and its inhibitory activity against papain was identified on gelatin/SDS-PAGE. These results confirmed that recombinant CeCPI protein exhibited strong cysteine protease inhibitory activity. Investigation of its antifungal activity clearly revealed a toxic effect on the mycelium growth of phytopathogenic fungi, such as Sclerotium rolfsii Sacc. etc., at a concentration of 80 microg recombinant CeCPI/ ml. Moreover, mycelium growth was completely inhibited and the sclerotia lysed at a concentration of 150-200 microg/ml. Further studies have demonstrated that recombinant CeCPI is capable of acting against the endogenous cysteine proteinase in the fungal mycelium.

  10. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    Full Text Available In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system.

  11. Evolution of the mammalian lysozyme gene family

    Directory of Open Access Journals (Sweden)

    Biegel Jason M

    2011-06-01

    Full Text Available Abstract Background Lysozyme c (chicken-type lysozyme has an important role in host defense, and has been extensively studied as a model in molecular biology, enzymology, protein chemistry, and crystallography. Traditionally, lysozyme c has been considered to be part of a small family that includes genes for two other proteins, lactalbumin, which is found only in mammals, and calcium-binding lysozyme, which is found in only a few species of birds and mammals. More recently, additional testes-expressed members of this family have been identified in human and mouse, suggesting that the mammalian lysozyme gene family is larger than previously known. Results Here we characterize the extent and diversity of the lysozyme gene family in the genomes of phylogenetically diverse mammals, and show that this family contains at least eight different genes that likely duplicated prior to the diversification of extant mammals. These duplicated genes have largely been maintained, both in intron-exon structure and in genomic context, throughout mammalian evolution. Conclusions The mammalian lysozyme gene family is much larger than previously appreciated and consists of at least eight distinct genes scattered around the genome. Since the lysozyme c and lactalbumin proteins have acquired very different functions during evolution, it is likely that many of the other members of the lysozyme-like family will also have diverse and unexpected biological properties.

  12. Review: The future of cystatin engineering.

    Science.gov (United States)

    van Wyk, Stefan G; Kunert, Karl J; Cullis, Christopher A; Pillay, Priyen; Makgopa, Matome E; Schlüter, Urte; Vorster, Barend J

    2016-05-01

    Plant cystatins are naturally occurring protease inhibitors that prevent proteolysis by papain-like cysteine proteases. Their protective action against environmental stresses has been relatively well characterised. Still, there is a need to greatly improve both potency and specificity based on the current rather poor performance of cystatins in biotechnological applications. Research in creating more potent and specific cystatins, including amino acid substitutions in either conserved cystatin motifs and/or at variable amino acid sites, is reviewed. Existing gaps for better understanding of cystatin-protease interactions are further explored. Current knowledge on multi-cystatins or hybrid protease inhibitors involving cystatins as an additional option for cystatin engineering is further outlined along with the nuances of how cystatins with rather unusual amino acid sequences might actually help in cystatin engineering. Finally, future opportunities for application of cystatins are highlighted which include applications in genetically modified transgenic plants for environmental stress protection and also as nutraceuticals, as part of more nutritious food. Further opportunities might also include the possible management of diseases and disorders, often associated with lifestyle changes, and the most immediate and promising application which is inclusion into plant-based recombinant protein production platforms.

  13. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2013-01-01

    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  14. Posttranslational Processing and Modification of Cathepsins and Cystatins

    Directory of Open Access Journals (Sweden)

    Nobuhiko Katunuma

    2010-01-01

    Full Text Available Cathepsins are an essential protease family in all living cells. The cathepsins play an essential roles such as protein catabolism and protein synthesis. To targeting to various organella and to regulate their activity, the post translational-processing and modification play an important role Cathepsins are translated in polysome as the pre-pro-mature forms. The pre-peptide is removed cotranslationally and then translocated to Golgi-apparatus and the pro-part is removed and the mature-part is glycosylated, and the mature-part is targeted into the lysosome mediated by mannose-6-phosphate signal and the mature-part is bound with their coenzymes. The degradation of the mature-part is started by the limited proteolysis of the ordered nicked bonds to make hydrophobic peptides. The peptides are incorporated into phagosome or proteasome after ubiquitinated and are degrade into amino-acids. Cystatins are endogenous inhibitors of cathepsins. Cystatin α which is only located in skin is phosphorylated at the near C-terminus by protein kinase-C, and the phosphorylate-cystatin α is incorporated into cornified envelope and conjugated with filaggrin-fiber by transglutaminase to form the linker-fiber of skin. The cystatin α is modified by glutathione or make their dimmer, and they are inactive. Those modifications are regulated by the redox-potential by the glutathione.

  15. Cysteine proteinases and cystatins

    Directory of Open Access Journals (Sweden)

    Adeliana S. Oliveira

    2003-01-01

    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  16. Evolution of the Vertebrate Resistin Gene Family.

    Science.gov (United States)

    Hu, Qingda; Tan, Huanran; Irwin, David M

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.

  17. Evolution of the Vertebrate Resistin Gene Family.

    Directory of Open Access Journals (Sweden)

    Qingda Hu

    Full Text Available Resistin (encoded by Retn was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish, but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions.

  18. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  19. Protease gene families in Populus and Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jansson Stefan

    2006-12-01

    Full Text Available Abstract Background Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Results We have performed a comparative analysis of protease genes in the two sequenced dicot genomes, Arabidopsis thaliana and Populus trichocarpa by using genes coding for proteases in the MEROPS database 1 for Arabidopsis to identify homologous sequences in Populus. A multigene-based phylogenetic analysis was performed. Most protease families were found to be larger in Populus than in Arabidopsis, reflecting recent genome duplication. Detailed studies on e.g. the DegP, Clp, FtsH, Lon, rhomboid and papain-Like protease families showed the pattern of gene family expansion and gene loss was complex. We finally show that different Populus tissues express unique suites of protease genes and that the mRNA levels of different classes of proteases change along a developmental gradient. Conclusion Recent gene family expansion and contractions have made the Arabidopsis and Populus complements of proteases different and this, together with expression patterns, gives indications about the roles of the individual gene products or groups of proteases.

  20. The Popeye domain-containing gene family.

    Science.gov (United States)

    Brand, Thomas

    2005-01-01

    The Popeye domain-containing gene family has been isolated on the basis of a subtractive screen aiming at the identification of novel genes with a heart-restricted gene expression pattern. The gene family codes for membrane proteins containing three transmembrane domains. The carboxy-terminal part of the protein is localized to the cytoplasm and contains a protein domain with high sequence conservation named the Popeye domain. This domain is involved in protein homo dimerization. The gene family is expressed in heart and skeletal muscle cells as well as smooth muscle cells. In addition, Popdc genes are expressed in other cell types such as neuronal cells in restricted areas of the brain, spinal cord, and dorsal root ganglia, and in various epithelial cells. Recently, it has been proposed that Popdc proteins may function as a novel family of adhesion proteins. That the expression pattern has been conserved during evolution and is very similar in all vertebrate classes and also in basal chordates suggests that Popdc proteins play an important role in cardiac and skeletal muscle.

  1. Recombinant adenovirus snake venom cystatin inhibits the growth, invasion, and metastasis of B16F10 cells in vitro and in vivo.

    Science.gov (United States)

    Xie, Qun; Tang, Nanhong; Lin, Yangyuan; Wang, Xiaoqian; Lin, Xu; Lin, Jianyin

    2013-12-01

    Previous studies have shown that transfection of the snake venom cystatin (sv-cystatin) gene can inhibit the invasion and metastasis of tumor cells. The aim of this study was to investigate the pharmaceutical applications of sv-cystatin in melanoma gene therapy. We constructed a recombinant adenovirus carrying sv-cystatin (Ad/sv-cystatin) and a control virus (Ad/null). Matrigel assays were used to assess melanoma cell migration and invasiveness in vitro. The antimelanoma effects of Ad/sv-cystatin were assessed in a syngeneic mouse model with an experimental lung colonization assay. Ad/sv-cystatin significantly inhibited the invasion and growth of B16F10 cells in vitro compared with control and Ad/null. Ad/sv-cystatin significantly inhibited experimental lung colonization in C57BL/6 mice as compared with that in control (Pcystatin slowed the increase in lung weight in C57BL/6 mice as compared with that in control mice (Pcystatin suppresses mouse melanoma invasion, metastasis, and growth in vitro and in vivo. Our findings provide support for the further examination of the pharmaceutical applications of Ad/sv-cystatin.

  2. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  3. Reg gene family and human diseases

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Zhang; Liu-Song Ding; Mao-De Lai

    2003-01-01

    Regenerating gene (Reg or REG) family, within the superfamily of C-type lectin, is mainly involved in the liver,pancreatic, gastric and intestinal cell proliferation or differentiation. Considerable attention has focused on Reg family and its structurally related molecules. Over the last 15 years, 17 members of the Reg family have been cloned and sequenced. They have been considered as members of a conserved protein family sharing structural and some functional properties being involved in injury, inflammation,diabetes and carcinogenesis. We previously identified Reg Ⅳ as a strong candidate for a gene that was highly expressed in colorectal adenoma when compared to normal mucosa based on suppression subtractive hybridization (SSH),reverse Northern blot, semi-quantitative reverse transcriptase PCR (RT-PCR)and Northern blot. In situ hybridization results further support that overexpression of Reg Ⅳ may be an early event in colorectal carcinogenesis. We suggest that detection of Reg Ⅳ overexpression might be useful in the early diagnosis of carcinomatous transformation of adenoma.This review summarizes the roles of Reg family in diseases in the literature as well as our recent results of Reg Ⅳ in colorectal cancer. The biological properties of Reg family and its possible roles in human diseases are discussed. We particularly focus on the roles of Reg family as sensitive reactants of tissue injury, prognostic indicators of tumor survival and early biomarkers of carcinogenesis. In addition to our current understanding of Reg gene functions, we postulate that there might be relationships between Reg family and microsatellite instability, apoptosis and cancer with a poor prognosis. Investigation of the correlation between tumor Reg expression and survival rate, and analysis of the Reg gene status in human maliganancies, are required to elucidate the biologic consequences of Reg gene expression, the implications for Reg gene regulation of cell growth, tumorigenesis

  4. Secretion and processing of a novel multi-domain cystatin-like protein by intracellular stages of Trichinella spiralis.

    Science.gov (United States)

    Robinson, Mark W; Massie, Diane H; Connolly, Bernadette

    2007-01-01

    The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.

  5. The glutamine synthetase gene family in Populus

    Directory of Open Access Journals (Sweden)

    Cánovas Francisco M

    2011-08-01

    Full Text Available Abstract Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1 and 1 which codes for the choroplastic GS isoform (GS2. Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types.

  6. The maize cystatin CC9 interacts with apoplastic cysteine proteases.

    Science.gov (United States)

    van der Linde, Karina; Mueller, André N; Hemetsberger, Christoph; Kashani, Farnusch; van der Hoorn, Renier A L; Doehlemann, Gunther

    2012-11-01

    In a recent study we identified corn cystain9 (CC9) as a novel compatibility factor for the interaction of the biotrophic smut fungus Ustilago maydis with its host plant maize. CC9 is transcriptionally induced during the compatible interaction with U. maydis and localizes in the maize apoplast where it inhibits apoplastic papain-like cysteine proteases. The proteases are activated during incompatible interaction and salicylic acid (SA) treatment and, in turn, are sufficient to induce SA signaling including PR-gene expression. Therefore the inhibition of apoplastic papain-like cysteine proteases by CC9 is essential to suppress host immunity during U. maydis infection. Here were present new experimental data on the cysteine protease-cystatin interaction and provide an in silco analysis of plant cystatins and the identified apoplastic cysteine proteases.

  7. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  8. Cystatin protease inhibitors and immune functions.

    Science.gov (United States)

    Zavasnik-Bergant, Tina

    2008-05-01

    Cystatins are natural tight-binding reversible inhibitors of cysteine proteases. They are wide spread in all living organisms (mammals, nematodes, arthropods etc.) and are involved in various biological processes where they regulate normal proteolysis and also take part in disease pathology. Many cystatins show changes in expression and/or localization, as well as changes in secretion, following certain stimuli acting on immune cells. In immune cells, cystatins interfere with antigen processing and presentation, phagocytosis, expression of cytokines and nitric oxide and these ways modify the immune response. Further, it has been suggested that cystatin-type molecules secreted from parasites down-modulate the host immune response. Precise understanding of the regulatory roles on proteolytic enzymes of endogenous and exogenous cystatins, such as those from parasites, will provide us with valuable insight into how immune response could be modulated to treat a specific disease. This review covers some specific functions of individual cystatins, with a particular focus on the relevance of cystatins to the immune response.

  9. Identification of full-sized forms of salivary (S-type) cystatins (cystatin SN, cystatin SA, cystatin S, and two phosphorylated forms of cystatin S) in human whole saliva and determination of phosphorylation sites of cystatin S

    National Research Council Canada - National Science Library

    Isemura, S; Saitoh, E; Sanada, K; Minakata, K

    1991-01-01

    .... In the present study, attempts were made to isolate full-sized S-type cystatins by introducing methanol fractionation into the purification steps to suppress the enzymatic activity present in saliva...

  10. Tumor suppressor genes in familial adenomatous polyposis.

    Science.gov (United States)

    Eshghifar, Nahal; Farrokhi, Naser; Naji, Tahereh; Zali, Mohammadreza

    2017-01-01

    Colorectal cancer (CRC) is mostly due to a series of genetic alterations that are being greatly under the influence of the environmental factors. These changes, mutational or epigenetic modifications at transcriptional forefront and/or post-transcriptional effects via miRNAs, include inactivation and the conversion of proto-oncogene to oncogenes, and/or inactivation of tumor suppressor genes (TSG). Here, a thorough review was carried out on the role of TSGs with the focus on the APC as the master regulator, mutated genes and mal-/dysfunctional pathways that lead to one type of hereditary form of the CRC; namely familial adenomatous polyposis (FAP). This review provides a venue towards defining candidate genes that can be used as new PCR-based markers for early diagnosis of FAP. In addition to diagnosis, defining the modes of genetic alterations will open door towards genome editing to either suppress the disease or reduce its progression during the course of action.

  11. In silico analysis of sequential, structural and functional diversity of wheat cystatins and its implication in plant defense.

    Science.gov (United States)

    Dutt, Shriparna; Singh, V K; Marla, Soma S; Kumar, Anil

    2010-03-01

    Phytocystatins constitute a multigene family that regulates the activity of endogenous and/or exogenous cysteine proteinases. Cereal crops like wheat are continuously threatened by a multitude of pathogens, therefore cystatins offer to play a pivotal role in deciding the plant response. In order to study the need of having diverse specificities and activities of various cystatins, we conducted comparative analysis of six wheat cystatins (WCs) with twelve rice, seven barley, one sorghum and ten corn cystatin sequences employing different bioinformatics tools. The obtained results identified highly conserved signature sequences in all the cystatins considered. Several other motifs were also identified, based on which the sequences could be categorized into groups in congruence with the phylogenetic clustering. Homology modeling of WCs revealed 3D structural topology so well shared by other cystatins. Protein-protein interaction of WCs with papain supported the notion that functional diversity is a con-sequence of existing differences in amino acid residues in highly conserved as well as relatively less conserved motifs. Thus there is a significant conservation at the sequential and structural levels; however, concomitant variations maintain the functional diversity in this protein family, which constantly modulates itself to reciprocate the diversity while counteracting the cysteine proteinases.

  12. Discrimination of differentially inhibited cysteine proteases by activity-based profiling using cystatin variants with tailored specificities.

    Science.gov (United States)

    Sainsbury, Frank; Rhéaume, Ann-Julie; Goulet, Marie-Claire; Vorster, Juan; Michaud, Dominique

    2012-12-01

    Recent research has shown the possibility of tailoring the inhibitory specificity of plant cystatins toward cysteine (Cys) proteases by single mutations at positively selected amino acid sites. Here we devised a cystatin activity-based profiling approach to assess the impact of such mutations at the proteome scale using single variants of tomato cystatin SlCYS8 and digestive Cys proteases of the herbivorous insect, Colorado potato beetle, as a model. Biotinylated forms of SlCYS8 and SlCYS8 variants were used to capture susceptible Cys proteases in insect midgut protein extracts by biotin immobilization on avidin-embedded beads. A quantitative LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profile of different SlCYS8 variants. The approach confirmed the relevance of phylogenetic inferences categorizing the insect digestive Cys proteases into six functionally distinct families. It also revealed significant variation in protease family profiles captured with N-terminal variants of SlCYS8, in line with in silico structural models for Cys protease-SlCYS8 interactions suggesting a functional role for the N-terminal region. Our data confirm overall the usefulness of cystatin activity-based protease profiling for the monitoring of Cys protease-inhibitor interactions in complex biological systems. They also illustrate the potential of biotinylated cystatins to identify recombinant cystatin candidates for the inactivation of specific Cys protease targets.

  13. Molecular and functional characterization of a cystatin analogue in large yellow croaker (Pseudosciaena crocea).

    Science.gov (United States)

    Li, Shuying; Ao, Jingqun; Chen, Xinhua

    2009-05-01

    The cDNA of a cystatin analogue was isolated from the spleen Smart cDNA library of large yellow croaker Pseudosciaena crocea (Lyccys). The open reading frame (ORF) of 354 nucleotides (nt) of Lyccys encodes a protein of 118 amino acids (aa), containing a 21-aa signal peptide and a 97-aa mature polypeptide. The deduced Lyccys possessed structural features of the Family II cystatins, including three evolutionally conserved motifs known to interact with the active sites of cysteine peptidases: Gly at the N-terminus (Gly(25)), Gln-X-Val-X-Gly motif (Q(69)LVAG(73)) and Pro-Try pair at the C-terminus (P(106)W(107)). Genomic analysis revealed that Lyccys gene, spanning 2297 nt, consisted of three exons and two introns. The Lyccys gene was constitutively expressed in all eight tissues examined although at different levels. Real-time PCR analysis revealed that Lyccys transcript in spleen and kidney was obviously up-regulated by poly(I:C) or inactivated trivalent bacterial vaccine, while in blood its expression was down-regulated. Immuno-electron microscopy showed that Lyccys was mainly localized to the rough endoplasmic reticulum (rER) or in the vesicular structures in spleen and kidney cells. Recombinant Lyccys protein fused with glutathione S-transferase (rLyccys) was shown to have remarkable protease-inhibitory activity and well affinity binding to papain (with a K(i) of 1.3x10(-13) M). An in vivo administration of rLyccys could significantly up-regulate the expression levels of large yellow croaker tumor necrosis factor-alpha2 (TNF-alpha2) and interleukin-10 in spleen and kidney, but to a lesser extent increase TNF-alpha1 expression. These results suggest that the Lyccys is a secreted inhibitor of cysteine proteinases, which may have an immunomodulatory function in inflammation response.

  14. Expression and purification of soluble porcine cystatin 11 in Pichia pastoris.

    Science.gov (United States)

    Fan, Kuohai; Jiang, Junbing; Wang, Zhirui; Fan, Ruicheng; Yin, Wei; Sun, Yaogui; Li, Hongquan

    2014-11-01

    Cystatin 11 (CST11) belongs to the cystatin type 2 family of cysteine protease inhibitors and exhibits antimicrobial activity in vitro. In this study, we describe the expression and purification of recombinant porcine CST11 in the Pichia pastoris system. We then assess its antimicrobial activity against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis by liquid growth inhibition assay. Kinetic studies indicate that the recombinant porcine CST11 has high potency against E. coli and S. aureus. Scanning electronic microscope analysis showed that CST11 might be targeting the bacterial membrane and, thus, could potentially be developed as a therapeutic agent for inhibiting microbe infection without the risk of antibiotic resistance.

  15. The Pax gene family: Highlights from cephalopods

    Science.gov (United States)

    Baratte, Sébastien; Andouche, Aude; Bonnaud-Ponticelli, Laure

    2017-01-01

    Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases. The existence of six Pax families (Pax1/9, Pax2/5/8, Pax3/7, Pax4/6, Paxβ, PoxNeuro) was confirmed and the lophotrochozoan Paxβ subfamily was further characterized. Contrary to the pattern reported in chordates, the Pax2/5/8 family is devoid of homeodomain in Lophotrochozoa. Expression patterns of the three main pax classes (pax2/5/8, pax3/7, pax4/6) during Sepia officinalis development showed that Pax roles taken as ancestral and common in metazoans are modified in S. officinalis, most likely due to either the morphological specificities of cephalopods or to their direct development. Some expected expression patterns were missing (e.g. pax6 in the developing retina), and some expressions in unexpected tissues have been found (e.g. pax2/5/8 in dermal tissue and in gills). This study underlines the diversity and functional plasticity of Pax genes and illustrates the difficulty of using probable gene homology as strict indicator of homology between biological structures. PMID:28253300

  16. Familial Hypercholesterolemia: The Lipids or the Genes?

    Directory of Open Access Journals (Sweden)

    Nemer Georges M

    2011-04-01

    Full Text Available Abstract Familial Hypercholesterolemia (FH is a common cause of premature cardiovascular disease and is often undiagnosed in young people. Although the disease is diagnosed clinically by high LDL cholesterol levels and family history, to date there are no single internationally accepted criteria for the diagnosis of FH. Several genes have been shown to be involved in FH; yet determining the implications of the different mutations on the phenotype remains a hard task. The polygenetic nature of FH is being enhanced by the discovery of new genes that serve as modifiers. Nevertheless, the picture is still unclear and many unknown genes contributing to the phenotype are most likely involved. Because of this evolving polygenetic nature, the diagnosis of FH by genetic testing is hampered by its cost and effectiveness. In this review, we reconsider the clinical versus genetic nomenclature of FH in the literature. After we describe each of the genetic causes of FH, we summarize the known correlation with phenotypic measures so far for each genetic defect. We then discuss studies from different populations on the genetic and clinical diagnoses of FH to draw helpful conclusions on cost-effectiveness and suggestions for diagnosis.

  17. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms.

    Science.gov (United States)

    Colbert, Jeff D; Matthews, Stephen P; Kos, Janko; Watts, Colin

    2011-12-01

    Cystatin F is an unusual member of the cystatin family of protease inhibitors, which is made as an inactive dimer and becomes activated by proteolysis in the endo/lysosome pathway of the immune cells that produce it. However a proportion is secreted and can be taken up and activated by other cells. We show here that cystatin F acquired in this way induces a dramatic accumulation of the single-chain form of cathepsin L (CatL). Cystatin F was observed in the same cellular compartments as CatL and was tightly complexed with CatL as determined by co-precipitation studies. The observed accumulation of single-chain CatL was partly due to cystatin F-mediated inhibition of the putative single-chain to two-chain CatL convertase AEP/legumain and partly to general suppression of cathepsin activity. Thus, cystatin F stabilizes CatL leading to the dramatic accumulation of an inactive complex composed either of the single-chain or two-chain form depending on the capacity of cystatin F to inhibit AEP. Cross-transfer of cystatin F from one cell to another may therefore attenuate potentially harmful effects of excessive CatL activity while paradoxically, inducing accumulation of CatL protein. Finally, we confirmed earlier data (Beers, C., Honey, K., Fink, S., Forbush, K., and Rudensky, A. (2003) J. Exp. Med. 197, 169-179) showing a loss of CatL activity, but not of CatL protein, in macrophages activated with IFNγ. However, we found equivalent loss of CatL activity in wild type and cystatin F-null macrophages suggesting that an inhibitory activity other than cystatin F quenches CatL activity in activated macrophages.

  18. The tomato cis-prenyltransferase gene family.

    Science.gov (United States)

    Akhtar, Tariq A; Matsuba, Yuki; Schauvinhold, Ines; Yu, Geng; Lees, Hazel A; Klein, Samuel E; Pichersky, Eran

    2013-02-01

    cis-prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with five or more isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which comprises seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six of the SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to GFP, mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP, and SlCPT2 catalyzes the formation of nerylneryl diphosphate while SlCPT4, SlCPT5 and SlCPT7 synthesize longer-chain products (C25-C55). Although no in vitro activity was demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature-sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5 and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNAi-mediated suppression of NDPS1 led to a large decrease in β-phellandrene (which is produced from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots, and showed that all the short-chain CPT genes from tomato (SlCPT1, SlCPT2 and SlCPT6) are closely linked to terpene synthase gene clusters.

  19. Expression and Clinical Significance of Cystatin M in Breast Cancer and Metastatic Cancer%胱蛋白M在乳腺癌及其转移癌中的表达和临床意义

    Institute of Scientific and Technical Information of China (English)

    闫哲

    2012-01-01

    Objective: This study aims to explore the expression and clinical significance of cystatin M in breast cancer. Methods: Reverse transcription polymerase chain reaction was used to measure the level of cystatin M mRNA in 108 samples of breast cancer, 30 metastatic cancer, and 24 normal breast tissues. The relationship between the expression of cystatin M gene in human breast cancer and the clinilcopathological features was analyzed. Results: The cystatin M expression levels in breast cancer are correlated with TNM staging and clinical size of the tumor. The expression levels of cystatin M in breast cancer tissue are not significantly different from normal breast tissues and metastatic cancer tissues. Cystatin M expression levels in breast cancer are not correlated with lymph node metastasis, axillary lymph node status, histological grade, or pathological type. Cystatin M expression levels in breast cancer and metastatic cancer are not correlated with Her-2, ER, or PR status. Cystatin M expression levels in breast cancer are correlated with the overall survival. Conclusions: Whether cystatin M can be used as a prognostic marker for breast cancer metastasis still needs further studies.%目的:探讨胱蛋白M(Cystatin M)在乳腺癌及转移癌中的表达和临床意义.方法:采用RT-PCR检测108例乳腺癌标本,30例转移癌标本及24例癌旁正常乳腺组织中Cystatin M mRNA,分析Cystatin M基因表达与临床病理参数和预后的关系.结果:乳腺癌标本中Cystatin M表达水平在Ⅰ/Ⅱ期乳腺癌患者中较高,而在Ⅲ/Ⅳ期乳腺癌患者中较低,差异有统计学意义;Cystatin M在5 cm以下肿瘤中表达较高,而在5 cm以上肿瘤中表达较低,差异有统计学意义;乳腺癌标本中CystatinM表达与正常乳腺组织中CystatinM表达差异无统计学意义;乳腺癌标本中CystatinM与转移癌标本中CystatinM表达差异无统计学意义;乳腺癌标本中CystatinM表达水平与乳腺癌患者是否发生

  20. Cystatin B与肿瘤关系%Relation between Cystatin B and Cancer

    Institute of Scientific and Technical Information of China (English)

    刘伯新

    2011-01-01

    Cystatin B作为半胱氨酸蛋白酶超家族中的一员,主要抑制组织蛋白酶L.许多研究表明cystatin B可能参与多种肿瘤如头颈部鳞癌、乳腺癌、食管癌、肝细胞癌、肺癌等的生长、侵袭和转移过程.其作用机制仍有待进一步阐明.Cystatin B要作为临床诊断和预后的指标而得到应用仍需更深入的研究.%Cystatin B, a member of the cysteine protease inhibitor superfamily, primarily inhibits cathepsin L. Many studies have shown that cystatin B may take part in growth, invasion, and metastasis of tumors, including squamous cell carcinoma of the head and neck, breast cancer, e-sophageal cancer, hepatocellular carcinoma, lung tumor, and so on. The mechanism of cystatin B still needs further clarification. The application of Cystatin B for clinical diagnosis and prognostic needs further researches.

  1. Cloning and Sequence Analysis of a Hevea Cystatin Gene (HbCYS1) and Investigation of the Tapping on Its Expression in the Latex%橡胶树cystatin基因HbCYS1的克隆及割胶应答

    Institute of Scientific and Technical Information of China (English)

    戚继艳; 李和平; 阳江华; 唐朝荣

    2011-01-01

    在植物中,半胱氨酸蛋白酶抑制剂(Cystatin)广泛参与逆境胁迫应答和发育调控.在已建立的胶乳EST序列数据库中,鉴定了一个注释为cystatin的序列重叠群(Contig).利用RACE和RT-PCR进一步获得1个长度为947 bp、包含完整读码框(741 bp)的cDNA,命名为HbCYS1;去除N端27个aa的信号肽后,HbCYS1蛋白生成1个包含219个aa的成熟蛋白(24.2 ku),具有cystatin反应位点的保守序列基序GG、QXVXG和A/PW,同时具有植物cystatin所特有的LARFAV基序;推测HbCYS1是一种分泌性蛋白,与同样来自大戟科的1个蓖麻cystatin蛋白(CAA89697)的亲缘关系最近,氨基酸序列的一致性达79%;在胶乳中,割胶明显促进HbCYS1基因的上调表达.割胶是一种典型的非生物胁迫,橡胶树对割胶胁迫的适应能力是决定其持续生产力的一个重要因素,推测HbCYS1基因可能参与橡胶树的胁迫应答与胶乳再生.%In plants, cystatins are implicated in biotic and/or abiotic stress responses, and developmental regulation. In the previously constructed latex EST library, we identified a contig annotated as cystatin, and then cloned the corresponding cDNA by the technologies of RACE and RT-PCR. The cloned cystatin cDNA, named HbCYSl was 947-bp long, containing the complete coding sequence (741 bp) and coding for a mature protein of 24.2 ku after the cleavage of the putative 27-aa N-terminal signal peptide. In addition to the PhyCys-specific LARFAV -like sequence, this protein contained the three -point reactive motifs conserved in the cystatin superfamily: GG, QXVXG and A/PW. HbCYSl was predicted to be a secretary protein, and shared the highest amino acid identity (79%) with the Ricinus communis cystatin (CAA89697), belonging also to the Euphorbiaceae family. In the latex, the expression of HbCYSl was conspicuously up-regulated by tapping. Since tapping poses a typical abiotic stress on Hevea trees and constitutes a major factor restricting the sustainable

  2. Dementia in hereditary cystatin C amyloidosis

    DEFF Research Database (Denmark)

    Blöndal, H; Guomundsson, G; Benedikz, Eirikur

    1989-01-01

    Nineteen cases with verified Hereditary Cystatin C Amyloid Angiopathy are presented. All of the cases had one or more cerebrovascular insults starting at the age of 20-41 years and survived from 10 days to 23 years after the first insult. Progressive dementia was a prominent clinical feature...... in seventeen cases of whom two presented with dementia. At the last examination the majority had severe dementia and severely abnormal EEG. Anti-cystatin C positive amyloid vascular and perivascular infiltrates were found. The resulting damage to the microvasculature of the brain and secondary hemorrhages...... and infarctions were considered to be an adequate explanation for the dementia in these cases. Skin biopsies can now probably be used to demonstrate cystatin C positive amyloid deposits conclusively in the tissues of these patients....

  3. Dementia in hereditary cystatin C amyloidosis

    DEFF Research Database (Denmark)

    Blöndal, H; Guomundsson, G; Benedikz, Eirikur

    1989-01-01

    Nineteen cases with verified Hereditary Cystatin C Amyloid Angiopathy are presented. All of the cases had one or more cerebrovascular insults starting at the age of 20-41 years and survived from 10 days to 23 years after the first insult. Progressive dementia was a prominent clinical feature...... in seventeen cases of whom two presented with dementia. At the last examination the majority had severe dementia and severely abnormal EEG. Anti-cystatin C positive amyloid vascular and perivascular infiltrates were found. The resulting damage to the microvasculature of the brain and secondary hemorrhages...... and infarctions were considered to be an adequate explanation for the dementia in these cases. Skin biopsies can now probably be used to demonstrate cystatin C positive amyloid deposits conclusively in the tissues of these patients....

  4. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, Martin C.; Monsuur, Alienke J.; Poell, Jos; Slot, Ruben Van 't; Meijer, Jos W. R.; Meijer, Gerrit A.; Mulder, Chris J.; Mearin, Maria Luisa; Wijmenga, Cisca

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  5. Efficient expression and purification of biologically active human cystatin proteins.

    Science.gov (United States)

    Chauhan, Sakshi; Tomar, Raghuvir S

    2016-02-01

    Cystatins are reversible cysteine protease inhibitor proteins. They are known to play important roles in controlling cathepsins, neurodegenerative disease, and in immune system regulation. Production of recombinant cystatin proteins is important for biochemical and function characterization. In this study, we cloned and expressed human stefin A, stefin B and cystatin C in Escherichia coli. Human stefin A, stefin B and cystatin C were purified from soluble fraction. For cystatin C, we used various chaperone plasmids to make cystatin C soluble, as it is reported to localize in inclusion bodies. Trigger factor, GroES-GroEL, DnaK-DnaJ-GrpE chaperones lead to the presence of cystatin C in the soluble fraction. Immobilized metal affinity chromatography, glutathione sepharose and anion exchange chromatography techniques were employed for efficient purification of these proteins. Their biological activities were tested by inhibition assays against cathepsin L and H3 protease.

  6. Cystatin C is Associated With Plaque Phenotype and Plaque Burden

    Directory of Open Access Journals (Sweden)

    Yufeng Wen

    2016-03-01

    Full Text Available Background/Aims: The relationship between carotid artery plaque burden, phenotype and serum cystatin C at normal and impaired renal function is still unclear. Methods: Demographic characteristics, carotid ultrasonography and other relevant information of 1,477 patients were collected. The association of carotid artery plaque burden, plaque phenotype with serum cystatin C was evaluated by strategy analysis based on renal function. Results: Serum cystatin C (OR=2.05, 95% CI: 1.83-2.29, POR=1.60, 95%CI: 1.43-1.78, POR=1.21, 95%CI: 1.10-1.32, P Conclusion: In normal renal function, serum cystatin C may confer stability of plaques. In mildly impaired renal function, serum cystatin C is a risk predictor of plaques. In normal renal function circumstances, serum cystatin C may benefit to the stability of plaques. In mild impaired renal function circumstances, serum cystatin C are a risk predictors of plaques.

  7. In-sights into the effect of heavy metal stress on the endogenous mustard cystatin.

    Science.gov (United States)

    Khan, Shumaila; Khan, Nafees A; Bano, Bilqees

    2017-07-25

    Phytocystatins have been ascribed several protective roles against abiotic and biotic stress conditions. It was, therefore, thought worthwhile to document the effect of heavy metal stress on the endogenous plant cystatin. The mustard cystatin, purified from Brassica juncea (B. juncea) seeds retained its functional property of cysteine proteinase inhibition, despite exposure to high concentrations of metal ions, Cd(2+) and Ni(2+). An increase in inhibitory activity, ∼26% for Ni(2+) and ∼16% for Cd(2+) was observed, suggesting changes in protein conformation upon metal ion interaction. Isothermal calorimetric (ITC) studies show formation of a 1:1 binary complex on interaction with both metal ions but suggest a higher affinity for Ni(2+). Fluorescence quenching data suggest a static quenching mechanism of interaction. Various spectroscopic analyses, namely, synchronous fluorescence, ANS fluorescence, far UV CD and ATR-FTIR spectroscopy show that the native mustard cystatin acquires a more ordered conformation upon interaction with metal ions. Differential Scanning Calorimetry indicates that the thermo-stability of the Ni(2+) bound protein (Tm=109.4°C) is greater than both, the Cd(2+) bound (Tm=104.5°C) and the native (Tm=99.5°C) forms. The B. juncea seed cystatin, is thus, identified as a potent and resilient member of the phytocystatin family with considerable inhibitory capacity despite exposure to heavy metal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Complexity of the MSG gene family of Pneumocystis carinii

    Directory of Open Access Journals (Sweden)

    Stringer James R

    2009-08-01

    Full Text Available Abstract Background The relationship between the parasitic fungus Pneumocystis carinii and its host, the laboratory rat, presumably involves features that allow the fungus to circumvent attacks by the immune system. It is hypothesized that the major surface glycoprotein (MSG gene family endows Pneumocystis with the capacity to vary its surface. This gene family is comprised of approximately 80 genes, which each are approximately 3 kb long. Expression of the MSG gene family is regulated by a cis-dependent mechanism that involves a unique telomeric site in the genome called the expression site. Only the MSG gene adjacent to the expression site is represented by messenger RNA. Several P. carinii MSG genes have been sequenced, which showed that genes in the family can encode distinct isoforms of MSG. The vast majority of family members have not been characterized at the sequence level. Results The first 300 basepairs of MSG genes were subjected to analysis herein. Analysis of 581 MSG sequence reads from P. carinii genomic DNA yielded 281 different sequences. However, many of the sequence reads differed from others at only one site, a degree of variation consistent with that expected to be caused by error. Accounting for error reduced the number of truly distinct sequences observed to 158, roughly twice the number expected if the gene family contains 80 members. The size of the gene family was verified by PCR. The excess of distinct sequences appeared to be due to allelic variation. Discounting alleles, there were 73 different MSG genes observed. The 73 genes differed by 19% on average. Variable regions were rich in nucleotide differences that changed the encoded protein. The genes shared three regions in which at least 16 consecutive basepairs were invariant. There were numerous cases where two different genes were identical within a region that was variable among family members as a whole, suggesting recombination among family members. Conclusion A

  9. Clinical Signiifcance of Detection of Cathepsin X and Cystatin C in the Sera of Patients with Lung Cancer%检测肺癌患者血清Cathepsin X及Cystatin C的临床意义

    Institute of Scientific and Technical Information of China (English)

    张学德; 侯彦丽; 牛泽群; 李维; 孟夏; 张娜; 杨拴盈

    2013-01-01

    背景与目的组织蛋白酶X(Cathepsin X, Cat X)是最近发现的一种组织蛋白酶(Cathepsins, Cats)家族成员。近年来研究表明Cat X与多种恶性肿瘤发生、发展有关。本研究旨在探讨肺癌患者血清Cat X及cystatin C的表达与临床特征及预后的关系。方法采用ELISA法定量检测84例肺癌患者及36例健康对照者血清Cat X及cystatin C表达。结果肺癌患者血清Cat X和cystatin C水平明显高于健康人(P<0.01);Cat X水平与肺癌病理类型之间有相关的趋势(P=0.076)。血清cystatin C水平与肺癌TNM分期正相关(P=0.01),cystatin C/Cat X与淋巴结转移之间有相关趋势(P=0.058)。Cat X表达水平与肺癌患者总生存期(overall survival, OS)相关,高水平Cat X肺癌患者OS更短。Cox单因素回归示Cat X高表达以及TNM分期是影响肺癌预后独立因素,Cox多因素回归显示,仅TNM分期是患者预后的独立危险因素。结论肺癌患者中血清Cat X和cystatin C水平升高,检测肺癌患者Cat X和cystatin C血清水平对于指导临床肺癌诊断、评估预后有重要意义。%Background and objective Cathepsin X (Cat X) has been identiifed as a member of cathepsin family. Studies have shown that Cat X is involved in tumorigenesis and tumor development of various cancers. hTe aim of this study is to investigate the relationship between the clinicopathological prognosis and the levels of Cat X and cystatin C in the serum of patients with lung cancer. Methods Blood samples were collected from 84 patients with lung cancer and 36 healthy control subjects. Cat X and cystatin C were determined by quantitative ELISA. Results Cat X and cystatin C levels were signiifcantly higher in the patients with lung cancer than that in the healthy control subjects (P<0.01). Cat X level was correlated with the pathological types of lung cancer (P=0.076). Cystatin C was positively correlated with TNM stage (P=0.01). Furthermore

  10. Characterization of a secreted cystatin from the tick Rhipicephalus haemaphysaloides.

    Science.gov (United States)

    Wang, Yujian; Yu, Xinmao; Cao, Jie; Zhou, Yongzhi; Gong, Haiyan; Zhang, Houshuang; Li, Xiangrui; Zhou, Jinlin

    2015-10-01

    A novel cystatin, designated RHcyst-2, was isolated from the tick Rhipicephalus haemaphysaloides. The full-length cDNA of RHcyst-2 is 773 bp, including an intact open reading frame encoding an expected protein of 139 amino acids and consisting of a 23 amino acids signal peptide. Predicted RHcyst-2 mature protein molecular weight is about 13 kDa, isoelectric point is 4.96. A sequence analysis showed that it has significant homology with the known type 2 cystatins. The recombinant protein of RHcyst-2 was expressed in a glutathione S-transferase-fused soluble form in Escherichia coli, and its inhibitory activity against cathepsin L, B, C, H, and S, as well as papain, was identified by fluorogenic substrate analysis. The results showed that rRHcyst-2 can effectively inhibit the six cysteine proteases' enzyme activities. An investigation of the RHcyst-2 genes' expression profile by quantitative reverse transcription-PCR demonstrated that it was more richly transcribed in the embryo (egg) stage and mainly distributed in the mid-gut of adult ticks. Western blot analysis confirmed that RHcyst-2 was secreted into tick saliva.

  11. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  12. Msx homeobox gene family and craniofacial development

    Institute of Scientific and Technical Information of China (English)

    SYLVIA ALAPPAT; ZUN YI ZHANG; YI PING CHEN

    2003-01-01

    Vertebrate Msx genes are unlinked,homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene.These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development.Inductive interactions mediated by the Msx genes are essential for normal craniofacial,limb and ectodermal organ morphogenesis,and are also essential to survival in mice,as manifested by the phenotypic abnormalities shown in knockout mice and in humans.This review summarizes studies on the expression,regulation,and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice.

  13. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Directory of Open Access Journals (Sweden)

    Wei Duan

    Full Text Available In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  14. Adenosine A2A receptor deficiency up-regulates cystatin F expression in white matter lesions induced by chronic cerebral hypoperfusion.

    Science.gov (United States)

    Duan, Wei; Ran, Hong; Zhou, Zhujuan; He, Qifen; Zheng, Jian

    2012-01-01

    In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.

  15. Gene Synthesis of cystatin from Snake Venom and its Expression in E.coli%蛇毒cystatin基因合成及其在大肠杆菌的表达

    Institute of Scientific and Technical Information of China (English)

    宋军; 万榕; 翁绳美; 林旭; 林建银

    2004-01-01

    目的研究蛇毒cystatin基因的合成并在大肠杆菌系统内表达.方法根据中华眼镜蛇毒cystatin蛋白的氨基酸序列合成cystatin基因的4个片段,通过缓慢退火PCR方法将其拼接为完整的cystatin基因,经BamHⅠ及SacⅠ双酶切后定向克隆到原核表达载体pET-42a(+)中,PCR及测序鉴定,转化宿主菌BL21(DE3),异丙基硫代-β-D半乳糖苷(IPTG)诱导,SDS-PAGE凝胶电泳分析表达产物,GST·Mag琼脂糖树脂纯化融合蛋白,Western-blot鉴定.结果成功合成蛇毒cystatin基因,并构建原核表达质粒pET-42a(+)/GST-cystatin,在大肠杆菌BL21(DE3)中表达融合蛋白GST-cystatin,SDS-PAGE凝胶浓度扫描显示表达量占菌体总蛋白的30%,Western-blot证实纯化蛋白为重组cystatin蛋白.结论合成蛇毒cystatin基因并在大肠杆菌中表达,为进一步研究其生物学活性及抗肿瘤转移功能奠定基础.

  16. UBR5 Gene Mutation Is Associated with Familial Adult Myoclonic Epilepsy in a Japanese Family

    OpenAIRE

    2012-01-01

    The causal gene(s) for familial adult myoclonic epilepsy (FAME) remains undetermined. To identify it, an exome analysis was performed for the proband in a Japanese FAME family. Of the 383 missense/nonsense variants examined, only c.5720G>A mutation (p.Arg1907His) in the UBR5 gene was found in all of the affected individuals in the family, but not in the nonaffected members. Such mutation was not found in any of the 85 healthy individuals in the same community nor in any of the 24 individuals ...

  17. Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Meghan E Wilson

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurologic disease characterized by progressive motor neuron degeneration. Clinical disease management is hindered by both a lengthy diagnostic process and the absence of effective treatments. Reliable panels of diagnostic, surrogate, and prognostic biomarkers are needed to accelerate disease diagnosis and expedite drug development. The cysteine protease inhibitor cystatin C has recently gained interest as a candidate diagnostic biomarker for ALS, but further studies are required to fully characterize its biomarker utility. We used quantitative enzyme-linked immunosorbent assay (ELISA to assess initial and longitudinal cerebrospinal fluid (CSF and plasma cystatin C levels in 104 ALS patients and controls. Cystatin C levels in ALS patients were significantly elevated in plasma and reduced in CSF compared to healthy controls, but did not differ significantly from neurologic disease controls. In addition, the direction of longitudinal change in CSF cystatin C levels correlated to the rate of ALS disease progression, and initial CSF cystatin C levels were predictive of patient survival, suggesting that cystatin C may function as a surrogate marker of disease progression and survival. These data verify prior results for reduced cystatin C levels in the CSF of ALS patients, identify increased cystatin C levels in the plasma of ALS patients, and reveal correlations between CSF cystatin C levels to both ALS disease progression and patient survival.

  18. Identification of metalloprotease gene families in sugarcane

    Directory of Open Access Journals (Sweden)

    O.H.P. Ramos

    2001-12-01

    Full Text Available Metalloproteases play a key role in many physiological processes in mammals such as cell migration, tissue remodeling and processing of growth factors. They have also been identified as important factors in the patho-physiology of a number of human diseases, including cancer and hypertension. Many bacterial pathogens rely on proteases in order to infect the host. Several classes of metalloproteases have been described in humans, bacteria, snake venoms and insects. However, the presence and characterization of plant metalloproteases have rarely been described in the literature. In our research, we searched the sugarcane expressed sequence tag (SUCEST DNA library in order to identify, by homology with sequences deposited in other databases, metalloprotease gene families expressed under different conditions. Protein sequences from Arabidopsis thaliana and Glycine max were used to search the SUCEST data bank. Conserved regions corresponding to different metalloprotease domains and sequence motifs were identified in the reads to characterize each group of enzymes. At least four classes of sugarcane metalloproteases have been identified, i.e. matrix metalloproteases, zincins, inverzincins, and ATP-dependent metalloproteases. Each enzyme class was analyzed for its expression in different conditions and tissues.Metaloproteases exercem papéis importantes em muitos processos fisiológicos em mamíferos tais como migração celular, remodelamento tecidual e processamento de fatores de crescimento. Estas enzimas estão envolvidas também na pato-fisiologia de um grande número de doenças humanas como hipertensão e câncer. Muitas bactérias patogênicas dependem de proteases para infectar o hospedeiro. Diversas classes de metaloproteases foram descritas em seres humanos, bactérias, venenos de serpentes e insetos. No entanto, a presença e a caracterização de metaloproteases em plantas estão pouco descritas na literatura. Neste trabalho, foi

  19. BAG Family Gene and Its Relationship with Lung Adenocarcinoma Susceptibility

    Directory of Open Access Journals (Sweden)

    Ying LI

    2010-10-01

    Full Text Available Background and objective BAG genes (Bcl-2-associated athanogene belong to a recently discovered multifunctional anti-apoptosis gene family that regulate various physiological processes which include apoptosis, tumorigenesis, neural differentiation, stress response and cell cycle and so on. The expression status of BAG family genes are related to certain tumor incidence and prognosis. The aim of this study is to explore the association of the BAG family gene expression status with the susceptibility of lung adenocarcinoma. Methods The gene expression data of BAG family genes from 29 cases of lung adenocarcinoma tissues and matched pericancerous lung tissess were generated by microarray chips. Cox regression was used to analyze the association between the expression of BAG family genes and the susceptibility of lung adenocarcinoma and the results were verified by GEO database. Results The expression levels of BAG-1, BAG-2, BAG-5 in cancer tissues were significantly downregulated compared with matched pericancerous lung tissues and were protective factors of lung adenocarcinoma (P < 0.05, OR < 1; while the expression level of BAG-4 in cancer tissues were remankably upregulated compared with the matched pericancerous lung tissues and was risk factor of lung adenocarcinoma (P < 0.05, OR > 1. Conclusion BAG-1, BAG-2, BAG-5 might be the potential protective factors while BAG-4 is possible risk factor of lung adenocarcinoma.

  20. Co-expression of cystatin inhibitors OCI and OCII in transgenic potato plants alters Colorado potato beetle development

    Science.gov (United States)

    Oryzacystatins I and II (OCI and OCII) show potential for controlling pests that utilize cysteine proteinases for protein digestion. To strengthen individual inhibitory range and achieve an additive effect in the overall efficiency of these proteins against pests, both cystatin genes were co-express...

  1. Genome organization and expression of the rat ACBP gene family

    DEFF Research Database (Denmark)

    Mandrup, S; Andreasen, P H; Knudsen, J

    1993-01-01

    pool former. We have molecularly cloned and characterized the rat ACBP gene family which comprises one expressed and four processed pseudogenes. One of these was shown to exist in two allelic forms. A comprehensive computer-aided analysis of the promoter region of the expressed ACBP gene revealed...

  2. Cystatin C Is Not Causally Related to Coronary Artery Disease.

    Directory of Open Access Journals (Sweden)

    Patrik Svensson-Färbom

    Full Text Available Strong and independent associations between plasma concentration of cystatin C and risk of cardiovascular disease (CVD suggests causal involvement of cystatin C.The aim of our study was to assess whether there is a causal relationship between plasma concentration of cystatin C and risk of coronary artery disease (CAD using a Mendelian Randomization approach.We estimated the strength of association of plasma cystatin C on CAD risk and the strength of association of the strongest GWAS derived cystatin C SNP (rs13038305 on plasma cystatin C in the population-based Malmö Diet and Cancer Study (MDC and thereafter the association between rs13038305 and CAD in the MDC (3200 cases of CAD and 24418 controls and CARDIOGRAM (22233 cases of CAD and 64762 controls.Each standard deviation (SD increment of plasma cystatin C was associated with increased risk of CAD (OR = 1.20, 95% CI 1.07-1.34 after full adjustment. Each copy of the major allele of rs13038305 was associated with 0.34 SD higher plasma concentration of cystatin C (P98% to detect a significant relationship between rs13038305 and CAD in MDC and CARDIOGRAM pooled. The odds ratio for CAD (per copy of the major rs13038305 allele was 1.00 (0.94-1.07; P = 0.92 in MDC, 0.99 (0.96-1.03; P = 0.84 in CARDIOGRAM and 1.00 (0.97-1.03; P = 0.83 in MDC and CARDIOGRAM pooled.Genetic elevation of plasma cystatin C is not related to altered risk of CAD, suggesting that there is no causal relationship between plasma cystatin C and CAD. Rather, the association between cystatin C and CAD appears to be due to the association of eGFR and CAD.

  3. Bilirubin binding with liver cystatin induced structural and functional changes.

    Science.gov (United States)

    Mustafa, Mir Faisal; Bano, Bilqees

    2014-05-01

    Cysteine proteinases and their inhibitors play a significant role in the proteolytic environment of the cells. Inhibitors of cysteine proteinases regulate the activity of these enzymes helping in checking the degdration activity of cathepsins. The bilirubin secreated by liver cells can bind to cystatin present in the liver resulting in its functional inactivation, which may further lead to the increase in cathepsins level causing liver cirrhosis. In case of some pathophysiological conditions excess bilirubin gets accumulated e.g. in presence of Fasciola hepatica (liver fluke) in mammals and humans, leading to liver cirrhosis and possibly jaundice or normal blockade of bile duct causing increased level of bilirubin in blood. Protease-cystatin imbalance causes disease progression. In the present study, Bilirubin (BR) and liver cystatin interaction was studied to explore the cystatin inactivation and structural alteration. The binding interaction was studied by UV-absorption, FT-IR and fluorescence spectroscopy. The quenching of protein fluorescence confirmed the binding of BR with buffalo liver cystatin (BLC). Stern-Volmer analysis of BR-BLC system indicates the presence of static component in the quenching mechanism and the number of binding sites to be close to 1. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR-cystatin complex formation. FTIR analysis of BR-Cystatin complex revealed change in the secondary structure due to perturbation in the microenvironment further confirmed by the decreased caseinolytic activity of BLC against papain. Fluorescence measurements also revealed quenching of fluorescence and shift in peak at different time intervals and at varying pH values. Photo-illumination of BR-cystatin complex causes change in the surrounding environment of liver cystatin as indicated by red-shift. The binding constant for BR-BLC complex was found to be 9.279 × 10(4) M(-1). The cystatin binding with

  4. The tyrosinase gene family and albinism in fish

    Institute of Scientific and Technical Information of China (English)

    WANG Jiaqing; HOU Lin; ZHANG Ruifeng; ZHAO Xintao; JIANG Lijuan; SUN Wenjing; AN Jialu; LI Xiaoyan

    2007-01-01

    Tyrosinase exists universally in organisms and is a characterstic enzyme of melanocytes.Tyrosinase family genes in vertebrates consist of 3 related members; tyrosinase (TYR, Tyr),tyrosinase-related protein-1 (TRP-1, Tyrpl), and tyrosinase-related protein-2 (TRP-2, Tyrp2, Dct). These proteins catalyze melanin biosynthesis in pigment cells and play important roles in determining vertebrate coloration. Transcription of the TYR and TRP genes is useful for studying neural crest and optic vesicle cell migration and differentiation during embryogenesis and important in pigment rescue in fish. In this paper, the structure of gene and protein molecular evolution, function and roles of the TYR family in fish were reviewed.

  5. Update of human and mouse forkhead box (FOX gene families

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2010-06-01

    Full Text Available Abstract The forkhead box (FOX proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6. Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.

  6. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates.

    Science.gov (United States)

    Arroyo, José Ignacio; Hoffmann, Federico G; Opazo, Juan C

    2012-06-01

    The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case

  7. Evidence for the absence of intron H of the histidine-rich glycoprotein (HRG) gene: Genetic mapping and in situ localization of HRG to chromosome 3q28-q29

    Energy Technology Data Exchange (ETDEWEB)

    Hennis, B.C.; Poort, E.W. van der; Kluft, C.; Frants, R.R.; Bakker, E.; Vossen, R.H.A.M.; Blonden, L.A.; Khan, P.M. (Leiden Univ. (Netherlands)); Cox, S.; Spurr, N.K. (Imperial Cancer Research Fund, London (United Kingdom))

    1994-01-01

    Histidine-rich glycoprotein (HRG) belongs to the cystatin superfamily and appears to be a potential risk factor for thrombosis. An increased prevalence of elevated HRG plasma levels in patients with venous thrombosis and families with thrombophilia has been reported. It is interesting to note that the genes of four different members of the cystatin superfamily are located on the distal section of the long arm of chromosome 3: Stefin A (STF1) on 3q21, Kininogen (KNG) on 3q26-qter, [alpha]-2-HS-glycoprotein (AHSG) on 3q27-q28, and HRG on 3q21-qter. To further investigate the evolutionary relationship between HRG and members of the cystatin superfamily, the authors isolated a cosmid that was used to refine the chromosomal localization of HRG by in situ hybridization. In addition, they used a dinucleotide repeat polymorphism to localize HRG on the linkage map of chromosome 3q. 10 refs., 2 figs.

  8. The tomato terpene synthase gene family

    NARCIS (Netherlands)

    Falara, V.; Akhtar, T.A.; Nguyen, T.T.H.; Spyropoulou, E.A.; Bleeker, P.M.; Schauvinhold, I.; Matsuba, Y.; Bonini, M.E.; Schilmiller, A.L.; Last, R.L.; Schuurink, R.C.; Pichersky, E.

    2011-01-01

    Compounds of the terpenoid class play many roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of Solanum lycopersicum (cultivated tomato) contains 40 terpene synthase (TPS) genes, including 28

  9. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family.

    Science.gov (United States)

    Teunissen, A W; Steensma, H Y

    1995-09-15

    The quality of brewing strains is, in large part, determined by their flocculation properties. By classical genetics, several dominant, semidominant and recessive flocculation genes have been recognized. Recent results of experiments to localize the flocculation genes FLO5 and FLO8, combined with the in silicio analysis of the available sequence data of the yeast genome, have revealed that the flocculation genes belong to a family which comprises at least four genes and three pseudogenes. All members of this gene family are located near the end of chromosomes, just like the SUC, MEL and MAL genes, which are also important for good quality baking or brewing strains. Transcription of the flocculation genes is repressed by several regulatory genes. In addition, a number of genes have been found which cause cell aggregation upon disruption or overexpression in an as yet unknown manner. In total, 33 genes have been reported that are involved in flocculation or cell aggregation.

  10. The squash aspartic proteinase inhibitor SQAPI is widely present in the cucurbitales, comprises a small multigene family, and is a member of the phytocystatin family.

    Science.gov (United States)

    Christeller, John T; Farley, Peter C; Marshall, Richelle K; Anandan, Ananda; Wright, Michele M; Newcomb, Richard D; Laing, William A

    2006-12-01

    The squash (Cucurbita maxima) phloem exudate-expressed aspartic proteinase inhibitor (SQAPI) is a novel aspartic acid proteinase inhibitor, constituting a fifth family of aspartic proteinase inhibitors. However, a comparison of the SQAPI sequence to the phytocystatin (a cysteine proteinase inhibitor) family sequences showed approximately 30% identity. Modeling SQAPI onto the structure of oryzacystatin gave an excellent fit; regions identified as proteinase binding loops in cystatin coincided with regions of SQAPI identified as hypervariable, and tryptophan fluorescence changes were also consistent with a cystatin structure. We show that SQAPI exists as a small gene family. Characterization of mRNA and clone walking of genomic DNA (gDNA) produced 10 different but highly homologous SQAPI genes from Cucurbita maxima and the small family size was confirmed by Southern blotting, where evidence for at least five loci was obtained. Using primers designed from squash sequences, PCR of gDNA showed the presence of SQAPI genes in other members of the Cucurbitaceae and in representative members of Coriariaceae, Corynocarpaceae, and Begoniaceae. Thus, at least four of seven families of the order Cucurbitales possess member species with SQAPI genes, covering approximately 99% of the species in this order. A phylogenetic analysis of these Cucurbitales SQAPI genes indicated not only that SQAPI was present in the Cucurbitales ancestor but also that gene duplication has occurred during evolution of the order. Phytocystatins are widespread throughout the plant kingdom, suggesting that SQAPI has evolved recently from a phytocystatin ancestor. This appears to be the first instance of a cystatin being recruited as a proteinase inhibitor of another proteinase family.

  11. Lead poisoning and cystatin-C in children

    Directory of Open Access Journals (Sweden)

    Yuri

    2015-09-01

    Full Text Available Background Lead pollution is a global problem both in developed and developing countries. Lead poisoning is associated with decreased glomerular filtration rate (GFR and is a risk factor for acute kidney injury (AKI. Serum cystatin-C is a more precise test of GFR than serum creatinine level, as serum cystatin-C levels rise earlier than serum creatinine, when GFR decreases. Objective To assess for a possible correlation between lead poisoning and cystatin-C levels in children. Methods We conducted a cross-sectional study in children aged 6-11 years with a history of lead poisoning from elementary schools in Talawaan District, North Minahasa Regency from July to October 2013. Cystatin-C and blood lead levels (BLL were measured in all subjects. Spearman’s rho test was used to analyze a potential correlation between BLL and cystatin-C level. Results This study included 41 children, comprising 21 boys and 20 girls. Their median age was 8.50 (range 6.8-10.7 years. Elevated levels of cystatin-C did not exceed normal values, however, we found a positive correlation between BLL and cystatin C (r=0.419, P=0.006. Conclusion There is a positive correlation between BLL and cystatin C level in children with lead poisoning. Regular monitoring of BLL, medical intervention, and an epidemiological study to help find the sources of contamination are needed for children with lead poisoning.

  12. Spectroscopic studies on the interaction of bilirubin with liver cystatin.

    Science.gov (United States)

    Shah, Aaliya; Bano, Bilqees

    2011-02-01

    Studies on the role of endogenous metabolites such as bilirubin and their interactions with biomolecules have attracted considerable attention over the past several years. In this work, the interaction of bilirubin (BR) with purified goat liver cystatin (LC) was studied using fluorescence and ultraviolet (UV) spectroscopy. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR-cystatin complex formation. Stern-Volmer analysis of fluorescence quenching data showed the binding constant to be 9.27 x 10⁴ M⁻¹ and the number of binding sites to be close to unity. The conformation of the BR-cystatin complex was found to change upon varying the pH of the complex. The BR-cystatin complex was found to have reduced papain inhibitory activity. Photo-illumination of BR-cystatin complex causes perturbation in the micro-environment of goat liver cystatin as indicated by red-shift. This report summarizes our research efforts to reveal the mechanism of interaction of bilirubin with liver cystatin.

  13. Stability of creatinine and cystatin C in whole blood

    NARCIS (Netherlands)

    Spithoven, E. M.; Bakker, S. J. L.; Kootstra-Ros, J.E.; de Jong, P. E.; Gansevoort, R. T.

    2013-01-01

    Background: As yet little is known about the effect of delayed separation of whole blood stored at room temperature on the stability of the kidney function markers creatinine and cystatin C. Methods: We used plasma samples of 45 patients with a wide range of creatinine and cystatin C concentration.

  14. Stability of creatinine and cystatin C in whole blood

    NARCIS (Netherlands)

    Spithoven, E.M.; Bakker, S.J.; Kootstra-Ros, J.E.; Jong, P.E. de; Gansevoort, R.T.; Drenth, J.P.; Wetzels, J.F.M.

    2013-01-01

    BACKGROUND: As yet little is known about the effect of delayed separation of whole blood stored at room temperature on the stability of the kidney function markers creatinine and cystatin C. METHODS: We used plasma samples of 45 patients with a wide range of creatinine and cystatin C concentration.

  15. Mitochondrial gene mutations and type 2 diabetes in Chinese families

    Institute of Scientific and Technical Information of China (English)

    LI Ming-zhen; YU De-min; YU Pei; LIU De-min; WANG Kun; TANG Xin-zhi

    2008-01-01

    Background Numerous mitochondrial DNA mutations are significantly correlated with development of diabetes. This study investigated mitochondrial gene, point mutations in patients with type 2 diabetes and their families. Methods Unrelated patients with type 2 diabetes(n=826)were randomly recruited; unrelated and nondiabetic subjects (n=637)served as controls. The clinical and biochemical data of the participants were collected. Total genome was extracted from peripheral leucocytes. Polymerase chain reaction, restriction fragment length polymorphism (PCR-RFLP)and clonig techniques were used to screen mitochondrial genes including np3316,np3394 and np3426 in the ND1 region and np3243 in the tRNALeu (UUR). Results In 39 diabetics with one or more mitochondrial gene point mutations, the prevalence(4.7%,39/826)of mtDNA mutations was higher than that(0.7%,5/637)in the controls. The identical mutation was found in 23 of 43 tested members from three pedigrees. Affected family members presented with variable clinical features ranging from normal glucose tolerance to impaired glucose tolerance (IGT)(n=2),impaired fasting glucose(IFG)(n=1)to type 2 diabetes (n=13)with 3 family members suffering from hearing loss. Conclusions Type 2 diabetes in China is associated with several mitochondrial gene mutations. Aged patients with diabetic family history had a higher prevalence of mutation and various clinical pictures. Mitochondrial gene mutation might be one of the genetic factors contributing to diabetic familial clustering.

  16. Evolution of the YABBY gene family in seed plants.

    Science.gov (United States)

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. © 2016 Wiley Periodicals, Inc.

  17. Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope.

    Science.gov (United States)

    Takahashi, M; Tezuka, T; Katunuma, N

    1992-08-10

    Both keratohyalin granules (KHG) and cornified envelopes were stained histochemically in an indirect immunofluorescent study by antiphosphorylated cystatin alpha antibody, indicating that phosphorylated cystatin alpha is a component of the cornified envelope proteins. When phosphorylated cystatin alpha (P-cystatin alpha) was incubated with epidermal transglutaminase (TGase) and Ca2+ ions, polymerized protein was produced by formation of epsilon-(gamma-glutamyl)lysine cross-linking peptide bonds between lysine residues of cystatin alpha and glutamine residues of suitable protein(s) in the enzyme preparation. However, phosphorylated and non-phosphorylated cystatins were polymerized to similar extents by the TGase. Immunofluorescent and immunoelectron microscopic observations revealed that P-cystatin alpha could be detected in vivo in the KHG and cornified envelopes. Treatment of sphingosine, a specific inhibitor of protein kinase C, markedly suppressed the incorporation of cystatin alpha into KHG. Thus phosphorylation of cystatin alpha by protein kinase C may play an important role in targeting cystatin alpha into KHG.

  18. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    Science.gov (United States)

    Mendonça-Mattos, Patricia Jeanne de Souza; Harada, Maria Lúcia

    2016-01-01

    Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i) the selective pressure on the GT6 paralogs genes in primates; (ii) the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii) the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions. PMID:28044107

  19. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    Directory of Open Access Journals (Sweden)

    Eliane Evanovich

    2016-01-01

    Full Text Available Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i the selective pressure on the GT6 paralogs genes in primates; (ii the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.

  20. Internalization of cystatin C in human cell lines.

    Science.gov (United States)

    Ekström, Ulf; Wallin, Hanna; Lorenzo, Julia; Holmqvist, Bo; Abrahamson, Magnus; Avilés, Francesc X

    2008-09-01

    Altered protease activity is considered important for tumour invasion and metastasis, processes in which the cysteine proteases cathepsin B and L are involved. Their natural inhibitor cystatin C is a secreted protein, suggesting that it functions to control extracellular protease activity. Because cystatins added to cell cultures can inhibit polio, herpes simplex and coronavirus replication, which are intracellular processes, the internalization and intracellular regulation of cysteine proteases by cystatin C should be considered. The extension, mechanism and biological importance of this hypothetical process are unknown. We investigated whether internalization of cystatin C occurs in a set of human cell lines. Demonstrated by flow cytometry and confocal microscopy, A-431, MCF-7, MDA-MB-453, MDA-MB-468 and Capan-1 cells internalized fluorophore-conjugated cystatin C when exposed to physiological concentrations (1 microm). During cystatin C incubation, intracellular cystatin C increased after 5 min and accumulated for at least 6 h, reaching four to six times the baseline level. Western blotting showed that the internalized inhibitor was not degraded. It was functionally intact and extracts of cells exposed to cystatin C showed a higher capacity to inhibit papain and cathepsin B than control cells (decrease in enzyme activity of 34% and 37%, respectively). The uptake of labelled cystatin C was inhibited by unlabelled inhibitor, suggesting a specific pathway for the internalization. We conclude that the cysteine protease inhibitor cystatin C is internalized in significant quantities in various cancer cell lines. This is a potentially important physiological phenomenon not previously described for this group of inhibitors.

  1. Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data.

    Directory of Open Access Journals (Sweden)

    Stefanie Hartmann

    Full Text Available BACKGROUND: In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic (or parasitic protostomes that are either placed with annelids or flatworms. METHODOLOGY: Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. CONCLUSIONS: Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic.

  2. Molecular evolution of PKD2 gene family in mammals.

    Science.gov (United States)

    Ye, Chun; Sun, Huan; Guo, Wenhu; Wei, Yuquan; Zhou, Qin

    2009-09-01

    PKD2 gene encodes a critical cation channel protein that plays important roles in various developmental processes and is usually evolutionarily conserved. In the present study, we analyzed the evolutionary patterns of PKD2 and its homologous genes (PKD2L1, PKD2L2) from nine mammalian species. In this study, we demonstrated the orthologs of PKD2 gene family evolved under a dominant purifying selection force. Our results in combination with the reported evidences from functional researches suggested the entire PKD2 gene family are conserved and perform essential biological roles during mammalian evolution. In rodents, PKD2 gene family members appeared to have evolved more rapidly than other mammalian lineages, probably resulting from relaxation of purifying selection. However, positive selection imposed on synonymous sites also potentially contributed to this case. For the paralogs, our results implied that PKD2L2 genes evolved under a weaker purifying selection constraint than PKD2 and PKD2L1 genes. Interestingly, some loop regions of transmembrane domain of PKD2L2 exhibited higher P (N)/P (S) ratios than expected, suggesting these regions are more functional divergent in organisms and worthy of special attention.

  3. Genetic variance in the adiponutrin gene family and childhood obesity.

    Directory of Open Access Journals (Sweden)

    Lovisa E Johansson

    Full Text Available AIM: The adiponutrin gene family consists of five genes (PNPLA1-5 coding for proteins with both lipolytic and lipogenic properties. PNPLA3 has previously been associated with adult obesity. Here we investigated the possible association between genetic variants in these genes and childhood and adolescent obesity. METHODS/RESULTS: Polymorphisms in the five genes of the adiponutrin gene family were selected and genotyped using the Sequenom platform in a childhood and adolescent obesity case-control study. Six variants in PNPLA1 showed association with obesity (rs9380559, rs12212459, rs1467912, rs4713951, rs10947600, and rs12199580, p0.05. When analyzing these SNPs in relation to phenotypes, two SNPs in the PNPLA3 gene showed association with insulin sensitivity (rs12483959: beta = -0.053, p = 0.016, and rs2072907: beta = -0.049, p = 0.024. No associations were seen for PNPLA2, PNPLA4, and PNPLA5. CONCLUSIONS: Genetic variation in the adiponutrin gene family does not seem to contribute strongly to obesity in children and adolescents. PNPLA1 exhibited a modest effect on obesity and PNPLA3 on insulin sensitivity. These data, however, require confirmation in other cohorts and ethnic groups.

  4. Runx Family Genes in Tissue Stem Cell Dynamics.

    Science.gov (United States)

    Wang, Chelsia Qiuxia; Mok, Michelle Meng Huang; Yokomizo, Tomomasa; Tergaonkar, Vinay; Osato, Motomi

    2017-01-01

    The Runx family genes play important roles in development and cancer, largely via their regulation of tissue stem cell behavior. Their involvement in two organs, blood and skin, is well documented. This review summarizes currently known Runx functions in the stem cells of these tissues. The fundamental core mechanism(s) mediated by Runx proteins has been sought; however, it appears that there does not exist one single common machinery that governs both tissue stem cells. Instead, Runx family genes employ multiple spatiotemporal mechanisms in regulating individual tissue stem cell populations. Such specific Runx requirements have been unveiled by a series of cell type-, developmental stage- or age-specific gene targeting studies in mice. Observations from these experiments revealed that the regulation of stem cells by Runx family genes turned out to be far more complex than previously thought. For instance, although it has been reported that Runx1 is required for the endothelial-to-hematopoietic cell transition (EHT) but not thereafter, recent studies clearly demonstrated that Runx1 is also needed during the period subsequent to EHT, namely at perinatal stage. In addition, Runx1 ablation in the embryonic skin mesenchyme eventually leads to complete loss of hair follicle stem cells (HFSCs) in the adult epithelium, suggesting that Runx1 facilitates the specification of skin epithelial stem cells in a cell extrinsic manner. Further in-depth investigation into how Runx family genes are involved in stem cell regulation is warranted.

  5. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.

    Science.gov (United States)

    Lagman, David; Sundström, Görel; Ocampo Daza, Daniel; Abalo, Xesús M; Larhammar, Dan

    2012-10-01

    Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.

  6. Diverse Roles of ERECTA Family Genes in Plant Development

    Institute of Scientific and Technical Information of China (English)

    Elena D.Shpak

    2013-01-01

    Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined.

  7. The maize PIN gene family of auxin transporters

    Directory of Open Access Journals (Sweden)

    Cristian eForestan

    2012-02-01

    Full Text Available Auxin is a key regulator of plant development and its differential distribution in plant tissues, established by a polar cell-to-cell transport, can trigger a wide range of developmental processes. A few members of the two families of auxin efflux transport proteins, PIN-formed (PIN and P-glycoprotein (ABCB/PGP, have so far been characterized in maize. Nine new Zea mays auxin efflux carriers PIN family members and two maize PIN-like genes have now been identified. Four members of PIN1 (named ZmPIN1a–d cluster, one gene homologous to AtPIN2 (ZmPIN2, three orthologs of PIN5 (ZmPIN5a–c, one gene paired with AtPIN8 (ZmPIN8, and three monocot-specific PINs (ZmPIN9, ZmPIN10a and b were cloned and the phylogenetic relationships between early land plants, monocots and eudicots PIN proteins investigated, including the new maize PIN proteins. Tissue-specific expression patterns of the twelve maize PIN genes, two PIN-like genes and ZmABCB1, an ABCB auxin efflux carrier, were analyzed using semi-quantitative RT–PCR. ZmPIN gene transcripts have overlapping expression domains in the root apex, during male and female inflorescence differentiation and kernel development. However, some PIN family members have specific tissue localization: ZmPIN1d transcript marks the L1 layer of the SAM and IM during the flowering transition and the monocot-specific ZmPIN9 is expressed in the root endodermis and pericycle. The phylogenetic and gene structure analyses together with the expression pattern of the ZmPIN gene family indicate that subfunctionalization of some maize PINs can be associated to the differentiation and development of monocot-specific organs and tissues and might have occurred after the divergence between dicots and monocots.

  8. Codon Preference Optimization Increases Prokaryotic Cystatin C Expression

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2012-01-01

    Full Text Available Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli. Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expression system codon preferences, the gene sequence was optimized while the amino acid sequence was maintained. The codon-optimized cysC (co-cysC and wild-type cysC (wt-cysC were expressed by cloning the genes into a pET-30a plasmid, thus transforming the recombinant plasmid into E. coli BL21. Before and after the optimization process, the prokaryotic expression vector and host bacteria were examined for protein expression and biological activation of CysC. The recombinant proteins in the lysate of the transformed bacteria were purified using Ni2+-NTA resin. Recombinant protein expression increased from 10% to 46% based on total protein expression after codon optimization. Recombinant CysC purity was above 95%. The significant increase in cysC expression in E. coli expression produced by codon optimization techniques may be applicable to commercial production systems.

  9. Sucrose metabolism gene families and their biological functions.

    Science.gov (United States)

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  10. Impact of Growth Hormone on Cystatin C

    OpenAIRE

    Lisa Sze; René L. Bernays; Cornelia Zwimpfer; Peter Wiesli; Michael Brändle; Christoph Schmid

    2013-01-01

    Background: Cystatin C (CysC) is an alternative marker to creatinine for estimation of the glomerular filtration rate (GFR). Hormones such as thyroid hormones and glucocorticoids are known to have an impact on CysC. In this study, we examined the effect of growth hormone (GH) on CysC in patients with acromegaly undergoing transsphenoidal surgery. Methods: Creatinine, CysC, GH and insulin-like growth factor-1 (IGF-1) were determined in 24 patients with acromegaly before and following transsphe...

  11. Impact of Growth Hormone on Cystatin C

    OpenAIRE

    Sze, Lisa; René L. Bernays; Zwimpfer, Cornelia; Wiesli, Peter; Brändle, Michael; Schmid, Christoph

    2013-01-01

    BACKGROUND: Cystatin C (CysC) is an alternative marker to creatinine for estimation of the glomerular filtration rate (GFR). Hormones such as thyroid hormones and glucocorticoids are known to have an impact on CysC. In this study, we examined the effect of growth hormone (GH) on CysC in patients with acromegaly undergoing transsphenoidal surgery. METHODS: Creatinine, CysC, GH and insulin-like growth factor-1 (IGF-1) were determined in 24 patients with acromegaly before and following transs...

  12. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    Science.gov (United States)

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  13. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2009-01-01

    Full Text Available Abstract Correction to Kirsch S, Pasantes J, Wolf A, Bogdanova N, Münch C, Pennekamp P, Krawczak M, Dworniczak B, Schempp W: Chromosomal evolution of the PKD1 gene family in primates. BMC Evolutionary Biology 2008, 8:263 (doi:10.1186/1471-2148-8-263

  14. Origin and evolution of laminin gene family diversity.

    Science.gov (United States)

    Fahey, Bryony; Degnan, Bernard M

    2012-07-01

    Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were

  15. Gene Expression Divergence and Evolutionary Analysis of the Drosomycin Gene Family in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Xiao-Juan Deng

    2009-01-01

    Full Text Available Drosomycin (Drs encoding an inducible 44-residue antifungal peptide is clustered with six additional genes, Dro1, Dro2, Dro3, Dro4, Dro5, and Dro6, forming a multigene family on the 3L chromosome arm in Drosophila melanogaster. To get further insight into the regulation of each member of the drosomycin gene family, here we investigated gene expression patterns of this family by either microbe-free injury or microbial challenges using real time RT-PCR. The results indicated that among the seven drosomycin genes, Drs, Dro2, Dro3, Dro4, and Dro5 showed constitutive expressions. Three out of five, Dro2, Dro3, and Dro5, were able to be upregulated by simple injury. Interestingly, Drs is an only gene strongly upregulated when Drosophila was infected with microbes. In contrast to these five genes, Dro1 and Dro6 were not transcribed at all in either noninfected or infected flies. Furthermore, by 5′ rapid amplification of cDNA ends, two transcription start sites were identified in Drs and Dro2, and one in Dro3, Dro4, and Dro5. In addition, NF-κB binding sites were found in promoter regions of Drs, Dro2, Dro3, and Dro5, indicating the importance of NF-κB binding sites for the inducibility of drosomycin genes. Based on the analyses of flanking sequences of each gene in D. melanogaster and phylogenetic relationship of drosomycins in D. melanogaster species-group, we concluded that gene duplications were involved in the formation of the drosomycin gene family. The possible evolutionary fates of drosomycin genes were discussed according to the combining analysis of gene expression pattern, gene structure, and functional divergence of these genes.

  16. Evolution of the MAGUK protein gene family in premetazoan lineages

    Directory of Open Access Journals (Sweden)

    Ruiz-Trillo Iñaki

    2010-04-01

    Full Text Available Abstract Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK

  17. Elevated triglycerides may affect cystatin C recovery.

    Science.gov (United States)

    Witzel, Samantha H; Butts, Katherine; Filler, Guido

    2014-05-01

    The purpose of this study was to investigate the effect of triglyceride concentration on cystatin C (CysC) measurements. Serum samples collected from 10 nephrology patients, 43 to 78years of age, were air centrifuged to separate aqueous and lipid layers. The lipid layer from each patient was pooled together to create a mixture with a high triglyceride concentration. This pooled lipid layer was mixed with each of the ten patient aqueous layers in six different ratios. Single factor ANOVA was used to assess whether CysC recovery was affected by triglyceride levels. Regression analysis was used to develop a formula to correct for the effect of triglycerides on CysC measurement, based on samples from 6 randomly chosen patients from our study population. The formula was validated with the 4 remaining samples. The analysis revealed a significant reduction in measured CysC with increasing concentrations of triglycerides (Pearson r=-0.56, ptriglycerides: Subsequent Bland-Altman plots revealed a bias (mean±1 standard deviation [SD]) of -3.7±15.6% for the data used to generate the correction formula and a bias of 3.52±9.38% for the validation set. Our results suggest that triglyceride concentrations significantly impact cystatin C measurements and that this effect may be corrected in samples that cannot be sufficiently clarified by air centrifugation using the equation that we developed. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Antigen-presenting cells in parotid glands contain cystatin D originating from acinar cells.

    Science.gov (United States)

    Nashida, Tomoko; Sato, Ritsuko; Haga-Tsujimura, Maiko; Yoshie, Sumio; Yoshimura, Ken; Imai, Akane; Shimomura, Hiromi

    2013-02-01

    Cystatin D encoded by Cst5 is a salivary classified type II cystatin. We investigated the dynamism of cystatin D by examining the distribution of cystatin D protein and mRNA in rats, to identify novel functions. The simultaneous expression of Cst5 and cystatin D was observed in parotid glands, however in situ hybridization showed that only acinar cells produced cystatin D. Synthesized cystatin D was localized in small vesicles and secreted from the apical side to the saliva, and from the basolateral side to the extracellular region, a second secretory pathway for cystatin D. We also identified antigen-presenting cells in the parotid glands that contained cystatin D without the expression of Cst5, indicating the uptake of cystatin D from the extracellular region. Cystatin D was detected in blood serum and renal tubular cells with megalin, indicating the circulation of cystatin D through the body and uptake by renal tubular cells. Thus, the novel dynamism of cystatin D was shown and a function for cystatin D in the regulation of antigen-presenting cell activity was proposed.

  19. PARK1 gene mutation of autosomal dominant Parkinson's disease family

    Institute of Scientific and Technical Information of China (English)

    Ligang Jiang; Guohua Hu; Qiuhui Chen; Ying Zhang; Xinyu Hu; Jia Fan; Lifeng Liu; Rui Guo; Yajuan Sun; Yixhi Zhang

    2011-01-01

    Studies have shown that PARK1 gene is associated with the autosomal dominant inheritance of Parkinson's disease.PARK1 gene contains two mutation sites, namely Ala30Pro and AIa53Thr, which are located on exons 3 and 4, respectively.However, the genetic loci of the pathogenic genes remain unclear.In this study, blood samples were collected from 11 members of a family with high prevalence of Parkinson's disease, including four affected cases, five suspected cases,and two non-affected cases.Point mutation screening of common mutation sites on PARK1 gene exon 4 was conducted using PCR, to determine the genetic loci of the causative gene for Parkinson's disease.Gene identification and sequencing results showed that a T base deletion mutation was observed in the PARK1 gene exon 4 of all 11 collected samples.It was confirmed that the PARKf gene exon 4 gene mutation is an important pathogenic mutation for Parkinson's disease.

  20. The genetics of alcoholism: identifying specific genes through family studies.

    Science.gov (United States)

    Edenberg, Howard J; Foroud, Tatiana

    2006-09-01

    Alcoholism is a complex disorder with both genetic and environmental risk factors. Studies in humans have begun to elucidate the genetic underpinnings of the risk for alcoholism. Here we briefly review strategies for identifying individual genes in which variations affect the risk for alcoholism and related phenotypes, in the context of one large study that has successfully identified such genes. The Collaborative Study on the Genetics of Alcoholism (COGA) is a family-based study that has collected detailed phenotypic data on individuals in families with multiple alcoholic members. A genome-wide linkage approach led to the identification of chromosomal regions containing genes that influenced alcoholism risk and related phenotypes. Subsequently, single nucleotide polymorphisms (SNPs) were genotyped in positional candidate genes located within the linked chromosomal regions, and analyzed for association with these phenotypes. Using this sequential approach, COGA has detected association with GABRA2, CHRM2 and ADH4; these associations have all been replicated by other researchers. COGA has detected association to additional genes including GABRG3, TAS2R16, SNCA, OPRK1 and PDYN, results that are awaiting confirmation. These successes demonstrate that genes contributing to the risk for alcoholism can be reliably identified using human subjects.

  1. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    Science.gov (United States)

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  2. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    Science.gov (United States)

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  3. TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Mutai Hideki

    2003-06-01

    Full Text Available Abstract Background Mutations in the transmembrane cochlear expressed gene 1 (TMC1 cause deafness in human and mouse. Mutations in two homologous genes, EVER1 and EVER2 increase the susceptibility to infection with certain human papillomaviruses resulting in high risk of skin carcinoma. Here we report that TMC1, EVER1 and EVER2 (now TMC6 and TMC8 belong to a larger novel gene family, which is named TMC for trans membrane channel-like gene family. Results Using a combination of iterative database searches and reverse transcriptase-polymerase chain reaction (RT-PCR experiments we assembled contigs for cDNA encoding human, murine, puffer fish, and invertebrate TMC proteins. TMC proteins of individual species can be grouped into three subfamilies A, B, and C. Vertebrates have eight TMC genes. The majority of murine TMC transcripts are expressed in most organs; some transcripts, however, in particular the three subfamily A members are rare and more restrictively expressed. Conclusion The eight vertebrate TMC genes are evolutionary conserved and encode proteins that form three subfamilies. Invertebrate TMC proteins can also be categorized into these three subfamilies. All TMC genes encode transmembrane proteins with intracellular amino- and carboxyl-termini and at least eight membrane-spanning domains. We speculate that the TMC proteins constitute a novel group of ion channels, transporters, or modifiers of such.

  4. Exclusive gene mapping of congenital microphthalmia in a Chinese family

    Institute of Scientific and Technical Information of China (English)

    YIN Yanan; LI Hui; YU Ping; ZHOU Qiang; ZHAO Luhang; ZHANG Ya-Ping

    2006-01-01

    Congenital microphthalmia is a developmental ocular disorder and might be caused by the mutations in the genes involved in eye development.To uncover the genetic cause in a six-generation Chinese pedigree with autosomal dominant congenital microphthalmia, we performed genescan and linkage analysis in this family. Fourteen microsatellite markers on chromosomes 3, 11, 14 and 15 were selected as genetic markers according to the five previously reported loci associated with microphthalmia (MITF, SOX2, PAX6, MCOP and NN02). The genomic DNA of each member in the pedigree was amplified with 14 pairs of fluorescence labeled primers. Genome screening and genotyping were conducted on ABI377 DNA sequencer and linkage analysis was performed with Linkage software package. All two-point LOD scores of linkage analysis between the suggested disease genes and microsatellite markers were <-2, which indicated that none of the five genes were responsible for microphthalmia in this Chinese family. Microphthalmia in this family may be caused by mutation in a new gene which is essential in eye development.

  5. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families.

    Science.gov (United States)

    Vyas, Valmik K; Barrasa, M Inmaculada; Fink, Gerald R

    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.

  6. 蛇毒cystatin基因真核表达质粒的构建与表达%Construction of Recombinant Plasmid Containing Snake Venom Cystatin Gene and Its Expression

    Institute of Scientific and Technical Information of China (English)

    郑海音; 林旭; 林建银

    2006-01-01

    目的 构建蛇毒cystatin真核表达载体pcDNA3.1/His-cystatin,对其在COS7细胞中的表达进行初步研究.方法 采用PCR法扩增蛇毒cystatin基因片段,插入pcDNA3.1/His C载体中,测定DNA序列后,转染COS7细胞,利用Western-blot检测COS7细胞中cystatin基因的表达.结果 经酶切、测序鉴定证实插入片断已正确,Western-blot检测表明融合蛋白能够在COS7细胞中表达.结论 构建的真核表达载体peDNA3.1/His-cystatin能够在COS7细胞中表达蛇毒cystatin融合蛋白.

  7. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  8. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  9. The WRKY Gene Family in Rice (Oryza sativa)

    Institute of Scientific and Technical Information of China (English)

    Christian A. Ross; Yue Liu; Qingxi J. Shen

    2007-01-01

    WRKYgenes encode transcription factors that are involved in the regulation of various biological processes. These zinc-finger proteins, especially those members mediating stress responses, are uniquely expanded in plants. To facilitate the study of the evolutionary history and functions of this supergene family, we performed an exhaustive search for WRKY genes using HMMER and a Hidden Markov Model that was specifically trained for rice. This work resulted in a comprehensive list of WRKY gene models in Oryza sativa L. ssp. indica and L. ssp. japonica. Mapping of these genes to individual chromosomes facilitated elimination of the redundant, leading to the identification of 98 WRKY genes in japonica and 102 in indica rice. These genes were further categorized according to the number and structure of their zinc-finger domains. Based on a phylogenetic tree of the conserved WRKY domains and the graphic display of WRKY loci on corresponding indica and japonica chromosomes, we identified possible WRKY gene duplications within, and losses between the two closely related rice subspecies. Also reviewed are the roles of WRKY genes in disease resistance and responses to salicylic acid and jasmonic acid, seed development and germination mediated by gibberellins, other developmental processes including senescence, and responses to abiotic stresses and abscisic acid in rice and other plants. The signaling pathways mediating WRKY gene expression are also discussed.

  10. The mammalian PYHIN gene family: Phylogeny, evolution and expression

    Directory of Open Access Journals (Sweden)

    Cridland Jasmyn A

    2012-08-01

    Full Text Available Abstract Background Proteins of the mammalian PYHIN (IFI200/HIN-200 family are involved in defence against infection through recognition of foreign DNA. The family member absent in melanoma 2 (AIM2 binds cytosolic DNA via its HIN domain and initiates inflammasome formation via its pyrin domain. AIM2 lies within a cluster of related genes, many of which are uncharacterised in mouse. To better understand the evolution, orthology and function of these genes, we have documented the range of PYHIN genes present in representative mammalian species, and undertaken phylogenetic and expression analyses. Results No PYHIN genes are evident in non-mammals or monotremes, with a single member found in each of three marsupial genomes. Placental mammals show variable family expansions, from one gene in cow to four in human and 14 in mouse. A single HIN domain appears to have evolved in the common ancestor of marsupials and placental mammals, and duplicated to give rise to three distinct forms (HIN-A, -B and -C in the placental mammal ancestor. Phylogenetic analyses showed that AIM2 HIN-C and pyrin domains clearly diverge from the rest of the family, and it is the only PYHIN protein with orthology across many species. Interestingly, although AIM2 is important in defence against some bacteria and viruses in mice, AIM2 is a pseudogene in cow, sheep, llama, dolphin, dog and elephant. The other 13 mouse genes have arisen by duplication and rearrangement within the lineage, which has allowed some diversification in expression patterns. Conclusions The role of AIM2 in forming the inflammasome is relatively well understood, but molecular interactions of other PYHIN proteins involved in defence against foreign DNA remain to be defined. The non-AIM2 PYHIN protein sequences are very distinct from AIM2, suggesting they vary in effector mechanism in response to foreign DNA, and may bind different DNA structures. The PYHIN family has highly varied gene composition between

  11. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2008-09-01

    Full Text Available Abstract Background The autosomal dominant polycystic kidney disease (ADPKD is mostly caused by mutations in the PKD1 (polycystic kidney disease 1 gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative

  12. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  13. Mutation Analysis of HTRA2 Gene in Chinese Familial Essential Tremor and Familial Parkinson's Disease.

    Science.gov (United States)

    He, Ya-Chao; Huang, Pei; Li, Qiong-Qiong; Sun, Qian; Li, Dun-Hui; Wang, Tian; Shen, Jun-Yi; Du, Juan-Juan; Cui, Shi-Shuang; Gao, Chao; Fu, Rao; Chen, Sheng-Di

    2017-01-01

    Background. HTRA2 has already been nominated as PARK13 which may cause Parkinson's disease, though there are still discrepancies among these results. Recently, Gulsuner et al.'s study found that HTRA2 p.G399S is responsible for hereditary essential tremor and homozygotes of this allele develop Parkinson's disease by examining a six-generation family segregating essential tremor and essential tremor coexisting with Parkinson's disease. We performed this study to validate the condition of HTRA2 gene in Chinese familial essential tremor and familial Parkinson's disease patients, especially essential tremor. Methods. We directly sequenced all eight exons, exon-intron boundaries, and part of the introns in 101 familial essential tremor patients, 105 familial Parkinson's disease patients, and 100 healthy controls. Results. No exonic variant was identified, while one exon-intron boundary variant (rs2241028) and one intron variant (rs2241027) were detected, both with no clinical significance and uncertain function. There was no difference in allele, genotype, and haplotype between groups. Conclusions. HTRA2 exonic variant might be rare among Chinese Parkinson's disease and essential tremor patients with family history, and HTRA2 may not be the cause of familial Parkinson's disease and essential tremor in China.

  14. Growth stimulation of 3T3 fibroblasts by Cystatin

    Energy Technology Data Exchange (ETDEWEB)

    Quan Sun (Michigan State Univ., East Lansing (United States) Beijing Medical Univ. (China))

    1989-01-01

    Treatment of cultures of mouse 3T3 fibroblasts with Cystatin C, a thiol-proteinase inhibitor isolated from chicken egg white, resulted in an enhanced rate of cell proliferation. This stimulation was demonstrated using two independent assay systems: (a) assessment of total cell number and (b) measurement of ({sup 3}H)thymidine incorporated into acid-precipitable DNA. In both assays, the dose-response curves of Cystatin stimulation showed a rising function that plateaued at a concentration of {approximately}120 {mu}g/ml. The addition of Cystatin to cultures of Kirsten murine sarcoma virus-transformed 3T3 cells also enhanced DNA synthesis in these target cells. Control experiments showed that the presence of Cystatin did not alter the level of binding of radioactively labeled epidermal growth factor and platelet derived growth factor to 3T3 cells. These results argue against the possibility that the observed growth stimulation by Cystatin was due to growth factor contamination of the Cystatin preparation.

  15. Variation in the RAD51 gene and familial breast cancer

    Science.gov (United States)

    Lose, Felicity; Lovelock, Paul; Chenevix-Trench, Georgia; Mann, Graham J; Pupo, Gulietta M; Spurdle, Amanda B

    2006-01-01

    Introduction Human RAD51 is a homologue of the Escherichia coli RecA protein and is known to function in recombinational repair of double-stranded DNA breaks. Mutations in the lower eukaryotic homologues of RAD51 result in a deficiency in the repair of double-stranded DNA breaks. Loss of RAD51 function would therefore be expected to result in an elevated mutation rate, leading to accumulation of DNA damage and, hence, to increased cancer risk. RAD51 interacts directly or indirectly with a number of proteins implicated in breast cancer, such as BRCA1 and BRCA2. Similar to BRCA1 mice, RAD51-/- mice are embryonic lethal. The RAD51 gene region has been shown to exhibit loss of heterozygosity in breast tumours, and deregulated RAD51 expression in breast cancer patients has also been reported. Few studies have investigated the role of coding region variation in the RAD51 gene in familial breast cancer, with only one coding region variant – exon 6 c.449G>A (p.R150Q) – reported to date. Methods All nine coding exons of the RAD51 gene were analysed for variation in 46 well-characterised, BRCA1/2-negative breast cancer families using denaturing high-performance liquid chromatography. Genotyping of the exon 6 p.R150Q variant was performed in an additional 66 families. Additionally, lymphoblastoid cell lines from breast cancer patients were subjected to single nucleotide primer extension analysis to assess RAD51 expression. Results No coding region variation was found, and all intronic variation detected was either found in unaffected controls or was unlikely to have functional consequences. Single nucleotide primer extension analysis did not reveal any allele-specific changes in RAD51 expression in all lymphoblastoid cell lines tested. Conclusion Our study indicates that RAD51 is not a major familial breast cancer predisposition gene. PMID:16762046

  16. Differential gene regulation by the SRC family of coactivators

    Institute of Scientific and Technical Information of China (English)

    HuaZhang; XiaYi; Xiaojingsun; NaYin; BinShi; HuijianWu; DanWang; GeWu; YongfengShang

    2005-01-01

    SRCs (steroid receptor coactivatorsl are required for nuclear receptor-mediated transcription and are also implicated in the transcription initiation by other transcription factors, such as STATs and NFKB. Despite phenotypic manifestations in gene knockout mice for SRC-1, GRIP1, and AIB1 of the SRC (Steroid Receptor Coactivator) family indicating their differential roles in animal physiology, there is no clear evidence, at the molecular level, to support a functional specificity for these proteins. We demonstrated in this report that two species of SRC coactivators, either as AIBI:GRIP1 or as AIBI:SRC-1 are recruited, possibly through heterodimerization, on the promoter of genes that contain a classical hormone responsive element (HRE). In contrast, on non-HRE-containing gene promoters, on which steroid receptors bind indirectly, either GRIP1 orSRC-1 is recruited as a monomer, depending on the cellular abundance of the protein. Typically, non-HRE-containing genes are early genes activated by steroid receptors, whereas HRE-containing genes are activated later. Our results also showed that SRC proteins contribute to the temporal regulation of gene transcription. In addition, our experiments revealed a positive correlation between AIB1/c-myc overexpression in ER+ breast carcinoma samples, suggesting a possible mechanism for AIB1/n breast cancer carcinogenesis.

  17. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    Science.gov (United States)

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  18. Tomato ABSCISIC ACID STRESS RIPENING (ASR gene family revisited.

    Directory of Open Access Journals (Sweden)

    Ido Golan

    Full Text Available Tomato ABSCISIC ACID RIPENING 1 (ASR1 was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each, whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons. ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA. Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  19. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    Science.gov (United States)

    Li, Wei; Xu, Hanyun; Liu, Ying; Song, Lili; Guo, Changhong; Shu, Yongjun

    2016-01-01

    Mitogen-activated protein kinase kinase kinase (MAPKKK) is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome-wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high-throughput sequencing-data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA-seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome-wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula. PMID:27049397

  20. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-04-01

    Full Text Available Mitogen‐activated protein kinase kinase kinase (MAPKKK is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome‐wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high‐throughput sequencing‐data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA‐seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome‐wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula.

  1. PRODH gene is associated with executive function in schizophrenic families.

    Science.gov (United States)

    Li, Tao; Ma, Xiaohong; Hu, Xun; Wang, Yingcheng; Yan, Chengying; Meng, Huaqing; Liu, Xiehe; Toulopoulou, Timothea; Murray, Robin M; Collier, David A

    2008-07-05

    The aim of this study was to investigate the relationship between polymorphisms in the PRODH and COMT genes and selected neurocognitive functions. Six SNPs in PRODH and two SNPs in COMT were genotyped in 167 first-episode schizophrenic families who had been assessed by a set of 14 neuropsychological tests. Neuropsychological measures were selected as quantitative traits for association analysis. The haplotype of SNPs PRODH 1945T/C and PRODH 1852G/A was associated with impaired performance on the Tower of Hanoi, a problem-solving task mainly reflecting planning capacity. There was no significant evidence for association with any other neuropsychological traits for other SNPs or haplotypes of paired SNPs in the two genes. This study takes previous findings of association between PRODH and schizophrenia further by associating variation within the gene with performance on a neurocognitive trait characteristic of the illness. It fails to confirm previous reports of an association between COMT and cognitive function.

  2. Biofuel Potential of Plants Transformed Genetically With NAC Family Genes

    Directory of Open Access Journals (Sweden)

    Sadhana eSingh

    2016-01-01

    Full Text Available NAC genes contribute to enhance survivability of plants under conditions of environmental stress and in secondary growth of the plants, thereby building biomass. Thus, genetic transformation of plants using NAC genes provides a possibility to tailor made biofuel plants. Over-expression studies have indicated that NAC family genes can provide tolerance to various biotic and abiotic stresses, either by physiological or biochemical changes at the cellular level, or by affecting visible morphological and anatomical changes, for example by development of lateral roots in a number of plants. Over-expression of these genes also work as triggers for development of secondary cell walls. In our laboratory, we have observed a NAC gene from Lepidium latifolium contributing to both enhanced biomass as well as cold stress tolerance of model plants tobacco. Thus, we have reviewed all the developments of genetic engineering using NAC genes which could enhance the traits required for biofuel plants, either by enhancing the stress tolerance or by enhancing the biomass of the plants. KeywordsNAC, Genetically engineered plants, Abiotic stress tolerance, Secondary growth, Cell wall synthesis, Biomass

  3. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression.

    Science.gov (United States)

    Opazo, Juan C; Hoffmann, Federico G; Natarajan, Chandrasekhar; Witt, Christopher C; Berenbrink, Michael; Storz, Jay F

    2015-04-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.

  4. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  5. FlyPhy: a phylogenomic analysis platform for Drosophila genes and gene families

    Directory of Open Access Journals (Sweden)

    Bao Qiyu

    2009-04-01

    Full Text Available Abstract Background The availability of 12 fully sequenced Drosophila species genomes provides an excellent opportunity to explore the evolutionary mechanism, structure and function of gene families in Drosophila. Currently, several important resources, such as FlyBase, FlyMine and DroSpeGe, have been devoted to integrating genetic, genomic, and functional data of Drosophila into a well-organized form. However, all of these resources are gene-centric and lack the information of the gene families in Drosophila. Description FlyPhy is a comprehensive phylogenomic analysis platform devoted to analyzing the genes and gene families in Drosophila. Genes were classified into families using a graph-based Markov Clustering algorithm and extensively annotated by a number of bioinformatic tools, such as basic sequence features, functional category, gene ontology terms, domain organization and sequence homolog to other databases. FlyPhy provides a simple and user-friendly web interface to allow users to browse and retrieve the information at multiple levels. An outstanding feature of the FlyPhy is that all the retrieved results can be added to a workset for further data manipulation. For the data stored in the workset, multiple sequence alignment, phylogenetic tree construction and visualization can be easily performed to investigate the sequence variation of each given family and to explore its evolutionary mechanism. Conclusion With the above functionalities, FlyPhy will be a useful resource and convenient platform for the Drosophila research community. The FlyPhy is available at http://bioinformatics.zj.cn/fly/.

  6. Plasma cathepsin S and cystatin C levels and risk of abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Lv, Bing-Jie; Lindholt, Jes Sanddal; Cheng, Xiang

    2012-01-01

    Human abdominal aortic aneurysm (AAA) lesions contain high levels of cathepsin S (CatS), but are deficient in its inhibitor, cystatin C. Whether plasma CatS and cystatin C levels are also altered in AAA patients remains unknown.......Human abdominal aortic aneurysm (AAA) lesions contain high levels of cathepsin S (CatS), but are deficient in its inhibitor, cystatin C. Whether plasma CatS and cystatin C levels are also altered in AAA patients remains unknown....

  7. BRCA1 Gene Mutations in Chinese Families with Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Yurong Shi; Chenbin Li; Ruifang Niu; Xishan Hao; Xiangcheng Zhi; Liansheng Ning

    2005-01-01

    OBJECTIVE To investigate the frequency of BRCA1 gene mutations in breast cancer families in China.METHODS Genomic DNA was obtained by conventional techniques from the peripheral blood mononuclear cells collected from 94 persons derived from 45 breast cancer families. All participants gave written informed consent. The mutations in the BRCA1 gene were detected by the polymerase chain reaction and single stranded conformation polymorphism(PCR-SSCP). Then , the samples of interest were sent for direct DNA sequencing.RESULTS No mutation sites were found in exon 2 or 20 by DNA sequencing.Eight sites were found in exon 11 such as 2201C>T (Ser694Ser),3232A>G(Glu 1038Gly), 2201C >A/G (Ser694Arg), 2731C >T (Pro871Leu),2086A >T(Asn591lle) and three sites of 1584G>T (Glu424Stop). Three mutation sites were found in exon 16 which included 5106A >G (Met1663Val),5208delT(Stop 1639) and 4956A>G (Ser 1613Gly).CONCLUSION These mutation sites may be related to breast cancer, but more investigation is needed to determine whether the mutation sites are hot spots of mutations in Chinese familial breast cancer patients.

  8. Family genetic algorithms based on gene exchange and its application

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Ding Xiangqian; Wang Sunan; Yu Qing

    2006-01-01

    Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance.

  9. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin.

    Science.gov (United States)

    Rasoolizadeh, Asieh; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique

    2016-04-01

    A causal link has been reported between positively selected amino acids in plant cystatins and the inhibitory range of these proteins against insect digestive cysteine (Cys) proteases. Here we assessed the impact of single substitutions to closely related amino acids on the contribution of positive selection to cystatin diversification. Cystatin sequence alignments, while confirming hypervariability, indicated a preference for related amino acids at positively selected sites. For example, the non-polar residues leucine (Leu), isoleucine (Ile) and valine (Val) were shown to predominate at positively selected site 2 in the N-terminal region, unlike selected sites 6 and 10, where polar residues are preferred. The model cystatin SlCYS8 and single variants with Leu, Ile or Val at position 2 were compared with regard to their ability to bind digestive proteases of the coleopteran pest Leptinotarsa decemlineata and to induce compensatory responses in this insect. A functional proteomics procedure to capture target Cys proteases in midgut extracts allowed confirmation of distinct binding profiles for the cystatin variants. A shotgun proteomics procedure to monitor whole Cys protease complements revealed protease family specific compensatory responses in the insect, dependent on the variant ingested. Our data confirm the contribution of closely related amino acids to the functional diversity of positively selected plant cystatins in a broader structure/function context imposing physicochemical constraints to primary structure alterations. They also underline the complexity of protease/inhibitor interactions in plant-insect systems, and the challenges still to be met in order to harness the full potential of ectopically expressed protease inhibitors in crop protection.

  10. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Directory of Open Access Journals (Sweden)

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  11. 人cystatin B基因在哺乳动物细胞株中的定位与表达%Location and expression of human cystatin B genein mammalian cell lines

    Institute of Scientific and Technical Information of China (English)

    耿慧武; 刘君; 陈应炉; 杨军; 刘晓颖; 范礼斌

    2012-01-01

    目的 用基因克隆方法 构建带FLAG-tag的人cystatin B真核表达载体,用其转染COS-7和HEK 293 T细胞观察cystatin B在增殖细胞内的定位;转染HEK 293 T细胞检测其表达.方法 设计带FLAG-tag的引物,以人cystatin B全长cDNA序列的质粒为模板,PCR法扩增cystatin B全长序列,然后插入pCDNA 3中构建pCDNA 3-cystatin B-FLAG(CSTBF)质粒;脂质体法转染至COS-7、HEK 293 T细胞,荧光显微镜下观察其在细胞内定位;转染至HEK 293 T细胞,提取细胞总蛋白进行Western blot.结果 正确构建了pCDNA 3- cystatin B-FLAG质粒;定位实验表明在COS-7和HEK 293 T细胞中,cystatin B主要分布在细胞核内,核膜处更集中,胞浆内也有广泛分布;Western blot结果 表明该质粒能在细胞中有效表达.结论 该研究结果 为了解cystatin B在细胞内与其他蛋白质相互作用及功能提供了一定的基础.%To construct FLAG-tagged human cystatin B vector with gene clone, transfect into mammalian cell lines covering COS-7 and HEK 293 T, and to investigate the location and expression of cystatin B. Methods The full length cDNA fragment of cystatin B was used to PCR amplify which promoted by a couple of FLAG-tagged primers. The yield was inserted into pCDNA3 vector to construct a pCDN A3 -cystatin B-FLAG( CSTBF ) plasmid followed by transfection with leposomes. Images of location of the protein within COS-7 and HEK 293 T were obtained by fluorescence microscope, while expression was detected by Western blot. Results Cystatin B not only predominantly located within nucleus especially surrounding the nuclear membrane, but also within cytoplasm extensively. Furthermore, the protein was detected in the lysate of HEK 293 T cells. Conclusion The results provide a basis for interaction and functions with other protein.

  12. A novel mutation of KCNQ3 gene in a Chinese family with benign familial neonatal convulsions.

    Science.gov (United States)

    Li, Haiyan; Li, Nan; Shen, Lu; Jiang, Hong; Yang, Qian; Song, Yanmin; Guo, Jifeng; Xia, Kun; Pan, Qian; Tang, Beisha

    2008-03-01

    Benign familial neonatal convulsions (BFNC, also named benign familial neonatal seizures, BFNS) is a rare autosomal dominant inherited epilepsy syndrome with clinical and genetic heterogeneity. Two voltage-gated potassium channel subunit genes, KCNQ2 and KCNQ3, have been identified to cause BFNC1 and BFNC2, respectively. To date, only three mutations of KCNQ3, all located within exon 5, have been reported. By limited linkage analysis and mutation analysis of KCNQ3 in a Chinese family with BFNC, we identified a novel missense mutation of KCNQ3, c.988C>T located within exon 6. c.988C>T led to the substitution Cys for Arg in amino acid position 330 (p.R330C) in KCNQ3 potassium channel, which possibly impaired the neuronal M-current and altered neuronal excitability. Seizures of all BFNC patients started from day 2 to 3 after birth and remitted during 1 month, and no recurrence was found. One family member who displayed fever-associated seizures for two times at age 5 years and was diagnosed as febrile seizures, however, did not carry this mutation, which suggests that febrile seizures and BFNC have different pathogenesis. To our knowledge, this is the first report of KCNQ3 mutation in Chinese family with BFNC.

  13. The biology of cystatin M/E and its cognate target proteases.

    NARCIS (Netherlands)

    Zeeuwen, P.L.J.M.; Cheng, T.; Schalkwijk, J.

    2009-01-01

    Cystatin M/E is a member of a superfamily of evolutionarily-related cysteine protease inhibitors that provide regulatory and protective functions against uncontrolled proteolysis by cysteine proteases. Although most cystatins are ubiquitously expressed, high levels of cystatin M/E expression are mai

  14. The ANKH gene and familial calcium pyrophosphate dihydrate deposition disease.

    Science.gov (United States)

    Netter, Patrick; Bardin, Thomas; Bianchi, Arnaud; Richette, Pascal; Loeuille, Damien

    2004-09-01

    Familial calcium pyrophosphate dihydrate deposition (CPPD) disease is a chronic condition in which CPPD microcrystals deposit in the joint fluid, cartilage, and periarticular tissues. Two forms of familial CPPD disease have been identified: CCAL1 and CCAL2. The CCAL1 locus is located on the long arm of chromosome 8 and is associated with CPPD and severe osteoarthritis. The CCAL2 locus has been mapped to the short arm of chromosome 5 and identified in families from the Alsace region of France and the United Kingdom. The ANKH protein is involved in pyrophosphate metabolism and, more specifically, in pyrophosphate transport from the intracellular to the extracellular compartment. Numerous ANKH gene mutations cause familial CCAL2; they enhance ANKH protein activity, thereby elevating extracellular pyrophosphate levels and promoting the formation of pyrophosphate crystals, which produce the manifestations of the disease. Recent studies show that growth factors and cytokines can modify the expression of the normal ANKH protein. These results suggest a role for ANKH in sporadic CPPD disease and in CPPD associated with degenerative disease.

  15. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes.

    Science.gov (United States)

    Prasad, M K; Laouina, S; El Alloussi, M; Dollfus, H; Bloch-Zupan, A

    2016-12-01

    Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of diseases characterized by enamel defects. The authors have identified a large consanguineous Moroccan family segregating different clinical subtypes of hypoplastic and hypomineralized AI in different individuals within the family. Using targeted next-generation sequencing, the authors identified a novel heterozygous nonsense mutation in COL17A1 (c.1873C>T, p.R625*) segregating with hypoplastic AI and a novel homozygous 8-bp deletion in C4orf26 (c.39_46del, p.Cys14Glyfs*18) segregating with hypomineralized-hypoplastic AI in this family. This study highlights the phenotypic and genotypic heterogeneity of AI that can exist even within a single consanguineous family. Furthermore, the identification of novel mutations in COL17A1 and C4orf26 and their correlation with distinct AI phenotypes can contribute to a better understanding of the pathophysiology of AI and the contribution of these genes to amelogenesis.

  16. Familial adenomatous polyposis associated APC gene mutation - A case study

    Directory of Open Access Journals (Sweden)

    Avinash Bardia1, Santosh K. Tiwari1, Sandeep K. Vishwakarma1, Md. Aejaz Habeeb1, Pratibha Nallari2, Aleem A. Khan1

    2013-08-01

    Full Text Available Familial adenomatous polyposis (FAP is an autosomal dominant condition characterized by diffuse intestinal polyposis, specific gene mutation, and predisposition for developing colon cancer. Left untreated, patients with FAP will develop colorectal carcinoma during early adulthood. Hence, early detection and surgical intervention are of the utmost importance. Colectomy is required and may include an ileal pouch with ileo-anal anastomosis, which eli-minates the colon and rectal disease while preserving fecal continence and avoidance of a permanent ileostomy. We report a case of colorectal cancer along with FAP showed features consistent with adenomatous polyposis coli and no evidence of malignancy was seen after the surgery.

  17. Management of asymptomatic gene carriers of transthyretin familial amyloid polyneuropathy.

    Science.gov (United States)

    Schmidt, Hartmut H-J; Barroso, Fabio; González-Duarte, Alejandra; Conceição, Isabel; Obici, Laura; Keohane, Denis; Amass, Leslie

    2016-09-01

    Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare, severe, and irreversible, adult-onset, hereditary disorder caused by autosomal-dominant mutations in the TTR gene that increase the intrinsic propensity of transthyretin protein to misfold and deposit systemically as insoluble amyloid fibrils in nerve tissues, the heart, and other organs. TTR-FAP is characterized by relentless, progressively debilitating polyneuropathy, and leads to death, on average, within 10 years of symptom onset without treatment. With increased availability of disease-modifying treatment options for a wider spectrum of patients with TTR-FAP, timely detection of the disease may offer substantial clinical benefits. This review discusses mutation-specific predictive genetic testing in first-degree relatives of index patients diagnosed with TTR-FAP and the structured clinical follow-up of asymptomatic gene carriers for prompt diagnosis and early therapeutic intervention before accumulation of substantial damage. Muscle Nerve 54: 353-360, 2016.

  18. Cystatin C Associates with Arterial Stiffness in Older Adults

    Science.gov (United States)

    Madero, Magdalena; Wassel, Christina L.; Peralta, Carmen A.; Najjar, Samer S.; Sutton-Tyrrell, Kim; Fried, Linda; Canada, Robert; Newman, Anne; Shlipak, Michael G.; Sarnak, Mark J.

    2009-01-01

    Large arteries commonly become stiff in kidney failure, but few studies have investigated arterial stiffness in earlier stages of kidney disease. We evaluated the association between kidney function and aortic pulse wave velocity (aPWV) and its potential modification by race, diabetes, or coronary heart disease in older adults. We measured aPWV in 2468 participants in the Health Aging and Body Composition (Health ABC) study; mean age was 73.7 yr, 40% were black, and 24% had diabetes. After categorizing kidney function into three groups on the basis of cystatin C level, multivariable analysis revealed that the medium and high cystatin C groups associated with a 5.3% (95% confidence interval 0.8 to 10.0%) and 8.0% (95% confidence interval 2.2 to 14.1%) higher aPWV than the low cystatin C group; however, chronic kidney disease, as defined by estimated GFR <60 ml/min per 1.73 m2, did not significantly associate with aPWV. We did not identify interactions between cystatin C and race, diabetes, or coronary heart disease. In conclusion, stiffness of large arteries, a major risk factor for cardiovascular disease, may partially mediate the association between cystatin C and cardiovascular risk in older adults. PMID:19357259

  19. The usefulness of cystatin C and related formulae in pediatrics.

    Science.gov (United States)

    Filler, Guido; Huang, Shih-Han S; Yasin, Abeer

    2012-12-01

    Serum creatinine does not share the properties of an ideal marker of glomerular filtration rate (GFR) like inulin, but continues to be the most widely used endogenous marker of GFR. In the search of a better biomarker of GFR, the small molecular weight protein cystatin C has been introduced with features more similar to that of inulin, such as constant production and no non-renal elimination. However,it has not enjoyed widespread use despite its significantly improved diagnostic performance in the detection of impaired GFR and its independence of body composition. A variety of formulae based on either cystatin C or creatinine or both have been developed to estimate GFR. We summarize the currently used methods of GFR measurement, their limitations and analytical errors. The review also summarizes the history, features and the feasibility of cystatin C measurements as well as the most widely used formulae for the estimation of GFR in children. The diagnostic performance of the cystatin C derived eGFR formulae at various levels of GFR is also discussed. An eGFR formula derived from pooled studies analyzing both creatinine and cystatin C, and using a biology-based mathematical approach maybe advantageous.

  20. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    Science.gov (United States)

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  1. Molecular Evolution of the TET Gene Family in Mammals

    Directory of Open Access Journals (Sweden)

    Hiromichi Akahori

    2015-12-01

    Full Text Available Ten-eleven translocation (TET proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3 in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function.

  2. C-terminal KDEL-modified cystatin C is retained in transfected CHO cells

    DEFF Research Database (Denmark)

    Johansen, Teit Eliot; Vogel, Charlotte Katrine; Schwartz, Thue W.

    1990-01-01

    The significance of a C-terminal tetrapeptide, Lys-Asp-Glu-Leu (KDEL), as a retention signal for the endoplasmatic reticulum was studied using cystatin C, a general thiol protease inhibitor, as the reporter protein. Clones of CHO cells were analyzed after stable transfection with eukaryotic...... expression vectors encoding either cystatin C, KDEL extended cystatin C, or cystatin C extended with a control sequence. It is concluded that cystatin C with the KDEL tetrapeptide as a C-terminal extension is retained intracellularly without apparent accumulation of the molecule....

  3. Babesia bovis expresses Bbo-6cys-E, a member of a novel gene family that is homologous to the 6-cys family of Plasmodium

    Science.gov (United States)

    A novel Babesia bovis gene family encoding proteins with similarities to the Plasmodium 6cys protein family was identified by TBLASTN searches of the Babesia bovis genome using the sequence of the P. falciparum PFS230 protein as query, and was termed Bbo-6cys gene family. The Bbo-cys6 gene family co...

  4. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.

  5. Determination of cystatin C in serum and its clinical significance%血清cystatin C对肾小球滤过功能价值的探讨

    Institute of Scientific and Technical Information of China (English)

    沈清; 甘华; 谯林; 刘俞梅

    2002-01-01

    目的探讨血清半胱氨酸蛋白酶抑制剂-C(cystatin C)与肾小球滤过功能的临床意义.方法用ELISA法测定血清cystatin C的水平,同步测定Ccr和Scr,将血清cystatin C与Ccr和Scr相比较,分析它们的相关性和诊断的敏感性.结果血清cystatin C与Ccr有高度的相关性,并且血清cystatin C的诊断敏感性优与Scr.结论血清cystatin C是反映肾小球滤过功能的可靠、敏感的指标.

  6. Differential roles of TGIF family genes in mammalian reproduction

    Directory of Open Access Journals (Sweden)

    Renfree Marilyn B

    2011-09-01

    Full Text Available Abstract Background TG-interacting factors (TGIFs belong to a family of TALE-homeodomain proteins including TGIF1, TGIF2 and TGIFLX/Y in human. Both TGIF1 and TGIF2 act as transcription factors repressing TGF-β signalling. Human TGIFLX and its orthologue, Tex1 in the mouse, are X-linked genes that are only expressed in the adult testis. TGIF2 arose from TGIF1 by duplication, whereas TGIFLX arose by retrotransposition to the X-chromosome. These genes have not been characterised in any non-eutherian mammals. We therefore studied the TGIF family in the tammar wallaby (a marsupial mammal to investigate their roles in reproduction and how and when these genes may have evolved their functions and chromosomal locations. Results Both TGIF1 and TGIF2 were present in the tammar genome on autosomes but TGIFLX was absent. Tammar TGIF1 shared a similar expression pattern during embryogenesis, sexual differentiation and in adult tissues to that of TGIF1 in eutherian mammals, suggesting it has been functionally conserved. Tammar TGIF2 was ubiquitously expressed throughout early development as in the human and mouse, but in the adult, it was expressed only in the gonads and spleen, more like the expression pattern of human TGIFLX and mouse Tex1. Tammar TGIF2 mRNA was specifically detected in round and elongated spermatids. There was no mRNA detected in mature spermatozoa. TGIF2 protein was specifically located in the cytoplasm of spermatids, and in the residual body and the mid-piece of the mature sperm tail. These data suggest that tammar TGIF2 may participate in spermiogenesis, like TGIFLX does in eutherians. TGIF2 was detected for the first time in the ovary with mRNA produced in the granulosa and theca cells, suggesting it may also play a role in folliculogenesis. Conclusions The restricted and very similar expression of tammar TGIF2 to X-linked paralogues in eutherians suggests that the evolution of TGIF1, TGIF2 and TGIFLX in eutherians was accompanied by

  7. Impact of Growth Hormone on Cystatin C

    Directory of Open Access Journals (Sweden)

    Lisa Sze

    2013-11-01

    Full Text Available Background: Cystatin C (CysC is an alternative marker to creatinine for estimation of the glomerular filtration rate (GFR. Hormones such as thyroid hormones and glucocorticoids are known to have an impact on CysC. In this study, we examined the effect of growth hormone (GH on CysC in patients with acromegaly undergoing transsphenoidal surgery. Methods: Creatinine, CysC, GH and insulin-like growth factor-1 (IGF-1 were determined in 24 patients with acromegaly before and following transsphenoidal surgery. Estimated GFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration formula. Results: In all patients, surgical debulking resulted in decreased clinical disease activity and declining GH/IGF-1 levels. Postoperatively, biochemical cure was documented in 20 out of 24 patients. Creatinine levels (mean ± SEM increased from 72 ± 3 to 80 ± 3 µmol/l (p = 0.0004 and concurrently, estimated GFR decreased from 99 ± 3 to 91 ± 3 ml/min (p = 0.0008. In contrast to creatinine, CysC levels decreased from 0.72 ± 0.02 to 0.68 ± 0.02 mg/l (p = 0.0008. Conclusions: Our study provides strong evidence for discordant effects of GH on creatinine and CysC in patients with acromegaly undergoing transsphenoidal surgery, thus identifying another hormone that influences CysC independent of renal function.

  8. Dementia with non-hereditary cystatin C angiopathy

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Blöndal, H; Jóhannesson, G

    1989-01-01

    Brain biopsies from two patients with non-hereditary cerebral hemorrhages and eighty autopsied cases with the clinical diagnosis of dementia are presented. The biopsied cases, both males aged 64 and 59, had a sudden onset of cerebral hemorrhage, mild progressive dementia and cystatin C cerebral...... amyloid angiopathy. Of the autopsied cases 59 had senile plaques and cerebral amyloid angiopathy was also found in 36 of them. Both senile plaques and the blood vessel amyloid stained positively with beta-protein antibodies, and five of them also showed a positive reaction to cystatin C antibodies....... These cystatin C positive cases were three males aged 76, 80 and 83, and one female 93 years old and the fifth case was a female aged 47 with Down's syndrome....

  9. (-)-epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin.

    Science.gov (United States)

    Wang, Na; He, Jianwei; Chang, Alan K; Wang, Yu; Xu, Linan; Chong, Xiaoying; Lu, Xian; Sun, Yonghui; Xia, Xichun; Li, Hui; Zhang, Bing; Song, Youtao; Kato, Akio; Jones, Gary W

    2015-02-11

    Previous studies have reported that (-)-epigallocatechin-3-gallate (EGCG), the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. To elucidate whether this antifibril activity is specific to disease-related target proteins or is more generic, we investigated the ability of EGCG to inhibit amyloid fibril formation of amyloidogenic mutant chicken cystatin I66Q, a generic amyloid-forming model protein that undergoes fibril formation through a domain swapping mechanism. We demonstrated that EGCG was a potent inhibitor of amyloidogenic cystatin I66Q amyloid fibril formation in vitro. Computational analysis suggested that EGCG prevented amyloidogenic cystatin fibril formation by stabilizing the molecule in its native-like state as opposed to redirecting aggregation toward disordered and amorphous aggregates. Therefore, although EGCG appears to be a generic inhibitor of amyloid-fibril formation, the mechanism by which it achieves such inhibition may be specific to the target fibril-forming polypeptide.

  10. Dementia with non-hereditary cystatin C angiopathy

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Blöndal, H; Jóhannesson, G

    1989-01-01

    Brain biopsies from two patients with non-hereditary cerebral hemorrhages and eighty autopsied cases with the clinical diagnosis of dementia are presented. The biopsied cases, both males aged 64 and 59, had a sudden onset of cerebral hemorrhage, mild progressive dementia and cystatin C cerebral...... amyloid angiopathy. Of the autopsied cases 59 had senile plaques and cerebral amyloid angiopathy was also found in 36 of them. Both senile plaques and the blood vessel amyloid stained positively with beta-protein antibodies, and five of them also showed a positive reaction to cystatin C antibodies....... These cystatin C positive cases were three males aged 76, 80 and 83, and one female 93 years old and the fifth case was a female aged 47 with Down's syndrome....

  11. A recombinant cystatin from Ascaris lumbricoides attenuates inflammation of DSS-induced colitis.

    Science.gov (United States)

    Coronado, S; Barrios, L; Zakzuk, J; Regino, R; Ahumada, V; Franco, L; Ocampo, Y; Caraballo, L

    2017-04-01

    Helminthiasis may ameliorate inflammatory diseases, such as inflammatory bowel disease and asthma. Information about immunomodulators from Ascaris lumbricoides is scarce, but could be important considering the co-evolutionary relationships between helminths and humans. We evaluated the immunomodulatory effects of a recombinant cystatin from A. lumbricoides on an acute model of dextran sodium sulphate (DSS)-induced colitis in mice. From an A. lumbricoides cDNA library, we obtained a recombinant cystatin (rAl-CPI). Protease activity inhibition was demonstrated on cathepsin B and papain. Immunomodulatory effects were evaluated at two intraperitoneal doses (0.5 and 0.25 μg/G) on mice with DSS-induced colitis. Body weight, colon length, Disease Activity Index (DAI), histological inflammation score, myeloperoxidase (MPO) activity, gene expression of cytokines and cytokines levels in colon tissue were analysed. Treatment with rAl-CPI significantly reduced DAI, MPO activity and inflammation score without toxic effects. Also, IL-10 and TGF-B gene overexpression was observed in rAl-CPI-treated group compared to DSS-exposed control and healthy mice. Furthermore, a reduction in IL-6 and TNF-A expression was found, and this was confirmed by the levels of these cytokines in colonic tissue. In conclusion, rAl-CPI reduces inflammation in a mouse model of DSS-induced colitis, probably by increasing the expression of anti-inflammatory cytokines and reducing pro-inflammatory ones. © 2017 John Wiley & Sons Ltd.

  12. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  13. The Keratin 6 gene family. La familia de genes de la queratina 6; Caracterizacion y regulacion

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Espinel, J.M. (Universidad Complutense de Madrid. Dept. Biologia (Spain))

    1992-01-01

    Cytokeratins are a family of ca. 30 proteins that are expressed exclusively in epithelial cells, where they constitute the intermediate filaments cytoskeleton. Keratin 6 is expressed in some tissues (tongue, esophagus, foot sole epidermis, etc.), as well as in the suprabasal layers of epidermis under hyperproliferative stimuli, such as tpa, wound healing, etc. In addition, it is expressed in most cultured epidermal cells lines. We have found that there are three different genes coding for similar-but not identical-k6 polypeptides in the cow. We have used CAT assays, gel retardation and footprinting techniques to analyze the promoter of one of the genes in several cell lines and have found two elements implicated in the regulation of this gene. One of them is a AP1-like site and the other seems to be a retinoic-acid responsive element. Implications of these findings for the regulation of the K6 gene are discussed. (author).250 refs, 48 figs.

  14. The SLEEPER genes: a transposase-derived angiosperm-specific gene family

    Directory of Open Access Journals (Sweden)

    Knip Marijn

    2012-10-01

    Full Text Available Abstract Background DAYSLEEPER encodes a domesticated transposase from the hAT-superfamily, which is essential for development in Arabidopsis thaliana. Little is known about the presence of DAYSLEEPER orthologs in other species, or how and when it was domesticated. We studied the presence of DAYSLEEPER orthologs in plants and propose a model for the domestication of the ancestral DAYSLEEPER gene in angiosperms. Results Using specific BLAST searches in genomic and EST libraries, we found that DAYSLEEPER-like genes (hereafter called SLEEPER genes are unique to angiosperms. Basal angiosperms as well as grasses (Poaceae and dicotyledonous plants possess such putative orthologous genes, but SLEEPER-family genes were not found in gymnosperms, mosses and algae. Most species contain more than one SLEEPER gene. All SLEEPERs contain a C2H2 type BED-zinc finger domain and a hATC dimerization domain. We designated 3 motifs, partly overlapping the BED-zinc finger and dimerization domain, which are hallmark features in the SLEEPER family. Although SLEEPER genes are structurally conserved between species, constructs with SLEEPER genes from grapevine and rice did not complement the daysleeper phenotype in Arabidopsis, when expressed under control of the DAYSLEEPER promoter. However these constructs did cause a dominant phenotype when expressed in Arabidopsis. Rice plant lines with an insertion in the RICESLEEPER1 or 2 locus displayed phenotypic abnormalities, indicating that these genes are functional and important for normal development in rice. We suggest a model in which we hypothesize that an ancestral hAT transposase was retrocopied and stably integrated in the genome during early angiosperm evolution. Evidence is also presented for more recent retroposition events of SLEEPER genes, such as an event in the rice genome, which gave rise to the RICESLEEPER1 and 2 genes. Conclusions We propose the ancestral SLEEPER gene was formed after a process of retro

  15. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    Full Text Available Abstract Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO and acetylpolyamine oxidase (APAO, specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO, it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported

  16. Gene recruitment--a common mechanism in the evolution of transfer RNA gene families.

    Science.gov (United States)

    Wang, Xiujuan; Lavrov, Dennis V

    2011-04-01

    The evolution of alloacceptor transfer RNAs (tRNAs) has been traditionally thought to occur vertically and reflect the evolution of the genetic code. Yet there have been several indications that a tRNA gene could evolve horizontally, from a copy of an alloacceptor tRNA gene in the same genome. Earlier, we provided the first unambiguous evidence for the occurrence of such "tRNA gene recruitment" in nature--in the mitochondrial (mt) genome of the demosponge Axinella corrugata. Yet the extent and the pattern of this process in the evolution of tRNA gene families remained unclear. Here we analyzed tRNA genes from 21 mt genomes of demosponges as well as nuclear genomes of rhesus macaque, chimpanzee and human. We found four new cases of alloacceptor tRNA gene recruitment in mt genomes and eleven cases in the nuclear genomes. In most of these cases we observed a single nucleotide substitution at the middle position of the anticodon, which resulted in the change of not only the tRNA's amino-acid identity but also the class of the amino-acyl tRNA synthetases (aaRSs) involved in amino-acylation. We hypothesize that the switch to a different class of aaRSs may have prevented the conflict between anticodon and amino-acid identities of recruited tRNAs. Overall our results suggest that gene recruitment is a common phenomenon in tRNA multigene family evolution and should be taken into consideration when tRNA evolutionary history is reconstructed.

  17. Characterization of a novel cystatin type 2 from Rhipicephalus microplus midgut.

    Science.gov (United States)

    Cardoso, Thyago H S; Lu, Stephen; Gonzalez, Boris R G; Torquato, Ricardo J S; Tanaka, Aparecida S

    2017-09-01

    The Rhipicephalus (Boophilus) microplus is an exclusive bovine ectoparasite responsible for the transmission of pathogens that decrease meat, leather and milk productions. Cattle vaccination is an alternative to control tick infestations, but the discovery of potential antigens is still a challenge for researchers. Recently, our group performed a midgut transcriptome of engorged R. microplus tick, and out of 800 ESTs sequences one cystatin-coding sequence was identified and named Rmcystatin-4. In order to understand the physiological role of Rmcystatin-4, the aim of this work was the expression, purification and functional characterization of a novel type 2 cystatin from the tick R. microplus. Rmcystatin-4 gene expression was identified mostly in tick midgut suggesting its possible role in blood digestion control. Our data showed that rRmcystatin-4 was successfully expressed in active form using Pichia pastoris system and the purified inhibitor presented high selectivity to BmCl-1 (Ki = 0.046 nM). Moreover, rRmcystatin-4 was able to impaired BmCl-1 activity towards bovine hemoglobin. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Multiple lineage specific expansions within the guanylyl cyclase gene family

    Directory of Open Access Journals (Sweden)

    O'Halloran Damien M

    2006-03-01

    , which have occurred within the GC gene family during metazoan evolution. Our phylogenetic analyses reveal that the rGC and sGC multi-domain proteins evolved early in eumetazoan evolution. Subsequent gene duplications, tissue specific expression patterns and lineage specific expansions resulted in the evolution of new networks of interaction and new biological functions associated with the maintenance of organismal complexity and homeostasis.

  19. Evolution of the multifaceted eukaryotic akirin gene family

    Directory of Open Access Journals (Sweden)

    Johnston Ian A

    2009-02-01

    Full Text Available Abstract Background Akirins are nuclear proteins that form part of an innate immune response pathway conserved in Drosophila and mice. This studies aim was to characterise the evolution of akirin gene structure and protein function in the eukaryotes. Results akirin genes are present throughout the metazoa and arose before the separation of animal, plant and fungi lineages. Using comprehensive phylogenetic analysis, coupled with comparisons of conserved synteny and genomic organisation, we show that the intron-exon structure of metazoan akirin genes was established prior to the bilateria and that a single proto-orthologue duplicated in the vertebrates, before the gnathostome-agnathan separation, producing akirin1 and akirin2. Phylogenetic analyses of seven vertebrate gene families with members in chromosomal proximity to both akirin1 and akirin2 were compatible with a common duplication event affecting the genomic neighbourhood of the akirin proto-orthologue. A further duplication of akirins occurred in the teleost lineage and was followed by lineage-specific patterns of paralogue loss. Remarkably, akirins have been independently characterised by five research groups under different aliases and a comparison of the available literature revealed diverse functions, generally in regulating gene expression. For example, akirin was characterised in arthropods as subolesin, an important growth factor and in Drosophila as bhringi, which has an essential myogenic role. In vertebrates, akirin1 was named mighty in mice and was shown to regulate myogenesis, whereas akirin2 was characterised as FBI1 in rats and promoted carcinogenesis, acting as a transcriptional repressor when bound to a 14-3-3 protein. Both vertebrate Akirins have evolved under comparably strict constraints of purifying selection, although a likelihood ratio test predicted that functional divergence has occurred between paralogues. Bayesian and maximum likelihood tests identified amino

  20. A Comprehensive Family-Based Replication Study of Schizophrenia Genes

    Science.gov (United States)

    Aberg, Karolina A.; Liu, Youfang; Bukszár, Jozsef; McClay, Joseph L.; Khachane, Amit N.; Andreassen, Ole A.; Blackwood, Douglas; Corvin, Aiden; Djurovic, Srdjan; Gurling, Hugh; Ophoff, Roel; Pato, Carlos N.; Pato, Michele T.; Riley, Brien; Webb, Todd; Kendler, Kenneth; O’Donovan, Mick; Craddock, Nick; Kirov, George; Owen, Mike; Rujescu, Dan; St Clair, David; Werge, Thomas; Hultman, Christina M.; Delisi, Lynn E.; Sullivan, Patrick; van den Oord, Edwin J.

    2017-01-01

    Importance Schizophrenia (SCZ) is a devastating psychiatric condition. Identifying the specific genetic variants and pathways that increase susceptibility to SCZ is critical to improve disease understanding and address the urgent need for new drug targets. Objective To identify SCZ susceptibility genes. Design We integrated results from a meta-analysis of 18 genome-wide association studies (GWAS) involving 1 085 772 single-nucleotide polymorphisms (SNPs) and 6 databases that showed significant informativeness for SCZ. The 9380 most promising SNPs were then specifically genotyped in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. Setting Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. Patients We included 11 185 cases and 10 768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. Main Outcomes and Measures Case-control status for SCZ. Results Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs with replication values of P<.01, the proportion of SNPs that had the same direction of effects as in the GWAS meta-analysis was 89% in the combined ancestry group (sign test, P<2.20×10−16) and 93% in subjects of European ancestry only (P<2.20×10−16). Our results supported the major histocompatibility complex region showing a 3.7-fold overall enrichment of replication values of P<.01 in subjects from European ancestry. We replicated SNPs in TCF4 (P=2.53×10−10) and NOTCH4 (P=3.16×10−7) that are among the most robust SCZ findings. More novel findings included POM121L2 (P=3.51×10−7), AS3MT (P=9.01×10−7), CNNM2 (P=6.07×10−7), and NT5C2 (P=4.09×10−7). To explore the many small effects, we performed pathway analyses. The most significant pathways involved neuronal function

  1. Association between cystatin C and the interaction of pulmonary ...

    African Journals Online (AJOL)

    Results: The highest level of Cys C was obtained in PTB + CD group. Before and after adjusting ... inhibitor of cathepsins, cystatin is down-regulated in macrophages ... urease method, and its normal reference value is. 2.14 - 8.21 mmol/L.

  2. Estrogen enhances cystatin C expression in the macaque vagina.

    Science.gov (United States)

    Slayden, Ov D; Hettrich, Kevin; Carroll, Rebecca S; Otto, Lesley N; Clark, Amanda L; Brenner, Robert M

    2004-02-01

    Cystatin C is a secreted inhibitor of cysteine proteinases that participates in extracellular matrix remodeling. Whether hormones affect its expression in the vagina was unknown. Consequently, we examined the effects of estradiol (E(2)), progesterone (P), and raloxifene on vaginal cystatin C in rhesus macaques. In experiment 1, ovariectomized animals were treated sequentially with E(2) (14 d) and E(2) + P (14 d) to induce 28-d menstrual cycles. Vaginal samples were collected on d 6, 8, 14, and 28 of the induced cycle. Some cycled animals were deprived of both E(2) + P for 28 d. In experiment 2, ovariectomized animals were treated for 5 months with E(2) alone, E(2) + P, raloxifene, or left untreated. Total RNA from the vaginal wall was analyzed for the cystatin C transcript with a commercially prepared cDNA array and semiquantitative RT-PCR. Vaginal cryosections were analyzed by in situ hybridization for cystatin C transcript and by immunocytochemistry for the protein. E(2) treatment significantly (5-fold; P pelvic floor prolapse.

  3. Gene family level comparative analysis of gene expression in mammals validates the ortholog conjecture.

    Science.gov (United States)

    Rogozin, Igor B; Managadze, David; Shabalina, Svetlana A; Koonin, Eugene V

    2014-04-01

    The ortholog conjecture (OC), which is central to functional annotation of genomes, posits that orthologous genes are functionally more similar than paralogous genes at the same level of sequence divergence. However, a recent study challenged the OC by reporting a greater functional similarity, in terms of Gene Ontology (GO) annotations and expression profiles, among within-species paralogs compared with orthologs. These findings were taken to indicate that functional similarity of homologous genes is primarily determined by the cellular context of the genes, rather than evolutionary history. However, several subsequent studies suggest that GO annotations and microarray data could artificially inflate functional similarity between paralogs from the same organism. We sought to test the OC using approaches distinct from those used in previous studies. Analysis of a large RNAseq data set from multiple human and mouse tissues shows that expression similarity (correlations coefficients, rank's, or Z-scores) between orthologs is substantially greater than that for between-species paralogs with the same sequence divergence, in agreement with the OC and the results of recent detailed analyses. These findings are further corroborated by a fine-grain analysis in which expression profiles of orthologs and paralogs were compared separately for individual gene families. Expression profiles of within-species paralogs are more strongly correlated than profiles of orthologs but it is shown that this is caused by high background noise, that is, correlation between profiles of unrelated genes in the same organism. Z-scores and rank scores show a nonmonotonic dependence of expression profile similarity on sequence divergence. This complexity of gene expression evolution after duplication might be at least partially caused by selection for protein dosage rebalancing following gene duplication.

  4. Angiotensin converting enzyme gene polymorphism in familial hypertrophic cardiomyopathy patients

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B; Peric, S.; Ross, D. [Royal Prince Alfred Hospital, Campertown (Australia)] [and others

    1994-09-01

    An insertion/deletion (I/D) polymorphism of the angiotensin I converting enzyme (ACE) gene is a useful predictor of human plasma ACE levels. ACE levels tend to be lowest in subjects with ACE genotype DD and intermediate in subjects with ACE genotype ID. Angiotensin II (Ang II) as a product of ACE is a cardiac growth factor and produces a marked hypertrophy of the chick myocyte in cell culture. Rat experiments also suggest that a small dose of ACE inhibitor that does not affect the afterload results in prevention or regression of cardiac hypertrophy. In order to study the relationship of ACE and the severity of hypertrophy, the ACE genotype has been determined in 28 patients with a clinical diagnosis of familial hypertrophic cardiomyopathy (FHC) and 51 normal subjects. The respective frequencies of I and D alleles were: 0.52 and 0.48 (in FHC patients) and 0.44 and 0.56 (in the normal controls). There was no significant difference in the allele frequencies between FHC and normal subjects ({chi}{sup 2}=0.023, p>0.05). The II, ID, and DD genotypes were present in 7, 15, and 6 FHC patients, respectively. The averages of maximal thickness of the interventricular septum measured by echocardiography or at autopsy were 18 {plus_minus}3, 19{plus_minus}4, and 19{plus_minus}3 mm in II, ID and DD genotypes, respectively. The ACE gene polymorphism did not correlate with the severity of left ventricular hypertrophy in FHC patients (r{sub s}=0.231, p>0.05). These results do not necessarily exclude the possible effect of Ang II on the hypertrophy since the latter may be produced through the action of chymase in the human ventricles. However, ACE gene polymorphism is not a useful predictor of the severity of myocardial hypertrophy in FHC patients.

  5. MicroSyn: A user friendly tool for detection of microsynteny in a gene family

    Directory of Open Access Journals (Sweden)

    Yang Xiaohan

    2011-03-01

    Full Text Available Abstract Background The traditional phylogeny analysis within gene family is mainly based on DNA or amino acid sequence homologies. However, these phylogenetic tree analyses are not suitable for those "non-traditional" gene families like microRNA with very short sequences. For the normal protein-coding gene families, low bootstrap values are frequently encountered in some nodes, suggesting low confidence or likely inappropriateness of placement of those members in those nodes. Results We introduce MicroSyn software as a means of detecting microsynteny in adjacent genomic regions surrounding genes in gene families. MicroSyn searches for conserved, flanking colinear homologous gene pairs between two genomic fragments to determine the relationship between two members in a gene family. The colinearity of homologous pairs is controlled by a statistical distance function. As a result, gene duplication history can be inferred from the output independent of gene sequences. MicroSyn was designed for both experienced and non-expert users with a user-friendly graphical-user interface. MicroSyn is available from: http://fcsb.njau.edu.cn/microsyn/. Conclusions Case studies of the microRNA167 genes in plants and Xyloglucan ndotransglycosylase/Hydrolase family in Populus trichocarpa were presented to show the utility of the software. The easy using of MicroSyn in these examples suggests that the software is an additional valuable means to address the problem intrinsic in the computational methods and sequence qualities themselves in gene family analysis.

  6. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2016-01-01

    Full Text Available Superoxide dismutase (SOD as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  7. The expression and clinical significance of cystatin M in breast cancer%Cystatin M在乳腺癌中的表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    魏江; 朱江; 罗光华; 汤艳红; 牟琴峰; 陈陆俊; 董选

    2007-01-01

    目的 了解cystatin M在乳腺肿瘤中的表达及其临床意义.方法 采用实时定量PCR检测52例乳腺肿瘤标本及邻近正常乳腺组织中cystatin M mRNA及内参GAPDH表达水平,分析cystatin M基因表达与临床病理参数的关系.结果 乳腺癌标本的cystatin M含量与其周围邻近的正常乳腺组织及良性肿瘤中表达cystatin M含量无统计学意义;但发生淋巴结转移的乳腺肿瘤标本的cystatin M则明显低于其周围邻近的正常乳腺组织(P<0.05),也明显低于未发生淋巴结的乳腺肿瘤标本(P<0.05);乳腺癌标本cystatin M表达水平与乳腺癌病人的雌激素受体状态(ER)及孕激素状态(PR)无关.结论 Cystatin M是一种监测乳腺癌是否发生转移的一种可靠的指标.

  8. Disinhibition of Cathepsin C Caused by Cystatin F Deficiency Aggravates the Demyelination in a Cuprizone Model

    Science.gov (United States)

    Liang, Junjie; Li, Ning; Zhang, Yanli; Hou, Changyi; Yang, Xiaohan; Shimizu, Takahiro; Wang, Xiaoyu; Ikenaka, Kazuhiro; Fan, Kai; Ma, Jianmei

    2016-01-01

    Although the precise mechanism underlying initial lesion development in multiple sclerosis (MS) remains unclear, CNS inflammation has long been associated with demyelination, and axonal degeneration. The activation of microglia/macrophages, which serve as innate immune cells in the CNS, is the first reaction to even minor pathologic changes in the CNS and is considered an initial pathogenic event in MS. Microglial activation accompanies a variety of gene expressions, including cystatin F (Cys F), which belongs to the cystatin superfamily and is one of the cathepsin inhibitors. In our previous study we showed that Cys F has a unique expression pattern in microglia/macrophages in the demyelination process. Specifically, the timing of Cys F induction correlated with ongoing demyelination, and the sites of Cys F expression overlapped with areas of remyelination. Cys F induction ceased in chronic demyelination when remyelination capacity was lost, suggesting that Cys F expressed by microglia/macrophages may play an important role in demyelination and/or remyelination. The functional role of Cys F in demyelinating disease of the CNS, however, is unclear. Cys F gene knockout mice were used in the current study to clarify the functional role of Cys F in the demyelination process in a cuprizone-induced demyelination animal model. We demonstrated that absence of the Cys F gene and the resulting disinhibition of cathepsin C (Cat C) aggravates the demyelination, and this finding may be related to the increased expression of the glia-derived chemokine, CXCL2, which may attract inflammatory cells to sites of myelin sheath damage. This effect was reversed by knock down of the Cat C gene. The findings gain further insight to function of Cat C in pathophysiology of MS, which may have implications for therapeutics for the prevention of neuroinflammation-involved neurological disorders in the future. PMID:28066178

  9. Molecular characterization of edestin gene family in Cannabis sativa L.

    Science.gov (United States)

    Docimo, Teresa; Caruso, Immacolata; Ponzoni, Elena; Mattana, Monica; Galasso, Incoronata

    2014-11-01

    Globulins are the predominant class of seed storage proteins in a wide variety of plants. In many plant species globulins are present in several isoforms encoded by gene families. The major seed storage protein of Cannabis sativa L. is the globulin edestin, widely known for its nutritional potential. In this work, we report the isolation of seven cDNAs encoding for edestin from the C. sativa variety Carmagnola. Southern blot hybridization is in agreement with the number of identified edestin genes. All seven sequences showed the characteristic globulin features, but they result to be divergent members/forms of two edestin types. According to their sequence similarity four forms named CsEde1A, CsEde1B, CsEde1C, CsEde1D have been assigned to the edestin type 1 and the three forms CsEde2A, CsEde2B, CsEde2C to the edestin type 2. Analysis of the coding sequences revealed a high percentage of similarity (98-99%) among the different forms belonging to the same type, which decreased significantly to approximately 64% between the forms belonging to different types. Quantitative RT-PCR analysis revealed that both edestin types are expressed in developing hemp seeds and the amount of CsEde1 was 4.44 ± 0.10 higher than CsEde2. Both edestin types exhibited a high percentage of arginine (11-12%), but CsEde2 resulted particularly rich in methionine residues (2.36%) respect to CsEde1 (0.82%). The amino acid composition determined in CsEde1 and CsEde2 types suggests that these seed proteins can be used to improve the nutritional quality of plant food-stuffs.

  10. Human cystatin C forms an inactive dimer during intracellular trafficking in transfected CHO cells

    DEFF Research Database (Denmark)

    Merz, G S; Benedikz, Eirikur; Schwenk, V

    1997-01-01

    To define the cellular processing of human cystatin C as well as to lay the groundwork for investigating its contribution to lcelandic Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA-I), we have characterized the trafficking, secretion, and extracellular fate of human cystatin C...... that the cystatin C dimer, formed during intracellular trafficking, is converted to monomer at or before secretion. Cells in which exit from the endoplasmic reticulum (ER) was blocked with brefeldin A contained the 33 kDa species, indicating that cystatin C dimerization occurs in the ER. After removal of brefeldin......, presumably as a consequence of the low pH of late endosome/lysosomes. As a dimer, cystatin C would be prevented from inhibiting the lysosomal cysteine proteases. These results reveal a novel mechanism, transient dimerization, by which cystatin C is inactivated during the early part of its trafficking through...

  11. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families.

    Science.gov (United States)

    De La Torre, Amanda R; Lin, Yao-Cheng; Van de Peer, Yves; Ingvarsson, Pär K

    2015-03-05

    The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.

  12. Mutation screening of mismatch repair gene Mlh3 in familial esophageal cancer

    Institute of Scientific and Technical Information of China (English)

    Hong-Xu Liu; Yu Li; Xue-Dong Jiang; Hong-Nian Yin; Lin Zhang; Yu Wang; Jun Yang

    2006-01-01

    AIM: To shed light on the possible role of mismatch repair gene Mlh3 in familial esophageal cancer (FEC).METHODS: A total of 66 members from 10 families suggestive of a genetic predisposition to hereditary esophageal cancer were screened for germline mutations in Mlh3 with denaturing high performance liquid chromatography (DHPLC), a newly developed method of comparative sequencing based on heteroduplex detection. For all samples exhibiting abnormal DHPLC profiles,sequence changes were evaluated by cycle sequencing.For any mutation in family members, we conducted a segregation study to compare its prevalence in sporadic esophageal cancer patients and normal controls.RESULTS: Exons of Mlh3 in all samples were successfully examined. Overall, 4 missense mutations and 3 polymorphisms were identified in 4 families. Mlh3 missense mutations in families 9 and 10 might be pathogenic, but had a reduced penetrance. While in families 1 and 7,there was no sufficient evidence supporting the monogenic explanations of esophageal cancers in families.The mutations were found in 33% of high-risk families and 50% of low-risk families.CONCLUSION: Mlh3 is a high risk gene with a reduced penetrance in some families. However, it acts as a low risk gene for esophageal cancer in most families. Mutations of Mlh3 may work together with other genes in an accumulated manner and result in an increased risk of esophageal tumor. DHPLC is a robust and sensitive technique for screening gene mutations.

  13. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF......Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...

  14. FGF: a web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...... to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...... is freely available on a web server at http://fgf.genomics.org.cn/...

  15. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...... to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...... is freely available on a web server at http://fgf.genomics.org.cn/...

  16. Evolutionary diversification of the vertebrate transferrin multi-gene family.

    Science.gov (United States)

    Hughes, Austin L; Friedman, Robert

    2014-11-01

    In a phylogenetic analysis of vertebrate transferrins (TFs), six major clades (subfamilies) were identified: (a) S, the mammalian serotransferrins; (b) ICA, the mammalian inhibitor of carbonic anhydrase (ICA) homologs; (c) L, the mammalian lactoferrins; (d) O, the ovotransferrins of birds and reptiles; (e) M, the melanotransferrins of bony fishes, amphibians, reptiles, birds, and mammals; and (f) M-like, a newly identified TF subfamily found in bony fishes, amphibians, reptiles, and birds. A phylogenetic tree based on the joint alignment of N-lobes and C-lobes supported the hypothesis that three separate events of internal duplication occurred in vertebrate TFs: (a) in the common ancestor of the M subfamily, (b) in the common ancestor of the M-like subfamily, and (c) in the common ancestor of other vertebrate TFs. The S, ICA, and L subfamilies were found only in placental mammals, and the phylogenetic analysis supported the hypothesis that these three subfamilies arose by gene duplication after the divergence of placental mammals from marsupials. The M-like subfamily was unusual in several respects, including the presence of a uniquely high proportion of clade-specific conserved residues, including distinctive but conserved residues in the sites homologous to those functioning in carbonate binding of human serotransferrin. The M-like family also showed an unusually high proportion of cationic residues in the positively charged region corresponding to human lactoferrampin, suggesting a distinctive role of this region in the M-like subfamily, perhaps in antimicrobial defense.

  17. Redox Homeostasis via Gene Families of Ascorbate-Glutathione Pathway

    Directory of Open Access Journals (Sweden)

    Prachi ePandey

    2015-03-01

    Full Text Available The imposition of environmental stresses on plants brings about disturbance in their metabolism thereby negatively affecting their growth and development and leading to reduction in the productivity. One of the manifestations of abiotic and biotic stress conditions is the enhanced production of reactive oxygen species (ROS which can be hazardous to cells. Therefore, in order to protect themselves against toxic ROS, plant cells employ the anti-oxidant defense system. The ascorbate-glutathione pathway (Halliwell-Asada cycle is an indispensible component of the ROS homeostasis mechanism of plants. This pathway entails the antioxidant metabolites: ascorbate, glutathione and NADPH along with the enzymes linking them. The ascorbate-glutathione pathway is functional in different subcellular compartments and all the enzymes of this pathway exist as multiple isoforms. The expression of different isoforms of the enzymes of ascorbate-glutathione pathway is developmentally as well as spatially regulated. Moreover, various abiotic and biotic stress conditions modulate the expression of the enzyme- isoforms differently. It is the intricate regulation of expression of different isoforms of the ascorbate-glutathione pathway enzymes that helps in the maintenance of redox balance in plants under various abiotic and biotic stress conditions. The present review provides an insight into the gene families of the ascorbate-glutathione pathway, shedding light on their role in different abiotic and biotic stress conditions as well as in the growth and development of plants.

  18. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  19. Genetic Alterations in Familial Breast Cancer: Mapping and Cloning Genes Other Than BRCAl

    Science.gov (United States)

    1997-09-01

    predispose to breast cancer . These mutations are always in the context of Cowden’s Syndrome, and do not appear in families with brest cancer in the...AD AWARD NUMBER DAMD17-94-J-4307 TITLE: Genetic Alterations in Familial Breast Cancer : Mapping and Cloning Genes Other Than BRCA1 PRINCIPAL...Aug97-) Genetic Alterations in Familial Breast Cancer : Mapping and Cloning Genes Other than BRCA1 6. AUTHOR{S) Mary-Clair King, Ph.D. 7

  20. A novel frameshift mutation in the cylindromatosis (CYLD) gene in a Chinese family with multiple familial trichoepithelioma.

    Science.gov (United States)

    Wu, J W; Xiao, S X; Huo, J; An, J G; Ren, J W

    2014-11-01

    Multiple familial trichoepithelioma (MFT) (OMIM: 601606) is an autosomal dominantly inherited disorder characterized by numerous, skin-colored papules and nodules with pilar differentiation. Recently, several mutations in the cylindromatosis (CYLD) gene have been reported in MFT. In this study, a mutation analysis of the CYLD was conducted in a Chinese pedigree of typical MFT. Affected individuals were identified through probands from Shanxi Province, China. Lesional skin biopsy of the proband revealed the typical histopathological characteristics of trichoepithelioma. Individuals belonging to five consecutive generations were similarly affected, which indicated an autosomal dominant inheritance pattern. Genomic DNA was extracted from peripheral blood lymphocytes using standard phenol/chloroform extraction method. All the coding exons (4-20) and exon-intron boundaries of the CYLD gene were amplified by polymerase chain reaction (PCR). Direct sequencing of all PCR products amplified from the complete coding regions of the CYLD gene was performed to identify mutations. Sequencing of the CYLD gene was performed in a further 100 unrelated, unaffected control individuals to exclude the possibility of polymorphism. A novel heterozygous frameshift mutation c.1169_1170delCA (p.Thr390Argfs) was identified in exon 10 of the CYLD gene in the affected family members. This mutation was also detected in unaffected family members, but not in the unrelated, healthy individuals who were also analyzed. Our study expands the database on the CYLD gene mutations in MFT and should be useful in providing genetic counseling and prenatal diagnosis for families affected by MFT.

  1. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.

    Science.gov (United States)

    Ness, Rob W; Graham, Sean W; Barrett, Spencer C H

    2011-11-01

    Most plant phylogenetic inference has used DNA sequence data from the plastid genome. This genome represents a single genealogical sample with no recombination among genes, potentially limiting the resolution of evolutionary relationships in some contexts. In contrast, nuclear DNA is inherently more difficult to employ for phylogeny reconstruction because major mutational events in the genome, including polyploidization, gene duplication, and gene extinction can result in homologous gene copies that are difficult to identify as orthologs or paralogs. Gene tree parsimony (GTP) can be used to infer the rooted species tree by fitting gene genealogies to species trees while simultaneously minimizing the estimated number of duplications needed to reconcile conflicts among them. Here, we use GTP for five nuclear gene families and a previously published plastid data set to reconstruct the phylogenetic backbone of the aquatic plant family Pontederiaceae. Plastid-based phylogenetic studies strongly supported extensive paraphyly of Eichhornia (one of the four major genera) but also depicted considerable ambiguity concerning the true root placement for the family. Our results indicate that species trees inferred from the nuclear genes (alone and in combination with the plastid data) are highly congruent with gene trees inferred from plastid data alone. Consideration of optimal and suboptimal gene tree reconciliations place the root of the family at (or near) a branch leading to the rare and locally restricted E. meyeri. We also explore methods to incorporate uncertainty in individual gene trees during reconciliation by considering their individual bootstrap profiles and relate inferred excesses of gene duplication events on individual branches to whole-genome duplication events inferred for the same branches. Our study improves understanding of the phylogenetic history of Pontederiaceae and also demonstrates the utility of GTP for phylogenetic analysis.

  2. Cystatin C enhances GFR estimating Equations in Kidney Transplant Recipients

    Science.gov (United States)

    Kukla, Aleksandra; Issa, Naim; Jackson, Scott; Spong, Richard; Foster, Meredith C.; Matas, Arthur J.; Mauer, Michael S.; Eckfeldt, John H.; Ibrahim, Hassan N.

    2014-01-01

    Background The glomerular filtration rate (GFR) estimating equation incorporating both cystatin C and creatinine perform better than those using creatinine or cystatin C alone in patients with reduced GFR. Whether this equation performs well in kidney transplant recipients cross-sectionally, and more importantly, over time has not been addressed. Methods We analyzed four GFR estimating equations in participants of the Angiotensin II Blockade for Chronic Allograft Nephropathy Trial (NCT 00067990): Chronic Kidney Disease Epidemiology Collaboration equations based on serum cystatin C and creatinine (eGFR (CKD-EPI-Creat+CysC)), cystatin C alone (eGFR (CKD-EPI-CysC)), creatinine alone (eGFR (CKD-EPI-Creat)) and the Modification of Diet in Renal Disease study equation (eGFR(MDRD)). Iothalamate GFR served as a standard (mGFR). Results mGFR, serum creatinine, and cystatin C shortly after transplant were 56.1 ± 17.0 mL/min/1.73 m2, 1.2 ± 0.4 mg/dL, and 1.2 ± 0.3 mg/L respectively. eGFR (CKD-EPI-Creat+CysC) was most precise (R2=0.50) but slightly more biased than eGFR (MDRD); 9.0 ± 12.7 ml/min/1.73m2 vs. 6.4 ± 15.8 ml/min/1.73m2, respectively. This improved precision was most evident in recipients with mGFR >60 ml/min/1.73m2. For relative accuracy, eGFR (MDRD) and eGFR (CKD-EPI-Creat+CysC) had the highest percentage of estimates falling within 30% of mGFR; 75.8% and 68.9%, respectively. Longitudinally, equations incorporating cystatin C most closely paralleled the change in mGFR. Conclusion eGFR (CKD-EPI-Creat+CysC) is more precise and reflects GFR change over time reasonably well. eGFR (MDRD) had superior performance in recipients with mGFR between 30–60 ml/min/1.73m2. PMID:24457184

  3. Cellular processing of the amyloidogenic cystatin C variant of hereditary cerebral hemorrhage with amyloidosis, Icelandic type

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Merz, G S; Schwenk, V

    1999-01-01

    (L68Q) that lacks the first 10 amino acids. We have previously shown that processing of wild-type cystatin C entails formation of a transient intracellular dimer that dissociates prior to secretion, such that extracellular cystatin C is monomeric. We report here that the cystatin C mutation engenders...... several alterations in its intracellular trafficking. It forms a stable intracellular dimer that is partially retained in the endoplasmic reticulum and degraded. The bulk of mutant cystatin C that is secreted does not dissociate and is secreted as an inactive dimer. Thus, formation of the stable mutant...

  4. Evaluation of cystatin C as an endogenous marker of glomerular filtration rate in dogs.

    Science.gov (United States)

    Almy, Frederic S; Christopher, Mary M; King, Don P; Brown, Scott A

    2002-01-01

    Cystatin C is a cysteine protease inhibitor produced by all nucleated cells. It is freely filtered by the glomerulus and is unaffected by nonrenal factors such as inflammation and gender. Because of greater sensitivity and specificity, cystatin C has been proposed to replace creatinine as a marker of glomerular filtration rate (GFR) in humans. The aims of this study were to validate an automated assay in canine plasma and to evaluate the usefulness of cystatin C as a marker of GFR in dogs. Western blotting was used to demonstrate cross-reactivity of an anti-human cystatin C antibody. An immunoturbidimetric assay was used to detect cystatin C in 25 clinically healthy dogs and 25 dogs with renal failure. Mean cystatin C concentration in the healthy dogs and the dogs with renal failure was 1.08 +/- 0.16 mg/L and 4.37 +/- 1.79 mg/L respectively. Intra- and interassay variability was exogenous creatinine clearance had been determined previously. In the remnant kidney model, cystatin C was better correlated with GFR than creatinine (r = .79 versus .54) but was less well correlated with GFR in volume-depleted dogs (r = .54 versus .95). GFR measurements were repeated in the remnant kidney model dogs 60 days after initial GFR measurements. At this time, cystatin C and creatinine concentrations correlated equally well with GFR (r = .891 versus .894, respectively). Cystatin C concentration is a reasonable alternative to creatinine for screening dogs with decreased GFR due to chronic renal failure.

  5. Serum cystatin C concentration as an independent marker for hypertensive left ventricular hypertrophy

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Hang Zhu; Peng Li; Qian Xin; Jie Liu; Wei Zhang; You-Hong Xing; Hao Xue

    2013-01-01

    Background Serum cystatin C levels can be used to predict morbidity and mortality in patients with cardiovascular disease. However, the clinical relevance of serum cystatin C levels in patients with hypertensive left ventricular hypertrophy (LVH) has rarely been investigated. We designed the present study to investigate whether serum cystatin C levels are associated with cardiac structural and functional alterations in hypertensive patients. Methods We enrolled 823 hypertensive patients and classified them into two groups:those with LVH (n=287) and those without LVH (n=536). All patients underwent echocardiography and serum cystatin C testing. We analyzed the relationship be-tween serum cystatin C levels and LVH. Results Serum cystatin C levels were higher in hypertensive patients with LVH than in those without LVH (P<0.05). Using linear correlation analysis, we found a positive correlation between serum cystatin C levels and interven-tricular septal thickness (r=0.247, P<0.01), posterior wall thickness (r=0.216, P<0.01), and left ventricular weight index (r=0.347, P<0.01). When analyzed by multiple linear regression, the positive correlations remained between serum cystatin C and interventricular septal thickness (β=0.167, P<0.05), posterior wall thickness (β=0.187, P<0.05), and left ventricular weight index (β=0.245, P<0.01). Con-clusion Serum cystatin C concentration is an independent marker for hypertensive LVH.

  6. Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case

    Directory of Open Access Journals (Sweden)

    Kuraku Shigehiro

    2011-06-01

    Full Text Available Abstract Background In understanding the evolutionary process of vertebrates, cyclostomes (hagfishes and lamprey occupy crucial positions. Resolving molecular phylogenetic relationships of cyclostome genes with gnathostomes (jawed vertebrates genes is indispensable in deciphering both the species tree and gene trees. However, molecular phylogenetic analyses, especially those including lamprey genes, have produced highly discordant results between gene families. To efficiently scrutinize this problem using partial genome assemblies of early vertebrates, we focused on the potassium voltage-gated channel, shaker-related (KCNA family, whose members are mostly single-exon. Results Seven sea lamprey KCNA genes as well as six elephant shark genes were identified, and their orthologies to bony vertebrate subgroups were assessed. In contrast to robustly supported orthology of the elephant shark genes to gnathostome subgroups, clear orthology of any sea lamprey gene could not be established. Notably, sea lamprey KCNA sequences displayed unique codon usage pattern and amino acid composition, probably associated with exceptionally high GC-content in their coding regions. This lamprey-specific property of coding sequences was also observed generally for genes outside this gene family. Conclusions Our results suggest that secondary modifications of sequence properties unique to the lamprey lineage may be one of the factors preventing robust orthology assessments of lamprey genes, which deserves further genome-wide validation. The lamprey lineage-specific alteration of protein-coding sequence properties needs to be taken into consideration in tackling the key questions about early vertebrate evolution.

  7. Evolutionary expansion of SPOP and associated TD/POZ gene family: impact of evolutionary route on gene expression pattern.

    Science.gov (United States)

    Choo, Kong-Bung; Chuang, Trees-Juen; Lin, Wan-Yi; Chang, Che-Ming; Tsai, Yao-Hui; Huang, Chiu-Jung

    2010-07-15

    Evolutionary expansion of a gene family may occur at both the DNA and RNA levels. The rat testis-specific Rtdpoz-T2 and -T1 (rT2 and rT1) retrogenes are members of the TD/POZ gene family which also includes the well-characterized SPOP gene. In this study, rT2/rT1 transcriptional activation in cancer cells is demonstrated; the cancer rT2/rT1 transcripts are structurally similar to the embryonic transcripts reported previously in frequent exonization of transposed elements. On database interrogation, we have identified an uncharacterized rT2/rT1-like SPOP paralog, designated as SPOP-like (SPOPL), in the human and rodent genomes. Ka/Ks analysis indicates that the SPOPL genes are under functional constraints implicating biological functions. Phylogenetic analyses further suggest that segmental duplication and retrotransposition events had occurred giving rise to new gene members or retrogenes in the human-rodent ancestors during the evolution of the TD/POZ gene family. Based on this and previous works, a model is proposed to map the routes of evolutionary expansion of the TD/POZ gene family. More importantly, different gene expression patterns of members of the family are depicted: intron-harboring members are ubiquitously expressed whereas retrogenes are expressed in tissue-specific and developmentally regulated manner, and are fortuitously re-activated in cancer cells involving exonization of transposed elements.

  8. Studies on the interactions of SAP-1 (an N-terminal truncated form of cystatin S) with its binding partners by CD-spectroscopic and molecular docking methods.

    Science.gov (United States)

    Yadav, Vikash Kumar; Mandal, Rahul Shubhra; Puniya, Bhanwar Lal; Singh, Sarman; Yadav, Savita

    2015-01-01

    SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of β-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.

  9. Multiple members of the plasminogen-apolipoprotein(a) gene family associated with thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Ichinose, Akitada (Univ. of Washington, Seattle (United States))

    1992-03-31

    Plasminogen and apolipoprotein(a) (apo(a)) are closely related plasma proteins that are associated with hereditary thrombophilia. Low plasminogen levels are found in some patients who developed venous thrombosis, while a population with high plasma concentrations of apo(a) have a higher incidence of arterial thrombosis. Two different gene coding for human apo(a) have been isolated and characterized in order to study and compare these genes with four other closely related genes in the plasminogen-apo(a) gene family. These include the gene coding for plasminogen, two unique plasminogen-related genes, and a gene coding for hepatocyte growth factor. Nucleotide sequence analysis of these genes revealed that the exons and their boundaries of these genes for plasminogen and apo(a), and the plasminogen-related genes, differ only 1-5% in sequence. The types of exon/intron junctions and positions of introns in the molecules are also exactly identical, suggesting that these genes have evolved from an ancestral plasminogen gene via duplication and exon shuffling. By utilizing these results, gene-specific probes have been designed for the analysis of each of the genes in this gene family. The plasminogen and two apo(a) genes were all localized to chromosome 6 by employing the gene-specific primers and genomic DNAs from human-hamster cell hybrids. These data also make it possible to characterize the apo(a) and plasminogen genes in individuals by in vitro amplification.

  10. Inferring hypotheses on functional relationships of genes: Analysis of the Arabidopsis thaliana subtilase gene family.

    Directory of Open Access Journals (Sweden)

    Carsten Rautengarten

    2005-09-01

    Full Text Available The gene family of subtilisin-like serine proteases (subtilases in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i control of development, (ii protein turnover, and (iii action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB (http://csbdb.mpimp-golm.mpg.de/psdb.html, as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de.

  11. Inferring Hypotheses on Functional Relationships of Genes: Analysis of the Arabidopsis thaliana Subtilase Gene Family.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The gene family of subtilisin-like serine proteases (subtilases in Arabidopsis thaliana comprises 56 members, divided into six distinct subfamilies. Whereas the members of five subfamilies are similar to pyrolysins, two genes share stronger similarity to animal kexins. Mutant screens confirmed 144 T-DNA insertion lines with knockouts for 55 out of the 56 subtilases. Apart from SDD1, none of the confirmed homozygous mutants revealed any obvious visible phenotypic alteration during growth under standard conditions. Apart from this specific case, forward genetics gave us no hints about the function of the individual 54 non-characterized subtilase genes. Therefore, the main objective of our work was to overcome the shortcomings of the forward genetic approach and to infer alternative experimental approaches by using an integrative bioinformatics and biological approach. Computational analyses based on transcriptional co-expression and co-response pattern revealed at least two expression networks, suggesting that functional redundancy may exist among subtilases with limited similarity. Furthermore, two hubs were identified, which may be involved in signalling or may represent higher-order regulatory factors involved in responses to environmental cues. A particular enrichment of co-regulated genes with metabolic functions was observed for four subtilases possibly representing late responsive elements of environmental stress. The kexin homologs show stronger associations with genes of transcriptional regulation context. Based on the analyses presented here and in accordance with previously characterized subtilases, we propose three main functions of subtilases: involvement in (i control of development, (ii protein turnover, and (iii action as downstream components of signalling cascades. Supplemental material is available in the Plant Subtilase Database (PSDB (http://csbdb.mpimp-golm.mpg.de/psdb.html , as well as from the CSB.DB (http://csbdb.mpimp-golm.mpg.de.

  12. Cloning of the mouse BTG3 gene and definition of a new gene family (the BTG family) involved in the negative control of the cell cycle.

    Science.gov (United States)

    Guéhenneux, F; Duret, L; Callanan, M B; Bouhas, R; Hayette, S; Berthet, C; Samarut, C; Rimokh, R; Birot, A M; Wang, Q; Magaud, J P; Rouault, J P

    1997-03-01

    It is well known that loss of tumor suppressor genes and more generally of antiproliferative genes plays a key role in the development of most tumors. We report here the cloning of the mouse BTG3 gene and show that its human counterpart maps on chromosome 21. This evolutionarily conserved gene codes for a 30 kDa protein and is expressed in most adult murine and human tissues analyzed. However, we demonstrate that its expression is cell cycle dependent and peaks at the end of the G1 phase. This gene is homologous to the human BTG1, BTG2 and TOB genes which were demonstrated to act as inhibitors of cell proliferation. Its description allowed us to define better this seven gene family (the BTG gene family) at the structural level and to speculate about its physiological role in normal and tumoral cells. This family is mainly characterized by the presence of two conserved domains (BTG boxes A and B) of as yet undetermined function which are separated by a non-conserved 20-25 amino acid sequence.

  13. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer.

    Science.gov (United States)

    Robinson, Dan R; Kalyana-Sundaram, Shanker; Wu, Yi-Mi; Shankar, Sunita; Cao, Xuhong; Ateeq, Bushra; Asangani, Irfan A; Iyer, Matthew; Maher, Christopher A; Grasso, Catherine S; Lonigro, Robert J; Quist, Michael; Siddiqui, Javed; Mehra, Rohit; Jing, Xiaojun; Giordano, Thomas J; Sabel, Michael S; Kleer, Celina G; Palanisamy, Nallasivam; Natrajan, Rachael; Lambros, Maryou B; Reis-Filho, Jorge S; Kumar-Sinha, Chandan; Chinnaiyan, Arul M

    2011-11-20

    Breast cancer is a heterogeneous disease that has a wide range of molecular aberrations and clinical outcomes. Here we used paired-end transcriptome sequencing to explore the landscape of gene fusions in a panel of breast cancer cell lines and tissues. We observed that individual breast cancers have a variety of expressed gene fusions. We identified two classes of recurrent gene rearrangements involving genes encoding microtubule-associated serine-threonine kinase (MAST) and members of the Notch family. Both MAST and Notch-family gene fusions have substantial phenotypic effects in breast epithelial cells. Breast cancer cell lines harboring Notch gene rearrangements are uniquely sensitive to inhibition of Notch signaling, and overexpression of MAST1 or MAST2 gene fusions has a proliferative effect both in vitro and in vivo. These findings show that recurrent gene rearrangements have key roles in subsets of carcinomas and suggest that transcriptome sequencing could identify individuals with rare, targetable gene fusions.

  14. Identification and distribution of the NBS-LRR gene family in the cassava genome

    Science.gov (United States)

    Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analyzing the genomic organization of resistance genes i...

  15. Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera.

    Science.gov (United States)

    Cao, Hui; Liu, Cai-Yun; Liu, Chun-Xiang; Zhao, Yue-Ling; Xu, Rui-Rui

    2016-09-01

    In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in

  16. Genomewide analysis of the lateral organ boundaries domain gene family in Vitis vinifera

    Indian Academy of Sciences (India)

    HUI CAO; CAI-YUN LIU; HUN-XIANG LIU; YUE-LING ZHAO; RUI-RUI XU

    2016-09-01

    In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ bound-aries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays , poplar, apple and tomato. However, relatively little is known about the LBD genes in grape ( Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1–chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expres-sion patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene

  17. Evolution of the chitin synthase gene family correlates with fungal morphogenesis and adaption to ecological niches

    Science.gov (United States)

    Liu, Ran; Xu, Chuan; Zhang, Qiangqiang; Wang, Shiyi; Fang, Weiguo

    2017-01-01

    The fungal kingdom potentially has the most complex chitin synthase (CHS) gene family, but evolution of the fungal CHS gene family and its diversification to fulfill multiple functions remain to be elucidated. Here, we identified the full complement of CHSs from 231 fungal species. Using the largest dataset to date, we characterized the evolution of the fungal CHS gene family using phylogenetic and domain structure analysis. Gene duplication, domain recombination and accretion are major mechanisms underlying the diversification of the fungal CHS gene family, producing at least 7 CHS classes. Contraction of the CHS gene family is morphology-specific, with significant loss in unicellular fungi, whereas family expansion is lineage-specific with obvious expansion in early-diverging fungi. ClassV and ClassVII CHSs with the same domain structure were produced by the recruitment of domains PF00063 and PF08766 and subsequent duplications. Comparative analysis of their functions in multiple fungal species shows that the emergence of ClassV and ClassVII CHSs is important for the morphogenesis of filamentous fungi, development of pathogenicity in pathogenic fungi, and heat stress tolerance in Pezizomycotina fungi. This work reveals the evolution of the fungal CHS gene family, and its correlation with fungal morphogenesis and adaptation to ecological niches. PMID:28300148

  18. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    Science.gov (United States)

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  19. The cloning and expression characterization of the centrosome protein genes family (centrin genes) in rat testis

    Institute of Scientific and Technical Information of China (English)

    SUN; Xiaodong(孙晓冬); GE; Yehua(葛晔华); MA; Jing(马静); YU; Zuoren(俞作仁); LI; Sai(李赛); WANG; Yongchao(王永潮); XUE; Shepu(薛社普); HAN; Daishu(韩代书)

    2002-01-01

    Centrins are members of the centrosome protein family, which is highly conserved during revolution. The homologous genes of centrin in many organisms had been cloned, but the sequences of the rat centrin genes were not reported yet in GenBank. We cloned the cDNA fragments of centrin-1, -2 and -3 from the rat testis by RT-PCR, and analyzed the homology of the deduced amino acid sequences. The expression characterization of centrin genes in rat spermatogenesis was carried out by semi-quantitative RT-PCR. The results show that the homology of the corresponding centrin proteins in human, mouse and rat is high. The expression of centrin-1 is testis-specific, spermatogenic cell-specific and developmental stage-related. Centrin-1 begins to be transcribed when the meiosis occurs, and its mRNA level reaches the peak in round spermatids. Centrin-2 and centrin-3 are highly expressed in spermatogonia and their mRNA level decreases markedly when meiosis occurs. These results suggest that centrin-1 may play roles in meiosis and spermiogenesis, and centrin-2 and centrin-3 may be related to mitosis.

  20. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.

    Directory of Open Access Journals (Sweden)

    James Cockram

    Full Text Available Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL and PREUDORESPONSE REGULATOR (PRR gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF genes. We molecularly describe the CMF (and related COL and PRR gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare. Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.

  1. Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae.

    Science.gov (United States)

    Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Bailey, Paul C; O'Sullivan, Donal M

    2012-01-01

    Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.

  2. Evolution of the RH gene family in vertebrates revealed by brown hagfish (Eptatretus atami) genome sequences.

    Science.gov (United States)

    Suzuki, Akinori; Komata, Hidero; Iwashita, Shogo; Seto, Shotaro; Ikeya, Hironobu; Tabata, Mitsutoshi; Kitano, Takashi

    2017-02-01

    In vertebrates, there are four major genes in the RH (Rhesus) gene family, RH, RHAG, RHBG, and RHCG. These genes are thought to have been formed by the two rounds of whole-genome duplication (2R-WGD) in the common ancestor of all vertebrates. In our previous work, where we analyzed details of the gene duplications process of this gene family, three nucleotide sequences belonging to this family were identified in Far Eastern brook lamprey (Lethenteron reissneri), and the phylogenetic positions of the genes were determined. Lampreys, along with hagfishes, are cyclostomata (jawless fishes), which is a sister group of gnathostomata (jawed vertebrates). Although those results suggested that one gene was orthologous to the gnathostome RHCG genes, we did not identify clear orthologues for other genes. In this study, therefore, we identified three novel cDNA sequences that belong to the RH gene family using de novo transcriptome analysis of another cyclostome: the brown hagfish (Eptatretus atami). We also determined the nucleotide sequences for the RHBG and RHCG genes in a red stingray (Dasyatis akajei), which belongs to the cartilaginous fishes. The phylogenetic tree showed that two brown hagfish genes, which were probably duplicated in the cyclostome lineage, formed a cluster with the gnathostome RHAG genes, whereas another brown hagfish gene formed a cluster with the gnathostome RHCG genes. We estimated that the RH genes had a higher evolutionary rate than the RHAG, RHBG, and RHCG genes. Interestingly, in the RHBG genes, only the bird lineage showed a higher rate of nonsynonymous substitutions. It is likely that this higher rate was caused by a state of relaxed functional constraints rather than positive selection nor by pseudogenization.

  3. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus.

    Science.gov (United States)

    Kiggundu, Andrew; Muchwezi, Josephine; Van der Vyver, Christell; Viljoen, Altus; Vorster, Juan; Schlüter, Urte; Kunert, Karl; Michaud, Dominique

    2010-02-01

    The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera.

  4. Molecular cloning, characterization, and expression of wheat cystatins.

    Science.gov (United States)

    Kuroda, M; Kiyosaki, T; Matsumoto, I; Misaka, T; Arai, S; Abe, K

    2001-01-01

    We cloned four kinds of cDNAs of wheat cystatins (WCs), WC1, WC2, WC3, and WC4, from the seed. They had 47-68% amino acid sequence similarities to other plant cystatins. WC1, WC2, and WC4 had 63-67% similalities to one another while 93% of amino acids were identical between WC1 and WC3. This suggested that WCI, WC2, and WC4 should be regarded as the isoforms of wheat cystatins. The mRNAs for WC1, WC2, and WC4 were all expressed in seed at an early stage of maturation and, after that, their quantities decreased gradually. However, each of the mRNAs was again expressed one day after the start of germination and the expression continued for the following five days. WC1 seemed to be expressed at a higher level than WC2 and WC4. Immunostaining for looking at site-specific expression of each WC demonstrated that both WC1 and WC4 existed in the aleuron layer and embryo, but in the endosperm the only existing species was WC1. Differences in mRNA level and tissue localization found for the WCs may suggest their differential physiological roles.

  5. Cystatin C: A new biochemical marker in livestock sector

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-09-01

    Full Text Available The livestock sector contributes largely to the economy of India. Different systemic diseases like renal diseases, neurological and cardiovascular diseases cause huge loss in production and productive potential of livestock in India, which is considered as a major concern for both small and large ruminants. Early detection of diseseses is essential to combat the economic loss. An efficient biochemical marker can be developed which would provide more specific, sensitive and reliable measurement of functions of different organs. Determination of endogenous marker Cystatin C may fulfill the above need which can provide a detection platform not only for Kidney function but also for assaying other organs' function. Cystatin C is a low molecular weight protein which is removed from the bloodstream by glomerular filtration in the kidneys. Thus, it may act as a potential biological tool in diagnosis of renal and other systemic diseases in livestock. This mini-review focuses on the Cystatin C and its clinical importance which can be extensively employed in the livestock sector. [J Adv Vet Anim Res 2016; 3(3.000: 200-205

  6. Cystatin F is a biomarker of prion pathogenesis in mice

    Science.gov (United States)

    Sorce, Silvia; Moos, Rita; Schori, Christian; Beerli, Roger R.; Bauer, Monika; Saudan, Philippe; Dietmeier, Klaus; Lachmann, Ingolf; Linnebank, Michael; Martin, Roland; Kallweit, Ulf; Kana, Veronika; Rushing, Elisabeth J.; Budka, Herbert

    2017-01-01

    Misfolding of the cellular prion protein (PrPC) into the scrapie prion protein (PrPSc) results in progressive, fatal, transmissible neurodegenerative conditions termed prion diseases. Experimental and epidemiological evidence point toward a protracted, clinically silent phase in prion diseases, yet there is no diagnostic test capable of identifying asymptomatic individuals incubating prions. In an effort to identify early biomarkers of prion diseases, we have compared global transcriptional profiles in brains from pre-symptomatic prion-infected mice and controls. We identified Cst7, which encodes cystatin F, as the most strongly upregulated transcript in this model. Early and robust upregulation of Cst7 mRNA levels and of its cognate protein was validated in additional mouse models of prion disease. Surprisingly, we found no significant increase in cystatin F levels in both cerebrospinal fluid or brain parenchyma of patients with Creutzfeldt-Jakob disease compared to Alzheimer’s disease or non-demented controls. Our results validate cystatin F as a useful biomarker of early pathogenesis in experimental models of prion disease, and point to unexpected species-specific differences in the transcriptional responses to prion infections. PMID:28178353

  7. Diversification of the C-TERMINALLY ENCODED PEPTIDE (CEP) gene family in angiosperms, and evolution of plant-family specific CEP genes.

    Science.gov (United States)

    Ogilvie, Huw A; Imin, Nijat; Djordjevic, Michael A

    2014-10-06

    Small, secreted signaling peptides work in parallel with phytohormones to control important aspects of plant growth and development. Genes from the C-TERMINALLY ENCODED PEPTIDE (CEP) family produce such peptides which negatively regulate plant growth, especially under stress, and affect other important developmental processes. To illuminate how the CEP gene family has evolved within the plant kingdom, including its emergence, diversification and variation between lineages, a comprehensive survey was undertaken to identify and characterize CEP genes in 106 plant genomes. Using a motif-based system developed for this study to identify canonical CEP peptide domains, a total of 916 CEP genes and 1,223 CEP domains were found in angiosperms and for the first time in gymnosperms. This defines a narrow band for the emergence of CEP genes in plants, from the divergence of lycophytes to the angiosperm/gymnosperm split. Both CEP genes and domains were found to have diversified in angiosperms, particularly in the Poaceae and Solanaceae plant families. Multispecies orthologous relationships were determined for 22% of identified CEP genes, and further analysis of those groups found selective constraints upon residues within the CEP peptide and within the previously little-characterized variable region. An examination of public Oryza sativa RNA-Seq datasets revealed an expression pattern that links OsCEP5 and OsCEP6 to panicle development and flowering, and CEP gene trees reveal these emerged from a duplication event associated with the Poaceae plant family. The characterization of the plant-family specific CEP genes OsCEP5 and OsCEP6, the association of CEP genes with angiosperm-specific development processes like panicle development, and the diversification of CEP genes in angiosperms provides further support for the hypothesis that CEP genes have been integral to the evolution of novel traits within the angiosperm lineage. Beyond these findings, the comprehensive set of CEP

  8. Detection of filaggrin gene mutation (2282del4) in Pakistani Ichthyosis vulgaris families.

    Science.gov (United States)

    Naz, Naghma; Samdani, Azam Jah

    2011-06-01

    The aim of this study was to detect an 811 bp filaggrin (FLG) gene fragment known to carry a mutation 2282del4 which causes ichthyosis vulgaris. Seven clinically examined ichthyosis vulgaris families were included in this study. An 811 bp FLG gene fragment was targeted in the genomic DNA of all the members of the seven families by PCR amplification using known primers RPT1P7 and RPT2P1. Successful amplification of an 811 bp FLG gene fragment in all the families suggested the possible role of the 2282del4 mutation in causing ichthyosis vulgaris in Pakistani population.

  9. Genomewide identification, classification and analysis of NAC type gene family in maize

    Indian Academy of Sciences (India)

    Xiaojian Peng; Yang Zhao; Xiaoming Li; Min Wu; Wenbo Chai; Lei Sheng; Yu Wang; Qing Dong; Haiyang Jiang; Beijiu Cheng

    2015-09-01

    NAC transcription factors comprise a large plant-specific gene family. Increasing evidence suggests that members of this family have diverse functions in plant growth and development. In this study, we performed a genomewide survey of NAC type genes in maize (Zea mays L.). A complete set of 148 nonredundant NAC genes (ZmNAC1–ZmNAC148) were identified in the maize genome using Blast search tools, and divided into 12 groups (a–l) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental and tandem duplication contributed largely to the expansion of the maize NAC gene family. The a/s ratio suggested that the duplicated genes of maize NAC family mainly experienced purifying selection, with limited functional divergence after duplication events. Microarray analysis indicated most of the maize NAC genes were expressed across different developmental stages. Moreover, 19 maize NAC genes grouped with published stress-responsive genes from other plants were found to contain putative stress-responsive cis-elements in their promoter regions. All these stress-responsive genes belonged to the group d (stress-related). Further, these genes showed differential expression patterns over time in response to drought treatments by quantitative real-time PCR analysis. Our results reveal a comprehensive overview of the maize NAC, and form the foundation for future functional research to uncover their roles in maize growth and development.

  10. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  11. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    Directory of Open Access Journals (Sweden)

    Yi-Bing Zhang

    Full Text Available Gig2 (grass carp reovirus (GCRV-induced gene 2 is first identified as a novel fish interferon (IFN-stimulated gene (ISG. Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose polymerases (PARPs, and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  12. (TG/CAn repeats in human gene families: abundance and selective patterns of distribution according to function and gene length

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2005-06-01

    Full Text Available Abstract Background Creation of human gene families was facilitated significantly by gene duplication and diversification. The (TG/CAn repeats exhibit length variability, display genome-wide distribution, and are abundant in the human genome. Accumulation of evidences for their multiple functional roles including regulation of transcription and stimulation of recombination and splicing elect them as functional elements. Here, we report analysis of the distribution of (TG/CAn repeats in human gene families. Results The 1,317 human gene families were classified into six functional classes. Distribution of (TG/CAn repeats were analyzed both from a global perspective and from a stratified perspective based on their biological properties. The number of genes with repeats decreased with increasing repeat length and several genes (53% had repeats of multiple types in various combinations. Repeats were positively associated with the class of Signaling and communication whereas, they were negatively associated with the classes of Immune and related functions and of Information. The proportion of genes with (TG/CAn repeats in each class was proportional to the corresponding average gene length. The repeat distribution pattern in large gene families generally mirrored the global distribution pattern but differed particularly for Collagen gene family, which was rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high conservation in the Chimpanzee genome. However the majority of these repeats displayed length polymorphism. Conclusion Positive association of repeats with genes of Signaling and communication points to their role in modulation of transcription. Negative association of repeats in genes of Information relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In genes of Immune and related functions negative association of repeats perhaps relates to the smaller gene

  13. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L..

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    Full Text Available WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III. Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae, comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  14. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  15. Saltatory evolution of the ectodermal neural cortex gene family at the vertebrate origin.

    Science.gov (United States)

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates.

  16. "It's good to know": experiences of gene identification and result disclosure in familial epilepsies.

    Science.gov (United States)

    Vears, Danya F; Dunn, Karen L; Wake, Samantha A; Scheffer, Ingrid E

    2015-05-01

    Recognition of the role of genetics in the epilepsies has increased dramatically, impacting on clinical practice across many epilepsy syndromes. There is limited research investigating the impact of gene identification on individuals and families with epilepsy. While research has focused on the impact of delivering genetic information to families at the time of diagnosis in genetic diseases more broadly, little is known about how genetic results in epileptic diseases influences people's lives many years after it has been conveyed. This study used qualitative methods to explore the experience of receiving a genetic result in people with familial epilepsy. Interviews were conducted with individuals with familial epilepsies in whom the underlying genetic mutation had been identified. Recorded interviews underwent thematic analysis. 20 individuals from three families with different epilepsy syndromes and causative genes were interviewed. Multiple generations within families were studied. The mean time from receiving the genetic result prior to interview was 10.9 years (range 5-14 years). Three major themes were identified: 1) living with epilepsy: an individual's experience of the severity of epilepsy in their family influenced their view. 2) Clinical utility of the test: participants expressed varying reactions to receiving a genetic result. While for some it provided helpful information and relief, others were not surprised by the finding given the familial context. Some valued the use of genetic information for reproductive decision-making, particularly in the setting of severely affected family members. While altruistic reasons for participating in genetic research were discussed, participants emphasised the benefit of participation to them and their families. 3) 'Talking about the family genes': individuals reported poor communication between family members about their epilepsy and its genetic implications. The results provide important insights into the family

  17. Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple.

    Science.gov (United States)

    Xu, Ruirui; Liu, Caiyun; Li, Ning; Zhang, Shizhong

    2016-12-01

    Argonaute (AGO) proteins, which are found in yeast, animals, and plants, are the core molecules of the RNA-induced silencing complex. These proteins play important roles in plant growth, development, and responses to biotic stresses. The complete analysis and classification of the AGO gene family have been recently reported in different plants. Nevertheless, systematic analysis and expression profiling of these genes have not been performed in apple (Malus domestica). Approximately 15 AGO genes were identified in the apple genome. The phylogenetic tree, chromosome location, conserved protein motifs, gene structure, and expression of the AGO gene family in apple were analyzed for gene prediction. All AGO genes were phylogenetically clustered into four groups (i.e., AGO1, AGO4, MEL1/AGO5, and ZIPPY/AGO7) with the AGO genes of Arabidopsis. These groups of the AGO gene family were statistically analyzed and compared among 31 plant species. The predicted apple AGO genes are distributed across nine chromosomes at different densities and include three segment duplications. Expression studies indicated that 15 AGO genes exhibit different expression patterns in at least one of the tissues tested. Additionally, analysis of gene expression levels indicated that the genes are mostly involved in responses to NaCl, PEG, heat, and low-temperature stresses. Hence, several candidate AGO genes are involved in different aspects of physiological and developmental processes and may play an important role in abiotic stress responses in apple. To the best of our knowledge, this study is the first to report a comprehensive analysis of the apple AGO gene family. Our results provide useful information to understand the classification and putative functions of these proteins, especially for gene members that may play important roles in abiotic stress responses in M. hupehensis.

  18. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2017-02-01

    Full Text Available Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  19. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  20. Cellular processing of the amyloidogenic cystatin C variant of hereditary cerebral hemorrhage with amyloidosis, Icelandic type

    DEFF Research Database (Denmark)

    Benedikz, Eirikur; Merz, G S; Schwenk, V

    1999-01-01

    of an amyloidogenic mutation on the intracellular processing of its protein product. The protein, a mutant of the cysteine protease inhibitor cystatin C, is the amyloid precursor protein in Hereditary Cerebral Hemorrhage with Amyloidosis--Icelandic type (HCHWA-I). The amyloid fibers are composed of mutant cystatin C...

  1. An improved method to extract and purify cystatin from hen egg white.

    Science.gov (United States)

    Wang, Jiapei; Wu, Jianping

    2014-07-15

    Hen egg white cystatin, an inhibitor of cysteine proteinase, may have wide applications for improving human health. However, its pricy cost associated with extraction and preparation has hurdled its further utilization. The objective was to develop an improved method to extract and purify cystatin from egg white. After removal of ovomucin, a fraction containing cystatin was obtained by cation exchange chromatography, and further purified by affinity chromatography using a cm-papain-Sepharose column. The prepared cystatin was then characterized by SDS-PAGE, Western-Blot, and LC-MS/MS, and its purity was determined by HPLC method instead of the conventional immunodiffusion method. The protein content of cystatin extract was 66.4 ± 2.3%. In comparison with the conventional method, the purity of cystatin was improved from 56.6 ± 1.7% to 93.3 ± 4.0%, and its yield was improved from 21.3 ± 1.2% to 33.6 ± 1.5%. Relative activities of cystatin to inhibit papain prepared by our method and the conventional method were determined to be 88 ± 7% and 91 ± 4% respectively, against a cystatin standard from Sigma. This suggested no significant loss of activity during the separation process.

  2. Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells.

    Science.gov (United States)

    Magister, Spela; Obermajer, Nataša; Mirković, Bojana; Svajger, Urban; Renko, Miha; Softić, Adaleta; Romih, Rok; Colbert, Jeff D; Watts, Colin; Kos, Janko

    2012-05-01

    In dendritic cells (DCs) cysteine cathepsins play a key role in antigen processing, invariant chain (Ii) cleavage and regulation of cell adhesion after maturation stimuli. Cystatin F, a cysteine protease inhibitor, is present in DCs in endosomal/lysosomal vesicles and thus has a potential to modulate cathepsin activity. In immature DCs cystatin F colocalizes with cathepsin S. After induction of DC maturation however, it is translocated into lysosomes and colocalizes with cathepsin L. The inhibitory potential of cystatin F depends on the properties of the monomer. We showed that the full-length monomeric cystatin F was a 12-fold stronger inhibitor of cathepsin S than the N-terminally processed cystatin F, whereas no significant difference in inhibition was observed for cathepsins L, H and X. Therefore, the role of cystatin F in regulating the main cathepsin S function in DCs, i.e. the processing of Ii, may depend on the form of the monomer present in endosomal/lysosomal vesicles. On the other hand, intact and truncated monomeric cystatin F are both potent inhibitors of cathepsin L and it is likely that cystatin F could regulate its activity in maturing, adherent DCs, controlling the processing of procathepsin X, which promotes cell adhesion via activation of Mac-1 (CD11b/CD18) integrin receptor.

  3. Cystatin C: A prognostic marker after myocardial infarction in patients without chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Leila Abid

    2016-07-01

    Conclusion: High cystatin C levels are associated with the severity of coronary artery disease in patients presenting an acute coronary syndrome and a normal renal function. Cystatin C is also associated to unfavourable cardiovascular outcomes during follow-up and appears as a strong predictor for risk of cardiovascular events and death.

  4. β2-microglobulin, cystatin C, and creatinine and risk of symptomatic peripheral artery disease

    NARCIS (Netherlands)

    Joosten, Michel M.; Pai, Jennifer K.; Bertoia, Monica L.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Cooke, John P.; Rimm, Eric B.; Mukamal, Kenneth J.

    2014-01-01

    BACKGROUND: β2-Microglobulin and cystatin C may have advantages over creatinine in assessing risk associated with kidney function. We therefore investigated whether emerging filtration markers, β2-microglobulin and cystatin C, are prospectively associated with risk of the development of peripheral a

  5. CRDB: database of chemosensory receptor gene families in vertebrate.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Chemosensory receptors (CR are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  6. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification.

    Science.gov (United States)

    Gjini, Erida; Haydon, Daniel T; David Barry, J; Cobbold, Christina A

    2014-01-21

    Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion. © 2013 Published by Elsevier Ltd. All rights reserved.

  7. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families

    DEFF Research Database (Denmark)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Sritubtim, Somrudee;

    2006-01-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described...... Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently...... robust to allow it to be usefully extended to other well-characterized plant systems....

  8. Presymptomatic detection or exclusion of prion protein gene defects in families with inherited prion diseases.

    OpenAIRE

    1991-01-01

    The identification of defects in the prion protein (PrP) gene in families with inherited Creutzfeldt-Jakob disease or Gerstmann-Straussler syndrome allows presymptomatic diagnosis or exclusion of these disorders in subjects at risk. After counseling, PrP gene analysis was performed in three such individuals: two from families with a 144-bp insert and one with a point mutation at codon 102 in the PrP gene. The presence of a PrP gene defect was confirmed in one and excluded in two. Despite the ...

  9. A novel missense adenine nucleotide translocator-1 gene mutation in a Greek adPEO family.

    Science.gov (United States)

    Napoli, L; Bordoni, A; Zeviani, M; Hadjigeorgiou, G M; Sciacco, M; Tiranti, V; Terentiou, A; Moggio, M; Papadimitriou, A; Scarlato, G; Comi, G P

    2001-12-26

    Autosomal dominant progressive external ophthalmoplegia (adPEO) is caused by mutations in at least three different genes: ANT1 (chromosome 4q34-35), TWINKLE, and POLG. The ANT1 gene encodes the adenine nucleotide translocator-1 (ANT1). We identified a heterozygous T293C mutation of the ANT1 gene in a Greek family with adPEO. The resulting leucine to proline substitution likely modifies the secondary structure of the ANT1 protein. ANT1 gene mutations may account for adPEO in families with different ethnic backgrounds.

  10. THE PRACTICAL USE OF CYSTATIN C MEASUREMENT IN PATIENTS WITH VARIOUS RENAL DISEASES

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To investigate the clinical usefulness in terms of estimation for glomerular fil tration rate(GFR), we determined the serum cystatin C levels in 72 healthy adult s , 63 children, and 109 patients with various renal diseases, and compared the s erum cystatin C concentrations with serum creatinine levels. In addition, the re nal function was evaluated in 5 adults receiving renal transplantations using cy statin C.Methods:Serum cystatin C levels were measured by a par ticle-enhanced nephelometric immunoassay on Dade Behring nephelometer system. Se rum and urine creatinine concentrations were determined by use of Jaff's kinetic assay.Results: The cystatin C concentration at birth was typica lly double that found in adults, then fell to a constant level after 1 year, a v a lue that was maintained to about 60 years. The studies of cystatin C in the elde rly showed that the circulation cystatin C levels rose gradually above 60 years. There was a significant positive correlation between serum cystatin C and creat inine level (r=0.921,P<0.01) in the patients with various renal diseases. S erum cystatin C was inversely and logarithmically correlated with creatinine cle arance as shown in the equation lg cystatin C =-0.6061gCCr+1.209(r=-0.887,P <0.01). Serum cystatin C levels rose prior to creatinine concentrations and sta rted to increase over normal range when creatinine clearance remained within no rmal range. After renal transplantation,cystatin C concentration significantly d e creased during the first week(-43% vs -21% for creatinine) in patients without d elayed graft function. In some cases of acute renal impairment, the increase in serum cystatin C values was more prominent than that of creatinine.Conclusion:Serum cystatin C is probably more attractive for esti mation of renal function than serum creatinine and creatinine clearance especial ly for detection of the mild reduction of glomerular filtrate rate in patients w ith various kidney diseases

  11. Mutation Analysis in the BRCA1 Gene in Chinese Breast Cancer Families

    Institute of Scientific and Technical Information of China (English)

    WUZhengyan; ZHENLinlin; FANPing

    2003-01-01

    Objective: To study the mutation of BRCA1 gene in Chinese breast cancer families. Methods:Fifteen families were selected, involving 41 members, consisting of 23 breast cancer patients. Using poly-merase chain reaction and single stranded conformation polymorphism (PCR-SSCP), and subsequent DNA sequencing, the mutation of BRCA1 genes were analyzed. Results: Four mutations were found in all fam-ilies, and the proportion of mutation was 26.7% (4/15) in breast cancer families. One of the 4 mutations was 2228 insC, resulting in chain termination at codon 711. The remaining 3 mutations were 1884A→T and 3232A→G, resulting in single amino acid change respectively. Conclusion: BRCA1 is a breast cancer susceptibility gene. The relatively low proportion and frequency of BRCA1 mutations in our study hints additional BRCA genes existed.

  12. Segregation Analysis of 231 Ashkenazi Jewish Families for Evidence of Additional Breast Cancer Susceptibility Genes

    National Research Council Canada - National Science Library

    David J. Kaufman; Terri H. Beaty; Jeffery P. Struewing

    2003-01-01

    .... Using segregation analysis, families of cases without BRCA1/2 mutations were studied for statistical evidence of another major breast cancer gene in a community-based sample of Jewish probands tested...

  13. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    Science.gov (United States)

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  14. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Hart Thomas C

    2007-01-01

    Full Text Available Abstract Amelogenesis imperfecta (AI is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  15. Analysis of Five Differentially Expressed Gene Families in Fast Elongating Cotton Fiber

    Institute of Scientific and Technical Information of China (English)

    Jian-Xun FENG; Sheng-Jian JI; Yong-Hui SHI; Yu XU; Gang WEI; Yu-Xian ZHU

    2004-01-01

    Using the suppression subtractive hybridization method, we isolated five gene families,including proline-rich proteins (PRPs), arabinogalactan proteins (AGPs), expansins, tubulins and lipid transfer proteins (LTPs), from fast elongating cotton fiber cells. Expression profile analysis using cDNA array technology showed that most of these gene families were highly expressed during early cotton fiber developmental stages (0-20 days post anthesis, DPA). Many transcripts accumulated over 50-fold in 10 DPA fiber cells than in 0 DPA samples. The entire gene family-AGP, together with 20 individual members in other 4 gene families, are reported in cotton for the first time. Accumulation of cell wall proteins, wall loosening enzymes, microtubules and lipid transfer proteins may contribute directly to the elongation and development of fiber cells.

  16. Non-enzymatic Glycation of Almond Cystatin Leads to Conformational Changes and Altered Activity.

    Science.gov (United States)

    Siddiqui, Azad A; Sohail, Aamir; Bhat, Sheraz A; Rehman, Md T; Bano, Bilqees

    2015-01-01

    The non-enzymatic reaction between proteins and reducing sugars, known as glycation, leads to the formation of inter and intramolecular cross-links of proteins. Stable end products called as advanced Maillard products or advanced glycation end products (AGEs) have received tremendous attention since last decades. It was suggested that the formation of AGEs not only modify the conformation of proteins but also induces altered biological activity. In this study, cystatin purified from almond was incubated with three different sugars namely D-ribose, fructose and lactose to monitor the glycation process. Structural changes induced in cystatin on glycation were studied using UV-visible spectroscopy, fluorescence spectroscopy, CD and FTIR techniques. Glycated cystatin was found to migrate slower on electrophoresis as compared to control cystatin. Biological activity data of glycated cystatin showed that D-ribose was most effective in inducing conformational changes with maximum altered activity.

  17. The possible involvement of D-amino acids or their metabolites in Arabidopsis cysteine proteinase/cystatin N-dependent proteolytic pathway.

    Science.gov (United States)

    Gholizadeh, A

    2015-01-01

    Cysteine proteinases and their inhibitors 'cystatins' play essential roles in plant growth and development. They are involved in various signaling pathways and in the response to wide ranges of biotic and abiotic environmental stresses. To investigate their possible influence from D-amino acids or their metabolism in vivo, Arabidopsis seedlings were allowed to grow under four physicochemically different D-amino acids including D-aspartate, D-serine, D-alanine and D-phenylalanine containing media. The reverse transcription polymerase chain reaction (R T-PCR) analysis of cysteine proteinase and cystatin gene expressions showed that the addition of D-amino acid to the plant growth media considerably induce the expression of proteinase transcript while decrease the expression level of inhibitor gene in the leaf and root tissues of the test plant in overall. Based on the obtained results the potential impact of D-amino acids or their metabolism on the activity of cysteine proteinase/cystatin-dependent proteolytic apparatus as well as their possible cooperation were predicted and discussed in the plant system.

  18. Cystatin C在临床疾病诊疗中的作用%The role of Cystatin C in clinical disease's diagnosis and treatment

    Institute of Scientific and Technical Information of China (English)

    梁悦; 马会平; 韩维田

    2014-01-01

    Cystatin C,是一种半胱氨酸蛋白酶抑制剂,它表达于所有的有核细胞,在多种疾病中发挥着积极作用.在肾脏相关疾病中,Cystatin C是评价早期肾损害的敏感指标之一,此外Cystatin C还参与了神经系统疾病、心力衰竭等心血管疾病,甚至某些癌症的病理生理过程.同时Cystatin C的检测对肝脏疾病的治疗和预后有着积极的指导意义.

  19. Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X

    DEFF Research Database (Denmark)

    Valentin, Mev; Therkildsen, Christina; Veerla, Srinivas;

    2013-01-01

    Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.......Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects....

  20. A novel mutation in proprotein convertase subtilisin/kexin type 9 gene leads to familial hypercholesterolemia in a Chinese family

    Institute of Scientific and Technical Information of China (English)

    LIN Jie; JIANG Zhi-sheng; WANG Lu-ya; LIU Shu; WANG Xu-min; YONG Qiang; YANG Ya; DU Lan-ping; PAN Xiao-dong; WANG Xu

    2010-01-01

    Background Familial hypercholesterolemia (FH) is an autosomal disorder associated with elevated plasma low density lipoprotein (LDL) levels leading to premature coronary heart disease (CHD). As a result of long-term hyperlipemia, FH patients will present endarterium thickening and atherosclerosis. In the present study we scanned the related gene of a clinically diagnosed autosomal genetic hypercholesterolemia family for the possible mutations and established eukaryotic expression vector of mutation of proprotein convertase subtilisin/kexin type 9 (PCSK9) gene with gene recombination technique to investigate the contributions of the variation on low density lipoprotein receptor (LDL-R) metabolism and function alternation.Methods Mutation detection was conducted for LDL-R, apolipoprotein B100 (apoB100) and PCSK9 gene with nucleotide sequencing in a Chinese FH family. The full-length cDNA of wild type PCSK9 gene (WT-PCSK9) was obtained from Bel-7402. Site mutagenesis was used to establish the recombinant eukaryotic expression vector carrying pathogenic type of PCSK9 gene and the inserted fragment was sequenced. With the blank vector as control, liposome transfection method was used to transfect the Bel-7402 cells with recombinant plasmid. The expression of LDL-R mRNA was examined by RT-PCR. PCSK9 and the expression of LDL-R protein were determined by Western blotting. Results The G→T mutation at the 918 nucleotide of PCSK9 gene resulted in the substitution of the arginine by a serine at the codon 306 of exon 6. After sequencing, it was confirmed that the inserted fragment of established expression vector had correct size and sequence and the mutant was highly expressed in Bel-7402 cells. There was no significant variation in the levels of LDL-R mRNA. LDL-R mature protein was decreased by 57% after the cells were transfected by WT-PCSK9 plasmid. Mature LDL-R was significantly decreased by 12% after the cells were transfected by R306S mutant as evidenced by gray scale

  1. MS/MS networking guided analysis of molecule and gene cluster families.

    Science.gov (United States)

    Nguyen, Don Duy; Wu, Cheng-Hsuan; Moree, Wilna J; Lamsa, Anne; Medema, Marnix H; Zhao, Xiling; Gavilan, Ronnie G; Aparicio, Marystella; Atencio, Librada; Jackson, Chanaye; Ballesteros, Javier; Sanchez, Joel; Watrous, Jeramie D; Phelan, Vanessa V; van de Wiel, Corine; Kersten, Roland D; Mehnaz, Samina; De Mot, René; Shank, Elizabeth A; Charusanti, Pep; Nagarajan, Harish; Duggan, Brendan M; Moore, Bradley S; Bandeira, Nuno; Palsson, Bernhard Ø; Pogliano, Kit; Gutiérrez, Marcelino; Dorrestein, Pieter C

    2013-07-09

    The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779(T). The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family-gene cluster families of hundreds or more diverse organisms in one single MS/MS network.

  2. Candidate colorectal cancer predisposing gene variants in Chinese early-onset and familial cases

    NARCIS (Netherlands)

    Zhang, J.X.; Fu, L.; Voer, R.M. de; Hahn, M.M.; Jin, P.; Lv, C.X.; Verwiel, E.T.; Ligtenberg, M.J.L.; Hoogerbrugge, N.; Kuiper, R.P.; Sheng, J.Q.; Geurts van Kessel, A.H.M.

    2015-01-01

    AIM: To investigate whether whole-exome sequencing may serve as an efficient method to identify known or novel colorectal cancer (CRC) predisposing genes in early-onset or familial CRC cases. METHODS: We performed whole-exome sequencing in 23 Chinese patients from 21 families with non-polyposis CRC

  3. Cognitive Functioning in Affected Sibling Pairs with ADHD: Familial Clustering and Dopamine Genes

    Science.gov (United States)

    Loo, Sandra K.; Rich, Erika Carpenter; Ishii, Janeen; McGough, James; McCracken, James; Nelson, Stanley; Smalley, Susan L.

    2008-01-01

    Background: This paper examines familiality and candidate gene associations of cognitive measures as potential endophenotypes in attention-deficit/hyperactivity disorder (ADHD). Methods: The sample consists of 540 participants, aged 6 to 18, who were diagnosed with ADHD from 251 families recruited for a larger genetic study of ADHD. All members of…

  4. Expansion of the gamma-gliadin gene family in Aegilops and Triticum

    NARCIS (Netherlands)

    Goryunova, S.V.; Salentijn, E.M.J.; Chikida, N.N.; Kochieva, E.Z.; Meer, van der I.M.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2012-01-01

    Background - The gamma-gliadins are considered to be the oldest of the gliadin family of storage proteins in Aegilops/Triticum. However, the expansion of this multigene family has not been studied in an evolutionary perspective. Results - We have cloned 59 gamma-gliadin genes from Aegilops and Triti

  5. Genome-wide identification, characterization, and expression analysis of the MLO gene family in Cucumis sativus.

    Science.gov (United States)

    Zhou, S J; Jing, Z; Shi, J L

    2013-12-11

    Mildew resistance locus o (MLO) is a plant-specific seven-transmembrane (TM) gene family. Several studies have revealed that certain members of the MLO gene family mediate powdery mildew susceptibility in three plant species, namely, Arabidopsis, barley, and tomato. The sequenced cucumber genome provides an opportunity to conduct a comprehensive overview of the MLO gene family. Fourteen genes (designated CsMLO01 through CsMLO14) have been identified within the Cucumis sativus genome by using an in silico cloning method with the MLO amino acid sequences of Arabidopsis thaliana and rice as probes. Sequence alignment revealed that numerous features of the gene family, such as TMs, a calmodulin-binding domain, peptide domains I and II, and 30 important amino acid residues for MLO function, are well conserved. Phylogenetic analysis of the MLO genes from cucumber and other plant species reveals seven different clades (I through VII). Three of these clades comprised MLO genes from A. thaliana, rice, maize, and cucumber, suggesting that these genes may have evolved after the divergence of monocots and dicots. In silico mapping showed that these CsMLOs were located on chromosomes 1, 2, 3, 4, 5, and 6 without any obvious clustering, except CsMLO01. To our knowledge, this paper is the first comprehensive report on MLO genes in C. sativus. These findings will facilitate the functional characterization of the MLOs related to powdery mildew susceptibility and assist in the development of disease resistance in cucumber.

  6. Molecular Evolution and Expression Divergence of Aconitase (ACO Gene Family in Land Plants

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2016-12-01

    Full Text Available Aconitase (ACO is a key enzyme that catalyzes the isomerization of citrate to isocitrate in the tricarboxylic acid (TCA and glyoxylate cycles. The function of ACOs has been well studied in model plants, such as Arabidopsis. In contrast, the evolutionary patterns of the ACO family in land plants are poorly understood. In this study, we systematically examined the molecular evolution and expression divergence of the ACO gene family in 12 land plant species. Thirty-six ACO genes were identified from the 12 land plant species representing the four major land plant lineages: bryophytes, lycophytes, gymnosperms, and angiosperms. All of these ACOs belong to the cytosolic isoform. Three gene duplication events contributed to the expansion of the ACO family in angiosperms. The ancestor of angiosperms may have contained only one ACO gene. One gene duplication event split angiosperm ACOs into two distinct clades. Two clades showed a divergence in selective pressure and gene expression patterns. The cis-acting elements that function in light responsiveness were most abundant in the promoter region of the ACO genes, indicating that plant ACO genes might participate in light regulatory pathways. Our findings provide comprehensive insights into the ACO gene family in land plants.

  7. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Kalluri, Udaya C [ORNL; DiFazio, Stephen P [West Virginia University; Brunner, A. [Virginia Polytechnic Institute and State University (Virginia Tech); Tuskan, Gerald A [ORNL

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  8. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  9. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  10. Gene-Environment Interplay, Family Relationships, and Child Adjustment

    Science.gov (United States)

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene-environment interplay, including genotype-environment correlation (rGE) and genotype x environment…

  11. Structure of the omega-gliadin gene family

    Science.gov (United States)

    The '-gliadins are one of the classes of wheat seed storage proteins, but are the least characterized. In this report, an analysis is made of all available '-gliadin DNA sequences including '-gliadins genes within a large genomic clone, previously reported gene sequences, and ESTs identified from th...

  12. Gene-Environment Interplay, Family Relationships, and Child Adjustment

    Science.gov (United States)

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene-environment interplay, including genotype-environment correlation (rGE) and genotype x environment…

  13. Systematic design of mouse Vh gene family-specific oligonucleotides

    NARCIS (Netherlands)

    Seijen, AM; Seijen, HG; Bos, NA

    2001-01-01

    Kabat's database has often been used to design mouse Vh gene-specific 5 ' primers. The emphasis was mostly on constructing a universal (degenerate) 5 ' primer or 5 ' primer set, which would be able to match every mouse Vh gene. We were interested in finding oligonucleotides that could be used as pri

  14. Cystatin B与Cystatin C在舌鳞状细胞癌中的表达及意义%Expression and clinical significance of Cyasatin B and Cystatin C in tongue squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    程莉; 黄绍辉; 刘法昱; 秦兴军; 孙长伏

    2014-01-01

    目的 研究半胱氨酸蛋白酶抑制剂B(Cystatin B)与半胱氨酸蛋白酶抑制剂C(Cystatin C)在舌鳞状细胞癌中的表达及意义并探讨其在舌鳞状细胞癌中的作用.方法 收集于2010年1月-2011年1月在中国医科大学附属口腔医院口腔颌面外科就诊的50例舌鳞状细胞癌病例标本及临床病理资料,行免疫组化方法检测Cystatin B与Cystatin C在舌鳞状细胞癌及癌旁正常组织中的表达,进行统计分析.结果 在舌鳞状细胞癌组织和癌旁正常舌黏膜组织中,Cystatin B的阳性表达率分别为72.0% (36/50)和36.0% (18/50),两者比较有统计学意义(P<0.05);Cystatin C的阳性表达率分别为68.0%(34/50)和38.0% (19/50),两者比较有统计学意义(P<0.05).Cystatin B与Cystatin C在不同病理分级中的表达强度分别有统计学意义(P<0.05),与患者的年龄、性别及有无淋巴结转移均无关(P>0.05).结论 Cystatin B与Cystatin C在舌鳞状细胞癌的诊断及病理分级中具有一定的作用.

  15. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.

    Directory of Open Access Journals (Sweden)

    Abdukarimov Abdusattor

    2010-06-01

    Full Text Available Abstract Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp., including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii or allotetraploid (G. hirsutum, G. barbadense cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2 in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA, before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for

  16. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors.

    Science.gov (United States)

    Engsontia, Patamarerk; Sangket, Unitsa; Robertson, Hugh M; Satasook, Chutamas

    2015-08-27

    Chemical communication plays important roles in the social behavior of ants making them one of the most successful groups of animals on earth. However, the molecular evolutionary process responsible for their chemosensory adaptation is still elusive. Recent advances in genomic studies have led to the identification of large odorant receptor (Or) gene repertoires from ant genomes providing fruitful materials for molecular evolution analysis. The aim of this study was to test the hypothesis that diversification of this gene family is involved in olfactory adaptation of each species. We annotated the Or genes from the genome sequences of two leaf-cutter ants, Acromyrmex echinatior and Atta cephalotes (385 and 376 putative functional genes, respectively). These were used, together with Or genes from Camponotus floridanus, Harpegnathos saltator, Pogonomyrmex barbatus, Linepithema humile, Cerapachys biroi, Solenopsis invicta and Apis mellifera, in molecular evolution analysis. Like the Or family in other insects, ant Or genes evolve by the birth-and-death model of gene family evolution. Large gene family expansions involving tandem gene duplications, and gene gains outnumbering losses, are observed. Codon analysis of genes in lineage-specific expansion clades revealed signatures of positive selection on the candidate cuticular hydrocarbon receptor genes (9-exon subfamily) of Cerapachys biroi, Camponotus floridanus, Acromyrmex echinatior and Atta cephalotes. Positively selected amino acid positions are primarily in transmembrane domains 3 and 6, which are hypothesized to contribute to the odor-binding pocket, presumably mediating changing ligand specificity. This study provides support for the hypothesis that some ant lineage-specific Or genes have evolved under positive selection. Newly duplicated genes particularly in the candidate cuticular hydrocarbon receptor clade that have evolved under positive selection may contribute to the highly sophisticated lineage

  17. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS

    Directory of Open Access Journals (Sweden)

    Lawton Jennifer

    2012-03-01

    Full Text Available Abstract Background The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required. Results The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages. Conclusions In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family

  18. Duplication of OsHAP family genes and their association with heading date in rice.

    Science.gov (United States)

    Li, Qiuping; Yan, Wenhao; Chen, Huaxia; Tan, Cong; Han, Zhongmin; Yao, Wen; Li, Guangwei; Yuan, Mengqi; Xing, Yongzhong

    2016-03-01

    Heterotrimeric Heme Activator Protein (HAP) family genes are involved in the regulation of flowering in plants. It is not clear how many HAP genes regulate heading date in rice. In this study, we identified 35 HAP genes, including seven newly identified genes, and performed gene duplication and candidate gene-based association analyses. Analyses showed that segmental duplication and tandem duplication are the main mechanisms of HAP gene duplication. Expression profiling and functional identification indicated that duplication probably diversifies the functions of HAP genes. A nucleotide diversity analysis revealed that 13 HAP genes underwent selection. A candidate gene-based association analysis detected four HAP genes related to heading date. An investigation of transgenic plants or mutants of 23 HAP genes confirmed that overexpression of at least four genes delayed heading date under long-day conditions, including the previously cloned Ghd8/OsHAP3H. Our results indicate that the large number of HAP genes in rice was mainly produced by gene duplication, and a few HAP genes function to regulate heading date. Selection of HAP genes is probably caused by their diverse functions rather than regulation of heading.

  19. Research progress on correlation between Cystatin C and cardiovascular diseases%Cystatin C与心血管疾病相关性的研究进展

    Institute of Scientific and Technical Information of China (English)

    宗秋燕; 苏雨江

    2015-01-01

    Cystatin C (Cys C), one of inhibitors of cysteine proteinases, is involved in many physiological and pathological processes, and is associated with the occurrence, development and prognosis of certain diseases. The lastest researches show that Cystatin C is also closely related to cardiovascular diseases, such as coronary atheroscle-rotic heart disease, heart failure, hypertension. This review mainly discusses the association between Cystatin C and cardiovascular diseases.%半胱氨酸蛋白酶抑制剂——胱抑素C(Cystatin C)参与了机体许多生理和病理过程,与某些疾病的发生、发展及预后相关联.最新研究表明,Cystatin C与心血管疾病如冠状动脉粥样硬化性心脏病、心力衰竭、原发性高血压等有密切关系.本文就Cystatin C与心血管疾病之间的关系进行综述.

  20. Developmental regulation of synthesis and dimerization of the amyloidogenic protease inhibitor cystatin C in the hematopoietic system.

    Science.gov (United States)

    Xu, Yuekang; Lindemann, Petra; Vega-Ramos, Javier; Zhang, Jian-Guo; Villadangos, Jose A

    2014-04-04

    The cysteine protease inhibitor cystatin C is thought to be secreted by most cells and eliminated in the kidneys, so its concentration in plasma is diagnostic of kidney function. Low extracellular cystatin C is linked to pathologic protease activity in cancer, arthritis, atherosclerosis, aortic aneurism, and emphysema. Cystatin C forms non-inhibitory dimers and aggregates by a mechanism known as domain swapping, a property that reportedly protects against Alzheimer disease but can also cause amyloid angiopathy. Despite these clinical associations, little is known about the regulation of cystatin C production, dimerization, and secretion. We show that hematopoietic cells are major contributors to extracellular cystatin C levels in healthy mice. Among these cells, macrophages and dendritic cells (DC) are the predominant producers of cystatin C. Both cell types synthesize monomeric and dimeric cystatin C in vivo, but only secrete monomer. Dimerization occurs co-translationally in the endoplasmic reticulum and is regulated by the levels of reactive oxygen species (ROS) derived from mitochondria. Drugs or stimuli that reduce the intracellular concentration of ROS inhibit cystatin C dimerization. The extracellular concentration of inhibitory cystatin C is thus partly dependent on the abundance of macrophages and DC, and the ROS levels. These results have implications for the diagnostic use of serum cystatin C as a marker of kidney function during inflammatory processes that induce changes in DC or macrophage abundance. They also suggest an important role for macrophages, DC, and ROS in diseases associated with the protease inhibitory activity or amyloidogenic properties of cystatin C.

  1. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  2. YeastWeb: a workset-centric web resource for gene family analysis in yeast

    Directory of Open Access Journals (Sweden)

    Bao Haihua

    2010-07-01

    Full Text Available Abstract Background Currently, a number of yeast genomes with different physiological features have been sequenced and annotated, which provides invaluable information to investigate yeast genetics, evolutionary mechanism, structure and function of gene families. Description YeastWeb is a novel database created to provide access to gene families derived from the available yeast genomes by assigning the genes into putative families. It has many useful features that complement existing databases, such as SGD, CYGD and Génolevures: 1 Detailed computational annotation was conducted with each entry with InterProScan, EMBOSS and functional/pathway databases, such as GO, COG and KEGG; 2 A well established user-friendly environment was created to allow users to retrieve the annotated genes and gene families using functional classification browser, keyword search or similarity-based search; 3 Workset offers users many powerful functions to manage the retrieved data efficiently, associate the individual items easily and save the intermediate results conveniently; 4 A series of comparative genomics and molecular evolution analysis tools are neatly implemented to allow users to view multiple sequence alignments and phylogenetic tree of gene families. At present, YeastWeb holds the gene families clustered from various MCL inflation values from a total of 13 available yeast genomes. Conclusions Given the great interest in yeast research, YeastWeb has the potential to become a useful resource for the scientific community of yeast biologists and related researchers investigating the evolutionary relationship of yeast gene families. YeastWeb is available at http://centre.bioinformatics.zj.cn/Yeast/.

  3. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies

    DEFF Research Database (Denmark)

    Møller, Rikke S; Larsen, Line H G; Johannesen, Katrine M

    2016-01-01

    -causing variant in 49 (23%) of the 216 patients. The variants were found in 19 different genes including SCN1A, STXBP1, CDKL5, SCN2A, SCN8A, GABRA1, KCNA2, and STX1B. Patients with neonatal-onset epilepsies had the highest rate of positive findings (57%). The overall yield for patients with EEs was 32%, compared...... to 17% among patients with generalized epilepsies and 16% in patients with focal or multifocal epilepsies. By the use of a gene panel consisting of 46 epilepsy genes, we were able to find a disease-causing genetic variation in 23% of the analyzed patients. The highest yield was found among patients......In recent years, several genes have been causally associated with epilepsy. However, making a genetic diagnosis in a patient can still be difficult, since extensive phenotypic and genetic heterogeneity has been observed in many monogenic epilepsies. This study aimed to analyze the genetic basis...

  4. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    DEFF Research Database (Denmark)

    Hu, H; Haas, S A; Chelly, J;

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes ...

  5. Variation in the nucleotide sequence of a prolamin gene family in wild rice.

    Science.gov (United States)

    Barbier, P; Ishihama, A

    1990-07-01

    Variation in the DNA sequence of the 10 kDa prolamin gene family within the wild rice species Oryza rufipogon was probed using the direct sequencing of PCR-amplified genes. A comparison of the nucleotide and deduced amino-acid sequences of eight Asian strains of O. rufipogon and one strain of the related African species O. longistaminata is presented.

  6. Analysis of AGXT gene mutation in primary hyperoxaluria type I family

    Institute of Scientific and Technical Information of China (English)

    高延霞

    2014-01-01

    Objective To describe the clinical characteristics,and to analyze the AGXT gene mutation in three siblings with primary hyperoxaluria typeⅠ(PHI).Methods AGXT gene mutation was analyzed by direct sequencing analysis in this family,and the minor allele status was also tested.One hundred unrelated healthy subjects were also analyzed as controls.Results Three mutations in

  7. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.)

    Indian Academy of Sciences (India)

    Fupeng Li; Chaoyun Hao; Lin Yan; Baoduo Wu; Xiaowei Qin; Jianxiong Lai; Yinghui Song

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  8. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  9. Familial migraine: Exclusion of the susceptibility gene from the reported locus of familial hemiplegic migraine on 19p

    Energy Technology Data Exchange (ETDEWEB)

    Hovatta, I.; Peltonen, L. [National Public Health Institute, Helsinki (Finland); Kallela, M.; Faerkkilae, M. [Helsinki Univ. Central Hospital (Finland)

    1994-10-01

    Genetic isolates are highly useful in analyses of the molecular background of complex diseases since the enrichment of a limited number of predisposing genes can be predicted in representative families or in specific geographical regions. It has been suggested that the pathophysiology and etiology of familial hemiplegic migraine (FHM) and typical migraine with aura are most probably the same. Recent assignment of FHM locus to chromosome 19p in two French families makes it now possible to test this hypothesis. We report here linkage data on four families with multiple cases of migraine disorder originating from the genetically isolated population of Finland. We were interested to discover whether the migraine in these families would also show linkage to the markers on 19p. We could exclude a region of 50 cM, flanking the reported FHM locus, as a site of migraine locus in our four families. It seems evident that locus heterogeneity exists between different diagnostic classes of migraine spectrum of diseases and also between different ethnic groups. 10 refs., 2 figs., 1 tab.

  10. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns.

    Science.gov (United States)

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  11. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  12. The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns

    Science.gov (United States)

    Feng, Kun; Yu, Jiahong; Cheng, Yuan; Ruan, Meiying; Wang, Rongqing; Ye, Qingjing; Zhou, Guozhi; Li, Zhimiao; Yao, Zhuping; Yang, Yuejian; Zheng, Qingsong; Wan, Hongjian

    2016-01-01

    Superoxide dismutases (SODs) are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS) caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L.) is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants. PMID:27625661

  13. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus

    Science.gov (United States)

    Choubey, Divaker; Panchanathan, Ravichandran

    2008-01-01

    Systemic lupus erythematosus (SLE) is the prototype of complex autoimmune diseases. Studies have suggested that genetic, hormonal, and environmental factors contribute to the development of the disease. Interestingly, several recent studies involving SLE patients and mouse models of the disease have suggested a role for interferon (IFN)-stimulated genes (ISGs) in the development of SLE. One family of ISGs is the Ifi200-family, which includes mouse (Ifi202a, Ifi202b, Ifi203, Ifi204, and Ifi205) and human (IFI16, MNDA, AIM2, and IFIX) genes. The mouse genes cluster between serum amyloid P-component (Apcs) and α-spectrin (Spna-1) genes on chromosome 1 and the human genes cluster in syntenic region 1q23. The Ifi200-family genes encode structurally and functionally-related proteins (the p200-family proteins). Increased expression of certain p200-family proteins in cells is associated with inhibition of cell proliferation, modulation of apoptosis, and cell differentiation. Our studies involving generation of B6.Nba2 congenic mice, coupled with gene expression analyses, identified the Ifi202 as a candidate lupus-susceptibility gene. Importantly, recent studies using different mouse models of SLE have suggested that increased expression of Ifi202 gene (encoding p202 protein) in immune cells contributes to lupus susceptibility. Consistent with a functional role for the p202 protein in lupus susceptibility, increased levels of IFI16 protein in human SLE patients are associated with the diseases. This review summarizes recent findings concerning the regulation and role of p200-family proteins in the development of SLE. PMID:18598717

  14. Interferon induced IFIT family genes in host antiviral defense

    Science.gov (United States)

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IF stimulated ...

  15. MS/MS networking guided analysis of molecule and gene cluster families

    Science.gov (United States)

    Nguyen, Don Duy; Wu, Cheng-Hsuan; Moree, Wilna J.; Lamsa, Anne; Medema, Marnix H.; Zhao, Xiling; Gavilan, Ronnie G.; Aparicio, Marystella; Atencio, Librada; Jackson, Chanaye; Ballesteros, Javier; Sanchez, Joel; Watrous, Jeramie D.; Phelan, Vanessa V.; van de Wiel, Corine; Kersten, Roland D.; Mehnaz, Samina; De Mot, René; Shank, Elizabeth A.; Charusanti, Pep; Nagarajan, Harish; Duggan, Brendan M.; Moore, Bradley S.; Bandeira, Nuno; Palsson, Bernhard Ø.; Pogliano, Kit; Gutiérrez, Marcelino; Dorrestein, Pieter C.

    2013-01-01

    The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779T. The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family–gene cluster families of hundreds or more diverse organisms in one single MS/MS network. PMID:23798442

  16. Gene conversions in the growth hormone gene family of primates: stronger homogenizing effects in the Hominidae lineage.

    Science.gov (United States)

    Petronella, Nicholas; Drouin, Guy

    2011-09-01

    In humans, the growth hormone/chorionic somatomammotropin gene family is composed of five highly similar genes. We characterized the gene conversions that occurred between the growth hormone genes of 11 primate species. We detected 48 conversions using GENECONV and others were only detected using phylogenetic analyses. Gene conversions were detected in all species analyzed, their average size (±standard deviation) is 197.8±230.4 nucleotides, the size of the conversions is correlated with sequence similarity and converted regions are significantly more GC-rich than non-converted regions. Gene conversions have a stronger homogenizing effect in Hominidae genes than in other primate species. They are also less frequent in conserved gene regions and towards functionally important genes. This suggests that the high degree of sequence similarity observed between the growth hormone genes of primate species is a consequence of frequent gene conversions in gene regions which are under little selective constraints. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Analysis of snail genes in the crustacean Parhyale hawaiensis: insight into snail gene family evolution.

    Science.gov (United States)

    Hannibal, Roberta L; Price, Alivia L; Parchem, Ronald J; Patel, Nipam H

    2012-05-01

    The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.

  18. Identification of two novel mutations in the GALNT3 gene in a Chinese family with hyperphosphatemic familial tumoral calcinosis.

    Science.gov (United States)

    Sun, Lihao; Zhao, Lin; Du, Lianjun; Zhang, Peipei; Zhang, Minjia; Li, Min; Liu, Tingting; Ye, Lei; Tao, Bei; Zhao, Hongyan; Liu, Jianmin; Ding, Xiaoyi

    2016-01-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is a rare, autosomal recessive genetic disease. This disease is characterized by the progressive calcification of soft tissues leading to symptoms of pressure and hyperphosphatemia but normal concentrations of serum calcium with or without an elevation of 1,25-dihydroxyvitamin D3 levels.HFTC is caused by loss-of-function mutations in the GALNT3, FGF23 or KL genes. Here, we identified two novel mutations in the GALNT3 gene in a Chinese family with HFTC. Identification of a novel genotype in HFTC provides clues for understanding the phenotype-genotype relationships in HFTC and may assist not only in the clinical diagnosis of HFTC but also in the interpretation of the genetic information used for prenatal diagnosis and genetic counseling.

  19. From manual curation to visualization of gene families and networks across Solanaceae plant species

    Science.gov (United States)

    Pujar, Anuradha; Menda, Naama; Bombarely, Aureliano; Edwards, Jeremy D.; Strickler, Susan R.; Mueller, Lukas A.

    2013-01-01

    High-quality manual annotation methods and practices need to be scaled to the increased rate of genomic data production. Curation based on gene families and gene networks is one approach that can significantly increase both curation efficiency and quality. The Sol Genomics Network (SGN; http://solgenomics.net) is a comparative genomics platform, with genetic, genomic and phenotypic information of the Solanaceae family and its closely related species that incorporates a community-based gene and phenotype curation system. In this article, we describe a manual curation system for gene families aimed at facilitating curation, querying and visualization of gene interaction patterns underlying complex biological processes, including an interface for efficiently capturing information from experiments with large data sets reported in the literature. Well-annotated multigene families are useful for further exploration of genome organization and gene evolution across species. As an example, we illustrate the system with the multigene transcription factor families, WRKY and Small Auxin Up-regulated RNA (SAUR), which both play important roles in responding to abiotic stresses in plants. Database URL: http://solgenomics.net/ PMID:23681907

  20. Genomic characterization of the LEED..PEEDs, a gene family unique to the medicago lineage.

    Science.gov (United States)

    Trujillo, Diana I; Silverstein, Kevin A T; Young, Nevin D

    2014-08-25

    The LEED..PEED (LP) gene family in Medicago truncatula (A17) is composed of 13 genes coding small putatively secreted peptides with one to two conserved domains of negatively charged residues. This family is not present in the genomes of Glycine max, Lotus japonicus, or the IRLC species Cicer arietinum. LP genes were also not detected in a Trifolium pratense draft genome or Pisum sativum nodule transcriptome, which were sequenced de novo in this study, suggesting that the LP gene family arose within the past 25 million years. M. truncatula accession HM056 has 13 LP genes with high similarity to those in A17, whereas M. truncatula ssp. tricycla (R108) and M. sativa have 11 and 10 LP gene copies, respectively. In M. truncatula A17, 12 LP genes are located on chromosome 7 within a 93-kb window, whereas one LP gene copy is located on chromosome 4. A phylogenetic analysis of the gene family is consistent with most gene duplications occurring prior to Medicago speciation events, mainly through local tandem duplications and one distant duplication across chromosomes. Synteny comparisons between R108 and A17 confirm that gene order is conserved between the two subspecies, although a further duplication occurred solely in A17. In M. truncatula A17, all 13 LPs are exclusively transcribed in nodules and absent from other plant tissues, including roots, leaves, flowers, seeds, seed shells, and pods. The recent expansion of LP genes in Medicago spp. and their timing and location of expression suggest a novel function in nodulation, possibly as an aftermath of the evolution of bacteroid terminal differentiation or potentially associated with rhizobial-host specificity.

  1. 胱抑素C与冠状动脉粥样硬化性心脏病危险因素的研究进展%Research Progress on Cystatin C and Risk Factors of Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    汤阳

    2011-01-01

    Cystatin C is a member of the cysteine protease inhibitor family, and plays a role in many physiological and pathological processes. Previous studies have shown thai cystatin C was the ideal endogenous marker to show the variation in glomerular filtration rate. Recently it has also been found that cystatin C is associated with the risk factors of coronary heart disease. This article reviews current research into cystatin C 's relationship with coronary heart disease.%胱抑素C是半胱氨酸蛋白酶抑制剂家族中的一员,参与机体许多生理与病理过程.以往的研究发现它是一种理想的反映肾小球滤过率变化的内源性标志物,而新近的研究发现,胱抑素C还与冠状动脉粥样硬化性心脏病的危险因素有关,现对其进展做一概述.

  2. [Mapping of pathogenic genes in two families with autosomal dominant ichthyosis vulgaris].

    Science.gov (United States)

    Gong, Hui-Yong; Zhang, Jing; Hu, Zheng-Mao; Wu, Ling-Qian; Liang, De-Sheng; Xie, Zhi-Guo; Pan, Qian; Bu, Feng-Xiao; Peng, Yu; Xia, Kun; Xia, Jia-Hui

    2008-07-01

    To localize the pathogenic genes of autosomal dominant ichthyosis vulgaris, we ascertained two ichthyosis vulgaris families from Hunan Province. Venous blood samples were collected from affected and unaffected family members and genomic DNA was extracted. We then performed genome scan and linkage analysis using microsatellite markers around known ichthyosis vulgaris loci in chromosomes 1 and 10. In family 1, the locus linked to ichthyosis vulgaris was located near D1S498 (1q21), which overlapped with known ichthyosis vulgaris loci. In family 2, however, all known loci for ichthyosis vulgaris were excluded and the new locus remains to be identified.

  3. Molecular evolution of the rice miR395 gene family

    Institute of Scientific and Technical Information of China (English)

    Sreelatha GUDDETI; De Chun ZHANG; Ai Li LI; Chuck H. LESEBERG; Hui KANG; Xiao Guang LI; Wen Xue ZHAI; Mitrick A. JOHNS; Long MAO

    2005-01-01

    MicroRNAs (miRNAs) are 20-22 nucleotide non-coding RNAs that play important roles in plant and animal development.They are usually processed from larger precursors that can form stem-loop structures. Among 20 miRNA families that are conserved between Arabidopsis and rice, the rice miR395 gene family was unique because it was organized into compact clusters that could be transcribed as one single transcript. We show here that in fact this family had four clusters of total 24 genes. Three of these clusters were segmental duplications. They contained miR395 genes of both 120 bp and 66 bp long. However, only the latter was repeatedly duplicated. The fourth cluster contained miR395 genes of two different sizes that could be the consequences of intergenic recombination of genes from the first three clusters.On each cluster, both 1-duplication and 2-duplication histories were observed based on the sequence similarity between miR395 genes, some of which were nearly identical suggesting a recent origin. This was supported by a miR395 locus survey among several species of the genus Oryza, where two clusters were only found in species with an AA genome,the genome of the cultivated rice. A comparative study of the genomic organization of Medicago truncatula miR395 gene family showed significant expansion of intergenic spaces indicating that the originally clustered genes were drifting away from each other. The diverse genomic organizations of a conserved microRNA gene family in different plant genomes indicated that this important negative gene regulation system has undergone dramatic tune-ups in plant genomes.

  4. Detection of ATP2C1 Gene Mutation in Familial Benign Chronic Pemphigus

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The ATP2C1 gene mutation in one case of familial benign chronic pemphigus was investigated.One patient was diagnosed as familial benign chronic pemphigus by pathology, ultrastructral examination and clinical features. Genomic DNA was extracted from blood samples. Mutation of ATP2C1 gene was detected by polymerase chain reaction (PCR) and DNA sequencing. The results showed that deletion mutation was detected in ATP2C1 gene in this patient, which was 2374delTTTG. No mutation was found in the family members and normal individuals. It was concluded that the 2374delTTTG mutation in ATP2C1 gene was the specific mutation for the clinical phenotype for this patient and was a de novo mutation.

  5. Gene tree parsimony of multilocus snake venom protein families reveals species tree conflict as a result of multiple parallel gene loss.

    Science.gov (United States)

    Casewell, Nicholas R; Wagstaff, Simon C; Harrison, Robert A; Wüster, Wolfgang

    2011-03-01

    The proliferation of gene data from multiple loci of large multigene families has been greatly facilitated by considerable recent advances in sequence generation. The evolution of such gene families, which often undergo complex histories and different rates of change, combined with increases in sequence data, pose complex problems for traditional phylogenetic analyses, and in particular, those that aim to successfully recover species relationships from gene trees. Here, we implement gene tree parsimony analyses on multicopy gene family data sets of snake venom proteins for two separate groups of taxa, incorporating Bayesian posterior distributions as a rigorous strategy to account for the uncertainty present in gene trees. Gene tree parsimony largely failed to infer species trees congruent with each other or with species phylogenies derived from mitochondrial and single-copy nuclear sequences. Analysis of four toxin gene families from a large expressed sequence tag data set from the viper genus Echis failed to produce a consistent topology, and reanalysis of a previously published gene tree parsimony data set, from the family Elapidae, suggested that species tree topologies were predominantly unsupported. We suggest that gene tree parsimony failure in the family Elapidae is likely the result of unequal and/or incomplete sampling of paralogous genes and demonstrate that multiple parallel gene losses are likely responsible for the significant species tree conflict observed in the genus Echis. These results highlight the potential for gene tree parsimony analyses to be undermined by rapidly evolving multilocus gene families under strong natural selection.

  6. The vertebrate RCAN gene family: novel insights into evolution, structure and regulation.

    Directory of Open Access Journals (Sweden)

    Eva Serrano-Candelas

    Full Text Available Recently there has been much interest in the Regulators of Calcineurin (RCAN proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1. How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5' region of the genes, the existence of antisense transcripts (NAT associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.

  7. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Directory of Open Access Journals (Sweden)

    Eads Jonathan R

    2005-08-01

    Full Text Available Abstract Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with.

  8. Isolation and characterization of the novel popeye gene family expressed in skeletal muscle and heart.

    Science.gov (United States)

    Andrée, B; Hillemann, T; Kessler-Icekson, G; Schmitt-John, T; Jockusch, H; Arnold, H H; Brand, T

    2000-07-15

    We identified a novel gene family in vertebrates which is preferentially expressed in developing and adult striated muscle. Three genes of the Popeye (POP) family were detected in human and mouse and two in chicken. Chromosomal mapping indicates that Pop1 and Pop3 genes are clustered on mouse chromosome 10, whereas Pop2 maps to mouse chromosome 16. We found evidence that POP1 and POP3 in chicken may also be linked and multiple transcript isoforms are generated from this locus. The POP genes encode proteins with three potential transmembrane domains that are conserved in all family members. Individual POP genes exhibit specific expression patterns during development and postnatally. Chicken POP3 and mouse Pop1 are first preferentially expressed in atrium and later also in the subepicardial compact layer of the ventricles. Chicken POP1 and mouse Pop2 are expressed in the entire heart except the outflow tract. All three Pop genes are expressed in heart and skeletal muscle of the adult mouse and lower in lung. Pop1 and Pop2 expression is upregulated in uterus of pregnant mice. Like the mouse genes, human POP genes are predominantly expressed in skeletal and cardiac muscle. The strong conservation of POP genes during evolution and their preferential expression in heart and skeletal muscle suggest that these novel proteins may have an important function in these tissues in vertebrates.

  9. Olfactory receptor gene family evolution in stickleback and medaka fishes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Interaction of olfactory receptor (OR) genes with environmental odors is regarded as the first step of olfaction.In this study,OR genes of two fish,medaka (Oryzias latipes) and stickleback (Gasterosteus aculeatus),were identified and an evolutional analysis was conducted.The selection pressure of different TM regions and complete coding region were compared.Three TM regions (TM4,TM5 and TM6) were found to have higher average Ka/Ks values,which might be partly caused by positive selection as suggested by subsequent positive selection analysis.Further analysis showed that many PTSs overlap,or are adjacent to previously deduced binding sites in mammals.These results support the hypothesis that binding sites of fish OR genes may evolved under positive selection.

  10. Characterization of the laminin gene family and evolution in zebrafish.

    Science.gov (United States)

    Sztal, Tamar; Berger, Silke; Currie, Peter D; Hall, Thomas E

    2011-02-01

    Laminins are essential components of all basement membranes and are fundamental to tissue development and homeostasis. Humans possess at least 16 different heterotrimeric laminin complexes formed through different combinations of alpha, beta, and gamma chains. Individual chains appear to exhibit unique expression patterns, leading to the notion that overlap between expression domains governs the constitution of complexes found within particular tissues. However, the spatial and temporal expression of laminin genes has not been comprehensively analyzed in any vertebrate model to date. Here, we describe the tissue-specific expression patterns of all laminin genes in the zebrafish, throughout embryonic development and into the "post-juvenile" period, which is representative of the adult body form. In addition, we present phylogenetic and microsynteny analyses, which demonstrate that the majority of our zebrafish sequences are orthologous to human laminin genes. Together, these data represent a fundamental resource for the study of vertebrate laminins.

  11. [Evaluation of the renal function in type 2 diabetes: clearance calculation or cystatin C?].

    Science.gov (United States)

    Dhia, Rym Ben; Hellara, Ilhem; Harzallah, Olfa; Neffati, Fadoua; Khochtali, Ines; Mahjoub, Sylvia; Najjar, Mohamed Fadhel

    2012-01-01

    Screening for diabetic nephropathy is usually done by albuminuria/24h and the use of creatinine clearance. The objective of this study was to evaluate the renal function in Type 2 diabetes by using different formulas of creatinine clearance and to assess the contribution of cystatin C; 83 adults with type 2 diabetes (23 men and 60 women) and 83 adult controls (40 men and 43 women) were studied. Biochemical parameters were determinated on Coba 6000™ (Roche diagnostics). Diabetics showed a significant increase in blood glucose, cholesterol, triglycerides, LDLc, the ApoB, Lp(a), urea, uric acid, creatinine and cystatin C and lower HDLc. Cystatin was increased in patients with degenerative complications and in hypertensive patients. We found strong correlations of cystatin C with creatinine (r = 0.9454), urea (r = 0.8999) and uric acid (r = 0.8325). We found a significant exponentially increase of creatinine and cystatin C from one stage to another. Cystatin C has a strong association with MDRD (r = 0.8086) and CG (r = 0.7915) and a low one with creatinine clearance (r = 0.1044). In conclusion, the use of cystatin C for screening and early treatment of incipient diabetic nephropathy appears to be adequate. CG and MDRD formulas still hold their place, in regards to the classical determination of creatinine clearance, to monitor patients.

  12. Serum cystatin C in youth with diabetes: The SEARCH for diabetes in youth study.

    Science.gov (United States)

    Kanakatti Shankar, Roopa; Dolan, Lawrence M; Isom, Scott; Saydah, Sharon; Maahs, David M; Dabelea, Dana; Reynolds, Kristi; Hirsch, Irl B; Rodriguez, Beatriz L; Mayer-Davis, Elizabeth J; Marcovina, Santica; D'Agostino, Ralph; Mauer, Michael; Mottl, Amy K

    2017-08-01

    We compared cystatin C in youth with versus without diabetes and determined factors associated with cystatin C in youth with type 1 diabetes (T1D) and type 2 diabetes (T2D). Youth (ages 12-19years) without diabetes (N=544) were ascertained from the NHANES Study 2000-2002 and those with T1D (N=977) and T2D (N=168) from the SEARCH for Diabetes in Youth Study. Adjusted means of cystatin C concentrations were compared amongst the 3 groups. Next, we performed multivariable analyses within the T1D and T2D SEARCH samples to determine the association between cystatin C and race, sex, age, diabetes duration, HbA1c, fasting glucose, and BMI. Adjusted cystatin C concentrations were statistically higher in NHANES (0.85mg/L) than in either the T1D (0.75mg/L) or T2D (0.70mg/L) SEARCH groups (PC only in T1D (Pc was inversely associated in both groups. Cystatin C concentrations are statistically higher in youth without diabetes compared to T1D or T2D, however the clinical relevance of this difference is quite small, especially in T1D. In youth with diabetes, cystatin C varies with BMI and acute and chronic glycemic control, however their effects may be different according to diabetes type. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Familial Lymphoproliferative Malignancies and Tandem Duplication of NF1 Gene

    Directory of Open Access Journals (Sweden)

    Gustavo Fernandes

    2014-01-01

    Full Text Available Background. Neurofibromatosis type 1 is a genetic disorder caused by loss-of-function mutations in a tumor suppressor gene (NF1 which codifies the protein neurofibromin. The frequent genetic alterations that modify neurofibromin function are deletions and insertions. Duplications are rare and phenotype in patients bearing duplication of NF1 gene is thought to be restricted to developmental abnormalities, with no reference to cancer susceptibility in these patients. We evaluated a patient who presented with few clinical signs of neurofibromatosis type 1 and a conspicuous personal and familiar history of different types of cancer, especially lymphoproliferative malignancies. The coding region of the NF-1 gene was analyzed by real-time polymerase chain reaction and direct sequencing. Multiplex ligation-dependent probe amplification was performed to detect the number of mutant copies. The NF1 gene analysis showed the following alterations: mosaic duplication of NF1, TRAF4, and MYO1D. Fluorescence in situ hybridization using probes (RP5-1002G3 and RP5-92689 flanking NF1 gene in 17q11.2 and CEP17 for 17q11.11.1 was performed. There were three signals (RP5-1002G3conRP5-92689 in the interphases analyzed and two signals (RP5-1002G3conRP5-92689 in 93% of cells. These findings show a tandem duplication of 17q11.2. Conclusion. The case suggests the possibility that NF1 gene duplication may be associated with a phenotype characterized by lymphoproliferative disorders.

  14. Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion.

    Science.gov (United States)

    Jacquemin, Julie; Ammiraju, Jetty S S; Haberer, Georg; Billheimer, Dean D; Yu, Yeisoo; Liu, Liana C; Rivera, Luis F; Mayer, Klaus; Chen, Mingsheng; Wing, Rod A

    2014-04-01

    In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the super-families F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin α-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.

  15. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies

    DEFF Research Database (Denmark)

    Møller, Rikke S.; Larsen, Line H.G.; Johannesen, Katrine M.

    2016-01-01

    of a wide spectrum of epilepsies with age of onset spanning from the neonatal period to adulthood. A gene panel targeting 46 epilepsy genes was used on a cohort of 216 patients consecutively referred for panel testing. The patients had a range of different epilepsies from benign neonatal seizures...... to epileptic encephalopathies (EEs). Potentially causative variants were evaluated by literature and database searches, submitted to bioinformatic prediction algorithms, and validated by Sanger sequencing. If possible, parents were included for segregation analysis. We identified a presumed disease...

  16. Functional Genomics of Allergen Gene Families in Fruits

    Directory of Open Access Journals (Sweden)

    Fatemeh Maghuly

    2009-10-01

    Full Text Available Fruit consumption is encouraged for health reasons; however, fruits may harbour a series of allergenic proteins that may cause discomfort or even represent serious threats to certain individuals. Thus, the identification and characterization of allergens in fruits requires novel approaches involving genomic and proteomic tools. Since avoidance of fruits also negatively affects the quality of patients’ lives, biotechnological interventions are ongoing to produce low allergenic fruits by down regulating specific genes. In this respect, the control of proteins associated with allergenicity could be achieved by fine tuning the spatial and temporal expression of the relevant genes.

  17. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia;

    2008-01-01

    The widespread microarray technology capable of analyzing global gene expression at the level of transcription is expanding its application not only in medicine but also in studies on basic biology. This paper presents our analysis on microarray gene expression data in the CEPH Utah families...... focusing on the demographic characteristics such as age and sex on differential gene expression patterns. Our results show that the differential gene expression pattern between age groups is dominated by down-regulated transcriptional activities in the old subjects. Functional analysis on age......-regulated genes identifies cell-cell signaling as an important functional category implicated in human aging. Sex-dependent gene expression is characterized by genes that may escape X-inactivation and, most interestingly, such a pattern is not affected by the aging process. Analysis on sibship correlation on gene...

  18. Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-03-01

    Full Text Available The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes, DEAH-box (52 genes, or DExD/H-box (58 genes in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5% are within the identified syntenic blocks. Sixty-six (40.99% helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton.

  19. Evolutionary analysis of the jacalin-related lectin family genes in 11 fishes.

    Science.gov (United States)

    Cao, Jun; Lv, Yueqing

    2016-09-01

    Jacalin-related lectins are a type of carbohydrate-binding proteins, which are distributed across a wide variety of organisms and involved in some important biological processes. The evolution of this gene family in fishes is unknown. Here, 47 putative jacalin genes in 11 fish species were identified and divided into 4 groups through phylogenetic analysis. Conserved gene organization and motif distribution existed in each group, suggesting their functional conservation. Some fishes have eleven jacalin genes, while others have only one or zero gene in their genomes, suggesting dynamic changes in the number of jacalin genes during the evolution of fishes. Intragenic recombination played a key role in the evolution of jacalin genes. Synteny analyses of jacalin genes in some fishes implied conserved and dynamic evolution characteristics of this gene family and related genome segments. Moreover, a few functional divergence sites were identified within each group pairs. Divergent expression profiles of the zebra fish jacalin genes were further investigated in different stresses. The results provided a foundation for exploring the characterization of the jacalin genes in fishes and will offer insights for additional functional studies.

  20. The phylogeny and evolutionary history of the Lesion Simulating Disease (LSD) gene family in Viridiplantae.

    Science.gov (United States)

    Cabreira, Caroline; Cagliari, Alexandro; Bücker-Neto, Lauro; Margis-Pinheiro, Márcia; de Freitas, Loreta B; Bodanese-Zanettini, Maria Helena

    2015-12-01

    The Lesion Simulating Disease (LSD) genes encode a family of zinc finger proteins that play a role in programmed cell death (PCD) and other biological processes, such as plant growth and photosynthesis. In the present study, we report the reconstruction of the evolutionary history of the LSD gene family in Viridiplantae. Phylogenetic analysis revealed that the monocot and eudicot genes were distributed along the phylogeny, indicating that the expansion of the family occurred prior to the diversification between these clades. Sequences encoding proteins that present one, two, or three LSD domains formed separate groups. The secondary structure of these different LSD proteins presented a similar composition, with the β-sheets being their main component. The evolution by gene duplication was identified only to the genes that contain three LSD domains, which generated proteins with equal structure. Moreover, genes encoding proteins with one or two LSD domains evolved as single-copy genes and did not result from loss or gain in LSD domains. These results were corroborated by synteny analysis among regions containing paralogous/orthologous genes in Glycine max and Populus trichocarpa. The Ka/Ks ratio between paralogous/orthologous genes revealed that a subfunctionalization process possibly could be occurring with the LSD genes, explaining the involvement of LSD members in different biological processes, in addition to the negative regulation of PCD. This study presents important novelty in the evolutionary history of the LSD family and provides a basis for future research on individual LSD genes and their involvement in important pathway networks in plants.

  1. Cystatin C, creatinine, estimated glomerular filtration, and long-term mortality in stroke patients.

    Science.gov (United States)

    Hojs Fabjan, Tanja; Penko, Meta; Hojs, Radovan

    2014-02-01

    Renal dysfunction is associated with mortality in patients after ischemic stroke. Cystatin C is a potentially superior marker of renal function compared to creatinine and estimated glomerular filtration rate (GFR). In our observational cohort study, 390 Caucasian patients suffered from acute ischemic stroke (mean age 70.9 years; 183 women and 207 men) were included and prospectively followed up to maximal 56 months. Serum creatinine and cystatin C were measured at admission to the hospital; GFR was estimated according to CKD-EPI creatinine and CKD-EPI creatinine/cystatin equations. According to values of serum creatinine, estimated GFR and serum cystatin C patients were divided into quintiles. In the follow-up period, 191 (49%) patients died. For serum cystatin C and estimated GFR based on creatinine and cystatin C, the mortality and the hazard ratios for long-term mortality increased from the first to the fifth quintile nearly linearly. The associations of serum creatinine and estimated GFR categories based on creatinine with long-term mortality were J-shaped. As compared with lowest quintile of serum cystatin C, the fifth quintile was associated with long-term mortality significantly also after multivariate adjustment (age, gender, initial stroke severity, known risk factors for stroke mortality). In contrast, in adjusted analysis serum creatinine and estimated GFR (CKD-EPI creatinine and CKD-EPI creatinine/cystatin) were not associated with long-term mortality. In summary, serum cystatin C was independently and better associated with the risk of long-term mortality in patients suffering from ischemic stroke than were creatinine and estimated GFR using both CKD-EPI equations.

  2. Clinical Usefulness of Serum Cystatin C as a Marker of Renal Function

    Directory of Open Access Journals (Sweden)

    Kwang-Sook Woo

    2014-08-01

    Full Text Available BackgroundAccurate renal function measurements are important in the diagnosis and treatment of kidney diseases. In contrast to creatinine, the production of serum cystatin C has been extensively reported to be unaffected by body muscle mass, age, gender, and nutritional status.MethodsOur study included 37 samples from diabetic chronic kidney disease (CKD patients for whom serum creatinine tests had been requested and 40 samples from a healthy populations in Dong-A University Hospital between May 2010 and June 2010. The assay precision (i.e., the coefficient of variation and the reference range of the serum cystatin C test were evaluated. We compared the estimated glomerular filtration rates (GFRs based on cystatin C with those based on creatinine. Moreover, we investigated the influences of age, gender, weight, and muscle mass on serum creatinine and serum cystatin C.ResultsThere was a positive correlation between GFR based on creatinine and that based on cystatin C (r=0.79, P<0.0001 among the diabetic CKD patients. Serum creatinine and cystatin C were significantly correlated with body weight and muscle mass, but the strengths of these correlations were greater for serum creatinine. The precision study revealed excellent results for both the high and low controls. The 95% reference interval of cystatin C in the healthy population was 0.371 to 1.236 mg/L.ConclusionBased on these results, we conclude that, despite the strong correlation between serum creatinine and cystatin C, cystatin C is less affected by weight and muscle mass and might represent a better alternative for the assessment of renal function.

  3. carboxylate synthase gene family in Arabidopsis, rice, grapevine ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... mungbean, rose (Johnson et al., 1998; Ge et al., 2000) etc. Though .... of molecular evolution that follows gene duplications (Martinez-. Castilla et al. ..... Dong J, Kim W, Yip W, Thompson G, Li L, Bennett A (1991). Cloning of.

  4. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    Full Text Available Abstract Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial

  5. Organisation and structural evolution of the rice glutathione S-transferase gene family.

    Science.gov (United States)

    Soranzo, N; Sari Gorla, M; Mizzi, L; De Toma, G; Frova, C

    2004-06-01

    Glutathione S-transferases (GSTs) comprise a large family of key defence enzymes against xenobiotic toxicity. Here we describe the comprehensive characterisation of this important multigene family in the model monocot species rice [ Oryza sativa(L.)]. Furthermore, we investigate the molecular evolution of the family based on the analysis of (1) the patterns of within-genome duplication, and (2) the phylogenetic relationships and evolutionary divergence among rice, Arabidopsis, maize and soybean GSTs. By in-silico screening of the EST and genome divisions of the Genbank/EMBL/DDBJ database we have isolated 59 putative genes and two pseudogenes, making this the largest plant GST family characterised to date. Of these, 38 (62%) are represented by genomic and EST sequences and 23 (38%) are known only from their genomic sequences. A preliminary survey of EST collections shows a large degree of variability in gene expression between different tissues and environmental conditions, with a small number of genes (13) accounting for 80% of all ESTs. Rice GSTs are organised in four main phylogenetic classes, with 91% of all rice genes belonging to the two plant-specific classes Tau (40 genes) and Phi (16 genes). Pairwise identity scores range between 17 and 98% for proteins of the same class, and 7 and 21% for interclass comparisons. Rapid evolution by gene duplication is suggested by the discovery of two large clusters of 7 and 23 closely related genes on chromosomes 1 and 10, respectively. A comparison of the complete GST families in two monocot and two dicot species suggests a monophyletic origin for all Theta and Zeta GSTs, and no more than three common ancestors for all Phi and Tau genes.

  6. Gene mapping in an anophthalmic pedigree of a consanguineous Pakistani family opened new horizons for research

    Directory of Open Access Journals (Sweden)

    Saleha S

    2016-07-01

    Full Text Available Clinical anophthalmia is a rare inherited disease of the eye and phenotype refers to the absence of ocular tissue in the orbit of eye. Patients may have unilateral or bilateral anophthalmia, and generally have short palpebral fissures and small orbits. Anophthalmia may be isolated or associated with a broader syndrome and may have genetic or environmental causes. However, genetic cause has been defined in only a small proportion of cases, therefore, a consanguineous Pakistani family of the Pashtoon ethnic group, with isolated clinical anophthalmia was investigated using linkage mapping. A family pedigree was created to trace the possible mode of inheritance of the disease. Blood samples were collected from affected as well as normal members of this family, and screened for disease-associated mutations. This family was analyzed for linkage to all the known loci of clinical anophthalmia, using microsatellite short tandem repeat (STR markers. Direct sequencing was performed to find out disease-associated mutations in the candidate gene. This family with isolated clinical anophthalmia, was mapped to the SOX2 gene that is located at chromosome 3q26.3-q27. However, on exonic and regulatory regions mutation screening of the SOX2 gene, the disease-associated mutation was not identified. It showed that another gene responsible for development of the eye might be present at chromosome 3q26.3-q27 and needs to be identified and screened for the disease-associated mutation in this family.

  7. Hereditär hjärnblödning. Demens vid cystatin C amyloidos

    DEFF Research Database (Denmark)

    Blöndal, H; Guomundsson, G; Benedikz, Eirikur

    1990-01-01

    Nineteen cases of hereditary cystatin C amyloidosis with cerebral haemorrhage are described. The first haemorrhage occurred between the ages of 20 and 41 years and the period of survival varied from 10 days to 23 years after the first insult. Progressive dementia was a striking clinical symptom...... in 17 of the patients and in two cases dementia was the first sign. At the last examination severe dementia and pronounced pathological EEG were established in the majority of the patients. Infiltration of amyloid substance positive for anti-cystatin C was found in the proximity of the blood vessels...... the name Hereditary Cystatin C Amyloidosis (HCCA)....

  8. Hereditär hjärnblödning. Demens vid cystatin C amyloidos

    DEFF Research Database (Denmark)

    Blöndal, H; Guomundsson, G; Benedikz, Eirikur

    1990-01-01

    Nineteen cases of hereditary cystatin C amyloidosis with cerebral haemorrhage are described. The first haemorrhage occurred between the ages of 20 and 41 years and the period of survival varied from 10 days to 23 years after the first insult. Progressive dementia was a striking clinical symptom...... in 17 of the patients and in two cases dementia was the first sign. At the last examination severe dementia and pronounced pathological EEG were established in the majority of the patients. Infiltration of amyloid substance positive for anti-cystatin C was found in the proximity of the blood vessels...... the name Hereditary Cystatin C Amyloidosis (HCCA)....

  9. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers.

    Science.gov (United States)

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco

    2014-06-01

    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome 'flux'. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.

  10. An insight into the phylogenetic history of HOX linked gene families in vertebrates

    Directory of Open Access Journals (Sweden)

    Grzeschik Karl-Heinz

    2007-11-01

    Full Text Available Abstract Background The human chromosomes 2q, 7, 12q and 17q show extensive intra-genomic homology, containing duplicate, triplicate and quadruplicate paralogous regions centered on the HOX gene clusters. The fact that two or more representatives of different gene families are linked with HOX clusters is taken as evidence that these paralogous gene sets might have arisen from a single chromosomal segment through block or whole chromosome duplication events. This would imply that the constituent genes including the HOX clusters reflect the architecture of a single ancestral block (before vertebrate origin where all of these genes were linked in a single copy. Results In the present study we have employed the currently available set of protein data for a wide variety of vertebrate and invertebrate genomes to analyze the phylogenetic history of 11 multigene families with three or more of their representatives linked to human HOX clusters. A topology comparison approach revealed four discrete co-duplicated groups: group 1 involves the genes from GLI, HH, INHB, IGFBP (cluster-1, and SLC4A families; group 2 involves ERBB, ZNFN1A, and IGFBP (cluster-2 gene families; group 3 involves the HOX clusters and the SP gene family; group 4 involves the integrin beta chain and myosine light chain families. The distinct genes within each co-duplicated group share the same evolutionary history and are duplicated in concert with each other, while the constituent genes of two different co-duplicated groups may not share their evolutionary history and may not have duplicated simultaneously. Conclusion We conclude that co-duplicated groups may themselves be remnants of ancient small-scale duplications (involving chromosomal segments or gene-clusters which occurred at different time points during chordate evolution. Whereas the recent combination of genes from distinct co-duplicated groups on different chromosomal regions (human chromosomes 2q, 7, 12q, and 17q is

  11. Copy Number Variation of UGT 2B Genes in Indian Families Using Whole Genome Scans

    Directory of Open Access Journals (Sweden)

    Avinash M. Veerappa

    2016-01-01

    Full Text Available Background and Objectives. Uridine diphospho-glucuronosyltransferase 2B (UGT2B is a family of genes involved in metabolizing steroid hormones and several other xenobiotics. These UGT2B genes are highly polymorphic in nature and have distinct polymorphisms associated with specific regions around the globe. Copy number variations (CNVs status of UGT2B17 in Indian population is not known and their disease associations have been inconclusive. It was therefore of interest to investigate the CNV profile of UGT2B genes. Methods. We investigated the presence of CNVs in UGT2B genes in 31 members from eight Indian families using Affymetrix Genome-Wide Human SNP Array 6.0 chip. Results. Our data revealed >50% of the study members carried CNVs in UGT2B genes, of which 76% showed deletion polymorphism. CNVs were observed more in UGT2B17 (76.4% than in UGT2B15 (17.6%. Molecular network and pathway analysis found enrichment related to steroid metabolic process, carboxylesterase activity, and sequence specific DNA binding. Interpretation and Conclusion. We report the presence of UGT2B gene deletion and duplication polymorphisms in Indian families. Network analysis indicates the substitutive role of other possible genes in the UGT activity. The CNVs of UGT2B genes are very common in individuals indicating that the effect is neutral in causing any suspected diseases.

  12. Identification and characterization of the RCI2 gene family in maize (Zea mays)

    Indian Academy of Sciences (India)

    Yang Zhao; Haiqing Tong; Ronghao Cai; Xiaojian Peng; Xiaoyu Li; Defang Gan; Suwen Zhu

    2014-12-01

    Rare-cold-inducible (RCI2) genes are structurally conserved members that encode small, highly hydrophobic proteins involved in response to various abiotic stresses. Phylogenetic and functional analyses of these genes have been conducted in Arabidopsis, but an extensive investigation of the RCI2 gene family has not yet been carried out in maize. In the present study, 10 RCI2 genes were identified in a fully sequenced maize genome. Structural characterization and expression pattern analysis of 10 ZmRCI2s (Zea mays RCI2 genes) were subsequently determined. Sequence and phylogenetic analyses indicated that ZmRCI2s are highly conserved, and most of them could be grouped with their orthologues from other organisms. Chromosomal location analysis indicated that ZmRCI2s were distributed unevenly on seven chromosomes with two segmental duplication events, suggesting that maize RCI2 gene family is an evolutionarily conserved family. Putative stress-responsive cis-elements were detected in the 2-kb promoter regions of the 10 ZmRCI2s. In addition, the 10 ZmRCI2s showed different expression patterns in maize development based on transcriptome analysis. Further, microarray and quantitative real-time PCR (qRT-PCR) analysis showed that each maize RCI2 genes were responsive to drought stress, suggesting their important roles in drought stress response. The results of this work provide a basis for future cloning and application studies of maize RCI2 genes.

  13. Identification and characterization of the RCI2 gene family in maize (Zea mays).

    Science.gov (United States)

    Zhao, Yang; Tong, Haiqing; Cai, Ronghao; Peng, Xiaojian; Li, Xiaoyu; Gan, Defang; Zhu, Suwen

    2014-12-01

    Rare-cold-inducible (RCI2) genes are structurally conserved members that encode small, highly hydrophobic proteins involved in response to various abiotic stresses. Phylogenetic and functional analyses of these genes have been conducted in Arabidopsis, but an extensive investigation of the RCI2 gene family has not yet been carried out in maize. In the present study, 10 RCI2 genes were identified in a fully sequenced maize genome. Structural characterization and expression pattern analysis of 10 ZmRCI2s (Zea mays RCI2 genes) were subsequently determined. Sequence and phylogenetic analyses indicated that ZmRCI2s are highly conserved, and most of them could be grouped with their orthologues from other organisms. Chromosomal location analysis indicated that ZmRCI2s were distributed unevenly on seven chromosomes with two segmental duplication events, suggesting that maize RCI2 gene family is an evolutionarily conserved family. Putative stress-responsive cis-elements were detected in the 2-kb promoter regions of the 10 ZmRCI2s. In addition, the 10 ZmRCI2s showed different expression patterns in maize development based on transcriptome analysis. Further, microarray and quantitative real-time PCR (qRT-PCR) analysis showed that each maize RCI2 genes were responsive to drought stress, suggesting their important roles in drought stress response. The results of this work provide a basis for future cloning and application studies of maize RCI2 genes.

  14. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  15. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea (Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis-acting regulatory elements revealed enrichment of cis-elements involved in circadian control, light response, defense and stress responsiveness

  16. Biotic and abiotic stress can induce cystatin expression in chestnut.

    Science.gov (United States)

    Pernas, M; Sánchez-Monge, R; Salcedo, G

    2000-02-11

    A cysteine proteinase inhibitor (cystatin) from chestnut (Castanea sativa) seeds, designated CsC, has been previously characterized. Its antifungal, acaricide and inhibitory activities have allowed to involve CsC in defence mechanisms. The CsC transcription levels decreased during seed maturation and increased throughout germination, an opposite behavior to that shown by most phytocystatins. No inhibition of endogenous proteinase activity by purified CsC was found during the seed maturation or germination processes. CsC message accumulation was induced in chestnut leaves after fungal infection, as well as by wounding and jasmonic acid treatment. Induction in roots was also observed by the last two treatments. Furthermore, CsC transcript levels strongly raised, both in roots and leaves, when chestnut plantlets were subjected to cold- and saline-shocks, and also in roots by heat stress. All together, these data suggest that chestnut cystatin is not only involved in defence responses to pests and pathogen invasion, but also in those related to abiotic stress.

  17. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice.

    Science.gov (United States)

    Okamura, Masaki; Aoki, Naohiro; Hirose, Tatsuro; Yonekura, Madoka; Ohto, Chikara; Ohsugi, Ryu

    2011-08-01

    The rice genome contains 5 isogenes for sucrose phosphate synthase (SPS), the key enzyme in sucrose synthesis; however, little is known about their transcriptional regulation. In order to determine the expression patterns of the SPS gene family in rice plants, we conducted an expression analysis in various tissues and developmental stages by real-time quantitative RT-PCR. At the transcript level, the rice SPS genes, particularly SPS1, were preferentially expressed in source tissues, whereas SPS2, SPS6, and SPS8 were expressed equally in source and sink tissues. We also investigated diurnal changes in SPS gene expression, SPS activity, and soluble sugar content in leaf blades. Interestingly, the expression of all the SPS genes, particularly that of SPS1 and SPS11, tended to be higher at night when the activation state of the SPS proteins was low, and the mRNA levels of SPS1 and SPS6 were negatively correlated with sucrose content. Furthermore, the temporal patterns of SPS gene expression and sugar content under continuous light conditions suggested the involvement of endogenous rhythm and/or sucrose sensing in the transcriptional regulation of SPS genes. Our data revealed differential expression patterns in the rice SPS gene family and part of the complex mechanisms of their transcriptional control.

  18. Characterization of resistance gene analogues (RGAs) in Apple (Malus 6domestica Borkh.) and their evolutionary history of the Rosaceae family

    Science.gov (United States)

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden...

  19. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans

    Directory of Open Access Journals (Sweden)

    Layden Michael J

    2010-11-01

    Full Text Available Abstract Background zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Results Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm, in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Conclusions Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor.

  20. Expression and phylogenetic analysis of the zic gene family in the evolution and development of metazoans.

    Science.gov (United States)

    Layden, Michael J; Meyer, Néva P; Pang, Kevin; Seaver, Elaine C; Martindale, Mark Q

    2010-11-05

    zic genes are members of the gli/glis/nkl/zic super-family of C2H2 zinc finger (ZF) transcription factors. Homologs of the zic family have been implicated in patterning neural and mesodermal tissues in bilaterians. Prior to this study, the origin of the metazoan zic gene family was unknown and expression of zic gene homologs during the development of early branching metazoans had not been investigated. Phylogenetic analyses of novel zic candidate genes identified a definitive zic homolog in the placozoan Trichoplax adhaerens, two gli/glis/nkl-like genes in the ctenophore Mnemiopsis leidyi, confirmed the presence of three gli/glis/nkl-like genes in Porifera, and confirmed the five previously identified zic genes in the cnidarian Nematostella vectensis. In the cnidarian N. vectensis, zic homologs are expressed in ectoderm and the gastrodermis (a bifunctional endomesoderm), in presumptive and developing tentacles, and in oral and sensory apical tuft ectoderm. The Capitella teleta zic homolog (Ct-zic) is detectable in a subset of the developing nervous system, the foregut, and the mesoderm associated with the segmentally repeated chaetae. Lastly, expression of gli and glis homologs in Mnemiopsis. leidyi is detected exclusively in neural cells in floor of the apical organ. Based on our analyses, we propose that the zic gene family arose in the common ancestor of the Placozoa, Cnidaria and Bilateria from a gli/glis/nkl-like gene and that both ZOC and ZF-NC domains evolved prior to cnidarian-bilaterian divergence. We also conclude that zic expression in neural ectoderm and developing neurons is pervasive throughout the Metazoa and likely evolved from neural expression of an ancestral gli/glis/nkl/zic gene. zic expression in bilaterian mesoderm may be related to the expression in the gastrodermis of a cnidarian-bilaterian common ancestor.

  1. Cloning and developmental expression of the murine neurofilament gene family.

    NARCIS (Netherlands)

    J-P. Julien (Jean-Pierre); D.N. Meijer (Dies); D. Flavell (David); J. Hurst; F.G. Grosveld (Frank)

    1986-01-01

    textabstractDNA clones encoding the 3 mouse neurofilament (NF) genes have been isolated by cross-hybridization with a previously described NF-L cDNA probe from the rat. Screening of a lambda gt10 cDNA library prepared from mouse brain RNA led to the cloning of an NF-L cDNA of 2.0 kb that spans the e

  2. A novel mutation of the apolipoprotein A-I gene in a family with familial combined hyperlipidemia.

    Science.gov (United States)

    Pisciotta, Livia; Fasano, Tommaso; Calabresi, Laura; Bellocchio, Antonella; Fresa, Raffaele; Borrini, Claudia; Calandra, Sebastiano; Bertolini, Stefano

    2008-05-01

    We report a large family in which four members showed a plasma lipid profile consistent with the clinical diagnosis of familial combined hyperlipidemia (FCHL). One of these patients was found to have markedly reduced HDL cholesterol (HDL-C) (0.72 mmol/l) and Apo A-I (72 mg/dl) levels, a condition suggestive of the presence of a mutation in one of the HDL-related genes. The analysis of APOA1 gene revealed that this patient was heterozygous for a cytosine insertion in exon 3 (c.49-50 ins C), resulting in a frame-shift and premature stop codon at position 26 of pro-Apo A-I (Q17PFsX10). This novel mutation, which prevents the synthesis of Apo A-I, was also found in four family members, including three siblings and the daughter of the proband. Carriers of Apo A-I mutation had significantly lower HDL-C and Apo A-I than non-carriers family members (0.77+/-0.15 mmol/l vs. 1.15+/-0.20 mmol/l, P<0.005; 71.4+/-9.1mg/dl vs. 134.0+/-14.7 mg/dl, P<0.005, respectively). Two of the APOA1 mutation carriers, who were also heavy smokers, had fibrous plaques in the carotid arteries causing mild stenosis (20%). The intimal-media thickness in the two other adult carriers was within the normal range. The other non-carriers family members with FCHL had either overt vascular disease or carotid atherosclerosis at ultrasound examination. This observation suggests that the low HDL-C/low Apo A-I phenotype may result from a genetic defect directly affecting HDL metabolism, even in the context of a dyslipidemia which, like FCHL, is associated with low plasma HDL-C.

  3. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes.

  4. Evolutionary aspects of functional and pseudogene members of the phytochrome gene family in Scots pine.

    Science.gov (United States)

    García-Gil, Maria Rosario

    2008-08-01

    According to the neutral theory of evolution, mutation and genetic drift are the only forces that shape unconstrained, neutral, gene evolution. Thus, pseudogenes (which often evolve neutrally) provide opportunities to obtain direct estimates of mutation rates that are not biased by selection, and gene families comprising functional and pseudogene members provide useful material for both estimating neutral mutation rates and identifying sites that appear to be under positive or negative selection pressures. Conifers could be very useful for such analyses since they have large and complex genomes. There is evidence that pseudogenes make significant contributions to the size and complexity of gene families in pines, although few studies have examined the composition and evolution of gene families in conifers. In this work, I examine the complexity and rates of mutation of the phytochrome gene family in Pinus sylvestris and show that it includes not only functional genes but also pseudogenes. As expected, the functional PHYO does not appear to have evolved neutrally, while phytochrome pseudogenes show signs of unconstrained evolution.

  5. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  6. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family.

    Science.gov (United States)

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-03-18

    A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  7. Genomewide analysis of LATERAL ORGAN BOUNDARIES Domain gene family in Zea mays

    Indian Academy of Sciences (India)

    Yue-Min Zhang; Shi-Zhong Zhang; Cheng-Chao Zheng

    2014-04-01

    The investigation of transcription factor (TF) families is a major focus of postgenomic research. The plant-specific ASYMMETRIC LEAVES2-LIKE (ASL) / LATERAL ORGAN BOUNDARIES Domain (LBD) proteins constitute a major zincfinger-like-domain transcription factor family, and regulate diverse biological processes in plants. However, little is known about LBD genes in maize (Zea mays). In this study, a total of 44 LBD genes were identified in maize genome and were phylogenetically clustered into two groups (I and II), together with LBDs from Arabidopsis. The predicted maize LBDs were distributed across all the 10 chromosomes with different densities. In addition, the gene structures of maize LBDs were analysed. The expression profiles of the maize LBD genes under normal growth conditions were analysed by microarray data and qRT-PCR. The results indicated that LBDs might be involved in various aspects of physiological and developmental processes in maize. To our knowledge, this is the first report of a genomewide analysis of the maize LBD gene family, which would provide valuable information for understanding the classification and putative functions of the gene family.

  8. Genome-wide identification and analysis of the MADS-box gene family in sesame.

    Science.gov (United States)

    Wei, Xin; Wang, Linhai; Yu, Jingyin; Zhang, Yanxin; Li, Donghua; Zhang, Xiurong

    2015-09-10

    MADS-box genes encode transcription factors that play crucial roles in plant growth and development. Sesame (Sesamum indicum L.) is an oil crop that contributes to the daily oil and protein requirements of almost half of the world's population; therefore, a genome-wide analysis of the MADS-box gene family is needed. Fifty-seven MADS-box genes were identified from 14 linkage groups of the sesame genome. Analysis of phylogenetic relationships with Arabidopsis thaliana, Utricularia gibba and Solanum lycopersicum MADS-box genes was performed. Sesame MADS-box genes were clustered into four groups: 28 MIKC(c)-type, 5 MIKC(⁎)-type, 14 Mα-type and 10 Mγ-type. Gene structure analysis revealed from 1 to 22 exons of sesame MADS-box genes. The number of exons in type II MADS-box genes greatly exceeded the number in type I genes. Motif distribution analysis of sesame MADS-box genes also indicated that type II MADS-box genes contained more motifs than type I genes. These results suggested that type II sesame MADS-box genes had more complex structures. By analyzing expression profiles of MADS-box genes in seven sesame transcriptomes, we determined that MIKC(C)-type MADS-box genes played significant roles in sesame flower and seed development. Although most MADS-box genes in the same clade showed similar expression features, some gene functions were diversified from the orthologous Arabidopsis genes. This research will contribute to uncovering the role of MADS-box genes in sesame development. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1 gene family.

    Directory of Open Access Journals (Sweden)

    Mia T Levine

    Full Text Available Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin.

  10. Familial congenital bilateral vocal fold paralysis: a novel gene translocation.

    Science.gov (United States)

    Hsu, Amy K; Rosow, David E; Wallerstein, Robert J; April, Max M

    2015-03-01

    True vocal fold (TVF) paralysis is a common cause of neonatal stridor and airway obstruction, though bilateral TVF paralysis is seen less frequently. Rare cases of familial congenital TVF paralysis have been described with implied genetic origin, but few genetic abnormalities have been discovered to date. The purpose of this study is to describe a novel chromosomal translocation responsible for congenital bilateral TVF immobility. The charts of three patients were retrospectively reviewed: a 35 year-old woman and her two children. The mother had bilateral TVF paralysis at birth requiring tracheotomy. Her oldest child had a similar presentation at birth and also required tracheotomy, while the younger child had laryngomalacia without TVF paralysis. Standard karyotype analysis was done using samples from all three patients and the parents of the mother, to assess whether a chromosomal abnormality was responsible. Karyotype analysis revealed the same balanced translocation between chromosomes 5 and 14, t(5;14) (p15.3, q11.2) in the mother and her two daughters. No other genetic abnormalities were identified. Neither maternal grandparent had the translocation, which appeared to be a spontaneous mutation in the mother with autosomal dominant inheritance and variable penetrance. A novel chromosomal translocation was identified that appears to be responsible for familial congenital bilateral TVF paralysis. While there are other reports of genetic abnormalities responsible for this condition, we believe this is the first describing this particular translocation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    Energy Technology Data Exchange (ETDEWEB)

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  12. Systematic Identification of Rice ABC1 Gene Family and Its Response to Abiotic Stress

    Institute of Scientific and Technical Information of China (English)

    GAO Qing-song; ZHANG Dan; Xu Liang; XU Chen-wu

    2011-01-01

    Members of the activity of bc1 complex (ABC1) family are protein kinases that are widely found in prokaryotes and eukaryotes.Previous studies showed that several plant ABC1 genes participated in the abiotic stress response.Here,we present the systematic identification of rice and Arabidopsis ABC1 genes and the expression analysis of rice ABC1 genes.A total of 15 and 17 ABC1 genes from the rice and Arabidopsis genomes,respectively,were identified using a bioinformatics approach.Phylogenetic analyses of these proteins suggested that the divergence of this family had occurred and their main characteristics were established before the monocot-dicot split.Indeed,species-specific expansion contributed to the evolution of this family in rice and Arabidopsis after the monocot-dicot split.Intron/exon structure analysis indicated that most of the orthologous genes had similar exon sizes,but diverse intron sizes,and the rice genes contained larger introns,moreover,intron gain was an important event accompanying the recent evolution of the rice ABC1 family.Multiple sequence alignment revealed one conserved amino acid segment and four conserved amino acids in the ABC1 domain.Online subcellular localization predicted that nine rice ABC1 proteins were localized in chloroplasts.Real-time RT-PCR established that the rice ABC1 genes were primarily expressed in leaves and the expression could be modulated by a broad range of abiotic factors such as H2O2,abscisic acid,low temperature,drought,darkness and high salinity.These results reveal that the rice ABC1 gene family plays roles in the environmental stress response and specific biological processes of rice.

  13. Genome-Wide Analysis of mir-548 Gene Family Reveals Evolutionary and Functional Implications

    Directory of Open Access Journals (Sweden)

    Tingming Liang

    2012-01-01

    Full Text Available mir-548 is a larger, poorly conserved primate-specific miRNA gene family. 69 human mir-548 genes located in almost all human chromosomes whose widespread distribution pattern implicates the evolutionary origin from transposable elements. Higher level of nucleotide divergence was detected between these human miRNA genes, which mainly derived from divergence of multicopy pre-miRNAs and homologous miRNA genes. Products of  mir-548, miR-548-5p, and miR-548-3p showed inconsistent evolutionary patterns, which partly contributed to larger genetic distances between pre-miRNAs. “Seed shifting” events could be detected among miR-548 sequences due to various 5′ ends. The events led to shift of seed sequences and target mRNAs, even generated to new target mRNAs. Additionally, the phenomenon of miRNA:miRNA interaction in the miRNA gene family was found. The potential interaction between miRNAs may be contributed to dynamic miRNA expression profiles by complementarily binding events to form miRNA:miRNA duplex with 5′-/3′-overhangs. The miRNA gene family had important roles in multiple biological processes, including signaling pathways and some cancers. The potential abundant roles and functional implication further led to the larger and poorly conserved gene family with genetic variation based on transposable elements. The evolutionary pattern of the primate-specific gene family might contribute to dynamic expression profiles and regulatory network.

  14. Genome-wide analysis of the NADK gene family in plants.

    Directory of Open Access Journals (Sweden)

    Wen-Yan Li

    Full Text Available BACKGROUND: NAD(H kinase (NADK is the key enzyme that catalyzes de novo synthesis of NADP(H from NAD(H for NADP(H-based metabolic pathways. In plants, NADKs form functional subfamilies. Studies of these families in Arabidopsis thaliana indicate that they have undergone considerable evolutionary selection; however, the detailed evolutionary history and functions of the various NADKs in plants are not clearly understood. PRINCIPAL FINDINGS: We performed a comparative genomic analysis that identified 74 NADK gene homologs from 24 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots and eudicots. Phylogenetic and structural analysis classified these NADK genes into four well-conserved subfamilies with considerable variety in the domain organization and gene structure among subfamily members. In addition to the typical NAD_kinase domain, additional domains, such as adenylate kinase, dual-specificity phosphatase, and protein tyrosine phosphatase catalytic domains, were found in subfamily II. Interestingly, NADKs in subfamily III exhibited low sequence similarity (∼30% in the kinase domain within the subfamily and with the other subfamilies. These observations suggest that gene fusion and exon shuffling may have occurred after gene duplication, leading to specific domain organization seen in subfamilies II and III, respectively. Further analysis of the exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures, during the process of structural evolution of NADK family genes. Finally, both available global microarray data analysis and qRT-RCR experiments revealed that the NADK genes in Arabidopsis and Oryza sativa show different expression patterns in different developmental stages and under several different abiotic/biotic stresses and hormone treatments, underscoring the

  15. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Christiansen, Louise Slot; Clausen, Anders R.;

    2016-01-01

    , among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of d......CK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters...

  16. Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family.

    Science.gov (United States)

    Stadler, H S; Murray, J C; Leysens, N J; Goodfellow, P J; Solursh, M

    1995-06-01

    Homeobox genes represent a class of transcription factors that play key roles in the regulation of embryogenesis and development. Here we report the identification of a homeobox-containing gene family that is highly conserved at both the nucleotide and amino acid levels in a diverse number of species. These species encompass both vertebrate and invertebrate phylogenies, ranging from Homo sapiens to Drosophila melanogaster. In humans, at least two homeobox sequences from this family were identified representing a previously reported member of this family as well as a novel homeobox sequence that we physically mapped to the 10q25.2-q26.3 region of human Chromosome (Chr) 10. Multiple members of this family were also detected in three additional vertebrate species including Equus caballus (horse), Gallus gallus (Chicken), and Mus musculus (mouse), whereas only single members were detected in Tripneustes gratilla (sea urchin), Petromyzon marinus (lamprey), Salmo salar (salmon), Ovis aries (sheep), and D. melanogaster (fruit fly).

  17. Novel paralogous gene families with potential function in legume nodules and seeds.

    Science.gov (United States)

    Silverstein, Kevin A T; Graham, Michelle A; VandenBosch, Kathryn A

    2006-04-01

    Within the plant kingdom, legumes are unusual in their ability to form nitrogen-fixing nodules in symbiosis with certain bacteria in the family Rhizobiaceae (rhizhobia). Genes that are required for signaling between plant and symbiont, and for the development and maintenance of the nodule, were either created de novo or adopted from other plant pathways. Only in recent years have genome-scale sequence data from legumes made it possible to identify large, novel families of genes probably evolved to function in nodulation. Members of these novel families are expressed in seeds or nodules, and are homologous to defense-related proteins. Perhaps the most striking example is a large family (of more than 340 members) of cysteine cluster proteins that have homology to plant defensins.

  18. PHYLOGENETIC STATUS OF BABYLONIA ZEYLANICA (FAMILY BABYLONIIDAE BASED ON 18S rRNA GENE FRAGMENT

    Directory of Open Access Journals (Sweden)

    Vaithilingam RAVITCHANDIRANE

    2013-12-01

    Full Text Available Neogastropoda, highly diversed group of predatory marine snails, often been confused by shell colour and design pattern for identification. Gastropod resources which became economically important in India during the last decade are the whelk. The species Babylonia zeylanica of the family Babyloniidae began to be fished and exported from the country to China, Singapore, Thailand and Europe. This paper reports the molecular study of the group published to date with eight families of neogastropod taxa. For this study the 18S rRNA gene of B. zeylanica and other published data were collected from the GenBank. Kimura-2-Parameter genetic distance, nucleotide composition and neighbour joining analyses were conducted in all the eight families. The result clearly shows that Babyloniidae is clustered closely with Columbellidae of super family of Buccinoidea. Further additional gene data and increased sampling is warranted to give new insights into the phylogenetic relationships of Neogastropoda.

  19. Exons 16 and 17 of the amyloid precursor protein gene in familial inclusion body myopathy.

    Science.gov (United States)

    Sivakumar, K; Cervenáková, L; Dalakas, M C; Leon-Monzon, M; Isaacson, S H; Nagle, J W; Vasconcelos, O; Goldfarb, L G

    1995-08-01

    Accumulation of beta-amyloid protein (A beta) occurs in some muscle fibers of patients with inclusion body myopathy and resembles the type of amyloid deposits seen in the affected tissues of patients with Alzheimer's disease and cerebrovascular amyloidosis. Because mutations in exons 16 and 17 of the beta-amyloid precursor protein (beta APP) gene on chromosome 21 have been identified in patients with early-onset familial Alzheimer's disease and Dutch-type cerebrovascular amyloidosis, we searched for mutations of the same region in patients with familial inclusion body myopathy. Sequencing of both alleles in 8 patients from four unrelated families did not reveal any mutations in these exons. The amyloid deposition in familial forms of inclusion body myopathy may be either due to errors in other gene loci, or it is secondary reflecting altered beta APP metabolism or myocyte degeneration and cell membrane degradation.

  20. Novel heterozygous nonsense mutation of the OPTN gene segregating in a Danish family with ALS

    DEFF Research Database (Denmark)

    Tümer, Zeynep; Bertelsen, Birgitte; Gredal, Ole

    2012-01-01

    , mutations of the optineurin gene (OPTN), which is involved in open-angle glaucoma, were identified in 3 Japanese patients/families with ALS, and subsequently in a few FALS patients of European descent. We found a heterozygous nonsense mutation (c.493C>T, p.Gln165X, exon 6) in the OPTN gene in a Danish......Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. About 10% of ALS cases are familial (FALS) and the genetic defect is known only in approximately 20%-30% of these cases. The most common genetic cause of ALS is SOD1 (superoxide dismutase 1) mutation. Very recently...... mutation reported in a Danish family and is likely involved in disease pathogenesis. Until now, only few OPTN mutations have been associated with ALS. As the underlying genetic defect is known only in approximately 20%-30% of FALS families, further screening of these cases is necessary for establishing...

  1. Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita

    Directory of Open Access Journals (Sweden)

    Gao Feng

    2010-12-01

    Full Text Available Myotonia congenita (MC is a genetic disease characterized by mutations in the muscle chloride channel gene (CLCN1. To date, approximately 130 different mutations on the CLCN1 gene have been identified. However, most of the studies have focused on Caucasians, and reports on CLCN1 mutations in Chinese population are rare. This study investigated the mutation of CLCN1 in two Chinese families with MC. Direct sequencing of the CLCN1 gene revealed a heterozygous mutation (892G>A, resulting in A298T in one family and a compound heterozygous mutations (782A>G, resulting in Y261C; 1679T>C, resulting in M560T in the other family, None of the 100 normal controls had these mutations. Our findings add more to the available information on the CLCN1 mutation spectrum, and provide a valuable reference for studying the mutation types and inheritance pattern of CLCN1 in the Chinese population.

  2. Phylogenetic analysis of 48 gene families revealing relationships between Hagfishes, Lampreys, and Gnathostomata

    Institute of Scientific and Technical Information of China (English)

    Shuiyan Yu; Weiwei Zhang; Ling Li; Huifang Huang; Fei Ma; Qingwei Li

    2008-01-01

    It has become clear that the extant vertebrates are divided into three major groups, that is, hagfishes, lampreys, and jawed vertebrates.Morphological and molecular studies, however, have resulted in conflicting views with regard m their interrelationships. To clarify the phylogenetic relationships between them, 48 orthologous protein-coding gene families were analyzed. Even as the analysis of 34 nuclear gene families supported the monophyly of cyclostomes, the analysis of 14 mitochondrial gene families suggested a closer relationship between lampreys and gnathostomes compared to hagfishes. Lampreys were sister group of gnathostomes. The results of this study sup-ported the eyclostomes. Choice of outgroup, tree-making methods, and software may affect the phylogenetic prediction, which may have caused much debate over the subject. Development of new methods for tackling such problems is still necessary.

  3. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  4. Sequence analysis of candidate genes in two Roma families with severe tooth agenesis

    Directory of Open Access Journals (Sweden)

    Gabriková Dana

    2016-01-01

    Full Text Available Selective tooth agenesis is the most common congenital disorder affecting the formation of dentition in humans. Both its forms (hypodontia and more severe oligodontia can be found either in isolated form and they can be associated with systemic condition (syndromic tooth agenesis. In addition to previously known genes (PAX9, MSX1 and AXIN2 mutations in EDA, EDARADD and WNT10 gene were recently found to be involved in isolated forms of tooth agenesis. The objective of this study was to characterize the phenotype of affected members in two large families of Roma origin segregating severe isolated tooth agenesis with very variable phenotype and to perform mutation analysis of seven genes with aim to find causal mutation. 26 family members were clinically examined and coding regions of seven genes (MSX1, PAX9, AXIN2, EDA, EDAR, EDARADD and WNT10A were sequenced. With exclusion of third molars, average number of missing teeth was 8.2 ± 4.9 in family 1 and 7.1 ± 2.3 in family 2. The most frequently missing teeth were maxillary lateral incisors and first premolars and mandibular central incisors. Sequencing revealed four potentially damaging variants (g.Ala40Gly in MSX1, g.Ala240Pro in PAX9, g.Pro50Ser in AXIN2 and g.Met9Ile in EDARADD; however, none of them was present in all affected family members. Variable phenotype in both families examined in this study is in favour of heterogeneous genetic cause of tooth agenesis in these families: possible interaction of several defected genes, sequence variants in regulatory regions and additional environmental factors is assumed.

  5. Identification and analysis of the germin-like gene family in soybean

    Directory of Open Access Journals (Sweden)

    Wang Xiang-Jing

    2010-11-01

    Full Text Available Abstract Background Germin and germin-like proteins constitute a ubiquitous family of plant proteins. A role of some family members in defense against pathogen attack had been proposed based on gene regulation studies and transgenic approaches. Soybean (G. max L. Merr. germin genes had not been characterized at the molecular and functional levels. Results In the present study, twenty-one germin gene members in soybean cultivar 'Maple Arrow' (partial resistance to Sclerotinia stem rot of soybean were identified by in silico identification and RACE method (GmGER 1 to GmGER 21. A genome-wide analyses of these germin-like protein genes using a bioinformatics approach showed that the genes located on chromosomes 8, 1, 15, 20, 16, 19, 7, 3 and 10, on which more disease-resistant genes were located on. Sequence comparison revealed that the genes encoded three germin-like domains. The phylogenetic relationships and functional diversity of the germin gene family of soybean were analyzed among diverse genera. The expression of the GmGER genes treated with exogenous IAA suggested that GmGER genes might be regulated by auxin. Transgenic tobacco that expressed the GmGER 9 gene exhibited high tolerance to the salt stress. In addition, the GmGER mRNA increased transiently at darkness and peaked at a time that corresponded approximately to the critical night length. The mRNA did not accumulate significantly under the constant light condition, and did not change greatly under the SD and LD treatments. Conclusions This study provides a complex overview of the GmGER genes in soybean. Phylogenetic analysis suggested that the germin and germin-like genes of the plant species that had been founded might be evolved by independent gene duplication events. The experiment indicated that germin genes exhibited diverse expression patterns during soybean development. The different time courses of the mRNAs accumulation of GmGER genes in soybean leaves appeared to have a

  6. Genome-wide identification and expression profiling of auxin response factor (ARF gene family in maize

    Directory of Open Access Journals (Sweden)

    Zhang Yirong

    2011-04-01

    Full Text Available Abstract Background Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs are the transcription factors that regulate the expression of auxin responsive genes. The ARF genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the ARF gene family from maize (ZmARF genes has not been characterized in detail. Results In this study, 31 maize (Zea mays L. genes that encode ARF proteins were identified in maize genome. It was shown that maize ARF genes fall into related sister pairs and chromosomal mapping revealed that duplication of ZmARFs was associated with the chromosomal block duplications. As expected, duplication of some ZmARFs showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 ZmARF genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 ZmARF genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (ZmARF3, 9, 16, 18, 22 and 30. The expressions of maize ARF genes are responsive to exogenous auxin treatment. Dynamic expression patterns of ZmARF genes were observed in different stages of embryo development. Conclusions Maize ARF gene family is expanded (31 genes as compared to Arabidopsis (23 genes and rice (25 genes. The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of ZmARF genes in embryo at different stages were detected which suggest that maize ARF genes may

  7. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Serbielle Céline

    2012-12-01

    Full Text Available Abstract Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs, symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication, by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in

  8. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members.

    Science.gov (United States)

    Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.

  9. The bovine 5' AMPK gene family: mapping and single nucleotide polymorphism detection.

    Science.gov (United States)

    McKay, Stephanie D; White, Stephen N; Kata, Srinivas R; Loan, Raymond; Womack, James E

    2003-12-01

    The 5'-AMP-activated protein kinase (AMPK) family is an ancient stress response system whose primary function is regulation of cellular ATP. Activation of AMPK, which is instigated by environmental and nutritional stresses, initiates energy-conserving measures that protect the cell by inhibition and phosphorylation of key enzymes in energy-consuming biochemical pathways. The seven genes that comprise the bovine AMPK family were mapped in cattle by using a radiation hybrid panel. The seven genes mapped to six different cattle chromosomes, each with a LOD score greater than 10.0. PRKAA1 mapped to BTA 20, PRKAA2 and PRKAB2 to BTA 3, PRKAB1 to BTA 17, PRKAG1 to BTA 5, PRKAG2 to BTA 4, and PRKAG3 to BTA 2. Five of the seven genes mapped to regions expected from human/cattle comparative maps. PRKAB2 and PRKAG3, however, have not been mapped in humans. We predict these genes to be located on HSA 1 and 2, respectively. Additionally, one synonymous and one non-synonymous single nucleotide polymorphism (SNP) were detected in PRKAG3 in Bos taurus cattle. In an effort to determine ancestral origins, various herds of mixed breed cattle as well as other ruminant species were characterized for sequence variation in this region of PRKAG3. Owing to the physiological importance of this gene family, we believe that its individual genes are candidate genes for conferring resistance to diseases in cattle.

  10. Gene expression in response to ionizing radiation and family history of gastric cancer.

    Science.gov (United States)

    Marcon, Francesca; Silvestrini, Francesco; Siniscalchi, Ester; Palli, Domenico; Saieva, Calogero; Crebelli, Riccardo

    2011-03-01

    Genes and molecular pathways involved in familial clustering of gastric cancer have not yet been identified. The purpose of the present study was to investigate gene expression changes in response to a cellular stress, and its link with a positive family history for this neoplasia. To this aim leukocytes of healthy first-degree relatives of gastric cancer patients and controls were challenged in vitro with ionizing radiation and gene expression evaluated 4 h later on microarrays with 1,800 cancer-related genes. Eight genes, mainly involved in signal transduction and cell cycle regulation, were differentially expressed in healthy relatives of gastric cancer cases. Functional class scoring by Gene Ontology classification highlighted two G-protein related pathways, implicated in the proliferation of neoplastic tissue, which were differentially expressed in healthy subjects with positive family history of gastric cancer. The relative expression of 84 genes related to these pathways was examined using the SYBR green-based quantitative real-time PCR. The results confirmed the indication of an involvement of G-protein coupled receptor pathways in GC familiarity provided by microarray analysis. This study indicates a possible association between familiarity for gastric cancer and altered transcriptional response to ionizing radiation.

  11. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic

  12. 急性心肌梗死患者血清Cystatin C的变化%Changes of serum cystatin C in patients with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    董巧玲; 刘俊

    2007-01-01

    目的 探讨血清Cystatin C浓度在急性心肌梗死患者发病不同时期的变化.方法 采用速率散射比浊法测定急性心肌梗死患者发病48 h内及1周后、不稳定型心绞痛患者、对照组血清Cystatin C水平.结果 急性心肌梗死患者早期血清Cystatin C水平(0.78±0.15)与不稳定型心绞痛(0.89±0.22)、对照组(0.84±0.21)相比明显降低(P=0.028),但急性心肌梗死发病1周后(1.28±0.20)接近正常,甚至有所增高(P=0.04).血清Cystatin C水平与年龄、肌酐呈正相关.结论 血清Cystatin C水平在急性心肌梗死早期明显下降.

  13. Clinical significance of serum level of Cystatin C in patients with acute leukemia%急性白血病患者血清Cystatin C水平测定的临床意义

    Institute of Scientific and Technical Information of China (English)

    宋斌; 章正华; 姜铧; 陈雁

    2013-01-01

    目的:探讨Cystatin C在急性白血病中的临床意义.方法:采用颗粒增强透射免疫比浊法测定62例急性白血病患者血清中Cystatin C水平.结果:急性白血病初诊患者血清Cystatin C水平明显低于正常对照组(P<0.05),完全缓解期Cystatin C水平恢复正常,未缓解和复发患者Cystatin C水平与初诊患者无明显差异(P>0.05).结论:检测血清Cystatin C水平变化有助于急性白血病病情判断,可作为疗效观察的新指标.

  14. A novel mutation of the KIT gene in a Chinese family with piebaldism

    Institute of Scientific and Technical Information of China (English)

    WEN Guang-dong; ZHOU Cheng; YU Cong; DU Juan; XU Qian-xi; LIU Zheng-yi; ZHANG Jian-zhong

    2013-01-01

    Background Human piebaldism is a rare autosomal dominant condition characterized by congenital white forelock and depigmented patches of skin,typically on the forehead,anterior trunk and extremities.Mutations in the KIT gene have been proposed to be responsible for the underlying changes in this disorder.The aim of this study was to identify gene mutation in a Chinese family with piebaldism.Methods A Chinese family with piebaldism presenting with white forelock and large depigmented skin macules on the abdomen,arms and legs was collected.DNA was isolated from peripheral blood of the family members.The encoding exons with flanking intron regions of the KIT gene were analyzed by polymerase chain reactions (PCR) and direct DNA sequencing.Besides,DNA extracted from 100 ethnically matched population individuals was as controls.Results A heterozygous missense mutation c.2590T>C was identified in the patients of the family.This mutation converted a serine residue to proline (p.Ser864Pro).The mutation was not found in their unaffected family members or normal controis.Conclusion A novel missense mutation c.2590 T>C was found and it might play a significant role in the piebaldism phenotype in the family.

  15. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates.

    Science.gov (United States)

    Zhou, Jin; Zhang, Yao-Yang; Li, Qing-Yun; Cai, Zhong-Hua

    2015-01-01

    Cathepsin L family, an important cysteine protease found in lysosomes, is categorized into cathepsins B, F, H, K, L, S, and W in vertebrates. This categorization is based on their sequence alignment and traditional functional classification, but the evolutionary relationship of family members is unclear. This study determined the evolutionary relationship of cathepsin L family genes in vertebrates through phylogenetic construction. Results showed that cathepsins F, H, S and K, and L and V were chronologically diverged. Tandem-repeat duplication was found to occur in the evolutionary history of cathepsin L family. Cathepsin L in zebrafish, cathepsins S and K in xenopus, and cathepsin L in mice and rats underwent evident tandem-repeat events. Positive selection was detected in cathepsin L-like members in mice and rats, and amino acid sites under positive selection pressure were calculated. Most of these sites appeared at the connection of secondary structures, suggesting that the sites may slightly change spatial structure. Severe positive selection was also observed in cathepsin V (L2) of primates, indicating that this enzyme had some special functions. Our work provided a brief evolutionary history of cathepsin L family and differentiated cathepsins S and K from cathepsin L based on vertebrate appearance. Positive selection was the specific cause of differentiation of cathepsin L family genes, confirming that gene function variation after expansion events was related to interactions with the environment and adaptability.

  16. Evolution of the B3 DNA binding superfamily: new insights into REM family gene diversification.

    Directory of Open Access Journals (Sweden)

    Elisson A C Romanel

    Full Text Available BACKGROUND: The B3 DNA binding domain includes five families: auxin response factor (ARF, abscisic acid-insensitive3 (ABI3, high level expression of sugar inducible (HSI, related to ABI3/VP1 (RAV and reproductive meristem (REM. The release of the complete genomes of the angiosperm eudicots Arabidopsis thaliana and Populus trichocarpa, the monocot Orysa sativa, the bryophyte Physcomitrella patens,the green algae Chlamydomonas reinhardtii and Volvox carteri and the red algae Cyanidioschyzon melorae provided an exceptional opportunity to study the evolution of this superfamily. METHODOLOGY: In order to better understand the origin and the diversification of B3 domains in plants, we combined comparative phylogenetic analysis with exon/intron structure and duplication events. In addition, we investigated the conservation and divergence of the B3 domain during the origin and evolution of each family. CONCLUSIONS: Our data indicate that showed that the B3 containing genes have undergone extensive duplication events, and that the REM family B3 domain has a highly diverged DNA binding. Our results also indicate that the founding member of the B3 gene family is likely to be similar to the ABI3/HSI genes found in C. reinhardtii and V. carteri. Among the B3 families, ABI3, HSI, RAV and ARF are most structurally conserved, whereas the REM family has experienced a rapid divergence. These results are discussed in light of their functional and evolutionary roles in plant development.

  17. Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort.

    Science.gov (United States)

    Ticozzi, N; Silani, V; LeClerc, A L; Keagle, P; Gellera, C; Ratti, A; Taroni, F; Kwiatkowski, T J; McKenna-Yasek, D M; Sapp, P C; Brown, R H; Landers, J E

    2009-10-13

    Mutations in the FUS gene on chromosome 16 have been recently discovered as a cause of familial amyotrophic lateral sclerosis (FALS). This study determined the frequency and identities of FUS gene mutations in a cohort of Italian patients with FALS. We screened all 15 coding exons of FUS for mutations in 94 Italian patients with FALS. We identified 4 distinct missense mutations in 5 patients; 2 were novel. The mutations were not present in 376 healthy Italian controls and thus are likely to be pathogenic. Our results demonstrate that FUS mutations cause approximately 4% of familial amyotrophic lateral sclerosis cases in the Italian population.

  18. Three Approaches to Modeling Gene-Environment Interactions in Longitudinal Family Data: Gene-Smoking Interactions in Blood Pressure.

    Science.gov (United States)

    Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa; Schwander, Karen L; Vazquez, Ana; Rao, Dabeeru C

    2016-01-01

    Blood pressure (BP) has been shown to be substantially heritable, yet identified genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have detected novel BP loci in cross-sectional family data. Longitudinal family data are available and have additional promise to identify BP loci. However, this type of data presents unique analysis challenges. Although several methods for analyzing longitudinal family data are available, which method is the most appropriate and under what conditions has not been fully studied. Using data from three clinic visits from the Framingham Heart Study, we performed association analysis accounting for gene-smoking interactions in BP at 31,203 markers on chromosome 22. We evaluated three different modeling frameworks: generalized estimating equations (GEE), hierarchical linear modeling, and pedigree-based mixed modeling. The three models performed somewhat comparably, with multiple overlaps in the most strongly associated loci from each model. Loci with the greatest significance were more strongly supported in the longitudinal analyses than in any of the component single-visit analyses. The pedigree-based mixed model was more conservative, with less inflation in the variant main effect and greater deflation in the gene-smoking interactions. The GEE, but not the other two models, resulted in substantial inflation in the tail of the distribution when variants with minor allele frequency familial and longitudinal data. © 2015 WILEY PERIODICALS, INC.

  19. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS)

    KAUST Repository

    Lawton, Jennifer

    2012-03-29

    Background: The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required.Results: The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages.Conclusions: In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein

  20. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  1. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1–3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses. PMID:24614623

  2. A Meta-analysis on diagnostic value of serum cystatin C and ...

    African Journals Online (AJOL)

    *, Hu Binjie2*, Li Min1, ... Key words: Cystatin C; creatinine; renal transplantation; glomerular filtration rate; meta-analysis. ..... nephropathy of cyclosporine A, focal glomerulosclero- sis, acute ... The application of the immune suppressive agents.

  3. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume.

    Science.gov (United States)

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development.

  4. Genome-Wide Identification, Characterization and Expression Analysis of the TCP Gene Family in Prunus mume

    Science.gov (United States)

    Zhou, Yuzhen; Xu, Zongda; Zhao, Kai; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    TCP proteins, belonging to a plant-specific transcription factors family, are known to have great functions in plant development, especially flower and leaf development. However, there is little information about this gene family in Prunus mume, which is widely cultivated in China as an ornamental and fruit tree. Here a genome-wide analysis of TCP genes was performed to explore their evolution in P. mume. Nineteen PmTCPs were identified and three of them contained putative miR319 target sites. Phylogenetic and comprehensive bioinformatics analyses of these genes revealed that different types of TCP genes had undergone different evolutionary processes and the genes in the same clade had similar chromosomal location, gene structure, and conserved domains. Expression analysis of these PmTCPs indicated that there were diverse expression patterns among different clades. Most TCP genes were predominantly expressed in flower, leaf, and stem, and showed high expression levels in the different stages of flower bud differentiation, especially in petal formation stage and gametophyte development. Genes in TCP-P subfamily had main roles in both flower development and gametophyte development. The CIN genes in double petal cultivars might have key roles in the formation of petal, while they were correlated with gametophyte development in the single petal cultivar. The CYC/TB1 type genes were highly detected in the formation of petal and pistil. The less-complex flower types of P. mume might result from the fact that there were only two CYC type genes present in P. mume and a lack of CYC2 genes to control the identity of flower types. These results lay the foundation for further study on the functions of TCP genes during flower development. PMID:27630648

  5. The nuclear IκB family of proteins controls gene regulation and immune homeostasis.

    Science.gov (United States)

    MaruYama, Takashi

    2015-10-01

    The inhibitory IκB family of proteins is subdivided into two groups based on protein localization in the cytoplasm or in the nucleus. These proteins interact with NF-κB, a major transcription factor regulating the expression of many inflammatory cytokines, by modulating its transcriptional activity. However, nuclear IκB family proteins not only interact with NF-κB to change its transcriptional activity, but they also bind to chromatin and control gene expression. This review provides an overview of nuclear IκB family proteins and their role in immune homeostasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. TIS11 Family Proteins and Their Roles in Posttranscriptional Gene Regulation

    Directory of Open Access Journals (Sweden)

    Maria Baou

    2009-01-01

    Full Text Available Posttranscriptional regulation of gene expression of mRNAs containing adenine-uridine rich elements (AREs in their 3 untranslated regions is mediated by a number of different proteins that interact with these elements to either stabilise or destabilise them. The present review concerns the TPA-inducible sequence 11 (TIS11 protein family, a small family of proteins, that appears to interact with ARE-containing mRNAs and promote their degradation. This family of proteins has been extensively studied in the past decade. Studies have focussed on determining their biochemical functions, identifying their target mRNAs, and determining their roles in cell functions and diseases.

  7. A comprehensive family-based replication study of schizophrenia genes

    DEFF Research Database (Denmark)

    Aberg, Karolina A; Liu, Youfang; Bukszár, Jozsef

    2013-01-01

    (P = 9.01 × 10-7), CNNM2 (P = 6.07 × 10-7), and NT5C2 (P = 4.09 × 10-7). To explore the many small effects, we performed pathway analyses. The most significant pathways involved neuronal function (axonal guidance, neuronal systems, and L1 cell adhesion molecule interaction) and the immune system......IMPORTANCE Schizophrenia (SCZ) is a devastating psychiatric condition. Identifying the specific genetic variants and pathways that increase susceptibility to SCZ is critical to improve disease understanding and address the urgent need for new drug targets. OBJECTIVE To identify SCZ susceptibility...... (antigen processing, cell adhesion molecules relevant to T cells, and translocation to immunological synapse). CONCLUSIONS AND RELEVANCE We replicated novel SCZ disease genes and pathogenic pathways. Better understanding the molecular and biological mechanisms involved with schizophrenia may improve...

  8. 慢性肾脏病患者肾小球滤过率与血清Cystatin C相关性分析%Correlation Analysis Between Glomerular Filtration Rate and Serum Cystatin C in Patients with Chronic Kidney Disease

    Institute of Scientific and Technical Information of China (English)

    杨斌

    2011-01-01

    To explore the correlation between glomerular filtration rate (GFR) and serum cystatin C in patients with chronic kidney disease ( CKD). The serum cystatin C levels in 340 patients with CKD and 60 health controls were determined by particles enhance turbidimetric immune analysis. The GFR was calculated by the simplified equation derived from the modification of diet in renal disease study (MDRD). The results showed thatthe CFR was significant negatively correlated with cystatin C and SCr (P <0.01) and cystatin C had a stronger correlations with GFR. There was significant statistical difference between cystatin C and SCr ( P < 0.05 ). The reflect glomerular filtration function of cystatin C was more accurately than that SCr, it may be useful for the early diagnosis of CFR function in the patients with chronic kidney disease.%探讨慢性肾脏病(chronic kidney disease,CKD)患者肾小球滤过率(glomentlar filtration rate,GFR)与血清半胱氨酸蛋白酶抑制剂C(cystatin C)的相关性.采用颗粒增强免疫浊度分析法测定340例CKD组患者和60名对照组血清cystatin C,全自动生化分析仪检测血清SCr,采用校正eMDRD方程计算GFR,比较各指标与GFR间的相关性.结果表明:GFR与cystatin C、SCr间呈明显负相关(P<0.01),且与cystatin C相关最为密切.cystatin C与SCr有显著性差异(P<0.05).血清cystatin C能准确反映CKD患者GFR,对早期诊断CKD患者肾小球滤过功能有价值.

  9. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-09-01

    Full Text Available WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III, with five subgroups (IIa–IIe in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the

  10. Cystatin C, a novel indicator of renal function, reflects severity of cerebral microbleeds.

    Science.gov (United States)

    Oh, Mi-Young; Lee, Hyon; Kim, Joon Soon; Ryu, Wi-Sun; Lee, Seung-Hoon; Ko, Sang-Bae; Kim, Chulho; Kim, Chang Hun; Yoon, Byung-Woo

    2014-06-12

    Chronic renal insufficiency, diagnosed using creatinine based estimated glomerular filtration rate (GFR) or microalbumiuria, has been associated with the presence of cerebral microbleeds (CMBs). Cystatin C has been shown to be a more sensitive renal indicator than conventional renal markers. Under the assumption that similar pathologic mechanisms of the small vessel exist in the brain and kidney, we hypothesized that the levels of cystatin C may delineate the relationship between CMBs and renal insufficiency by detecting subclinical kidney dysfunction, which may be underestimated by other indicators, and thus reflect the severity of CMBs more accurately. Data was prospectively collected for 683 patients with ischemic stroke. The severity of CMBs was categorized by the number of lesions. Patients were divided into quartiles of cystatin C, estimated GFR and microalbumin/creatinine ratios. Ordinal logistic regression analysis was used to examine the association of each renal indicator with CMBs. In models including both quartiles of cystatin C and estimated GFR, only cystatin C quartiles were significant (the highest vs. the lowest, adjusted OR, 1.88; 95% CI 1.05-3.38; p = 0.03) in contrast to estimated GFR (the highest vs. the lowest, adjusted OR, 1.28; 95% CI 0.38-4.36; p = 0.70). A model including both quartiles of cystatin C and microalbumin/creatinine ratio also showed that only cystatin C quartiles was associated with CMBs (the highest vs. the lowest, adjusted OR, 2.06; 95% CI 1.07-3.94; p = 0.03). These associations were also observed in the logistic models using log transformed-cystatin C, albumin/creatinine ratio and estimated GFR as continuous variables. Cystatin C was a significant indicator of deep or infratenorial CMBs, but not strictly lobar CMBs. In addition, cystatin C showed the greatest significance in c-statistics for the presence of CMBs (AUC = 0.73 ± 0.03; 95% CI 0.66-0.76; p = 0.02). Cystatin C may be the most sensitive indicator of CMB severity

  11. Pyrin gene and mutants thereof, which cause familial Mediterranean fever

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, Daniel L [Bethesda, MD; Aksentijevichh, Ivona [Bethesda, MD; Centola, Michael [Tacoma Park, MD; Deng, Zuoming [Gaithersburg, MD; Sood, Ramen [Rockville, MD; Collins, Francis S [Rockville, MD; Blake, Trevor [Laytonsville, MD; Liu, P Paul [Ellicott City, MD; Fischel-Ghodsian, Nathan [Los Angeles, CA; Gumucio, Deborah L [Ann Arbor, MI; Richards, Robert I [North Adelaide, AU; Ricke, Darrell O [San Diego, CA; Doggett, Norman A [Santa Cruz, NM; Pras, Mordechai [Tel-Hashomer, IL

    2003-09-30

    The invention provides the nucleic acid sequence encoding the protein associated with familial Mediterranean fever (FMF). The cDNA sequence is designated as MEFV. The invention is also directed towards fragments of the DNA sequence, as well as the corresponding sequence for the RNA transcript and fragments thereof. Another aspect of the invention provides the amino acid sequence for a protein (pyrin) associated with FMF. The invention is directed towards both the full length amino acid sequence, fusion proteins containing the amino acid sequence and fragments thereof. The invention is also directed towards mutants of the nucleic acid and amino acid sequences associated with FMF. In particular, the invention discloses three missense mutations, clustered in within about 40 to 50 amino acids, in the highly conserved rfp (B30.2) domain at the C-terminal of the protein. These mutants include M6801, M694V, K695R, and V726A. Additionally, the invention includes methods for diagnosing a patient at risk for having FMF and kits therefor.

  12. Expansion, diversification, and expression of T-box family genes in Porifera.

    Science.gov (United States)

    Holstien, Kay; Rivera, Ajna; Windsor, Pam; Ding, Siyu; Leys, Sally P; Hill, Malcolm; Hill, April

    2010-12-01

    Sponges are among the earliest diverging lineage within the metazoan phyla. Although their adult morphology is distinctive, at several stages of development, they possess characteristics found in more complex animals. The T-box family of transcription factors is an evolutionarily ancient gene family known to be involved in the development of structures derived from all germ layers in the bilaterian animals. There is an incomplete understanding of the role that T-box transcription factors play in normal sponge development or whether developmental pathways using the T-box family share similarities between parazoan and eumetazoan animals. To address these questions, we present data that identify several important T-box genes in marine and freshwater sponges, place these genes in a phylogenetic context, and reveal patterns in how these genes are expressed in developing sponges. Phylogenetic analyses demonstrate that sponges have members of at least two of the five T-box subfamilies (Brachyury and Tbx2/3/4/5) and that the T-box genes expanded and diverged in the poriferan lineage. Our analysis of signature residues in the sponge T-box genes calls into question whether "true" Brachyury genes are found in the Porifera. Expression for a subset of the T-box genes was elucidated in larvae from the marine demosponge, Halichondria bowerbanki. Our results show that sponges regulate the timing and specificity of gene expression for T-box orthologs across larval developmental stages. In situ hybridization reveals distinct, yet sometimes overlapping expression of particular T-box genes in free-swimming larvae. Our results provide a comparative framework from which we can gain insights into the evolution of developmentally important pathways.

  13. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    Science.gov (United States)

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  14. Distribution of chicken cathepsins B and L, cystatin and ovalbumin in extra-embryonic fluids during embryogenesis.

    Science.gov (United States)

    Cirkvenčič, N; Narat, M; Dovč, P; Benčina, D

    2012-01-01

    1. Concentrations of chicken cathepsin B, cathepsin L, cystatin and ovalbumin were determined in the allantoic fluid, amniotic fluid and extracts of chorioallantoic membranes during days 6 to 12 of embryogenesis. 2. Similar trends for cystatin and ovalbumin were observed in the allantoic fluid with maximum concentrations of cystatin on day 7 (12 ± 4 µg/ml) and ovalbumin on day 8 (∼19 ± 2.5 µg/ml) of embryonic development. The highest concentrations of cathepsin B was found on day 7 and of cathepsin L on day 10, but were significantly lower than those of cystatin and ovalbumin. 3. In the allantoic fluid, especially on day 7, considerable proportions of cystatin and ovalbumin were phosphorylated and contained phosphorylated serine. 4. Concentrations of cathepsin B and L, cystatin and ovalbumin in the amniotic fluid were variable but were comparable to those in allantoic fluid.

  15. Relation of Cystatin C and Cathepsin B Expression to the Pathological Grade and Invasion of Human Gliomas

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    OBJECTIVE To explore the relation of cystatin C and cathepsin B expression to the pathological grade and invasion of human gliomas.METHODS A immunohistochemical method was used to detect the expression of cystatin C and cathepsin B in 57 glioma samples.RESULTS The expression of cystatin C in high-grade (Grade Ⅲ~Ⅳ )gliomas was significantly weaker than that in low-grade(Grade Ⅰ~Ⅱ, P=0.0001).On the other hand, the expression of cathepsin B in high-grade gliomas was significantly stronger than that in low-grade (P=0.0001). Cystatin C expression correlated inversely with cathepsin B expression in gliomas (P=0.01).CONCLUSION Cystatin C and cathepsin B expression is related to the pathological grade and invasion of gliomas. Combining detection of cystatin C and cathepsin B expressions might provide significant information for clinical assessment of maglignant phenotypes and invasion of gliomas.

  16. Cystatin C is not a good candidate biomarker for HNF1A-MODY.

    Science.gov (United States)

    Nowak, Natalia; Szopa, Magdalena; Thanabalasingham, Gaya; McDonald, Tim J; Colclough, Kevin; Skupien, Jan; James, Timothy J; Kiec-Wilk, Beata; Kozek, Elzbieta; Mlynarski, Wojciech; Hattersley, Andrew T; Owen, Katharine R; Malecki, Maciej T

    2013-10-01

    Cystatin C is a marker of glomerular filtration rate (GFR). Its level is influenced, among the others, by CRP whose concentration is decreased in HNF1A-MODY. We hypothesized that cystatin C level might be altered in HNF1A-MODY. We aimed to evaluate cystatin C in HNF1A-MODY both as a diagnostic marker and as a method of assessing GFR. We initially examined 51 HNF1A-MODY patients, 56 subjects with type 1 diabetes (T1DM), 39 with type 2 diabetes (T2DM) and 43 non-diabetic individuals (ND) from Poland. Subjects from two UK centres were used as replication panels: including 215 HNF1A-MODY, 203 T2DM, 39 HNF4A-MODY, 170 GCK-MODY, 17 HNF1B-MODY and 58 T1DM patients. The data were analysed with additive models, adjusting for gender, age, BMI and estimated GFR (creatinine). In the Polish subjects, adjusted cystatin C level in HNF1A-MODY was lower compared with T1DM, T2DM and ND (p MODY, while the two GFR estimates were similar or cystatin C-based lower in the other groups. In the UK subjects, there were no differences in cystatin C between HNF1A-MODY and the other diabetic subgroups, except HNF1B-MODY. In UK HNF1A-MODY, cystatin C-based GFR estimate was higher than the creatinine-based one (p MODY. In HNF1A-MODY, the cystatin C-based GFR estimate is higher than the creatinine-based one.

  17. Evaluation of the Relationship between Cystatin C Level in Whole Saliva and Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Najafi Neshli

    Full Text Available Introduction: Chronic periodontitis is an infectious disease resulting in inflammation in tooth supporting tissues, advanced attachment loss and bone loss. Destructive process is a result of imbalance between analyzing enzymes such as MMPs and their inhibitors. This imbalance can also occur with other enzymes such as lysosomal cysteine proteinase, Katpsyn and their inhibitor such as cystatin. Cystatin C is a protein which controls activity of extracellular cysteine proteinase in inflammatory conditions. The aim of this study was to evaluate the protective role of salivary cystatin C in periodental disease. Materials & Methods: Twenty six patients with chronic periodontitis examined by a periodontist and also with a minimum pocket depth of six mm and more in at least eight locations in the mouth were selected. To collect Total non-irritating saliva samples, the spit method was used. Salivary levels of cystatin C was evaluated by ELISA method. Data were analysed by SPSS version 11.5 software.Results: The level of cystatin C in periodontally diseased subjects was higher than that of the control group, but the difference was not statistically significant (P=0.24. In the female group with control of age variant, the level of cystatin C was significantly higher in patients with periodontitis (P=0.036, whereas in male group, the difference was not significant (P=0.086. It seems that the lower periodontal destruction in female group is as a result of higher level of cystatin C.Conclusion: The level of cystatin C in whole saliva could be used as a marker in chronic periodontitis.

  18. Correlative research between homocysteine,cystatin C and patients with essential hypertension and hypertensive intracerebral hemorrhage

    Institute of Scientific and Technical Information of China (English)

    孙屿

    2014-01-01

    Objective To investigate the correlation between homocysteine(Hcy),cystatin C(Cys C)and patients with essential hypertension and hypertensive intracerebral hemorrhage.Methods Subjects were divided into hypertensive intracerebral hemorrhage group(108 cases),essential hypertension group(100 cases)and control group(100 cases),and their cystatin C,homocysteine and total cholesterol(TC)and triglycerides(TG)were surveyed.Results The patients with hypertensive intracerebral hemorrhage and essential hypertension had higher

  19. Characterization of the 11S globulin gene family in the castor plant Ricinus communis L.

    Science.gov (United States)

    Chileh, Tarik; Esteban-García, Belén; Alonso, Diego López; García-Maroto, Federico

    2010-01-13

    The 11S globulin (legumin) gene family has been characterized in the castor plant Ricinus communis L. Phylogenetic analysis reveals the presence of two diverged subfamilies (RcLEG1 and RcLEG2) comprising a total of nine genes and two putative pseudogenes. The expression of castor legumin genes has been studied, indicating that it is seed specific and developmentally regulated, with a maximum at the stage when cellular endosperm reaches its full expansion (around 40-45 DAP). However, conspicuous differences are appreciated in the expression timing of individual genes. A characterization of the 5'-proximal regulatory regions for two genes, RcLEG1-1 and RcLEG2-1, representative of the two legumin subfamilies, has also been performed by fusion to the GUS reporter gene. The results obtained from heterologous expression in tobacco and transient expression in castor, indicating seed-specific regulation, support the possible utility of these promoters for biotechnological purposes.

  20. Allelic loss of the ING gene family loci is a frequent event in ameloblastoma.

    Science.gov (United States)

    Borkosky, Silvia S; Gunduz, Mehmet; Beder, Levent; Tsujigiwa, Hidetsugu; Tamamura, Ryo; Gunduz, Esra; Katase, Naoki; Rodriguez, Andrea P; Sasaki, Akira; Nagai, Noriyuki; Nagatsuka, Hitoshi

    2010-01-01

    Ameloblastoma is the most frequently encountered odontogenic tumor, characterized by a locally invasive behavior, frequent recurrences, and, although rare, metastatic capacity. Loss or inactivation of tumor suppressor genes (TSGs) allows cells to acquire neoplastic growth. The ING family proteins are tumor suppressors that physically and functionally interact with p53 to perform important roles in apoptosis, DNA repair, cell cycle regulation, and senescence. TP53 genetic alterations were reported to infrequently occur in ameloblastoma. Considering that other TSGs related to TP53 could be altered in this tumor, we focused our study on the ING family genes. We analyzed the loss of heterozygosity (LOH) status of the ING family (ING1-ING5) chromosomal loci in a group of ameloblastomas by microsatellite analysis, and correlated the ING LOH status with clinicopathological characteristics. By using specific microsatellite markers, high frequency of LOH was found at the loci of each ING gene family member (33.3-72.2%). A significant relationship was shown between LOH of D2S 140 (ING5 locus) and solid tumor type (p = 0.02). LOH of ING3MS (ING3 locus) was also high in solid type tumors, showing a near significant association. In addition, a notable tendency toward higher LOH for half of the markers was observed in recurrent cases. LOH of ING family genes appears as a common genetic alteration in solid ameloblastoma. The current study provides interesting novel information regarding the potential prognostic significance of the allelic loss of the ING gene family loci in ameloblastoma tumorigenesis.

  1. [Cadmium induces p53-dependent apoptosis through the inhibition of Ube2d family gene expression].

    Science.gov (United States)

    Tokumoto, Maki; Satoh, Masahiko

    2012-01-01

    Cadmium (Cd), a harmful metal, exerts severe toxic effects on various tissues such as those in the kidney, liver, lung, and bone. In particular, renal toxicity with damage to proximal tubule cells is caused by chronic exposure to Cd. However, the molecular mechanism underlying chronic Cd renal toxicity remains to be understood. In this review, we present our recent findings since we examined to search for the target molecules involved in the renal toxicity of Cd using toxicogenomics. In NRK-52E rat renal tubular epithelial cells, we found using DNA microarrays that Cd suppressed the expression of the gene encoding Ube2d4, a member of the Ube2d family. The Ube2d family consists of selective ubiquitin-conjugating enzymes associated with p53 degradation. Moreover, Cd suppressed the expressions of genes encoding all Ube2d family members (Ube2d1/2/3/4) prior to the appearance of cytotoxicity in NRK-52E cells. Cd markedly increased p53 protein level and induced p53 phosphorylation and apoptosis in the cells. In vivo studies showed that chronic Cd exposure also suppressed Ube2d family gene expression and induced p53 accumulation and apoptosis in the renal tubules of the mouse kidney. These findings suggest that Cd causes p53-dependent apoptosis due to the inhibition of p53 degradation through the down-regulation of Ube2d family genes in NRK-52E cells and mouse kidney. Thus, the Ube2d family genes may be one of the key targets of renal toxicity caused by Cd.

  2. The Keratin 6 gene family. Charaterization and regulation; La familia de genes de la queratina 6. Caracterizacion y regulacion

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Espinel, J.M. [Universidad Complutense de Madrid. Dept. Biologia (Spain)

    1992-12-31

    Cytokeratins are a family of ca. 30 proteins that are expressed exclusively in epithelial cells, where they constitute the intermediate filaments cytoskeleton. Keratin 6 is expressed in some tissues (tongue, esophagus, foot sole epidermis, etc.), as well as in the suprabasal layers of epidermis under hyperproliferative stimuli, such as tpa, wound healing, etc. In addition, it is expressed in most cultured epidermal cells lines. We have found that there are three different genes coding for similar-but not identical-k6 polypeptides in the cow. We have used CAT assays, gel retardation and footprinting techniques to analyze the promoter of one of the genes in several cell lines and have found two elements implicated in the regulation of this gene. One of them is a AP1-like site and the other seems to be a retinoic-acid responsive element. Implications of these findings for the regulation of the K6 gene are discussed. (author).250 refs, 48 figs.

  3. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato.

    Science.gov (United States)

    Feng, Chao-Yang; Han, Jia-Xuan; Han, Xiao-Xue; Jiang, Jing

    2015-12-01

    The SWEET (Sugars Will Eventually Be Exported Transporters) gene family encodes membrane-embedded sugar transporters containing seven transmembrane helices harboring two MtN3 and saliva domain. SWEETs play important roles in diverse biological processes, including plant growth, development, and response to environmental stimuli. Here, we conducted an exhaustive search of the tomato genome, leading to the identification of 29 SWEET genes. We analyzed the structures, conserved domains, and phylogenetic relationships of these protein-coding genes in detail. We also analyzed the transcript levels of SWEET genes in various tissues, organs, and developmental stages to obtain information about their functions. Furthermore, we investigated the expression patterns of the SWEET genes in response to exogenous sugar and adverse environmental stress (high and low temperatures). Some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Numerous stress-responsive candidate genes were obtained. The results of this study provide insights into the characteristics of the SWEET genes in tomato and may serve as a basis for further functional studies of such genes.

  4. Genomewide analysis of TCP transcription factor gene family in Malus domestica

    Indian Academy of Sciences (India)

    Ruirui Xu; Peng Sun; Fengjuan Jia; Longtao Lu; Yuanyuan Li; Shizhong Zhang; Jinguang Huang

    2014-12-01

    Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock–scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple.

  5. Comparative analysis of genome-wide Mlo gene family in Cajanus cajan and Phaseolus vulgaris.

    Science.gov (United States)

    Deshmukh, Reena; Singh, V K; Singh, B D

    2016-04-01

    The Mlo gene was discovered in barley because the mutant 'mlo' allele conferred broad-spectrum, non-race-specific resistance to powdery mildew caused by Blumeria graminis f. sp. hordei. The Mlo genes also play important roles in growth and development of plants, and in responses to biotic and abiotic stresses. The Mlo gene family has been characterized in several crop species, but only a single legume species, soybean (Glycine max L.), has been investigated so far. The present report describes in silico identification of 18 CcMlo and 20 PvMlo genes in the important legume crops Cajanus cajan (L.) Millsp. and Phaseolus vulgaris L., respectively. In silico analysis of gene organization, protein properties and conserved domains revealed that the C. cajan and P. vulgaris Mlo gene paralogs are more divergent from each other than from their orthologous pairs. The comparative phylogenetic analysis classified CcMlo and PvMlo genes into three major clades. A comparative analysis of CcMlo and PvMlo proteins with the G. max Mlo proteins indicated close association of one CcMlo, one PvMlo with two GmMlo genes, indicating that there was no further expansion of the Mlo gene family after the separation of these species. Thus, most of the diploid species of eudicots might be expected to contain 15-20 Mlo genes. The genes CcMlo12 and 14, and PvMlo11 and 12 are predicted to participate in powdery mildew resistance. If this prediction were verified, these genes could be targeted by TILLING or CRISPR to isolate powdery mildew resistant mutants.

  6. Genomewide survey and characterization of metacaspase gene family in rice (Oryza sativa)

    Indian Academy of Sciences (India)

    Likai Wang; Hua Zhang

    2014-04-01

    Metacaspases (MCs), which are cysteine-dependent proteases found in plants, fungi, and protozoa, may be involved in programmed cell death processes, being distant relatives of metazoan caspases. In this study, we analysed the structures, phylogenetic relationship, genome localizations, expression patterns and domestic selections of eight MC genes identified in rice (OsMC). Alignment analysis of the corresponding protein sequences suggested OsMC proteins can be classified into two sub-types. The expression profiles of eight OsMC genes were analysed in 27 tissues covering the whole life cycle of rice. There are four OsMC genes uniquely expressed in mature tissues, indicating that these genes might play certain roles in senescence. Under abiotic and biotic stresses, four OsMC genes were expressed with treatments of one or more of Magnaporthe oryzae (M. oryzae) infected, pest damaged, cold stress and drought stress, indicating they might be involved in plant defense. In addition, gene trees and genetic diversity $(\\pi)$ were performed to measure whether candidate genes were selected during rice domestication. The results suggested that all the type I genes could not be domestication genes. However, two of five type II OsMC genes showed strong evidence for selective sweep, suggesting that these genes might be involved in cultivated rice domestication. These results provide a foundation for future functional genomic studies of this family in rice.

  7. Gene families of cuticular proteins analogous to peritrophins (CPAPs in Tribolium castaneum have diverse functions.

    Directory of Open Access Journals (Sweden)

    Sinu Jasrapuria

    Full Text Available The functional characterization of an entire class of 17 genes from the red flour beetle, Tribolium castaneum, which encode two families of Cuticular Proteins Analogous to Peritrophins (