WorldWideScience

Sample records for cylindrical shells subjected

  1. Rigid-Plastic Approximations for Predicting Plastic Deformation of Cylindrical Shells Subject to Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Michelle S. Hoo Fatt

    1996-01-01

    Full Text Available A theoretical approach was developed for predicting the plastic deformation of a cylindrical shell subject to asymmetric dynamic loads. The plastic deformation of the leading generator of the shell is found by solving for the transverse deflections of a rigid-plastic beam/string-on-foundation. The axial bending moment and tensile force in the beam/string are equivalent to the longitudinal bending moments and membrane forces of the shell, while the plastic foundation force is equivalent to the shell circumferential bending moment and membrane resistances. Closed-form solutions for the transient and final deformation profile of an impulsive loaded shell when it is in a “string” state were derived using the eigenfunction expansion method. These results were compared to DYNA 3D predictions. The analytical predictions of the transient shell and final centerline deflections were within 25% of the DYNA 3D results.

  2. Dynamic plastic buckling of cylindrical and spherical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de

  3. A numerical simulation of metallic cylindrical sandwich shells subjected to air blast loading

    Directory of Open Access Journals (Sweden)

    Lin Jing

    Full Text Available The dynamic response of cylindrical sandwich shells with aluminum foam cores subjected to air blast loading was investigated numerically in this paper. According to KNR theory, the nonlinear compressibility of the air and finite shock conditions were taken into account in the finite element model. Numerical simulation results show that the compression strain, which plays a key role on energy absorption, increases approximately linearly with normalized impulse, and reduces with increasing relative density or the ratio of face-sheet thickness and core thickness. An increase of the impulse will delay the equalization of top and bottom face-sheet velocities of sandwich shell, but there is a maximum value in the studied bound. A limited study of weight optimization was carried out for sandwich shells with respect to the respective geometric parameters, including face-sheet thickness, core thickness and core relative density. These numerical results are of worth to theoretical prediction and engineering application of cellular metal sandwich structures.

  4. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  5. static analysis of circular cylindrical shell under hydrostatic and ring

    African Journals Online (AJOL)

    DEPT OF AGRICULTURAL ENGINEERING

    (Golzan et al, 2008). Circular cylindrical shells are used in a large variety of civil engineering structures, e.g. off-shore platforms, chimneys, silos, pipelines, bridge arches or wind turbine towers (Winterstetter et al, 2002). This work is concerned with the analysis of circular cylindri- cal shell subjected to hydrostatic pressure in.

  6. Response of cylindrical steel shell under seismic loading

    International Nuclear Information System (INIS)

    Tariq, M.; Amin, K.M.

    2003-01-01

    The seismic response of a cylindrical shell is simulated using the finite element method, and by spectral analysis. For this purpose the fundamental frequency of the cylinder is first calculated and compared with a published result. The mode shapes are also calculated which are later used for spectral analysis. The boundary nodes of the shell are displaced periodically according to a predetermined function of time by employing the acceleration time history of the El Centro earthquake to simulate the seismic loading. However, to conduct spectral analysis, the displacements are first transformed from the time domain to frequency domain using the Fast Fourier transformation. This spectral data is then used to obtain the actual displacement in the first mode under the given seismic loading. The techniques employed here can be used for cylindrical shell structures like rotor of a gas centrifuge, besides other structures that are subjected to seismic loading, besides in other time dependent loading conditions, for example rocket motor vibrations. (author)

  7. Sound-structure interaction analysis of an infinite-long cylindrical shell submerged in a quarter water domain and subject to a line-distributed harmonic excitation

    Science.gov (United States)

    Guo, Wenjie; Li, Tianyun; Zhu, Xiang; Miao, Yuyue

    2018-05-01

    The sound-structure coupling problem of a cylindrical shell submerged in a quarter water domain is studied. A semi-analytical method based on the double wave reflection method and the Graf's addition theorem is proposed to solve the vibration and acoustic radiation of an infinite cylindrical shell excited by an axially uniform harmonic line force, in which the acoustic boundary conditions consist of a free surface and a vertical rigid surface. The influences of the complex acoustic boundary conditions on the vibration and acoustic radiation of the cylindrical shell are discussed. It is found that the complex acoustic boundary has crucial influence on the vibration of the cylindrical shell when the cylindrical shell approaches the boundary, and the influence tends to vanish when the distances between the cylindrical shell and the boundaries exceed certain values. However, the influence of the complex acoustic boundary on the far-field sound pressure of the cylindrical shell cannot be ignored. The far-field acoustic directivity of the cylindrical shell varies with the distances between the cylindrical shell and the boundaries, besides the driving frequency. The work provides more understanding on the vibration and acoustic radiation behaviors of cylindrical shells with complex acoustic boundary conditions.

  8. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  9. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  10. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  11. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  12. The stresses and displacements in cylindrical shells subject to arbitrary temperature distribution

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    The paper begins with a statement of a reciprocal theorem in thermoelasticity based on a generalization of Betti's Reciprocal Theorem. This is followed by application to the solution of a simply supported thin walled cylindrical shell subject to arbitrary three-dimensional temperature distribution T(x,y,z). The usefulness of the theorem resides in the fact that existing solutions in elasticity may be used to obtain solutions of thermoelastic problems. This characteristic is of great importance, particularly when the temperature distribution is arbitrary, as is often the case in practise, and cannot be expressed in functional form; thus rendering solution of the thermoelastic equations very difficult. With solutions of a wide range of problems in elasticity in existence, application of the thermoelastic theorem is the key to solution of a broad class of problems in thermoelasticity, problems that cannot be solved by the classic process. (Auth.)

  13. Low-energy impact of adaptive cylindrical piezoelectric-composite shells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanos, D.A. [University of Patras (United Kingdom). Dept. of Mechanical Engineering and Aeronautics; Christoforou, A.P. [Kuwait Univ. (Kuwait). Dept. of Mechanical Engineering

    2002-04-01

    A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-plane Ritz solution for the impact of open cylindrical piezoelectric-composite shells is developed and solved numerically using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cylindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact force. (author)

  14. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole

    Science.gov (United States)

    Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.

    2017-11-01

    Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.

  15. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  16. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    DR OKE

    vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.

  17. Gravitational collapse of a cylindrical null shell in vacuum

    Directory of Open Access Journals (Sweden)

    S. Khakshournia

    2008-03-01

    Full Text Available   Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .

  18. The lifetime of a long cylindrical shell under external pressure at elevated temperature

    CERN Document Server

    Bargmann, H W

    1972-01-01

    This paper is concerned with creep collapse of a long, thin walled, circular, cylindrical shell subjected to external pressure. The problem has been studied by Hoff et al. (1959), where elasticity has been neglected in the material equations. In the present paper it is pointed out that elasticity must not be neglected in stability problems as it may reduce the lifetime considerably. The improved equation for the lifetime of the shell is presented. Moreover, a procedure is indicated to derive the necessary creep parameters easily from usually available creep data. Numerical values of the lifetime of thin-walled, circular, cylindrical shells under external atmospheric pressure are presented for a wide range of shells of different geometrical characteristics for a number of high-temperature alloys and the temperature range up to 1000 degrees C. Experimental results are reported which are in good agreement with the theoretical prediction. (11 refs).

  19. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  20. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Science.gov (United States)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically

  1. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    Science.gov (United States)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  2. Stresses at the intersection of two cylindrical shells

    International Nuclear Information System (INIS)

    Xue, M.D.; Chen, W.; Hwang, K.C.

    1995-01-01

    The stress analysis based on the theory of a thin shell is carried out for two normally intersecting cylindrical shells with a large diameter ratio. Instead of the Donnell shallow shell equation, the modified Morley equation, which is applicable to ρ 0 (R/T) 1/2 XXXX1, is used for the analysis of the shell with cut-out. The solution in terms of displacement function for the nozzle with a non-planar end is based on the Love equation. The boundary forces and displacements at the intersection are all transformed from Gaussian coordinates (α,β) on the shell, or Gaussian coordinates (ζ,θ) on the nozzle into three-dimensional cylindrical coordinates (ρ,θ,z). Their expressions on the intersecting curve are periodic functions of θ and expanded in Fourier series. Every harmonics of Fourier coefficients of boundary forces and displacements are obtained by numerical quadrature.The results obtained are in agreement with those from the finite element method and experiments for d/D≤0.8. ((orig.))

  3. Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition

    Directory of Open Access Journals (Sweden)

    Qiansheng Tang

    2016-01-01

    Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.

  4. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  5. Nonlinear Dynamic Buckling of Damaged Composite Cylindrical Shells

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-lin; TANG Wen-yong; ZHANG Sheng-kun

    2007-01-01

    Based on the first order shear deformation theory(FSDT), the nonlinear dynamic equations involving transverse shear deformation and initial geometric imperfections were obtained by Hamilton's philosophy. Geometric deformation of the composite cylindrical shell was treated as the initial geometric imperfection in the dynamic equations, which were solved by the semi-analytical method in this paper. Stiffness reduction was employed for the damaged sub-layer, and the equivalent stiffness matrix was obtained for the delaminated area. By circumferential Fourier series expansions for shell displacements and loads and by using Galerkin technique, the nonlinear partial differential equations were transformed to ordinary differential equations which were finally solved by the finite difference method. The buckling was judged from shell responses by B-R criteria, and critical loads were then determined. The effect of the initial geometric deformation on the dynamic response and buckling of composite cylindrical shell was also discussed, as well as the effects of concomitant delamination and sub-layer matrix damages.

  6. Wellposedness of a cylindrical shell model

    International Nuclear Information System (INIS)

    McMillan, C.

    1994-01-01

    We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space

  7. A High-Order Theory for the Analysis of Circular Cylindrical Composite Sandwich Shells with Transversely Compliant Core Subjected to External Loads

    DEFF Research Database (Denmark)

    Rahmani, Omid; Khalili, S.M.R.; Thomsen, Ole Thybo

    2012-01-01

    A new model based on the high order sandwich panel theory is proposed to study the effect of external loads on the free vibration of circular cylindrical composite sandwich shells with transversely compliant core, including also the calculation of the buckling loads. In the present model......, which is based on a 3D elasticity solution for the core material, can be used as a benchmark in future studies of the free vibration and buckling of circular cylindrical composite sandwich shells with a transversely compliant core....

  8. Zero-point energy of N perfectly conducting concentric cylindrical shells

    International Nuclear Information System (INIS)

    Tatur, K.; Woods, L.M.

    2008-01-01

    The zero-point (Casimir) energy of N perfectly conducting, infinitely long, concentric cylindrical shells is calculated utilizing the mode summation technique. The obtained convergent expression is studied as a function of size, curvature and number of shells. Limiting cases, such as infinitely close shells or infinite radius shells are also investigated

  9. Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Saeed Mahmoudkhani

    Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.

  10. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  11. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Science.gov (United States)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  12. Frequency response analysis of cylindrical shells conveying fluid using finite element method

    International Nuclear Information System (INIS)

    Seo, Young Soo; Jeong, Weui Bong; Yoo, Wan Suk; Jeong, Ho Kyeong

    2005-01-01

    A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the Sanders' theory and the fluid in cylindrical shell is considered as inviscid and incompressible so that it satisfies the Laplace's equation. A beam-like shell element is used to reduce the number of degree-of-freedom by restricting to the circumferential modes of cylindrical shell. An estimation of frequency response function of the pipe considering of the coupled effects of the internal fluid is presented. A dynamic coupling condition of the interface between the fluid and the structure is used. The effective thickness of fluid according to circumferential modes is also discussed. The influence of fluid velocity on the frequency response function is illustrated and discussed. The results by this method are compared with published results and those by commercial tools

  13. Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells

    DEFF Research Database (Denmark)

    Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle

    2015-01-01

    The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...... builds on the recent advances on bi-orthogonality conditions for multi-modal waveguides, which are derived here for an elastic fluid-filled cylindrical shell. Subsequently, modal decomposition is applied to the bi-orthogonality conditions to formulate explicit algebraic equations to express the modal...... vibro-acoustic waveguide is subjected to separate pressure and velocity acoustical excitations. Further, it has been found and justified that the bi-orthogonality conditions can be used as a ’root finder’ to solve the dispersion equation. Finally, it is discussed how to predict the response of a fluid...

  14. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    Science.gov (United States)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  15. Fluid free surface effect on the vibration analysis of cylindrical shells

    International Nuclear Information System (INIS)

    Lakis, A.A.; Brusuc, G.; Toorani, M.

    2007-01-01

    The present study is to investigate the effect of free surface motion of the fluid on the dynamic behavior of the thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of the fluid-filled horizontal cylindrical shell taking into account the free surface motion effect. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid structure interaction problems in the horizontal cylindrical shells where the dynamic interaction of a flexible structure and incompressible and inviscid flow is in focus. The approach is very general and allows for dynamic analysis of both uniform and non-uniform cylindrical shell considering the fluid forces including the sloshing effect exerted on the structure. The hybrid method developed in this work is on the basis of a combination of the classical finite element approach and the thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is considered to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid height to find the influence of the fluid on the dynamic responses of the structure. The influence of the physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theory and experiment, very good agreement is obtained. (authors)

  16. Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav

    2009-01-01

    A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...

  17. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....

  18. Progressive buckling analysis for a cylindrical shell structure with the free edge subjected to moving thermal cycles

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Lee, Jae-Han

    2004-01-01

    In the KALIMER (Korea Advanced Liquid Metal Reactor) design, the reactor baffle structure is adopted to prevent the hot pool sodium from directly contacting the reactor vessel and to guide the hot sodium overflow in severe transient operating conditions. The parts in the vicinity of the hot pool free surface region could be repeatedly subjected to a moving axial temperature gradient and this might result in thermal ratcheting deformation. In this paper, the progressive thermal buckling behaviour following thermal ratcheting due to the moving axial temperature gradients in a cylindrical shell structure with an open free edge is investigated using numerical inelastic analysis with Chaboche's model. To do this, the analyses of the moving temperature distribution are carried out with a simple model and the severe moving axial temperature gradients are assumed to be sufficient for the evolution of thermal ratcheting

  19. Axisymmetrical impulsive responses of an infinite circular cylindrical shell filled with liquid

    International Nuclear Information System (INIS)

    Ujihashi, Sadayuki; Matsumoto, Hiroyuki; Nakahara, Ichiro; Shigeta, Masayuki.

    1986-01-01

    In this paper, dynamic interaction phenomena on solid and liquid interfaces are discussed. Axisymmetrical responses of an infinite circular cylindrical shell perfectly filled with liquid are analyzed, based on Fluegge's theory for a circular cylindrical shell and the potential theory for the ideal fluid under conditions of the impulsive external band pressure given on the outer surface of the shell. The deflection and the moment of the shell and the pressure in the fluid are evaluated by using the numerical inversion of the Laplace transformation method. The approximate solution for the shell with an equivalent mass on it is analyzed and is evaluated, based on the solution for the solid and liquid interaction. (author)

  20. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....

  1. Applications of the fundamental solution for a thermal shock on a finite orthotropic cylindrical thin shell

    International Nuclear Information System (INIS)

    Woo, H.K.; Huang, C.L.D.

    1979-01-01

    The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)

  2. Sensitivity study of buckling strength for cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hideo; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Aiming at making clear buckling behavior of cylindrical shells under earthquake loadings, we investigated procedure of recent elastic-plastic buckling analysis by finite element method (FEM). Thereby it is confirmed that the buckling strength becomes as well as that of a shell with a cross section of a perfect cylinder, if we apply the first buckling eigenvector to imperfection mode and assume the maximum imperfection amplitude to be 1% of the wall thickness. And then, by carrying out sensitivity study of buckling with geometrical parameters, such as length (L), radius (R), wall thickness (t), and load parameter, such as pressure, we obtained several characteristics about buckling strength and buckling mode for cylindrical shells. From the geometrical parameter analysis, it is seen that bending buckling occurs for small R/t (thick wall) and elastic buckling occurs for 2{<=}L/R{<=}4 and R/t{>=}400. And from the load parameter analysis, it is shown that hoop stress caused by the inner pressure increases shear buckling strength but decreases bending buckling strength, and hoop stress by hydrostatic pressure changes buckling mode and generates local deformation. (author)

  3. Buckling analysis of a cylindrical shell, under neutron radiation environment

    International Nuclear Information System (INIS)

    Arani, A. Ghorbanpour; Ahmadi, M.; Ahmadi, A.; Rastgoo, A.; Sepyani, H.A.

    2012-01-01

    Highlights: ► The work investigates the buckling of a shell in the neutron radiation environment. ► Radiation induced porosity in elastic materials affects the material's properties. ► The data based technique was used to determine the volume fraction porosity. ► The theoretical formulations are presented based on the classical shell theory (CST). ► It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2–15e−7 dPa/s at 345–650 °C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.

  4. Dynamic strength of cylindrical fiber-glass shells and basalt plastic shells under multiple explosive loading

    Science.gov (United States)

    Syrunin, M. A.; Fedorenko, A. G.

    2006-08-01

    We have shown experimentally that, for cylindrical shells made of oriented fiberglass platic and basalt plastic there exists a critical level of deformations, at which a structure sustains a given number of explosions from the inside. The magnitude of critical deformation for cylindrical fiberglass shells depends linearly on the logarithm of the number of loads that cause failure. For a given type of fiberglass, there is a limiting level of explosive action, at which the number of loads that do not lead to failure can be sufficiently large (more than ˜ 102). This level is attained under loads, which are an order of magnitude lower than the limiting loads under a single explosive action. Basalt plastic shells can be repeatedly used even at the loads, which cause deformation by ˜ 30-50% lower than the safe value ˜ 3.3.5% at single loading.

  5. Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seungho; Choi, Youngin; Ha, Kyungrok [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kyoung-Su, E-mail: pks6348@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, No-Cheol; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Jeong, Kyeong-Hoon; Park, Jin-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-303 (Korea, Republic of)

    2011-10-15

    Highlights: > A 1/12 scaled-down flow skirt is manufactured and a modal test is performed. > A finite element model predicts the added mass effect of the perforated cylindrical shell. > Modal characteristics are extracted by considering the fluid-structure interaction. - Abstract: The System-integrated Modular Advanced ReacTor (SMART) is a small nuclear reactor under development in Korea. It is equipped with a perforated cylindrical shell, which is called a flow skirt, in the lower plenum of the reactor for uniform flow distribution and to prevent inflow of debris into the core. This perforated cylindrical shell can be excited by external forces such as seismic or pump pulsation loads. The dynamic characteristics of the perforated cylindrical shell must be identified for further dynamic analysis. This research explores the modal analysis of the scaled-down flow skirt model submerged in coolant water. For the numerical simulation, finite element analysis is carried out to extract modal characteristics of the structure considering the fluid-structure interaction and we introduce the NAVMI factor for similarity analysis. In the finite element model, the whole shape of the perforated cylindrical shell is simulated instead of using the effective material properties. In addition, a 1/12 scaled-down flow skirt is manufactured, and an experiment is designed using an exciter and waterproof accelerometers for the modal test. Due to excellent agreement between the modal test results and the finite element analysis results such as natural frequencies and mode shapes, the finite element model is validated and can be used to predict the dynamic characteristics of the real flow skirt. Moreover, the natural frequency of the real flow skirt can be calculated from the NAVMI factor and is in good agreement with the FEM result.

  6. Research on soundproof properties of cylindrical shells of generalized phononic crystals

    Science.gov (United States)

    Liu, Ru; Shu, Haisheng; Wang, Xingguo

    2017-04-01

    Based on the previous studies, the concept of generalized phononic crystals (GPCs) is further introduced into the cylindrical shell structures in this paper. And a type of cylindrical shells of generalized phononic crystals (CS-GPCs) is constructed, the structural field and acoustic-structural coupled field of the composite cylindrical shells are examined respectively. For the structural field, the transfer matrix method of mechanical state vector is adopted to build the transfer matrix of radial waves propagating from inside to outside. For the acoustic-structural coupled field, the expressions of the acoustic transmission/reflection coefficients and the sound insulation of acoustic waves with the excitation of center line sound source are set up. And the acoustic transmission coefficient and the frequency response of sound insulation in this mode were numerical calculated. Furthermore, the theoretical analysis results are verified by using the method of combining the numerical calculation and finite element simulation. Finally, the effects of inner and outer fluid parameters on the transmission/reflection coefficients of CS-GPCs are analyzed in detail.

  7. Improving the performance parameters of metal cylindrical grid shell ...

    African Journals Online (AJOL)

    Improving the performance parameters of metal cylindrical grid shell structures. ... Finite element models are designed taking into account minimization of production and ... The force factors and deformation parameters of the basic circuits of a ...

  8. Dynamic shear-bending buckling experiments of cylindrical shells

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Akiyama, H.

    1995-01-01

    Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs

  9. Explosion-Induced Implosions of Cylindrical Shell Structures

    Science.gov (United States)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  10. Free vibration of finite cylindrical shells by the variational method

    International Nuclear Information System (INIS)

    Campen, D.H. van; Huetink, J.

    1975-01-01

    The calculation of the free vibrations of circular cylindrical shells of finite length has been of engineer's interest for a long time. The motive for the present calculations originates from a particular type of construction at the inlet of a sodium heated superheater with helix heating bundle for SNR-Kalkar. The variational analysis is based on a modified energy functional for cylindrical shells, proposed by Koiter and resulting in Morley's equilibrium equations. As usual, the dispacement amplitude is assumed to be distributed harmonically in the circumferential direction of the shell. Following the method of Gontkevich, the dependence between the displacements of the shell middle surface and the axial shell co-ordinate is expressed approximately by a set of eigenfunctions of a free vibrating beam satisfying the desired boundary conditions. Substitution of this displacement expression into the virtual work equation for the complete shell leads to a characteristic equation determining the natural frequencies. The calculations are carried out for a clamped-clamped and a clamped-free cylinder. A comparison is given between the above numerical results and experimental and theoretical results from literature. In addition, the influence of surrounding fluid mass on the above frequencies is analysed for a clamped-clamped shell. The solution for the velocity potential used in this case differs from the solutions used in literature until now in that not only travelling waves in the axial direction are considered. (Auth.)

  11. Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novoseltseva, N. A.

    2015-09-01

    A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.

  12. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  13. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  14. Positive column of the discharge in a cylindrical shell

    International Nuclear Information System (INIS)

    Uehara, M.; Maciel, H.S.

    1991-01-01

    A Schottky type theoretical model is presented for the positive column of a discharge on a cylindric shell contained gas, with the discharge current flowing in the longitudinal direction. Some analytical results and the conclusion are presented. (L.C.J.A.). 5 refs

  15. Free Vibration Characteristics of Cylindrical Shells Using a Wave Propagation Method

    Directory of Open Access Journals (Sweden)

    A. Ghoshal

    2001-01-01

    Full Text Available In the present paper, concept of a periodic structure is used to study the characteristics of the natural frequencies of a complete unstiffened cylindrical shell. A segment of the shell between two consecutive nodal points is chosen to be a periodic structural element. The present effort is to modify Mead and Bardell's approach to study the free vibration characteristics of unstiffened cylindrical shell. The Love-Timoshenko formulation for the strain energy is used in conjunction with Hamilton's principle to compute the natural propagation constants for two shell geometries and different circumferential nodal patterns employing Floquet's principle. The natural frequencies were obtained using Sengupta's method and were compared with those obtained from classical Arnold-Warburton's method. The results from the wave propagation method were found to compare identically with the classical methods, since both the methods lead to the exact solution of the same problem. Thus consideration of the shell segment between two consecutive nodal points as a periodic structure is validated. The variations of the phase constants at the lower bounding frequency for the first propagation band for different nodal patterns have been computed. The method is highly computationally efficient.

  16. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  17. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated.The viscoelastic behavior of laminas is modeled by Schapery’s integral constitutive equation with growing matrix cracks.The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from mesomechanics approach,and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress.The governing equations for prebuckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Kármán-Donnell geometrically nonlinear relationship.Corresponding solution strategy is constructed by integrating finite-difference technique,trigonometric series expansion method and Taylor’s numerical recursive scheme for convolution integration.The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parameters and parameters of damage evolution as well as boundary conditions.The numerical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads,and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells,also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  18. Experiment on vibration in water of a cylindrical shell fixed in water; Suichu ni koteisareta ento shell no sessui shindo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, K; Yasuzawa, Y; Kagawa, K; Nanatsuya, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    In order to utilize more effectively wide oceanic spaces, a feasibility study is performed on submerged large shell structures from the aspect of structural engineerings. As part of the study, for the purpose of deriving dynamic response characteristics of a structure, development was made on a numerical analysis code, `DASOR`, required to analyze natural frequency of a rotating shell fixed in water. The `DASOR` is a dynamic analysis code to derive added water mass effect, and effects of water depth on the dynamic response characteristics based on the shell theory by Donnell-Mushtari-Vlasov. This paper describes an experiment using a cylindrical shell to elucidate effects of the cylindrical shell on vibration characteristics due to contact with water. Comparisons and discussions were given on the result of numerical calculation using the `DASOR`, solution of a simplified theory analysis, and the result of the experiment to make clear the reasonability of the `DASOR`. The cylindrical shell in water has its natural frequency decreased due to the added water mass effect in association with increase in the water level. The `DASOR` showed good agreement with the experimental values as a result of giving considerations on the boundary conditions, by which its reasonability was verified. 3 refs., 9 figs., 2 tabs.

  19. Experiment and Simulation Analysis on Noise Attenuation of Al/MF Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Bin Li

    2017-01-01

    Full Text Available For the issue concerning internal noise reduction of Al-made cylindrical shell structure, the noise control method of laying melamine foam (MF layer is adopted for in-shell noise attenuation experiments of Al and Al/MF cylindrical shells and corresponding internal noise response spectrograms are obtained. Based on the Virtual.Lab acoustics software, a finite element model is established for the analysis of noise in the Al/MF cylinder shell and numerical simulation computation is conducted for the acoustic mode and in-shell acoustic response; the correctness of the finite element model is verified via comparison with measured data. On this basis, influence rules of different MF laying rate and different laying thickness on acoustic cavity resonance response within the low and medium frequency range of 100–400 Hz are studied. It is indicated that noise reduction increases with MF laying rate, but the amplification decreases along with the rising of MF laying rate; noise reduction per unit thickness decreases with the increase of laying thickness, while noise reduction per unit area increases.

  20. Dispersion of axially symmetric waves in fluid-filled cylindrical shells

    DEFF Research Database (Denmark)

    Bao, X.L.; Überall, H.; Raju, P. K.

    2000-01-01

    Acoustic waves normally incident on an elastic cylindrical shell can cause the excitation of circumferential elastic waves on the shell. These shells may be empty and fluid immersed, or fluid filled in an ambient medium of air, or doubly fluid loaded inside and out. Circumferential waves...... on such shells have been investigated for the case of aluminum shells, and their phase-velocity dispersion curves have been obtained for double fluid loading [Bao, Raju, and Überall, J. Acoust. Soc. Am. 105, 2704 (1999)]. Similar results were obtained for empty or fluid-filled brass shells [Kumar, Acustica 27......, 317 (1972)]. We have extended the work of Kumar to the case of fluid-filled aluminum shells and steel shells imbedded in air. These cases demonstrate the existence of circumferential waves traveling in the filler fluid, exhibiting a certain simplicity of the dispersion curves of these waves...

  1. Effects of Boundary Conditions on the Parametric Resonance of Cylindrical Shells under Axial Loading

    Directory of Open Access Journals (Sweden)

    T.Y. Ng

    1998-01-01

    Full Text Available In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.

  2. Analysis of Experimental Research on Cyclones with Cylindrical and Spiral Shells

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2012-12-01

    Full Text Available The conducted investigation is aimed at providing information on air flow parameters in the cylindrical and spiral shell (devices are designed for separating solid particles from air flow having tangent flow inlet. Experimental research has employed multi-cyclones created by the Department of Environmental Protection at Vilnius Gediminas Technical University. The study is focused on investigating and comparing the distribution of the dynamic pressure of the airflow in six-channel cyclones inside the structures of devices. The paper establishes and estimates the efficiency of air cleaning changing air phase parameters using different particulate matters. The efficiency of the cyclone has been defined applying the weighted method based on LAND 28-98/M-08 methodology. The article presents the results of experimental research on the air cleaning efficiency of cylindrical and spiral shells using 20 µm glass and clay particulate matter under the initial concentration that may vary from 500 mg/m3 to 15 g/m3 using semi-rings with windows at different positions. The obtained results has shown that the maximum efficiency of the cylindrical shell increases up to 87,3 % while the initial concentration of glass makes 15 g/m3.Article in Lithuanian

  3. Stability analysis of an open shallow cylindrical shell with imperfection under external pressure

    Directory of Open Access Journals (Sweden)

    Psotny Martin

    2017-01-01

    Full Text Available Elastic shallow generalized cylindrical shells of an open cross-section subjected to the various forms of external pressure are analysed in the paper numerically using the finite element method. Load - displacement paths are calculated for the perfect and imperfect geometry, respectively. Special attention is paid to the influence of initial geometric imperfection on the limit load level of fundamental equilibrium path of nonlinear analysis. ANSYS system was used for analysis, arc-length method was chosen for obtaining fundamental load - displacement path of solution.

  4. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  5. Cylindrical shell under impact load including transverse shear and normal stress

    International Nuclear Information System (INIS)

    Shakeri, M.; Eslami, M.R.; Ghassaa, M.; Ohadi, A.R.

    1993-01-01

    The general governing equations of shell of revolution under shock loads are reduced to equations describing the elastic behavior of cylindrical shell under axisymmetric impact load. The effect of lateral normal stress, transverse shear, and rotary inertia are included, and the equations are solved by Galerkin finite element method. The results are compared with the previous works of authors. (author)

  6. Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells

    Science.gov (United States)

    Anastasiadis, John S.; Simitses, George J.

    A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.

  7. Acoustic radiation from the submerged circular cylindrical shell treated with active constrained layer damping

    Science.gov (United States)

    Yuan, Li-Yun; Xiang, Yu; Lu, Jing; Jiang, Hong-Hua

    2015-12-01

    Based on the transfer matrix method of exploring the circular cylindrical shell treated with active constrained layer damping (i.e., ACLD), combined with the analytical solution of the Helmholtz equation for a point source, a multi-point multipole virtual source simulation method is for the first time proposed for solving the acoustic radiation problem of a submerged ACLD shell. This approach, wherein some virtual point sources are assumed to be evenly distributed on the axial line of the cylindrical shell, and the sound pressure could be written in the form of the sum of the wave functions series with the undetermined coefficients, is demonstrated to be accurate to achieve the radiation acoustic pressure of the pulsating and oscillating spheres respectively. Meanwhile, this approach is proved to be accurate to obtain the radiation acoustic pressure for a stiffened cylindrical shell. Then, the chosen number of the virtual distributed point sources and truncated number of the wave functions series are discussed to achieve the approximate radiation acoustic pressure of an ACLD cylindrical shell. Applying this method, different radiation acoustic pressures of a submerged ACLD cylindrical shell with different boundary conditions, different thickness values of viscoelastic and piezoelectric layer, different feedback gains for the piezoelectric layer and coverage of ACLD are discussed in detail. Results show that a thicker thickness and larger velocity gain for the piezoelectric layer and larger coverage of the ACLD layer can obtain a better damping effect for the whole structure in general. Whereas, laying a thicker viscoelastic layer is not always a better treatment to achieve a better acoustic characteristic. Project supported by the National Natural Science Foundation of China (Grant Nos. 11162001, 11502056, and 51105083), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2012GXNSFAA053207), the Doctor Foundation of Guangxi

  8. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  9. Fourier series analysis of a cylindrical pressure vessel subjected to axial end load and external pressure

    International Nuclear Information System (INIS)

    Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.

    2013-01-01

    This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and

  10. Free vibration of symmetric angle-ply laminated circular cylindrical shells

    International Nuclear Information System (INIS)

    Viswanathan, K K; Aziz, Zainal Abdul; Amirah, H Z; Javed, Saira

    2014-01-01

    Free vibration of symmetric angle-ply laminated circular cylindrical shells is studied using Spline approximation. The equations of motions in longitudinal, circumferential and transverse displacement components, are derived using Love's first approximation theory. The coupled differential equations are solved using Spline approximation to obtain the generalized eigenvalue problem. Parametric studies are performed to analyse the frequency response of the shell with reference to the material properties, number of layers, ply orientation, length and circumferential node number and different boundary conditions

  11. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    Science.gov (United States)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  12. Experimental and Numerical Investigations on Deformation of Cylindrical Shell Panels to Underwater Explosion

    Directory of Open Access Journals (Sweden)

    K. Ramajeyathilagam

    2001-01-01

    Full Text Available Experimental and numerical investigations on cylindrical shell panels subjected to underwater explosion loading are presented. Experiments were conducted on panels of size 0.8 × 0.6 × 0.00314 m and shell rise-to-span ratios h/l = 0.0, 0.05, 0.1 , using a box model set-up under air backed conditions in a shock tank. Small charges of PEK I explosive were employed. The plastic deformation of the panels was measured for three loading conditions. Finite element analysis was carried out using the CSA/GENSA [DYNA3D] software to predict the plastic deformation for various loading conditions. The analysis included material and geometric non-linearities, with strain rate effects incorporated based on the Cowper-Symonds relation. The numerical results for plastic deformation are compared with those from experiments.

  13. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  14. Simplified vibrocreep buckling analysis of circular cylindrical shells

    International Nuclear Information System (INIS)

    Simeonova, K.; Hadjikov, L.; Georgiev, K.; Iotov, I.

    1981-01-01

    The circular cylindrical shells are used as a mathematical model in the investigation of the reactions of the supporting elements in nuclear reactor core, airplane designing etc. The buckling in the process of vibrocreep is one of the possible catastrophes during the exploitation of those elements. The paper presents a simplified investigation of the vibro-creep stability of a shell axially pressed. The main simplification consists of the fact that the average process of vibro-creep is considered stationary. The modified constitutive equations of Maxwell-Gurevitch-Rabinovitch, concerning elasto-viscous and elasto-plastic material is used. The critical time is calculated after two criteria. Theoretical relations between the critical time and the dynamic loading velocity amplitude are obtained. Those relations are compared to relations experimentally proved. (orig.)

  15. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  16. Buckling tests of sandwich cylindrical shells with and without cut-outs

    NARCIS (Netherlands)

    Bisagni, C.; Davidson, B.D.; Czabaj, M.W.; Ratcliffe, J.G.

    2016-01-01

    The results of buckling tests performed during the project DESICOS funded by the European Commission in the FP7 Programme are here presented. The tested structures are sandwich cylindrical shells that consist of reduced models of a component of the Ariane 5 launcher: the Dual Launch System. In

  17. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  18. Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.

    2017-02-01

    In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.

  19. Local and global Casimir energies for a semitransparent cylindrical shell

    International Nuclear Information System (INIS)

    Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus

    2007-01-01

    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached

  20. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-02-15

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)

  1. Formulas for determination of fundamental periods of cylindrical shells in contact with liquid

    International Nuclear Information System (INIS)

    Mikami, Takashi; Yoshimura, Jin

    1990-01-01

    The fundamental period of a cylindrical shell in contact with liquid is probably the first item of interest in the dynamic analysis. This paper presents simple practical formulas for estimating the fundamental periods of the cantilever shells in beam-type (n=1) motion. The formulas are obtained by using Dunkerley's approximation in combination with the collocation method developed in the authors' past work and by considering both the shell mass and the liquid mass. The formulas are applicable to the following types of shells: (1) the liquid is contained within the shell; (2) the shell is submerged in the liquid; and (3) both sides of the shell are in contact with the liquid. A comparison with other solutions suggests that the proposed formulas provide satisfactory accuracy for a wide range of shells. In addition, the formulas presented are useful not only for a better understanding of the vibration characteristics of the shell but also available for a check on the numerical methods. (author)

  2. Dynamic plastic buckling of rings and cylindrical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell. This theoretical work is used to examine various features of plastic buckling and to assess the importance of several approximations which previous authors have introduced in dynamic plastic buckling studies. In particular, the influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. (Auth.)

  3. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    OpenAIRE

    de Celis, Emilio Rubín

    2015-01-01

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a $bulk$ field and a $shell$ field. The $bulk$ part corresponds to a field sourced by the test charge placed in a space-time without the shell. The $shell$ field accounts for the discontinuity of the extrinsic curvature ${\\kappa^p}_q$. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential prod...

  4. Experimental study of the strain state at the area of a surface defect in a steel cylindrical shell subjected to internal pressure

    OpenAIRE

    Бесчетников, Д. А.

    2014-01-01

    Experimental research of stress-strain state at the area of local volumetric surface defects of the pipeline systems is an important goal because results of the measurements are necessary for increasing of effectiveness of existing repair technologies using fiber reinforcement polymer composite materials. In this work the description of experiment carried out by the author is presented with statement of results. The experiment was devoted to strain gauging of a steel cylindrical shell with vo...

  5. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    International Nuclear Information System (INIS)

    Cummings, G.E.

    1978-01-01

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a 1 / 12 scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved

  6. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, G.E.

    1978-04-18

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a /sup 1///sub 12/ scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved.

  7. Effect of perforation on the sound transmission through a double-walled cylindrical shell

    Science.gov (United States)

    Zhang, Qunlin; Mao, Yijun; Qi, Datong

    2017-12-01

    An analytical model is developed to study the sound transmission loss through a general double-walled cylindrical shell system with one or two walls perforated, which is excited by a plane wave in the presence of external mean flow. The shell motion is governed by the classical Donnell's thin shell theory, and the mean particle velocity model is employed to describe boundary conditions at interfaces between the shells and fluid media. In contrast to the conventional solid double-walled shell system, numerical results show that perforating the inner shell in the transmission side improves sound insulation performance over a wide frequency band, and removes fluctuation of sound transmission loss with frequency at mid-frequencies in the absence of external flow. Both the incidence and azimuthal angles have nearly negligible effect on the sound transmission loss over the low and middle frequency range when perforating the inner shell. Width of the frequency band with continuous sound transmission loss can be tuned by the perforation ratio.

  8. Acoustic radiation force on cylindrical shells in a plane standing wave

    International Nuclear Information System (INIS)

    Mitri, F G

    2005-01-01

    In this paper, the radiation force per length resulting from a plane standing wave incident on an infinitely long cylindrical shell is computed. The cases of elastic and viscoelastic shells immersed in ideal (non-viscous) fluids are considered with particular emphasis on their thickness and the content of their interior hollow spaces. Numerical calculations of the radiation force function Y st are performed. The fluid-loading effect on the radiation force function curves is analysed as well. The results show several features quite different when the interior hollow space is changed from air to water. Moreover, the theory developed here is more general since it includes the results on cylinders

  9. On buckling of double-shell-stiffened cylindrical steel structures

    International Nuclear Information System (INIS)

    Chen, S.J.; Chiu, K.D.; Odar, E.

    1981-01-01

    Buckling analysis methods and acceptance criteria for single shells of various configurations are well documented and adequately covered by many codes. There are, however, no guidelines or criteria for large Double-Shell-Stiffened (DSS) structures, which have been used recently in nuclear power plant applications. The existing codes for buckling analysis cannot be directly utilized because of the uniqueness of structural configuration and complexity of loading. This paper discusses a method for determining the critical buckling loads for this type of structure under a multitude load and suggests buckling criteria for the design of DSS structures. The method commonly used to determine the critical buckling loads for a single shell with or without stiffeners applies reduction factors to the theoretical results. The capacity reduction factors, which are often obtained from experimental results, include plasticity corrections and account for the difference between actual and theoretical buckling loads resulting from the effects of imperfections and nonlinearities. The interaction formulas derived from experimental results can be used to compute the interaction effects of three stress components. This paper extends these concepts and discusses their applicability to a DSS cylindrical structure. (orig./HP)

  10. Analytical research of vibration and far-field acoustic radiation of cylindrical shell immersed at finite depth

    Directory of Open Access Journals (Sweden)

    GUO Wenjie

    2017-08-01

    Full Text Available Aiming at the current lack of analytical research concerning the cylindrical shell-flow field coupling vibration and sound radiation system under the influence of a free surface, this paper proposes an analytical method which solves the vibration response and far-field acoustic radiation of a finite cylindrical shell immersed at a finite depth. Based on the image method and Graf addition theorem, the analytical expression of the fluid velocity potential can be obtained, then combined with the energy functional of the variation method to deduce the shell-liquid coupling vibration equation, which can in turn solve the forced vibration response. The research shows that, compared with an infinite fluid, a free surface can increase at the same order of resonance frequency; but as the depth of immersion gradually increases, the mean square vibration velocity tends to become the same as that in an infinite fluid. Compared with numerical results from Nastran software, this shows that the present method is accurate and reliable, and has such advantages as a simple method and a small amount of calculation. The far-field radiated pressure can be obtained by the vibration response using the Fourier transformation and stationary phase method. The results indicate that the directivity and volatility of the far-field acoustic pressure of a cylindrical shell is similar to that of an acoustical dipole due to the free surface. However, the far-field acoustic pressure is very different from the vibration characteristics, and will not tend to an infinite fluid as the submerging depth increases. Compared with the numerical method, the method in this paper is simpler and has a higher computational efficiency. It enables the far-field acoustic radiation of an underwater cylindrical shell to be predicted quickly under the influence of external incentives and the free surface, providing guiding significance for acoustic research into the half space structure vibration

  11. A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell

    Science.gov (United States)

    Kaplunov, J.; Nobili, A.

    2017-08-01

    Dispersion of elastic waves in a thin orthotropic cylindrical shell is considered, within the framework of classical 2D Kirchhoff-Love theory. In contrast to direct multi-parametric analysis of the lowest propagating modes, an alternative robust approach is proposed that simply requires evaluation of the evanescent modes (quasi-static edge effect), which, at leading order, do not depend on vibration frequency. A shortened dispersion relation for the propagating modes is then derived by polynomial division and its accuracy is numerically tested against the full Kirchhoff-Love dispersion relation. It is shown that the same shortened relation may be also obtained from a refined dynamic version of the semi-membrane theory for cylindrical shells. The presented results may be relevant for modelling various types of nanotubes which, according to the latest experimental findings, possess strong material anisotropy.

  12. Study of interaction of electromagnetic waves with thin rotating cylindrical shell of conductor in vicinity of weakly gravitating string

    International Nuclear Information System (INIS)

    Muminov, A.T.

    2004-01-01

    Full text: As it shown in the work [1,2], interaction of electromagnetic wave with rotating cylindrical shell of conductor leads to an interesting phenomenon of energy transmission from rotating body to the wave. We study influence of the gravitational field of the string on the process of interaction of electromagnetic waves with infinitesimally thin conducting cylindrical shell. Since in the outer space and inside the shell electromagnetic field satisfies source free Maxwell equations we start with constructing the most general solutions of this equation. Then we match the fields on the cylinder with account of boundary conditions on it. Matching the fields gives expressions for reflection factors of cylindrical waves for two cases of polarization. The reflection factors for distinct wave polarizations show the ratio of outgoing energy flux to in going one. Curved cylindrical symmetric space-time with weakly gravitating string-like source is described by static metric: δs 2 = f(r)δt 2 - h(r)(δz 2 + δr 2 ) - l(r)δψ 2 ; f(r) = r ε ; h(r) = r -ε ; l(r) = r 2 /f(r). Which corresponds to low line density of mass ε on the string. The metric is particular case of Lewis metric [3,4] with zero angular momentum of the string and its weak gravity. The boundary value problem for electromagnetic waves interaction with thin conducting rotating cylindrical shell in static cylindrical metric with weakly gravitating string has been solved analytically. It is found that character of dependence of the factors on Ω at ω R<<1 and ΩR<<1 approximation remains the same as in flat space-time ε =0. Analysis of expressions for the reflection factors in frames of considered approximation has been done

  13. Some general aspects of thin-shell wormholes with cylindrical symmetry

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2010-01-01

    In this article we study a general class of nonrotating thin-shell wormholes with cylindrical symmetry. We consider two physically sound definitions of the flare-out condition and we show that the less restrictive one allows for the construction of wormholes with positive energy density at the throat. We also analyze the mechanical stability of these objects under perturbations preserving the symmetry, proving that previous results are particular cases of a general property. We present examples of wormholes corresponding to Einstein-Maxwell spacetimes.

  14. Analytical solutions to the electromagnetic field in a cylindrical shell excited by external axial current

    International Nuclear Information System (INIS)

    Jing, Wu; Chun-Yan, Xiao

    2010-01-01

    The solutions to the electromagnetic field excited by a long axial current outside a conductive and magnetic cylindrical shell of finite length are studied in this paper. The more accurate analytical solutions are obtained by solving the proper boundary value problems by the separation variable method. Then the solutions are simplified according to asymptotic formulas of Bessel functions. Compared with the accurate solutions, the simplified solutions do not contain the Bessel functions and the inverse operation of the singular matrix, and can be calculated out fast by computers. The simplified solutions are more suitable for the cylindrical shell of high permeability and conductivity excited by a high frequency source. Both of the numerical results and the physical experimental results validate the simplified solutions obtained. (classical areas of phenomenology)

  15. Nonlinear dynamic response of electro-thermo-mechanically loaded piezoelectric cylindrical shell reinforced with BNNTs

    International Nuclear Information System (INIS)

    Yang, J H; Yang, J; Kitipornchai, S

    2012-01-01

    This paper presents an investigation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced with boron nitride nanotubes (BNNTs) under a combined axisymmetric electro-thermo-mechanical loading. By employing the classical Donnell shell theory, the von Kármán–Donnell kinematic relationship, and a piezo-elastic constitutive law including thermal effects, the nonlinear governing equations of motion of the shell are derived through the Reissner variational principle. The finite difference method and a time-integration scheme are used to obtain the nonlinear dynamic response of the BNNT-reinforced piezoelectric shell. A parametric study is conducted, showing the effects of geometrically nonlinear deformation, applied voltage, temperature change, mechanical load, BNNT volume fraction and boundary conditions on the nonlinear dynamic response. (paper)

  16. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    Science.gov (United States)

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  17. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method

    Energy Technology Data Exchange (ETDEWEB)

    Alashti, R. Akbari, E-mail: raalashti@nit.ac.ir [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of); Khorsand, M. [Mechanical Engineering Department, Babol University of Technology, P.O. Box 484, Shariati Avenue, Babol (Iran, Islamic Republic of)

    2011-05-15

    Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: > A numerical study of an FGM cylindrical shell with piezoelectric layers is made. > Governing equations are solved by two versions of differential quadrature methods. > The effect of layers thickness, grading index and geometrical ratios is presented.

  18. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method

    International Nuclear Information System (INIS)

    Alashti, R. Akbari; Khorsand, M.

    2011-01-01

    Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers under the effect of asymmetric thermo-electro-mechanical loads is carried out. Numerical results of displacement, stress and thermal fields are obtained using two versions of the differential quadrature methods, namely polynomial and Fourier quadrature methods. Material properties of the shell are assumed to be graded in the radial direction according to a power law but the Poisson's ratio is assumed to be constant. Shells are considered to be under the effect of the pressure loading in the form of cosine and ring pressure loads, electric potentials and temperature fields. Numerical results for various boundary conditions are obtained and the effects of the thickness of piezoelectric layers, grading index of material properties and the ratio of the thickness to the radius of the shell on these results is presented. - Highlights: → A numerical study of an FGM cylindrical shell with piezoelectric layers is made. → Governing equations are solved by two versions of differential quadrature methods. → The effect of layers thickness, grading index and geometrical ratios is presented.

  19. Study of laminated anisotropic cylindrical shells sensitive to transverse stresses

    International Nuclear Information System (INIS)

    Massard, Thierry

    1979-01-01

    A variational method for the determination of stresses and displacements in a multilayered cylindrical shell is presented. All included materials are linearly anisotropic (monoclinic) - i.e. directional fibres reinforced materials. This study uses a functional which is derived from the potential energy of the structure. The incoming stresses are σ RR , σ Rθ , σ RZ , and the displacements are u θ and u Z . This mixed group is the main variables of the formulation. It is shown that the stationarity conditions of the functional are the equilibrium equations and the associated boundary conditions. An approximate solution can be found using a finite element method which realizes a tridimensional discretization of the structure. The program issued is a specific mean for studying the transverse shear stresses in laminated cylindrical structures. From the results obtained it can be concluded that it meets all requirements for the purposes of this range of problems. (author) [fr

  20. Influence of Physical and Geometrical Uncertainties in the Parametric Instability Load of an Axially Excited Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Frederico Martins Alves da Silva

    2015-01-01

    Full Text Available This work investigates the influence of Young’s modulus, shells thickness, and geometrical imperfection uncertainties on the parametric instability loads of simply supported axially excited cylindrical shells. The Donnell nonlinear shallow shell theory is used for the displacement field of the cylindrical shell and the parameters under investigation are considered as uncertain parameters with a known probability density function in the equilibrium equation. The uncertainties are discretized as Hermite-Chaos polynomials together with the Galerkin stochastic procedure that discretizes the stochastic equation in a set of deterministic equations of motion. Then, a general expression for the transversal displacement is obtained by a perturbation procedure which identifies all nonlinear modes that couple with the linear modes. So, a particular solution is selected which ensures the convergence of the response up to very large deflections. Applying the standard Galerkin method, a discrete system in time domain that considers the uncertainties is obtained and solved by fourth-order Runge-Kutta method. Several numerical strategies are used to study the nonlinear behavior of the shell considering the uncertainties in the parameters. Special attention is given to the influence of the uncertainties on the parametric instability and time response, showing that the Hermite-Chaos polynomial is a good numerical tool.

  1. The surface effect on axisymmetric wave propagation in piezoelectric cylindrical shells

    Directory of Open Access Journals (Sweden)

    Yunying Zhou

    2015-02-01

    Full Text Available Based on the surface piezoelectricity theory and first-order shear deformation theory, the surface effect on the axisymmetric wave propagating in piezoelectric cylindrical shells is analyzed. The Gurtin–Murdoch theory is utilized to get the nontraditional boundary conditions and constitutive equations of the surface, in company with classical governing equations of the bulk, from which the basic formulations are obtained. Numerical results show that the surface layer has a profound effect on wave characteristics in nanostructure at a higher mode.

  2. Calculation of the effective D-d neutron energy distribution incident on a cylindrical shell sample

    International Nuclear Information System (INIS)

    Gotoh, Hiroshi

    1977-07-01

    A method is proposed to calculate the effective energy distribution of neutrons incident on a cylindrical shell sample placed perpendicularly to the direction of the deuteron beam bombarding a deuterium metal target. The Monte Carlo method is used and the Fortran program is contained. (auth.)

  3. Transient response of rotating laminated functionally graded cylindrical shells in thermal environment

    International Nuclear Information System (INIS)

    Malekzadeh, P.; Heydarpour, Y.; Haghighi, M.R. Golbahar; Vaghefi, M.

    2012-01-01

    Based on the elasticity theory, the transient analysis of dynamically pressurized rotating multi-layered functionally graded (FG) cylindrical shells in thermal environment is presented. The variations of the field variables across the shell thickness are accurately modeled by dividing the shell into a set of co-axial mathematical layers in the radial direction. The initial thermo-mechanical stresses are obtained by solving the thermoelastic equilibrium equations. The differential quadrature method and Newmark's time integration scheme are employed to discretize the obtained governing equations of each mathematical layer. After performing the convergence and comparison studies, parametric studies for two common types of FG sandwich shells, namely, the shell with homogeneous inner/outer layers and FG core and the shell with FG inner/outer layers and homogeneous core are carried out. The influences of the temperature dependence of material properties, material graded index, the convective heat transfer coefficient, the angular velocity, the boundary condition and the geometrical parameters (length and thickness to outer radius ratios) on the dynamic response of the FG shells are investigated. Highlights: ► As a first endeavor, transient analysis of rotating laminated functionally graded cylinders. ► Employing an elasticity based discrete layer-differential quadrature method. ► Evaluating and including the initial thermo-mechanical stresses accurately. ► Considering the temperature-dependence of the material properties. ► Presenting some new results, which can be used as benchmark solution for future works.

  4. Transient Dynamic Response of Delaminated Composite Rotating Shallow Shells Subjected to Impact

    Directory of Open Access Journals (Sweden)

    Amit Karmakar

    2006-01-01

    Full Text Available In this paper a transient dynamic finite element analysis is presented to study the response of delaminated composite pretwisted rotating shallow shells subjected to low velocity normal impact. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and moderate rotational speeds are considered wherein the Coriolis effect is negligible. An eight noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front a multipoint constraint algorithm is incorporated which leads to unsymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are performed in respect of location of delamination, angle of twist and rotational speed for centrally impacted graphite-epoxy composite cylindrical shells.

  5. Application of dimensional analysis to the study of shells subject to external pressure and to the use of models

    International Nuclear Information System (INIS)

    Lefrancois, A.

    1976-01-01

    The method of dimensional analysis is applied to the evaluation of deformation, stress, and ideal buckling strength (which is independent of the values of the elastic range), of shells subject to external pressure. The relations obtained are verified in two examples: a cylindrical ring and a tube with free ends and almost circular cross-section. Further, it is shown how and to what extent the results obtained from model tests can be used to predict the behaviour of geometrically similar shells which are made of the same material, or even of a different material. (Author) [fr

  6. A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Boushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Farid, M. [Center of Excellence for Computational Mechanics in Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Zahedinejad, P. [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2008-07-15

    A mixed layerwise theory and differential quadrature (DQ) method (LW-DQ) for three-dimensional free vibration analysis of arbitrary laminated circular cylindrical shells is introduced. Using the layerwise theory in conjunction with the three-dimensional form of Hamilton's principle, the transversely discretized equations of motion and the related boundary conditions are obtained. Then, the DQ method is employed to discretize the resulting equations in the axial directions. The fast convergence behavior of the method is demonstrated and its accuracy is verified by comparing the results with those of other shell theories obtained using conventional methods and also with those of ANSYS software. In the case of arbitrary laminated shells with simply supported ends, the exact solution is developed for comparison purposes. It is shown that using few DQ grid points, converged accurate solutions are obtained. Less computational efforts of the proposed approach with respect to ANSYS software is shown.

  7. Realization of low-scattering metamaterial shell based on cylindrical wave expanding theory.

    Science.gov (United States)

    Wu, Xiaoyu; Hu, Chenggang; Wang, Min; Pu, Mingbo; Luo, Xiangang

    2015-04-20

    In this paper, we demonstrate the design of a low-scattering metamaterial shell with strong backward scattering reduction and a wide bandwidth at microwave frequencies. Low echo is achieved through cylindrical wave expanding theory, and such shell only contains one metamaterial layer with simultaneous low permittivity and permeability. Cut-wire structure is selected to realize the low electromagnetic (EM) parameters and low loss on the resonance brim region. The full-model simulations show good agreement with theoretical calculations, and illustrate that near -20dB reduction is achieved and the -10 dB bandwidth can reach up to 0.6 GHz. Compared with the cloak based on transformation electromagnetics, the design possesses advantage of simpler requirement of EM parameters and is much easier to be implemented when only backward scattering field is cared.

  8. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    Science.gov (United States)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  9. Experimental demonstration of invisible electromagnetic impedance matching cylindrical transformation optics cloak shell

    Science.gov (United States)

    Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining

    2018-04-01

    The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.

  10. Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled

    International Nuclear Information System (INIS)

    Akbari Alashti, R.; Khorsand, M.

    2012-01-01

    Three-dimensional elastic analysis is carried out for functionally graded cylindrical shells bonded with piezoelectric layers subjected to dynamic and thermal loads. Material properties are assumed to be graded in the radial direction obeying a simple power law with constant Poisson's ratio. Two versions of differential quadrature (DQ) method coupled with the finite difference (FD) method are employed to discretize the governing differential equations in space and time domains. The convergence is studied and results of the axisymmetric loadings are verified with reported results. Effects of the grading index of material properties, thermal gradient, boundary conditions, thickness of piezoelectric layers and electric excitation on stress, displacement, electric and temperature fields are presented. Highlights: ► Dynamo-thermo-elastic analysis of an FGM shell with piezoelectric layer is carried out. ► Governing equations are solved by DQ-FD coupled. ► Effects of grading index, temperature difference and piezoelectric thickness are presented.

  11. Spatial Variation of Hydrodynamic Mass Coefficients for Tube Bundle in a Cylindrical Shell

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Keum Hee; Ryu, Ki Wahn [Chonbuk National University, Jeonju (Korea, Republic of); Park, Chi Yong [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Wear of the steam generator (SG) tubes affects the performance of nuclear power plants. Generally, the problem is caused by excessive flow-induced vibration (FIV). In analyzing the FIV, many researchers have used a uniform added mass coefficient for all of the SG tubes. However, the outermost SG tubes have more structural problems than inside tubes. The purpose of this study is to find out the added mass coefficients of each tube in a cylindrical shell

  12. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  13. Validation of the Open Source Code_Aster Software Used in the Modal Analysis of the Fluid-filled Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    B D. Kashfutdinov

    2017-01-01

    Full Text Available The paper deals with a modal analysis of the elastic cylindrical shell with a clamped bottom partially filled with fluid in open source Code_Aster software using the finite element method. Natural frequencies and modes obtained in Code_Aster are compared to experimental and theoretical data. The aim of this paper is to prove that Code_Aster has all necessary tools for solving fluid structure interaction problems. Also, Code_Aster can be used in the industrial projects as an alternative to commercial software. The available free pre- and post-processors with a graphical user interface that is compatible with Code_Aster allow creating complex models and processing the results.The paper presents new validation results of open source Code_Aster software used to calculate small natural modes of the cylindrical shell partially filled with non-viscous compressible barotropic fluid under gravity field.The displacement of the middle surface of thin shell and the displacement of the fluid relative to the equilibrium position are described by coupled hydro-elasticity problem. The fluid flow is considered to be potential. The finite element method (FEM is used. The features of computational model are described. The resolution equation has symmetrical block matrices. To compare the results, is discussed the well-known modal analysis problem of cylindrical shell with flat non-deformable bottom, filled with a compressible fluid. The numerical parameters of the scheme were chosen in accordance with well-known experimental and analytical data. Three cases were taken into account: an empty, a partially filled and a full-filled cylindrical shell.The frequencies of Code_Aster are in good agreement with those, obtained in experiment, analytical solution, as well as with results obtained by FEM in other software. The difference between experiment and analytical solution in software is approximately the same. The obtained results extend a set of validation tests for

  14. Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes

    Science.gov (United States)

    Zhang, W.; Liu, T.; Xi, A.; Wang, Y. N.

    2018-06-01

    This paper is focused on the resonant responses and chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the frequency-response curves are obtained. From the numerical results, we find that the hardening-spring-type behaviors and jump phenomena are exhibited. The jump phenomena also occur in the amplitude curves of the temperature parameter excitation. Moreover, it is found that the temperature parameter excitation, the coupling degree of two order modes and the detuning parameters can effect the nonlinear oscillations of this system. The periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.

  15. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    Science.gov (United States)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  16. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    Science.gov (United States)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  17. Mathematical Modeling of the Thermal Shell State of the Cylindrical Cryogenic Tank During Filling and Emptying

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options

  18. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts

  19. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    Science.gov (United States)

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  20. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    Directory of Open Access Journals (Sweden)

    Mohammad Zamani Nejad

    2014-01-01

    Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.

  1. Topological optimization of opening fence brackets on ring-stiffened cylindrical shell

    Directory of Open Access Journals (Sweden)

    SONG Xiaofei

    2018-02-01

    Full Text Available [Objectives] Stress concentration is prone to take place at connections between the opening fence and ring ribs of a ring-stiffened cylindrical shell under external pressure. [Methods] In this paper, a topological optimization method for the brackets that connect the fence to the ring ribs is proposed in order to effectively reduce the local high stress in the brackets. The sub-model technique is used to analyze the stress of the connecting brackets. In the design, the connection brackets are used as design variables and the stress of the shell, fence and ribs are used as constraints. The maximum stress of the bracket is minimized as the objective function. The topology optimization results are engineered to obtain the final form of the brackets. [Results] The calculation results show that brackets of which the panel is partially widened can effectively reduce the stress concentration position of the opening fence transverse offset if the side of the bracket away from the longitudinal section is longer; the opening fence is offset relative to the brackets, and the symmetrical design of the brackets is feasible. [Conclusions] This research provides a reference for similar structural design.

  2. Self-force on an arbitrarily coupled scalar charge in cylindrical thin-shell spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tomasini, C.; Rubin de Celis, E.; Simeone, C. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2018-02-15

    We consider the arbitrarily coupled field and self-force of a static massless scalar charge in cylindrical spacetimes with one or two asymptotic regions, with the only matter content concentrated in a thin-shell characterized by the trace of the extrinsic curvature jump κ. The self-force is studied numerically and analytically in terms of the curvature coupling ξ. We found the critical values ξ{sub c}{sup (n)} = n/(ρ(r{sub s})κ), with n element of N and ρ(r{sub s}) the metric's profile function at the position of the shell, for which the scalar field is divergent in the background configuration. The pathological behavior is removed by restricting the coupling to a domain of stability. The coupling has a significant influence over the self-force at the vicinities of the shell, and we identified ξ = 1/4 as the value for which the scalar force changes sign at a neighborhood of r{sub s}; if κ(1-4ξ) > 0 the shell acts repulsively as an effective potential barrier, while if κ(1-4ξ) < 0 it attracts the charge as a potential well. The sign of the asymptotic self-force only depends on whether there is an angle deficit or not on the external region where the charge is placed; conical asymptotics produce a leading attractive force, while Minkowski regions produce a repulsive asymptotic self-force. (orig.)

  3. Buckling of steel containment shells. Task 4. Use of the PANDA program for simple buckling analyses of stiffened cylindrical shells. Final report, 25 August 1980-30 September 1982

    International Nuclear Information System (INIS)

    Bushnell, D.

    1982-12-01

    Under Task 4 the PANDA computer program was modified to permit calculation of critical load interaction curves for buckling of stiffened cylindrical shells with stiffeners running axially or circumferentially or both. Knockdown factors for geometric imperfections and plasticity reduction factors were introduced so that interaction curves can now be calculated for imperfect elastic-plastic shells. The knockdown factors and plasticity reduction factors are computed from a modified form of ASME Code Case N-284. The new version of PANDA was checked by making numerous comparisons with tests on fabricated stiffened cylinders

  4. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  5. The influence of thickness and viscosity of liquid annular layer on dynamic behavior of cylindrical shell

    International Nuclear Information System (INIS)

    Kuzelka, V.; Neuman, F.; Pecinka, L.

    1983-01-01

    This paper presents the results of experiments concerning the influence of thickness and viscosity of inner and outer annular layers of a liquid on the dynamic behaviour of a cylindrical shell, and a mathematical model of the problem based on acoustic approach is formulated to compare experimental and theoretical results. The measurements of natural frequencies and of damping ratios of a cylindrical shell were carried out with water and with two kinds of mineral oils of different viscosities. The results point towards the fact that with a decreasing thickness of the liquid layer the influence of the added liquid mass increases and the frequency drop is higher. On the other hand there is a certain relative magnitude of the surrounding medium at which the system behaves as an unlimited one. This magnitude depends on the mode order. The statement that the lesser is the thickness of the annular liquid layer the more important is its influence and the larger is the added liquid mass holds up to a certain thickness of the gap, comparable with the thickness of the thin liquid layer on the surface of the shell in which there has not yet been formed a transverse wave. The flowing in this layer is not potential. The governing equation for the description of this problem then is not Euler equation but Stokes's and Helmholtz's theorems for whirling motion. The thickness of the surface layer depends on the viscosity of the liquid. The frequencies measured for the least gap for water were well identified, while for both the mineral oils were chaotical, without any conspicuous resonances. (orig./GL)

  6. Characterization and prediction of the backscattered form function of an immersed cylindrical shell using hybrid fuzzy clustering and bio-inspired algorithms.

    Science.gov (United States)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-02-01

    The acoustic scattering of a plane wave by an elastic cylindrical shell is studied. A new approach is developed to predict the form function of an immersed cylindrical shell of the radius ratio b/a ('b' is the inner radius and 'a' is the outer radius). The prediction of the backscattered form function is investigated by a combined approach between fuzzy clustering algorithms and bio-inspired algorithms. Four famous fuzzy clustering algorithms: the fuzzy c-means (FCM), the Gustafson-Kessel algorithm (GK), the fuzzy c-regression model (FCRM) and the Gath-Geva algorithm (GG) are combined with particle swarm optimization and genetic algorithm. The symmetric and antisymmetric circumferential waves A, S 0 , A 1 , S 1 and S 2 are investigated in a reduced frequency (k 1 a) range extends over 0.1cylindrical shell is extracted. The computational results show that the proposed approach is very efficient to predict the form function and consequently, for acoustic characterization purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Temperature and hydrostatic pressure effects on single dopant states in hollow cylindrical core-shell quantum dot

    Science.gov (United States)

    El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2018-05-01

    This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.

  8. Mechanical stability of cylindrical thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2013-04-15

    In this paper, we apply the cut and paste procedure to the charged black string for the construction of a thin-shell wormhole. We consider the Darmois-Israel formalism to determine the surface stresses of the shell. We take the Chaplygin gas to deal with the matter distribution on shell. The radial perturbation approach (preserving the symmetry) is used to investigate the stability of static solutions. We conclude that stable static solutions exist both for uncharged and charged black string thin-shell wormholes for particular values of the parameters. (orig.)

  9. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.

    1985-01-01

    This paper describes an analytical formulation and a numerical analysis on the elasto/visco-plastic problems of orthotropic moderately thick shells of revolution under axi-symmetrical loads with applications to a cylindrical shell, and with comparison to experimental results. The analytical formulation is developed by extension of the Reissner-Naghdi theory in elastic shells where a consideration on the effect of shear deformation is given. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic range, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. In order to check up the adequacy of the numerical analysis, experiments on elasto/visco-plastic deformation of a titanium cylindrical shell subject to internal axi-symmetrical loads are performed. Good agreement is obtained between experimental results and analytical solution. (orig.)

  10. Tube-in-shell heat exchangers

    International Nuclear Information System (INIS)

    Richardson, J.

    1976-01-01

    Tube-in-shell heat exchangers normally comprise a bundle of parallel tubes within a shell container, with a fluid arranged to flow through the tubes in heat exchange with a second fluid flowing through the shell. The tubes are usually end supported by the tube plates that separate the two fluids, and in use the tube attachments to the tube plates and the tube plates can be subject to severe stress by thermal shock and frequent inspection and servicing are required. Where the heat exchangers are immersed in a coolant such as liquid Na such inspection is difficult. In the arrangement described a longitudinally extending central tube is provided incorporating axially spaced cylindrical tube plates to which the opposite ends of the tubes are attached. Within this tube there is a tubular baffle that slidably seals against the wall of the tube between the cylindrical tube plates to define two co-axial flow ducts. These ducts are interconnected at the closed end of the tube by the heat exchange tubes and the baffle comprises inner and outer spaced walls with the interspace containing Ar. The baffle is easily removable and can be withdrawn to enable insertion of equipment for inspecting the wall of the tube and tube attachments and to facilitate plugging of defective tubes. Cylindrical tube plates are believed to be superior for carrying pressure loads and resisting the effects of thermal shock. Some protection against thermal shock can be effected by arranging that the secondary heat exchange fluid is on the tube side, and by providing a thermal baffle to prevent direct impingement of hot primary fluid on to the cylindrical tube plates. The inner wall of the tubular baffle may have flexible expansible region. Some nuclear reactor constructions incorporating such an arrangement are described, including liquid metal reactors. (U.K.)

  11. The Influence on Modal Parameters of Thin Cylindrical Shell under Bolt Looseness Boundary

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-01-01

    Full Text Available The influence on modal parameters of thin cylindrical shell (TCS under bolt looseness boundary is investigated. Firstly, bolt looseness boundary of the shell is divided into two types, that is, different bolt looseness numbers and different bolt looseness levels, and natural frequencies and mode shapes are calculated by finite element method to roughly master vibration characteristics of TCS under these conditions. Then, the following measurements and identification techniques are used to get precise frequency, damping, and shape results; for example, noncontact laser Doppler vibrometer and vibration shaker with excitation level being precisely controlled are used in the test system; “preexperiment” is adopted to determine the required tightening torque and verify fixed constraint boundary; the small-segment FFT processing technique is employed to accurately measure nature frequency and laser rotating scanning technique is used to get shape results with high efficiency. Finally, based on the measured results obtained by the above techniques, the influence on modal parameters of TCS under two types of bolt looseness boundaries is analyzed and discussed. It can be found that bolt looseness boundary can significantly affect frequency and damping results which might be caused by changes of nonlinear stiffness and damping and in bolt looseness positions.

  12. Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material

    Science.gov (United States)

    Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E.

    2015-11-01

    A technique for numerical analysis of the thermoviscoelastoplastic deformation of thin compound shells made of a damageable material in which a fracture front propagates is described. A procedure for automatic variation in the step of integration of the kinetic damage equation is developed. A two-layer cylindrical shell cooling by convection and subjected to internal pressure and tensile force is analyzed as an example. The numerical data are presented and analyzed

  13. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  14. Experimental Study on the Influence on Vibration Characteristics of Thin Cylindrical Shell with Hard Coating under Cantilever Boundary Condition

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-01-01

    Full Text Available This research has experimentally investigated the influence on vibration characteristics of thin cantilever cylindrical shell (TCS with hard coating under cantilever boundary condition. Firstly, the theoretical model of TCS with hard coating is established to calculate its natural frequencies and modal shapes so as to roughly understand vibration characteristic of TCS when it is coated with hard coating material. Then, by considering its nonlinear stiffness and damping influences, an experiment system is established to accurately measure vibration parameters of the shell, and the corresponding test methods and identification techniques are also proposed. Finally, based on the measured data, the influences on natural frequencies, modal shapes, damping ratios, and vibration responses of TCS with hard coating are analyzed and discussed in detail. It can be found that hard coating can play an important role in vibration reduction of TCS, and for the most modes of TCS, hard coating will result in the decrease of natural frequencies, but the decreased level is not very big, and its damping effects on the higher frequency range of the shell are weak and ineffective. Therefore, in order to make better use of this coating material, we must carefully choose the concerned antivibration frequency range of the shell; otherwise it may lead to some negative effects.

  15. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.; Tabor, M.

    2013-01-01

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells

  16. Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)

    Science.gov (United States)

    Lugovoi, P. Z.; Meish, V. F.

    2017-09-01

    Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.

  17. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  18. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  19. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  20. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    Science.gov (United States)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  1. Calculation of stresses and deformations in a cylindrical shell with imperfect initial shape and at the circumference nonuniform temperature

    International Nuclear Information System (INIS)

    Leonchuk, M.P.; Pyl'chenkov, Eh.Kh.; Dvortsova, L.I.

    1976-01-01

    A method is proposed for calculating the stress-strain state of a thin cylindrical shell with initial shape imperfections under conditions of peripheral nonuniformity of temperatures and a prolonged effect of external loads. The method is based on the plane deformation hypothesis, it takes into account geometrical nonlinearity and also the steady and nonsteady stages of creep. Different schemes are considered of the problem realization on the computer. The possibility of using the method for analyzing stresses, strains and lifetime of the fuel elements and other reactor elements is demonstrated

  2. Fermionic vacuum polarization by a cylindrical boundary in the cosmic string spacetime

    International Nuclear Information System (INIS)

    Bezerra de Mello, E. R.; Bezerra, V. B.; Saharian, A. A.; Tarloyan, A. S.

    2008-01-01

    The vacuum expectation values of the energy-momentum tensor and the fermionic condensate are analyzed for a massive spinor field obeying the MIT bag boundary condition on a cylindrical shell in the cosmic string spacetime. Both regions inside and outside the shell are considered. By applying to the corresponding mode sums a variant of the generalized Abel-Plana formula, we explicitly extract the parts in the expectation values corresponding to the cosmic string geometry without boundaries. In this way the renormalization procedure is reduced to that for the boundary-free cosmic string spacetime. The parts induced by the cylindrical shell are presented in terms of integrals rapidly convergent for points away from the boundary. The behavior of the vacuum densities is investigated in various asymptotic regions of the parameters. In the limit of large values of the planar angle deficit, the boundary-induced expectation values are exponentially suppressed. As a special case, we discuss the fermionic vacuum densities for the cylindrical shell on the background of the Minkowski spacetime.

  3. Analysis of anisotropic shells containing flowing fluid

    International Nuclear Information System (INIS)

    Lakis, A.A.

    1983-01-01

    A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt

  4. Statistical mechanics of microscopically thin thermalized shells

    Science.gov (United States)

    Kosmrlj, Andrej

    Recent explosion in fabrication of microscopically thin free standing structures made from graphene and other two-dimensional materials has led to a renewed interest in the mechanics of such structures in presence of thermal fluctuations. Since late 1980s it has been known that for flat solid sheets thermal fluctuations effectively increase the bending rigidity and reduce the bulk and shear moduli in a scale-dependent fashion. However, much is still unknown about the mechanics of thermalized flat sheets of complex geometries and about the mechanics of thermalized shells with non-zero background curvature. In this talk I will present recent development in the mechanics of thermalized ribbons, spherical shells and cylindrical tubes. Long ribbons are found to behave like hybrids between flat sheets with renormalized elastic constants and semi-flexible polymers, and these results can be used to predict the mechanics of graphene kirigami structures. Contrary to the anticipated behavior for ribbons, the non-zero background curvature of shells leads to remarkable novel phenomena. In shells, thermal fluctuations effectively generate negative surface tension, which can significantly reduce the critical buckling pressure for spherical shells and the critical axial load for cylindrical tubes. For large shells this thermally generated load becomes big enough to spontaneously crush spherical shells and cylindrical tubes even in the absence of external loads. I will comment on the relevance for crushing of microscopic shells (viral capsids, bacteria, microcapsules) due to osmotic shocks and for crushing of nanotubes.

  5. Investigation into the bistatic evolution of the acoustic scattering from a cylindrical shell using time-frequency analysis

    Science.gov (United States)

    Agounad, Said; Aassif, El Houcein; Khandouch, Younes; Maze, Gérard; Décultot, Dominique

    2018-01-01

    The time and frequency analyses of the acoustic scattering by an elastic cylindrical shell in bistatic method show that the arrival times of the echoes and the resonance frequencies of the elastic waves propagating in and around the cylindrical shell are a function of the bistatic angle, β, between the emitter and receiver transducers. The aim of this work is to explain the observed results in time and frequency domains using time-frequency analysis and graphical interpretations. The performance of four widely used time-frequency representations, the Smoothed Pseudo Wigner-Ville (SPWV), the Spectrogram (SP), the reassignment SPWV, and the reassignment SP, are studied. The investigation into the evolution of the time-frequency plane as a function of the bistatic angle β shows that there are the waves propagating in counter-clockwise direction (labeled wave+) and the waves which propagate in clockwise direction (labeled waves-). In this paper the A, S0, and A1 circumferential waves are investigated. The graphical interpretations are used to explain the formation mechanism of these waves and the acoustic scattering in monostatic and bistatic configurations. The delay between the echoes of the waves+ and those of the waves- is expressed in the case of the circumnavigating wave (Scholte-Stoneley wave). This study shows that the observed waves at β = 0 ° and β = 18 0 ° are the result of the constructive interferences between the waves+ and the waves-. A comparative study of the physical properties (group velocity dispersion and cut-off frequency) of the waves+, the waves- and the waves observed in monostatic configuration is conducted. Furthermore, it is shown that the ability of the time-frequency representation to highlight the waves+ and the waves- is very useful, for example, for the detection and the localization of defaults, the classification purposes, etc.

  6. Adaptative mixed methods to axisymmetric shells

    International Nuclear Information System (INIS)

    Malta, S.M.C.; Loula, A.F.D.; Garcia, E.L.M.

    1989-09-01

    The mixed Petrov-Galerkin method is applied to axisymmetric shells with uniform and non uniform meshes. Numerical experiments with a cylindrical shell showed a significant improvement in convergence and accuracy with adaptive meshes. (A.C.A.S.) [pt

  7. The stress distribution in shell bodies and wings as an equilibrium problem

    Science.gov (United States)

    Wagner, H

    1937-01-01

    This report treats the stress distribution in shell-shaped airplane components (fuselage, wings) as an equilibrium problem; it includes both cylindrical and non-cylindrical shells. In particular, it treats the stress distribution at the point of stress application and at cut-out points.

  8. The effect of seismic motion characteristics on the inelastic response reduction of cylindrical shell structures

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Yamamoto, K.; Akiyama, H.

    1993-01-01

    Reactor vessels of FBR are cylindrical shell structures, whose critical failure mode during earthquakes is plastic buckling in shear or bending mode. In buckling prevention of the vessels, it is of primary importance to realistically evaluate the plastic response reduction effect in the pre-buckling stage. Though the authors have already proposed a empirical formula to estimate the response reduction effect, the formula depends only on the pre-buckling ductility factor in the evaluation for the purpose of easy design practice. In this study, the effect of seismic motion characteristics on the response reduction effect was investigated both experimentally and numerically, and a improved version of the empirical expression of the reduction factor was proposed. In this new method, the response reduction effect is evaluated by an initial acceleration amplification factor in addition to the ductility of structures. (author)

  9. Dynamic pulse buckling of cylindrical shells under axial impact: A benchmark study of 2D and 3D finite element calculations

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1995-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history

  10. A benchmark study of 2D and 3D finite element calculations simulating dynamic pulse buckling tests of cylindrical shells under axial impact

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1993-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry

  11. Buckling of long liquid-filled cylindrical shells

    International Nuclear Information System (INIS)

    Saal, H.

    1982-01-01

    The experimental investigation confirms the stresses and displacements which result from a nonlinear analysis of the shell. The linear analysis gives a good approximation for the stresses and deformations which significantly deviate from those according to beam theory. This approximation is to the safe side - (remarkably only for the displacements and circumferential stresses). The application of an equivalent cylinder model to the determination of the buckling load gives rather good agreement with the experimental results. There is only little imperfection sensitivity in this load case as the experiments show. Again the theoretical buckling load which is based on the stresses and displacements from linear shell theory is on the safe side. (orig./RW)

  12. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.

    2005-01-01

    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  13. A design chart for long vacuum pipes and shells

    International Nuclear Information System (INIS)

    Krempetz, K.; Grimson, J.; Kelly, P.

    1986-01-01

    This paper presents a design chart to aid designers in the selection of a wall thickness for long cylindrical shells having atmospheric pressure outside the shell and a pressure less than atmospheric inside the shell. The chart indicates a conservative value for the minimum wall thickness for a given shell diameter and material when the shell is completely evacuated

  14. Three-Dimensional Exact Free Vibration Analysis of Spherical, Cylindrical, and Flat One-Layered Panels

    Directory of Open Access Journals (Sweden)

    Salvatore Brischetto

    2014-01-01

    equilibrium written in orthogonal curvilinear coordinates for the free vibrations of simply supported structures. These equations consider an exact geometry for shells without simplifications. The main novelty is the possibility of a general formulation for different geometries. The equations written in general orthogonal curvilinear coordinates allow the analysis of spherical shell panels and they automatically degenerate into cylindrical shell panel, cylindrical closed shell, and plate cases. Results are proposed for isotropic and orthotropic structures. An exhaustive overview is given of the vibration modes for a number of thickness ratios, imposed wave numbers, geometries, embedded materials, and angles of orthotropy. These results can also be used as reference solutions to validate two-dimensional models for plates and shells in both analytical and numerical form (e.g., closed solutions, finite element method, differential quadrature method, and global collocation method.

  15. A multilayered thick cylindrical shell under internal pressure and thermal loads applicable to solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Renganathan, K.; Nageswara Rao, B.; Jana, M.K. [Vikram Sarabhai Space Centre, Trivandrum (India). Structural Engineering Group

    2000-09-01

    A solid propellant rocket motor can be considered to be made of various circumferential layers of different properties. A simple procedure is described here to obtain an analytical solution for the general case of multilayered thick cyclindrical shell for internal pressure and thermal loads. This analytical procedure is useful in the preliminary design analysis of solid propellant rocket motors. Since solid propellant material is of viscoelastic behaviour an approximate viscoelastic solution methodology for the multilayered shell is described for estimation of time dependent solutions of propellant grain in a rocket motor. The analytical solution for a two layer reinforced thick cylindrical shell available in the literature is shown to be a special case of the present analytical solution. The results from the present analytical solution for multilayers is found to be in good agreement with FEA results. (orig.) [German] Der grundlegende Aufbau von Feststoffraketenmotoren kann auf einen Zylinder aus mehreren Schichten mit unterschiedlichen Eigenschaften zurueckgefuehrt werden. Eine einfache Berechnungsprozedur fuer die analytische Loesung des allgemeinen Falles eines mehrschichtigen Zylinders unter innerem Druck und thermischer Belastung wird hier vorgestellt. Diese analytische Methodik ist fuer den Auslegungsprozess von Feststoffraketenmotoren von grundlegender Bedeutung. Das viskoelastische Fliessverhalten des festen Brennstoffes, das den zeitlichen Ablauf des Verbrennungsprozesses wesentlich bestimmt, wird durch ein Naeherungsverfahren gut erfasst. Ein in der Literatur enthaltenes spezielles Ergebnis fuer einen zweischaligen verstaerkten Zylinder ergibt sich als Sonderfall der hier vorgestellten Methodik. Die analytisch erhaltenen Loesungen fuer mehrschichtige Aufbauten sind in guter Uebereinstimmung mit mittels der FEM ermittelten Ergebnisse. (orig.)

  16. Effects of cavity resonances on sound transmission into a thin cylindrical shell. [noise reduction in aircraft fuselage

    Science.gov (United States)

    Koval, L. R.

    1978-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the effects of internal cavity resonances on sound transmission into a thin cylindrical shell. The 'noise reduction' of the cylinder is defined and computed, with and without including the effects of internal cavity resonances. As would be expected, the noise reduction in the absence of cavity resonances follows the same qualitative pattern as does transmission loss. Numerical results show that cavity resonances lead to wide fluctuations and a general decrease of noise reduction, especially at cavity resonances. Modest internal absorption is shown to greatly reduce the effect of cavity resonances. The effects of external airflow, internal cabin pressurization, and different acoustical properties inside and outside the cylinder are also included and briefly examined.

  17. Dynamics of two coaxial cylindrical shells containing viscous fluid

    International Nuclear Information System (INIS)

    Yeh, T.T.; Chen, S.S.

    1976-09-01

    This study was motivated by the need to design the thermal shield in reactor internals and other system components to avoid detrimental flow-induced vibrations. The system component is modeled as two coaxial shells separated by a viscous fluid. In the analysis, Flugge's shell equations of motion and linearized Navier-Stokes equation for viscous fluid are employed. First, a traveling-wave type solution is taken for shells and fluid. Then, from the interface conditions between the shells and fluid, the solution for the fluid medium is expressed in terms of shell displacements. Finally, using the shell equations of motion gives the frequency equation, from which the natural frequency, mode shape, and modal damping ratio of coupled modes can be calculated. The analytical results show a fairly good qualitative agreement with the published experimental data. Some important conclusions are as follows: (1) In computing the natural frequencies and mode shapes of uncoupled modes and coupled modes, the fluid may be considered inviscid and incompressible. (2) There exists out-of-phase and in-phase modes. The lowest natural frequency is always associated with the out-of-phase mode. (3) The lowest natural frequency of coupled modes is lower than the uncoupled modes. (4) The fluid viscosity contributes significantly to damping, in particular, the modal damping of the out-of-phase modes isrelatively large for small gaps. (5) If the fluid gap is small, or the fluid viscosity is relatively high, the simulation of the vibration Reynolds number should be included to ensure that modal damping of the model is properly accounted for. With the presented analysis and results, the frequency and damping characteristics can be analyzed and design parameters can be related to frequency and damping

  18. On sound transmission through double-walled cylindrical shells lined with poroelastic material: Comparison with Zhou's results and further effect of external mean flow

    Science.gov (United States)

    Liu, Yu; He, Chuanbo

    2015-12-01

    In this discussion, the corrections to the errors found in the derivations and the numerical code of a recent analytical study (Zhou et al. Journal of Sound and Vibration 333 (7) (2014) 1972-1990) on sound transmission through double-walled cylindrical shells lined with poroelastic material are presented and discussed, as well as the further effect of the external mean flow on the transmission loss. After applying the corrections, the locations of the characteristic frequencies of thin shells remain unchanged, as well as the TL results above the ring frequency where BU and UU remain the best configurations in sound insulation performance. In the low-frequency region below the ring frequency, however, the corrections attenuate the TL amplitude significantly for BU and UU, and hence the BB configuration exhibits the best performance which is consistent with previous observations for flat sandwich panels.

  19. A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels

    International Nuclear Information System (INIS)

    Sedighi, M R; Shakeri, M

    2009-01-01

    This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results

  20. Pattern Transitions in a Soft Cylindrical Shell

    Science.gov (United States)

    Yang, Yifan; Dai, Hui-Hui; Xu, Fan; Potier-Ferry, Michel

    2018-05-01

    Instability patterns of rolling up a sleeve appear more intricate than the ones of walking over a rug on floor, both characterized as systems of uniaxially compressed soft film on stiff substrate. This can be explained by curvature effects. To investigate pattern transitions on a curved surface, we study a soft shell sliding on a rigid cylinder by experiments, computations and theoretical analyses. We reveal a novel postbuckling phenomenon involving multiple successive bifurcations: smooth-wrinkle-ridge-sagging transitions. The shell initially buckles into periodic axisymmetric wrinkles at the threshold and then a wrinkle-to-ridge transition occurs upon further axial compression. When the load increases to the third bifurcation, the amplitude of the ridge reaches its limit and the symmetry is broken with the ridge sagging into a recumbent fold. It is identified that hysteresis loops and the Maxwell equal-energy conditions are associated with the coexistence of wrinkle-ridge or ridge-sagging patterns. Such a bifurcation scenario is inherently general and independent of material constitutive models.

  1. Design and optimization of the large span dry-coal-shed latticed shell in Liyuan of Henan province

    Directory of Open Access Journals (Sweden)

    Du Wenfeng

    2017-01-01

    Full Text Available The design and optimization about the large span dry-coal-shed latticed shell in Liyuan of Henan province were studied. On the basis of the structural scheme of double-layer cylindrical reticulated shell, the optimization scheme of the folding double-layer cylindrical reticulated shell was proposed. Through the analysis of a plurality of calculation models, the optimal geometric parameters were obtained after discussing the influence of different slopes of folding lines and shell thickness on the structural bearing capacity and the amount of steel. The research results show that in the case of the same amount of steel, the ultimate bearing capacity of the double-layer folding cylindrical reticulated shell whose folding line slope is 9% and the shell thickness is about 4.4m can be increased 27.3% compared with the original design scheme.

  2. On the contribution of circumferential resonance modes in acoustic radiation force experienced by cylindrical shells

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-10-01

    A body insonified by a constant (time-varying) intensity sound field is known to experience a steady (oscillatory) force that is called the steady-state (dynamic) acoustic radiation force. Using the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of a resonance field and a background (non-resonance) component, we show that the radiation force acting on a cylindrical shell may be synthesized as a composition of three components: background part, resonance part and their interaction. The background component reveals the pure geometrical reflection effects and illustrates a regular behavior with respect to frequency, while the others demonstrate a singular behavior near the resonance frequencies. The results illustrate that the resonance effects associated to partial waves can be isolated by the subtraction of the background component from the total (steady-state or dynamic) radiation force function (i.e., residue component). In the case of steady-state radiation force, the components are exerted on the body as static forces. For the case of oscillatory amplitude excitation, the components are exerted at the modulation frequency with frequency-dependant phase shifts. The results demonstrate the dominant contribution of the non-resonance component of dynamic radiation force at high frequencies with respect to the residue component, which offers the potential application of ultrasound stimulated vibro-acoustic spectroscopy technique in low frequency resonance spectroscopy purposes. Furthermore, the proposed formulation may be useful essentially due to its intrinsic value in physical acoustics. In addition, it may unveil the contribution of resonance modes in the dynamic radiation force experienced by the cylindrical objects and its underlying physics.

  3. Creep deformations of shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.

    1975-01-01

    The numerical analysis of creep deformations of shells of revolution under unsymmetrical loads is described with application to a cylindrical shell. The analytical formulation of the creep of axisymmetric undergoing unsymmetrical deformations is developed for two hardening laws: the time hardening law and the strain hardening law. The method is based on the creep power law, and on the assumption of plane stress condition and the Euler-Bernoulli hypothesis used in the ordinary thin shell theory. The basic differential equations derived for incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by integration of the incremental values. In conclusion the computer programs are developed which can be used to predict the creep deformations of arbitrary axisymmetrical shells. As a numerical example the creep deformation of cylindrical shell of importance in practical use is treated, and the variations of displacements and internal forces with the lapse of time are discussed

  4. Dynamic Stability of Cylindrical Shells under Moving Loads by Applying Advanced Controlling Techniques—Part II: Using Piezo-Stack Control

    Directory of Open Access Journals (Sweden)

    Khaled M. Saadeldin Eldalil

    2009-01-01

    Full Text Available The load acting on the actively controlled cylindrical shell under a transient pressure pulse propelling a moving mass (gun case has been experimentally studied. The concept of using piezoelectric stack and stiffener combination is utilized for damping the tube wall radial and circumferential deforming vibrations, in the correct meeting location timing of the moving mass. The experiment was carried out by using the same stiffened shell tube of the experimental 14 mm gun tube facility which is used in part 1. Using single and double stacks is tried at two pressure levels of low-speed modes, which have response frequencies adapted with the used piezoelectric stacks characteristics. The maximum active damping ratio is occurred at high-pressure level. The radial circumferential strains are measured by using high-frequency strain gage system in phase with laser beam detection system similar to which used in part 1. Time resolved strain measurements of the wall response were obtained, and both precursor and transverse hoop strains have been resolved. A complete comparison had been made between the effect of active controlled and stepped structure cases, which indicate a significant attenuation ratio especially at higher operating pressures.

  5. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1989-01-01

    An analytical method for the elasto/visco-plastic problems of general, orthotropic moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformations. The Reissner-Naghdi theory for elastic moderately thick shells is extended in this analysis. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic region, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. The fundamental equations for the increment are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. In order to check the adequacy of the numerical analysis, experiments are performed on the elasto/visco-plastic deformation of a titanium cylindrical shell subjected to locally distributed loads. Good agreement is obtained between the experimental results and analytical solutions

  6. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    Science.gov (United States)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  7. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    Science.gov (United States)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  8. Implementation of the Graduated Cylindrical Shell Model for the Three-dimensional Reconstruction of Coronal Mass Ejections

    Science.gov (United States)

    Thernisien, A.

    2011-06-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  9. IMPLEMENTATION OF THE GRADUATED CYLINDRICAL SHELL MODEL FOR THE THREE-DIMENSIONAL RECONSTRUCTION OF CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Thernisien, A.

    2011-01-01

    The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs. These studies focused more on the results rather than the details of the model itself. As more researchers begin to use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.

  10. Free vibration analysis of delaminated composite shells using different shell theories

    International Nuclear Information System (INIS)

    Nanda, Namita; Sahu, S.K.

    2012-01-01

    Free vibration response of laminated composite shells with delamination is presented using the finite element method based on first order shear deformation theory. The shell theory used is the extension of dynamic, shear deformable theory according to the Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. An eight-noded C 0 continuity, isoparametric quadrilateral element with five degrees of freedom per node is used in the formulation. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. The natural frequencies of the delaminated cylindrical (CYL), spherical (SPH) and hyperbolic paraboloid (HYP) shells are determined by using the above mentioned shell theories, namely Sanders', Love's, and Donnell's. The validity of the present approach is established by comparing the authors' results with those available in the literature. Additional studies on free vibration response of CYL, SPH and HYP shells are conducted to assess the effects of delamination size and number of layers considering all three shell theories. It is shown that shell theories according to Sanders and Love always predict practically identical frequencies. Donnell's theory gives reliable results only for shallow shells. Moreover, the natural frequency is found to be very sensitive to delamination size and number of layers in the shell.

  11. Stability analysis of thin-shell wormholes from charged black string

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-04-01

    In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.

  12. Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads

    International Nuclear Information System (INIS)

    Baker, W.E.; Babock, C.D.; Bennett, J.G.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284

  13. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  14. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...

  15. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    Science.gov (United States)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  16. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

    2016-10-15

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  17. Thin shells joining local cosmic string geometries

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Rubin de Celis, Emilio; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  18. Cylindrically converging blast waves in air

    Science.gov (United States)

    Matsuo, H.; Nakamura, Y.

    1981-07-01

    Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.

  19. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  20. Radiation history and energy coupling to cylindrical targets on the Z machine

    International Nuclear Information System (INIS)

    Aubrey, J.; Bowers, R.L.; Peterson, D.L.; Chandler, G.A.; Derzon, M.S.; Nash, T.J.; Fehl, D.L.

    1999-01-01

    A series of experiments have been designed and fielded on the Sandia Z machine to characterize the radiation history and energy coupling to cylindrical targets embedded in a central cushion. The implosion of, a nested wire array, which has produced temperatures of 230 eV in a central cushion (Flying Radiation Case/Dynamic Hohlraum), is used as a source, in the calculations, to drive ablative shocks in cylindrical shells. These shells have initial radii of 1 mm, wall thickness of 20 to 50 microm and are embedded in low density foam. Simulations of the radiation environment in the cushion, including the radiation pre-pulse associated with the run-in of the load plasma and the energy coupling to the target will be presented. The dynamics of the imploding plasma, its evolution near the axial aperture and its effects on diagnostic access will also be considered

  1. The local response of elastic tubes and shells to spherical pressure pulse loading

    International Nuclear Information System (INIS)

    Thompson, J.J.; Holy, Z.J.

    1977-01-01

    This paper develops a formulation and numerical solution technique for calculating the peak transient stresses developed in tubes or shells with external and internal acoustic media, as a result of shock loadings which may be represented as originating from external or internal point symmetric or dipole sources. The field of application is intended to be the local peak response of the cylindrical fuel cans, core barrels, pressure vessels, pipes and containment shells of Nuclear Reactor Technology, subjected to transient pressure shock loadings for a variety of operational or accident conditions, which cannot adequately be described as one dimensional plane shocks, for which elastic shell responses have been presented by other workers. The work reported here concerns the basic problem of an infinite static fluid filled hollow cylinder of arbitrary thickness, in an infinite static fluid medium, with a source at an arbitrary internal or external radial location. An acoustic model is used, with acoustic damping due to radiation as the only possible damping mechanism. The formulation and solution technique is based on the availability of the multi-dimensional Fast Fourier Transform algorithm. The basic result is the representation, in cylindrical co-ordinates, of the two dimensional (time and axial co-ordinate) Fourier Transform of the infinite medium frequency response function for outgoing waves from a point symmetrical source, as a series of azimuthal Fourier harmonics, from which the result for a dipole source of arbitrary orientation follows. Where possible numerical results will be presented

  2. Numerical analysis of non-linear vibrations of a fractionally damped cylindrical shell under the conditions of combinational internal resonance

    Directory of Open Access Journals (Sweden)

    Rossikhin Yury A.

    2018-01-01

    Full Text Available Non-linear damped vibrations of a cylindrical shell embedded into a fractional derivative medium are investigated for the case of the combinational internal resonance, resulting in modal interaction, using two different numerical methods with further comparison of the results obtained. The damping properties of the surrounding medium are described by the fractional derivative Kelvin-Voigt model utilizing the Riemann-Liouville fractional derivatives. Within the first method, the generalized displacements of a coupled set of nonlinear ordinary differential equations of the second order are estimated using numerical solution of nonlinear multi-term fractional differential equations by the procedure based on the reduction of the problem to a system of fractional differential equations. According to the second method, the amplitudes and phases of nonlinear vibrations are estimated from the governing nonlinear differential equations describing amplitude-and-phase modulations for the case of the combinational internal resonance. A good agreement in results is declared.

  3. Consideration of shear deformation in the analysis of unsymmetrical bending of moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Das, M.L.

    1975-01-01

    A shear deformation theory is derived using a variational technique similar to Reissner-Naghdi linear theory neglecting the transverse normal stress. This theory is used to analyze shells of revolution subjected to arbitrary load distribution. The shell material is assumed to have two-dimensional elastic isotropy in directions tangent to its surface. Young's modulus may vary through the thickness and in the meridional direction. Poisson's ratio is assumed to be constant. Arbitrary temperature can be applied to the shell. Change of Young's modulus in the circumferential direction due to high temperature variation is neglected in the theory. All pertinent variables are expanded in Fourier series in the circumferential direction to get 5 ordinary differential equations, decoupled in individual Fourier components of independent displacements. Finite difference numerical technique is used to solve these differential equations. For handling these numerical quantities in orderly fashion, matrix algebra is utilized. Budiansky and Radkowski have applied a similar technique to solve the equations based on the classical shell theory of Sanders. Two independent computer programs are developed, one based on the shear deformation theory derived here and the other on the work of Budiansky and Radkowski. Two different circular cylindrical shells are utilized to explore the subject of this paper. They have the same geometric dimensions but different boundary conditions and one is fixed at both ends while the other has one end free

  4. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  5. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.; Isobata, O.; Kawamata, S.

    1977-01-01

    A new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. Because of the compressive and shearing resistance of the concrete core, the layers behave as a composite solid shell. Membrane forces are shared by steel plates and partly by concrete core. Bending moment is effectively resisted by the section with extreme layers of steel. Therefore, both surfaces can be designed as extremely thin plates: the inner plate, which is a load carrying members as well as a liner, can be welded without the laborious process of stress-relieving, and various jointing methods can be applied to the outer plate which is free from the need for leak tightness. The capability of the composite layers of behaving as a unified solid shell section depends largely on the shearing rigidity of the concrete core. However, as its resisting capacity to transverse shearing force is comparatively low, a device for reducing the shearing stress at the junction to the base mat is needed. In the new scheme, this part of the cylindrical shell is divided into multiple layers of the same kind of composite shell. This device makes the stiffness of the bottom of the cylindrical shell to lateral movement minimum while maintaining the proper resistance to membrane forces. The analysis shows that the transverse shearing stress can be reduced to less than 1√n of the ordinary case by dividing the thickness of the shell into n layers which are able to slip against each other at the contact surface. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented

  6. The effect of creep ratchetting on thin shells

    International Nuclear Information System (INIS)

    Hibbeler, R.C.; Wang, P.Y.

    1975-01-01

    The behavior of thin shells, in particular, cylindrical and spherical shells, which are subjected to a long-time cyclic thermal gradient is discussed. Like many reactor components (shells) which are subjected to start-up and shut-down conditions, provided the temperature is high enough, the shell will exhibit a progressive growth with each cycle of temperature. This phenomena is often referred to as ratchetting and is caused by inelastic strains developed by creep. Although the thermal stress distribution is biaxial it is possible to represent the material behavior using a simple uniaxial-stress model. Assuming thermal stress interaction occurs, the equations which determine the solution of the strain growth and stress per cycle are presented. The flexibility of the analysis provides a means for including the effects of an arbitrary temperature-cycle time and temperature dependence of material properties. A step temperature variation is considered. During each part of the temperature cycle it is necessary to satisfy the equilibrium and compatibility conditions for the model. At any instant, the total strain will depend upon elastic, thermal, and creep strain components in addition to prior inelastic creep strains accumulated during previous temperature cycles. Accounting for all these conditions, the relations describing the behavior of the material can be determined during an arbitrary jth cycle of temperature. In particular, the cases of material properties are considered which are used for reactor components. Where possible, a closed form solution is given for appropriate values of the creep law exponents n and m. For the general case, an algorithm for the computer-solution to the problem is given. Using the general solution, the analysis appears to offer a suitable compromise between accurate behavior description and analytical complexity

  7. Investigation of dynamic characteristics of shells with holes and added mass

    Directory of Open Access Journals (Sweden)

    Seregin Sergey Valer’evich

    2014-04-01

    Full Text Available Thin cylindrical shells are widely used in construction, engineering and other industries. In case of designing a reservoir for the isothermal storage of liquefied gases such cases are inevitable, when housing requires various technical holes. A point wise added mass can appear into practice in the form of suspended spotlights, radar, architectural inclusions in buildings and structures of various purposes. It is known, that the dynamic asymmetry as an initial irregular geometric shape, including holes, and the added mass leads to specific effects in shells. In the paper the impact of a cut on the frequency and form of its own vibrations of thin circular cylindrical shells is theoretically examined with the help of the equations of linear shallow shell theory. For modal equations with Nav’e boundary conditions, we used the Bubnov - Galerkin method. The authors have expressed a formula for finding the lowest of the split-frequency vibrations of a shell with a cutout. It is stated, that in case of an appropriate choice of added mass value the lower frequencies are comparable with the case of vibrations of a shell with a hole. By numerical and experimental modeling and finite element method in the environment of MSC "Nastran" oscillation frequencies a shell supporting a concentrated mass and a shell with a cutout were compared. It is shown, that the results of the dynamic analysis of shells with holes with a suitable choice of the attached mass values are comparable with the results of the analysis of shells carrying a point mass. It was concluded that the edges in the holes, significantly affect the reduction in the lowest frequency, and need to be strengthened.

  8. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Liu, Yan; Malureanu, Radu

    2011-01-01

    Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles...

  9. Three-dimensional free vibration of functionally graded truncated conical shells subjected to thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P., E-mail: p_malekz@yahoo.com [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Fiouz, A.R.; Sobhrouyan, M. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of)

    2012-01-15

    A three-dimensional (3D) free vibration analysis of the functionally graded (FG) truncated conical shells subjected to thermal environment is presented. The material properties are assumed to be temperature-dependent and graded in the radius direction, which can vary according to a simple power law distribution. The initial thermal stresses are obtained accurately by solving the thermoelastic equilibrium equations and by considering the two-dimensional axisymmetric temperature distribution in the shell. The differential quadrature method (DQM) as an efficient and accurate numerical tool is adopted to solve the thermal and thermo-mechanical governing equations. For this purpose, a mapping technique is employed to transform the cross section of the shell into the computational domain of DQM. The convergence behavior of the method is numerically demonstrated and comparison studies with the available solutions in the literature are performed. The effects of temperature dependence of material properties, geometrical parameters, material graded index, thermal and mechanical boundary conditions on the frequency parameters of the FG truncated conical shells are carried out. - Highlights: Black-Right-Pointing-Pointer 3D free vibration analysis of the functionally graded truncated conical shells is presented. Black-Right-Pointing-Pointer Two-dimensional axisymmetric temperature distribution in the shell is assumed. Black-Right-Pointing-Pointer The material properties are assumed to be temperature-dependent. Black-Right-Pointing-Pointer Initial thermal stresses due to thermal environment are evaluated accurately and included. Black-Right-Pointing-Pointer Representing the effects of different parameters on the non-dimensional frequencies.

  10. Analysis of Cylindrical Granular Material Silos under Seismic Excitation

    Directory of Open Access Journals (Sweden)

    Christoph Butenweg

    2017-07-01

    Full Text Available Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account.

  11. Elasto/visco-plastic deformation of moderately thick shells of revolution under thermal loading due to fluid

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.; Aoki, T.; Inamura, E.

    1993-01-01

    This paper is concerned with an analytical formulation and a numerical solution of the thermo-elasto/visco-plastic deformation of general, moderately thick shells of revolution subjected to thermal loads due to fluid. At first the temperature distribution through the thickness is supposed to be curves of second order, and the temperature field in the shell under the appropriate initial and boundary conditions is determined by using the equations of heat conduction and heat transfer. Secondly the stresses and deformations are derived from the thermal stress equations. The equations of equilibrium and the relations between the strains and displacements are developed by extending the Reissner-Naghdi theory for elastic shells. For the constitutive relations, the Perzyna elasto/visco-plastic equations including the temperature effect are employed. The fundamental equations derived are numerically solved by the finite difference method. As a numerical example, the simply supported cylindrical shell made of mild steel under thermal loading due to fluid is analyzed, and the results are compared with those from classical theory which neglects the effect of shear deformations. (author)

  12. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.

    Science.gov (United States)

    Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  13. Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures

    Science.gov (United States)

    Wang, Fei; Gong, Haoran; Chen, Xi; Chen, C. Q.

    2016-09-01

    Origami structures enrich the field of mechanical metamaterials with the ability to convert morphologically and systematically between two-dimensional (2D) thin sheets and three-dimensional (3D) spatial structures. In this study, an in-plane design method is proposed to approximate curved surfaces of interest with generalized Miura-ori units. Using this method, two combination types of crease lines are unified in one reprogrammable procedure, generating multiple types of cylindrical structures. Structural completeness conditions of the finite-thickness counterparts to the two types are also proposed. As an example of the design method, the kinematics and elastic properties of an origami-based circular cylindrical shell are analysed. The concept of Poisson’s ratio is extended to the cylindrical structures, demonstrating their auxetic property. An analytical model of rigid plates linked by elastic hinges, consistent with numerical simulations, is employed to describe the mechanical response of the structures. Under particular load patterns, the circular shells display novel mechanical behaviour such as snap-through and limiting folding positions. By analysing the geometry and mechanics of the origami structures, we extend the design space of mechanical metamaterials and provide a basis for their practical applications in science and engineering.

  14. Investigation on imperfection sensitivity of composite cylindrical shells using the nonlinearity reduction technique and the polynomial chaos method

    Science.gov (United States)

    Liang, Ke; Sun, Qin; Liu, Xiaoran

    2018-05-01

    The theoretical buckling load of a perfect cylinder must be reduced by a knock-down factor to account for structural imperfections. The EU project DESICOS proposed a new robust design for imperfection-sensitive composite cylindrical shells using the combination of deterministic and stochastic simulations, however the high computational complexity seriously affects its wider application in aerospace structures design. In this paper, the nonlinearity reduction technique and the polynomial chaos method are implemented into the robust design process, to significantly lower computational costs. The modified Newton-type Koiter-Newton approach which largely reduces the number of degrees of freedom in the nonlinear finite element model, serves as the nonlinear buckling solver to trace the equilibrium paths of geometrically nonlinear structures efficiently. The non-intrusive polynomial chaos method provides the buckling load with an approximate chaos response surface with respect to imperfections and uses buckling solver codes as black boxes. A fast large-sample study can be applied using the approximate chaos response surface to achieve probability characteristics of buckling loads. The performance of the method in terms of reliability, accuracy and computational effort is demonstrated with an unstiffened CFRP cylinder.

  15. Optimal design of sandwich ribbed flat baffle plates of a circular cylindrical tank

    International Nuclear Information System (INIS)

    Malinowski, Marek; Magnucki, Krzysztof

    2005-01-01

    The subject of this paper is a sandwich ribbed flat baffle plate of a circular cylindrical tank. The paper deals with a problem of optimal thickness of this construction with a soft core. The construction is distinguished by a local axisymmetric pre-springing. The mathematical description is based on the theory of shells with analysis of disturbance of the stress membrane state. The sandwich ribbed flat baffle plate divides the tank into two chambers. One of them is loaded by uniform pressure, while the other is empty and unloaded. Dimensions of ribs, faces and the entire baffle plate have been determined with a view to minimize the mass under strength constraints. The effect of optimal thickness of this sandwich plate has been examined by means of the finite element method

  16. Active vibration control of a cylindrical structure using flexible piezoactuators: experimental work in air and water environments

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok

    2014-01-01

    In the present work, the modal characteristics and vibration control performance of a cylindrical structure in air and water are experimentally investigated, and the results are presented in time and frequency domains. In order to achieve this goal, an end-capped cylindrical shell structure is considered as a host structure, and MFC (macro fiber composite) actuators, which are flexible, are bonded on the surface of the structure. After manufacturing a cylindrical shell structure with aluminum, a modal test is carried out, and the natural frequencies of the proposed structure are obtained and analyzed. To verify the modal test results, a finite element analysis is also performed, and the results are compared with the modal test results. By using the experimentally obtained modal characteristics, a state space control model is established. An optimal controller is then designed in order to control the unwanted vibration and is experimentally realized. It has been shown that the structural vibration can be effectively decreased with the optimal control methodology in both air and water environmental conditions. (technical note)

  17. Vibration analysis of a functionally graded piezoelectric cylindrical actuator

    International Nuclear Information System (INIS)

    Zhang, T T; Shi, Z F; Spencer, B F Jr

    2008-01-01

    This paper focuses on the response of a functionally graded piezoelectric cylindrical actuator placed in a harmonic electric field based on elastic membrane theory and shell theory. The actuator is polarized in the radial direction with its piezoelectric coefficient d 31 varying linearly along the axial direction. In the present investigation, non-dimensional expressions are introduced, and analytical solutions for this class of actuator are obtained. The results provided in the present study are compared with other investigations, with good agreement being found. The major differences between a functionally graded actuator and an actuator with homogeneous material properties are identified, and the advantages of the former are demonstrated. In the last section of this paper, limitations of membrane theory and shell theory models are discussed

  18. Stability of cylindrical thin shell wormhole during evolution of universe from inflation to late time acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R. [Department of Science, Campus of Bijar, University of Kurdistan,Bijar (Iran, Islamic Republic of); Sepehri, A. [Faculty of Physics, Shahid Bahonar University,P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2015-03-16

    In this paper, we consider the stability of cylindrical wormholes during evolution of universe from inflation to late time acceleration epochs. We show that there are two types of cylindrical wormholes. The first type is produced at the corresponding point where k black F-strings are transited to BIon configuration. This wormhole transfers energy from extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The second type of cylindrical wormhole is created by a tachyonic potential and causes a new phase of acceleration. We show that wormhole parameters grow faster than the scale factor in this era, overtake it at ripping time and lead to the destruction of universe at big rip singularity.

  19. Nonlinear finite element formulation for analyzing shape memory alloy cylindrical panels

    International Nuclear Information System (INIS)

    Mirzaeifar, R; Shakeri, M; Sadighi, M

    2009-01-01

    In this paper, a general incremental displacement based finite element formulation capable of modeling material nonlinearities based on first-order shear deformation theory (FSDT) is developed for cylindrical shape memory alloy (SMA) shells. The Boyd–Lagoudas phenomenological model with polynomial hardening in conjunction with 3D incremental convex cutting plane explicit algorithm is implemented for preparing the SMA constitutive model in the finite element formulation. Several numerical examples are presented for demonstrating the performance of the proposed formulation in stress, deflection and phase transformation analysis of pseudoelastic behavior of shape memory cylindrical panels with various boundary conditions. Also, it is shown that the presented formulation can be implemented for studying plates and beams with rectangular cross section

  20. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  1. LUGS, Stress Analysis, Flexibility Factors for Rectangular Attachment on Thin Shell

    International Nuclear Information System (INIS)

    Dodge, W.G.

    1977-01-01

    1 - Description of problem or function: LUGS calculates stresses, stress indices, and flexibility factors for a rectangular attachment on a cylindrical shell. 2 - Method of solution: The program implements Bijlaard's series solution to the thin-shell equations. 3 - Restrictions on the complexity of the problem: Caution is recommended in using the code for attachments on very thin shells that have large circumferential dimension and small longitudinal dimension (GAMMA.GE.80, BETA2.LE.0.05, and BETA1.GE.0.3) as series convergence and/or numeric problems seem to exist

  2. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement

  3. Study on modal characteristics of perforated shell using effective Young's modulus

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Yu, Seon Oh

    2011-01-01

    Research highlights: → The effective Young's modulus of perforated shell is proposed for modal analysis. → The penetration pattern is almost negligible for effective elastic constants. → The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  4. Pearl-necklace structures in core-shell molecular brushes: Experiments, Monte Carlo simulations and self-consistent field modeling

    NARCIS (Netherlands)

    Polotsky, A.; Charlaganov, M.; Xu, Y.P.; Leermakers, F.A.M.; Daoud, M.; Muller, A.H.E.; Dotera, T.; Borisov, O.V.

    2008-01-01

    We present theoretical arguments and experimental evidence for a longitudinal instability in core-shell cylindrical polymer brushes with a solvophobic inner (core) block and a solvophilic outer (shell) block in selective solvents. The two-gradient self-consistent field Scheutjens-Fleer (SCF-SF)

  5. Loading capacities and failure modes of various reinforced concrete slabs subjected to high-speed loading

    International Nuclear Information System (INIS)

    Saito, H.; Imamura, A.; Takeuchi, M.; Okamoto, S.; Kasai, Y.; Tsubota, H.; Yoshimura, M.

    1993-01-01

    The objective of this study was to clarify experimentally and analytically the loading capacities, deformations and failure modes of various types of reinforced concrete structures subjected to loads applied at various loading rates. Flat slabs, slabs with beams and cylindrical walls were tested under static, low-speed and high-speed loading. Analysis was applied to estimate the test results by the finite element method using a layered shell element. The analysis closely simulated the experimental results until punching shear failure occurred. (author)

  6. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  7. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    International Nuclear Information System (INIS)

    Cesari, F.; Battistella, P.; Quaranta, S.; Arduino, M.

    1993-01-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point

  8. Study on cylindrical specimen subjected to oligocyclic thermal fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Cesari, F; Battistella, P [Nuclear Engineering Laboratory ' Montecuccolino' , University of Bologna (Italy); Quaranta, S; Arduino, M [IVECO Engineering, Torino (Italy)

    1993-07-01

    During the last years the development in the analysis of the thermal fatigue phenomenon was remarkable in particularly in industry. This improvement was more and more evident on the specific power of the engines, involving a general rise in the working temperature and in the stress level of oligocyclic thermal fatigue due to the start /stop of the engine. As far as this is concerned, the theoretical capabilities of the LIN (Nuclear Engineering Laboratory of Montecuccolino) has been requested in the frame of a collaboration with the IVECO Spa of Turin in view of verifying experimental data. The investigation of the thermal fatigue consequences has been undertaken by analyzing a cylindrical sample; its material was similar to that of the engine's head. Its was axially clamped in the two extremes and subjected to repeated thermal cycles. Beginning from the first experimental results supplied by IVECO, a theoretical - numerical campaign has been started in order to attempt a correct interpretation of the experimental behavior. The computer codes adopted in this study are mainly two typical FE programs (CASTEM and ANSYS) which have been carried out in parallel. First, both the physical and mechanical experimental conditions have been accurately reproduced in the model prepared for structural analysis. Second, several runs of calculations ware worked out to obtain a stress-strain description during some load - unload cycles. The material law is obviously non-linear because the strong variations in the temperature distributions cause high stress levels well above the yielding point.

  9. Computer-Controlled Cylindrical Polishing Process for Large X-Ray Mirror Mandrels

    Science.gov (United States)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    We are developing high-energy grazing incidence shell optics for hard-x-ray telescopes. The resolution of a mirror shells depends on the quality of cylindrical mandrel from which they are being replicated. Mid-spatial-frequency axial figure error is a dominant contributor in the error budget of the mandrel. This paper presents our efforts to develop a deterministic cylindrical polishing process in order to keep the mid-spatial-frequency axial figure errors to a minimum. Simulation software is developed to model the residual surface figure errors of a mandrel due to the polishing process parameters and the tools used, as well as to compute the optical performance of the optics. The study carried out using the developed software was focused on establishing a relationship between the polishing process parameters and the mid-spatial-frequency error generation. The process parameters modeled are the speeds of the lap and the mandrel, the tool s influence function, the contour path (dwell) of the tools, their shape and the distribution of the tools on the polishing lap. Using the inputs from the mathematical model, a mandrel having conical approximated Wolter-1 geometry, has been polished on a newly developed computer-controlled cylindrical polishing machine. The preliminary results of a series of polishing experiments demonstrate a qualitative agreement with the developed model. We report our first experimental results and discuss plans for further improvements in the polishing process. The ability to simulate the polishing process is critical to optimize the polishing process, improve the mandrel quality and significantly reduce the cost of mandrel production

  10. Dossier Shell Eco-Marathon; Dossier Shell Eco-Marathon

    Energy Technology Data Exchange (ETDEWEB)

    Matla, P.

    2012-05-15

    Three articles address subjects concerning the annual race with highly energy efficient cars: the Shell Eco-Marathon. [Dutch] In 3 artikelen wordt aandacht besteed aan de ontwerpen voor de jaarlijkse race met superzuinige auto's, de Shell Eco-Marathon.

  11. Effective thermoelastic properties of composites with periodicity in cylindrical coordinates

    KAUST Repository

    Chatzigeorgiou, George

    2012-09-01

    The aim of this work is to study composites that present cylindrical periodicity in the microstructure. The effective thermomechanical properties of these composites are identified using a modified version of the asymptotic expansion homogenization method, which accounts for unit cells with shell shape. The microscale response is also shown. Several numerical examples demonstrate the use of the proposed approach, which is validated by other micromechanics methods. © 2012 Elsevier Ltd. All rights reserved.

  12. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2008-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigenfunction series and the simple approximate one by the temperature profile method. Furthermore, thermal stress shell solutions were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay coefficient. The thermal stress shell solutions are described by two parameters. One is the ratio between the temperature decay coefficient and the load decay coefficient. Another is the nondimensional width of stratification. These solutions are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  13. Evaluation charts of thermal stresses in cylindrical vessels induced by thermal stratification of contained fluid

    International Nuclear Information System (INIS)

    Furuhashi, Ichiro; Kawasaki, Nobuchika; Kasahara, Naoto

    2007-01-01

    Temperature and thermal stress in cylindrical vessels were analysed for the thermal stratification of contained fluid. Two kinds of temperature analysis results were obtained such as the exact temperature solution of eigen-function series and the simple approximate one by the temperature profile method. Furthermore, shell solutions of thermal stress were obtained for the simple approximate temperatures. Through comparison with FEM analyses, these solutions were proved to be adequate. The simple temperature solution is described by one parameter that is the temperature decay factor. The shell solutions of thermal stress are described by two parameters. One is the ratio between the temperature decay factor and the local decay factor. Another is the non-dimensional width of stratification. These solution are so described by few parameters that those are suitable for the simplified thermal stress evaluation charts. These charts enable quick and accurate thermal stress evaluations of cylindrical vessel of this problem compared with conventional methods. (author)

  14. On selection of Fourier series in analysis of geometric imperfections in cylindrical shells%关于圆柱壳几何缺陷分析中傅立叶级数选取的探讨

    Institute of Scientific and Technical Information of China (English)

    林翔

    2007-01-01

    圆柱壳屈曲一般对壳壁上微小几何缺陷的型式和幅值均十分敏感.为了能将缺陷的不同分量和圆柱壳的结构特征联系起来以及研究缺陷各分量对壳屈曲强度的影响,缺陷通常采用傅立叶级数分解.然而,大多数先前的研究选取不适当的傅立叶级数得到不正确的结果.本文首先考察傅立叶级数的数学描述基础,进而讨论不同傅立叶级数在描述不同型式几何缺陷的表现,从而得出如何选取适当的傅立叶级数用来描述圆柱壳几何缺陷的结论.采用这些适当的傅立叶级数,能更好地了解圆柱壳几何缺陷的特征分量以及这些分量对壳体屈曲强度的影响.%Buckling behavior of cylindrical shells is often highly sensitive to both the form and amplitude of minor geometric imperfections in the shell walls. In order to connect different components of the imperfections with structural features and their effect on shell buckling strength, the imperfections are generally decomposed using Fourier series. Most of previous studies suffer from choosing improper Fourier series, leading to some incorrect results. This paper first examined the mathematical basis of a Fourier series representation and then discussed the performance of various forms of the series in representing different forms of geometric imperfections, Conclusions were then drawn on selection of an appropriate Fourier series to represent the imperfections so that to obtain a better understanding of the characteristic components of the geometric imperfections in cylindrical shells and their effect on shell buckling strength.

  15. High-resolution K-shell spectra from laser excited molybdenum plasmas

    Directory of Open Access Journals (Sweden)

    Szabo C.I.

    2013-11-01

    Full Text Available X-ray spectra from Molybdenum plasmas were recorded by a Cauchois-type cylindrically bent Transmission Crystal Spectrometer (TCS. The absolutely calibrated spectrometer provides an unprecedented resolution of inner shell transitions (K x-ray radiation. This tool allows us to resolve individual lines from different charge states existing inside the laser-produced plasma. The inner shell transitions from highly charged Molybdenum shown in this report have never been resolved before in such detail in a laser-produced plasma.

  16. Restricted open-shell Kohn-Sham theory: N unpaired electrons

    International Nuclear Information System (INIS)

    Schulte, Marius; Frank, Irmgard

    2010-01-01

    Graphical abstract: High-spin or low-spin? The lowest-lying states for different multiplicities of iron complexes are described with a combination of restricted open-shell Kohn-Sham theory and Car-Parrinello molecular dynamics. - Abstract: We present an energy expression for restricted open-shell Kohn-Sham theory for N unpaired electrons. It is shown that it is possible to derive an explicit energy expression for all low-spin multiplets of systems that exhibit neither radial nor cylindrical symmetry. The approach was implemented in the CPMD code and tested for iron complexes.

  17. Stability analysis of whirling composite shells partially filled with two liquid phases

    Energy Technology Data Exchange (ETDEWEB)

    Sahebnasagh, Mohammad [Department of Mechanical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nikkhah-Bahrami, Mansour; Firouz-Abadi, Roohollah [Department of Aerospace Engineering, Sharif University, Tehran (Iran, Islamic Republic of)

    2017-05-15

    In this paper, the stability of whirling composite cylindrical shells partially filled with two liquid phases is studied. Using the first-order shear shell theory, the structural dynamics of the shell is modeled and based on the Navier-Stokes equations for ideal liquid, a 2D model is developed for liquid motion at each section of the cylinder. In steady state condition, liquids are supposed to locate according to mass density. In this study, the thick shells are investigated. Using boundary conditions between liquids, the model of coupled fluid-structure system is obtained. This coupled fluid-structure model is employed to determine the critical speed of the system. The effects of the main variables on the stability of the shell are studied and the results are investigated.

  18. Buckling strength of spherical shells under combined loads

    International Nuclear Information System (INIS)

    Nagashima, H.; Kokubo, K.; Takayanagi, M.; Hayasaka, Y.; Kume, T.; Nagata, T.

    1995-01-01

    Many studies on buckling of cylindrical shells have been conducted, and many buckling evaluation equations have been proposed for actual plant designs; however, buckling of spherical shells under combined horizontal and vertical loads cannot be evaluated due to insufficient data. There is a particular lack of buckling data for spherical shells under lateral loads. To establish a method for estimating the buckling strength of spherical shells, we investigate the interactions between horizontal and vertical (compressive tensile) loads by conducting buckling tests. Applying several combinations of these loads in tests and using computer linear analysis, we obtain interaction curves. This study reports on the buckling tests conducted using spherical shell 1120 mm in dia., 0.7 mm thick and 696 mm high, which are shaped individually by press-forming and finally joined together by four meridional welds, using a specially made jig. Initial imperfections before testing and local deformations after each loading increment during testing are measured with special measuring equipment, and the interaction curve of horizontal and vertical loads and effect of imperfection on the buckling strength of spherical shells are obtained. Nonlinear FEM programs are developed using an 8-node isoparametric shell element and a four-node quadrilateral element of C 0 type with reduced integration based upon a Mindlin-Reissner theory which includes transverse shear. Actual initial imperfections are generally in irregular patterns. Thus, there may be several definitions of the equivalent magnitudes of initial imperfections related to buckling loads. Equivalent magnitudes have no practical meaning unless they can be obtained easily not only for small structures such as test shells but also for large actual structures. In the present study, we define the equivalent magnitude of initial imperfections as the maximum local ruggedness measured radially from a circular temperature having a radius equal

  19. Strength and deformation characteristics of reinforced concrete shell elements subjected to in-plane forces

    International Nuclear Information System (INIS)

    Aoyagi, Yukio; Yamada, Kazuie.

    1983-01-01

    Reactor containment vessels have been made of steel so far, but since it was decided to adopt a prestressed concrete vessel in the Tsuruga No. 2 plant of Japan Atomic Power Co., the construction of the containment vessels made of prestressed concrete and reinforced concrete has been studied by various electric power companies. However in Japan, there is no standard for the design and construction of concrete structures of this kind. In the standard of foreign countries used for reference, the basis of the stipulation concerning the aseismatic design of concrete containment vessels is not distinct. In this study, the clarification of the strength and deformation when RC vessels are subjected to seismic force only or to internal pressure and seismic force was aimed at, and the result of the loading test by one or two-direction in-plane forces on RC shell elements was examined. Based on this, the method of estimating the strength and deformation of RC shell elements was proposed. The orthogonal reinforcement was adopted, and the strength of shell elements was determined by the yielding of reinforcing bars. (Kako, I.)

  20. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 3

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Corum, J.M.; Bryson, J.W.

    1975-06-01

    The third in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: the experimental data provide design information directly applicable to nozzles in cylindrical vessels; and the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 3 had a 10 in. OD and the nozzle had a 1.29 in. OD, giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios for the cylinder and the nozzle were 50 and 7.68 respectively. Thirteen separate loading cases were analyzed. In each, one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for all the loadings were obtained using 158 three-gage strain rosettes located on the inner and outer surfaces. The loading cases were also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  1. Theoretical and experimental stress analyses of ORNL thin-shell cylinder-to-cylinder model 4

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Bolt, S.E.; Bryson, J.W.

    1975-06-01

    The last in a series of four thin-shell cylinder-to-cylinder models was tested, and the experimentally determined elastic stress distributions were compared with theoretical predictions obtained from a thin-shell finite-element analysis. The models in the series are idealized thin-shell structures consisting of two circular cylindrical shells that intersect at right angles. There are no transitions, reinforcements, or fillets in the junction region. This series of model tests serves two basic purposes: (1) the experimental data provide design information directly applicable to nozzles in cylindrical vessels, and (2) the idealized models provide test results for use in developing and evaluating theoretical analyses applicable to nozzles in cylindrical vessels and to thin piping tees. The cylinder of model 4 had an outside diameter of 10 in., and the nozzle had an outside diameter of 1.29 in., giving a d 0 /D 0 ratio of 0.129. The OD/thickness ratios were 50 and 20.2 for the cylinder and nozzle respectively. Thirteen separate loading cases were analyzed. For each loading condition one end of the cylinder was rigidly held. In addition to an internal pressure loading, three mutually perpendicular force components and three mutually perpendicular moment components were individually applied at the free end of the cylinder and at the end of the nozzle. The experimental stress distributions for each of the 13 loadings were obtained using 157 three-gage strain rosettes located on the inner and outer surfaces. Each of the 13 loading cases was also analyzed theoretically using a finite-element shell analysis developed at the University of California, Berkeley. The analysis used flat-plate elements and considered five degrees of freedom per node in the final assembled equations. The comparisons between theory and experiment show reasonably good agreement for this model. (U.S.)

  2. Study on modal characteristics of perforated shell using effective Young's modulus

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo, E-mail: mjj@kins.re.kr [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Yu, Seon Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2011-06-15

    Research highlights: > The effective Young's modulus of perforated shell is proposed for modal analysis. > The penetration pattern is almost negligible for effective elastic constants. > The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  3. FASOR - A second generation shell of revolution code

    Science.gov (United States)

    Cohen, G. A.

    1978-01-01

    An integrated computer program entitled Field Analysis of Shells of Revolution (FASOR) currently under development for NASA is described. When completed, this code will treat prebuckling, buckling, initial postbuckling and vibrations under axisymmetric static loads as well as linear response and bifurcation under asymmetric static loads. Although these modes of response are treated by existing programs, FASOR extends the class of problems treated to include general anisotropy and transverse shear deformations of stiffened laminated shells. At the same time, a primary goal is to develop a program which is free of the usual problems of modeling, numerical convergence and ill-conditioning, laborious problem setup, limitations on problem size and interpretation of output. The field method is briefly described, the shell differential equations are cast in a suitable form for solution by this method and essential aspects of the input format are presented. Numerical results are given for both unstiffened and stiffened anisotropic cylindrical shells and compared with previously published analytical solutions.

  4. Research on Initial Geometric Deviation Description for Numerical Simulation of Cylindrical Shells under External Pressure%外压模拟计算中圆筒初始几何偏差描述方法的研究

    Institute of Scientific and Technical Information of China (English)

    邓志军; 陈冰冰; 郑浣琪; 魏协宇; 高增梁

    2015-01-01

    The simulation result of cylindrical shells under external pressure is influenced greatly by different initial geometric deviation. Two forms of initial geometric deviations i.e., the first-order buckling mode of shell and the Fourier series representation, are briefly introduced. A simplified method of Fourier series is developed according to circumferential wavel(2-8), initial phase angleφ12-φ18 and 5 groups initial geometric deviations data. According to the basic dimension, maximum initial geometric deviation, elastic modulus and yield strength of cylindrical shells in the existing reference, simplified Fourier series and first-order buckling mode method are applied to describe the initial geometric deviations of cylindrical shells in the double nonlinear buckling simulation, bilinear material model is adopted to the constitutive relation of materials. The results are discussed and the values regarding the buckling pressure obtained by the simulation are compared with those from experiments reported in reference. The results show that the values of buckling pressure obtained by first-order buckling mode method are generally smaller than the experimental values, and the results obtained by the simplified Fourier series method are in good agreement with the experimental values in the reference. This illustrates that the initial geometric deviations of cylindrical shells can be better expressed by the simplified Fourier series.%在圆筒外压模拟计算中,初始几何偏差施加方式的不同对模拟计算结果影响较大。就“一致缺陷模态法”和傅里叶级数两种初始几何偏差的描述方法进行简述。根据5组初始几何偏差实测数据,取周向波数l=2~8和初始相位角φ12~φ18,提出一种描述卷焊圆筒初始几何偏差的傅里叶级数简化方法。根据文献提供的42组圆筒基本尺寸、最大初始几何偏差值、材料的弹性模量和屈服强度,

  5. Lossless acoustic half-bipolar cylindrical cloak with negative-index metamaterial

    Science.gov (United States)

    Lee, Yong Y.; Ahn, Doyeol

    2018-05-01

    A lossless acoustic half-bipolar cylindrical cloak that has an exposed bottom is considered. Here, we show that a cloak that includes a complementary region including a negative-index medium inside of the cloaking shell works in the illumination direction independently even in the presence of the exposed bottom of the structure. This is due to the fact that the phase velocity of the wave in the normal direction can be cancelled in the presence of a boundary containing a negative-index medium that reduces scattering significantly.

  6. Impact of the Excitation Source and Plasmonic Material on Cylindrical Active Coated Nano-Particles

    Directory of Open Access Journals (Sweden)

    Richard W. Ziolkowski

    2011-09-01

    Full Text Available Electromagnetic properties of cylindrical active coated nano-particles comprised of a silica nano-cylinder core layered with a plasmonic concentric nano-shell are investigated for potential nano-sensor applications. Particular attention is devoted to the near-field properties of these particles, as well as to their far-field radiation characteristics, in the presence of an electric or a magnetic line source. A constant frequency canonical gain model is used to account for the gain introduced in the dielectric part of the nano-particle, whereas three different plasmonic materials (silver, gold, and copper are employed and compared for the nano-shell layers.

  7. Seismic analysis of axisymmetric shells

    International Nuclear Information System (INIS)

    Jospin, R.J.; Toledo, E.M.; Feijoo, R.A.

    1984-01-01

    Axisymmetric shells subjected to multiple support excitation are studied. The shells are spatialy discretized by the finite element method and in order to obtain estimates for the maximum values of displacements and stresses the response spectrum tecnique is used. Finally, some numerical results are presented and discussed in the case of a shell of revolution with vertical symmetry axis, subjected to seismic ground motions in the horizontal, vertical and rocking directions. (Author) [pt

  8. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  9. Surface crack growth in cylindrical hollow specimen subject to tension and torsion

    Directory of Open Access Journals (Sweden)

    V. Shlyannikov

    2015-07-01

    Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.

  10. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes.

    Science.gov (United States)

    Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua

    2017-10-09

    Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of a mixed Galerkin/least-squares method to axisymetric shell problems subjected to arbitrary loading

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Toledo, E.M.; Franca, L.P.; Garcia, E.L.M.

    1989-08-01

    A variationaly consistent finite element formulation for constrained problems free from shear or membrane locking is applied to axisymetric shells subjected to arbitrary loading. The governing equations are writen according to Love's classical theory for a problem of bending of axisymetric thin and moderately thick shells accounting for shear deformation. The mixed variational formulation, in terms of stresses and displacements here presented consists of classical Galerkin method plus mesh-dependent least-square type terms employed with equal-order finite element polynomials. The additional terms enhance stability and accuracy of the original Galerkin method, as already proven theoretically and confirmed trough numerical experiments. Numerical results of some examples are presented to demonstrate the good stability and accuracy of the formulation. (author) [pt

  12. On the mechanics of elastic lines in thin shells

    Science.gov (United States)

    Benet, Eduard; Vernerey, Franck

    The deformation of soft shells in nature and engineering is often conditioned by the presence of lines whose mechanical properties are different from the shell. For instance, the deformation of tree leaves is conditioned by the presence of harder stems, and cell mitosis is driven by a stiffening line along its membrane. From an experimental standpoint, many groups have taken advantage of this feature to develop self-actuated shells with prescribed deformations. Examples include the polymerization of gels along certain lines, or the inclusion of stiffer lines via 3D printing. However, there is not yet a general continuum theory that accounts for this type of discontinuity within the membrane. Hence, we extend the general shell theory to account for the inclusion of a line that potentially induces jumps in stresses, couple stresses and moments, across its thickness. This is achieved via coupling the rod and the membrane deformations, and ensuring continuity of displacements. The model is then applied to three important problems: a constriction disc inside a shell of revolution, the induced twisting of a shell via the torsion of an embedded line, and the effect of an helicoidal line on the uni-axial deformation of a cylindrical shell. National Science Foundation CAREER award 1350090.

  13. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  14. The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells

    International Nuclear Information System (INIS)

    Ke, Liao-Liang; Wang, Yue-Sheng; Yang, Jie; Kitipornchai, Sritawat

    2014-01-01

    Based on the nonlocal Love’s shell theory, this paper develops an embedded magneto-electro-elastic (MEE) cylindrical nanoshell model. This model incorporates effects of the small scale parameter and thermo-electro-magnetic loadings. The surrounding elastic medium is described as the Winkler model characterized by the spring. By using this model and the Hamilton principle, the governing equations and boundary conditions are derived for free vibration of the embedded MEE cylindrical nanoshells. The Navier’s method is first utilized to obtain the analytical solution for the simply supported MEE nanoshell. Then, numerical solutions for MEE nanoshells under various boundary conditions are obtained by using the differential quadrature (DQ) method. A detailed parametric study is conducted to highlight the influences of the nonlocal parameter, temperature rise, external electric potential, external magnetic potential, spring constant, radius-to-thickness ratio and length-to-radius ratio on natural frequencies of MEE nanoshells. (paper)

  15. Cylindrical Shells Made of Stainless Steel - Investigation of Postbuckling

    Science.gov (United States)

    Stehr, Sebastian; Stranghöner, Natalie

    2017-06-01

    The relevant load case of open thin-walled shells is often wind loading during construction. Because of the missing stabilization effect of the roof they show a very high sensitivity to buckling which results into higher wall thicknesses. As part of the European RFCS research project BiogaSS the Institute for Metal and Lightweight Structures of the University of Duisburg-Essen carried out investigations on open thin-walled tanks made of austenitic and duplex stainless steels under wind load to study a possible economic advantage which might be gained from the consideration of the elastic postbuckling behaviour. This contribution presents not only experimental and numerical results but also first recommendations regarding the range of possible buckling reduction factors which might be incorporated in future revisions of EN 1993-1-6 and EN 1993-4-2.

  16. Vibrations of composite circular shell structures due to transient loads

    International Nuclear Information System (INIS)

    Schrader, K.-H.; Krutzik, N.; Winkel, G.

    1975-01-01

    Referring to a container consisting of different shell structures - such as spherical, cylindrical and conical shells - the dynamic behavior of coupled spatial shell structures due to transient loads will be investigated. The spatial structure including the filling of water will be idealized as a three-dimensional model consisting of ring elements. The influence of the water filling on the vibrations will be considered by virtual masses added to the shell structures. In circular direction as well as in meridional direction a consistent mass model has been used. By variation of the virtual masses it will be clarified, how these additional masses influence the vibrational behavior of the composed system. Another aspect which will be investigated is the influence of different stiffnesses of substructures or parts of substructures on the natural frequencies, and on their affiliated eigensystems. Furthermore, the maximum and minimum stresses in the structures caused by transient loads acting on the inner surface of the shells will be explored. Here it seems to be possible to locate an area of maximum strain. Rotational loads as well as nonrotational loads will be considered

  17. Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

    DEFF Research Database (Denmark)

    Dubrovskii, V. G.; Shtrom, I. V.; Reznik, R. R.

    2016-01-01

    Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core...

  18. Fano-like resonance and scattering in dielectric(core)–metal(shell) composites embedded in active host matrices

    CSIR Research Space (South Africa)

    Jule, L

    2015-07-01

    Full Text Available We investigate light scattering by core–shell consisting of metal/dielectric composites considering spherical and cylindrical nanoinclusions, within the framework of the conventional Rayleigh approximation. By writing the electric potential...

  19. Free Vibration Analysis for Shells of Revolution Using an Exact Dynamic Stiffness Method

    Directory of Open Access Journals (Sweden)

    Xudong Chen

    2016-01-01

    Full Text Available An exact generalised formulation for the free vibration of shells of revolution with general shaped meridians and arbitrary boundary conditions is introduced. Starting from the basic shell theories, the vibration governing equations are obtained in the Hamilton form, from which dynamic stiffness is computed using the ordinary differential equations solver COLSYS. Natural frequencies and modes are determined by employing the Wittrick-Williams (W-W algorithm in conjunction with the recursive Newton’s method, thus expanding the applications of the abovementioned techniques from one-dimensional skeletal structures to two-dimensional shells of revolution. A solution for solving the number of clamped-end frequencies J0 in the W-W algorithm is presented for both uniform and nonuniform shell segment members. Based on these theories, a FORTRAN program is written. Numerical examples on circular cylindrical shells, hyperboloidal cooling tower shells, and spherical shells are given, and error analysis is performed. The convergence of the proposed method on J0 is verified, and comparisons with frequencies from existing literature show that the dynamic stiffness method is robust, reliable, and accurate.

  20. An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil

    Directory of Open Access Journals (Sweden)

    Shirish Vichare

    2010-07-01

    Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.

  1. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure

    OpenAIRE

    Zamani, J.; Soltani, B.; Aghaei, M.

    2014-01-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the inter...

  2. Shell film- and video catalogue 1996

    International Nuclear Information System (INIS)

    1996-01-01

    An overview is given of films and videos that are available through 'Shell Nederland Filmcentrale' (Shell Netherlands Film Center), subdivided into the subjects (1) About Shell; (2) Health, Safety and Environment; (3) Science and Technology; (4) The History of Car(racing); and (5) Historical Overview. 5 ills

  3. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  4. Rothe's method for parabolic equations on non-cylindrical domains

    Czech Academy of Sciences Publication Activity Database

    Dasht, J.; Engström, J.; Kufner, Alois; Persson, L.E.

    2006-01-01

    Roč. 1, č. 1 (2006), s. 59-80 ISSN 0973-2306 Institutional research plan: CEZ:AV0Z10190503 Keywords : parabolic equations * non-cylindrical domains * Rothe's method * time-discretization Subject RIV: BA - General Mathematics

  5. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    International Nuclear Information System (INIS)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M.; Rupasov, A. A.; Frolov, I. N.

    2016-01-01

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.

  6. Response of a shell structure subject to distributed harmonic excitation

    International Nuclear Information System (INIS)

    Cao, Rui; Bolton, J. Stuart

    2016-01-01

    Previously, a coupled, two-dimensional structural-acoustic ring model was constructed to simulate the dynamic and acoustical behavior of pneumatic tires. Analytical forced solutions were obtained and were experimentally verified through laser velocimeter measurement made using automobile tires. However, the two-dimensional ring model is incapable of representing higher order, in-plane modal motion in either the circumferential or axial directions. Therefore, in this paper, a three-dimensional pressurized circular shell model is proposed to study the in-plane shearing motion and the effect of different forcing conditions. Closed form analytical solutions were obtained for both free and forced vibrations of the shell under simply supported boundary conditions. Dispersion relations were calculated and different wave types were identified by their different speeds. Shell surface mobility results under various input distributions were also studied and compared. Spatial Fourier series decompositions were also performed on the spatial mobility results to give the forced dispersion relations, which illustrate clearly the influence of input force spatial distribution. Such a model has practical application in identifying the sources of noise and vibration problems in automotive tires. (paper)

  7. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    An economic technique for the numerical analysis of the elasto-plastic behaviour of shells of revolution would be of considerable value in the nuclear reactor industry. A numerical method based on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motion are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behaviour, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. (Auth.)

  8. Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*

    Science.gov (United States)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.

    2012-10-01

    Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  9. Modelling the structure and kinematics of the Firework nebula: The nature of the GK Persei nova shell and its jet-like feature

    Science.gov (United States)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2016-10-01

    Aims: The shaping mechanisms of old nova remnants are probes for several important and unexplained processes, such as dust formation and the structure of evolved star nebulae. To gain a more complete understanding of the dynamics of the GK Per (1901) remnant, an examination of symmetry of the nova shell is explored, followed by a kinematical analysis of the previously detected jet-like feature in the context of the surrounding fossil planetary nebula. Methods: Faint-object high-resolution echelle spectroscopic observations and imaging were undertaken covering the knots which comprise the nova shell and the surrounding nebulosity. New imaging from the Aristarchos telescope in Greece and long-slit spectra from the Manchester Echelle Spectrometer instrument at the San Pedro Mártir observatory in Mexico were obtained, supplemented with archival observations from several other optical telescopes. Position-velocity arrays are produced of the shell, and also individual knots, and are then used for morpho-kinematic modelling with the shape code. The overall structure of the old knotty nova shell of GK Per and the planetary nebula in which it is embedded is then analysed. Results: Evidence is found for the interaction of knots with each other and with a wind component, most likely the periodic fast wind emanating from the central binary system. We find that a cylindrical shell with a lower velocity polar structure gives the best model fit to the spectroscopy and imaging. We show in this work that the previously seen jet-like feature is of low velocity. Conclusions: The individual knots have irregular tail shapes; we propose here that they emanate from episodic winds from ongoing dwarf nova outbursts by the central system. The nova shell is cylindrical, not spherical, and the symmetry axis relates to the inclination of the central binary system. Furthermore, the cylinder axis is aligned with the long axis of the bipolar planetary nebula in which it is embedded. Thus, the

  10. Preliminary engineering studies for the support shell of the outer tracker of the SDC detector

    International Nuclear Information System (INIS)

    Vandergriff, D.H.; Mayhall, J.

    1991-09-01

    The Solenoidal Detector Collaboration (SDC) detector is in the conceptual design phase. ORNL is currently working with various sub-groups on the design of the outer tracker portion of the SDC detector. A major focus in the outer tracker design is the structure that mounts and supports the tracking elements. This structure must meet extreme requirements of alignment and stability while containing a minimum of material. This report describes the requirements, evaluations, and analyses that have been performed on the two options being explored; a cylindrical support shell and a modular support shell

  11. Thermal stress state of laminated shells of revolution made of isotropic and linearly orthotropic materials

    International Nuclear Information System (INIS)

    Savchenko, V.G.

    1995-01-01

    In this investigation, we will use a cylindrical coordinate system to study the stress state of laminated shells of revolution made of inelastically deforming isotropic materials and elastic materials with linear orthotropy. One of the principal directions of anisotropy coincides with the axis of revolution of the body. The shells will be subjected to nonaxisymmetric loading by body bar K (K Z , K r , K var-phi ) and surface bar t n (t nz , t nr , t nvar-phi ) forces and heating. The level of loading is such that the rheological properties of the materials of the layers are not a factor, although their thermomechanical characteristics depend on temperature. In addition, the loading and heating of the body occur in such a way that simple (or close to simple) deformation processes take place in its isotropic elements. These processes are accompanied by inelastic strains and the formation of unloading regions in which plastic strains having the sign opposite the initial strains develop. It is assumed that the layers of the body are secured to one another without interference and that conditions corresponding to ideal contact prevail at their interfaces

  12. Molluscan shell evolution with review of shell calcification hypothesis

    Czech Academy of Sciences Publication Activity Database

    Furuhashi, T.; Schwarzinger, C.; Mikšík, Ivan; Smrž, Miloslav; Beran, A.

    2009-01-01

    Roč. 154, č. 3 (2009), s. 351-371 ISSN 1096-4959 Institutional research plan: CEZ:AV0Z50110509 Keywords : mollusca * shell * biomineralization Subject RIV: CE - Biochemistry Impact factor: 1.607, year: 2009

  13. Magnetic guns with cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk

    2012-01-01

    Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnetic gun * magnetostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997

  14. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat and Conical Baffles

    Directory of Open Access Journals (Sweden)

    Gnitko V.

    2017-12-01

    Full Text Available This paper presents an analysis of low-frequency liquid vibrations in rigid partially filled containers with baffles. The liquid is supposed to be an ideal and incompressible one and its flow is irrotational. A compound shell of revolution is considered as the container model. For evaluating the velocity potential the system of singular boundary integral equations has been obtained. The single-domain and multi-domain reduced boundary element methods have been used for its numerical solution. The numerical simulation is performed to validate the proposed method and to estimate the sloshing frequencies and modes of fluid-filled cylindrical shells with baffles in the forms of circular plates and truncated cones. Both axisymmetric and non-axisymmetric modes of liquid vibrations in baffled and un-baffled tanks have been considered. The proposed method makes it possible to determine a suitable place with a proper height for installing baffles in tanks by using the numerical experiment.

  15. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  16. Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2007-01-01

    In this Letter, for the dust-ion-acoustic waves with azimuthal perturbation in a dusty plasma, a cylindrical modified Kadomtsev-Petviashvili (CMKP) model is constructed by virtue of symbolic computation, with three families of exact analytic solutions obtained as well. Dark and bright CMKP nebulons are investigated with pictures and related to such dusty-plasma environments as the supernova shells and Saturn's F-ring. Difference of the CMKP nebulons from other known nebulons is also analyzed, and possibly-observable CMKP-nebulonic effects for the future plasma experiments are proposed, especially those on the possible notch/slot and dark-bright bi-existence

  17. The use of COD and plastic instability in crack propagation and arrest in shells

    Science.gov (United States)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  18. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  19. Arbitrarily elliptical-cylindrical invisible cloaking

    International Nuclear Information System (INIS)

    Jiang Weixiang; Cui Tiejun; Yu Guanxia; Lin Xianqi; Cheng Qiang; Chin, J Y

    2008-01-01

    Based on the idea of coordinate transformation (Pendry, Schurig and Smith 2006 Science 312 1780), arbitrarily elliptical-cylindrical cloaks are proposed and designed. The elliptical cloak, which is composed of inhomogeneous anisotropic metamaterials in an elliptical-shell region, will deflect incoming electromagnetic (EM) waves and guide them to propagate around the inner elliptical region. Such EM waves will return to their original propagation directions without distorting the waves outside the elliptical cloak. General formulations of the inhomogeneous and anisotropic permittivity and permeability tensors are derived for arbitrarily elliptical axis ratio k, which can also be used for the circular cloak when k = 1. Hence the elliptical cloaks can make a large range of objects invisible, from round objects (when k approaches 1) to long and thin objects (when k is either very large or very small). We also show that the material parameters in elliptical cloaking are singular at only two points, instead of on the whole inner circle for circular cloaking, which are much easier to be realized in actual applications. Full-wave simulations are given to validate the arbitrarily elliptical cloaking

  20. Bounds of thermal stability of infinite cylindrical structures with non-uniform internal heat generation

    International Nuclear Information System (INIS)

    Gadalla, M.A.

    1992-01-01

    This paper presents an overview analyses of the thermal instability or thermal viability of infinite cylindrical structures with non-linear and non-uniform internal heat generation. The structure may be subjected to different and combined boundary conditions. An analytical solution is obtained for the generalized problem in spite of the non-linearity and the non-homogeneity of the source term. Four case studies with different boundary conditions are presented. The analyses show that the critical parameter for thermal stability may be though of as an altitude of surface below which the cylindrical structure will be thermally stable and performance worthy. The results also show that the bounds of thermal stability of a cylindrical structure system (solid or hollow) is eminently determined by the boundary conditions to which the system is subjected and can significantly alter the life-span of the structure

  1. Seismic response of flexible cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, T A; Boley, B A [comps.

    1977-01-01

    An experimental study of the seismic behavior of thin shell circular cylindrical liquid storage tanks is described. The investigation was planned to evaluate the adequacy of present methods of tank design, and was conducted using the Earthquake Simulator Facility of the University of California, Berkeley. The model tank considered in this paper was 6 ft high by 12 ft in diameter, and was welded from thin sheet aluminum to simulate a steel tank 36 feet in diameter. During testing the tank had an open top, held 60 inches of water, and was subjected to a time scaled El Centro (1940) earthquake, amplified to a peak acceleration of 0.5 g. Both base free and base fixed conditions were studied. Results of the experiments demonstrate that fluid pressures included both impulsive and convective components, and that the wave sloshing followed basic theory quite closely. But it also was apparent that the tank flexibility influenced the hydrodynamic pressures, as indicated by pressure amplification in the clamped tank, and by a total change of pressure history in the unclamped case. Significant out of round distortions of the tank were developed, of a three lobe form or the free base case and with four lobes in the fixed base case. Uplift of the tank base was closely related to the out-of-round deformation of the unanchored tank, whereas initial eccentricities apparently caused the section distortions in the anchored system. Stresses in the tank wall do not follow the expected pattern of response to overturning moment; instead they seem to be mainly associated with the section distortions. At present there is no analytical procedure for predicting these distortions .

  2. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  3. Theoretical study on flow-induced vibration of a cylindrical weir due to fluid discharge

    International Nuclear Information System (INIS)

    Fujita, Katsuhisa; Ito, Tomohiro; Hirota, Kazuo; Kodama, Tetsuhiko

    1994-01-01

    In a FBR, the inside of the reactor vessel is cooled by liquid sodium. Liquid sodium is supplied to the upper plenum from its bottom and discharges over the top of the cylindrical weir down to the lower plenum. The weir is so thin in order to decrease the thermal stress on it that the fluid--structure interaction becomes predominant. A fluidelastic vibration of the weir due to fluid discharge was discovered in a French FBR. In this study, a theoretical model was developed on the ''fluid--elastic mode'' instability of a cylindrical weir due to fluid discharge from the upper plenum to the lower plenum. In the analysis, the fluctuation of both the discharge flow rate over a weir due to the vibration of the cylindrical shell and the pressure in the lower plenum due to fluid discharge were formulated. Instability criteria was derived from the added damping ratio due to fluid discharge using modal analysis. The natural modes and modal mass of the weir were obtained by the analysis using the FEM code taking the fluid - structure interaction into consideration. The theoretical instability range in terms of the fall height and the flow rate is compared with the experimental results. The theoretical values showed a good agreement with the experimental ones

  4. The free vibration of free-clamped fluid-coupled coaxial cylindrical shells

    International Nuclear Information System (INIS)

    Tani, Junji; Haiji, Hirohisa

    1986-01-01

    The linear free vibration of free-clamped coaxial cylinders partially filled with incompressible, inviscid liquid in the annular gap is investigated theoretically on the basis of the Donnell-type equations for cylinders and the velocity potential theory for liquid motion. The problem is solved by the modified Galerkin method. The initial axisymmetric deformation of the shell due to the static liquid pressure as well as the boundary condition on the free liquid surface are fully taken into consideration. It is found that the static liquid pressure and the liquid surface condition have a significant effect on the natural frequency, and that the interactive effect of the coaxial cylinders becomes small and the mode shape changes with an increase in the wave number and the annular gap. (author)

  5. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    Science.gov (United States)

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  6. The stability of through-wall circumferential cracks in cylindrical pipes subjected to bending loads

    International Nuclear Information System (INIS)

    Smith, E.

    1983-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to show that when a circumferential through-wall crack exists in a 304 SS circular cylindrical pipe, and the pipe is subjected to an applied bending moment, then crack growth requires the rotation at the pipe-ends to be increased, (i.e. crack growth is stable), unless the pipe length is unduly large. On this basis it was concluded that unstable fracture is unlikely to occur in BWR SS piping, when the system is designed in accord with the ASME Code load levels for normal operation and anticipated transients. The Tada-Paris-Gamble analysis focuses on the inter-relation between instability and the onset of crack extension, and does not specifically consider the possibility that a crack might become unstable after some stable crack extension. The paper addresses this aspect of the crack stability problem using a crack tip opening angle criterion for crack extension, which has similarities with the tearing modulus approach. The results show that unstable fracture should not occur even after some stable crack extension, again provided that the pipe length is not unduly large. In other words, guillotine failure of a pipe in a BWR system is unlikely, even though the ASME Code limiting stress levels as might be exceeded, as may be the case with a very severe earthquake. (orig./HP)

  7. Ductile fracture of cylindrical vessels containing a large flaw

    Science.gov (United States)

    Erdogan, F.; Irwin, G. R.; Ratwani, M.

    1976-01-01

    The fracture process in pressurized cylindrical vessels containing a relatively large flaw is considered. The flaw is assumed to be a part-through or through meridional crack. The flaw geometry, the yield behavior of the material, and the internal pressure are assumed to be such that in the neighborhood of the flaw the cylinder wall undergoes large-scale plastic deformations. Thus, the problem falls outside the range of applicability of conventional brittle fracture theories. To study the problem, plasticity considerations are introduced into the shell theory through the assumptions of fully-yielded net ligaments using a plastic strip model. Then a ductile fracture criterion is developed which is based on the concept of net ligament plastic instability. A limited verification is attempted by comparing the theoretical predictions with some existing experimental results.

  8. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    International Nuclear Information System (INIS)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian

    2011-01-01

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  9. Analysis of axisymmetric shells subjected to asymmetric loads using field consistent shear flexible curved element

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, C; Sarma, B S [Defence Research and Development Laboratory, Hyderabad (India)

    1989-02-01

    A formulation for axisymmetric shell analysis under asymmetric load based on Fourier series representation and using field consistent 3 noded curved axisymmetric shell element is presented. Different field inconsistent/consistent interpolations for an element based on shear flexible theory have been studied for thick and thin shells under asymmetric loads. Various examples covering axisymmetric as well as asymmetric loading cases have been analyzed and numerical results show a good agreement with the available results in the case of thin shells. 12 refs.

  10. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  11. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  12. Group-invariant solutions of nonlinear elastodynamic problems of plates and shells

    International Nuclear Information System (INIS)

    Dzhupanov, V.A.; Vassilev, V.M.; Dzhondzhorov, P.A.

    1993-01-01

    Plates and shells are basic structural components in nuclear reactors and their equipment. The prediction of the dynamic response of these components to fast transient loadings (e.g., loadings caused by earthquakes, missile impacts, etc.) is a quite important problem in the general context of the design, reliability and safety of nuclear power stations. Due to the extreme loading conditions a more adequate treatment of the foregoing problem should rest on a suitable nonlinear shell model, which would allow large deflections of the structures regarded to be taken into account. Such a model is provided in the nonlinear Donnell-Mushtari-Vlasov (DMV) theory. The governing system of equations of the DMV theory consists of two coupled nonlinear fourth order partial differential equations in three independent and two dependent variables. It is clear, as the case stands, that the obtaining solutions to this system directly, by using any of the general analytical or numerical techniques, would involve considerable difficulties. In the present paper, the invariance of the governing equations of DMV theory for plates and cylindrical shells relative to local Lie groups of local point transformations will be employed to get some advantages in connection with the aforementioned problem. First, the symmetry of a functional, corresponding to the governing equations of DMV theory for plates and cylindrical shells is studied. Next, the densities in the corresponding conservation laws are determined on the basis of Noether theorem. Finally, we study a class of invariant solutions of the governing equations. As is well known, group-invariant solutions are often intermediate asymptotics for a wider class of solutions of the corresponding equations. When such solutions are considered, the number of the independent variables can be reduced. For the class of invariant solutions studied here, the system of governing equations converts into a system of ordinary differential equations

  13. Thin-shell wormholes supported by total normal matter

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2014-09-15

    The Zipoy-Voorhees-Weyl (ZVW) spacetime characterized by mass (M) and oblateness (δ) is proposed in the construction of viable thin-shell wormholes (TSWs). A departure from spherical/cylindrical symmetry yields a positive total energy in spite of the fact that the local energy density may take negative values. We show that oblateness of the bumpy sources/black holes can be incorporated as a new degree of freedom that may play a role in the resolution of the exotic matter problem in TSWs. A small velocity perturbation reveals, however, that the resulting TSW is unstable. (orig.)

  14. Analysis of thermal-plastic response of shells of revolution by numerical integration

    International Nuclear Information System (INIS)

    Leonard, J.W.

    1975-01-01

    A numerical method based instead on the numerical integration of the governing shell equations has been shown, for elastic cases, to be more efficient than the finite element method when applied to shells of revolution. In the numerical integration method, the governing differential equations of motions are converted into a set of initial-value problems. Each initial-value problem is integrated numerically between meridional boundary points and recombined so as to satisfy boundary conditions. For large-deflection elasto-plastic behavior, the equations are nonlinear and, hence, are recombined in an iterative manner using the Newton-Raphson procedure. Suppression techniques are incorporated in order to eliminate extraneous solutions within the numerical integration procedure. The Reissner-Meissner shell theory for shells of revolution is adopted to account for large deflection and higher-order rotation effects. The computer modelling of the equations is quite general in that specific shell segment geometries, e.g. cylindrical, spherical, toroidal, conical segments, and any combinations thereof can be handled easily. The elasto-plastic constitutive relations adopted are in accordance with currently recommended constitutive equations for inelastic design analysis of FFTF Components. The Von Mises yield criteria and associated flow rule is used and the kinematic hardening law is followed. Examples are considered in which stainless steels common to LMFBR application are used

  15. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  16. Optimum Design of FGX-CNT-Reinforced Reddy Pipes Conveying Fluid Subjected to Moving Load

    Directory of Open Access Journals (Sweden)

    Farid Vakili Tahami

    2016-12-01

    Full Text Available The harmony search algorithm is applied to the optimum designs of functionally graded (FG-carbon nanotubes (CNTs-reinforced pipes conveying fluid which are subjected to a moving load. The structure is modeled by the Reddy cylindrical shell theory, and the motion equations are derived by Hamilton's principle. The dynamic displacement of the system is derived based on the differential quadrature method (DQM. Moreover, the length, thickness, diameter, velocity, and acceleration of the load, the temperature and velocity of the fluid, and the volume fraction of CNT are considered for the design variables. The results illustrate that the optimum diameter of the pipe is decreased by increasing the volume percentage of CNTs. In addition, by increasing the moving load velocity and acceleration, the FS is decreased.

  17. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  18. CALCULATION OF ROCKET NOSE FAIRING SHELLS AERODYNAMIC CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    Vladimir T. Kalugin

    2018-01-01

    Full Text Available The aerodynamic characteristics of the detachable elements of transport systems are introduced, they allow to calculate the trajectories of these elements after their separation and determine the size of elements impact areas. Special consideration is given to head fairing shells, containing cylindrical, conical and spherical sections. Head fairing shells have high lift-to-drag ratio and the widest impact areas. Aerodynamics of bodies of such configurations has been insufficiently studied. The paper presents the numerical results of modeling the flow around a typical head fairing shell in free flight. Open source OpenFOAM package is used for numerical simulation. The aerodynamic characteristics at trans- and supersonic velocities are obtained, flow pattern transformation with the change of the angle of attack and Mach number is analyzed. The possibility of OpenFOAM package for aerodynamic calculations of thin shells is shown. The analysis of the obtained results demonstrate that there are many complex shock waves interacting with each other at flow supersonic speeds, at subsonic speeds vast regions of flow separations are observed. The authors identify intervals of angles of attack, where different types of flow structures are realized, both for trans- and supersonic flow speeds. The flow pattern change affects the aerodynamic characteristics, the aerodynamic coefficients significantly change with increase of the angle of attack. There are two trim angles of attack at all examined flow velocities. The results obtained can be used to develop a passive stabilization system for fairing shell that will balance the body at the angle of attack with minimum lift-to-drag ratio and will reduce random deviations.

  19. Numerical analysis of the cylindrical rigidity of the vertical steel tank shell

    Science.gov (United States)

    Chirkov, Sergey; Tarasenko, Alexander; Chepur, Petr

    2017-10-01

    The paper deals with the study of rigidity of a vertical steel cylindrical tank and its structural elements with the development of inhomogeneous subsidence in ANSYS software complex. The limiting case is considered in this paper: a complete absence of a base sector that varies along an arc of a circle. The subsidence zone is modeled by the parameter n. A finite-element model of vertical 20000 m3 steel tank has been created, taking into account all structural elements of tank metal structures, including the support ring, beam frame and roof sheets. Various combinations of vertical steel tank loading are analyzed. For operational loads, the most unfavorable combination is considered. Calculations were performed for the filled and emptied tank. Values of the maximum possible deformations of the outer contour of the bottom are obtained with the development of inhomogeneous base subsidence for the given tank size. The obtained parameters of intrinsic rigidity (deformability) of vertical steel tank can be used in the development of new regulatory and technical documentation for tanks.

  20. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    Science.gov (United States)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  1. Target design for the cylindrical compression of matter driven by heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A.R. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)]. E-mail: roberto.piriz@uclm.es; Temporal, M. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Lopez Cela, J.J. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Grandjouan, N. [LULI, UMR 7605, Ecole Polytechnique-CNRS-CEA-Universite Paris VI, Palaiseau (France); Tahir, N.A. [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany); Serna Moreno, M.C. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Portugues, R.F. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Hoffmann, D.H.H. [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2005-05-21

    The compression of a cylindrical sample of hydrogen contained in a hollow shell of Pb or Au has been analyzed in the framework of the experiments to be performed in the heavy ion synchrotron SIS100 to be constructed at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. The target implosion is driven by an intense beam of heavy ions with a ring-shaped focal spot. We report the results of a parametric study of the final state of the compressed hydrogen in terms of the target and beam parameters. We consider the generation of the annular heated region by means of a radio-frequency wobbler that rotates the beam at extremely high frequencies in order to accommodate symmetry constraints. We have also studied the hydrogen conditions that can be achieved with a non-rotating beam with Gaussian focal spot and the possibility to use a beam stopper as an alternative way to avoid the direct heating of the sample. Finally, we report the analysis of the hydrodynamic instabilities that affect the implosion and the mitigating effects of the elastoplastic properties of the shell.

  2. Target design for the cylindrical compression of matter driven by heavy ion beams

    International Nuclear Information System (INIS)

    Piriz, A.R.; Temporal, M.; Lopez Cela, J.J.; Grandjouan, N.; Tahir, N.A.; Serna Moreno, M.C.; Portugues, R.F.; Hoffmann, D.H.H.

    2005-01-01

    The compression of a cylindrical sample of hydrogen contained in a hollow shell of Pb or Au has been analyzed in the framework of the experiments to be performed in the heavy ion synchrotron SIS100 to be constructed at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. The target implosion is driven by an intense beam of heavy ions with a ring-shaped focal spot. We report the results of a parametric study of the final state of the compressed hydrogen in terms of the target and beam parameters. We consider the generation of the annular heated region by means of a radio-frequency wobbler that rotates the beam at extremely high frequencies in order to accommodate symmetry constraints. We have also studied the hydrogen conditions that can be achieved with a non-rotating beam with Gaussian focal spot and the possibility to use a beam stopper as an alternative way to avoid the direct heating of the sample. Finally, we report the analysis of the hydrodynamic instabilities that affect the implosion and the mitigating effects of the elastoplastic properties of the shell

  3. Electromagnetic and structural interaction analysis of curved shell structures

    International Nuclear Information System (INIS)

    Horie, T.; Niho, T.

    1993-01-01

    This paper describes a finite element formulation of the eddy current and structure coupled problem for curved shell structures. Coupling terms produced by curved geometry as well as flat plate geometry were obtained. Both matrix equations for eddy current and structure were solved simultaneously using coupling sub-matrices. TEAM Workshop bench mark problem 16 was solved to verify the formulation and the computer code. Agreement with experimental results was very good for such plate problem. A coupled problem for cylindrical shell structure was also analyzed. Influence of each coupling term was examined. The next topic is the eigenvalues of the coupled equations. Although the coupled matrix equations are not symmetric, symmetry was obtained by introducing a symmetrizing variable. The eigenvalues of the coupled matrix equations are different from those obtained from the uncoupled equations because of the influence of the coupling sub-matrix components. Some parameters obtained by the eigenvalue analysis have characteristics of parameters which indicate the intensity of electromagnetic structural coupling effect. (author)

  4. Prevalence and associations of anisometropia with spherical ametropia, cylindrical power, age, and sex in refractive surgery candidates.

    Science.gov (United States)

    Linke, Stephan J; Richard, Gisbert; Katz, Toam

    2011-09-29

    To analyze the prevalence and associations of anisometropia with spherical ametropia, astigmatism, age, and sex in a refractive surgery population. Medical records of 27,070 eyes of 13,535 refractive surgery candidates were reviewed. Anisometropia, defined as the absolute difference in mean spherical equivalent powers between right and left eyes, was analyzed for subjective (A(subj)) and cycloplegic refraction (A(cycl)). Correlations between anisometropia (>1 diopter) and spherical ametropia, cylindrical power, age, and sex, were analyzed using χ² and nonparametric Kruskal-Wallis or Mann-Whitney tests and binomial logistic regression analyses. Power vector analysis was applied for further analysis of cylindrical power. Prevalence of A(subj) was 18.5% and of A(cycl) was 19.3%. In hyperopes, logistic regression analysis revealed that only spherical refractive error (odds ratio [OR], 0.72) and age (OR, 0.97) were independently associated with anisometropia. A(subj) decreased with increasing spherical ametropia and advancing age. Cylindrical power and sex did not significantly affect A(subj). In myopes all explanatory variables (spherical power OR, 0.93; cylindrical power OR, 0.75; age OR, 1.02; sex OR, 0.8) were independently associated with anisometropia. Cylindrical power was most strongly associated with anisometropia. Advancing age and increasing spherical/cylindrical power correlated positively with increasing anisometropia in myopic subjects. Female sex was more closely associated with anisometropia. This large-scale retrospective analysis confirmed an independent association between anisometropia and both spherical ametropia and age in refractive surgery candidates. Notably, an inverse relationship between these parameters in hyperopes was observed. Cylindrical power and female sex were independently associated with anisometropia in myopes.

  5. Basic study of CO2 fixation using a combination of seaweed and shells; Kaiso to kairui wo kumiawaseta CO2 koteika kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, H. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-10

    CO2 fixed in organic matters return to the atmosphere after putrefication and decomposition, but it is also known that CO2 fixed in inorganic shells stays there permanently. A study is made in this report about the fixation of CO2 in organic matters by use of the ulva and anchored diatom known to be high in CO2 trapping capability, and the study also covers the raising of shells aiming at the fixation of CO2 in inorganic matters. The ulva is raised in a cylindrical raceway type culture water tank, and the anchored diatom in a cylindrical culture unit, and breeding conditions under which they multiply at the highest rate are determined. Their CO2 fixation rates are, respectively, 92.76mg/liter/day and 25.45mg/liter/day, which may be converted, respectively, into 147.1 ton and 5.8 ton of CO2 per hectare per year. Fixed CO2 amounts are tentatively calculated using the above-said figures combined with the raising of shells, and it is found that CO2 may be effectively fixed when the ulva is raised in a 1-hectare area and the shells in a 3.63-hectare area. In this case, the annual CO2 fixation amounts are estimated at 74.1 ton in inorganic matters and 3.9 ton in organic matters. 6 figs.

  6. Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography.

    Science.gov (United States)

    Li, Luying; Smith, David J; Dailey, Eric; Madras, Prashanth; Drucker, Jeff; McCartney, Martha R

    2011-02-09

    Hole accumulation in Ge/Si core/shell nanowires (NWs) has been observed and quantified using off-axis electron holography and other electron microscopy techniques. The epitaxial [110]-oriented Ge/Si core/shell NWs were grown on Si (111) substrates by chemical vapor deposition through the vapor-liquid-solid growth mechanism. High-angle annular-dark-field scanning transmission electron microscopy images and off-axis electron holograms were obtained from specific NWs. The excess phase shifts measured by electron holography across the NWs indicated the presence of holes inside the Ge cores. Calculations based on a simplified coaxial cylindrical model gave hole densities of (0.4 ± 0.2) /nm(3) in the core regions.

  7. Design and analysis of reactor containment of steel-concrete composite laminated shell

    International Nuclear Information System (INIS)

    Ichikawa, K.

    1977-01-01

    Reinforced and prestressed concrete containments for reactors have been developed in order to avoid the difficulties of welding of steel containments encountered as their capacities have become large: growing thickness of steel shells gave rise to the requirement of stress relief at the construction sites. However, these concrete vessels also seem to face another difficulty: the lack of shearing resistance capacity. In order to improve the shearing resistance capacity of the containment vessel, while avoiding the difficulty of welding, a new scheme of containment consisting of steel-concrete laminated shell is being developed. In the main part of a cylindrical vessel, the shell consists of two layers of thin steel plates located at the inner and outer surfaces, and a layer of concrete core into which both the steel plates are anchored. In order to validate the feasibility and safety of this new design, the results of analysis on the basis of up-to-date design loads are presented. The results of model tests in 1:30 scale are also reported. (Auth.)

  8. Three dimensional stress analysis of nozzle-to-shell intersections by the finite element method and a auto-mesh generation program

    International Nuclear Information System (INIS)

    Fujihara, Hirohiko; Ueda, Masahiro

    1975-01-01

    In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)

  9. Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire

    International Nuclear Information System (INIS)

    Deviren, Bayram; Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    In this paper, we extend the paper of Kaneyoshi (2010 J. Magn. Magn. Mater. 322 3410-5) to investigate the dynamic magnetizations and dynamic phase transitions of a transverse cylindrical Ising nanowire system by using the effective field theory with correlations and the Glauber-type stochastic dynamics under a time-dependent oscillating external magnetic field. The dynamic effective field equations for the average longitudinal and transverse magnetizations on the surface shell and core are derived by using the Glauber transition rates. Temperature dependences of the dynamic longitudinal magnetizations, the transverse magnetizations and the total magnetizations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system is strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, four different types of compensation behaviors in the Néel classification nomenclature exist in the system. The results are compared with some theoretical works and good overall agreement is observed. (paper)

  10. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  11. A multimode analytic cylindrical model for the stabilization of the resistive wall modes

    International Nuclear Information System (INIS)

    Miron, I G

    2008-01-01

    A dispersion relation concerning the stability of the resistive wall modes within a multimode cylindrical analytical model is presented. This paper generalizes the Fitzpatrick-Aydemir model (Fitzpatrick R and Aydemir A Y 1996 Nucl. Fusion 1 11) in the presence of an unlimited number of neighboring modes for a tokamak plasma column surrounded by a resistive shell and a feedback system consisting of a number of detector and active feedback coils. The model is applied to the HBT-EP tokamak (Cates C et al 2000 Phys. Plasmas 7 3133) with its peculiar feedback system disposal. Finally, an analytical dispersion relation is obtained that can be solved by using a simple MATLAB code

  12. Method for reinforcing threads in multilayer composite tubes and cylindrical structures

    International Nuclear Information System (INIS)

    Romanoski, G.R.; Burchell, T.D.

    1996-01-01

    Multilayer techniques such as: tape wrapping, braiding, and filament winding represent versatile and economical routes for fabricating composite tubes and cylindrical structures. However, multilayer architectures lack the radial reinforcement required to retain threads when the desired means of connection or closure is a threaded joint. This issue was addressed in the development of a filament wound, carbon-carbon composite impact shell for the NASA radioisotope thermoelectric generator. The problem of poor thread shear strength was solved by incorporating a number of radial elements of triangular geometry around the circumference of the thread for the full length of thread engagement. The radial elements significantly increased the shear strength of the threaded joint by transmitting the applied force to the balance of composite structure. This approach is also applicable to ceramic composites

  13. Using a Combination of FEM and Perturbation Method in Frequency Split Calculation of a Nearly Axisymmetric Shell with Middle Surface Shape Defect

    Directory of Open Access Journals (Sweden)

    D. S. Vakhlyarskiy

    2016-01-01

    Full Text Available This paper proposes a method to calculate the splitting of natural frequency of the shell of hemispherical resonator gyro. (HRG. The paper considers splitting that arises from the small defect of the middle surface, which makes the resonator different from the rotary shell. The presented method is a combination of the perturbation method and the finite element method. The method allows us to find the frequency splitting caused by defects in shape, arbitrary distributed in the circumferential direction. This is achieved by calculating the perturbations of multiple natural frequencies of the second and higher orders. The proposed method allows us to calculate the splitting of multiple frequencies for the shell with the meridian of arbitrary shape.A developed finite element is an annular element of the shell and has two nodes. Projections of movements are used on the axis of the global cylindrical system of coordinates, as the unknown. To approximate the movements are used polynomials of the second degree. Within the finite element the geometric characteristics are arranged in a series according to the small parameter of perturbations of the middle surface geometry.Movements on the final element are arranged in series according to the small parameter, and in a series according to circumferential angle. With computer used to implement the method, three-dimensional arrays are used to store the perturbed quantities. This allows the use of regular expressions for the mass and stiffness matrices, when building the finite element, instead of analytic dependencies for each perturbation of these matrices of the required order with desirable mathematical operations redefined in accordance with the perturbation method.As a test task, is calculated frequency splitting of non-circular cylindrical resonator with Navier boundary conditions. The discrepancy between the results and semi-analytic solution to this problem is less than 1%. For a cylindrical shell is

  14. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  15. Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads

    Science.gov (United States)

    Şahan, Mehmet Fatih

    2017-11-01

    In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.

  16. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  17. Control of Compact-Toroid Characteristics by External Copper Shell

    Science.gov (United States)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  18. PHYSICAL FIELDS OF CIRCULAR CYLINDRICAL PIEZOCERAMIC RECEIVER IN PRESENCE OF A FLAT ACOUSTIC SOFT SCREEN

    Directory of Open Access Journals (Sweden)

    A. V. Derepa

    2017-01-01

    Full Text Available System in the form of a circular cylindrical piezoceramic transducer near a flat acoustic screen was analyzed. The aim of the work was to solve the problem of receiving plane sound waves by «cylindrical piezoceramic transducer – flat acoustically soft screen» system.Considered system was characterized by a violation of the radial symmetry of the radiation load of the transducer while maintaining the radial symmetry of the electric load. At the same time, the energy perceived by the system under consideration is distributed between all modes of oscillation of the transducer, while the conversion of mechanical energy into electric is realized only at zero mole of oscillations.Special attention was paid to the method of coupled fields in multiply connected domains using the imaging method. The design model of the «transducer–creen» system was formulated taking into account the interaction of acoustic, mechanical and electric fields in the process of energy conversion, the interaction of a cylindrical transducer with a flat screen and the interaction of a converter with elastic media outside and inside it. The physical fields of the system under consideration were determined by following solutions: the wave equation; equations of motion of thin piezoceramic cylindrical shells in displacements; equations of stimulated electrostatics for piezoceramics for given boundary conditions, conditions for coupling fields at interfaces and electrical conditions.A general conclusion was made concerning solving of an infinite system of linear algebraic equations with respect to the unknown coefficients of the expansion of the fields. As an example of the application of the obtained relations, a calculation was made and an analysis of the dependences of the electric fields of the system under consideration for various parameters of its construction on the direction of arrival on the plane wave system was conducted.

  19. Egg Shell and Oyster Shell Powder as Alternatives for Synthetic Phosphate: Effects on the Quality of Cooked Ground Pork Products.

    Science.gov (United States)

    Cho, Min Guk; Bae, Su Min; Jeong, Jong Youn

    2017-01-01

    This study aimed to determine the optimal ratio of natural calcium powders (oyster shell and egg shell calcium) as synthetic phosphate replacers in pork products. Ground pork samples were subjected to six treatments, as follows: control (-) (no phosphate added), control (+) (0.3% phosphate blend added), treatment 1 (0.5% oyster shell calcium powder added), treatment 2 (0.3% oyster shell calcium powder and 0.2% egg shell calcium powder added), treatment 3 (0.2% oyster shell calcium powder and 0.3% egg shell calcium powder added), and treatment 4 (0.5% egg shell calcium powder added). The addition of natural calcium powders resulted in an increase in the pH values of meat products, regardless of whether they were used individually or mixed. The highest cooking loss was observed ( p cooking loss in samples with natural calcium powder added was similar ( p >0.05) to that in the positive control samples. CIE L* values decreased as the amount of added egg shell calcium powder increased. CIE a* values were higher ( p egg shell powder (treatment 2 or 3) was effective for the improvement of textural properties of the pork products. The findings show that the combined use of 0.2% oyster shell calcium and 0.3% egg shell calcium should enable the replacement of synthetic phosphate in the production of cooked pork products with desirable qualities.

  20. Implosion of multilayered cylindrical targets driven by intense heavy ion beams.

    Science.gov (United States)

    Piriz, A R; Portugues, R F; Tahir, N A; Hoffmann, D H H

    2002-11-01

    An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter experiments to be carried out at the Gesellschaft für Schwerionenforschung, Darmstadt. The model describes the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.

  1. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  2. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  3. The effect of pistachio shells as a visual cue in reducing caloric consumption.

    Science.gov (United States)

    Kennedy-Hagan, K; Painter, J E; Honselman, C; Halvorson, A; Rhodes, K; Skwir, K

    2011-10-01

    It was hypothesized that pistachio shells left in sight as visual cues of consumption will cause individuals to consume less. A convenience sample of faculty and staff at a mid-western university (n=118) were recruited as subjects for the study. The subjects were told they were going to evaluate a variety of brands of pistachios and were surveyed at the end of each day to determine their fullness and satisfaction. The subjects were offered pistachios on their desks for an 8-h period on two separate days and were able to consume the pistachios at their leisure during that time. Subjects began each day with a sixteen ounce bowl filled with four ounces of pistachios in the shell. They were also provided with a second sixteen ounce bowl, in which they were instructed to place the empty shells from the pistachios they consumed. Every 2 h throughout the day pistachios were added in two ounce increments. In condition one, the shells remained in the bowls until the end of the day, whereas in condition two, the shell bowls were emptied every 2 h throughout the day. In condition one, subjects consumed an average of 216 calories. In condition two, subjects consumed an average of 264 calories, a difference of 48 calories. Subjects in condition one consumed significantly (p≤.05) fewer calories, yet fullness and satisfaction ratings were not significantly (p≥.05) different between conditions. Leaving pistachio shells as a visual cue to consumption may help consumers consume fewer calories. Individuals will be aware of the impact of visual cues of dietary intake on total food consumption. Published by Elsevier Ltd.

  4. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  5. The effect of thermal loads on buckling strength of cylindrical shells

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Kodama, T.; Matsuura, S.

    1993-01-01

    Nuclear power plant components must be designed taking account of strong seismic loads in countries with frequent earthquakes like Japan. When designing such thin-walled shell components as a main vessel of a fast breeder reactor (FBR), one should consider the possibility that buckling might occur. In Japan, a series of buckling research has been conducted under contract with the Ministry of International Trade and Industry to develop the aseismic design method for a demonstration FBR. This study has been also done as a part of them. The problem of thermal loads on buckling strength is one of the important problems in the buckling research for FBR because axial temperature gradient is produced in a main vessel and the significant thermal stress is shown. Some studies on the effect of thermal loads on buckling strength were carried out (Brochard, 1987), (Nakamura, 1987), but its effect in the actual vessel has not been evaluated quantitatively. We have already reported the effect of thermal loads on buckling strength of a pool-type reactor vessel. (Kawamoto ,1989) In this paper, we focus on a loop-type reactor vessel and investigate the effect of thermal loads accompanying with axial temperature change near the sodium level. And the reduction of buckling strength due to the thermal loads is quantitatively evaluated

  6. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  7. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study

    Czech Academy of Sciences Publication Activity Database

    Karjalainen, J.; Vaara, J.; Straka, Michal; Lantto, P.

    2015-01-01

    Roč. 17, č. 11 (2015), s. 7158-7171 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : 129Xe NMR * liquid crystals * cylindrical cavities * phase transition s * Monte-Carlo simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  8. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  9. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  10. Dispersion properties of three-layered orthotropic shells

    International Nuclear Information System (INIS)

    Markus, S.

    1995-01-01

    This paper studies the harmonic wave propagation in thick, cylindrical, three-layered shells of infinite length. Both the outer layers and the core are composites made of short strand fiberglass and polyester resin. The randomly oriented fibers were approximately in parallel planes to constitute a transversely isotropic fibre composite. The planes of isotropy in the outer layers are orthogonal to the plane of isotropy at the core. A closed form solution of the exact linear equations of elasticity in sought in terms of a Frobenius series. The influence of the core thickness on the dynamics of the wave motion is estimated from numerically computed dispersion curves. Asymmetric wave motion is given prime consideration and the different types of waves which can occur are identified over a wide range of wave numbers

  11. Axisymmetric bifurcations of thick spherical shells under inflation and compression

    KAUST Repository

    deBotton, G.; Bustamante, R.; Dorfmann, A.

    2013-01-01

    Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.

  12. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: kerouad@fs-umi.ac.ma

    2017-02-15

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction J{sub s} on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined. - Highlights: • Phase diagrams of a ferromagnetic nanowire are examined by the Monte Carlo simulation. • Different types of the phase diagrams are obtained. • The effect of the random crystal field on the hysteresis loops is studied. • Single, double and para hysteresis regions are explicitly determined.

  13. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    Science.gov (United States)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  14. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  15. Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications

    Science.gov (United States)

    Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.

    2015-02-01

    The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.

  16. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  17. COMPARATIVE STUDY THROUGH FINITE ELEMENT METHOD OF LIDS USED IN CYLINDRICAL VESSEL IN HORIZONTAL POSITION SUBJECT TO INTERNAL PRESSURE

    Directory of Open Access Journals (Sweden)

    Eusebio V. Ibarra-Hernández

    2017-07-01

    Full Text Available In this work a study of the cylindrical vessels in horizontal position and subject to internal pressure is carried out, where lids are one of the main components of this equipment. The Autodesk Inventor pro. 2016 is used to make the geometrical characterization of these elements: parametric solid modeler, assembles and surfaces for the mechanical design of complex parts. The different geometric forms of the lids and bottoms analyzed in this work are: flat-circular with or without flange, elliptical with different values of the K factor, torispherical with different values of the M factor and the hemispherical bottoms. Using the Finate Element Method (FEM, a comparative study is made about the behavior of the stress and strain in the different geometrical forms mentioned before, being demonstrated that although the best resistance and rigidity values are presented by the hemispherical bottoms and the best options of production by the flat-circulars, they are not the bottoms used the most in this vessels, being the elliptic bottoms those of more use. The results obtained allow optimizing the design and knowing the thickness limit in the most requested areas.

  18. Possibility of perfect concealment by lossy conventional and lossy metamaterial cylindrical invisibility cloaks

    Science.gov (United States)

    Dehbashi, Reza; Shahabadi, Mahmoud

    2013-12-01

    The commonly used coordinate transformation for cylindrical cloaks is generalized. This transformation is utilized to determine an anisotropic inhomogeneous diagonal material tensors of a shell type cloak for various material types, i.e., double-positive (DPS: ɛ, μ > 0), double-negative (DNG: ɛ, μ cloaking for various material types, a rigorous analysis is performed. It is shown that perfect cloaking will be achieved for same type material for the cloak and its surrounding medium. Moreover, material losses are included in the analysis to demonstrate that perfect cloaking for lossy materials can be achieved for identical loss tangent of the cloak and its surrounding material. Sensitivity of the cloaking performance to losses for different material types is also investigated. The obtained analytical results are verified using a Finite-Element computational analysis.

  19. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Riesemann, W.A. von; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    Over the past few years a series of finite element computer programs have been developed at Texas A and M University for the static and dynamic nonlinear analysis of shells of revolution. This paper discusses one of these, DYNAPLAS, which is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. (Auth.)

  20. Shell-side single-phase flows and heat transfer in shell-and-tube heat exchangers, 4

    International Nuclear Information System (INIS)

    Matsushita, Hitoshi; Nakayama, Wataru; Yanagida, Takehiko; Kudo, Akio.

    1987-01-01

    Refering to the results of our previous works, a procedure for estimating the distribution of heat flux in shell-and-tube heat exchangers is proposed. The steam generator used in a high temperature reactor plant is taken up as the subject of analysis. Particular attention is paid to critical conditions for burnout and the strength of material in high temperature conditions. It is found that the distribution of heat transfer coefficient on the shell-side is crucial to the occurrence of burnout in the tubes. The use of a relatively large inlet nozzle (the ratio of its diameter to the shell is roughly half) is recommended. A low level of thermal stress on heat transfer tubes can be realized by the adoption of a relatively thin 2.25 Cr-1 Mo Steel tube wall of 1.24 mm thickness. (author)

  1. 3D Rigid Registration by Cylindrical Phase Correlation Method

    Czech Academy of Sciences Publication Activity Database

    Bican, Jakub; Flusser, Jan

    2009-01-01

    Roč. 30, č. 10 (2009), s. 914-921 ISSN 0167-8655 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/1593 Grant - others:GAUK(CZ) 48908 Institutional research plan: CEZ:AV0Z10750506 Keywords : 3D registration * correlation methods * Image registration Subject RIV: BD - Theory of Information Impact factor: 1.303, year: 2009 http://library.utia.cas.cz/separaty/2009/ZOI/bican-3d digit registration by cylindrical phase correlation method.pdf

  2. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  3. Magnetostatic interactions and forces between cylindrical permanent magnets

    International Nuclear Information System (INIS)

    Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr

    2009-01-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  4. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  5. Current distribution over the electrode surface in a cylindrical VRLA cell during discharge

    Czech Academy of Sciences Publication Activity Database

    Křivák, P.; Bača, P.; Calábek, M.; Micka, Karel; Král, P.

    2006-01-01

    Roč. 154, č. 2 (2006), s. 518-522 ISSN 0378-7753 Grant - others:Advanced Lead-Acid Battery Consortium(ES) N4.2 Institutional research plan: CEZ:AV0Z40400503 Keywords : grid design * current distribution * cylindrical lead-acid cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.521, year: 2006

  6. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  7. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  8. A new approach to the internal thermal management of cylindrical battery cells for automotive applications

    Science.gov (United States)

    Worwood, Daniel; Kellner, Quirin; Wojtala, Malgorzata; Widanage, W. D.; McGlen, Ryan; Greenwood, David; Marco, James

    2017-04-01

    Conventional cooling approaches that target either a singular tab or outer surface of common format cylindrical lithium-ion battery cells suffer from a high cell thermal resistance. Under an aggressive duty cycle, this resistance can result in the formation of large in-cell temperature gradients and high hot spot temperatures, which are known to accelerate ageing and further reduce performance. In this paper, a novel approach to internal thermal management of cylindrical battery cells to lower the thermal resistance for heat transport through the inside of the cell is investigated. The effectiveness of the proposed method is analysed for two common cylindrical formats when subject to highly aggressive electrical loading conditions representative of a high performance electric vehicle (EV) and hybrid electric vehicle (HEV). A mathematical model that captures the dominant thermal properties of the cylindrical cell is created and validated using experimental data. Results from the extensive simulation study indicate that the internal cooling strategy can reduce the cell thermal resistance by up to 67.8 ± 1.4% relative to single tab cooling, and can emulate the performance of a more complex pack-level double tab cooling approach whilst targeting cooling at a single tab.

  9. The chocolate-egg problem: Fabrication of thin elastic shells through coating

    Science.gov (United States)

    Lee, Anna; Marthelot, Joel; Brun, Pierre-Thomas; Reis, Pedro M.

    2015-03-01

    We study the fabrication of thin polymeric shells based on the coating of a curved surface by a viscous fluid. Upon polymerization of the resulting thin film, a slender solid structure is delivered after demolding. This technique is extensively used, empirically, in manufacturing, where it is known as rotational molding, as well as in the food industry, e.g. for chocolate-eggs. This problem is analogous to the Landau-Levich-Derjaguin coating of plates and fibers and Bretherton's problem of film deposition in cylindrical channels, albeit now on a double-curved geometry. Here, the balance between gravity, viscosity, surface tension and polymerization rate can yield a constant thickness film. We seek to identify the physical ingredients that govern the final film thickness and its profile. In our experiments using organosilicon, we systematically vary the properties of the fluid, as well as the curvature of the substrate onto which the film is coated, and characterize the final thickness profile of the shells. A reduced model is developed to rationalize the process.

  10. Superconducting vortex dynamics in cylindrical Nb micro- and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, Vladimir M. [Institute for Integrative Nanosciences, IFW-Dresden, D-01069 Dresden (Germany); Rezaev, Roman O. [Institute for Integrative Nanosciences, IFW-Dresden, D-01069 Dresden (Germany); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW-Dresden, D-01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, D-09107 Chemnitz (Germany)

    2012-07-01

    Advancements in fabrication of rolled-up micro- and nanotubes including superconductor layers (e.g., InGaAs/GaAs/Nb) open new ways for investigation of the vortex matter in superconductors with curved geometries. Geometry determines the dynamics of vortices in the presence of transport currents in open superconductor micro- and nanotubes subject to a magnetic field orthogonal to the axis. Vortices nucleate periodically at one edge of the tube, subsequently move along the tube under the action of the Lorentz force and denucleate at the opposite edge of the tube. Characteristic times of nonequilibrium vortex dynamics in an open tube are efficiently controlled by the tube radius. The magnetic field, at which the vortices begin to nucleate at the edge of the structure, is increased several times by rolling up a planar film in a tube. This effect is caused not only by a spatial dependence of the magnetic field component normal to the cylindrical surface, but also by correlations between the states of the superconducting order parameter in the opposite areas of the cylindrical surface.

  11. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  12. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  13. Computer analysis of multicircuit shells of revolution by the field method

    International Nuclear Information System (INIS)

    Cohen, G.A.

    1975-01-01

    The method of analysis developed which has been termed the 'field method' converts the boundary-value problem into two successive initial-value problems. In the first initial-value problem, a forward integration over the shell meridian is made for the 'field functions', which may be interpreted physically as influence functions (plus additional functions to account for external loading) of the structure. The second initial-value problem consists of a backward integration (i.e., in the reverse direction) for the physical force and displacement functions, the differential equations for which are dependent on the already calculated field functions. In this method, no artificial subdivision of the meridian is necessary since both initial-value problems are numerically stable. Also, because the physical response functions are obtained directly from the backward integration, their storage points may be chosen automatically during execution to obtain a uniformly 'dense' description of these functions. Studies comparing the efficiency (i.e., execution time) of the field method with that of a conventional superposition (Zarghamee) method have been made, for the simple case of the linear static response of a clamped cylindrical shell. The field method has been presented previously for shells of revolution with open branched meridians. This work is now extended to the case of meridians which contain circuits. Also, a new method for the treatment of arbitrary kinematic constraints is presented

  14. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  15. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  16. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  17. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation

  18. MURLI, 1-D Flux, Reaction Rate in Cylindrical Geometry Thermal Reactor Lattice by Transport

    International Nuclear Information System (INIS)

    Huria, H.C.

    1985-01-01

    1 - Description of problem or function: MURLI is an integral transport theory code to calculate fluxes and reaction rates in one- dimensional cylindrical geometry lattice cells of a thermal reactor. For a specified buckling, it computes k-effective using few-group diffusion theory and a few-group collapsed set of Cross sections. The code can optionally be used to solve a first order differential equation for the number density of fissile, fertile and fission product nuclei as a function of time, and to recalculate fluxes, reaction rates and k-effective at different stages of burnup. A 27-group cross section data library is included. There are four pseudo-fission products each associated with the decay chains of plutonium and uranium isotopes in addition to Rh-105, Xe-135, Np-239, U-236, Am-241, Am-242 and Am-243. There is also data for one lumped pseudo-fission product. 2 - Method of solution: Multiple collision probabilities and escape probabilities are calculated for each cylindrical shell region assuming protons are born uniformly and isotropically over the entire region volume. The equations of integral transport theory can then be solved for neutron flux. The first order differential burnup equation is solved by a fourth order Runge-Kutta method. 3 - Restrictions on the complexity of the problem: There are maxima of 8 fissionable elements, 8 resonant elements, and 20 spatial regions

  19. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  20. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  1. Seismic response analysis of column supported natural draught cooling tower shells

    International Nuclear Information System (INIS)

    Ramanjaneyulu, K.; Gopalakrishnan, S.; Appa Rao, T.V.S.R.

    2003-01-01

    Natural draught cooling towers (NDCTs) belong to the category of large civil engineering structures and are commonly used in nuclear or thermal power plants. Detailed dynamic analysis has to be carried out for design of cooling towers subjected to seismic excitation, considering the flexibility of the columns. Finite ring element formulations for dynamic analysis of cooling tower shell subjected to seismic excitation are presented in this paper. The geometry of a typical tall natural draught cooling tower is considered in this study for carrying out investigations. Transient response of the hyperbolic cooling tower shell subjected to earthquake loading has been analysed by direct time integration using acceleration-time history of North-South component of El-Centro earthquake. Parametric studies have also been carried out to study the influence of flexibility of column supports and damping on the seismic response of cooling tower shell and the results are discussed in the paper. (author)

  2. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  3. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  4. Vibration experiment of the semi-spherical shell fixed in water; Suichu ni koteisareta hankyu shell no sessui shindo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, K; Yasuzawa, Y; Kagawa, K; Sugimoto, S [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    Vibration characteristics of the semi-spherical shell fixed in water with bidirectional curvatures were studied experimentally. Various marine structures have been devised as relay station for life spaces or submarine resource excavation. As compared with land structures, marine structures are constantly under a severe condition subjected to hydrostatic pressure, and requires advanced technologies. The experimental result, numerical computation result by analytical code DASOR (Dynamic Analysis of Shell of Revolution) and theoretical analysis result were compared with each other. FEM and BEM were used in DASOR computation for the axisymmetric thin semi-spherical shell and circumferential liquid, respectively. Due to an added mass effect, the natural frequency decreased with an increase in water level regardless of mode orders. However, the water level over the top of the semi-spherical shell caused the nearly constant natural frequencies of 30-40% of that in the air. The computation result by DASOR well agreed with the experimental result demonstrating its validity. 4 refs., 13 figs., 1 tab.

  5. Shell Venster

    International Nuclear Information System (INIS)

    De Wit, P.; Looijesteijn, B.; Regeer, B.; Stip, B.

    1995-03-01

    In the bi-monthly issues of 'Shell Venster' (window on Shell) attention is paid to the activities of the multinational petroleum company Shell Nederland and the Koninklijke/Shell Groep by means of non-specialist articles

  6. Contribution of apparently non-operating loadings to the buckling of thin shells and plates

    International Nuclear Information System (INIS)

    Delaigue, Didier.

    1980-02-01

    This work includes four parts: in the first part, the Kirchhoff-Love theory of thin shells is described, a theory taken up and developed by Koiter and whose modelling seems to meet the problems of engineers. The second part deals with the buckling of a thin plate subjected to a load along a part of its edge, of which a part or all is seemingly inoperative. In the third part the study is extended to shells of any shape subjected to a conservative loading of the ''dead-loading'' type along part of their edges. On the basis of the results of the previous study, a study is then made on the taking into account of any load applied to the edge of a thin shell. In the fourth part the previous results are applied to the study of the buckling of a thin shell with a circular base subjected along a part of its edge to a normal prestress and to twisting moments linear density [fr

  7. A High Order Theory for Linear Thermoelastic Shells: Comparison with Classical Theories

    Directory of Open Access Journals (Sweden)

    V. V. Zozulya

    2013-01-01

    Full Text Available A high order theory for linear thermoelasticity and heat conductivity of shells has been developed. The proposed theory is based on expansion of the 3-D equations of theory of thermoelasticity and heat conductivity into Fourier series in terms of Legendre polynomials. The first physical quantities that describe thermodynamic state have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby all equations of elasticity and heat conductivity including generalized Hooke's and Fourier's laws have been transformed to the corresponding equations for coefficients of the polynomial expansion. Then in the same way as in the 3D theories system of differential equations in terms of displacements and boundary conditions for Fourier coefficients has been obtained. First approximation theory is considered in more detail. The obtained equations for the first approximation theory are compared with the corresponding equations for Timoshenko's and Kirchhoff-Love's theories. Special case of plates and cylindrical shell is also considered, and corresponding equations in displacements are presented.

  8. Summary compilation of shell element performance versus formulation.

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)

    2011-07-01

    This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

  9. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    Science.gov (United States)

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. K-FIX, Transient 2 Phase Flow Hydrodynamic in 2-D Planar or Cylindrical Geometry, Eulerian Method

    International Nuclear Information System (INIS)

    Rivard, W. C.; Torrey, M. D.

    1980-01-01

    1 - Description of problem or function: The transient dynamics of two- dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds. Each phase is described in terms of its own density, velocity, and temperature. Separate sets of field equations govern the gas and liquid phase dynamics. The six field equations for the two phases couple through mass, momentum, and energy exchange. 2 - Method of solution: The equations are solved using an Eulerian finite difference technique that implicitly couples the rates of phase transitions, momentum, and energy exchange to determination of the pressure, density, and velocity fields. The implicit solution is accomplished iteratively using a point relaxation technique without linearizing the equations, thus eliminating the need for numerous derivative terms. Solutions can be obtained in one and two space dimensions in plane geometry and in cylindrical geometry with axial symmetry and zero azimuthal velocity. Solutions in spherical geometry can also be obtained in one space dimension. The geometric region of interest is divided into many finite-sized, space-fixed zones called cells which form the computing mesh. In plane geometry the cells are rectangular cylinders, in cylindrical geometry they are toroids with rectangular cross section, and in spherical geometry they are spherical shells

  11. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  12. Importance-truncated shell model for multi-shell valence spaces

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Christina; Vobig, Klaus; Roth, Robert [Institut fuer Kernphysik, TU Darmstadt (Germany)

    2016-07-01

    The valence-space shell model is one of the work horses in nuclear structure theory. In traditional applications, shell-model calculations are carried out using effective interactions constructed in a phenomenological framework for rather small valence spaces, typically spanned by one major shell. We improve on this traditional approach addressing two main aspects. First, we use new effective interactions derived in an ab initio approach and, thus, establish a connection to the underlying nuclear interaction providing access to single- and multi-shell valence spaces. Second, we extend the shell model to larger valence spaces by applying an importance-truncation scheme based on a perturbative importance measure. In this way, we reduce the model space to the relevant basis states for the description of a few target eigenstates and solve the eigenvalue problem in this physics-driven truncated model space. In particular multi-shell valence spaces are not tractable otherwise. We combine the importance-truncated shell model with refined extrapolation schemes to approximately recover the exact result. We present first results obtained in the importance-truncated shell model with the newly derived ab initio effective interactions for multi-shell valence spaces, e.g., the sdpf shell.

  13. Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface subjected to double-frequency forcing.

    Science.gov (United States)

    Haimovich, Ory; Oron, Alexander

    2013-05-01

    The nonlinear dynamics of a thin axisymmetric liquid film on a horizontal cylindrical substrate subjected to an axial double-frequency forcing that consists of two components of different amplitudes and frequencies and a possible phase shift is considered in this paper. A nonlinear evolution equation governing the spatiotemporal dynamics of the film interface has been derived in the long-wave limit. Similar to the case of a single-frequency forcing considered in our earlier work, there exists a critical forcing amplitude below which the film undergoes a long-time capillary rupture typical for a static cylinder, whereas above it the film remains continuous. We find that it is possible to arrest the rupture even if the forcing parameters of each of the two components correspond separately to the domain where rupture takes place. It is shown that the critical forcing amplitude is easily determined via a single-frequency case when the two forcing frequencies are equal. In the case of different forcing amplitudes and frequencies, the variation of the critical forcing amplitude as a function of the frequency ratio exhibits a unique behavior displaying the emergence of spikes. A related case of an amplitude-modulated single-frequency forcing is also addressed here. For a sufficiently small frequency of the amplitude modulation, a significant increase of the pattern amplitude is observed. In the case of commensurate forcing frequencies, the flow is found to be quasiperiodic.

  14. Read/write performance of perpendicular double-layered cylindrical media

    International Nuclear Information System (INIS)

    Yamada, H.; Shimatsu, T.; Watanabe, I.; Tsuchiyama, R.; Aoi, H.; Muraoka, H.; Nakamura, Y.

    2005-01-01

    A cylindrical magnetic storage system using perpendicular double-layered media has been developed. CoCrTa/CoZrNb deposited on a rotating cylindrical substrate shows perpendicular anisotropy and magnetic properties, which have almost the same characteristics as conventional disk-media. The fundamental read/write characteristics of perpendicular double-layered cylindrical media were measured using a single-pole-type (SPT) writer with a sliding-contact-type slider and a merged giant magneto-resistive (GMR) reader with a one-pad-type slider designed for use with cylindrical media. Preliminary studies for improving the characteristics of the recording layer are also described

  15. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  16. A theorical experimental comparison of the buckling caused by fluid structure interaction during a seismic load

    International Nuclear Information System (INIS)

    Aillaud, P.; Buland, P.; Combescure, A.; Queval, J.C.; Garuti, G.

    1983-08-01

    The buckling of shells subjected to seismic type of loads is not very well known. To study this type of phenomenon we have performed theorical and experimental investigations on structures consisting of two shells separed by a thin fluid layer, and submitted to a seismic type of load. The objectives of these investigations are the following: study the coupling between buckling modes and vibrations modes and buckling of the effects of this coupling on the level of the pressure; study of the appearance on such structures of dynamic instabilities processes; qualification of computer codes of the CEASEMT system; and, qualification or criticism of the methodology used in the design based on a ''static equivalent'' idea. The experiments are made on two types of structures: spherical and cylindrical shells. The load applied on the shells consists of a permanent pressure and of a dynamic pressure due to fluid structure interaction. The systeme is put on the vibrating table and excitation is vertical for the hemispherical case, and horizontal for the cylindrical cases. Six models of each type are tested, with sinusoidal excitation at resonance. The tests on the spherical shells are presented and compared with calculations. The correlation is good and the main results is, as predicted by numerical calculation, that if the sum of the permanent and oscillatory pressure is greater than the static buckling load, the shells buckle. This results validates the static methodology. The tests on the cylindrical tanks will be exploited by the end of the year and presented in this paper

  17. 3 + 1-dimensional thin shell wormhole with deformed throat can be supported by normal matter

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2015-06-15

    From the physics standpoint the exotic matter problem is a major difficulty in thin shell wormholes (TSWs) with spherical/cylindrical throat topologies.We aim to circumvent this handicap by considering angle dependent throats in 3 + 1 dimensions. By considering the throat of the TSW to be deformed spherical, i.e., a function of θ and φ, we present general conditions which are to be satisfied by the shape of the throat in order to have the wormhole supported by matter with positive density in the static reference frame. We provide particular solutions/examples to the constraint conditions. (orig.)

  18. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  19. Optical properties of core-shell and multi-shell nanorods

    Science.gov (United States)

    Mokkath, Junais Habeeb; Shehata, Nader

    2018-05-01

    We report a first-principles time dependent density functional theory study of the optical response modulations in bimetallic core-shell (Na@Al and Al@Na) and multi-shell (Al@Na@Al@Na and Na@Al@Na@Al: concentric shells of Al and Na alternate) nanorods. All of the core-shell and multi-shell configurations display highly enhanced absorption intensity with respect to the pure Al and Na nanorods, showing sensitivity to both composition and chemical ordering. Remarkably large spectral intensity enhancements were found in a couple of core-shell configurations, indicative that optical response averaging based on the individual components can not be considered as true as always in the case of bimetallic core-shell nanorods. We believe that our theoretical results would be useful in promising applications depending on Aluminum-based plasmonic materials such as solar cells and sensors.

  20. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  1. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  2. Nonlinear bending and collapse analysis of a poked cylinder and other point-loaded cylinders

    International Nuclear Information System (INIS)

    Sobel, L.H.

    1983-06-01

    This paper analyzes the geometrically nonlinear bending and collapse behavior of an elastic, simply supported cylindrical shell subjected to an inward-directed point load applied at midlength. The large displacement analysis results for this thin (R/t = 638) poked cylinder were obtained from the STAGSC-1 finite element computer program. STAGSC-1 results are also presented for two other point-loaded shell problems: a pinched cylinder (R/t = 100), and a venetian blind (R/t = 250)

  3. Study on reinforced lightweight coconut shell concrete beam behavior under flexure

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: ► Use of coconut shell as aggregate in concrete. ► Behavior of coconut shell concrete under flexure. ► SEM images of cement, sand, coconut shell and coconut shell aggregate concrete. ► Coconut shell hollow blocks and precast slabs are used in practice. - Abstract: Coconut shell has been used as coarse aggregate in the production of concrete. The flexural behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Twelve beams, six with coconut shell concrete and six with normal control concrete, were fabricated and tested. This study includes the moment capacity, deflection, cracking, ductility, corresponding strains in both compression and tension, and end rotation. It was found that the flexural behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under flexural loadings. Under serviceability condition, deflection and cracking characteristics of coconut shell concrete are comparable with control concrete. However, the failure zones of coconut shell concrete were larger than for control concrete beams. The end rotations of the coconut shell concrete beams just prior to failure values are comparable to other lightweight concretes. Coconut shell concrete was used to produce hollow blocks and precast slab in 2007 and they are being subjected to some practical loading till today without any problems such as deflection, bending, cracks, and damages for the past five years

  4. Deutsche Shell AG. Annual report 1997

    International Nuclear Information System (INIS)

    1998-01-01

    This annual report of Deutsche Shell AG reflects its activities in the sector natural gas, mineral oil, chemicals and renewable energies. Environmental protection, safety at work, and the position of the group in society are further subjects. Financial data of 1997 are presented (balance sheet, profit-and-loss account,etc.). (orig./RHM) [de

  5. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.

    Science.gov (United States)

    De Wit, Pierre; Durland, Evan; Ventura, Alexander; Langdon, Chris J

    2018-02-22

    Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO 2 -acidified seawater to identify genes correlated with initial shell deposition. By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.

  6. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  7. Ingestion of six cylindrical and four button batteries

    DEFF Research Database (Denmark)

    Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G

    2010-01-01

    We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....

  8. Bifurcation theory applied to buckling states of a cylindrical shell

    Science.gov (United States)

    Chaskalovic, J.; Naili, S.

    1995-01-01

    Veins, bronchii, and many other vessels in the human body are flexible enough to be capable of collapse if submitted to suitable applied external and internal loads. One way to describe this phenomenon is to consider an inextensible elastic and infinite tube, with a circular cross section in the reference configuration, subjected to a uniform external pressure. In this paper, we establish that the nonlinear equilibrium equation for this model has nontrivial solutions which appear for critical values of the pressure. To this end, the tools we use are the Liapunov-Schmidt decomposition and the bifurcation theorem for simple multiplicity. We conclude with the bifurcation diagram, showing the dependence between the cross-sectional area and the pressure.

  9. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    Science.gov (United States)

    Amendt, Peter

    2006-10-01

    The goal of demonstrating ignition on the National Ignition Facility (NIF) has motivated a revisit of double-shell (DS) [1] targets as a complementary path to the baseline cryogenic single-shell approach [2]. Benefits of DS targets include room-temperature deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances [3], and loose shock timing requirements. On the other hand, DS ignition presents several challenges, including room-temperature containment of high-pressure DT (790 atm) in the inner shell; strict concentricity requirements on the two shells; development of nanoporous, low-density, metallic foams for structural support of the inner shell and hydrodynamic instability mitigation; and effective control of perturbation growth on the high-Atwood number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition target designs using vacuum hohlraums is described, offering the potential for low levels of laser backscatter from stimulated Raman and Brillouin processes. In addition, vacuum hohlraums have the operational advantages of room temperature fielding and fabrication simplicity, as well as benefiting from extensive benchmarking on the Nova and Omega laser facilities. As an alternative to standard cylindrical hohlraums, a rugby-shaped geometry is also introduced that may provide energetics and symmetry tuning benefits for more robust DS designs with yields exceeding 10 MJ for 2 MJ of 3w laser energy. The recent progress in hohlraum designs and required advanced materials development are scheduled to culminate in a prototype demonstration of a NIF-scale ignition-ready DS in 2007. [1] P. Amendt et al., PoP 9, 2221 (2002). [2] J.D. Lindl et al., PoP 11, 339 (2004). [3] M.N. Chizhkov et al., Laser Part. Beams 23, 261 (2005). In collaboration with C. Cerjan, A. Hamza, J. Milovich and H. Robey.

  10. Folding and unfolding of large-size shell construction for application in Earth orbit

    Science.gov (United States)

    Kondyurin, Alexey; Pestrenina, Irena; Pestrenin, Valery; Rusakov, Sergey

    2016-07-01

    A future exploration of space requires a technology of large module for biological, technological, logistic and other applications in Earth orbits [1-3]. This report describes the possibility of using large-sized shell structures deployable in space. Structure is delivered to the orbit in the spaceship container. The shell is folded for the transportation. The shell material is either rigid plastic or multilayer prepreg comprising rigid reinforcements (such as reinforcing fibers). The unfolding process (bringing a construction to the unfolded state by loading the internal pressure) needs be considered at the presence of both stretching and bending deformations. An analysis of the deployment conditions (the minimum internal pressure bringing a construction from the folded state to the unfolded state) of large laminated CFRP shell structures is formulated in this report. Solution of this mechanics of deformable solids (MDS) problem of the shell structure is based on the following assumptions: the shell is made of components whose median surface has a reamer; in the separate structural element relaxed state (not stressed and not deformed) its median surface coincides with its reamer (this assumption allows choose the relaxed state of the structure correctly); structural elements are joined (sewn together) by a seam that does not resist rotation around the tangent to the seam line. The ways of large shell structures folding, whose median surface has a reamer, are suggested. Unfolding of cylindrical, conical (full and truncated cones), and large-size composite shells (cylinder-cones, cones-cones) is considered. These results show that the unfolding pressure of such large-size structures (0.01-0.2 atm.) is comparable to the deploying pressure of pneumatic parts (0.001-0.1 atm.) [3]. It would be possible to extend this approach to investigate the unfolding process of large-sized shells with ruled median surface or for non-developable surfaces. This research was

  11. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  12. Hydrodynamic experiments on dacryoconarid shell telescoping

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Šimčík, Miroslav; Růžička, Marek; Kulaviak, Lukáš; Lisý, Pavel

    2014-01-01

    Roč. 47, č. 3 (2014), s. 376-396 ISSN 0024-1164 R&D Projects: GA ČR GAP210/10/2351 Institutional support: RVO:67985831 ; RVO:67985858 Keywords : dacryoconarid shells * experimental fluid mechanics * narrow cones * Palaeozoic * telescoping Subject RIV: DB - Geology ; Mineralogy; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) Impact factor: 1.454, year: 2014

  13. ECO-TECHNIQUE OF SEWER RENOVATION USING COMPOSITE SHELLS: STRUCTURAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    B. Attaf

    2015-07-01

    Full Text Available An eco-technical renovation of the sewage system is developed in this paper; this technique involves incorporating into the existing sewer a series of jointed prefabricated sandwich or composite shells. The purpose of his study is to determine the structural shell deflection, the high displacement areas and to validate the non-failure criterion for each ply constituting the inner and outer laminate facings. The numerical results were obtained at low cost by using the finite element method. Studies have focused on structural analysis of a typical shell unit with an ovoid form (egg-shaped section when it is subjected, during annular space filling operation, to pressure forces generated by wet concrete. To ensure the safety of the composite shell structure, Tsai-Hill criterion function is applied and results are presented for the most stressed plies

  14. Tearing instability in cylindrical plasma configuration

    International Nuclear Information System (INIS)

    Zelenyj, L.M.

    1979-01-01

    The effect of the neutral-layer cylindrical geometry on the development of the tearing instability has been investigated in detail. The increments of the instability for all the regimes have been found. The influence of cylindrical effects becomes manifesting itself at small, as compared to the layer characteristic thickness, distances from the axis, and, finally, the electron regime of the instability development transforms into an ion one. The results obtained are of interest for studying the plasma stability in the devices of the ''Astron'' type and in magnetospheres of cosmic objects

  15. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  16. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hi shells, supershells, shell-like objects, and ''worms''

    International Nuclear Information System (INIS)

    Heiles, C.

    1984-01-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10 0 . We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo

  18. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  19. Aeroelastic Dynamics Simulation of Two BaffleBased Connected Shells

    Directory of Open Access Journals (Sweden)

    G. A. Shcheglov

    2015-01-01

    Full Text Available The present work is an extention study of aeroelastic vibrations of thin-walled structures with a spatial subsonic flow. An original algorithm for solving complex conjugated aeroelasticity problem, allowing to carry out direct numerical simulation of structural oscillations in the spatial flow of an incompressible medium are developed and tested. On the basis of this simulation study of the spectrum comes the driving forces acting on the flow in a spatial component elastic structure mounted on an impenetrable screen.Currently, updating the mathematical models of unsteady loads that act on the spacepurpose elastic designs such as launch vehicles, service tower installed on the launch pad is a challenge. We consider two thin-walled cantilevered rotating shells connected by a system of elastic couplings, installed next to the impenetrable baffle so that the axes of rotation are perpendicular to the baffle. Dynamics of elastic system is investigated numerically, using the vortex element method with the spatial separated flow of an incompressible medium. A feature of the algorithm is the common commercial complex MSC Patran / Nastran which is used in preparing data to calculate the shell dynamics thereby allowing to consider very complex dynamic schemes.The work performs the first calculations of the model problem concerning the forced oscillations of two coupled cylindrical shells in the flow of an incompressible medium. Comparing the load spectra for the elastic and absolutely rigid structure has shown that the frequency spectra vary slightly. Further calculations are required in which it will be necessary to increase the duration of the calculations, sampling in construction of design scheme, and given the large number of vibration modes that require increasing computing power.Experience in calculating aeroelastic dynamics of complex elastic structures taking into account the screen proved to be successful as a whole, thereby allowing to turn to

  20. An isoparametric shell of revolution finite element for harmonic loadings of any order

    International Nuclear Information System (INIS)

    Johnson, J.J.; Charman, C.M.

    1981-01-01

    A general isoparametric shell of revolution finite element subjected to any order harmonic loading is presented. Derivation of the element properties, its implementation in a general purpose finite element program, and its application to a sample problem are discussed. The element is isoparametric, that is, the variation of the displacements along the meridian of the shell and the shape of the meridian itself are approximated in an identical manner. The element has been implemented in the computer program MODSAP. A sample problem of a cooling tower subjected to wind loading is presented. (orig./HP)

  1. Investigation of stresses in facetted glass shell structures

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Wester, Ture

    2007-01-01

    by in-plane forces in the facets and the transfer of distributed in-plane forces across the joints. It is described how these facets work structurally, specifically how bending moments develop and cause possible stress concentrations in the corners, which are subjected to uplift. Apart from local...... bending moments from distributed load, other types of bending moments are likely to occur, especially if the shell has areas of low stiffness, for example along a free edge. A facetted shell structure has been modelled in a finite element program, and the resulting stresses are presented and discussed....

  2. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  3. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  4. Development of new cylindrical magnetrons for industrial use

    International Nuclear Information System (INIS)

    Clayton, B.

    2000-09-01

    A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key properties (such as adhesion level and hardness) of the coatings deposited. In all cases good results were obtained. A 22mm o.d. device based on the same design was shown to operate, but with less satisfactory characteristics. In an attempt to improve the miniaturised design, the feasibility of gas cooling (rather than water cooling) the cylindrical magnetron was demonstrated. A system incorporating four 40mm o.d. cylindrical magnetrons was designed, constructed and briefly tested. This was intended to prove the feasibility of using a multi-magnetron system to reduce the cost to coat. Its dimensions and design were tailored to an industrially specified engine block. In use the plasma rings formed on the 40mm magnetron target surfaces during operation were found to be of unequal intensities, especially on the shorter magnetron design used in the four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. (author)

  5. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  6. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  7. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  8. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  9. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  10. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    International Nuclear Information System (INIS)

    Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di

    2015-01-01

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained

  11. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  12. Vibration of a Cylindrical Tunnel under a Centric Point-Source Explosion

    Directory of Open Access Journals (Sweden)

    Yuetang Zhao

    2017-01-01

    Full Text Available Underground tunnels are vulnerable to terrorists’ bombing attacks, which calls for studies on tunnel’s response to internal explosive loading. In this paper, the dynamic response of a cylindrical tunnel to an ideal centric point explosion was treated as an axisymmetric 2-dimensional problem, in which the tunnel was modeled with a continuous anisotropic shell, while the ground medium’s effect was accounted for with linear elastic Winkler springs and the explosive loading described by a temporal and spatial function. The governing equation of the motion is a fourth-order partial differential equation, for which a numerical method combining finite difference with the implicit Newmark-β method was adopted. This method avoided complicated integral transform and numerical inverse transformation, thus allowing efficient parameter study. The maximum radial displacement was found on the cricle of the center of explosive, where hoop stress is the maximum principal stress. The anisotropy showed little influence on maximum hoop stress. Within the range of ground medium’s modulus, minor influence on maximum hoop stress was incurred. This research may be helpful to hazard assessment and protective design for some critical subway tunnels.

  13. Beyond the intelligent-shell concept. The clean-mode-control for tearing perturbations

    International Nuclear Information System (INIS)

    Zanca, Paolo

    2010-01-01

    The Intelligent Shell scheme, where a grid of active coils counteracts in a feedback scheme the measurements provided by an identical grid of sensors, has shown some limitations in the control of the dynamo tearing modes in RFX-mod. The origin of the problem is the aliasing on the measurements coming from the high periodicity sideband harmonics produced by the discrete nature of the active coils. A more efficient feedback on tearing modes is obtained by removing the sidebands from the measurements, thereby counteracting the true tearing Fourier modes. In this scheme, named Clean-Mode-Control, the sidebands are computed in real time from the coils currents using the cylindrical geometry approximation. The Clean-Mode-Control significantly alleviates the wall-locking of tearing modes in RFX-mod, giving the possibility of operating at a plasma current (1.5 MA) never reached before in a RFP machine. These features are well explained by a MHD model describing the tearing mode dynamic under the viscous torque due to the fluid motion and the electromagnetic torques produced by the feedback, the conductive structures surrounding the plasma and the non-linear interaction between the different modes. Here some new results obtained with this model are discussed. In particular we will show that the edge radial field control improves by reducing the ratio between the delay introduced by the digital acquisition of the measurements and the time constant of the shell that contains the plasma. In this formulation the active coils are assumed to be located outside the shell. (author)

  14. Wave motion in a thick cylindrical rod undergoing longitudinal impact

    Czech Academy of Sciences Publication Activity Database

    Červ, Jan; Adámek, V.; Valeš, František; Gabriel, Dušan; Plešek, Jiří

    2016-01-01

    Roč. 66, November (2016), s. 88-105 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/12/2315; GA TA ČR(CZ) TH01010772 Institutional support: RVO:61388998 Keywords : elastic waves * impact * thick cylindrical rod * analytical solution * semi-analytical solution Subject RIV: BI - Acoustics Impact factor: 1.575, year: 2016 http://ac.els-cdn.com/S0165212516300427/1-s2.0-S0165212516300427-main.pdf?_tid=d91eee02-7a55-11e6-8c02-00000aab0f6c&acdnat=1473842161_c56543aaec31b7e091ab47d3fb38f361

  15. Sensitivity optimization in whispering gallery mode optical cylindrical biosensors

    Science.gov (United States)

    Khozeymeh, F.; Razaghi, M.

    2018-01-01

    Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.

  16. Symmetry-guided large-scale shell-model theory

    Czech Academy of Sciences Publication Activity Database

    Launey, K. D.; Dytrych, Tomáš; Draayer, J. P.

    2016-01-01

    Roč. 89, JUL (2016), s. 101-136 ISSN 0146-6410 R&D Projects: GA ČR GA16-16772S Institutional support: RVO:61389005 Keywords : Ab intio shell -model theory * Symplectic symmetry * Collectivity * Clusters * Hoyle state * Orderly patterns in nuclei from first principles Subject RIV: BE - Theoretical Physics Impact factor: 11.229, year: 2016

  17. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    Science.gov (United States)

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  18. On the core-mass-shell-luminosity relation for shell-burning stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Saint Andrews Univ.

    1988-01-01

    Core-mass-shell-luminosity relations for several types of shell-burning star have been calculated using simultaneous differential equations derived from simple homology approximations. The principal objective of obtaining a mass-luminosity relation for helium giants was achieved. This relation gives substantially higher luminosities than the equivalent relation for H-shell stars with core masses greater than 1 solar mass. The algorithm for calculating mass-luminosity relations in this fashion was investigated in detail. Most of the assumptions regarding the physics in the shell do not play a critical role in determining the core-mass-shell-luminosity relation. The behaviour of the core-mass-core-radius relation for a growing degenerate core as a single unique function of mass and growth rate needs to be defined before a single core-mass-shell-luminosity relation for all H-shell stars can be obtained directly from the homology approximations. (author)

  19. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  20. Settling of a cylindrical particle in a stagnant fluid

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen

    The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...

  1. Power deposition in a cylindrical geometry using B-10 coatings

    International Nuclear Information System (INIS)

    Chung, A.K.; Prelas, M.A.

    1983-01-01

    The transport of charged particles produced by 10 B (n, α) Li and 235 U (n, νn) ff nuclear reactions in a two region cylindrical geometry is predicted. We employed a mean-range straight-flight approximation to calculate the power deposition by the charged particles in a gaseous medium. Our model demonstrated some features in a cylindrical experiment which were suspected but not proven. In the common slab model used by Guyot et al 1 and Romero 2 , the spatial distribution of power deposition is much flatter than it would be in a cylindrical model. A steeper gradient in the power deposition is expected in a cylindrical geometry than in a slab geometry. We also found that for a standard thickness of Boron-10 coating (1.73 μm) used in NPLs, the expected efficiency of a cylindrical geometry (7.5%) is much lower than the 12% efficiency predicted by the slab model. Indeed the use of slab geometry in modeling current NPL experimental devices is not accurate

  2. Molecular-Level Simulations of Chemical Reaction Equilibrium and Diffusion in Slit and Cylindrical Nanopores: Model Dimerisation Reactions

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Předota, Milan; Brennan, J.K.

    2013-01-01

    Roč. 39, č. 13 (2013), s. 1103-1120 ISSN 0892-7022 R&D Projects: GA ČR GA13-09914S Grant - others:GA ČR(CZ) GA13-08651S Institutional support: RVO:67985858 Keywords : molecular dynamics * reaction ensemble Monte Carlo * slit and cylindrical nanopores Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.119, year: 2013

  3. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.

    Science.gov (United States)

    Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia

    2017-11-01

    Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Hodnocení integrity válcových skořepin

    Czech Academy of Sciences Publication Activity Database

    Gajdoš, Lubomír; Šperl, Martin

    2011-01-01

    Roč. 91, č. 9 (2011), s. 200-205 ISSN 0032-1761 R&D Projects: GA ČR(CZ) GAP105/10/2052; GA ČR(CZ) GPP105/10/P555 Institutional research plan: CEZ:AV0Z20710524 Keywords : cylindrical shells * J-integral * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  5. Tight multilattices calculated by extended-cell cylindrization

    Energy Technology Data Exchange (ETDEWEB)

    Segev, M; Carmona, S

    1983-01-01

    Among the common features of advanced LWR concepts are the tightness of lattices and the symbiotic setting of different fuels. Such symbioses often come in the form of multilattices, whose numerically-repeated unit is a configuration of several pins, typically with one pin type at the center and pins of a second type surrounding the center pin. If this extended-cell (EC) unit is cylindricized, then a simple transport calculation of the unit will be possible. If the lattice of such units is tight, there is further an a priori reason to expect the cylindrization to introduce only a small distortion of the true neutron fluxes in the lattice. A strict numerical validation of the EC cylindrization approximation is impractical, but similar validations can be carried out for regular lattices, viewed as being made up of multicell units whose centers are moderators and whose peripheries are fuel pins. In these comparisons the EC cylindrization approximation gives good results.

  6. Geometric method for stability of non-linear elastic thin shells

    CERN Document Server

    Ivanova, Jordanka

    2002-01-01

    PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...

  7. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  8. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  9. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  10. The stability of growth of a through-wall circumferential crack in a cylindrical pipe subjected to bending deformation

    International Nuclear Information System (INIS)

    Smith, E.

    1987-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to examine the stability of growth of a through-wall circumferential crack in a 304 stainless steel circular cylindrical pipe subject to bending deformation. They showed that crack growth is stable, in the sense that growth requires the rotation imposed at the pipe-ends to be increased, provided the pipe length is less than a critical length Lsub(c), which is given by their analysis. The Tada-Paris-Gamble analysis focuses on the question of the stability, or otherwise, of crack growth at the onset of crack extension. The analysis does not consider the possibilities that (a) instability might occur after some stable crack growth, and (b) arrest might occur after some unstable growth. A study of these aspects of the circumferential crack growth problem using the tearing modulus approach is precluded by the geometry dependence of the J-crack growth resistance curve. Consequently the present paper uses a crack tip opening angle criterion to describe crack growth, and thereby demonstrates that possibilities (a) and (b) should both occur, depending on the initial crack length and pipe length. In terms of relevance to the technologically important problem of cracking in Boiling Water Reactor piping, the important conclusion stemming from the paper's analysis is that stability of crack growth after the onset of crack extension is assured if the pipe length is less than a critical length L'sub(c). L'sub(c) is less than Lsub(c), the critical length relevant to the onset of crack extension, but it is still appreciably greater than the pipe run lengths in actual reactor piping systems, and safety against guillotine failure of a pipe is therefore generally assured. (author)

  11. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  12. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  13. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  14. Shock absorbing properties of toroidal shells under compression, 3

    International Nuclear Information System (INIS)

    Sugita, Yuji

    1985-01-01

    The author has previously presented the static load-deflection relations of a toroidal shell subjected to axisymmetric compression between rigid plates and those of its outer half when subjected to lateral compression. In both these cases, the analytical method was based on the incremental Rayleigh-Ritz method. In this paper, the effects of compression angle and strain rate on the load-deflection relations of the toroidal shell are investigated for its use as a shock absorber for the radioactive material shipping cask which must keep its structural integrity even after accidental falls at any angle. Static compression tests have been carried out at four angles of compression, 10 0 , 20 0 , 50 0 , 90 0 and the applications of the preceding analytical method have been discussed. Dynamic compression tests have also been performed using the free-falling drop hammer. The results are compared with those in the static compression tests. (author)

  15. Elasto/visco-plastic dynamic response of multi-layered shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.; Taguchi, T.

    1989-01-01

    Many investigations of the elasto/visco-plastic dynamic response of shells have been conducted. These investigations, however, have been mostly concerned with the case of single-layered shells, and few studies on multi-layered shells have been reported in spite of their importance in engineering. In this paper, the authors study the elasto/visco-plastic dynamic response of the multi-layered shells of revolution subjected to impulsive loads. The equations of motion and the relations between the strains and displacements are derived by extending Sanders' theory for elastic thin shells. As the constitutive relation, Hooke's law is used in the linear elastic range, and the elasto/visco-plastic equations are employed in the plastic range. The criterion for yielding used in the analysis is the von Mises yield theory. In the numerical analysis of the fundamental equations for incremental values an usual finite difference form is employed for the spatial derivatives and the inertia terms are treated with the backward difference formula. The solutions are obtained by summation of the incremental values

  16. Simulation of LMFBR excursion models by means of ICECO

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Wang, C.Y.; Fistedis, S.H.

    1977-01-01

    Some comparisons of transient fluid-structure tests with results from the ICECO containment code have already been published. The test data used before referred to simplifield structural models dealing with the safety aspect of the SNR-300 fast breeder. Thus, the comparison of these more complex models with the ICECO results is the subject of this paper. The experimental data used herein pertain to test models composed of a spherical source within a cylindrical pool water. The rigid ends of the container are connected by holddown bolts and cylindrical boundaries are made of one or two concentric deformable shells. The space above the surface of the water is occupied by air which may vent during the course of the experiment. The dimensions of the model, the transient stress-strain data of the shells, which had been derived in separate experiments, and the pressure-volume relationship are known. Although the boundary conditions of the vessel are also known, they could not be simulated by the analytical models. Initially the outside shell is prestressed by the holddown bolts through the two rigid lids with rubber seals set between the ends of the shell and the lids. This rather complex boundary condition was anlytically simulated in the following way: at the bottom the shells were assumed free to deform radially, but were fixed axially; at the top the shell was assumed to have no constraints at all. The analytical results show that the cylindrical vessel closest to the source begins to deform first, followed by the bottom portion of the vessel. The top vessel portion deforms only later when the fluid surface reaches the top cover and the developed fluid pressure imparts radial vessel deformation

  17. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  18. Nonlinear viscoelastic behaviour of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbabi-Kanjoori, F.

    1975-01-01

    A formulation and solution technique are presented for the creep analysis of shells of revolution subjected to arbitrary loads and temperature changes. Arbitrary creep laws are admitted in the formulation with specific attention given to the two common laws, i.e. strain hardening and time hardening. The governing equations for creep of shells of revolution are derived. The solution method requires the quasi-static linearization of the equations: linear incremental behaviour is assumed during each time step. The incremental equations are expanded in Fourier series and solved by a numerical integration technique. (Auth.)

  19. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  20. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    International Nuclear Information System (INIS)

    Lan, Ke; Zheng, Wudi

    2014-01-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums

  1. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    Science.gov (United States)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  2. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  3. Study on reinforced lightweight coconut shell concrete beam behavior under torsion

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Ramasubramani, R.; Annadurai, R.; Prakash Chandar, S.

    2014-01-01

    Highlights: • Use of coconut shell as aggregate in concrete production. • Behavior of coconut shell concrete under torsion. • Pre and post cracking behavior and analysis. • Torsional reinforcement and ductility. • Crack width and stiffness. - Abstract: This research investigates and evaluates the results of coconut shell concrete beams subjected to torsion and compared with conventional concrete beams. Eight beams, four with coconut shell concrete and four with conventional concrete were fabricated and tested. Study includes the general cracking characteristics, pre cracking behavior and analysis, post cracking behavior and analysis, minimum torsional reinforcement, torsional reinforcement, ductility, crack width and stiffness. It was observed that the torsional behavior of coconut shell concrete is comparable to that of conventional concrete. Compare to ACI prediction, equation suggested by Macgregor is more conservative in calculating cracking torsional resistance. But for the calculation of ultimate torque strength ACI prediction is more conservative compared to the equation suggested by Macgregor. Indian standard is also conservative in this regard, but it was under estimated compared to ACI and Macgregor equations. Minimum torsional reinforcement in beams is necessary to ensure that the beam do not fail at cracking. Compared to conventional concrete specimens, coconut shell concrete specimens have more ductility. Crack width at initial cracking torque for both conventional and coconut shell concrete with corresponding reinforcement ratios is almost similar

  4. Dominant thermogravimetric signatures of lignin in cashew shell as compared to cashew shell cake.

    Science.gov (United States)

    Gangil, Sandip

    2014-03-01

    Dominant thermogravimetric signatures related to lignin were observed in cashew shell as compared to these signatures in cashew shell cake. The phenomenon of weakening of lignin from cashew shell to cashew shell cake was explained on the basis of changes in the activation energies. The pertinent temperature regimes responsible for the release of different constituents of both the bio-materials were identified and compared. The activation energies of cashew shell and cashew shell cake were compared using Kissinger-Akahira-Sunose method. Thermogravimetric profiling of cashew shell and cashew shell cake indicated that these were different kinds of bio-materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. On cylindrically converging shock waves shaped by obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  6. Experimental and Numerical Evaluation of Direct Tension Test for Cylindrical Concrete Specimens

    Directory of Open Access Journals (Sweden)

    Jung J. Kim

    2014-01-01

    Full Text Available Concrete cracking strength can be defined as the tensile strength of concrete subjected to pure tension stress. However, as it is difficult to apply direct tension load to concrete specimens, concrete cracking is usually quantified by the modulus of rupture for flexural members. In this study, a new direct tension test setup for cylindrical specimens (101.6 mm in diameter and 203.2 mm in height similar to those used in compression test is developed. Double steel plates are used to obtain uniform stress distributions. Finite element analysis for the proposed test setup is conducted. The uniformity of the stress distribution along the cylindrical specimen is examined and compared with rectangular cross section. Fuzzy image pattern recognition method is used to assess stress uniformity along the specimen. Moreover, the probability of cracking at different locations along the specimen is evaluated using probabilistic finite element analysis. The experimental and numerical results of the cracking location showed that gravity effect on fresh concrete during setting time might affect the distribution of concrete cracking strength along the height of the structural elements.

  7. Dismantling OPAL's cylindrical magnet core

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.

  8. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  9. Cylindric partitions, {{\\boldsymbol{ W }}}_{r} characters and the Andrews-Gordon-Bressoud identities

    Science.gov (United States)

    Foda, O.; Welsh, T. A.

    2016-04-01

    We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.

  10. Micropatterning on cylindrical surfaces via electrochemical etching using laser masking

    International Nuclear Information System (INIS)

    Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces

  11. Extensions to a nonlinear finite-element axisymmetric shell model based on Reissner's shell theory

    International Nuclear Information System (INIS)

    Cook, W.A.

    1981-01-01

    Extensions to shell analysis not usually associated with shell theory are described in this paper. These extensions involve thick shells, nonlinear materials, a linear normal stress approximation, and a changing shell thickness. A finite element shell-of-revolution model has been developed to analyze nuclear material shipping containers under severe impact conditions. To establish the limits for this shell model, the basic assumptions used in its development were studied; these are listed in this paper. Several extensions were evident from the study of these limits: a thick shell, a plastic hinge, and a linear normal stress

  12. Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids

    International Nuclear Information System (INIS)

    Khayat, R.E.; Eu, B.C.

    1988-01-01

    In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available

  13. Strength characterization of tubular ceramic materials by flexure of semi-cylindrical specimens

    DEFF Research Database (Denmark)

    Kwok, Kawai; Kiesel, Lutz; Frandsen, Henrik Lund

    2014-01-01

    Mechanical strength at elevated temperatures and operating atmospheres needs to be characterized during development of tubular ceramic components for advanced energy technologies. Typical procedures are time-consuming because a large number of tests are required for a reliable statistical strength...... characterization and every specimen has to be subjected to the process conditions individually. This paper presents an efficient strength characterization methodology for tubular ceramics. The methodology employs flexure of semi-cylindrical specimens as the strength test and implements the tests within a facility...... conducted on oxygen transport membrane materials at room temperature and 850°C....

  14. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    Science.gov (United States)

    Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.

    2018-05-01

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.

  15. Miscellaneous subjects, ch. 18

    International Nuclear Information System (INIS)

    Brussaard, P.J.; Glaudemans, P.W.M.

    1977-01-01

    Attention is paid to a variery of subjects which are related to shell model applications, e.g. the Lanczos method for matrix diagonalization, truncation methods (seniority truncation, single-particle energy truncation and diagonal energy truncation which can be used for reducing the configuration space.) Coulomb energies and spurious states are briefly discussed. Finally attention is paid to the particle-vibrator model

  16. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  17. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., 90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope fractionation

  18. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...

  19. Elasto/visco-plastic analysis of moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Tanoue, M.

    1981-01-01

    The analytical formulation on the elasto-visco-plastic problems of general, moderately thick shells of revolution subjected to axisymmetrical load is developed by extension of the Reissner theory in elastic shells where a consideration on the effect of shear deformations is given. The authors employ as constitutive relation of the shell materials Perzyna's equation where in the plastic range the viscosity of the material is considered. The criterion for yielding used in this analysis is the von Mises yield theory. The basic differential equations derived for elasto-visco-plastic problems are numerically solved by a finite difference method, and the solutions are obtained by integration of the incremental values. As a numerical example, the elasto/visco-plastic deformation of pressure vessels is analyzed, and the results are compared with those from the classical theory which neglects the effect of shear deformations. (orig.)

  20. Fonksiyonel Değişimli Malzemelerle Kaplı Seramik Silindirik Panelin Titreşim Analizi

    Directory of Open Access Journals (Sweden)

    Abdullah H. SOFİYEV

    2015-01-01

    Full Text Available In this study, the vibration of ceramic cylindrical panel covered by FGM coatings composed of zirconium oxide (ZrO2 and titanium-aloy (Ti6Al4V is investigated. First, a sandwich cylindrical panel covered by FGM coatings is designed. After the derivation of basic equations are found expression for the frequency of ceramic cylindrical panels covered by FGM coatings. Discusses the influence of coatings profiles, sandwich shell characteristics, the radius-tothickness ratio and the core-to-coating thickness ratio on the dimensionless frequencies for FG and homogeneous sandwich cylindrical shells

  1. arXiv The new cylindrical GEM inner tracker of BESIII

    CERN Document Server

    Lavezzi, L.; Amoroso, A.; Ferroli, R. Baldini; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, Jy; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Leng, Cy; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo,; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-05-03

    The Cylindrical GEM-Inner Tracker (CGEM-IT) is the upgrade of the internal tracking system of the BESIII experiment. It consists of three layers of cylindrically-shaped triple GEMs, with important innovations with respect to the existing GEM detectors, in order to achieve the best performance with the lowest material budget. It will be the first cylindrical GEM running with analog readout inside a 1T magnetic field. The simultaneous measurement of both the deposited charge and the signal time will permit to use a combination of two algorithms to evaluate the spatial position of the charged tracks inside the CGEM-IT: the charge centroid and the micro time projection chamber modes. They are complementary and can cope with the asymmetry of the electron avalanche when running in magnetic field and with non-orthogonal incident tracks. To evaluate the behaviour under different working settings, both planar chambers and the first cylindrical prototype have been tested during various test beams at CERN with 150 GeV/c...

  2. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    Science.gov (United States)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  3. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.; Chubykalo-Fesenko, O.

    2015-01-01

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain

  4. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  5. Mechanical properties of zirconia core-shell rods with porous core and dense shell prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemen, F.; Trunec, M.

    2017-01-01

    Roč. 37, č. 6 (2017), s. 2439-2447 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : ceramic injection moldings * oxide fuel -cells * electrophoretic deposition * large pores * alumina * fabrication * behavior * tubes * bioceramics * composites * Zirconia * Co-extrusion * Core-shell * Porous structure * Mechanical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  6. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  7. BOWOOSS: bionic optimized wood shells with sustainability

    Science.gov (United States)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  8. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2016-09-15

    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  9. Cylindrical concave body of composite fibrous material

    International Nuclear Information System (INIS)

    1979-01-01

    The invention is concerned with a cylindrical concave body of compound fibrous material which is intended to be exposed to high rotation speeds around its own longitudinal axis. The concave body in question has at least one layer of fibrils that are interwoven and enclose an identical angle with the longitudinal axis of the concave body in both directions. The concave body in question also has at least a second layer of fibrils that run in the direction of the circumference and are fitted radially to the outside. The cylindrical concave body of the invention is particularly well suited for application as a rotor tube in a gas ultra-centrifuge

  10. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  11. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces

    International Nuclear Information System (INIS)

    Wang, L. F.; He, X. T.; Wu, J. F.; Zhang, W. Y.; Ye, W. H.

    2013-01-01

    A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WN growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.

  12. Superficial shell insulation in resting and exercising men in cold water.

    Science.gov (United States)

    Veicsteinas, A; Ferretti, G; Rennie, D W

    1982-06-01

    From measurements of subcutaneous fat temperature (Tsf) at known depths below the surface, skin surface temperature (Tsk), and direct skin heat flux (H), the superficial shell isulation (Iss) of the thigh (fat + skin) was calculated as Iss (degrees C.m2.w-1) = (Tsf - Tsk)/H in nine male subjects immersed head out in a well-stirred water bath. Also, at critical water temperature (CWT = 28-33 degrees C), eight of the subjects rested for 3 h, enabling overall maximal tissue insulation (It,max) to be calculated as It,max (degrees C.m2.W-1) = (Tre - Tw)/(0.92 M +/- delta S), where Tre is rectal temperature, Tw is water temperature, M is metabolic rate, and s is loss or gain of body heat. Five subjects performed up to 2 h of mild leg cycling, preceded and followed by 60 min of rest, and both thigh Iss and overall It were measured during exercise. Iss increased from minimal values in Tw greater than 33 degrees C to maximal values (Iss,max) at CWT or below. Iss,max was linearly related to tissue thickness (d) in millimeters of fat plus skin, Iss,max (degrees C.m2.W-1) = 0.0048d-0.0052; r = 0.95, n = 37, and was not influenced by leg exercise up to a metabolic rate of 150 W.m-2 in CWT despite large increases in Tsf and H and large decreases in overall It. The slope of Iss,max vs. depth, 0.0048 degrees C.m2.W-1.mm-1, is almost identical to thermal resistivity of fat in vitro, suggesting that the superficial shell is unperfused in CWT at rest or during mild exercise. When maximal superficial shell insulation (It,ss,max) for the whole body was calculated with allowance for differing fat thicknesses and surface areas of body regions, it could account for only 10-15% of overall It,max at rest and 35-40% of overall It in mild exercise. We suggest that the poorly perfused muscle shell plays a more important role as a defense against cooling at CWT than does the superficial shell (fat + skin), particularly at rest.

  13. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  14. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.

  15. Hydromagnetic Rayleigh-Taylor instability in cylindrical implosions

    International Nuclear Information System (INIS)

    Hwang, C.S.; Roderick, N.F.; Wu, M.W.

    1986-01-01

    Rayleigh-Taylor Instability in the (r,Θ) plane has been solved by the variational approach. Results are compared to the analytical solutions of two-region and three-region problems at the infinite radius. They show the magnetic stabilization effect. Growth rates in this plane are decreased by the effects of plasma shell thickness, plasma shell radius, magnetic tension, magnetic diffusion and finite density gradient of the plasma magnetic field interface. The most unstable mode number decreases when the radius of the plasma shell decreases

  16. Molluscan shell colour.

    Science.gov (United States)

    Williams, Suzanne T

    2017-05-01

    The phylum Mollusca is highly speciose, and is the largest phylum in the marine realm. The great majority of molluscs are shelled, including nearly all bivalves, most gastropods and some cephalopods. The fabulous and diverse colours and patterns of molluscan shells are widely recognised and have been appreciated for hundreds of years by collectors and scientists alike. They serve taxonomists as characters that can be used to recognise and distinguish species, however their function for the animal is sometimes less clear and has been the focus of many ecological and evolutionary studies. Despite these studies, almost nothing is known about the evolution of colour in molluscan shells. This review summarises for the first time major findings of disparate studies relevant to the evolution of shell colour in Mollusca and discusses the importance of colour, including the effects of visual and non-visual selection, diet and abiotic factors. I also summarise the evidence for the heritability of shell colour in some taxa and recent efforts to understand the molecular mechanisms underpinning synthesis of shell colours. I describe some of the main shell pigments found in Mollusca (carotenoids, melanin and tetrapyrroles, including porphyrins and bile pigments), and their durability in the fossil record. Finally I suggest that pigments appear to be distributed in a phylogenetically relevant manner and that the synthesis of colour is likely to be energetically costly. © 2016 Cambridge Philosophical Society.

  17. Forced Vibrations of a Two-Layer Orthotropic Shell with an Incomplete Contact Between Layers

    Science.gov (United States)

    Ghulghazaryan, L. G.; Khachatryan, L. V.

    2018-01-01

    Forced vibrations of a two-layer orthotropic shell, with incomplete contact conditions between layers, when the upper face of the shell is free and the lower one is subjected to a dynamic action are considered. By an asymptotic method, the solution of the corresponding dynamic equations and correlations of a 3D problem of elasticity theory is obtained. The amplitudes of forced vibrations are determined, and resonance conditions are established.

  18. Confined and interface phonons in combined cylindrical nanoheterosystem

    Directory of Open Access Journals (Sweden)

    O.M.Makhanets

    2006-01-01

    Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.

  19. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  20. The cylindrical GEM detector of the KLOE-2 experiment

    International Nuclear Information System (INIS)

    Bencivenni, G.; Ciambrone, P.; De Lucia, E.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.; Branchini, P.; Cicco, A. Di; Czerwinski, E.

    2017-01-01

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

  1. Cylindrical-confinement-induced phase behaviours of diblock copolymer melts

    International Nuclear Information System (INIS)

    Mei-Jiao, Liu; Shi-Ben, Li; Lin-Xi, Zhang; Xiang-Hong, Wang

    2010-01-01

    The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement. (cross-disciplinary physics and related areas of science and technology)

  2. Special features of embrittlement of welded joints in shells of VVER-type reactors

    International Nuclear Information System (INIS)

    Kasatkin, O.G.

    1999-01-01

    At present, the atomic power engineering of Russia and Ukraine is based on water-water energy reactors of the VVER-440 and VVER-1000 type, with the electric power of 440 and 1000 MW, respectively. The majority of the VVER-440 reactors are installed in Russia, and VVER-1000 reactors operate in Ukraine. The reactors' shell (RS) is produced from cylindrical shells and a dished end welded together by circular joints under a flux. The RS of the VVER-440 reactor is produced from 15Kh3MFA steel, and the VVER-1000 reactors are produced from 15Kh2NMFA steel. The shell of the VVER-1000 reactor has an internal austenite coating. The condition of the RS metal is determined mainly by the critical brittleness temperature T b at which the impact toughness of specimens with a sharp notch reaches 60 J/cm 2 . The energy reactors, working in western countries, are characterised by a service life of 40 years and discussion is being carried out to extend this lifetime to 60 years. The design service life of the domestic reactors varies from 30 (RS VVER-440) to 40 (RS VVER-1000) years. According to investigations, the service life of the shells of these reactors is restricted by the properties of welded joints which are characterised by higher susceptibility to embrittlement than that of the parent metal, especially due to a higher content in the weld of phosphorus (RS VVER-440) or nickel (RS VVER-1000). Therefore, some experts believe that the actual service life of the RS is shorter than the design life. The accurate evaluation of the service life of welded joints in the RS is very important for the safety of service and also in the economic aspects, because the unjustified decrease of the permissible service life and premature shutdown of units of the nuclear power station result in huge losses

  3. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  4. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  5. Safety margins associated with containment structures under dynamic loading

    International Nuclear Information System (INIS)

    Lu, S.C.

    1978-01-01

    A technical basis for assessing the true safety margins of containment structures involved with MARK I boiling water reactor reevaluation activities is presented. It is based on the results of a plane-strain, large displacement, elasto-plastic, finite-element analysis of a thin cylindrical shell subjected to external and internal pressure pulses. An analytical procedure is presented for estimating the ultimate load capacity of the thin shell structure, and subsequently, for quantifying the design margins of safety for the type of loads under consideration. For defining failure of structures, a finite strain failure criterion is derived that accounts for multiaxiality effects

  6. Characteristic Determination Of Self Shielding Factor And Cadmium Ratio Of Cylindrical Probe

    International Nuclear Information System (INIS)

    Hamzah, Amir; Budi R, Ita; Pinem, Suriam

    1996-01-01

    Determination of thermal, epithermal and total self shielding factor and cadmium ratio of cylindrical probe has been done by measurement and calculation. Self shielding factor can be determined by dividing probe activity to Al-alloy probe activity. Due to the lack of cylindrical probe made of Al-alloy, self shielding factor can be determined by parabolic extrapolation of measured activities to 0 cm radius to divide those activities. Theoretically, self shielding factor can be determined by making numerical solution of two dimensional integral equations using Romberg method. To simplify, the calculation is based on single collision theory with the assumption of monoenergetic neutron and isotropic distribution. For gold cylindrical probe, the calculation results are quite close to the measurement one with the relative discrepancy for activities, cadmium ratio and self shielding factor of bare probe are less then 11.5%, 3,5% and 1.5% respectively. The program can be used for the calculation of other kinds of cylindrical probes. Due to dependency to radius, cylindrical probe made of copper has the best characteristic of self shielding factor and cadmium ratio

  7. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  8. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  9. TWO-DIMENSIONAL APPROXIMATION OF EIGENVALUE PROBLEMS IN SHELL THEORY: FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The eigenvalue problem for a thin linearly elastic shell, of thickness 2e, clamped along its lateral surface is considered. Under the geometric assumption on the middle surface of the shell that the space of inextensional displacements is non-trivial, the authors obtain, as ε→0,the eigenvalue problem for the two-dimensional"flexural shell"model if the dimension of the space is infinite. If the space is finite dimensional, the limits of the eigenvalues could belong to the spectra of both flexural and membrane shells. The method consists of rescaling the variables and studying the problem over a fixed domain. The principal difficulty lies in obtaining suitable a priori estimates for the scaled eigenvalues.

  10. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  11. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    Science.gov (United States)

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  12. Dynamic nonlinear analysis of shells of revolution

    International Nuclear Information System (INIS)

    Von Riesemann, W.A.; Stricklin, J.A.; Haisler, W.E.

    1975-01-01

    DYNAPLAS is a program for the transient response of ring stiffened shells of revolution subjected to either asymmetric initial velocities or to asymmetric pressure loadings. Both material and geometric nonlinearities may be considered. The present version, DYNAPLAS II, began with the programs SAMMSOR and DYNASOR. As is the case for the earlier programs, a driver program, SAMMSOR III, generates the stiffness and mass matrices for the harmonics under consideration. A highly refined meridionally curved axisymmetric thin shell of revolution element is used in conjunction with beam type ring stiffeners in the circumferential direction. The shell element uses a cubic displacement function and through static condensation a basic eight degree of freedom element is generated. The shell material may be isotropic or orthotropic. DYNAPLAS II uses the 'displacement' method of analysis in which the nonlinearities are treated as pseudo loads on the right-hand side of the equations of motion. The equations are written for each Fourier harmonic used in representing the asymmetric loading components, and although the left-hand side of the equations is uncoupled, the right-hand side is coupled by the nonlinear pseudo loads. The strain displacement equations of Novozhilov are used and the incremental theory of plasticity is used with the von Mises yield condition and associated flow rule. Either isotropic work hardening or the mechanical sublayer model may be used. Strain rate effects may be included. Either the explicit central difference method or the implcit Houbolt method are available. The program has found use in the analysis of containment vessels for light water reactors

  13. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    International Nuclear Information System (INIS)

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm 3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm 3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm.Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10 −2 cm 3 ). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations.Conclusions: L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts

  14. Development and design of a bone-equivalent cortical shell phantom to determine accuracy measures on DXA and PQCT scanners

    International Nuclear Information System (INIS)

    Khoo, B.C.C.; Beck, T.J. Johns; Turk, B.; Price, R.I.

    2004-01-01

    Full text: Hip Structural Analysis (HSA), is an algorithm that computes bone-structural geometry from dual energy X-ray absorptiometry (DXA) derived hip images and may be used in a complementary manner to DXA areal bone mineral density (BMD) for bone strength interpretation. DXA is normally used to facilitate the diagnosis and management of bone metabolic diseases such as osteoporosis. HSA provides a biomechanical interpretation of BMD, using its mass profiles to compute cross-sectional structural geometry. In essence, HSA provides insight into bone structural and biomechanical properties, particularly of long bones, which BMD alone cannot. While conventional (vendor-provided) phantoms calibrate DXA machines for densitometric precision, analogous phantoms for calibrating structural geometry are lacking. This paper describes the design and preliminary testing of a densitometric bone-equivalent cylindrical phantom with 'cortical' shells and 'cancellous' core, and the use of this phantom to do a performance test of structural geometry variables such as cortical thickness, bone width and section modulus derived, from pQCT and DXA scan data. Powdered calcium-sulphate (CSC) was water-mixed in vacuum and cured. This mixture exhibited hydroxyapatite-like DXA photon-attenuation properties with density monotonically related to added water-mass. Its mass and BMD maintained temporal stability (CV%=0.03%, n=4 specimens over 321 d). Using CSC designed for a BMD=1.04g/cm, (for plate-thickness 10mm), a cylindrical phantom with cortical shell thicknesses of 0.5, 1.0, 2.0, 4.0mm, an acrylic-based internal core diameter of 26mm, and an acrylic surrounding 'soft-tissue' were constructed. The phantom was scanned using a DXA scanner (Hologic QDRl000W) and pQCT (Stratec XCT2000, pixel resolution 0.15mm). Selected cortical structural-geometric variables, derived from calculated geometry; pQCT mass-projections, and DXA HSA. In conclusion, dimensions of this novel cortical-shell phantom

  15. Absolute and intrinsic response probabilities of scintillators presenting straight truncated cylindrical geometries to photons imitted by sources of the same shape

    International Nuclear Information System (INIS)

    Becker, A.; Gorry, J.; Lame, J.

    1984-07-01

    Many ''sources'' of radioactive substances possess cylindrical geometry (waste drums for example) and gamma spectrometric detectors, as far as their active (selective) elements are concerned, are generally characterised by rotational symmetry about an axis. Such a situation may offer an analytical approach to the determination of the response of a cylindrical detector to a radiation produced homogeneously in a cylindrical emitter. Owing to the selective possibilities of spectrometry (in particular photoelectric effect) it is possible to reason purely in terms of transmission and absorption, which allows a formulation of the kind encountered in geometrical optics. In the present text we have developed the analytical expression beyond the limits from which most articles dealing with similar subjects have employed random sampling integration. Using a coaxial set-up in all cases, but with various relative dimensions of the right cylinder trunks (emitters and receivers), we have extracted fourfold definite integrals (with certain variable limits) giving the absolute and intrinsic efficiencies of which the ratios could be optimised by appropriate relative sizing of the right cylinder trunks (emission and detection) [fr

  16. Application of the cylindrically guided wave technique for bolt and pump shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Joshi, N.R.; Tsai, Y.M.; Liu, S.N.

    1993-01-01

    Elastic wave propagation in a bounded medium significantly differs from that in an unbounded medium. The bounded medium in the form of a cylinder acts like a solid waveguide directing the wave with its geometry. A continuous or a pulsed wave interacts with cylindrical boundaries producing mode-converted signals in addition to the backwall echo. The signals are received at constant time intervals directly proportional to the diameter of a solid cylindrical object such as a bolt or an anchor stud. The Cylindrically Guided Wave Technique (CGWT) makes intelligent use of the mode-converted signals, or trailing pulses, to detect corrosion wastages and cracks in cylindrical objects. (orig.)

  17. Formulations of the closed-shell interactions in endohedral systems

    Czech Academy of Sciences Publication Activity Database

    Wang, C.; Straka, Michal; Pyykkö, P.

    2010-01-01

    Roč. 12, č. 23 (2010), s. 6187-6203 ISSN 1463-9076 R&D Projects: GA ČR GA203/09/2037 Grant - others:7th Framework Program(XE) 230955 Institutional research plan: CEZ:AV0Z40550506 Keywords : endohedral systems * closed-shell interactions * one-center expansion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  18. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    International Nuclear Information System (INIS)

    Tamaki, Takashi; Tsujikawa, Shinji

    2008-01-01

    We derive analytic solutions of a chameleon scalar field φ that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m A inside of the body. The standard thin-shell field profile is recovered by taking the limit m A r c →∞, where r c is a radius of the body. We show the existence of ''no-shell'' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under the condition m A r c >>1, the effective coupling of φ with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value φ A at the extremum of an effective potential induced by the matter coupling.

  19. Prediction of ratcheting behaviour of 304 SS cylindrical shell using the Chaboche model

    International Nuclear Information System (INIS)

    Lee, Hyeong-Yeon; Kim, Jong Bum; Lee, Jae-Han; Yoo, Bong

    1997-01-01

    Ratcheting, that is, a progressive cyclic inelastic deformation can occur in a component subjected to thermal secondary stress, mechanical stress or both in the presence of a primary stress. The circumferential plastic strain may be accumulated with the increase of the number of cycles when a cylinder is subjected to a temperature front moving cyclically in the axial direction. This phenomenon of liquid surface induced thermal ratcheting is important in the design of liquid metal reactor. The ratcheting behaviour of a thin-walled 304 stainless steel cylinder under axially moving temperature distribution was analyzed using the constitutive theory of Chaboche. The constitutive model was implemented as a user subroutine of ABAQUS and it was verified through the comparison with the exact solutions for the uniaxial cyclic loading and test results available in the literature for the cylinder. In addition, ratcheting in pressurized push-pull pipes under loading conditions of ± 1% axial strain with steady hoop stress was analyzed with Chaboche model. It is shown that the elastic-plastic analysis using Chaboche model can evaluate properly the progressive strain accumulation under secondary cyclic loads. (author). 10 refs, 11 figs., 1 tab

  20. HI shells in the Leiden-Dwingeloo HI survey

    Czech Academy of Sciences Publication Activity Database

    Ehlerová, Soňa; Palouš, Jan; Wünsch, Richard

    2004-01-01

    Roč. 289, 3-4 (2004), s. 279-282 ISSN 0004-640X. [From observations to self-consistent modelling of the ISM in galaxies. Porto, 02.09.2002-07.09.2002] R&D Projects: GA AV ČR IAB3003106 Institutional research plan: CEZ:AV0Z1003909 Keywords : HI shells * HI holes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.597, year: 2004

  1. Transport comparison of multiwall carbon nanotubes by contacting outer shell and all shells.

    Science.gov (United States)

    Luo, Qiang; Cui, A-Juan; Zhang, Yi-Guang; Lu, Chao; Jin, Ai-Zi; Yang, Hai-Fang; Gu, Chang-Zhi

    2010-11-01

    Carbon nanotubes, particularly multiwall carbon nanotubes (MWCNTs) can serve as interconnects in nanoelectronic devices and integrated circuits because of their extremely large current-carrying capacity. Many experimental results about the transport properties of individual MWCNTs by contacting outer shell or all shells have been reported. In this work, a compatible method with integrated circuit manufacturing process was presented to compare the transport property of an individual multiwall carbon nanotube (MWCNT) by contacting outer shell only and all shells successively. First of the Ti/Au electrodes contacting outer shell only were fabricated onto the nanotube through the sequence of electron beam lithography (EBL) patterning, metal deposition and lift-off process. After the characterization of its transport property, focused ion beam (FIB) was used to drill holes through the same nanotube at the as-deposited electrodes. Then new contact to the holes and electrodes were made by ion-induced deposition of tungsten from W(CO)6 precursor gas. The transport results indicated that the new contact to all shells can clear up the intershell resistance and the electrical conductance of the tube can be improved about 8 times compared to that of by contacting outer shell only.

  2. A direct approach to nonlinear shells with application to surface-substrate interactions

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2013-01-01

    Roč. 1, č. 2 (2013), s. 211-232 ISSN 2326-7186 Institutional support: RVO:67985840 Keywords : thin films * nonlinear shells * surface geometry Subject RIV: BA - General Mathematics http://msp.org/memocs/2013/1-2/p04.xhtml

  3. Fast-neutron nuclear reactor vessel

    International Nuclear Information System (INIS)

    Presciuttini, L.

    1984-01-01

    The reactor vessel comprises a cylindrical shell, of which axis is vertical, coupled at its lower part with a dished bottom. The reactor core rests on a support plate bearing on the bottom of the vessel. The above dished bottom comprises a spherical sector having the same radius and the same axis as the cylindrical shell and joining the lower part of the shell, and a spherical head of which radius is a little more important than the spherical sector one. A cylindrical support for the reactor core is attached to the vessel at the joint between the two dished sections. The invention applies more particularly to integrated type reactors cooled by liquid sodium [fr

  4. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  5. Preliminary measurement performance evaluation of a new white light interferometer for cylindrical surfaces

    International Nuclear Information System (INIS)

    Albertazzi, Armando Jr; Pont, Alex Dal

    2005-01-01

    This paper introduces a new design of a white light interferometer, suitable for measurement of cylindrical or quasi-cylindrical parts. A high precision 45 deg. conical mirror is used to direct collimated light radially, making it possible to measure in true cylindrical coordinates. The image of the measurand, distorted by the conical mirror, is projected in a high resolution digital camera. A mapping algorithm is used to reconstruct the cylindrical geometry from the distorted image. The rest of the interferometer is quite similar to a conventional white light interferometer: A flat reference mirror is scanned through the measurement range while an algorithm is searching for the maximum contrast position of the interference pattern. The performance evaluation of a configuration suitable for measurement of external cylindrical surfaces is also presented in this paper. A master cylinder was used as reference. Uncertainties of about 1.0 μm were found at the present stage of development

  6. Cylindrical Induction Melter Modicon Control System

    International Nuclear Information System (INIS)

    Weeks, G.E.

    1998-04-01

    In the last several years an extensive R ampersand D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM)

  7. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  8. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  9. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  10. Research on cylindrical indexing cam’s unilateral machining

    Directory of Open Access Journals (Sweden)

    Junhua Chen

    2015-08-01

    Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.

  11. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  12. Scattering of electromagnetic waves by an non-uniform cylindrical plasma; Diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P E [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches sur la fusion controlee

    1967-07-01

    The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10{sup 11} and 10{sup 15} e/cm{sup 3}. Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [French] On etudie la diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene par une methode de champ self-consistant, et pour une onde de vecteur electrique parallele a l'axe du cylindre. On a calcule le champ diffracte en faisant varier le diametre du cylindre, la densite sur l'axe, le profil de densite et les frequences de collisions, et on donne ici les principaux resultats. On examine ensuite le cas d'une onde incidente cylindrique

  13. The GDQ Method of Thermal Vibration Laminated Shell with Actuating Magnetostrictive Layers

    Directory of Open Access Journals (Sweden)

    C.C. Hong

    2017-06-01

    Full Text Available The research of laminated magnetostrictive shell under thermal vibration was computed by using the generalized differential quadrature (GDQ method. In the thermoelastic stress-strain equations that contain the terms linear temperature rise and the magnetostrictive material with velocity feedback control. The dynamic equilibrium differential equations with displacements were normalized and discretized into the dynamic discretized equations by the GDQ method. Two edges of laminated shell with clamped boundary conditions were considered. The values of interlaminar thermal stresses and center displacement of shell with and without velocity feedback control were calculated, respectively. The purpose of this research is to compute the time responses of displacement and stresses in the laminated magnetostrictive shell subjected to thermal vibration with suitable controlled gain values. The numerical GDQ results of displacement and stresses are also obtained and investigated. With velocity feedback and suitable control gain values are found to reduce the amplitude of displacement and stresses into a smaller value. The higher values of temperature get the higher amplitude of displacement and stresses. The GDQ results of actuating magnetostrictive shells can be applied in the field of morphing aircraft (adaptive structures and smart materials to reduce and suppress the vibration when under aero-thermal flutter.

  14. The indentation of pressurized elastic shells: from polymeric capsules to yeast cells

    KAUST Repository

    Vella, D.

    2011-08-10

    Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels used to store propane at oil refineries to the microscopic polymeric capsules that may be used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure. Here, we present theoretical, numerical and experimental investigations of the indentation of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpressurized shells, the relationship between force and displacement demonstrates two linear regimes. We determine analytical expressions for the effective stiffness in each of these regimes in terms of the material properties of the shell and the pressure difference. As a consequence, a single indentation experiment over a range of displacements may be used as a simple assay to determine both the internal pressure and elastic properties of capsules. Our results are relevant for determining the internal pressure in bacterial, fungal or plant cells. As an illustration of this, we apply our results to recent measurements of the stiffness of baker\\'s yeast and infer from these experiments that the internal osmotic pressure of yeast cells may be regulated in response to changes in the osmotic pressure of the external medium.

  15. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    Science.gov (United States)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  16. On the dynamics of cylindrical z-pinch

    International Nuclear Information System (INIS)

    Solov'ev, L.S.

    1984-01-01

    The stationary configurations of cylindrical plasma flow in the framework of two-liquid relativistic electromagnetic gas dynamics (REMG)) and nonlinear radial oscillations of the plasma cylinder with longitudinal current in the framework of classical monoliquid MGD are considered. It is shown that at sufficiently high conductivity Z-pinch is stable relative to one-dimensional radial perturbations and its motion represents respectively nonlinear radial oscillations. In case of a rather low conductivity or low particle concentration there is in cross section a stability also in relation to the development of sausage type instability. The performed investigations of cylindrical equilibrium and radial oscillations give a qualitative representation on plasma behaviour in Z-pinch at the initial stage of it compression and expansion as well as on motion in an average plane of the developing sausage type instability

  17. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  18. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.

    Science.gov (United States)

    Neville, Frances; Moreno-Atanasio, Roberto

    2018-01-01

    We present a Discrete Element study of the behavior of magnetic core-shell particles in which the properties of the core and the shell are explicitly defined. Particle cores were considered to be made of pure iron and thus possessed ferromagnetic properties, while particle shells were considered to be made of silica. Core sizes ranged between 0.5 and 4.0 μm with the actual particle size of the core-shell particles in the range between 0.6 and 21 μm. The magnetic cores were considered to have a magnetization of one tenth of the saturation magnetization of iron. This study aimed to understand how the thickness of the shell hinders the formation of particle chains. Chain formation was studied with different shell thicknesses and particle sizes in the presence and absence of an electrical double layer force in order to investigate the effect of surface charge density on the magnetic core-shell particle interactions. For core sizes of 0.5 and 4.0 μm the relative shell thicknesses needed to hinder the aggregation process were approximately 0.4 and 0.6 respectively, indicating that larger core sizes are detrimental to be used in applications in which no flocculation is needed. In addition, the presence of an electrical double layer, for values of surface charge density of less than 20 mC/m 2 , could stop the contact between particles without hindering their vertical alignment. Only when the shell thickness was considerably larger, was the electrical double layer able to contribute to the full disruption of the magnetic flocculation process.

  19. Interelectron correlations in photoionization of outer shells near inner shell thresholds

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V; Drukarev, E G

    2015-01-01

    We have studied the role of virtual excitations of inner shells upon outer shell photoionization. The calculations were performed in the frames of the Random Phase Approximation with Exchange (RPAE) and its generalized version GRPAE that take into account variation of the atomic field due to electron elimination and the inner vacancies decay. We apply both analytic approximation and numeric computations. The results are presented for 3p electrons in Ar and for 4d-electrons in Pd near inner shells thresholds. The effect considered proved to be quite noticeable. (paper)

  20. Selecting the induction heating for normalization of deposited surfaces of cylindrical parts

    Directory of Open Access Journals (Sweden)

    Олена Валеріївна Бережна

    2017-07-01

    Full Text Available The machine parts recovered by electric contact surfacing with metal strip are characterized by high loading of the surface layer, which has a significant impact on their performance. Therefore, the improvement of the operational stability of fast-wearing machine parts through the use of combined treatment technologies is required. Not all the work-piece but just the worn zones are subjected to recovery with electric contact surfacing; the tape thickness and depth of the heat affected zone being not more than a few millimeters. Therefore, the most optimal in this case is the use of a local surface heating method of high frequency currents. This method has economical benefits because there is no need to heat the entire work-piece. The induction heating mode at a constant power density has been proposed and analytically investigated. The ratios that make it possible to determine the main heating parameters ensuring calculation of the inductor for the normalization of the reconstructed surface of cylindrical parts have been given. These parameters are: specific power, frequency and warm-up time. The proposed induction heating mode is intermediate between the quenching and cross-cutting heating and makes it possible to simultaneously obtain the required temperatures at the surface and at the predetermined depth of the heated layer of cylindrical parts with the normalization of their surfaces restored with electric contact surfacing