WorldWideScience

Sample records for cylindrical rayleigh-taylor experiments

  1. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  2. Stability of an expanding cylindrical plasma envelope: Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Han, S.J.

    1982-01-01

    The stability of a cylindrically symmetric plasma envelope driven outward by blast waves is considered. The plasma fluid is assumed to be a compressible, isentropic gas describable as an ideal gas ( p = arho/sup γ/, γ>1). The stability problem of such an envelope undergoing self-similar motion is solved by considering the initial-value problem. It is shown that in the early phase of an expansion, the envelope is unstable to Rayleigh--Taylor modes which develop at the inner surface. In the later phase of the expansion, the Rayleigh--Taylor modes are weakened due to the geometrical divergence effect. The implications of the time-dependent behavior of the Rayleigh--Taylor instability for plasma switches are discussed

  3. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  4. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  5. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    Science.gov (United States)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  6. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces

    International Nuclear Information System (INIS)

    Wang, L. F.; He, X. T.; Wu, J. F.; Zhang, W. Y.; Ye, W. H.

    2013-01-01

    A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WN growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.

  7. Hydromagnetic Rayleigh-Taylor instability in cylindrical implosions

    International Nuclear Information System (INIS)

    Hwang, C.S.; Roderick, N.F.; Wu, M.W.

    1986-01-01

    Rayleigh-Taylor Instability in the (r,Θ) plane has been solved by the variational approach. Results are compared to the analytical solutions of two-region and three-region problems at the infinite radius. They show the magnetic stabilization effect. Growth rates in this plane are decreased by the effects of plasma shell thickness, plasma shell radius, magnetic tension, magnetic diffusion and finite density gradient of the plasma magnetic field interface. The most unstable mode number decreases when the radius of the plasma shell decreases

  8. Potential flow model for the hydromagnetic Rayleigh--Taylor instability in cylindrical plasmas

    International Nuclear Information System (INIS)

    Hwang, C.S.; Roderick, N.F.

    1987-01-01

    A potential flow model has been developed to study the linear behavior of the hydromagnetic equivalent of the Rayleigh--Taylor instability in imploding cylindrical plasmas. Ordinary differential equations are obtained for both (r,z) and (r,θ) disturbances. The model allows the study of the dynamic effects of the moving plasma on the development of the instability. The perturbation equations separate into a geometric part associated with the motion of the interface and a nongeometric part associated with the stability of the interface. In both planes the geometric part shows growth of perturbations for imploding plasmas. The surface is also unstable in both planes for plasmas being imploded by magnetic fields. Analytic solutions are obtained for constant acceleration. These show that the short wavelength perturbations that are most damaging in the (r,z) plane are not affected by the motion of the interface. In the (r,θ) plane the growth of longer wavelength disturbances is affected by the interface motion

  9. Theoretical and numerical studies of Rayleigh-Taylor instabilities in magnetized plasmas; Etude theorique et numerique des instabilites Rayleigh-Taylor en plasmas magnetises

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.A

    2001-06-01

    The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external &apos

  10. Growth of Rayleigh-Taylor and bulk convective instabilities in dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Perturbation growth is studied for the initial, linear stage of an instability development in the course of a cylindrically-symmetric compression and expansion of plasma liners and Z-pinches with a sharp boundary. The hydrodynamic instabilities are Rayleigh-Taylor and bulk convective ones, the former being the most dengerous. Classification of the instability modes developing in accelerated plasmas, inclusing the local and global Rayleigh-Taylor modes, is given. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The properties of the spectra appear to explain the filamentation and stratification of plasmas observed in the experiments with liners and Z-pinches. An axial magnetic field is shown to create a window of stability in the space of the flow parameters, where th Rayleigh-Taylor modes are fully suppressed by the magnetic shear, and the bulk convective ones - to a considerable extent. The axial magnetic field required to stabilize the implosion of a liner is estimated as B z0 =(10-30 kG)I(MA)/R 0 (cm), where I is the average current, R 0 - the initial radius of the liner

  11. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  12. On stabilization of the Rayleigh-Taylor instability for the imploding liner on account of ion-ion collisions

    International Nuclear Information System (INIS)

    Gordeev, Alexander V.

    2002-01-01

    The stabilization of the Rayleigh-Taylor instability for the imploding cylindrical liner in the limit of a low plasma density Π ω pi 2 δ2/c2 << 1 (δ -- the characteristic size of the current layer) is investigated, when the electron currents are much greater than the ion currents. The stabilization of the Rayleigh-Taylor instability for the parameter diapason νii/ωBi < (Z2M/m)1/2 is considered, when the plasma dissipation connected with the ion-ion collisions considerably superior the usual dissipation due to the electron-ion collisions. For the electric conductivity, caused by the ion-ion collisions and resulted in the minimum value σ ∼ enc/B, the effect of the partial stabilization of the Rayleigh-Taylor instability is demonstrated

  13. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O.; Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A.; Igumenshchev, I.; Chicanne, C.

    2012-01-01

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  14. Designs for highly nonlinear ablative Rayleigh-Taylor experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Masse, L.; Liberatore, S.; Jacquet, L.; Loiseau, P.; Poujade, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Smalyuk, V. A.; Bradley, D. K.; Park, H. S.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Igumenshchev, I. [Laboratory of Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Chicanne, C. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2012-08-15

    We present two designs relevant to ablative Rayleigh-Taylor instability in transition from weakly nonlinear to highly nonlinear regimes at the National Ignition Facility [E. I. Moses, J. Phys.: Conf. Ser. 112, 012003 (2008)]. The sensitivity of nonlinear Rayleigh-Taylor instability physics to ablation velocity is addressed with targets driven by indirect drive, with stronger ablative stabilization, and by direct drive, with weaker ablative stabilization. The indirect drive design demonstrates the potential to reach a two-dimensional bubble-merger regime with a 20 ns duration drive at moderate radiation temperature. The direct drive design achieves a 3 to 5 times increased acceleration distance for the sample in comparison to previous experiments allowing at least 2 more bubble generations when starting from a three-dimensional broadband spectrum.

  15. Self-similarity in high Atwood number Rayleigh-Taylor experiments

    Science.gov (United States)

    Mikhaeil, Mark; Suchandra, Prasoon; Pathikonda, Gokul; Ranjan, Devesh

    2017-11-01

    Self-similarity is a critical concept in turbulent and mixing flows. In the Rayleigh-Taylor instability, theory and simulations have shown that the flow exhibits properties of self-similarity as the mixing Reynolds number exceeds 20000 and the flow enters the turbulent regime. Here, we present results from the first large Atwood number (0.7) Rayleigh-Taylor experimental campaign for mixing Reynolds number beyond 20000 in an effort to characterize the self-similar nature of the instability. Experiments are performed in a statistically steady gas tunnel facility, allowing for the evaluation of turbulence statistics. A visualization diagnostic is used to study the evolution of the mixing width as the instability grows. This allows for computation of the instability growth rate. For the first time in such a facility, stereoscopic particle image velocimetry is used to resolve three-component velocity information in a plane. Velocity means, fluctuations, and correlations are considered as well as their appropriate scaling. Probability density functions of velocity fields, energy spectra, and higher-order statistics are also presented. The energy budget of the flow is described, including the ratio of the kinetic energy to the released potential energy. This work was supported by the DOE-NNSA SSAA Grant DE-NA0002922.

  16. Development of Rayleigh-Taylor and bulk convection instabilities in the dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    A solution is derived for the problem of the initial, linear stage of the growth of small perturbations in the course of the cylindrically symmetric compression and expansion of a plasma liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities localized near the plasma boundaries are the most dangerous. Bulk convective instabilities develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, including local and global Rayleigh-Taylor modes, which grown in an accelerated plasma with distributed profiles of hydrodynamic variables, are classified. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an explanation of the stratification and filamentation of the plasma observed experimentally in pinches and liners. The imposition of a longitudinal magnetic field gives rise to a stability window in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a significant extent

  17. Experiment of ablative Rayleigh-Taylor instability in a strongly non linear regime on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Liberatore, S.; Delorme, B.; Jacquet, L.; Loiseau, P.; Smalyuk, V. A.; Martinez, D.; Remington, B. A.

    2012-01-01

    As the control of the development of Rayleigh-Taylor-type hydrodynamic instabilities is crucial to achieve efficient implosions on the Laser Megajoule, and as the complexity of these instabilities requires an experimental validation of theoretical models and of the associated numerical simulations, the authors briefly present a proposition of experiments aimed at studying the strongly non linear Rayleigh-Taylor instability on the National Ignition Facility (NIF). This should allow a regime of competition between bubbles to be achieved for the first time in direct attack. They evoke the first experiment performed in March 2013

  18. Theoretical and numerical study of Rayleigh-Taylor instabilities in magnetized plasmas; Etude theorique et numerique des instabilites rayleigh-taylor en plasmas magnetises

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, A. Ivanov

    2001-06-15

    In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of

  19. Theoretical and numerical studies of Rayleigh-Taylor instabilities in magnetized plasmas

    International Nuclear Information System (INIS)

    Ivanov, A.A.

    2001-06-01

    The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability

  20. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  1. Evidence of Rayleigh-Taylor instabilities in tri-layer targets

    International Nuclear Information System (INIS)

    Galmiche, D.; Holstein, P.A.; Meyer, B.; Rostaing, M.; Wilke, N.

    1988-01-01

    The results of the experiments carried out on a laser system are reported. The work is performed in order to investigate the problem of target instability under ablative acceleration and to get direct evidence of Rayleigh-Taylor instabilities. Tri-layer experiments assert the validity of X-ray spectroscopy measurements as experimental method to investigate the problem. A mixing zone is evidenced and general trends of mixing development versus target acceleration are coherent with numerical simulations. Results obtained with optical smoothing demonstrate that the apparent mixing is not due to large scale illumination non uniformities. Numerical simulations confirm that Rayleigh-Taylor instability seems to be the dominant process responsible for the mixing. Benefit of time resolved spectroscopy appears attractive and gives a real knowledge of the mixing layer

  2. Investigation of single-mode and multi-mode hydromagnetic Rayleigh-Taylor instability in planar geometry

    International Nuclear Information System (INIS)

    Roderick, N.F.; Cochrane, K.; Douglas, M.R.

    1998-01-01

    Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed

  3. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    Science.gov (United States)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  4. Design for solid-state Rayleigh-Taylor experiments in tantalum at Omega

    International Nuclear Information System (INIS)

    Pollaine, S M; Remington, B A; Park, H S; Prisbrey, S T; Cavallo, R M

    2010-01-01

    We have designed an experiment for the Omega - EP laser facility to measure the Rayleigh-Taylor (RT) growth rate of solid-state Ta samples at ∼1 Mbar pressures and very high strain rates, 10 7 -10 8 s -1 . A thin walled, hohlraum based, ramp-wave, quasi-isentropic drive has been developed for this experiment. Thick samples (∼50 um) of Ta, with a pre-imposed sinusoidal rippled on the driven side, will be accelerated. The ripple growth due to the RT instability is greatly reduced due to the dynamic material strength. We will show detailed designs, and a thorough error analysis used to optimize the experiment and minimize uncertainty.

  5. Centrifugally Driven Rayleigh-Taylor Instability

    Science.gov (United States)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  6. Analytical and numerical analysis of finite amplitude Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Meiron, D.I.; Saffman, P.G.

    1987-01-01

    We summarize the results obtained in the last year. These include a simple model of bubble competition in Rayleigh-Taylor unstable flows which gives results which are in good agreement with experiment. In addition the model has been compared with two dimensional numerical simulations of inviscid Rayleigh-Taylor instability using the cloud-in-cell method. These simulations can now be run into the late time regime and can track the competition of as many as ten bubbles. The improvement in performance over previous applications of the cloud-in-cell approach is due to the application of finite difference techniques designed to handle shock-like structures in the vorticity of the interface which occur at late times. We propose to extend the research carried thus far to Rayleigh-Taylor problems in three dimensional and convergent geometries as well as to two-fluid instabilities in which interface roll-up is observed. Finally we present a budget for the fiscal year 1987-1988. 6 refs

  7. The Rayleigh-Taylor instability in the spherical pinch

    International Nuclear Information System (INIS)

    Chen, H.B.; Hilko, B.; Panarella, E.

    1994-01-01

    The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere

  8. Theoretical and numerical study of Rayleigh-Taylor instabilities in magnetized plasmas

    International Nuclear Information System (INIS)

    Andrei, A. Ivanov

    2001-06-01

    In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of the surface plasma

  9. Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner

    International Nuclear Information System (INIS)

    Weis, M. R.; Zhang, P.; Lau, Y. Y.; Gilgenbach, R. M.; Schmit, P. F.; Peterson, K. J.; Hess, M.

    2015-01-01

    This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kink and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a preheated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode

  10. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  11. Predictability of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1986-01-01

    Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs

  12. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  13. Nonlinear saturation of the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    A detailed numerical simulation of the nonlinear state of the Rayleigh endash Taylor instability has been carried out. There are three distinct phases of evolution where it is governed by the (i) linear effects, (ii) effects arising from the conventional nonlinear terms and (iii) subtle nonlinear effects arising through the coupling terms. During the third phase of evolution, there is a self-consistent generation of shear flow which saturates the Rayleigh endash Taylor instability even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. The Galerkin approximation is presented to provide an understanding of our numerical findings. Last, there is an attempt to provide a comprehensive understanding of the nonlinear state of the Rayleigh endash Taylor instability by comparing and contrasting this work with earlier studies. copyright 1997 American Institute of Physics

  14. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  15. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  16. Numerical simulation of Rayleigh-Taylor turbulent mixing layers

    International Nuclear Information System (INIS)

    Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.

    2009-01-01

    Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)

  17. Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums; Experiences d'instabilites Rayleigh-Taylor en attaque indirecte avec des cavites rugby

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M. [CEA Bruyeres-le-Chatel, 91 (France)

    2009-07-01

    The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)

  18. LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1990-01-01

    We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented

  19. Rayleigh-Taylor instability in an equal mass plasma

    Energy Technology Data Exchange (ETDEWEB)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-09-15

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  20. Ablation front rayleigh taylor dispersion curve in indirect drive

    International Nuclear Information System (INIS)

    Budil, K.S.; Lasinski, B.; Edwards, M.J.; Wan, A.S.; Remington, B.A.; Weber, S.V.; Glendinning, S.G.; Suter, L.; Stry, P.

    2000-01-01

    The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths (ge) 20 (micro)m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth was

  1. A numerical study of three-dimensional bubble merger in the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Li, X.L.

    1996-01-01

    The Rayleigh endash Taylor instability arises when a heavy fluid adjacent to a light fluid is accelerated in a direction against the density gradient. Under this unstable configuration, a perturbation mode of small amplitude grows into bubbles of the light fluid and spikes of the heavy fluid. Taylor discovered the steady state motion with constant velocity for a single bubble or periodic bubbles in the Rayleigh endash Taylor instability. Read and Youngs studied the motion of a randomly perturbed fluid interface in the Rayleigh endash Taylor instability. They reported constant acceleration for the overall bubble envelope. Bubble merger is believed to cause the transition from constant velocity to constant acceleration. In this paper, we present a numerical study of this important physical phenomenon. It analyzes the physical process of bubble merger and the relationship between the horizontal bubble expansion and the vertical interface acceleration. A dynamic bubble velocity, beyond Taylor close-quote s steady state value, is observed during the merger process. It is believed that this velocity is due to the superposition of the bubble velocity with a secondary subharmonic unstable mode. The numerical results are compared with experiments. copyright 1996 American Institute of Physics

  2. Dynamic stabilization of the imploding-shell Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Boris, J.P.

    1977-01-01

    A method for dynamic stabilization of the Rayleigh-Taylor (R-T) instability on the surface of an imploding fusion pellet is discussed. The driving laser beams are modulated in intensity so the ablation layer is subject to a rapidly and strongly oscillating acceleration. A substantial band of the Rayleigh-Taylor instability spectrum can be stabilized by this oscillation even though the time average acceleration vector lies in the destabilizing direction. By adjusting the frequency, structure, and amplitude of the modulation, the band of dynamically stabilized modes can be made to include the most unstable and dangerous modes. Thus considerably higher aspect ratio shells (i.e., thinner shells) could implode successfully than had been previously considered stable enough. Both theory and numerical simulations support this conclusion for the case of laser-driven pellet implosions. Similar modulation via transverse beam oscillations or parallel bunching should also work to stabilize the most dangerous surface Rayleigh-Taylor modes in relativistic electron-, ion- and heavy ion-pellet fusion schemes. (U.K.)

  3. Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method

    International Nuclear Information System (INIS)

    Zhang Xu; Tan Duowang

    2009-01-01

    A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)

  4. Rayleigh Taylor instability of two superposed compressible fluids in un-magnetized plasma

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, A; Argal, S; Chhajlani, R K

    2014-01-01

    The linear Rayleigh Taylor instability of two superposed compressible Newtonian fluids is discussed with the effect of surface tension which can play important roles in space plasma. As in both the superposed Newtonian fluids, the system is stable for potentially stable case and unstable for potentially unstable case in the present problem also. The equations of the problem are solved by normal mode method and a dispersion relation is obtained for such a system. The behaviour of growth rate is examined in the presence of surface tension and it is found that the surface tension has stabilizing influence on the Rayleigh Taylor instability of two superposed compressible fluids. Numerical analysis is performed to show the effect of sound velocity and surface tension on the growth rate of Rayleigh Taylor instability. It is found that both parameters have stabilizing influence on the growth rate of Rayleigh Taylor instability.

  5. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-01-01

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  6. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Colin Stuart [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Univ. of Washington, Seattle, WA (United States)

    2015-01-15

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictions for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.

  7. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  8. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  9. Quantum effects on the Rayleigh-Taylor instability in a horizontal inhomogeneous rotating plasma

    International Nuclear Information System (INIS)

    Hoshoudy, G. A.

    2009-01-01

    The Rayleigh-Taylor instability is studied analytically in inhomogeneous plasma rotating uniformly in an external transverse magnetic field. The influence of the quantum mechanism is considered. For a stratified layer the linear growth rate is obtained. Some special cases that isolate the effect of various parameters on the growth rate of the Rayleigh-Taylor instability are discussed. It is shown that for some cases, the presence of the external transverse magnetic field beside the quantum effect will bring about more stability on the Rayleigh-Taylor instability.

  10. Effects of thermal conduction and compressibility on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Takabe, Hideaki; Mima, Kunioki.

    1980-01-01

    In order to study the stability of the ablation front in laser driven implosion, the thermal conduction and compressibility effects on the Rayleigh-Taylor instability are considered. It is found that the thermal conduction effect cannot stabilize the Rayleigh-Taylor mode, but reduce the growth rate in the short wavelength case. But, the growth rate is found not to differ from the classical value √gk in the long wavelength limit, where the compressibility is essential. (author)

  11. Suppression of the Rayleigh-Taylor instability due to self-radiation in a multiablation target

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Sunahara, Atsushi; Nishihara, Katsunobu; Johzaki, Tomoyuki; Shiraga, Hiroyuki; Shigemori, Keisuke; Nakai, Mitsuo; Ikegawa, Tadashi; Murakami, Masakatsu; Nagai, Keiji; Norimatsu, Takayoshi; Azechi, Hiroshi; Yamanaka, Tatsuhiko; Ohnishi, Naofumi

    2004-01-01

    A scheme to suppress the Rayleigh-Taylor instability has been investigated for a direct-drive inertial fusion target. In a high-Z doped-plastic target, two ablation surfaces are formed separately--one driven by thermal radiation and the other driven by electron conduction. The growth of the Rayleigh-Taylor instability is significantly suppressed on the radiation-driven ablation surface inside the target due to the large ablation velocity and long density scale length. A significant reduction of the growth rate was observed in simulations and experiments using a brominated plastic target. A new direct-drive pellet was designed using this scheme

  12. Effect of FLR correction on Rayleigh -Taylor instability of quantum and stratified plasma

    International Nuclear Information System (INIS)

    Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.

    2013-01-01

    The Rayleigh Taylor instability of stratified incompressible fluids is studied in presence of FLR Correction and quantum effects in bounded medium. The Quantum magneto hydrodynamic equations of the problem are solved by using normal mode analysis method. A dispersion relation is carried out for the case where plasma is bounded by two rigid planes z = 0 and z = h. The dispersion relation is obtained in dimensionless form to discuss the growth rate of Rayleigh Taylor instability in presence of FLR Correction and quantum effects. The stabilizing or destabilizing behavior of quantum effect and FLR correction on the Rayleigh Taylor instability is analyzed. (author)

  13. Rayleigh-Taylor convective overturn in stellar collapse

    International Nuclear Information System (INIS)

    Bruenn, S.W.; Buchler, J.R.; Livio, M.

    1979-01-01

    Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism

  14. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  15. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  16. Influence of velocity shear on the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.

    1982-01-01

    The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena

  17. Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. F.; Fan, Z. F.; Zheng, W. D.; Wang, M.; Pei, W. B.; Zhu, S. P.; Zhang, W. Y. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Miao, W. Y.; Yuan, Y. T.; Cao, Z. R.; Deng, B.; Jiang, S. E.; Liu, S. Y.; Ding, Y. K. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wang, L. F.; Ye, W. H., E-mail: ye-wenhua@iapcm.ac.cn; He, X. T. [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-04-15

    In this research, a series of single-mode, indirect-drive, ablative Rayleigh-Taylor (RT) instability experiments performed on the Shenguang-II laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007)] using planar target is reported. The simulation results from the one-dimensional hydrocode for the planar foil trajectory experiment indicate that the energy flux at the hohlraum wall is obviously less than that at the laser entrance hole. Furthermore, the non-Planckian spectra of x-ray source can strikingly affect the dynamics of the foil flight and the perturbation growth. Clear images recorded by an x-ray framing camera for the RT growth initiated by small- and large-amplitude perturbations are obtained. The observed onset of harmonic generation and transition from linear to nonlinear growth regime is well predicted by two-dimensional hydrocode simulations.

  18. Observation of Rayleigh-Taylor-like structures in a laser-accelerated foil

    International Nuclear Information System (INIS)

    Whitlock, R.R.; Emery, M.H.; Stamper, J.A.; McLean, E.A.; Obenschain, S.P.; Peckerar, M.C.

    1984-01-01

    Laser-accelerated targets have been predicted to be subject to the Rayleigh-Taylor hydrodynamic instability. The development of the instability was studied by introducing mass thickness variations in foil targets and observing the development of the target nonuniformities by side-on flash x radiography. Observations were made of target structures and mass redistribution effects which resemble Rayleigh-Taylor bubbles and spikes, including not only advanced broadening of the spike tips on the laser-irradiated side of the foil but also projections of mass on the unirradiated side. The observations compare well with numerical simulations

  19. Spread F bubbles - Nonlinear Rayleigh-Taylor mode in two dimensions

    Science.gov (United States)

    Hudson, M. K.

    1978-01-01

    The paper discusses long-wavelength developed bottomside spread F which has been attributed to the Rayleigh-Taylor instability. The nonlinear saturation amplitude and the k spectrum of the inertia-dominated Rayleigh-Taylor instability is found in two directions: east-west and vertical. As in the collisional case (Chaturvedi and Ossakow, 1977), the dominant nonlinearity is found to be two-dimensional. It is found that the linearly most unstable modes, which are primarily horizontal, saturate by the nonlinear generation of vertical spatial harmonics. The harmonics are damped by diffusion or recombination. The resulting amplitude spectrum indicates that bubbles are vertically elongated in both inertial and collisional regimes.

  20. Rayleigh-Taylor mixing with time-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  1. Effect of magnetic field on Rayleigh-Taylor instability of two superposed fluids

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, Anita; Chhajlani, R K

    2012-01-01

    The effect of two dimensional magnetic field on the Rayleigh-Taylor (R-T) instability in an incompressible plasma is investigated to include simultaneously the effects of suspended particles and the porosity of the medium. The relevant linearized perturbation equations have been solved. The explicit expression of the linear growth rate is obtained in the presence of fixed boundary conditions. A stability criterion for the medium is derived and discussed the Rayleigh Taylor instabilities in different configurations. It is found that the basic Rayleigh-Taylor instability condition is modified by the presence of magnetic field, suspended particles and porosity of the medium. In case of an unstable R-T configuration, the magnetic field has a stabilizing effect on the system. It is also found that the growth rate of an unstable R-T mode decreases with increasing relaxation frequency thereby showing a stabilizing influence on the R-T configuration.

  2. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    International Nuclear Information System (INIS)

    Lau, Yue Ying; Gilgenbach, Ronald

    2013-01-01

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed

  3. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)

    2013-07-07

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

  4. Effect of magnetic field on the Rayleigh Taylor instability of rotating and stratified plasma

    International Nuclear Information System (INIS)

    Sharma, PK; Tiwari, Anita; Argal, Shraddha

    2017-01-01

    In the present study the effect of magnetic field and rotation have been carried out on the Rayleigh Taylor instability of conducting and rotating plasma, which is assumed to be incompressible and confined between two rigid planes z = 0 and z = h. The dispersion relation of the problem is obtained by solving the basic MHD equations of the problem with the help normal mode technique and appropriate boundary conditions. The dispersion relation of the medium is analysed and the effect of magnetic field and angular velocity (rotation effect) have been examined on the growth rate of Rayleigh Taylor instability. It is found that the magnetic field and angular velocity (rotation effect) have stabilizing influence on the Rayleigh Taylor instability. (paper)

  5. Ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    As shown elsewhere an ablatively imploded shell is hydrodynamically unstable, the dominant instability being the well known Rayleigh-Taylor instability with growth rate γ = √Akg where k = 2π/λ is the wave number, g is the acceleration and A the Attwood number (ρ hi - ρ lo )/(ρ hi + ρ lo ) where ρ hi is the density of the heavier fluid and ρ lo is the density of the lighter fluid. A theoretical understanding of ablative stabilization has gradually evolved, confirmed over the last five years by experiments. The linear growth is very well understood with excellent agreement between experiment and simulation for planar geometry with wavelengths in the region of 30--100μm. There is an accurate, albeit phenomenological dispersion relation. The non-linear growth has been measured and agrees with calculations. In this lecture, the authors go into the fundamentals of the Rayleigh-Taylor instability and the experimental measurements that show it is stabilized sufficiently by ablation in regimes relevant to ICF

  6. Rayleigh-Taylor mixing with space-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  7. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    Science.gov (United States)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Effects of initial radius of the interface and Atwood number on nonlinear saturation amplitudes in cylindrical Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Liu, Wanhai; Yu, Changping; Li, Xinliang

    2014-01-01

    Nonlinear saturation amplitudes (NSAs) of the first two harmonics in classical Rayleigh-Taylor instability (RTI) in cylindrical geometry for arbitrary Atwood numbers have been analytically investigated considering nonlinear corrections up to the fourth-order. The NSA of the fundamental mode is defined as the linear (purely exponential) growth amplitude of the fundamental mode at the saturation time when the growth of the fundamental mode (first harmonic) is reduced by 10% in comparison to its corresponding linear growth, and the NSA of the second harmonic can be obtained in the same way. The analytic results indicate that the effects of the initial radius of the interface (r 0 ) and the Atwood number (A) play an important role in the NSAs of the first two harmonics in cylindrical RTI. On the one hand, the NSA of the fundamental mode first increases slightly and then decreases quickly with increasing A. For given A, the smaller the r 0 /λ (with λ perturbation wavelength) is, the larger the NSA of the fundamental mode is. When r 0 /λ is large enough (r 0 ≫λ), the NSA of the fundamental mode is reduced to the prediction of previous literatures within the framework of third-order perturbation theory [J. W. Jacobs and I. Catton, J. Fluid Mech. 187, 329 (1988); S. W. Haan, Phys. Fluids B 3, 2349 (1991)]. On the other hand, the NSA of the second harmonic first decreases quickly with increasing A, reaching a minimum, and then increases slowly. Furthermore, the r 0 can reduce the NSA of the second harmonic for arbitrary A at r 0 ≲2λ while increase it for A ≲ 0.6 at r 0 ≳2λ. Thus, it should be included in applications where the NSA has a role, such as inertial confinement fusion ignition target design

  9. Rayleigh-Taylor instability in multi-structured spherical targets

    International Nuclear Information System (INIS)

    Gupta, N.K.; Lawande, S.V.

    1986-01-01

    An eigenvalue equation for the exponential growth rate of the Rayleigh-Taylor instability is derived in spherical geometry. The free surface and jump boundary conditions are obtained from the eigenvalue equation. The eigenvalue equation is solved in the cases where the initial fluid density profile has a step function or exponential variation in space and analytical formulae for growth rate of the instability are obtained. The solutions for the step function are generalized for any number N of spherical zones forming an arbitrary fluid density profile. The results of the numerical calculations for N spherical zones are compared with the exact analytical results for exponential fluid density profile with N=10 and a good agreement is observed. The formalism is further used to study the effects of density gradients on Rayleigh-Taylor instability in spherical geometry. Also analytical formulae are presented for a particular case of N=3 and shell targets. The formalism developed here can be used to study the growth of the instability in present day multi-structured shell targets. (author)

  10. Nonlinear interaction of Rayleigh--Taylor and shear instabilities

    International Nuclear Information System (INIS)

    Finn, J.M.

    1993-01-01

    Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed

  11. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    Science.gov (United States)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL Ma2. For Ma Ma2, and also for MaL Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.

  12. Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Sarmah, D.; Sen, S.; Cairns, R.A.

    2001-01-01

    The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed

  13. Coherent structures in ablatively compressed ICF targets and Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Pant, H.C.; Desai, T.

    1996-01-01

    One of the major issues in laser induced inertial confinement fusion (ICF) is a stable ablative compression of spherical fusion pellets. The main impediment in achievement of this objective is Rayleigh-Taylor instability at the pellet's ablation front. Under sufficiently high acceleration this instability can grow out of noise. However, it can also arise either due to non-uniform laser intensity distribution over the pellet surface or due to pellet wall areal mass irregularity. Coherent structures in the dense target behind the ablation front can be effectively utilised for stabilisation of the Rayleigh-Taylor phenomenon. Such coherent structures in the form of a super lattice can be created by doping the pellet pusher with high atomic number (Z) micro particles. A compressed-cool pusher under laser irradiation behaves like a strongly correlated non ideal plasma when compressed to sufficiently high density such that the non ideality parameter exceeds unity. Moreover, the nonideality parameter for high Z microinclusions may exceed a critical value of 180 and as a consequence they remain in the form of intact clusters, maintaining the superlattice intact during ablative acceleration. Micro-hetrogeneity and its superlattice plays an important role in stabilization of Rayleigh-Taylor instability, through a variety of mechanisms. (orig.)

  14. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    Science.gov (United States)

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  15. Stochastic model of Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Cadjan, M.; Fedotov, S.

    2007-01-01

    We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for

  16. What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?

    International Nuclear Information System (INIS)

    Anisimov, Sergei I.; Drake, R. Paul; Gauthier, Serge; Meshkov, Evgeny E.; Abarzhi, Snezhana I.

    2013-01-01

    Past decades significantly advanced our understanding of Rayleigh-Taylor (RT) mixing. We briefly review recent theoretical results and numerical modelling approaches and compare them with state of the art experiments focusing the reader's attention on qualitative properties of RT mixing. (authors)

  17. Effect of magnetic field on Rayleigh-Taylor instability of quantum and stratified plasma in porous medium

    International Nuclear Information System (INIS)

    Sharma, P.K.; Tiwari, Anita; Argal, Shraddha; Chhajlani, R.K.

    2013-01-01

    This paper is devoted to an investigation of Quantum effects and magnetic field effects on the Rayleigh Taylor instability of two superposed incompressible fluids in bounded porous medium. The Quantum magneto hydrodynamic equations are solved by using normal mode method and a dispersion relation is obtained. The dispersion relation is derived for the case where plasma is bounded by two rigid planes z = 0 and z = h. The Rayleigh Taylor instability growth rate and stability condition of the medium is discussed in the presence of quantum effect, magnetic field, porosity and permeability. It is found that the magnetic field and medium porosity have stabilizing influence while permeability has destabilizing influence on the Rayleigh Taylor instability. (author)

  18. Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2004-01-01

    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition

  19. Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams

    International Nuclear Information System (INIS)

    Desselberger, M.; Willi, O.; Savage, M.; Lamb, M.J.

    1990-01-01

    Growth rates of the Rayleigh-Taylor instability were measured in targets with imposed sinusoidal modulations irradiated by optically smoothed 0.53-μm laser beams. A hybrid optical smoothing technique utilizing induced-spatial-incoherence and random-phase-plate technology was used for the first time. The wave-number dependence and the nonlinear behavior of Rayleigh-Taylor growth were investigated by using targets with a range of modulation periodicities and depths. The results are compared to 2D hydrodynamic-code simulations

  20. Planar Rayleigh-Taylor and Feed-through experiments with CH(Ge) on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Huser, G.; Jadaud, J.P.; Liberatore, S.; Galmiche, D.; Vandenboomgaerde, M.

    2006-01-01

    Germanium-doped CH (CHGe) is one nominal ablator for the laser Megajoule (LMJ) target design. In order to investigate its properties we performed indirect drive planar Rayleigh-Taylor experiments on the OMEGA laser facility. An innovative hohlraum with an internal 'rugby-ball' shape has been experimentally characterized for the first time. On each shot foil motion and modulations growth were simultaneously measured by side-on and face-on radiography, while drive was assessed by measuring radiation escaping through the hohlraum laser-entrance-hole. Modulations growth and foil motion are fully consistent with each other, and also with hydro-code simulations accounting for the effective acceleration of the sample. This complete set of data allows a more stringent comparison between the hydro-code simulations and the experimental results. We compare CHGe perturbations growth with those acquired on CHBr in the same experimental configuration. These preliminary results are the first step toward a test-bed validation of CH(Ge) as an ablator on OMEGA and further on the laser integration line (LIL) at LMJ

  1. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Youngs, D.L.

    1992-01-01

    A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations

  2. Study of three-dimensional Rayleigh--Taylor instability in compressible fluids through level set method and parallel computation

    International Nuclear Information System (INIS)

    Li, X.L.

    1993-01-01

    Computation of three-dimensional (3-D) Rayleigh--Taylor instability in compressible fluids is performed on a MIMD computer. A second-order TVD scheme is applied with a fully parallelized algorithm to the 3-D Euler equations. The computational program is implemented for a 3-D study of bubble evolution in the Rayleigh--Taylor instability with varying bubble aspect ratio and for large-scale simulation of a 3-D random fluid interface. The numerical solution is compared with the experimental results by Taylor

  3. Developpement of a numerical method for Navier-Stokes equations in anelastic approximation: application to Rayleigh-Taylor instabilities

    International Nuclear Information System (INIS)

    Hammouch, Z.

    2012-01-01

    The 'anelastic' approximation allows us to filter the acoustic waves thanks to an asymptotic development of the Navier-Stokes equations, so increasing the averaged time step, during the numerical simulation of hydrodynamic instabilities development. So, the anelastic equations for a two fluid mixture in case of Rayleigh-Taylor instability are established.The linear stability of Rayleigh-Taylor flow is studied, for the first time, for perfect fluids in the anelastic approximation. We define the Stokes problem resulting from Navier-Stokes equations without the non linear terms (a part of the buoyancy is considered); the ellipticity is demonstrated, the Eigenmodes and the invariance related to the pressure are detailed. The Uzawa's method is extended to the anelastic approximation and shows the decoupling speeds in 3D, the particular case k = 0 and the spurious modes of pressure. Passing to multi-domain allowed to establish the transmission conditions.The algorithms and the implementation in the existing program are validated by comparing the Uzawa's operator in Fortran and Mathematica languages, to an experiment with incompressible fluids and results from anelastic and compressible numerical simulations. The study of the influence of the initial stratification of both fluids on the development of the Rayleigh-Taylor instability is initiated. (author) [fr

  4. Rayleigh-Taylor instability of a self-similar spherical expansion

    International Nuclear Information System (INIS)

    Bernstein, I.B.; Book, D.L.

    1978-01-01

    The self-similar motion of a spherically symmetric isentropic cloud of ideal gas driven outward by an expanding low-density medium (e.g., radiation pressure from a pulsar) is shown to be unstable to Rayleigh-Taylor modes which develop in the neighborhood of the interface. A complete solution of the linearized equations of motion is obtained. The implications for astrophysical phenomena are discussed

  5. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MegaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ=35, 50, and 70 μm) and two-mode perturbations (wavelength λ=35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  6. Indirect drive ablative Rayleigh-Taylor experiments with rugby hohlraums on OMEGA

    Science.gov (United States)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.-P.; Liberatore, S.; Vandenboomgaerde, M.

    2009-09-01

    Results of ablative Rayleigh-Taylor instability growth experiments performed in indirect drive on the OMEGA laser facility [T. R. Boehly, D. L. Brown, S. Craxton et al., Opt. Commun. 133, 495 (1997)] are reported. These experiments aim at benchmarking hydrocodes simulations and ablator instabilities growth in conditions relevant to ignition in the framework of the Laser MégaJoule [C. Cavailler, Plasma Phys. Controlled Fusion 47, 389 (2005)]. The modulated samples under study were made of germanium-doped plastic (CHGe), which is the nominal ablator for future ignition experiments. The incident x-ray drive was provided using rugby-shaped hohlraums [M. Vandenboomgaerde, J. Bastian, A. Casner et al., Phys. Rev. Lett. 99, 065004 (2007)] and was characterized by means of absolute time-resolved soft x-ray power measurements through a dedicated diagnostic hole, shock breakout data and one-dimensional and two-dimensional (2D) side-on radiographies. All these independent x-ray drive diagnostics lead to an actual on-foil flux that is about 50% smaller than laser-entrance-hole measurements. The experimentally inferred flux is used to simulate experimental optical depths obtained from face-on radiographies for an extensive set of initial conditions: front-side single-mode (wavelength λ =35, 50, and 70 μm) and two-mode perturbations (wavelength λ =35 and 70 μm, in phase or in opposite phase). Three-dimensional pattern growth is also compared with the 2D case. Finally the case of the feedthrough mechanism is addressed with rear-side modulated foils.

  7. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    International Nuclear Information System (INIS)

    Jacquet, Emmanuel; Krumholz, Mark R.

    2011-01-01

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  8. Rayleigh-Taylor and wind-driven instabilities of the nighttime equatorial ionosphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Straus, J.M.

    1979-01-01

    We have made a thorough re-examination of the Rayleigh-Taylor instability in the nighttime equatorial ionosphere from approx.100 km to the bottomside F region. We have taken into account explicitly the following effects which have been ignored by other workers in various combinations: (1) The eastward drift of the ionosphere caused by the nighttime polarization electric field, (2) the eastward nighttime neutral wind, and (3) recombination in the F and E regions. We found that, well below the bottomside F region, the Rayleigh-Taylor mode can be unstable and is driven by an eastward neutral wind rather than by gravitational drift. Formation of ionospheric bubbles below the bottomside F region is consistent with the observation of lower ionospheric ions in F region ionospheric holes; furthermore, seasonal and shorter term variations in spread-F occurrence may be associated with variations in the neutral wind and polarization electric field

  9. Rayleigh-Taylor instability in a visco-plastic fluid

    International Nuclear Information System (INIS)

    Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A

    2010-01-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  10. Rayleigh-Taylor instability in a visco-plastic fluid

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2010-12-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  11. Effect of resistivity on the Rayleigh-Taylor instability in an accelerated plasma

    International Nuclear Information System (INIS)

    Castillo, J.L.; Huerta, M.A.

    1993-01-01

    We study the Rayleigh-Taylor instability in finite-conductivity accelerated plasma arcs of the type found in electromagnetic rail launchers. For a plasma of length l, acceleration a, and thermal speed v T we consider the case where v T 2 /al much-gt 1, which is valid when the projectile mass is large compared to the plasma mass. The conductivity σ enters via a magnetic Reynolds number R=σμ(al 3 ) 1/2 . The fourth-order mode equation is solved analytically using an asymptotic WKB expansion in 1/R. We find the first-order 1/R correction to the classical Rayleigh-Taylor dispersion relation for large wave number K but with K much-lt R 2 /l. The analytical results show good agreement with previous numerical calculations

  12. The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere

    Science.gov (United States)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.

  13. Rayleigh-Taylor instabilities in indirect laser drive with rugby-shaped hohlraums

    International Nuclear Information System (INIS)

    Casner, A.; Galmiche, D.; Huser, G.; Jadaud, J.P.; Richard, A.; Liberatore, S.; Vandenboomgaerde, M.

    2009-01-01

    The mastering of the development of hydrodynamic instabilities like Rayleigh-Taylor instabilities is an important milestone on the way to perform efficient laser implosions. The complexity of these instabilities implies an experimental validation of the theoretical models and their computer simulations. An experimental platform involving the Omega laser has allowed us to perform indirect drive with rugby-shaped hohlraums. The experiments have validated the growth of 2- and 3-dimensional initial defects as predicted by theory. We have shown that the 3-dimensional defect saturates for an higher amplitude than the 2-dimensional one does. The experiments have been made by using a plastic shell doped with Germanium (CH:Ge). (A.C.)

  14. The mitigation effect of sheared axial flow on the rayleigh-taylor instability in Z-pinch plasma

    International Nuclear Information System (INIS)

    Zhang Yang

    2005-01-01

    A magnetohydrodynamic formulation is derived to investigate the mitigation effects of the sheared axial flow on the Rayleigh-Taylor (RT) instability in Z-pinch plasma. The dispersion relation of the compressible model is given. The mitigation effects of sheared axial flow on the Rayleigh-Taylor instability of Z-pinch plasma in the compressible and incompressible models are compared respectively, and the effect of compressible on the instability of system with sheared axial flow is discussed. It is found that, compressibility effects can stabilize the Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability, and this allows the sheared axial flow mitigate the RT instability far more effectively. The authors also find that, at the early stage of the implosion, if the temperature of the plasma is not very high, the compressible model is much more suitable to describing the state of system than the incompressible one. (author)

  15. Method of generalized coordinates and an application to Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1978-01-01

    The method of generalized coordinates is extended to the analysis of continuous bodies for which the degrees of freedom are independent velocity distributions in the spatial coordinates. The corresponding Lagrange equations contain generalized convective terms as well as the usual generalized forces and masses. Since the existence of a potential is not assumed, the equations of motion can be applied to media with arbitrary (possible dissipative) constitutive laws. Material deformation is characterized by the rate of strain, which is taken as the symmetric part of the velocity gradient, making the approach valid for arbitrarily large deformations. As an example, infinitesimal Rayleigh-Taylor instability is considered by analytic methods. Then, large amplitude Rayleigh-Taylor instability is represented with a single-degree-of-freedom analysis that shows the development (by numerical integration) of the known spike-and-bubble configuration of the unstable interface. The infinitesimal stability of a plastically deforming solid and the growth of the instability to large amplitudes are also considered

  16. Nonlinear saturation of the Rayleigh Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)

  17. Growth of the Rayleigh endash Taylor instability in an imploding Z-pinch

    International Nuclear Information System (INIS)

    De Groot, J.S.; Toor, A.; Golberg, S.M.; Liberman, M.A.

    1997-01-01

    Rayleigh endash Taylor (RT) instability of cylindrical, imploding plasma liners in a Z-pinch is analyzed. The reduction in total perturbation growth for multicascade systems (multiple imploding shells) is presented. This reduction is effective if the pressure produced by the impacting shell exceeds the magnetic pressure at the time of impact. Analytical and numerical solutions are also obtained for the RT instability of an imploding plasma liner accelerated into undisturbed plasma. The snowplow model is used in which the mass encountered by the imploding magnetic piston is swept into an infinitely thin sheath. A shock front launched ahead of the liner is shown to reduce the growth rate. It is also shown that accumulating the mass increases the growth rate. However, the total perturbation growth can be reduced if the liner accumulates the mass during the implosion compared to a liner with the same mass imploding into vacuum. Finally, it is shown that the final kinetic energy density for a given shell nonuniformity is largest if the final liner mass is accumulated during the implosion. copyright 1997 American Institute of Physics

  18. A numerical and analytical investigation of Rayleigh-Taylor instability in a solid tungsten plate

    International Nuclear Information System (INIS)

    Robinson, A.C.; Swegle, J.W.

    1987-07-01

    The Rayleigh-Taylor instability response of an elastic-plastic tungsten plate is investigated by numerical experiments and an approximate modal analysis. The so-called ''minimum amplitude'' instability criteria derived from plasticity analyses is shown to be incomplete as a general indicator of instability or stability at very large driving pressures. Model equations are derived which are able to reproduce the basic qualitative features of the observed instability response given by the numerical calculations. 11 refs., 29 figs

  19. Cyclic and seasonal features in the behaviour of linear growth increment of Rayleigh-Taylor instability in equatorial F-region

    International Nuclear Information System (INIS)

    Farkullin, M.N.; Nikitin, M.A.; Kashchenko, N.M.

    1989-01-01

    Calculations of linear increment of the Rayleigh-Taylor instability for various geophysical conditions are presented. It is shwn that space-time characteristics of increment depend strongly on conditions of solar activity and seasons. The calculation results are in a good agreement with statistical regularities of F-scattering observation in equatorial F-area, which points to the Rayleigh-Taylor natur of the penomena

  20. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  1. Investigation of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    International Nuclear Information System (INIS)

    Riccardo Bonazza

    2006-01-01

    The present research program is centered on the experimental and numerical study of two instabilities that develop at the interface between two different fluids when the interface experiences an impulsive or a constant acceleration. The instabilities, called the Richtmyer-Meshkov and Rayleigh-Taylor instability, respectively (RMI and RTI), adversely affect target implosion in experiments aimed at the achievement of nuclear fusion by inertial confinement by causing the nuclear fuel contained in a target and the ablated shell material to mix, leading to contamination of the fuel, yield reduction or no ignition at all. Specifically, our work is articulated in three main directions: study of impulsively accelerated spherical gas inhomogeneities; study of impulsively accelerated 2-D interfaces; study of a liquid interface under the action of gravity. The objectives common to all three activities are to learn some physics directly from our experiments and calculations; and to develop a database at previously untested conditions to be used to calibrate and verify some of the computational tools being developed within the RTI/RMI community at the national laboratories and the ASCI centers

  2. Measurements of Magneto-Rayleigh-Taylor instability growth in solid liners on the 20 MA Z facility

    International Nuclear Information System (INIS)

    Bigman, Verle; Vesey, Roger Alan; Shores, Jonathon; Herrmann, Mark C.; Stamm, Robert; Killebrew, Korbie; Holt, Randy; Blue, Brent; Nakhleh, Charlie; McBride, Ryan D.; Leifeste, Gordon T.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Schroen, Diana Grace; Sinars, Daniel Brian; Lopez, Mike R.; Slutz, Stephen A.; Atherton, Briggs W.; Tomlinson, Kurt; Edens, Aaron D.; Savage, Mark Edward; Peterson, Kyle J.

    2010-01-01

    The magneto-Rayleigh-Taylor (MRT) instability is the most important instability for determining whether a cylindrical liner can be compressed to its axis in a relatively intact form, a requirement for achieving the high pressures needed for inertial confinement fusion (ICF) and other high energy-density physics applications. While there are many published RT studies, there are a handful of well-characterized MRT experiments at time scales >1 (micro)s and none for 100 ns z-pinch implosions. Experiments used solid Al liners with outer radii of 3.16 mm and thicknesses of 292 (micro)m, dimensions similar to magnetically-driven ICF target designs (1). In most tests the MRT instability was seeded with sinusoidal perturbations (λ = 200, 400 (micro)m, peak-to-valley amplitudes of 10, 20 (micro)m, respectively), wavelengths similar to those predicted to dominate near stagnation. Radiographs show the evolution of the MRT instability and the effects of current-induced ablation of mass from the liner surface. Additional Al liner tests used 25-200 (micro)m wavelengths and flat surfaces. Codes being used to design magnetized liner ICF loads (1) match the features seen except at the smallest scales (<50 (micro)m). Recent experiments used Be liners to enable penetrating radiography using the same 6.151 keV diagnostics and provide an in-flight measurement of the liner density profile.

  3. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    Energy Technology Data Exchange (ETDEWEB)

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  4. Mode coupling in nonlinear Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.

    1992-01-01

    This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase

  5. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  6. Numerical simulation of Rayleigh-Taylor instability in ablation driven systems

    International Nuclear Information System (INIS)

    Verdon, C.P.

    1984-01-01

    Two-dimensional numerical simulations of ablatively accelerated thin shells subject to Rayleigh-Taylor instability are presented. Results for both single wavelength and multiwavelength perturbations show that the nonlinear effects of the instability are evident mainly in the bubble rather than the spike. Approximate roles for predicting the dominant nonlinear mode-mode interactions, which limit shell performance, are also discussed. The work concludes with a discussion of recommendations for future work in this area

  7. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Garnier, J.; Masse, L.

    2005-01-01

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1λ for long wavelengths, but higher for short instable wavelengths in the ablative regime

  8. Breakup of an accelerated shell owing to Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Suydam, B.R.

    1978-06-01

    A simplified model for the Rayleigh-Taylor instability of an accelerated shell is examined, and it is found that the most dangerous wavelength to be about that of the shell thickness. The shell material is assumed to be an inviscid, incompressible fluid. Effects of finite compressibility and of surface tension are found to be negligible, but the effects of viscosity are shown to be very large. The need for better knowledge of viscosity at high pressure is pointed out

  9. Jet-like long spike in nonlinear evolution of ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Ye Wenhua; He Xiantu; Wang Lifeng

    2010-01-01

    We report the formation of jet-like long spike in the nonlinear evolution of the ablative Rayleigh-Taylor instability (ARTI) experiments by numerical simulations. A preheating model κ(T) = κ SH [1 + f(T)], where κ SH is the Spitzer-Haerm (SH) electron conductivity and f(T) interprets the preheating tongue effect in the cold plasma ahead of the ablative front [Phys. Rev. E 65 (2002) 57401], is introduced in simulations. The simulation results of the nonlinear evolution of the ARTI are in general agreement with the experiment results. It is found that two factors, i.e., the suppressing of ablative Kelvin-Helmholtz instability (AKHI) and the heat flow cone in the spike tips, contribute to the formation of jet-like long spike in the nonlinear evolution of the ARTI. (authors)

  10. Scattering Light by а Cylindrical Capsule with Arbitrary End Caps in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    K. A. Shapovalov

    2015-01-01

    Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh

  11. Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F

    International Nuclear Information System (INIS)

    Chaturvedi, P.K.; Ossakow, S.L.

    1977-01-01

    The nonlinear behavior of the collisional Rayleigh-Taylor instability is studied in equatorial Spread F by including a dominant two-dimensional nonlinearity. It is found that on account of this nonlinearity the instability saturates by generating damped higher spatial harmonics. The saturated power spectrum for the density fluctuations is discussed. A comparison between experimental observations and theory is presented

  12. Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios

    International Nuclear Information System (INIS)

    Alon, U.; Hecht, J.; Ofer, D.; Shvarts, D.

    1995-01-01

    The nonlinear evolution of large structure in Rayleigh-Taylor and Richtmyer-Meshkov bubble and spike fronts is studied numerically and explained theoretically on the basis of single-mode and two-bubble interaction physics at Atwood numbers (A). Multimode Rayleigh-Taylor bubble (spike) fronts are found as h B =α B Agt 2 [h s =α s (A)gt 2 ] with α B =0.05, while Richtmyer-Meshkov bubble (spike) fronts are found as h B =a B t θ B (h s =a s t θ s (A) ) with θ B =0.4 at all A's. The dependence of these scaling laws and parameters on A and on initial conditions is explained

  13. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Henry de Frahan, M. T. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; Belof, J. L. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Cavallo, R. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Raevsky, V. A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ignatova, O. N. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ancheta, D. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; El-dasher, B. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Florando, J. N. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Gallegos, G. F. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA

    2015-06-14

    A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.

  14. The Rayleigh-Taylor instability under electrical pulse discharge in water

    International Nuclear Information System (INIS)

    Kononov, A.V.; Porytskyy, P.V.; Starchyk, P.D.; Voitenko, L.M.

    1999-01-01

    The development of the Rayleigh-Taylor instability is studied on the interface between both the plasma channel and liquid medium under an electrical pulse discharge in water.It is shown that,growth of the irregularities of the contact interface leads to the increasing of heat flux from the discharge channel due to the growth of an interfacial area and the incoming of water matter into a discharge channel.As a result of these processes the characteristics of the discharge may be strongly varied

  15. Unstable Titan-generated Rayleigh-Taylor Lakes Impact Ice

    Science.gov (United States)

    Umurhan, O. M.; Korycansky, D. G.; Zahnle, K. J.

    2014-12-01

    The evolution of surface morphology on Titan, Triton, and other worlds is strongly influenced by the interplay of various fluid dynamical processes. Specifically, overturning instabilities can easily arise due to the special circumstances of landform evolution that probably occurred on these worlds. On Titan, large impacts that formed basins like Menrva crater (and possibly Hotei Regio) would have generated impact-melt ice lakes unstably arranged over less dense ice. Cantaloupe terrains, for example as seen on Triton, may be the result of condensation of volatiles (methane, nitrogen) leading to unstably stratified layers of different compositions and densities. In each of these cases, Rayleigh-Taylor instabilities leading to large scale diapirism may be at play. In addition to the dynamics of these instabilities, other physical effects (e.g. heat diffusion, freezing/melting, porosity, temperature dependent viscosity) likely play an important role in the evolution of these features. In this ongoing study, we examine the properties of unstably stratified fluids in which the lower less-dense ice has a temperature dependent viscosity. Surprisingly, we find that there exists an optimal disturbance length scale corresponding to the fastest growth of the Rayleigh-Taylor instability. For unstably stratified layers of water (low viscosity heavy liquid lying above an ice whose viscosity increases with depth) the fastest growing mode corresponds to 40-60 km scales with overturn times of approximately 100 days. We present a detailed numerical stability analysis in a corresponding Boussinessq model (in the creeping flow limit) incorporating thermal conduction and latent heat release and we examine the stability properties surveying a variety of parameters. We have also developed a two-dimensional numerical code (a hybrid spectral/compact-differencing scheme) to model the evolution of such systems for which we shall present preliminary numerical results depicting the outcome of

  16. Manipulating Rayleigh-Taylor Growth Using Adjoints

    Science.gov (United States)

    Kord, Ali; Capecelatro, Jesse

    2017-11-01

    It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.

  17. Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Henry de Frahan, M. T., E-mail: marchdf@umich.edu; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Belof, J. L.; Cavallo, R. M.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808 (United States); Raevsky, V. A.; Ignatova, O. N.; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188 (Russian Federation)

    2015-06-14

    We present a set of high explosive driven Rayleigh-Taylor strength experiments for beryllium to produce data to distinguish predictions by various strength models. Design simulations using existing strength model parameterizations from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, suggests growth consistent with little material strength. We focus mostly on efforts to simulate the data using published strength models as well as the more recent RING relaxation model developed at VNIIEF. The results of the strength experiments indicate weak influence of strength in mitigating the growth with the RING model coming closest to predicting the material behavior. Finally, we present shock and ramp-loading recovery experiments.

  18. On the ""early-time"" evolution of variables relevant to turbulence models for Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-01-01

    We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant parameters before the fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of the mixing between two interpenetrating fluids to define the initial profiles for the turbulence model parameters. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted initial profiles for the turbulence model parameters and initial profiles of the parameters obtained from low Atwood number three dimensional simulations show reasonable agreement.

  19. Stationary solution of the Rayleigh-Taylor instability for spatially periodic flows: questions of uniqueness, dimensionality, and universality

    International Nuclear Information System (INIS)

    Abarzhi, S.I.

    1996-01-01

    The stationary solutions of the Rayleigh-Taylor instability for spatially periodic flows with general symmetry are investigated here for the first time. The existence of a set of stationary solutions is established. The question of its dimensionality in function space is resolved on the basis of an analysis of the symmetry of the initial perturbation. The interrelationship between the dimensionality of the solution set and the symmetry of the flow is found. The dimensionality of the solution set is established for flows invariant with respect to one of five symmorphic two-dimensional groups. The nonuniversal character of the set of stationary solutions of the Rayleigh-Taylor instability is demonstrated. For flows in a tube, on the contrary, universality of the solution set, along with its independence of the symmetry of the initial perturbation, is assumed. The problem of the free boundary in the Rayleigh-Taylor instability is solved in the first two approximations, and their convergence is investigated. The dependence of the velocity and Fourier harmonics on the parameters of the problem is found. Possible symmetry violations of the flow are analyzed. Limits to previously studied cases are investigated, and their accuracy is established. Questions of the stability of the solutions obtained and the possibility of a physically correct statement of the problem are discussed

  20. Rayleigh-Taylor instability in inertial confinement fusion

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1987-01-01

    This report summarises the main results of theoretical analysis on the problem of Rayleigh-Tylor instability in inertial confinement fusion (ICF). Work presented in this report essentially covers four basic problems. Firstly, an analytical formulation to analyse the effects of plasma density inhomogeneities on the growth of the instability in plane geometry is presented. As a result of this analysis it is concluded that, for minimizing the growth rate of the instability, it may be advantageous to use the driver laser beams of higher irradiance and an optimum wave length in an ICF experiment. Secondly, a new formulation for the analysis of the instability in curved (cylindrical and spherical) geometries is presented. A general eigenvalue equation for the growth rate of the instability which is applicable for both plane and curved geometries is derived. A comparative study is made between the plane, cylindrical and spherical geometries. Also analytical expressions for the growth rates are obtained in the cases of spherical and cylindrical shell targets and their variations with respect to the aspect ratios of the shells are discussed. Thirdly, a semi-analytical analysis of the instability where the growth rate is obtained by solving numerically a (2N-1)x(2N-1) determinantal equation is presented. The semi-analytical analysis developed is applicable for the study of the growth of the instability in the present day multi-structured spherical shell targets. Finally, a dynamic analysis of the growth of the instability for a representative spherical solid target driven by laser beams symmetrically from all the sides is carried out numerically using a computer code developed for this purpose. This study confirms analytical predictions. Further, it is observed that an approximate analytical analysis with time independent density profile gives conservative estimates for the growth rate. In passing, the computer code is also used to estimate the pellet gain for spin

  1. Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Delettrez, J.A.; Goncharov, V.N.; Marshall, F.J.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Town, R.P.J.; Yaakobi, B.

    2002-01-01

    The temporal evolution of inner-shell modulations, unstable during the deceleration phase of a laser-driven spherical implosion, has been measured through K-edge imaging [B. Yaakobi et al., Phys. Plasmas 7, 3727 (2000)] of shells with titanium-doped layers. The main study was based on the implosions of 1 mm diam, 20 μm thick shells filled with either 18 atm or 4 atm of D 3 He gas driven with 23 kJ, 1 ns square laser pulses on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. These targets have similar modulation levels at the beginning of the deceleration phase due to similar modulation growths in the acceleration phase, but different modulation growths throughout the deceleration phase due to different fill pressures (convergence ratios). At peak compression, the measured inner surface, areal-density nonuniformity σ rms levels were 23±5 % for more-stable 18 atm fill targets and 53±11 % for less-stable 4 atm fill targets. The inner-surface modulations grow throughout the deceleration phase due to Rayleigh-Taylor instability and Bell-Plesset convergence effects. The nonuniformity at peak compression is sensitive to the initial perturbation level as measured in implosions with different laser-smoothing conditions

  2. Rayleigh-Taylor analysis in a laser-induced plasma

    International Nuclear Information System (INIS)

    Marin, R A; Gonzales, C A; Riascos, H

    2012-01-01

    We report the conditions (plasma parameters) under which the Rayleigh-Taylor Instability (RTI) develops in an Al plasma produced by a Nd:Yag pulsed laser with a fluence range of 1 to 4 J/cm 2 , wavelength of 1064nm and 10Hz repetition rate. The used data correspond to different pressure values of the ambient N atmosphere. From previous works, we took the RTI growth rate form. From the perturbation theory the instability amplitude is proportional to e -ηt . Using the drag model, we calculated the plume dynamics equations integrating the instability term and plotted the instability growth profile with the delay time values to get critical numbers for it, in order to show under which conditions the RTI appears.

  3. Shear flow stabilization of the hydromagnetic Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Roderick, N.F.; Shumlak, U.; Douglas, M.; Peterkin, R.E. Jr.; Ruden, E.

    1997-01-01

    Numerical simulations have indicated that shear flow may help stabilize the hydromagnetic Rayleigh-Taylor instability in imploding plasma z-pinches. A simple extension to a model presented in Chandrasekhar has been developed to study the linear stability of incompressible plasma subjected to both a shear flow and acceleration. The model has been used to investigate the stability plasma implosion schemes using externally imposed velocity shear which develops from the plasma flow itself. Specific parameters were chosen to represent plasma implosions driven by the Saturn and PBFA-Z, pulsed power generators at Sandia National Laboratories. Results indicate a high shear is necessary to stabilize the z-pinch implosions studied

  4. Study of the Rayleigh-Taylor instability at the ablation front

    International Nuclear Information System (INIS)

    Salvatore, Patricia

    2000-01-01

    Inertial confinement fusion in indirect drive consists in irradiating with ultra powerful laser beams the internal wall of a heating cavity which contains a capsule enclosing the thermonuclear fuel. During laser-matter interaction, laser light is converted into x-rays onto the hohlraum walls. The x-rays capsule heating produces a matter expansion, this one induces a pressure accelerating the capsule wall which implodes and compresses the fuel. The limit between the expanded plasma and the accelerated one is named ablation front. A light fluid (the ablated plasma) accelerating a heavy one (the shell) seeds Rayleigh-Taylor instability. To perform experiments, we used the Phebus facility at Limeil-Valenton CEA (the most powerful laser in Europe). After frequency conversion, each laser beam can deliver onto a target an energy up to 3 kJ at 0.35μm wavelength. In the United States of America and in France, more powerful laser facilities are planned to deliver an energy about 1 MJ: the National Ignition Facility (Lawrence Livermore National Laboratory, California) and the Laser MegaJoule (CEA, Bordeaux). Hydrodynamic instabilities take an important part in the definition of these facilities. Two main experiments were carried out on the Phebus laser. We studied the Rayleigh-Taylor instability at the ablation front with a modulated CHBr plane target stuck on the gold hohlraum wall. During the september-october 1996 experiment, a x-ray device was used. We observed the temporal evolution of the target modulations by x-ray imaging cinematography which recorded face-on radiographs. The second experiment was performed with collaboration of the Imperial College of London. Two high spatial resolution devices (less than 5 μm) were used in order to study short wavelengths modulations. The first diagnostic recorded side-on observations of target acceleration, the second one was used to measure the instability growth with face-on radiography. We studied this growth in a modulation

  5. Three-dimensional, nonlinear evolution of the Rayleigh--Taylor instability of a thin layer

    International Nuclear Information System (INIS)

    Manheimer, W.; Colombant, D.; Ott, E.

    1984-01-01

    A numerical simulation scheme is developed to examine the nonlinear evolution of the Rayleigh--Taylor instability of a thin sheet in three dimensions. It is shown that the erosion of mass at the top of the bubble is approximately as described by two-dimensional simulations. However, mass is lost into spikes more slowly in three-dimensional than in two-dimensional simulations

  6. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue

    2004-01-01

    The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained

  7. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  8. On the ""early-time"" evolution of variables relevant to turbulence models for the Rayleigh-Taylor instability

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-01-01

    We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.

  9. Front propagation in Rayleigh-Taylor systems with reaction

    International Nuclear Information System (INIS)

    Scagliarini, A; Biferale, L; Sbragaglia, M; Mantovani, F; Pivanti, M; Schifano, S F; Tripiccione, R; Pozzati, F; Toschi, F

    2011-01-01

    A special feature of Rayleigh-Taylor systems with chemical reactions is the competition between turbulent mixing and the 'burning processes', which leads to a highly non-trivial dynamics. We studied the problem performing high resolution numerical simulations of a 2d system, using a thermal lattice Boltzmann (LB) model. We spanned the various regimes emerging at changing the relative chemical/turbulent time scales, from slow to fast reaction; in the former case we found numerical evidence of an enhancement of the front propagation speed (with respect to the laminar case), providing a phenomenological argument to explain the observed behaviour. When the reaction is very fast, instead, the formation of sharp fronts separating patches of pure phases, leads to an increase of intermittency in the small scale statistics of the temperature field.

  10. Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis

    Science.gov (United States)

    Balestra, Gioele; Brun, P.-T.; Gallaire, François

    2016-12-01

    We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.

  11. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study

    Science.gov (United States)

    Binda, L.; Fernández, D.; El Hasi, C.; Zalts, A.; D'Onofrio, A.

    2018-01-01

    Lateral movements of the fingers in Rayleigh-Taylor hydrodynamic instabilities at the interface between two fluids are studied. We show that transverse movements appear when a physical boundary is present; these phenomena have not been explained until now. The boundary prevents one of the fluids from crossing it. Such frontiers can be buoyancy driven as, for example, the frontier to the passage of a less dense solution through a denser solution or when different aggregation states coexist (liquid and gaseous phases). An experimental study of the lateral movement velocity of the fingers was performed for different Rayleigh numbers (Ra), and when oscillations were detected, their amplitudes were studied. Liquid-liquid (L-L) and gas-liquid (G-L) systems were analysed. Aqueous HCl and Bromocresol Green (sodium salt, NaBCG) solutions were used in L-L experiments, and CO2 (gas) and aqueous NaOH, NaHCO3, and CaCl2 solutions were employed for the G-L studies. We observed that the lateral movement of the fingers and finger collapses near the interface are more notorious when Ra increases. The consequences of this, for each experience, are a decrease in the number of fingers and an increase in the velocity of the lateral finger movement close to the interface as time evolves. We found that the amplitude of the oscillations did not vary significantly within the considered Ra range. These results have an important implication when determining the wave number of instabilities in an evolving system. The wave number could be strongly diminished if there is a boundary.

  12. Direct Numerical Simulations of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Livescu, D; Wei, T; Petersen, M R

    2011-01-01

    The development of the Rayleigh-Taylor mixing layer is studied using data from an extensive new set of Direct Numerical Simulations (DNS), performed on the 0.5 Petaflops, 150k compute cores BG/L Dawn supercomputer at Lawrence Livermore National Laboratory. This includes a suite of simulations with grid size of 1024 2 × 4608 and Atwood number ranging from 0.04 to 0.9, in order to examine small departures from the Boussinesq approximation as well as large Atwood number effects, and a high resolution simulation of grid size 4096 2 × 4032 and Atwood number of 0.75. After the layer width had developed substantially, additional branched simulations have been run under reversed and zero gravity conditions. While the bulk of the results will be published elsewhere, here we present preliminary results on: 1) the long-standing open question regarding the discrepancy between the numerically and experimentally measured mixing layer growth rates and 2) mixing characteristics.

  13. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number

    International Nuclear Information System (INIS)

    Ye Wenhua; He, X.T.; Zhang Weiyan

    2002-01-01

    Recent experiment [S.G. Glendinning et al., Phys. Rev. Lett. 78, 3318 (1997)] showed that the measured growth rate of laser ablative Rayleigh-Taylor (RT) instability with preheating is about 50% of the classic value and is reduced by about 18% compared with the simulated value obtained with the computer code LASNEX. By changing the temperature variation of the electron thermal conductivity at low temperatures, the density profile from the Bhatnagar-Gross-Krook approximation is recovered in the simulation, and the simulated RT growth rate is in good agreement with the experimental value from Glendinning et al. The preheated density profile on ablative RT stablization is studied numerically. A change of the Atwood number in the preheating case also leads to RT stabilization. The RT growth formula γ=√(Akg/(1+AkL))-2kV a agrees well with experiment and simulation, and is appropriate for the preheating case

  14. The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs

    Science.gov (United States)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-01-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  15. First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh-Taylor instability research

    International Nuclear Information System (INIS)

    Fujioka, Shinsuke; Shiraga, Hiroyuki; Nishikino, Masaharu; Shigemori, Keisuke; Sunahara, Atsushi; Nakai, Mitsuo; Azechi, Hiroshi; Nishihara, Katsunobu; Yamanaka, Tatsuhiko

    2003-01-01

    The temporal evolution of the density profile of a directly laser-driven polystyrene target was observed for the first time using an x-ray penumbral imaging technique coupled with side-on x-ray backlighting at the GEKKO XII [C. Yamanaka et al., IEEE J. Quantum Electron. QE-17, 1639 (1981)]-High Intensity Plasma Experimental Research laser facility (I L =0.7x10 14 W/cm 2 , λ L =0.35 μm). This density measurement makes it possible to experimentally confirm all physical parameters [γ(k),k,g,m,ρ a ,L m ] appearing in the modified Takabe formula for the growth rate of the ablative Rayleigh-Taylor instability. The measured density profiles were well reproduced by a one-dimensional hydrodynamic simulation code. The density measurement contributes toward fully understanding the ablative Rayleigh-Taylor instability

  16. Initial value problem for Rayleigh--Taylor instability of viscous fluids

    International Nuclear Information System (INIS)

    Menikoff, R.; Mjolsness, R.C.; Sharp, D.H.; Zemach, C.; Doyle, B.J.

    1978-01-01

    The initial value problem associated with the development of small amplitude disturbances in Rayleigh--Taylor unstable, viscous, incompressible fluids is studied. Solutions to the linearized equations of motion which satisfy general initial conditions are obtained in terms of Fourier--Laplace transforms of the hydrodynamic variables, without restriction on the density or viscosity of either fluid. When the two fluids have equal kinematic viscosities, these transforms can be inverted explicitly to express the fluid variables as integrals of Green's functions multiplied by initial data. In addition to normal modes, a set of continuum modes, not treated explicitly in the literature, makes an important contribution to the development of the fluid motion

  17. Earth's core formation due to the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Ida, S.; Nakagawa, Y.; Nakazawa, K.

    1987-01-01

    A protoearth accretion stage configuration consisting of an undifferentiated solid core, an intermediate metal-melt layer, and an outer silicate-melt layer, is presently taken as the initial state in an investigation of Rayleigh-Taylor instability-induced core formation. The Ida et al. (to be published) quantitative results on the instability in a self-gravitating fluid sphere are used. The instability is found to occur through the translational mode on a time-scale of about 10 hr, in the case where the metal-melt layer is greater than about 1 km; this implies that the earth's core formed due to the undifferentiated solid core's translation upon the outer layer's melting. Differentiation would then have occurred in the late accretion stage. 17 references

  18. Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials

    Science.gov (United States)

    Polavarapu, Rinosh; Banerjee, Arindam

    2017-11-01

    The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.

  19. Rayleigh-Taylor and Kelvin-Helmholtz instabilities in targets accelerated by laser ablation

    International Nuclear Information System (INIS)

    Emery, M.H.; Gardner, J.H.; Boris, J.P.

    1982-01-01

    With use of the fast2d laser-shell model, the acceleration of a 20-μm-thick plastic foil up to 160 km/s has been simulated. It is possible to follow the Rayleigh-Taylor bubble-and-spike development far into the nonlinear regime and beyond the point of foil fragmentation. Strong shear flow develops which evolves into the Kelvin-Helmholtz instability. The Kelvin-Helmholtz instability causes the tips of the spikes to widen and as a result reduce their rate of ''fall.''

  20. Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma

    Directory of Open Access Journals (Sweden)

    N. Chakrabarti

    2003-05-01

    Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities

  1. Size invariance of the granular Rayleigh-Taylor instability.

    Science.gov (United States)

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  2. Observation of Rayleigh - Taylor growth to short wavelengths on Nike

    International Nuclear Information System (INIS)

    Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.

    1999-01-01

    The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics

  3. A line driven Rayleigh-Taylor-type instability in hot stars

    International Nuclear Information System (INIS)

    Nelson, G.D.; Hearn, A.G.

    1978-01-01

    The existence of a Rayleigh-Taylor-type instability in the atmosphere of hot stars, driven by the radiative force associated with impurity ion resonance lines, is demonstrated. In a hot star with an effective temperature of 50 000 K, the instability will grow exponentially with a time scale of approximately 50 s in the layers where the stellar wind velocity is 5% of the thermal velocity of the ion. As a result, radially symmetric stellar winds driven by resonance line radiative forces will break up in small horizontal scale lengths. The energy fed into the instability provides a possible source of mechanical heating in the atmosphere for a chromosphere or corona. (orig.) [de

  4. Nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas

    International Nuclear Information System (INIS)

    Keskinen, M. J.; Schmitt, A.

    2007-01-01

    A model for the nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas has been developed for a wide range of Froude numbers and scale sizes. It is found that the spectrum can be characterized by an inverse power law with spectral index of approximately 2 in the limit of small-wavenumber spectrum cutoffs and small-scale density gradient scale lengths. Comparison of the model spectrum with recent experimental observations is made with good agreement

  5. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  6. Simulation of Rayleigh--Taylor flows using vortex blobs

    International Nuclear Information System (INIS)

    Kerr, R.M.

    1988-01-01

    An inviscid boundary-integral method is modified in order to study the single-scale Rayleigh--Taylor instability for arbitrary Atwood number. The primary modification uses vortex blobs to smooth the Green's function and suppress a finite time singularity in the curvature. Additional modifications to earlier codes such as using second-order central differences along the interface to accommodate spikes in the vorticity and spreading the nodes evenly along the interface to suppress clustering of nodes are designed to maintain resolution and accuracy. To achieve second-order accuracy in time when the nodes are spread, an extra predictor step is needed that shifts the nodes before the variables are advanced. The method successfully follows the development of a single mode to states with asymptotic velocities for the bubble and spike that depend on the Atwood number and are independent of the blob size. Incipient droplet formation is observed. copyright 1988 Academic Press, Inc

  7. Cylindrical implosion to measure the radiative properties of high density and temperature plasmas

    International Nuclear Information System (INIS)

    Xu Yan; Rose, S.J.

    2000-01-01

    Cylindrical implosion is of great interest because of its excellent diagnostic access. The authors present one-dimensional numerical simulations to explore the plasma conditions that may be achieved. Combined with the numerical data, the development of Rayleigh-Taylor instabilities and Richtmyer-Meshkov instabilities in those targets are estimated. The authors found that it is possible to achieve a high density and temperature plasma with a relatively low temperature and density gradient using a cylindrical implosion directly-driven by a high-power laser

  8. Experimental Studies of the Electrothermal and Magneto-Rayleigh Taylor Instabilities on Thin Metal Foil Ablations

    Science.gov (United States)

    Steiner, Adam; Yager-Elorriaga, David; Patel, Sonal; Jordan, Nicholas; Gilgenbach, Ronald; Lau, Y. Y.

    2015-11-01

    The electrothermal instability (ETI) and magneto-Rayleigh Taylor instability (MRT) are important in the implosion of metallic liners, such as magnetized liner implosion fusion (MagLIF). The MAIZE linear transformer driver (LTD) at the University of Michigan generates 200 ns risetime-current pulses of 500 to 600 kA into Al foil liners to study plasma instabilities and implosion dynamics, most recently MRT growth on imploding cylindrical liners. A full circuit model of MAIZE, along with I-V measurements, yields time-resolved load inductance. This has enabled measurements of an effective current-carrying radius to determine implosion velocity and plasma-vacuum interface acceleration. Measurements are also compared to implosion data from 4-time-frame laser shadowgraphy. Improved resolution measurements on the laser shadowgraph system have been used to examine the liner interface early in the shot to examine surface perturbations resulting from ETI for various seeding conditions. Fourier analysis examines the growth rates of wavelength bands of these structures to examine the transition from ETI to MRT. This work was supported by the U.S. DoE through award DE-SC0012328. S.G. Patel is supported by Sandia National Labs. D.A. Yager is supported by NSF fellowship grant DGE 1256260.

  9. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S. [HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Aditi [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Sharma, Nidhi [Graduate Student, HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Soumyo [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  10. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    Science.gov (United States)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  11. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    International Nuclear Information System (INIS)

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-01-01

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  12. Strong stabilization of the Rayleigh-Taylor instability by material strength at Mbar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Park, H S; Lorenz, K T; Cavallo, R M; Pollaine, S M; Prisbrey, S T; Rudd, R E; Becker, R C; Bernier, J V; Remington, B A

    2009-11-19

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure effective lattice viscosity are presented. Using a laser created ramped drive, vanadium samples are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the sample in the solid-state. Comparisons with simulations and theory indicate that the high pressure, high strain rate conditions trigger a phonon drag mechanism, resulting in the observed high effective lattice viscosity and strong stabilization of the RT instability.

  13. Rayleigh-Taylor Type Instabilities in the Reconnection Exhaust Jet as a Mechanism for Supra-arcade Downflows in the Sun

    Science.gov (United States)

    Guo, L.-J.; Huang, Y.-M.; Bhattacharjee, A.; Innes, D. E.

    2014-12-01

    Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features observed in active region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright upward growing spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for more than a decade, the mechanism of the formation of SADs remains an open issue. Using three-dimensional resistive magnetohydrodynamic simulations, we demonstrate that Rayleigh-Taylor-type instabilities develop in the downstream region of a reconnecting current sheet. The instabilities result in the formation of low-density coherent structures that resemble SADs, and high-density structures that appear to be spike-like. Comparison between the simulation results and observations suggests that Rayleigh-Taylor-type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs.

  14. A heuristic model for the nonlinear Rayleigh--Taylor instability in fast Z pinches

    International Nuclear Information System (INIS)

    Hussey, T.W.; Roderick, N.F.; Shumlak, U.; Spielman, R.B.; Deeney, C.

    1995-01-01

    A simple, heuristic model for the early nonlinear phase of the Rayleigh--Taylor instability (RTI) in thin-cylindrical-shell Z-pinch implosions has been developed. This model is based on the fact that, as the field--plasma interface is deformed, there is a component of the applied force that acts to move mass from the low mass per unit area bubble region into the higher mass per unit area spike region. The resulting reduced mass per unit area of the bubble causes it to be preferentially accelerated ahead of the spike. The pinch begins to radiate as the bubble mass first reaches the axis, and it continues to radiate while the mass that is entrained within the spikes and within unperturbed parts of the shell also arrives on axis. This model relates the time at which the bubble arrives on axis to an initial wavelength and amplitude of a single mode of the RTI. Then, by comparing this to the time at which the unperturbed mass reaches the axis, one estimates pinch thermalization time, a quantity that is determined experimentally. Experimental data, together with analytic models, have been used to choose appropriate initial wavelength and amplitude both for foils and for certain gas puff implosions. By noting that thermalization time is a weak function of these parameters, it is argued that one may use the same values for an extrapolative study of qualitatively similar implosions

  15. Analytical approach to the investigation of Rayleigh-Taylor structures of the equatorial F region

    International Nuclear Information System (INIS)

    Komarov, V.N.; Sazonov, S.V.

    1991-01-01

    On the basis of approximation of a strong vertical extension the nonlinear dynamics of Rayleigh-Taylor structures in the equatorial F region is analytically studied. The successive approximation method, proposed herein, is true for structures having longitudinal symmetry. Using this method it is managed to describe the mushroom-shaped bubble with a shock wave profile in its head part. The nonlinearity leads to bubble formation under conditions with aggravation, limiting the growth of positive disturbances at the same time

  16. Kinetic simulations of Rayleigh-Taylor instabilities

    International Nuclear Information System (INIS)

    Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance

    2014-01-01

    We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.

  17. The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames

    International Nuclear Information System (INIS)

    Bychkov, V; Modestov, M; Akkerman, V; Eriksson, L-E

    2007-01-01

    Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)

  18. Drive development for an 10 Mbar Rayleigh-Taylor strength experiment on the National Ignition Facility

    Science.gov (United States)

    Prisbrey, Shon; Park, Hye-Sook; Huntington, Channing; McNaney, James; Smith, Raym; Wehrenberg, Christopher; Swift, Damian; Panas, Cynthia; Lord, Dawn; Arsenlis, Athanasios

    2017-10-01

    Strength can be inferred by the amount a Rayleigh-Taylor surface deviates from classical growth when subjected to acceleration. If the acceleration is great enough, even materials highly resistant to deformation will flow. We use the National Ignition Facility (NIF) to create an acceleration profile that will cause sample metals, such as Mo or Cu, to reach peak pressures of 10 Mbar without inducing shock melt. To create such a profile we shock release a stepped density reservoir across a large gap with the stagnation of the reservoir on the far side of the gap resulting in the desired pressure drive history. Low density steps (foams) are a necessary part of this design and have been studied in the last several years on the Omega and NIF facilities. We will present computational and experimental progress that has been made on the 10 Mbar drive designs - including recent drive shots carried out at the NIF. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734781.

  19. Model for the saturation of the hydromagnetic Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.

    1984-01-01

    The saturation of the hydromagnetic Rayleigh--Taylor instability is caused by the reduction of driving current in the bubble region between the spikes formed as the instability develops. For short wavelengths linear magnetic field diffusion provides the necessary smoothing of the magnetic field to reduce the driving force. For wavelengths longer than the magnetic field diffusion length, the current is shorted through material which expands into the bubble region. This initially low density accumulates in the bubble and eventually provides a source of sufficiently high conductivity plasma which reduces the magnetic field penetration to the front of the bubble. Simple analytic models have been developed to verify and and quantify these predictions. These models have been compared with two-dimensional magnetohydrodynamic calculations for imploding plasma shells and give good agreement with these more detailed simulations

  20. What extent will small-scale laser-beam fluctuations seed the Rayleigh-Taylor instability in direct-drive targets

    International Nuclear Information System (INIS)

    Skupsky, S.; McCrory, R.L.; Verdon, C.P.

    1984-01-01

    The nonuniformity in laser energy deposition on a spherical target is calculated for multiple overlapping beams having small-scale fluctuations. Such nonuniformities can imprint themselves on the target surface and ''seed'' the Rayleigh-Taylor instability early in the pulse before an adequate, smoothing plasma-atmosphere has been established. The resulting growth of target deformation during the implosion is estimated

  1. The Rayleigh-Taylor instability in a self-gravitating two-layer fluid sphere

    International Nuclear Information System (INIS)

    Ida, Shigeru; Nakagawa, Yoshitsugu; Nakazawa, Kiyoshi

    1989-01-01

    The Rayleigh-Taylor instability is studied in a self-gravitating two-layer fluid sphere: an inner sphere and an outer layer. The density and the viscosity are assumed to be constant in each region. Analytic expressions of the dispersion relations are obtained in inviscid and viscid cases. This examination aims at the investigation of the Earth's core formation. The fluid sphere corresponds to the proto-Earth in the accretion stage. The instability is examined without rotation of the fluid sphere, while the proto-Earth is rotating. However, it is shown that the Coriolis force does not influence the conclusion in the Earth's core formation problem. 5 refs.; 10 figs

  2. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  3. Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation

    International Nuclear Information System (INIS)

    Dimonte, Guy

    2000-01-01

    A buoyancy-drag model for Rayleigh-Taylor (RT) mixing is developed on the premise that the bubble and spike regions behave as distinct and spanwise homogeneous fluids. Then, mass conservation is applied accross the mixing zone to obtain their average mixture densities dynamically. These are used to explicitly calculate the inertia and buoyancy terms in the evolutionary equation. The only unknown parameter in the model is the Newtonian drag constant C∼2.5±0.6, which is determined from turbulent RT experiments over various Atwood numbers A and acceleration histories g(t). The bubble (i=2) and spike (i=1) amplitudes are found to obey the familiar h i =α i Agt 2 for a constant g and h i ∼t θ i for an impulsive g. For bubbles, both α 2 and θ 2 are insensitive to A. For the spikes, both α 1 and θ 1 increase as a power law with the density ratio. However, θ 1 is not universal because it depends on the initial value of h 1 /h 2 . (c) 2000 American Institute of Physics

  4. Hydromagnetic Rayleigh endash Taylor instability in high-velocity gas-puff implosions

    International Nuclear Information System (INIS)

    Roderick, N.F.; Peterkin, R.E. Jr.; Hussey, T.W.; Spielman, R.B.; Douglas, M.R.; Deeney, C.

    1998-01-01

    Experiments using the Saturn pulsed power generator have produced high-velocity z-pinch plasma implosions with velocities over 100 cm/μs using both annular and uniform-fill gas injection initial conditions. Both types of implosion show evidence of the hydromagnetic Rayleigh endash Taylor instability with the uniform-fill plasmas producing a more spatially uniform pinch. Two-dimensional magnetohydrodynamic simulations including unsteady flow of gas from a nozzle into the diode region have been used to investigate these implosions. The instability develops from the nonuniform gas flow field that forms as the gas expands from the injection nozzle. Instability growth is limited to the narrow unstable region of the current sheath. For the annular puff the unstable region breaks through the inner edge of the annulus increasing nonlinear growth as mass ejected from the bubble regions is not replenished by accretion. This higher growth leads to bubble thinning and disruption producing greater nonuniformity at pinch for the annular puff. The uniform puff provides gas to replenish bubble mass loss until just before pinch resulting in less bubble thinning and a more uniform pinch. copyright 1998 American Institute of Physics

  5. Design and implementation plan for indirect-drive highly nonlinear ablative Rayleigh-Taylor instability experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Casner, A.; Masse, L.; Delorme, B.; Jacquet, L.; Liberatore, S.; Smalyuk, V.; Martinez, D.; Seugling, R.; Park, H.S.; Remington, B.A.; Moore, A.; Igumenshev, I.; Chicanne, C.

    2013-01-01

    In the context of National Ignition Facility Basic Science program we propose to study on the NIF ablative Rayleigh-Taylor (RT) instability in transition from weakly nonlinear to highly nonlinear regimes. Based on the analogy between flame front and ablation front, highly nonlinear RT instability measurements at the ablation front can provide important insights into the initial deflagration stage of thermonuclear supernovae of type Ia. NIF provides a unique platform to study the rich physics of nonlinear and turbulent mixing flows in High Energy Density plasmas because it can accelerate targets over much larger distances and longer time periods than previously achieved on the NOVA and OMEGA lasers. In one shot, growth of RT modulations can be measured from the weakly nonlinear stage near nonlinear saturation levels to the highly nonlinear bubble-competition, bubble-merger regimes and perhaps into a turbulent-like regime. The role of ablation on highly-nonlinear RT instability evolution will be comprehensively studied by varying ablation velocity using indirect and direct-drive platforms. We present a detailed hydro-code design of the indirect-drive platform and discuss the implementation plan for these experiments which only use NIF diagnostics already qualified. (authors)

  6. Approximate evaluation of viscous effects in the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Gratton, J.

    1989-01-01

    The effects of viscosity in the Rayleigh--Taylor instability are very important in many instances of interest but, although they have been investigated in some simple cases, the extensive algebraic complexities that are involved in the treatment of the problem tend to becloud the analysis and prevent generalizations of the results. In the paper a simple approximate method which improves a previous one by Plesset and Whipple is discussed. The viscous effects are accounted in an intuitive and transparent way, and can be easily estimated. The results are compared with exact calculations showing good agreement. For this purpose a method of analysis of the exact dispersion relation is developed, which circumvents most of the algebraic complications of the usual procedures. Both the approximate method and the novel treatment of the exact dispersion relation can be generalized to other problems of the same family

  7. Effect of viscosity and surface tension on the growth of Rayleigh-Taylor instability and Richtmyer-Meshkov instability under nonlinear domain

    International Nuclear Information System (INIS)

    Rahul Banerjee; Khan, M.; Mandal, L.K.; Roy, S.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. The Rayleigh-Taylor (R-T) instability and Richtmyer-Meshkov (R-M) instability are well known problems in the formation of some astrophysical structures such as the supernova remnants in the Eagle and Crab nebula. A core collapse supernova is driven by an externally powerful shock, and strong shocks are the breeding ground of hydrodynamic instability such as Rayleigh-Taylor instability or Richtmyer-Meshkov instability. These instabilities are also important issues in the design of targets for inertial confinement fusion (ICF). In an ICF target, a high density fluid is frequently accelerated by the pressure of a low density fluid and after ablation the density quickly decays. So, small ripples at such an interface will grow. Under potential flow model, the perturbed interface between heavier fluid and lighter fluid form bubble and spike like structures. The bubbles are in the form of columns of lighter fluid interleaved by falling spike of heavy fluid. In this paper, we like to presented the effect of viscosity and surface tension on Rayleigh-Taylor instability and Richtmyer-Meshkov instability under the non-linear Layzer's approach and described the displacement curvature, growth and velocity of the tip of the bubble as well as spike. It is seen that, in absence of surface tension the lowering of the asymptotic velocity of the tip of the bubble which is formed when the lighter fluid penetrates into the denser fluid and thus encounters the viscous drag due to the denser fluid, which depends only on the denser fluid's viscosity coefficient. On the other hand the asymptotic velocity of the tip of the spike formed as the denser fluid penetrates into the lighter fluid is reduced by an amount which depends only on the viscosity coefficient of the lighter fluid and the spike is resisted by the viscous drag due to the lighter fluid. However, in presence of surface tension the asymptotic velocity of the tip of the bubble (spike) and

  8. Probing the deep nonlinear stage of the ablative Rayleigh-Taylor instability in indirect drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M.; Giraldez, E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States)

    2015-05-15

    Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.

  9. Progress in understanding turbulent mixing induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities

    International Nuclear Information System (INIS)

    Zhou Ye; Remington, B.A.; Robey, H.F.; Cook, A.W.; Glendinning, S.G.; Dimits, A.; Buckingham, A.C.; Zimmerman, G.B.; Burke, E.W.; Peyser, T.A.; Cabot, W.; Eliason, D.

    2003-01-01

    Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occurs in settings as varied as exploding stars (supernovae), inertial confinement fusion (ICF) capsule implosions, and macroscopic flows in fluid dynamics facilities such as shock tubes. Turbulence theory and modeling have been applied to RT and RM induced flows and developed into a quantitative description of turbulence from the onset to the asymptotic end-state. The treatment, based on a combined approach of theory, direct numerical simulation (DNS), and experimental data analysis, has broad generality. Three areas of progress will be reported. First, a robust, easy to apply criteria will be reported for the mixing transition in a time-dependent flow. This allows an assessment of whether flows, be they from supernova explosions or ICF experiments, should be mixed down to the molecular scale or not. Second, through DNS, the structure, scaling, and spectral evolution of the RT instability induced flow will be inspected. Finally, using these new physical insights, a two-scale, dynamic mix model has been developed that can be applied to simulations of ICF experiments and astrophysics situations alike

  10. A numerical study of bubble interactions in Rayleigh--Taylor instability for compressible fluids

    International Nuclear Information System (INIS)

    Glimm, J.; Li, X.L.; Menikoff, R.; Sharp, D.H.; Zhang, Q.

    1990-01-01

    The late nonlinear and chaotic stage of Rayleigh--Taylor instability is characterized by the evolution of bubbles of the light fluid and spikes of the heavy fluid, each penetrating into the other phase. This paper is focused on the numerical study of bubble interactions and their effect on the statistical behavior and evolution of the bubble envelope. Compressible fluids described by the two-fluid Euler equations are considered and the front tracking method for numerical simulation of these equations is used. Two major phenomena are studied. One is the dynamics of the bubbles in a chaotic environment and the interaction among neighboring bubbles. Another one is the acceleration of the overall bubble envelope, which is a statistical consequence of the interactions of bubbles. The main result is a consistent analysis, at least in the approximately incompressible case of these two phenomena. The consistency encompasses the analysis of experiments, numerical simulation, simple theoretical models, and variation of parameters. Numerical simulation results that are in quantitative agreement with laboratory experiment for one-and-one-half (1 1/2) generations of bubble merger are presented. To the authors' knowledge, computations of this accuracy have not previously been obtained

  11. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F

    Science.gov (United States)

    Kelley, M. C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B. B.; Carter, D. A.; Ecklund, W. L.; Carlson, C. W.; Haeusler, B.; Torbert, R.

    1976-01-01

    Recent rocket probe, barium cloud and radar measurements conducted during equatorial spread F conditions are interpreted in terms of a Rayleigh-Taylor gravitational instability operating on the bottomside of the F peak. The persistent theoretical problems associated with strong radar echoes typically observed in patch-like structures at high altitudes are explained in terms of regions of depleted plasma density which buoyantly rise against the gravitational field.

  12. Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F

    International Nuclear Information System (INIS)

    Kelley, M.C.; Haerendel, G.; Kappler, H.; Valenzuela, A.; Balsley, B.B.; Carter, D.A.; Ecklund, W.L.; Carlson, C.W.; Hausler, B.; Torbert, R.

    1976-01-01

    Recent rocket probe, barium cloud and radar measurements conducted during equatorial spread F conditions are interpreted in terms of a Rayleigh-Taylor gravitational instability operating on the bottomside of the F peak. The persistent theoretical problems associated with strong radar echoes typically observed in patch-like structures at high altitudes are explained in terms of regions of depleted plasma density which bouyantly rise against the gravitational field

  13. Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws

    International Nuclear Information System (INIS)

    Oron, D.; Arazi, L.; Kartoon, D.; Rikanati, A.; Alon, U.; Shvarts, D.

    2001-01-01

    The late-time nonlinear evolution of the three-dimensional (3D) Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated. Using full 3D numerical simulations, a statistical mechanics bubble-competition model, and a Layzer-type drag-buoyancy model, it is shown that the RT scaling parameters, α B and α S , are similar in two and three dimensions, but the RM exponents, θ B and θ S are lower by a factor of 2 in three dimensions. The similarity parameter h B / is higher by a factor of 3 in the 3D case compared to the 2D case, in very good agreement with recent Linear Electric Motor (LEM) experiments. A simple drag-buoyancy model, similar to that proposed by Youngs [see J. C. V. Hanson et al., Laser Part. Beams 8, 51 (1990)], but using the coefficients from the A=1 Layzer model, rather than phenomenological ones, is introduced

  14. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Science.gov (United States)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  15. Ablative Rayleigh-Taylor instability in the limit of an infinitely large density ratio

    International Nuclear Information System (INIS)

    Clavin, P.; Almarcha, Ch.

    2005-01-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative Rayleigh-Taylor instability in ICF. A few examples are given at the end of the paper. (authors)

  16. Rayleigh-Taylor instability and resulting failure modes of ablatively imploded inertial fusion targets

    International Nuclear Information System (INIS)

    Montierth, L.; Morse, R.

    1984-01-01

    This chapter discusses small amplitude growth of the outside surface instability and modes of failure resulting from nonlinear development of the inside surface instability. It is demonstrated that pellets with initial pellet aspect ratio, A /SUB p/ >5 may have difficulty with Rayleigh-Taylor instability and that shells with A /SUB p/ greater than or equal to10 will probably demand stringent smoothness specification in order not to experience failure in the final implosion. The linear amplification of the outside surface instability can easily exceed 10 3 for A /SUB p/ and resulting A values in the range of programmatic interest. Amplifications of this order, starting from attainable surface finishes, can then penetrate to the inside shell surface, producing perturbations there which approach the nonlinear development amplitude and at the start of the final deceleration. It is shown that such inside surface perturbations can be amplified to large amplitude by the inside instability and cause failure through reduction of the maximum fuel temperature achieved. Insight into the scaling of failure mechanisms is offered

  17. Scaling laws of nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in two and three dimensions

    International Nuclear Information System (INIS)

    Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.

    2000-01-01

    The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at al Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h∼α.A.gt 2 with different values of α for the bubble and spike fronts. The RM mixing zone fronts evolve as h∼θ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3-D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments. (authors)

  18. NUMERICAL SIMULATIONS OF THE MAGNETIC RAYLEIGH-TAYLOR INSTABILITY IN THE KIPPENHAHN-SCHLÜTER PROMINENCE MODEL. I. FORMATION OF UPFLOWS

    International Nuclear Information System (INIS)

    Hillier, Andrew; Isobe, Hiroaki; Shibata, Kazunari; Berger, Thomas

    2012-01-01

    The launch of the Hinode satellite led to the discovery of rising plumes, dark in chromospheric lines, that propagate from large (∼10 Mm) bubbles that form at the base of quiescent prominences. The plumes move through a height of approximately 10 Mm while developing highly turbulent profiles. The magnetic Rayleigh-Taylor instability was hypothesized to be the mechanism that drives these flows. In this study, using three-dimensional (3D) MHD simulations, we investigate the nonlinear stability of the Kippenhahn-Schlüter prominence model for the interchange mode of the magnetic Rayleigh-Taylor instability. The model simulates the rise of a buoyant tube inside the quiescent prominence model, where the interchange of magnetic field lines becomes possible at the boundary between the buoyant tube and the prominence. Hillier et al. presented the initial results of this study, where upflows of constant velocity (maximum found 6 km s –1 ) and a maximum plume width ≈1.5 Mm which propagate through a height of approximately 6 Mm were found. Nonlinear interaction between plumes was found to be important for determining the plume dynamics. In this paper, using the results of ideal MHD simulations, we determine how the initial parameters for the model and buoyant tube affect the evolution of instability. We find that the 3D mode of the magnetic Rayleigh-Taylor instability grows, creating upflows aligned with the magnetic field of constant velocity (maximum found 7.3 km s –1 ). The width of the upflows is dependent on the initial conditions, with a range of 0.5-4 Mm which propagate through heights of 3-6 Mm. These results are in general agreement with the observations of the rising plumes.

  19. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    Science.gov (United States)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  20. Finite-thickness effects on the Rayleigh-Taylor instability in accelerated elastic solids

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-05-01

    A physical model has been developed for the linear Rayleigh-Taylor instability of a finite-thickness elastic slab laying on top of a semi-infinite ideal fluid. The model includes the nonideal effects of elasticity as boundary conditions at the top and bottom interfaces of the slab and also takes into account the finite transit time of the elastic waves across the slab thickness. For Atwood number AT=1 , the asymptotic growth rate is found to be in excellent agreement with the exact solution [Plohr and Sharp, Z. Angew. Math. Mech. 49, 786 (1998), 10.1007/s000330050121], and a physical explanation is given for the reduction of the stabilizing effectiveness of the elasticity for the thinner slabs. The feedthrough factor is also calculated.

  1. Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2018-04-01

    The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.

  2. Modal model for the nonlinear multimode Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Alon, U.; Shvarts, D.; McCrory, R.L.; Verdon, C.P.

    1996-01-01

    A modal model for the Rayleigh endash Taylor (RT) instability, applicable at all stages of the flow, is introduced. The model includes a description of nonlinear low-order mode coupling, mode growth saturation, and post-saturation mode coupling. It is shown to significantly extend the range of applicability of a previous model proposed by Haan, to cases where nonlinear mode generation is important. Using the new modal model, we study the relative importance of mode coupling at late nonlinear stages and resolve the difference between cases in which mode generation assumes a dominant role, leading to the late time inverse cascade of modes and loss of memory of initial conditions, and cases where mode generation is not important and memory of initial conditions is retained. Effects of finite density ratios (Atwood number A<1) are also included in the model and the difference between various measures of the mixing zone penetration depth for A<1 is discussed. copyright 1996 American Institute of Physics

  3. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W.; Glendinning, S.G.; Kalantar, D.H.; Watt, R.G.; Gobby, P.L.; Willi, O.; Taylor, R.J.

    1997-01-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%endash 7% over a 600-μm-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-μm and 60-μm wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-μm-thick polystyrene foam buffer layer resulted in reduced growth of the 31-μm perturbation and essentially unchanged growth for the 60-μm case when compared to targets without foam. copyright 1997 American Institute of Physics

  4. Using the self-learning intellectual models for predicting the development of the Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Nuzhnyj, A.S.; Rozanov, V.B.; Stepanov, R.V.; Shumskij, S.A.

    2005-01-01

    Stability of target compression in the laser thermonuclear synthesis is discussed. The process is determined by developing the Rayleigh-Taylor instability (RNI). A program unit for description of the RNI evolution by its initial distributions is developed. The results of statistical analysis of the RT mixing calculations are given. The analysis is carried out by means of learning base system and is substantiated on the generalization of great number of data, fulfilled by means of the neural network methods [ru

  5. Regimes of the magnetized Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Winske, D.

    1996-01-01

    Hybrid simulations with kinetic ions and massless fluid electrons are used to investigate the linear and nonlinear behavior of the magnetized Rayleigh endash Taylor instability in slab geometry with the plasma subject to a constant gravity. Three regimes are found, which are determined by the magnitude of the complex frequency ω=ω r +iγ. For |ω| i (Ω i = ion gyrofrequency), one finds the typical behavior of the usual fluid regime, namely the development of open-quote open-quote mushroom-head close-quote close-quote spikes and bubbles in the density and a strongly convoluted boundary between the plasma and magnetic field, where the initial gradient is not relaxed much. A second regime, where |ω|∼0.1Ω i , is characterized by the importance of the Hall term. Linearly, the developing flute modes are more finger-like and tilted along the interface; nonlinearly, clump-like structures form, leading to a significant broadening of the interface. The third regime is characterized by unmagnetized ion behavior, with |ω|∼Ω i . Density clumps, rather than flutes, form in the linear stage, while nonlinearly, longer-wavelength modes that resemble those in fluid regime dominate. Finite Larmor radius stabilization of short-wavelength modes is observed in each regime. copyright 1996 American Institute of Physics

  6. Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability

    International Nuclear Information System (INIS)

    Sadot, O.; Smalyuk, V.A.; Delettrez, J.A.; Sangster, T.C.; Goncharov, V.N.; Meyerhofer, D.D.; Betti, R.; Shvarts, D.

    2005-01-01

    The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation σ rms grows as α σ gt 2 , where g is the foil acceleration, t is the time, and α σ is constant. The number of bubbles evolves as N(t)∝(ωt√(g)+C) -4 and the average size evolves as (t)∝ω 2 gt 2 , where C is a constant and ω=0.83±0.1 is the measured scaled bubble-merging rate

  7. Secondary Rayleigh-Taylor Instabilities in the Reconnection Exhaust Jet: A Mechanism for Supra-Arcade Downflows in the Solar Corona

    Science.gov (United States)

    Guo, L.; Bhattacharjee, A.; Huang, Y. M.; Innes, D.

    2014-12-01

    Supra-arcade downflows (hereafter referred to as SADs) are low-emission, elongated, finger-like features usually observed in active-region coronae above post-eruption flare arcades. Observations exhibit downward moving SADs intertwined with bright, upward moving spikes. Whereas SADs are dark voids, spikes are brighter, denser structures. Although SADs have been observed for decades, the mechanism for formation of SADs remains an open issue. Using high-Lundquist-number three-dimensional resistive MHD simulations, we demonstrate that secondary Rayleigh-Taylor type instabilities develop in the downstream region of a reconnecting current sheet. The instability results in the formation of low-density coherent structures that resemble SADs, intertwined with high-density structures that appear to be spike-like. Using SDO/AIA images, we highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with siumlations suggest that secondary Rayleigh-Taylor type instabilities in the exhaust of reconnecting current sheets provide a plausible mechanism for observed SADs and spikes. Although the plasma conditions are vastly different, analogous phenomena also occur in the Earth's magnetotail during reconnection.

  8. New mitigation schemes of the ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Watari, T.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.; Ohnishi, N.

    2005-01-01

    The Rayleigh-Taylor (RT) instability with material ablation through the unstable interface is the key physics that determines success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high velocity fuel colliding with a preformed main fuel. (author)

  9. Experimental characterization of initial conditions and spatio-temporal evolution of a small Atwood number Rayleigh-Taylor mixing layer

    Energy Technology Data Exchange (ETDEWEB)

    Mueschke, N J; Andrews, M J; Schilling, O

    2005-09-26

    The initial multi-mode interfacial velocity and density perturbations present at the onset of a small Atwood number, incompressible, miscible, Rayleigh-Taylor instability-driven mixing layer have been quantified using a combination of experimental techniques. The streamwise interfacial and spanwise interfacial perturbations were measured using high-resolution thermocouples and planar laser-induced fluorescence (PLIF), respectively. The initial multi-mode streamwise velocity perturbations at the two-fluid density interface were measured using particle-image velocimetry (PIV). It was found that the measured initial conditions describe an initially anisotropic state, in which the perturbations in the streamwise and spanwise directions are independent of one another. The evolution of various fluctuating velocity and density statistics, together with velocity and density variance spectra, were measured using PIV and high-resolution thermocouple data. The evolution of the velocity and density statistics is used to investigate the early-time evolution and the onset of strongly-nonlinear, transitional dynamics within the mixing layer. The early-time evolution of the density and vertical velocity variance spectra indicate that velocity fluctuations are the dominant mechanism driving the instability development. The implications of the present experimental measurements on the initialization of Reynolds-averaged turbulent transport and mixing models and of direct and large-eddy simulations of Rayleigh-Taylor instability-induced turbulence are discussed.

  10. Simulation experiment of laser implosion

    International Nuclear Information System (INIS)

    Sakagami, Yukio; Kano, Takahide

    1980-01-01

    This paper is concerned with experimental studies on instabilities associated with implosion shock waves. Double cylindrical implosion shock tube is used. Instabilities of mode number l asymptotically equals 12 are observed in spite of initial perturbation of l asymptotically equals 100. This phenomenon is explained by Rayleigh-Taylor Instability. (author)

  11. Rayleigh-Taylor instability in compressible fluids: Final report for the period 1 October 1985-30 September 1986

    International Nuclear Information System (INIS)

    Sturtevant, B.

    1986-01-01

    The purpose of this research program is to investigate fluid dynamic instabilities and mixing initiated by the interaction of shock waves with interfaces between light and heavy gases. In particular, the nonlinear stage of shock-initiated Rayleigh-Taylor instability (also known as the Richtmeyer-Meshkov instability), the secondary instabilities (e.g., the Kelvin-Helmholtz instability) arising therefrom and the resulting mixing of the two gases are of interest. This report describes activities during the performance period 1 October 1985 to 30 September 1986

  12. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

    Science.gov (United States)

    Huntington, C. M.; Shimony, A.; Trantham, M.; Kuranz, C. C.; Shvarts, D.; Di Stefano, C. A.; Doss, F. W.; Drake, R. P.; Flippo, K. A.; Kalantar, D. H.; Klein, S. R.; Kline, J. L.; MacLaren, S. A.; Malamud, G.; Miles, A. R.; Prisbrey, S. T.; Raman, K. S.; Remington, B. A.; Robey, H. F.; Wan, W. C.; Park, H.-S.

    2018-05-01

    The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. Here, we present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].

  13. The Experimental Study of Rayleigh-Taylor Instability using a Linear Induction Motor Accelerator

    Science.gov (United States)

    Yamashita, Nicholas; Jacobs, Jeffrey

    2009-11-01

    The experiments to be presented utilize an incompressible system of two stratified miscible liquids of different densities that are accelerated in order to produce the Rayleigh-Taylor instability. Three liquid combinations are used: isopropyl alcohol with water, a calcium nitrate solution or a lithium polytungstate solution, giving Atwood numbers of 0.11, 0.22 and 0.57, respectively. The acceleration required to drive the instability is produced by two high-speed linear induction motors mounted to an 8 m tall drop tower. The motors are mounted in parallel and have an effective acceleration length of 1.7 m and are each capable of producing 15 kN of thrust. The liquid system is contained within a square acrylic tank with inside dimensions 76 x76x184 mm. The tank is mounted to an aluminum plate, which is driven by the motors to create constant accelerations in the range of 1-20 g's, though the potential exists for higher accelerations. Also attached to the plate are a high-speed camera and an LED backlight to provide continuous video of the instability. In addition, an accelerometer is used to provide acceleration measurements during each experiment. Experimental image sequences will be presented which show the development of a random three-dimensional instability from an unforced initial perturbation. Measurements of the mixing zone width will be compared with traditional growth models.

  14. Rayleigh-Taylor growth measurements of three-dimensional modulations in a nonlinear regime

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Sadot, O.; Betti, R.; Goncharov, V.N.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Shvarts, D.

    2006-01-01

    An understanding of the nonlinear evolution of Rayleigh-Taylor (RT) instability is essential in inertial confinement fusion and astrophysics. The nonlinear RT growth of three-dimensional (3-D) broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial 3-D target modulations were seeded by laser nonuniformities and subsequently amplified by the RT instability. The measured modulation Fourier spectra and nonlinear growth velocities are in excellent agreement with those predicted by Haan's model [S. Haan, Phys. Rev. A 39, 5812 (1989)]. These spectra and growth velocities are insensitive to initial conditions. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions, in agreement with the Alon-Oron-Shvarts theoretical predictions [D. Oron et al. Phys. Plasmas 8, 2883 (2001)

  15. Linear theory of the Rayleigh-Taylor instability in the equatorial ionsophere

    International Nuclear Information System (INIS)

    Russel, D.A.; Ott, E.

    1979-01-01

    We present a liner theory of the Rayleigh-Taylor instability in the equatorial ionosphere. For a purely exponential density profile, we find that no unstable eigenmode solutions exist. For a particular model ionosphere with an F peak, unstable eigenmode solutions exist only for sufficiently small horizontal wave numbers. In the later case, purely exponential growth at a rate identical to that for the sharp boundary instability is found. To clarify the situation in the case that eigenmodes do not exist, we solve the initial value problem for the linearized ion equation of motion in the long time asymptotic limit. Ion inertia and ion-neutral collisions are included. Assuming straight magnetic field lines, we find that when eigenmodes do not exist the growth of the response to an impulse is slower than exponential viz, t=/sup -1/2/ exp (γ/sup t/) below the F peak and t/sup -3/2/ exp(γ/sup t/) above the peak; and we determine γ

  16. Observation of the bremsstrahlung generation in the process of the Rayleigh endash Taylor instability development at gas puff implosion

    International Nuclear Information System (INIS)

    Baksht, R.B.; Fedunin, A.V.; Labetsky, A.Y.; Rousskich, A.G.; Shishlov, A.V.

    1997-01-01

    The electron magnetohydrodynamic model predicts the appearance of anode endash cathode voltage in the process of Rayleigh endash Taylor instability development during gas puff implosions. The appearance of the anode endash cathode voltage should be accompanied by the accelerated electron flow and the generation of the bremsstrahlung radiation. Experiments with neon and krypton gas puffs were performed on the GIT-4 [S. P. Bugaev, et al., Plasma Sci. 18, 115 (1990)] generator (1.6 MA, 120 ns) to observe the bremsstrahlung radiation during the gas puff implosion. Two spikes of the bremsstrahlung radiation were observed in the experiments. The first spike is connected with the gas breakdown; the second one is connected with the final stage of the implosion. The development of the RT instabilities does not initiate the bremsstrahlung radiation, therefore, the absence of anode endash cathode voltage is demonstrated. copyright 1997 American Institute of Physics

  17. Development of Richtmyer-Meshkov and Rayleigh-Taylor instability in the presence of magnetic field

    International Nuclear Information System (INIS)

    Khan, Manoranjan; Mandal, Labakanta; Banerjee, Rahul; Roy, Sourav; Gupta, M.R.

    2011-01-01

    Fluid instabilities like Rayleigh-Taylor (R-T), Richtmyer-Meshkov (R-M) and Kelvin-Helmholtz (K-H) instability can occur in a wide range of physical phenomenon from astrophysical context to Inertial Confinement Fusion (ICF). Using Layzer's potential flow model, we derive the analytical expressions of growth rate of bubble and spike for ideal magnetized fluid in R-T and R-M cases. In the presence of transverse magnetic field, the R-M and R-T instabilities are suppressed or enhanced depending on the direction of magnetic pressure and hydrodynamic pressure. Again the interface of two fluid may oscillate if both the fluids are conducting. However, it is observed that the magnetic field has no effect in linear case.

  18. The method of characteristic for nonlinear generalized Rayleigh-Taylor instability associated with equatorial spread F: An analytical approach

    International Nuclear Information System (INIS)

    Sekar, R.; Kherani, E.A.

    2002-01-01

    An analytical method is presented for the nonlinear generalized Rayleigh-Taylor instability occurring over the night-time equatorial F region of the terrestrial ionosphere. The time and spatial domain characteristic methods are adopted to describe the evolutions of plasma density and particle flux, respectively. The analysis efficiently describes the known nonlinear features of instability as suggested by many numerical simulations. The existence of shock or steepened structures and their dynamics are discussed by studying the evolution of the characteristics

  19. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  20. Growth rates of the ablative Rayleigh endash Taylor instability in inertial confinement fusion

    International Nuclear Information System (INIS)

    Betti, R.; Goncharov, V.N.; McCrory, R.L.; Verdon, C.P.

    1998-01-01

    A simple procedure is developed to determine the Froude number Fr, the effective power index for thermal conduction ν, the ablation-front thickness L 0 , the ablation velocity V a , and the acceleration g of laser-accelerated ablation fronts. These parameters are determined by fitting the density and pressure profiles obtained from one-dimensional numerical simulations with the analytic isobaric profiles of Kull and Anisimov [Phys. Fluids 29, 2067 (1986)]. These quantities are then used to calculate the growth rate of the ablative Rayleigh endash Taylor instability using the theory developed by Goncharov et al. [Phys. Plasmas 3, 4665 (1996)]. The complicated expression of the growth rate (valid for arbitrary Froude numbers) derived by Goncharov et al. is simplified by using reasonably accurate fitting formulas. copyright 1998 American Institute of Physics

  1. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    Science.gov (United States)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  2. GRAVITATIONALLY UNSTABLE FLAMES: RAYLEIGH-TAYLOR STRETCHING VERSUS TURBULENT WRINKLING

    International Nuclear Information System (INIS)

    Hicks, E. P.; Rosner, R.

    2013-01-01

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.

  3. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    Energy Technology Data Exchange (ETDEWEB)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  4. A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: a case study on crustal delamination in the early Earth

    Science.gov (United States)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.

  5. A variable-coefficient unstable nonlinear Schroedinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects

    International Nuclear Information System (INIS)

    Gao Yitian; Tian Bo

    2003-01-01

    A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing

  6. Two-dimensional simulation of the hydromagnetic Rayleigh-Taylor instability in an imploding foil plasma

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.

    1978-01-01

    Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness

  7. The non-linear growth of the magnetic Rayleigh-Taylor instability

    Science.gov (United States)

    Carlyle, Jack; Hillier, Andrew

    2017-09-01

    This work examines the effect of the embedded magnetic field strength on the non-linear development of the magnetic Rayleigh-Taylor instability (RTI) (with a field-aligned interface) in an ideal gas close to the incompressible limit in three dimensions. Numerical experiments are conducted in a domain sufficiently large so as to allow the predicted critical modes to develop in a physically realistic manner. The ratio between gravity, which drives the instability in this case (as well as in several of the corresponding observations), and magnetic field strength is taken up to a ratio which accurately reflects that of observed astrophysical plasma, in order to allow comparison between the results of the simulations and the observational data which served as inspiration for this work. This study finds reduced non-linear growth of the rising bubbles of the RTI for stronger magnetic fields, and that this is directly due to the change in magnetic field strength, rather than the indirect effect of altering characteristic length scales with respect to domain size. By examining the growth of the falling spikes, the growth rate appears to be enhanced for the strongest magnetic field strengths, suggesting that rather than affecting the development of the system as a whole, increased magnetic field strengths in fact introduce an asymmetry to the system. Further investigation of this effect also revealed that the greater this asymmetry, the less efficiently the gravitational energy is released. By better understanding the under-studied regime of such a major phenomenon in astrophysics, deeper explanations for observations may be sought, and this work illustrates that the strength of magnetic fields in astrophysical plasmas influences observed RTI in subtle and complex ways.

  8. The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas

    International Nuclear Information System (INIS)

    Lu, H. L.; Qiu, X. M.

    2011-01-01

    In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.

  9. Bubble velocity in the nonlinear Rayleigh-Taylor instability at a deflagration front

    International Nuclear Information System (INIS)

    Modestov, Mikhail; Bychkov, Vitaly; Betti, Riccardo; Eriksson, Lars-Erik

    2008-01-01

    The Rayleigh-Taylor instability at a deflagration front is studied systematically using extensive direct numerical simulations. It is shown that, for a sufficiently large gravitational field, the effects of bubble rising dominate the deflagration dynamics. It is demonstrated both analytically and numerically that the deflagration speed is described asymptotically by the Layzer theory in the limit of large acceleration. In the opposite limit of small and zero gravitational field, intrinsic properties of the deflagration front become important. In that case, the deflagration speed is determined by the velocity of a planar front and by the Darrieus-Landau instability. Because of these effects, the deflagration speed is larger than predicted by the Layzer theory. An analytical formula for the deflagration speed is suggested, which matches two asymptotic limits of large and small acceleration. The formula is in good agreement with the numerical data in a wide range of Froude numbers. The present results are also in agreement with previous numerical simulations on this problem

  10. Contribution to modelization and simulation of the ablative-like Rayleigh-Taylor instabilities for ICF; Contribution a la modelisation et a la simulation des instabilites de type Rayleigh-Taylor ablatif pour la FCI

    Energy Technology Data Exchange (ETDEWEB)

    Egly, H

    2007-10-15

    This thesis deals with the dynamics of accelerated ablative front spreading in Inertial Confinement Fusion experiments. ICF is designed for the implosion of a deuterium-tritium spherical target. The outer shell, the ablator, is irradiated providing a high level pressure inside the target. During this first stage, the ablation front propagating inwards is perturbed by hydrodynamics instabilities, which can prevent the fusion reaction in the decelerated stage. We propose here a study on Rayleigh-Taylor instabilities during ablation process, in the two dimensional case. In order to obtain a numerical solution, we perform an asymptotic analysis in the limit of a high temperature ratio, between the remaining cold ablator and the hot ablated plasma. This study is divided in two steps. First, the thermo-diffusive part of the set of equations is approximated by a Hele-Shaw model, which is then perturbed by the hydrodynamics part. Using a vortex method, we have to solve the advection of a vortical sheet moving with the ablation front. We compute the numerical solution on an Eulerian mesh coupled with a marker method. The thermal part is computed by implementing the Fat Boundary Method, recently developed. The hydrodynamic part is obtained from a Finite Volume scheme. (author)

  11. Rayleigh-Taylor instability of two superposed conducting Walters B' elastico-viscous fluids in hydromagnetics

    International Nuclear Information System (INIS)

    Sharma, R.C.; Kumar, Pardeep

    1998-01-01

    The Rayleigh-Taylor instability of two superposed electrically conducting Walters elastico-viscous fluids (Model B') of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscoelastic fluids of equal kinematic viscosities and equal kinematic viscoelasticities. For the stable configuration as in hydrodynamic case, the system is found to be stable or unstable for the wave-number range k (2v') -12 depending on kinematic viscoelasticity v'. For the unstable configuration, the magnetic field has got stabilizing effect and completely stabilizes certain wave-number range which was always unstable in the absence of magnetic field. The behaviour of growth rates with respect kinematic viscosity and kinematic viscoelasticity parameters are examined analytically. (author)

  12. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.

    2012-01-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the “feedout” of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  13. Prominence Bubble Shear Flows and the Coupled Kelvin-Helmholtz — Rayleigh-Taylor Instability

    Science.gov (United States)

    Berger, Thomas; Hillier, Andrew

    2017-08-01

    Prominence bubbles are large arched structures that rise from below into quiescent prominences, often growing to heights on the order of 10 Mm before going unstable and generating plume upflows. While there is general agreement that emerging flux below pre-existing prominences causes the structures, there is lack of agreement on the nature of the bubbles and the cause of the instability flows. One hypothesis is that the bubbles contain coronal temperature plasma and rise into the prominence above due to both magnetic and thermal buoyancy, eventually breaking down via a magnetic Rayleigh-Taylor (RT) instability to release hot plasma and magnetic flux and helicity into the overlying coronal flux rope. Another posits that the bubbles are actually just “arcades” in the prominence indicating a magnetic separator line between the bipole and the prominence fields with the observed upflows and downflows caused by reconnection along the separator. We analyze Hinode/SOT, SDO/AIA, and IRIS observations of prominence bubbles, focusing on characteristics of the bubble boundary layers that may discriminate between the two hypotheses. We find speeds on the order of 10 km/s in prominence plasma downflows and lateral shear flows along the bubble boundary. Inflows to the boundary gradually increase the thickness and brightness of the layer until plasma drains from there, apparently around the dome-like bubble domain. In one case, shear flow across the bubble boundary develops Kelvin-Helmholtz (KH) vortices that we use to infer flow speeds in the low-density bubble on the order of 100 km/sec. IRIS spectra indicate that plasma flows on the bubble boundary at transition region temperatures achieve Doppler speeds on the order of 50 km/s, consistent with this inference. Combined magnetic KH-RT instability analysis leads to flux density estimates of 10 G with a field angle of 30° to the prominence, consistent with vector magnetic field measurements. In contrast, we find no evidence

  14. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics

  15. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bradley, D. K. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Verdon, C. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.

  16. Preliminary report of numerical simulatons of intermediate wavelength collisional Rayleigh-Taylor instability in equatorial spread F

    International Nuclear Information System (INIS)

    Keskinen, M.J.; Ossakow, S.L.; Chaturvedi, P.K.

    1980-01-01

    Computer simulations of the intermediate wavelength (100--1000 m) collisional Rayleigh-Taylor instability in local unstable regions of the postsunset bottomside (300 km) equatorial F region ionosphere have been performed. For ambient electron density gradient scale lengths L=5, 10, 15 km we find that the linearly unstable horizontal modes saturate by nonlinear generation of linearly damped vertical modes with the result that in the nonlinear regime, power laws are observed in the horizontal P(k/sub x/) proportional k/sub x//sup -n/ and vertical P(k/sub y/) proportional k/sub y//sup -n/ one-dimensional power spectra with n=2--2.5. These results are consistent both with in situ experimental data and with theoretical prediction

  17. Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability

    Science.gov (United States)

    Baksht, R. B.; Oreshkin, V. I.; Rousskikh, A. G.; Zhigalin, A. S.

    2018-03-01

    At present Z-pinch has evolved into a powerful plasma source of soft x-ray. This paper considers the energy balance in a radiating metallic gas-puff Z pinch. In this type of Z pinch, a power-law density distribution is realized, promoting suppression of Rayleigh-Taylor (RT) instabilities that occur in the pinch plasma during compression. The energy coupled into the pinch plasma, is determined as the difference between the total energy delivered to the load from the generator and the magnetic energy of the load inductance. A calibrated voltage divider and a Rogowski coil were used to determine the coupled energy and the load inductance. Time-gated optical imaging of the pinch plasma showed its stable compression up to the stagnation phase. The pinch implosion was simulated using a 1D two-temperature radiative magnetohydrodynamic code. Comparison of the experimental and simulation results has shown that the simulation adequately describes the pinch dynamics for conditions in which RT instability is suppressed. It has been found that the proportion of the Ohmic heating in the energy balance of a Z pinch with suppressed RT instability is determined by Spitzer resistance and makes no more than ten percent.

  18. Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Gardiner, Thomas Anthony

    2010-01-01

    This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.

  19. Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F

    International Nuclear Information System (INIS)

    Jain, R.K.; Das, A.C.

    1978-01-01

    The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)

  20. Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Nishihara, K.; Rosner, R.

    2006-01-01

    We report nonlinear solutions for a system of conservation laws describing the dynamics of the large-scale coherent structure of bubbles and spikes in the Rayleigh-Taylor instability (RTI) for fluids with a finite density ratio. Three-dimensional flows are considered with general type of symmetry in the plane normal to the direction of gravity. The nonlocal properties of the interface evolution are accounted for on the basis of group theory. It is shown that isotropic coherent structures are stable. For anisotropic structures, secondary instabilities develop with the growth rate determined by the density ratio. For stable structures, the curvature and velocity of the nonlinear bubble have nontrivial dependencies on the density ratio, yet their mutual dependence on one another has an invariant form independent of the density ratio. The process of bubble merge is not considered. Based on the obtained results we argue that the large-scale coherent dynamics in RTI has a multiscale character and is governed by two length scales: the period of the coherent structure and the bubble (spike) position

  1. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to ICF

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Glendinning, S.G.; Haan, S.W.; Hammel, B.A.; Lindl, J.D.; Munro, D.; Remington, B.A.; Weber, S.V.; Knauer, J.P.; Verdon, C.P.

    1993-12-01

    It has been recognized for many years that the most significant limitation of ICF is the Rayleigh-Taylor (R-T) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity v A reduces the growth rate to √ 1+kL / kg -βkv A with β from 2-3. In recent years experiments using both x-ray drive and smoothed laser drive to accelerate foils have confirmed our understanding of the R-T instability. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x-ray drive large stabilization is evident After some growth, the instability enters the non-linear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentrope are being investigated. For direct drive, high spatial frequencies are imprinted from the laser beam and amplified by the R-T instability. Modeling shows an understanding of this ''laser imprinting.''

  2. Formation of large-scale structures with sharp density gradient through Rayleigh-Taylor growth in a two-dimensional slab under the two-fluid and finite Larmor radius effects

    International Nuclear Information System (INIS)

    Goto, R.; Hatori, T.; Miura, H.; Ito, A.; Sato, M.

    2015-01-01

    Two-fluid and the finite Larmor effects on linear and nonlinear growth of the Rayleigh-Taylor instability in a two-dimensional slab are studied numerically with special attention to high-wave-number dynamics and nonlinear structure formation at a low β-value. The two effects stabilize the unstable high wave number modes for a certain range of the β-value. In nonlinear simulations, the absence of the high wave number modes in the linear stage leads to the formation of the density field structure much larger than that in the single-fluid magnetohydrodynamic simulation, together with a sharp density gradient as well as a large velocity difference. The formation of the sharp velocity difference leads to a subsequent Kelvin-Helmholtz-type instability only when both the two-fluid and finite Larmor radius terms are incorporated, whereas it is not observed otherwise. It is shown that the emergence of the secondary instability can modify the outline of the turbulent structures associated with the primary Rayleigh-Taylor instability

  3. Stabilization of the Rayleigh - Taylor instability with convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.

    1992-01-01

    In the framework of WKB approximation the problem is studied of stabilizing the Rayleigh - Taylor instability with unhomogeneous convective flow, developing in the ablation zone during the ablative acceleration of the laser target plasma. The eigenvalue (instability growth rates) problem is reduced to solving an algebraic equation with the coefficients depending on the unperturbed profile structure of hydrodynamic variables. For the important case of the incompressible plasma subsonic flow, the instability growth rates is shown to vanish at k=k 0 =max(2(g|∇ ln p|) 1/2 /ν). The consistency condition of the model consists in the smallness of the local Froude number in the region of instability development. However, as seen from the comparison with the numerical calculations, the model is well appicable also for the case of the sufficiently abrupt density gradient provided the Froude number is of order of unity

  4. Investigation of magnetic field effects on the mitigation of the magnetohydrodynamic Rayleigh-Taylor instability in fast z-pinch implosions

    International Nuclear Information System (INIS)

    Douglas, M.; Deeney, C.; Roderick, N.

    1999-01-01

    Numerical simulations have been carried out to investigate the role that magnetic field diffusion and ohmic heating have on the magnetohydrodynamic Rayleigh-Taylor (RT) development in fast z-pinch implosions. Previous work has indicated these terms can strongly influence the evolution of RT growth, leading to a reduction in RT amplitude, and an improvement in pinch performance. Indeed, Roderick et al have suggested that magnetic smoothing is an important mechanism in linear RT growth. To examine this in more detail, simulations are presented for a 1.4 mg, 25.0 mm diameter tungsten wire array imploded in the Saturn long pulse mode. The 130 ns implosion time of this calculation should enhance any mitigating effects that may be attributed to nonideal MHD. Calculations were performed using the 2D MHD code Mach2. The wire array was approximated by a right cylindrical slab of 1.0 mm width. Both a random density perturbation and single mode density perturbations were incorporated to initiate the instability. In the former case, a 5% cell-to-cell random perturbation was used. This allowed a range of modes to be initially present. In the single mode case, a 1.25 mm wavelength, on the order of the shell thickness, was defined. To isolate the contributions due to field diffusion, joule heating, and equation of state, simulations were run with and without ohmic heating using both constant and material-dependent spitzer resistivities. This analysis was then extended to look at the effect of such parameters on the nested shell load configuration. Detailed analysis of the simulations will be presented

  5. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.

    1981-08-01

    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  6. Stabilization of the Rayleigh-Taylor instability by convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bul'ko, A.B.; Liberman, M.A.

    1992-01-01

    The authors use the WKB-approximation to treat the problem of the stabilization by an inhomogeneous convective current of the Rayleigh-Taylor instability developing in the ablation zone when the plasma of laser targets is accelerated by ablation. The problem of the eigenvalues - the instability growth rates - is reduced to the solution of an algebraic equation with coefficients which depend on the structure of the unperturbed profiles of the hydrodynamic variables. They show for the practically important case of subsonic flow of an incompressible plasma that the instability growth rate vanishes for k = k o = max[2(g|∇lnρ|) 1/2 /v]. The condition for the self-consistency of the model is that the local Froude number be small in the region where the instability develops; however, comparison with numerical calculations shows that the model is also applicable in the case of rather steep density gradients when the Froude number is of order unity. 32 refs., 2 figs

  7. Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes

    Science.gov (United States)

    Manuel, Mario

    2012-10-01

    Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

  8. A numerical study of the nonlinear Rayleigh-Taylor instability, with application of accreting X-ray sources

    International Nuclear Information System (INIS)

    Wang, Y.M.; Nepveu, M.

    1983-01-01

    With a view toward applications to accreting X-ray sources, the Rayleigh-Taylor instability is followed numerically, using a 2-D magnetohydrodynamic code. The presence of a uniform magnetic field in the underlying medium is allowed for. The infalling plasma is found to develop elongated, trailing loops; at least when the initial perturbation is highly symmetric, a narrow neck also forms through the action of the surrounding ram pressure. It is suggested that the swirling motion present in the nonlinear phase could produce some effective large-scale mixing between accreting plasma and the magnetospheric field of a neutron star. Another potentially significant tendency is for the curvature of the infalling plasma pocket to sharpen as the instability develops: magnetic tension may therefore become increasingly effective as a stabilizing influence. (orig.)

  9. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  10. Detailed Measurements of Rayleigh-Taylor Mixing at Large and Small Atwood Numbers

    International Nuclear Information System (INIS)

    Malcolm, J.; Andrews, Ph.D.

    2004-01-01

    This project has two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. Also, studies of multi-layer mixing with the existing water channel facility. Over the last twelve (12) months there has been excellent progress, detailed in this report, with both tasks. As of December 10, 2004, the air/helium facility is now complete and extensive testing and validation of diagnostics has been performed. Currently experiments with air/helium up to Atwood numbers of 0.25 (the maximum is 0.75, but the highest Reynolds numbers are at 0.25) are being performed. The progress matches the project plan, as does the budget, and we expect this to continue for 2005. With interest expressed from LLNL we have continued with initial condition studies using the water channel. This work has also progressed well, with one of the graduate Research Assistants (Mr. Nick Mueschke) visiting LLNL the past two summers to work with Dr. O. Schilling. Several journal papers are in preparation that describe the work. Two MSc.'s have been completed (Mr. Nick Mueschke, and Mr. Wayne Kraft, 12/1/03). Nick and Wayne are both pursuing Ph.D.s' funded by this DOE Alliances project. Presently three (3) Ph.D. graduate Research Assistants are supported on the project, and two (2) undergraduate Research Assistants. During the year two (2) journal papers and two (2) conference papers have been published, ten (10) presentations made at conferences, and three (3) invited presentations

  11. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Malcolm J [Los Alamos National Laboratory

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  12. Suppression of the Rayleigh Taylor instability and its implication for the impact ignition

    Science.gov (United States)

    Azechi, H.; Shiraga, H.; Nakai, M.; Shigemori, K.; Fujioka, S.; Sakaiya, T.; Tamari, Y.; Ohtani, K.; Murakami, M.; Sunahara, A.; Nagatomo, H.; Nishihara, K.; Miyanaga, N.; Izawa, Y.

    2004-12-01

    The Rayleigh Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel.

  13. Suppression of the Rayleigh-Taylor instability and its implication for the impact ignition

    International Nuclear Information System (INIS)

    Azechi, H; Shiraga, H; Nakai, M; Shigemori, K; Fujioka, S; Sakaiya, T; Tamari, Y; Ohtani, K; Murakami, M; Sunahara, A; Nagatomo, H; Nishihara, K; Miyanaga, N; Izawa, Y

    2004-01-01

    The Rayleigh-Taylor (RT) instability with material ablation through an unstable interface is the key physics that determines the success or failure of inertial fusion energy (IFE) generation, as the RT instability potentially quenches ignition and burn by disintegrating the IFE target. We present two suppression schemes of the RT growth without significant degradation of the target density. The first scheme is to generate a double ablation structure in high-Z doped plastic targets. In addition to the electron ablation surface, a new ablation surface is created by x-ray radiation from the high-Z ions. Contrary to the previous thought, the electron ablation surface is almost completely stabilized by extremely high flow velocity. On the other hand, the RT instability on the radiative ablation surface is significantly moderated. The second is to enhance the nonlocal nature of the electron heat transport by illuminating the target with long wavelength laser light, whereas the high ablation pressure is generated by irradiating with short wavelength laser light. The significant suppression of the RT instability may increase the possibility of impact ignition which uses a high-velocity fuel colliding with a preformed main fuel

  14. Influence of real gas effects on ablative Rayleigh-Taylor instability in plastic target

    International Nuclear Information System (INIS)

    Fan Zhengfeng; Xue Chuang; Ye Wenhua; Zhu Shaoping; Wang Lifeng

    2011-01-01

    In this research, real gas effects on ablative Rayleigh-Taylor instability are investigated in a plastic target. The real gas effects are included by adopting the quotidian equation of state (QEOS) model. Theoretical solutions for both QEOS and ideal gas EOS are obtained and compared, based on a same set of ablation parameters. It is found that when real gas effects are considered, the density gradient becomes less steep than that of ideal gas assumption, even though this cannot be used directly to draw a stabilization conclusion for the real gas effects. Further analysis shows that when real gas effects are considered, lower ∂p/∂T in the dense shell region has the effect of stabilization, whereas the dependence of the internal energy on the density, lower specific heat (at constant volume) in the dense shell region, and higher specific heat in the low-density ablation region contribute to stronger destabilization effects. Overall, when real gas effects are considered, the destabilization effects are dominant for long wavelength perturbations, and the growth rates become much higher than the results of ideal gas assumption. In our specific case, the maximum relative error reaches 18%.

  15. Nonlinear saturated states of the magnetic-curvature-driven Rayleigh-Taylor instability in three dimensions

    International Nuclear Information System (INIS)

    Das, Amita; Sen, Abhijit; Kaw, Predhiman; Benkadda, S.; Beyer, Peter

    2005-01-01

    Three-dimensional electromagnetic fluid simulations of the magnetic-curvature-driven Rayleigh-Taylor instability are presented. Issues related to the existence of nonlinear saturated states and the nature of the temporal evolution to such states from random initial conditions are addressed. It is found that nonlinear saturated states arising from generation of zonal shear flows continue to exist in certain parametric domains but their spectrum and spatial characteristics have important differences from earlier two-dimensional results reported in Phys. Plasmas 4, 1018 (1997) and Phys. Plasmas 8, 5104 (2001). In particular, the three-dimensional nonlinear states possess a significant power level in short scales and the spatial structures of the potential and density fluctuations appear not to develop any functional correlations. Electromagnetic effects are found to inhibit the formation of zonal flows and thereby to considerably restrict the parametric domain of nonlinear stabilization. The role of finite k parallel and the contribution of the unstable drift wave branch are also discussed and delineated through a number of simulation studies carried out in special simplified limits

  16. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-01-01

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  17. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Ma, W. J., E-mail: wenjun.ma@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Gu, Y. Q. [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yan, X. Q., E-mail: x.yan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-08-15

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  18. Recent ACE 4 Z-pinch experiments: Long implosion time argon loads, uniform fill versus annular shell distributions and the Rayleigh-Taylor instability problem

    International Nuclear Information System (INIS)

    Coleman, P.; Rauch, J.; Rix, W.; Thompson, J.; Wilson, R.

    1997-01-01

    Hammer (1996) and Velikovich (1996) have discussed ways to mitigate the growth of the magneto-Rayleigh-Taylor (MRT) instability in z-pinch (PRS) implosions. They predict that initial mass distributions more complex than a simple annular shell will reduce instability development. Sanford (1996) reported experimental data showing a benefit for a uniform mass distribution compared to a shell; those tests used ''conventional'' load radii of 2.25 and 1.25 cm respectively, and implosion times under 100 ns. However, the instability problem is expected to grow exponentially as the implosion time, or alternatively the initial radius, increases. Thus we made a comparison of a uniform fill load with a shell but at larger radii, 3.6 and 2.5 cm respectively, and at implosion times well above 100 ns. We see nearly a factor of 10X improvement in peak K-shell power and 2X increase in K-shell yield for the uniform mass load. Hence it appears that suitable tailoring of the imploding mass distribution can significantly limit the instability growth

  19. An Experimental Study of the Turbulent Development of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

    International Nuclear Information System (INIS)

    Jacobs, Jeffrey W.

    2006-01-01

    The objective of this three-year research program is to study the development of turbulence in Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. Incompressible RT and RM instabilities are studied in an apparatus in which a box containing two unequal density liquids is accelerated on a linear rail system either impulsively (by bouncing it off of a spring) to produce RM instability, or at a constant downward rate (using a weight and pulley system) to produce RT instability. These experiments are distinguished from others in the field in that they are initialized with well defined, measurable initial perturbations and are well visualized utilizing planar laser induced fluorescence imaging. New experiments are proposed aimed at generating fully turbulent RM and RT instabilities and quantifying the turbulent development once fully turbulent flows are achieved. The proposed experiments focus on the development and the subsequent application of techniques to accelerate the production of fully turbulent instabilities and the quantification of the turbulent instabilities once they are achieved. The proposed tasks include: the development of RM and RT experiments utilizing fluid combinations having larger density ratios than those previously used; the development of RM experiments with larger acceleration impulse than that previously used; and the investigation of the multi-mode and three-dimensional instabilities by the development of new techniques for generating short wavelength initial perturbations. Progress towards fulfilling these goals is currently well on track. Recent results have been obtained on experiments that utilize Faraday resonance for the production of a nearly single-mode three-dimensional perturbation with a short enough wavelength to yield a self-similar instability at late-times. Last year we reported that we can reliably generate Faraday internal waves on the interface in our experimental apparatus by oscillating the tank containing the

  20. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  1. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    Science.gov (United States)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  2. Numerical investigation on the effects of acceleration reversal times in Rayleigh-Taylor Instability with multiple reversals

    Science.gov (United States)

    Farley, Zachary; Aslangil, Denis; Banerjee, Arindam; Lawrie, Andrew G. W.

    2017-11-01

    An implicit large eddy simulation (ILES) code, MOBILE, is used to explore the growth rate of the mixing layer width of the acceleration-driven Rayleigh-Taylor instability (RTI) under variable acceleration histories. The sets of computations performed consist of a series of accel-decel-accel (ADA) cases in addition to baseline constant acceleration and accel-decel (AD) cases. The ADA cases are a series of varied times for the second acceleration reversal (t2) and show drastic differences in the growth rates. Upon the deceleration phase, the kinetic energy of the flow is shifted into internal wavelike patterns. These waves are evidenced by the examined differences in growth rate in the second acceleration phase for the set of ADA cases. Here, we investigate global parameters that include mixing width, growth rates and the anisotropy tensor for the kinetic energy to better understand the behavior of the growth during the re-acceleration period. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  3. Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density

    Science.gov (United States)

    Yu, C. X.; Xue, C.; Liu, J.; Hu, X. Y.; Liu, Y. Y.; Ye, W. H.; Wang, L. F.; Wu, J. F.; Fan, Z. F.

    2018-01-01

    In this article, multiple eigen-systems including linear growth rates and eigen-functions have been discovered for the Rayleigh-Taylor instability (RTI) by numerically solving the Sturm-Liouville eigen-value problem in the case of two-dimensional plane geometry. The system called the first mode has the maximal linear growth rate and is just extensively studied in literature. Higher modes have smaller eigen-values, but possess multi-peak eigen-functions which bring on multiple pairs of vortices in the vorticity field. A general fitting expression for the first four eigen-modes is presented. Direct numerical simulations show that high modes lead to appearances of multi-layered spike-bubble pairs, and lots of secondary spikes and bubbles are also generated due to the interactions between internal spikes and bubbles. The present work has potential applications in many research and engineering areas, e.g., in reducing the RTI growth during capsule implosions in inertial confinement fusion.

  4. Influence of gradual density transition and nonlinear saturation on Rayleigh-Taylor instability growth

    International Nuclear Information System (INIS)

    Jacobs, H.

    1984-08-01

    Linear theory of Rayleigh-Taylor instability growth at a density profile which varies exponentially between regions of constant density is discussed in detail. The exact theory provides an approximate but conservative simple formula for the growth constant and it shows that a hitherto widely used theory erroneously underestimates the growth constant. A simple but effective ''synthetical model'' of nonlinear bubble growth is obtained from a synthesis of linear theory and constant terminal bubble speed. It is applied to pusher shell break-up in an inertial confinement fusion pellet to determine the maximum allowable initial perturbations and the most dangerous wavelength. In a situation typical of heavy ion drivers it is found that the allowable initial perturbations are increased by a few orders of magnitude by the gradual density transition and another order of magnitude by nonlinear saturation of the bubble speed. The gradual density transition also shifts the most dangerous wavelength from about once to about four times the minimum pusher shell thickness. The following topics are treated briefly: Reasons conflicting with use of the synthetical model to decide whether the pusher shell in a certain simulation will be broken up; other nonlinear theories available in the literature; further realistic effects that might aggravate instability growth. (orig.) [de

  5. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to Inertial Confinement Region

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Glendinning, S.G.; Haan, S.W.

    1993-12-01

    It has been recognized for many year's that the most significant limitation of ICF is the Rayleigh-Taylor (R-T) instability. It limits the distance an ablatively driven shell can be moved to several times its initial thickness. Fortunately material flow through the unstable region at velocity v A reduces the growth rate to √ 1+kL / kg -βkv A with β from 2-3. In recent years experiments using both x-ray drive and smoothed laser drive to accelerate foils have confirmed our understanding of the ablative R-T instability in planar geometry. The growth of small initial modulations on the foils is measured for growth factors up to 60 for direct drive and 80 for indirect drive. For x-ray drive large stabilization is evident. After some growth, the instability enters the non-linear phase when mode coupling and saturation are also seen and compare well with modeling. Normalized growth rates for direct drive are measured to be higher, but strategies for reduction by raising the isentrope are being investigated. For direct drive, high spatial frequencies are imprinted from the laser beam and amplified by the R-T instability. Modeling shows an understanding of this ''laser imprinting.''

  6. Computational investigation of single mode vs multimode Rayleigh endash Taylor seeding in Z-pinch implosions

    International Nuclear Information System (INIS)

    Douglas, M.R.; Deeney, C.; Roderick, N.F.

    1998-01-01

    A series of two-dimensional magnetohydrodynamic calculations have been carried out to investigate single and multimode growth and mode coupling for magnetically-driven Rayleigh endash Taylor instabilities in Z pinches. Wavelengths ranging from 5.0 mm down to 1.25 mm were considered. Such wavelengths are comparable to those observed at stagnation using a random density open-quotes seedingclose quotes method. The calculations show that wavelengths resolved by less than 10 cells exhibit an artificial decrease in initial Fourier spectrum amplitudes and a reduction in the corresponding amplitude growth. Single mode evolution exhibits linear exponential growth and the development of higher harmonics as the mode transitions into the nonlinear phase. The mode growth continues to exponentiate but at a slower rate than determined by linear hydrodynamic theory. In the two and three mode case, there is clear evidence of mode coupling and inverse cascade. In addition, distinct modal patterns are observed late in the implosion, resulting from finite shell thickness and magnetic field effects. copyright 1998 American Institute of Physics. thinsp

  7. Saturation and postsaturation phenomena of Rayleigh-Taylor instability with adjacent modes

    International Nuclear Information System (INIS)

    Ikegawa, Tadashi; Nishihara, Katsunobu

    2003-01-01

    A weakly nonlinear theory has been developed for the classical Rayleigh-Taylor instability with a finite bandwidth taken into account self-consistently. The theory includes up to third order nonlinearity, which results in the saturation of linear growth and determines subsequent weakly nonlinear growth. Analytical results are shown to agree fairly well with two-dimensional hydrodynamic simulations. There are generally many local peaks of a perturbation with a finite bandwidth due to the interference of modes. Since a local amplitude is determined from phases among the modes as well as the bandwidth, we have investigated an onset of the linear growth saturation and the subsequent weakly nonlinear growth for different bandwidths and phases. It is shown that the saturation of the linear growth occurs locally, i.e., each of the local maximum amplitudes (LMAs) grows exponentially until it reaches almost the same saturation amplitude. In the random phase case, the root mean square amplitude thus saturates with almost the same amplitude as the LMA, after most of the LMAs have saturated. The saturation amplitude of the LMA is found to be independent of the bandwidth and depends on the Atwood number. We derive a formula of the saturation amplitude of modes based on the results obtained, and discuss its relation with Haan's formula [Phys. Rev. A 39, 5812 (1989)]. The LMAs grow linearly in time after the saturation and their speeds are approximated by the product of the linear growth rate and the saturation amplitude. We investigate the Atwood number dependence of both the saturation amplitude and the weakly nonlinear growth

  8. Fluid Dynamics And Mass Transfer In Two-Fluid Taylor-Couette Flow

    International Nuclear Information System (INIS)

    Baier, G.; Graham, M.D.

    1998-01-01

    The Taylor-Couette instability of a single liquid phase can be used to enhance mass transfer processes such as filtration and membrane separations. We consider here the possibility of using this instability to enhance interphase transport in a two-fluid systems, with a view toward improved liquid-liquid extractions for biotechnology applications. We investigate the centrifugal instability of a pair of radially stratified immiscible liquids in the annular gap between concentric, corotating cylinders: two-fluid Taylor-Couette flow. Experiments show that a two-layer flow with a well-defined interface and Taylor vortices in each phase can be obtained. The experimental results are in good agreement with predictions of inviscid arguments based on a two-phase extension of Rayleigh's criterion, as well as with detailed linear stability calculations. For a given geometry, the most stable configuration occurs for fluids of roughly (exactly in the inviscid limit) equal dynamic viscosities. A number of preliminary mass transfer experiments have also been performed, in the presence of axial counterflow. The onset of Taylor vortices coincides with a clear decrease in the extent of axial dispersion and an increase in the rate of interphase transport, thus suggesting that this flow geometry may provide an effective means for countercurrent chromatographic separations

  9. Linear Simulations of the Cylindrical Richtmyer-Meshkov Instability in Hydrodynamics and MHD

    KAUST Repository

    Gao, Song

    2013-05-01

    The Richtmyer-Meshkov instability occurs when density-stratified interfaces are impulsively accelerated, typically by a shock wave. We present a numerical method to simulate the Richtmyer-Meshkov instability in cylindrical geometry. The ideal MHD equations are linearized about a time-dependent base state to yield linear partial differential equations governing the perturbed quantities. Convergence tests demonstrate that second order accuracy is achieved for smooth flows, and the order of accuracy is between first and second order for flows with discontinuities. Numerical results are presented for cases of interfaces with positive Atwood number and purely azimuthal perturbations. In hydrodynamics, the Richtmyer-Meshkov instability growth of perturbations is followed by a Rayleigh-Taylor growth phase. In MHD, numerical results indicate that the perturbations can be suppressed for sufficiently large perturbation wavenumbers and magnetic fields.

  10. LAD Early Career Prize Talk:Laboratory astrophysics experiments investigating the effects of high energy fluxes on Rayleigh-Taylor instability growth relevant to young supernova remnants

    Science.gov (United States)

    Kuranz, Carolyn C.; Drake, R. Paul; Park, Hye Sook; Huntington, Channing; Miles, Aaron R.; Remington, Bruce A.; Plewa, Tomek; Trantham, Matt; Shvarts, Dov; Raman, Kumar; MacLaren, Steven; Wan, Wesley; Doss, Forrest; Kline, John; Flippos, Kirk; Malamud, Guy; Handy, Timothy; Prisbey, Shon; Grosskopf, Michael; Krauland, Christine; Klein, Sallee; Harding, Eric; Wallace, Russell; Marion, Donna; Kalantar, Dan

    2017-06-01

    Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh Taylor (RT) instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter (CSM), based on simple models and hydrodynamic simulations. When a blast wave emerges from an exploding star, it drives a forward shock into the CSM and a reverse shock forms in the expanding stellar ejecta, creating a young supernova remnant (SNR). As mass accumulates in the shocked layers, the interface between these two shocks decelerates, becoming unstable to the RT instability. Simulations predict that RT produces structures at this interface, having a range of spatial scales. When the CSM is dense enough, as in the case of SN 1993J, the hot shocked matter can produce significant radiative fluxes that affect the emission from the SNR. Here we report experimental results from the National Ignition Facility (NIF) to explore how large energy fluxes, which are present in supernovae such as SN 1993J, might affect this structure. The experiment used NIF to create a RT unstable interface subject to a high energy flux by the emergence of a blast wave into lower-density matter, in analogy to the SNR. We also preformed and with a low energy flux to compare the affect of the energy flux on the instability growth. We found that the RT growth was reduced in the experiments with a high energy flux. In analyzing the comparison with SN 1993J, we discovered that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling SNRs.

  11. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  12. Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Betti, R.; Umansky, M.; Lobatchev, V.; Goncharov, V.N.; McCrory, R.L.

    2001-01-01

    A model for the deceleration phase of imploding inertial confinement fusion capsules is derived by solving the conservation equations for the hot spot. It is found that heat flux leaving the hot spot goes back in the form of internal energy and pdV work of the material ablated off the inner shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For direct-drive National Ignition Facility-like capsules, the ablation velocity off the shell inner surface is of the order of tens μm/ns, the deceleration of the order of thousands μm/ns2, and the density-gradient scale length of the order a few μm. Using the well-established theory of the ablative Rayleigh-Taylor instability, it is shown that the growth rates of the deceleration phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff for mode numbers of about l≅90

  13. Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode

    International Nuclear Information System (INIS)

    Hussey, T.W.; Payne, S.S.

    1987-04-01

    The J-vector x B-vector forces associated with the surface current of a plasma-filled ion diode will accelerate this plasma fill toward the anode surface. It is well known that such a configuration with a high I is susceptible to the hydromagnetic Rayleigh-Taylor instability in certain geometries. A number of ion diode plasma sources have been proposed, most of which have a falling density going away from the wall. A somewhat more unstable case, however, is that of uniform density. In this report we attempt to establish an upper limit on this effect with a simple analytic model in which a uniform-density plasma is accelerated by the magnetic field anticipated in a PBFA-II diode. We estimate the number of linear e-foldings experienced by an unstable surface as well as the most damaging wavelength initial perturbation. This model, which accounts approximately for stabilization due to field diffusion, suggests that even with a uniform fill, densities in excess of a few 10 15 are probably not damaged by the instability. In addition, even lower densities might be tolerated if perturbations near the most damaging wavelength can be kept very small

  14. Breakdown of the large-scale circulation in $\\Gamma = 1/2$ rotating Rayleigh-Bénard flow

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef

    2012-01-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a

  15. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I

    Science.gov (United States)

    Zhou, Ye

    2017-12-01

    Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, α and θ. These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities

  16. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.

    2012-01-01

    In this research, density gradient effects (i.e., finite thickness of ablation front effects) in ablative Rayleigh-Taylor instability (ARTI), in the presence of preheating within the weakly nonlinear regime, are investigated numerically. We analyze the weak, medium, and strong ablation surfaces which have different isodensity contours, respectively, to study the influences of finite thickness of ablation front on the weakly nonlinear behaviors of ARTI. Linear growth rates, generation coefficients of the second and the third harmonics, and coefficients of the third-order feedback to the fundamental mode are obtained. It is found that the linear growth rate which has a remarkable maximum, is reduced, especially when the perturbation wavelength λ is short and a cut-off perturbation wavelength λ c appears when the perturbation wavelength λ is sufficiently short, where no higher harmonics exists when λ c . The phenomenon of third-order positive feedback to the fundamental mode near the λ c [J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier et al., Phys. Rev. Lett. 90, 185003 (2003); J. Garnier and L. Masse, Phys. Plasmas 12, 062707 (2005)] is confirmed in numerical simulations, and the physical mechanism of the third-order positive feedback is qualitatively discussed. Moreover, it is found that generations and growths of the second and the third harmonics are stabilized (suppressed and reduced) by the ablation effect. Meanwhile, the third-order negative feedback to the fundamental mode is also reduced by the ablation effect, and hence, the linear saturation amplitude (typically ∼0.2λ in our simulations) is increased significantly and therefore exceeds the classical prediction 0.1λ, especially for the strong ablation surface with a small perturbation wavelength. Overall, the ablation effect stabilizes the ARTI in the weakly nonlinear regime. Numerical results obtained are in general agreement with the recent weakly nonlinear theories and simulations

  17. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; Li, Y. J.

    2010-01-01

    In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces the nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1λ. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.

  18. Measurements of laser-imprinted perturbations and Rayleigh--Taylor growth with the Nike KrF laser

    International Nuclear Information System (INIS)

    Pawley, C.J.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Obenschain, S.P.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Bodner, S.E.; Colombant, D.; Dahlburg, J.P.; Schmitt, A.J.; Gardner, J.H.; Brown, C.; Seely, J.F.; Lehecka, T.; Aglitskiy, Y.; Deniz, A.V.; Chan, Y.; Metzler, N.; Klapisch, M.

    1997-01-01

    Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity left-angle ΔI/I right-angle of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by √(37), to (ΔI/I)congruent 0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh--Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Angstrom rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion

  19. Experimental Study on Natural Convection Heat Transfer From two Parallel Horizontal Cylinders in Horizontal Cylindrical Enclosure

    Directory of Open Access Journals (Sweden)

    Ahmed T. Ahmed

    2013-05-01

    Full Text Available  An experimental study on natural convection heat transfer from two parallel horizontal cylinders in horizontal cylindrical enclosure was carried out under condition of constant surfaces temperature for two cylinders and cylindrical enclosure. The study included the effect of Rayleigh number, rotation angle that represent the confined angle between the passing horizontal plane in cylindrical enclosure center and passing line in two cylinders centers, and the spaces between two cylinders on their heat loss ability.39An experimental set-up was used for this purpose which consist watercontainer, test section which is formed of plastic cylinder that represent the cylindrical enclosure, and two heating elements which are formed of two copper cylinders with (19 mm in diameters heated internally by electrical sources that represents transfer and heat loss elements through this set-up.      The experiments were done at the range of Rayleigh number between ( , cylinders rotation angle at ( , and spacing ratio at ( .     The study showed that the ability of heat loss from two cylinders is a function of Rayleigh number, cylinders rotation angle, and the spaces between them. This ability is increased by increasing of Rayleigh number and it was showed that this ability reaches maximum value at the first cylinder ( and minimum value at the second cylinder ( at spacing ratio (S/D=3 and rotation angle ( for the first and ( for the second cylinder respectively.      The effective variables on natural convection heat transfer from the above two cylinders are related by two correlating equations, each one explains dimensionless relation of heat transfer from each cylinder that represented by Nusselt number against Rayleigh number, rotation angle, and the spacing ratio between two cylinders. 

  20. A spherical Taylor-Couette dynamo

    Science.gov (United States)

    Marcotte, Florence; Gissinger, Christophe

    2016-04-01

    We present a new scenario for magnetic field amplification in the planetary interiors where an electrically conducting fluid is confined in a differentially rotating, spherical shell (spherical Couette flow) with thin aspect-ratio. When the angular momentum sufficiently decreases outwards, a primary hydrodynamic instability is widely known to develop in the equatorial region, characterized by pairs of counter-rotating, axisymmetric toroidal vortices (Taylor vortices) similar to those observed in cylindrical Couette flow. We characterize the subcritical dynamo bifurcation due to this spherical Taylor-Couette flow and study its evolution as the flow successively breaks into wavy and turbulent Taylor vortices for increasing Reynolds number. We show that the critical magnetic Reynolds number seems to reach a constant value as the Reynolds number is gradually increased. The role of global rotation on the dynamo threshold and the implications for planetary interiors are finally discussed.

  1. Evolution of sausage and helical modes in magnetized thin-foil cylindrical liners driven by a Z-pinch

    Science.gov (United States)

    Yager-Elorriaga, D. A.; Lau, Y. Y.; Zhang, P.; Campbell, P. C.; Steiner, A. M.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.

    2018-05-01

    In this paper, we present experimental results on axially magnetized (Bz = 0.5 - 2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with ˜600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m = 1 or m = 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m = 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.

  2. In search of late time evolution self-similar scaling laws of Rayleigh-Taylor and Richtmyer-Meshkov hydrodynamic instabilities - recent theorical advance and NIF Discovery-Science experiments

    Science.gov (United States)

    Shvarts, Dov

    2017-10-01

    Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.

  3. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow.

    Science.gov (United States)

    Szklarski, Jacek; Rüdiger, Günther

    2007-12-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio HD=10 . The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha approximately 10 , and the rotation rates correspond to Reynolds numbers of order 10(2)-10(3). We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmann current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.

  4. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  5. The nature of the Vela X-ray ``jet". The Rayleigh-Taylor instability and the origin of filamentary structures in the Vela supernova remnant

    Science.gov (United States)

    Gvaramadze, Vasilii

    1999-12-01

    The nature of the Vela X-ray ``jet", recently discovered by Markwardt & Ögelman (1995), is examined. It is suggested that the ``jet" arises along the interface of domelike deformations of the Rayleigh-Taylor unstable shell of the Vela supernova remnant; thereby the ``jet" is interpreted as a part of the general shell of the remnant. The origin of deformations as well as the general structure of the remnant are discussed in the framework of a model based on a cavity explosion of a supernova star. It is suggested that the shell deformations viewed at various angles appear as filamentary structures visible throughout the Vela supernova remnant at radio, optical, and X-ray wavelengths. A possible origin of the nebula of hard X-ray emission detected by Willmore et al. (1992) around the Vela pulsar is proposed.

  6. Omega experiments and preparation for moderate-gain direct-drive experiments on Nif

    International Nuclear Information System (INIS)

    Mr Crory, R.L.; Bahr, R.E.; Boehly, T.R.

    2000-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼ 3.5 mm diameter, 1 to 2 μm if CH wall thickness, and a ∼ 350 μm DT-ice layer near the triple point of DT (μ19K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The future cryogenic targets used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address all of the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell-fuel mixing, laser-plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (authors)

  7. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  8. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations

    Science.gov (United States)

    Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin

    2018-03-01

    Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.

  9. Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries

    Science.gov (United States)

    Titarchuk, Lev

    2002-01-01

    Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the

  10. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo

    Science.gov (United States)

    Dumberry, Mathieu; Bloxham, Jeremy

    2003-11-01

    Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the

  11. Rayleigh-Taylor instability in the presence of a density transition layer

    International Nuclear Information System (INIS)

    Tavakoli, A.; Tskhakaya, D.D.; Tsintsadze, N.L.

    1999-01-01

    A new type of symmetry for the Rayleigh equation is found. For small Atwood number an analytic solution is obtained for a smoothly varying density profile. The spectra of unstable modes are defined. It is shown that a transition layer with finite width can undergo stratification, and velocity shear between new-formed sublayers forms. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Effect of initial conditions on two-dimensional Rayleigh-Taylor instability and transition to turbulence in planar blast-wave-driven systems

    International Nuclear Information System (INIS)

    Miles, A.R.; Edwards, M.J.; Greenough, J.A.

    2004-01-01

    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime

  13. A simple proposal for Rayleigh's scaterring experiment

    Directory of Open Access Journals (Sweden)

    Adriano José Ortiz

    2010-03-01

    Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.

  14. The cylindrical GEM detector of the KLOE-2 experiment

    International Nuclear Information System (INIS)

    Bencivenni, G.; Ciambrone, P.; De Lucia, E.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.; Branchini, P.; Cicco, A. Di; Czerwinski, E.

    2017-01-01

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

  15. S-300, new pulsed power installation in Kurchatov Institute, investigation of the stable liner implosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernenko, A S; Gorbulin, Yu M; Kalinin, Yu G; Kingsep, A S; Koba, Yu V; Korolev, V D; Mizhiritskij, V I; Rudakov, L I [Kurchatov Inst., Moscow (Russian Federation)

    1997-12-31

    S-300 is a new 8-module pulsed power machine capable of delivering the total current of up to 6 MA to the optimized load. The goal of the reported first series of experiments was to study in detail the physics of the liner implosion, the Rayleigh-Taylor instability and the Hall instability of a hollow imploding cylindrical plasma shell in particular. The characteristics of various liner instabilities observed under different experimental conditions are discussed. An attempt is made to identify them on the base of existing theoretical notions. (J.U.). 4 figs., 4 refs.

  16. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  17. Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Bakhsh, Abeer

    2016-03-09

    Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.

  18. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  19. The effect of Rayleigh-Taylor instabilities on the thickness of undifferentiated crust on Kuiper Belt Objects

    Science.gov (United States)

    Rubin, Mark E.; Desch, Steven J.; Neveu, Marc

    2014-07-01

    Previous calculations of the internal structure and thermal evolution of Kuiper Belt Objects (KBOs) by Desch et al. (Desch, S.J., Cook, J.C., Doggett, T.C., Porter, S.B. [2009]. Icarus 202, 694-714) have predicted that KBOs should only partially differentiate, with rock and ice separating into a rocky core and icy mantle, below an undifferentiated crust of ice and rock. This crust is thermally insulating and enhances the ability of subsurface liquid to persist within KBOs. A dense rock/ice layer resting on an icy mantle is gravitationally unstable and prone to Rayleigh-Taylor (RT) instabilities, and may potentially overturn. Here we calculate the ability of RT instabilities to act in KBOs, and determine the thickness of undifferentiated crusts. We have used previously calculated growth rates of the RT instability to determine the critical viscosity of ice needed for the RT instability to operate. We calculate the viscosity of ice at the cold temperatures and long timescales relevant to KBOs. We find that crustal overturn is only possible where the temperature exceeds about 150 K, and that RT instabilities cannot act on geological timescales within about 60 km of the surfaces of a KBO like Charon. Although this crustal thickness is less than the 85 km previously calculated by Desch et al. (Desch, S.J., Cook, J.C., Doggett, T.C., Porter, S.B. [2009]. Icarus 202, 694-714), it is still significant, representing ≈25% of the mass of the KBO. We conclude that while RT instabilities may act in KBOs, they do not completely overturn their crusts. We calculate that Saturn’s moon Rhea should only partially differentiate, resulting in a moment of inertia C/MR2≈0.38.

  20. OMEGA ICF experiments and preparations for direct drive on NIF

    International Nuclear Information System (INIS)

    McCrory, R.L.; Bahr, R.E.; Betti, R.

    2001-01-01

    Direct-drive laser-fusion ignition experiments rely on detailed understanding and control of irradiation uniformity, the Rayleigh-Taylor instability, and target fabrication. LLE is investigating various theoretical aspects of a direct-drive NIF ignition target based on an 'all-DT' design: a spherical target of ∼3.4-mm diameter, 1 to 2 μm of CH wall thickness, and an ∼340-μm DT-ice layer near the triple point of DT (∼19 K). OMEGA experiments are designed to address the critical issues related to direct-drive laser fusion and to provide the necessary data to validate the predictive capability of LLE computer codes. The cryogenic targets to be used on OMEGA are hydrodynamically equivalent to those planned for the NIF. The current experimental studies on OMEGA address the essential components of direct-drive laser fusion: irradiation uniformity and laser imprinting, Rayleigh-Taylor growth and saturation, compressed core performance and shell fuel mixing, laser plasma interactions and their effect on target performance, and cryogenic target fabrication and handling. (author)

  1. Experiments on the Taylor system with an axial flow

    International Nuclear Information System (INIS)

    Tsameret, Avraham.

    1993-02-01

    This work is an experimental study of the Taylor system with a superimposed axial flow. The convective and absolute instability lines which are associated with the propagating Taylor vortices are measured. A quantitative agreement is found with the theoretical predictions. Noise-sustained structures are found to exist in the convectively unstable region, above a critical value of the through flow. These structures are propagating Taylor vortices that are characterized by a noisy power spectrum and irregular temporal dynamics of velocity amplitude. At the absolute instability line the power spectrum of the propagating Taylor vortices exhibits transition to a sharp peak, and the amplitude of the propagating Taylor vortices becomes stationary. The mechanism that generates the noise-sustained structures is identified with a process of permanent amplification of noise that is generated mainly near the inlet boundary. The intrinsic noise in the system is studied. This study is motivated by the question of whether the noise which generates the noise-sustained structures is thermal. The intensity of the intrinsic noise is estimated by several methods, which includes a comparison of data with numerical simulations of the amplitude equation with a noise term. It is found that the intrinsic noise is not thermal, although its intensity reaches the thermal noise level at small through-flow velocities. Novel states are manifested in the system as a result of interaction between the propagating Taylor vortices and spiral modes. These states are studied and their spatial and temporal properties are analyzed. (author)

  2. PREFACE: The 15th International Couette-Taylor Worskhop

    Science.gov (United States)

    Mutabazi, Innocent; Crumeyrolle, Olivier

    2008-07-01

    The 15th International Couette-Taylor Worskhop (ICTW15) was held in Le Havre, France from 9-12 July 2007. This regular international conference started in 1979 in Leeds, UK when the research interest in simple models of fluid flows was revitalized by systematic investigation of Rayleigh-Bénard convection and the Couette-Taylor flow. These two flow systems are good prototypes for the study of the transition to chaos and turbulence in closed flows. The workshop themes have been expanded from the original Couette-Taylor flow to include other centrifugal instabilities (Dean, Görtler, Taylor-Dean), spherical Couette flows, thermal convection instabilities, MHD, nonlinear dynamics and chaos, transition to turbulence, development of numerical and experimental techniques. The impressive longevity of the ICTW is due to the close interaction and fertile exchanges between international research groups from different disciplines: Physics and Astrophysics, Applied Mathematics, Mechanical Engineering, Chemical Engineering. The present workshop was attended by 100 participants, the program included over 83 contributions with 4 plenary lectures, 68 oral communications and 17 posters. The topics include, besides the classical Couette-Taylor flows, the centrifugal flows with longitudinal vortices, the shear flows, the thermal convection in curved geometries, the spherical Couette-Taylor flow, the geophysical flows, the magneto-hydrodynamic effects including the dynamo effect, the complex flows (viscoelasticity, immiscible fluids, bubbles and migration). Selected papers have been processed through the peer review system and are published in this issue of the Journal of Physics: Conference Series. The Workshop has been sponsored by Le Havre University, the Region Council of Haute-Normandie, Le Havre City Council, CNRS (ST2I, GdR-DYCOEC), and the European Space Agency through GEOFLOW program. The French Ministry of Defense (DGA), the Ministry of Foreign Affairs, the Ministry of

  3. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  4. Wavelength selection in the crown splash

    Science.gov (United States)

    Zhang, Li V.; Brunet, Philippe; Eggers, Jens; Deegan, Robert D.

    2010-12-01

    The impact of a drop onto a liquid layer produces a splash that results from the ejection and dissolution of one or more liquid sheets, which expand radially from the point of impact. In the crown splash parameter regime, secondary droplets appear at fairly regularly spaced intervals along the rim of the sheet. By performing many experiments for the same parameter values, we measure the spectrum of small-amplitude perturbations growing on the rim. We show that for a range of parameters in the crown splash regime, the generation of secondary droplets results from a Rayleigh-Plateau instability of the rim, whose shape is almost cylindrical. In our theoretical calculation, we include the time dependence of the base state. The remaining irregularity of the pattern is explained by the finite width of the Rayleigh-Plateau dispersion relation. Alternative mechanisms, such as the Rayleigh-Taylor instability, can be excluded for the experimental parameters of our study.

  5. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    Science.gov (United States)

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 Deutsche Forschungsgemeinschaft.

  6. Measurements of the growth rate of the short wavelength Rayleigh-Taylor instability of foam foil packages driven by a soft x-ray pulse

    International Nuclear Information System (INIS)

    Willi, O.; Pasley, J.; Iwase, A.; Nazarov, W.; Rose, S.J.

    2000-01-01

    The Rayleigh-Taylor instability was studied in the short wavelength regime using single mode targets that were driven by hohlraum radiation allowing the Takabe-Morse roll-over due to ablative stabilisation to be investigated. A temporally shaped soft x-ray drive was generated by focusing one of the PHEBUS laser beams into a gold hohlraum with a maximum radiation temperature of about 120 eV. Thin plastic foils with sinusoidal modulations with wavelengths between 12 and 50 μm, and a perturbation amplitude of about 10% of the wavelength, were used. A low density 50 mg/cc tri-acrylate foam 150 μm in length facing the hohlraum was attached to the modulated foam target. The targets were radiographed face-on at an x-ray energy of about 1.3 keV with a spatial resolution of about 5 μm using a Wolter-like x-ray microscope coupled to an x-ray streak camera with a temporal resolution of 50 ps. The acceleration was obtained from side-on radiography. 2-D hydrodynamic code simulations have been carried out to compare the experimental results with the simulations. (authors)

  7. Spike morphology in blast-wave-driven instability experiments

    International Nuclear Information System (INIS)

    Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.

    2010-01-01

    The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 μm thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 μm and a wavelength of 71 μm. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.

  8. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  9. Numerical analyses of a Couette-Taylor flow in the presence of a magnetic field

    International Nuclear Information System (INIS)

    Tagawa, T; Kaneda, M

    2005-01-01

    An axisymmetric Couette-Taylor flow of liquid metal in the presence of a magnetic field has been numerically studied. An inner cylinder of a coaxial container is rotating at a constant angular velocity whereas the outer cylindrical wall is at rest. An axial or a toroidal magnetic field is applied to this configuration to investigate the influence of such magnetic fields on the liquid metal Couette-Taylor flow. The toroidal magnetic field can be produced with a straight wire along the central axis in which electric current passes. The governing equations of mass conservation, momentum, Ohm's law and conservation of electric charge for an axisymmetric cylindrical coordinate system have been numerically solved with a finite difference method using the HSMAC algorithm. In the numerical analyses, since the Joule heating and the induced magnetic field are neglected, the system parameters are the Hartmann number and the Reynolds number. The numerical results reveal significant difference in the Couette-Taylor flow depending on whether the applied magnetic field is axial or toroidal as well as on the Hartmann and Reynolds numbers. The axial magnetic field damps out the secondary flow efficiently and velocity gradient in the direction of the magnetic field tends to diminish while the toroidal magnetic field does not have such an efficient damping

  10. Numerical study and modeling of hydrodynamic instabilities in the context of inertial confinement fusion in the presence of self-generated magnetic fields

    International Nuclear Information System (INIS)

    Levy, Y.

    2012-01-01

    In the context of inertial confinement fusion we investigate effects of magnetic fields on the development in the linear regime of two hydrodynamic instabilities: Richtmyer-Meshkov instability using ideal magnetohydrodynamics and ablative Rayleigh-Taylor instability in both acceleration and deceleration stages. Direct numerical simulations with a linear perturbation code enable us to confirm the stabilizing effect of the component of the magnetic field along the perturbations wave vector. The amplitude doesn't grow linearly in time but experiences oscillations instead. The compressibility taken into account in the code does not affect predictions given by an already existing impulsive and incompressible model. As far as Rayleigh-Taylor instability is concerned we study the effects of self-generated magnetic fields that arise from the development of the instability itself. In the acceleration stage we perform two dimensional simulations in planar geometry. We show that magnetic fields of about 1 T can be generated and that the instability growth transits more rapidly into nonlinear growth with the enhancement of the development of the third harmonic. We also propose an adaptation of an existing model that aims at studying thermal conductivity anisotropy effects, to take into account the effects of the self-generated magnetic fields on the Rayleigh-Taylor instability growth rate. Finally, in the deceleration stage, we perform two dimensional simulations in cylindrical geometry that take into account self-generation of magnetic fields due to the instability development. It reveals magnetic fields of about several thousands of Teslas that are not strong enough though to affect the instability behavior. (author) [fr

  11. Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility

    International Nuclear Information System (INIS)

    Wang Feng; Peng Xiao-Shi; Liu Shen-Ye; Xu Tao; Kang Dong-Guo

    2013-01-01

    A study is conducted using a two-dimensional simulation program (Lared-s) with the goal of developing a technique to evaluate the effect of Rayleigh-Taylor growth in a neutron fusion reaction region. Two peaks of fusion reaction rate are simulated by using a two-dimensional simulation program (Lared-s) and confirmed by the experimental results. A neutron temporal diagnostic (NTD) system is developed with a high temporal resolution of ∼ 30 ps at the Shen Guang-III (SG-III) prototype laser facility in China, to measure the fusion reaction rate history. With the shape of neutron reaction rate curve and the spherical harmonic function in this paper, the degree of Rayleigh-Taylor growth and the main source of the neutron yield in our experiment can be estimated qualitatively. This technique, including the diagnostic system and the simulation program, may provide important information for obtaining a higher neutron yield in implosion experiments of inertial confinement fusion

  12. Numerical study of natural melt convection in cylindrical cavity with hot walls and cold bottom sink

    Directory of Open Access Journals (Sweden)

    Ahmanache Abdennacer

    2013-01-01

    Full Text Available Numerical study of natural convection heat transfer and fluid flow in cylindrical cavity with hot walls and cold sink is conducted. Calculations are performed in terms of the cavity aspect ratio, the heat exchanger length and the thermo physical properties expressed via the Prandtl number and the Rayleigh number. Results are presented in the form of isotherms, streamlines, average Nusselt number and average bulk temperature for a range of Rayleigh number up to 106. It is observed that Rayleigh number and heat exchanger length influences fluid flow and heat transfer, whereas the cavity aspect ratio has no significant effects.

  13. Experimental study of the initial conditions of the Rayleigh-Taylor instability at the ablation front in inertial confinement fusion

    International Nuclear Information System (INIS)

    Delorme, Barthelemy

    2015-01-01

    Numerous designs and experiments in the domain of Inertial Confinement Fusion (ICF) show that, in both direct and indirect drive approaches, one of the main limitations to reach the ignition is the Rayleigh-Taylor instability (RTI). It may lead to shell disruption and performance degradation of spherically imploding targets. Thus, the understanding and the control of the initial conditions of the RTI is of crucial importance for the ICF program. In this thesis, we present an experimental and theoretical study of the initial conditions of the ablative RTI in direct drive, by means of two experimental campaigns performed on the OMEGA laser facility (LLE, Rochester). The first campaign consisted in studying the laser-imprinted ablative Richtmyer-Meshkov instability (RMI) which starts at the beginning of the interaction and seeds the ablative RTI. We set up an experimental configuration that allowed to measure for the first time the temporal evolution of the laser-imprinted ablative RMI. The experimental results have been interpreted by a theoretical model and numerical simulations performed with the hydrodynamic code CHIC. We show that the best way to control the ablative RMI is to reduce the laser intensity inhomogeneities. This can be achieved with targets covered by a layer of a low density foam. Thus, in the second campaign, we studied for the first time the effect of underdense foams on the growth of the ablative RTI. A layer of low density foam was placed in front of a plastic foil, and the perturbation was imprinted by an intensity modulated laser beam. Experimental data are presented: backscattered laser energy, target dynamic obtained by side-on self emission measurement, and face-on radiographs showing the effect of the foams on the target areal density modulations. These data were interpreted using the CHIC code and the laser-plasma interaction code PARAX. We show that the foams noticeably reduce the amplitude of the laser intensity inhomogeneities and the

  14. Modeling of laser-driven hydrodynamics experiments

    Science.gov (United States)

    di Stefano, Carlos; Doss, Forrest; Rasmus, Alex; Flippo, Kirk; Desjardins, Tiffany; Merritt, Elizabeth; Kline, John; Hager, Jon; Bradley, Paul

    2017-10-01

    Correct interpretation of hydrodynamics experiments driven by a laser-produced shock depends strongly on an understanding of the time-dependent effect of the irradiation conditions on the flow. In this talk, we discuss the modeling of such experiments using the RAGE radiation-hydrodynamics code. The focus is an instability experiment consisting of a period of relatively-steady shock conditions in which the Richtmyer-Meshkov process dominates, followed by a period of decaying flow conditions, in which the dominant growth process changes to Rayleigh-Taylor instability. The use of a laser model is essential for capturing the transition. also University of Michigan.

  15. The Ekman-Hartmann layer in MHD Taylor-Couette flow

    OpenAIRE

    Szklarski, Jacek; Rüdiger, Günther

    2007-01-01

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical MHD Taylor-Couette flow at the finite aspect ratio $H/D=10$. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed $\\Ha \\approx 10$, the rotation rates correspond to $\\Rey$ of order $10^2-10^3$. We show that the end-plates introduce, besides the well known Ekman circulati...

  16. Present status of direct drive inertial confinement fusion research at ILE Osaka University

    International Nuclear Information System (INIS)

    Yamanaka, Tatsuhiko; Nakai, Sadao

    1993-01-01

    The activities of direct drive implosion experiments at ILE of Osaka Univ. are focused on the planar- and spherical-target experiments relating to Rayleigh-Taylor instability and the implosion experiments of cryogenic targets with low density plastic foam shell overcoated by a solid plastic layer. In the spherical shell target implosions a very early x-ray emission (refer as pre-emission hereafter) has been observed at the center of the target. The appearance of the pre-emission is related to the illumination nonuniformity. The appearance time of the pre-emission, the electron temperature of the source plasma of the pre-emission and the possibility of Rayleigh-Taylor instability have been studied experimentally to understand the mechanism of the pre-emission. Shell break up by Rayleigh-Taylor instability has been concluded to be the most probable mechanism of the pre-emission

  17. Theory of current-driven instability experiments in magnetic Taylor-Couette flows.

    Science.gov (United States)

    Rüdiger, Günther; Schultz, Manfred; Shalybkov, Dima; Hollerbach, Rainer

    2007-11-01

    We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.

  18. Hydrodynamic instability experiments on the Nova laser

    International Nuclear Information System (INIS)

    Remington, B.A.; Glendinning, S.G.; Kalantar, D.H.

    1996-08-01

    Hydrodynamic instabilities in compressible plasmas play a critical role in the fields of inertial confinement fusion (ICF), astrophysics, and high energy-density physics. We are, investigating hydrodynamic instabilities such as the Rayleigh-Taylor (RT) instability, at high compression at the Nova laser in a series of experiments, both in planar and in spherical geometry. In the indirect drive approach, a thermal x-ray drive is generated by focusing the Nova laser beams into a Au cylindrical radiation cavity (hohlraum). Issues in the instability evolution that we are examining are shock propagation and foil compression, RT growth of 2D versus 3D single-mode perturbations, drive pulse shape, perturbation location at the ablation front versus at an embedded interface, and multimode perturbation growth and nonlinear saturation. The effects of convergence on RT growth are being investigated both with hemispherical implosions of packages mounted on the hohlraum wall and with spherical implosions of capsules at the center of the hohlraum. Single-mode perturbations are pre-imposed at the ablation front of these capsules as a seed for the RT growth. In our direct drive experiments, we are investigating the effect of laser imprinting and subsequent RT growth on planar foils, both at λ Laser = 1/3 μm and 1/2 μm. An overview is given describing recent progress in each of these areas

  19. Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment

    International Nuclear Information System (INIS)

    Nornberg, M. D.; Ji, H.; Schartman, E.; Roach, A.; Goodman, J.

    2010-01-01

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  20. Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment.

    Science.gov (United States)

    Nornberg, M D; Ji, H; Schartman, E; Roach, A; Goodman, J

    2010-02-19

    The first observation of fast and slow magnetocoriolis (MC) waves in a laboratory experiment is reported. Rotating nonaxisymmetric modes arising from a magnetized turbulent Taylor-Couette flow of liquid metal are identified as the fast and slow MC waves by the dependence of the rotation frequency on the applied field strength. The observed slow MC wave is damped but the observation provides a means for predicting the onset of the magnetorotational instability.

  1. Heat transfer of phase-change materials in two-dimensional cylindrical coordinates

    Science.gov (United States)

    Labdon, M. B.; Guceri, S. I.

    1981-01-01

    Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.

  2. Richtmyer-Meshkov instability of a sinusoidal interface driven by a cylindrical shock

    Science.gov (United States)

    Liu, L.; Ding, J.; Zhai, Z.; Luo, X.

    2018-04-01

    Evolution of a single-mode interface triggered by a cylindrically converging shock in a V-shaped geometry is investigated numerically using an adaptive multi-phase solver. Several physical mechanisms, including the Bell-Plesset (BP) effect, the Rayleigh-Taylor (RT) effect, the nonlinearity, and the compressibility are found to be pronounced in the converging environment. Generally, the BP and nonlinear effects play an important role at early stages, while the RT effect and the compressibility dominate the late-stage evolution. Four sinusoidal interfaces with different initial amplitudes (a_0 ) and wavelengths (λ ) are found to evolve differently in the converging geometry. For the very small a_0 /λ interfaces, nonlinearity is negligible at the early stages and the sole presence of the BP effect results in an increasing growth rate, confining the linear growth of the instability to a relatively small amount of time. For the moderately small a_0 /λ cases, the BP and nonlinear effects, which, respectively, promote and inhibit the perturbation development, coexist in the early stage. The counterbalancing effects between them produce a very long period of growth that is linear in time, even to a moment when the amplitude over wavelength ratio approaches 0.6. The RT stabilization effect at late stages due to the interface deceleration significantly inhibits the perturbation growth, which can be reasonably predicted by a modified Bell model.

  3. Symmetry of nonexploding cylindrical liner converging to the axis under magnetic field effects

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Grinevich, B.E.; Buzin, V.N.; Pogorelov, V.P.; Shertsov, V.A.; Petrukhin, A.A.; Demidov, V.A.; Zharinov, E.I.

    1990-01-01

    Liner acceleration, affected by magnetic pressure, is broadly used to yield megagauss magnetic fields and plasma compression. The progress of test conduction depends much on the state of liner subjected to Taylor instability while being accelerated. There is a number of methods permitting to reduce liner shape distortions, developing during its acceleration. The most simple method consists in that the aspect ratio (the ratio of liner placing radius to its thickness) is taken less than 10. To impart sufficient velocity to the liner of large thickness its density should be small. Therefore, liner is either a gas layer or explosion products of thin metal foil which passed to a vaporous state in early stage of acceleration. Acceleration of nonexploding liners may serve as the other method of asymmetry reduction. Strength and viscosity of liner will be used as stabilizing factors with respect to the development of Taylor instability. This will allow the aspect ratio increase, that is sometimes useful. Test results on acceleration of nonexploding aluminum liners 1 mm thick have been described. Aspect ratio amounted to 30-60 and the ratio of liner acceleration distance to its thickness (parameter, being of great importance when studying the development of Taylor instability) made up 20-40. Satisfactory azimuthal symmetry of liner convergence to the center was recorded. For more detailed investigation of Taylor instability influence on the symmetry of nonexploding liner, the experiments, when the ratio of liner acceleration length to its thickness would be increased up to 90-100 simultaneously with determination of azimuthal and axial symmetry of liner, are of interest. In this paper presents the results of experiments on acceleration of copper cylindrical liner 1.37 mm thick

  4. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    Energy Technology Data Exchange (ETDEWEB)

    Kamojjala, Krishna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lacy, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chu, Henry S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brannon, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  5. From Taylor series to Taylor models

    International Nuclear Information System (INIS)

    Berz, Martin

    1997-01-01

    An overview of the background of Taylor series methods and the utilization of the differential algebraic structure is given, and various associated techniques are reviewed. The conventional Taylor methods are extended to allow for a rigorous treatment of bounds for the remainder of the expansion in a similarly universal way. Utilizing differential algebraic and functional analytic arguments on the set of Taylor models, arbitrary order integrators with rigorous remainder treatment are developed. The integrators can meet pre-specified accuracy requirements in a mathematically strict way, and are a stepping stone towards fully rigorous estimates of stability of repetitive systems

  6. Experimental transient natural convection heat transfer from a vertical cylindrical tank

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Alberto Dopazo, J.

    2011-01-01

    In this paper heat transfer experimental data is presented and compared to general correlations proposed in the literature for transient laminar free convection from a vertical cylindrical tank. The experimental data has been obtained from heating and cooling experiments carried out with a cylindrical full-scale hot water storage tank working under real operating conditions. The experimental device and the data acquisition system are described. The calculation procedures established to obtain the experimental values of the heat transfer coefficients, as well as the data reduction process, are detailed. The local convection and radiation heat transfer coefficients are obtained from different heating power conditions for local Rayleigh numbers within the range of 1x10 5 -3x10 8 . The great quantity of available experimental data allows a detailed analysis with a reliable empirical base. The experimental local convection heat transfer coefficients are correlated and compared to correlations proposed in open literature for engineering calculations. - Highlights: → Experimental data of transient local convection heat transfer coefficients from a cylindrical tank for heating and cooling processes is obtained. → The transient behaviour of the convection coefficients is dependent on temperature difference evolutions between the surface and the air. → The Nu.Ra -1/4 ratio decreases proportionally in (T s -T ∞ ) -0.9 . → A new correlation based on the semi-infinite region theory for laminar transient free convection is proposed.

  7. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57

  8. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    International Nuclear Information System (INIS)

    Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian

    2015-01-01

    Highlights: • The facility reached high Ra number at 10 12 of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra 0.315 was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10 5 to 6.8 × 10 8 in G–D correlation and less than 10 12 in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10 11 for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra 0.315 in the range 3.93 × 10 8 < Ra < 3.57 × 10 12 . Furthermore, the experiment

  9. From Taylor series to Taylor models

    International Nuclear Information System (INIS)

    Berz, M.

    1997-01-01

    An overview of the background of Taylor series methods and the utilization of the differential algebraic structure is given, and various associated techniques are reviewed. The conventional Taylor methods are extended to allow for a rigorous treatment of bounds for the remainder of the expansion in a similarly universal way. Utilizing differential algebraic and functional analytic arguments on the set of Taylor models, arbitrary order integrators with rigorous remainder treatment are developed. The integrators can meet pre-specified accuracy requirements in a mathematically strict way, and are a stepping stone towards fully rigorous estimates of stability of repetitive systems. copyright 1997 American Institute of Physics

  10. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  11. Hydrodynamic instabilities in inertial fusion

    International Nuclear Information System (INIS)

    Hoffman, N.M.

    1994-01-01

    This report discusses topics on hydrodynamics instabilities in inertial confinement: linear analysis of Rayleigh-Taylor instability; ablation-surface instability; bubble rise in late-stage Rayleigh-Taylor instability; and saturation and multimode interactions in intermediate-stage Rayleigh-Taylor instability

  12. Thermal convection in dielectric liquids in a cylindrical annulus

    Science.gov (United States)

    Mutabazi, Innocent; Kang, Changwoo; Meyer, Antoine; Meier, Martin; Egbers, Christoph

    2017-11-01

    Thermal convection is investigated in a dielectric liquid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ and electric permittivity ɛ in a cylindrical annulus of inner radius a and outer radius bwith a radial temperature gradient and a high-frequency electric tension. The coupling between the electric field and the gradient of the permittivity yields the dielectrophoretic force. The control parameters are η = a/b, Pr = ν / κ, the classic Rayleigh number Ra = αΔ T gd3 / νκ , and the electric Rayleigh number L = αΔ T ged3 / νκ The electric gravity ge is the gradient of the electric energy in the condenser. Linear stability analysis shows that for infinite annulus, depending on values of η, Ra and L, critical modes are either hydrodynamic or thermal modes, helical electric modes or columnar vortices. Experiments in an annulus of aspect ratio Γ = 19.6 during parabolic flight campaigns indicate the existence of columns. Columnar vortices result from the competition between Archimedean buoyancy and dielectrophoretic force. Direct numerical simulations in the annulus of Γ = 20 show that the columnar vortices occupy the central part of the annulus, while near the end-zones the flow is laminar and dominated by an azimuthal vorticity. This work was supported by CNRS (LIA ISTROF), CNES and DLR.

  13. Laser imprint reduction with a shaping pulse, oscillatory Richtmyer-Meshkov to Rayleigh-Taylor transition and other coherent effects in plastic-foam targets

    International Nuclear Information System (INIS)

    Metzler, N.; Velikovich, A.L.; Schmitt, A.J.; Karasik, M.; Serlin, V.; Mostovych, A.N.; Obenschain, S.P.; Gardner, J.H.; Aglitskiy, Y.

    2003-01-01

    A substantial reduction of the laser imprint with a short, low-energy 'shaping' laser pulse incident upon a foam-plastic sandwich target prior to the main laser pulse has been demonstrated to be possible [Metzler et al., Phys. Plasmas 9, 5050 (2002)]. Nonuniformity of this shaping pulse, however, produces standing sonic waves in the target. Laser-imprinted seeds for the Rayleigh-Taylor (RT) instability growth then emerge from the interaction of these waves with the strong shock wave launched by the drive laser pulse. Such coherent interaction between different waves and modes perturbed at the same wavelength is shown to be important in a variety of situations relevant to the inertial confinement fusion studies. As an example, an oscillatory transition from the classical Richtmyer-Meshkov shock-interface instability development to the RT growth exhibiting a characteristic phase reversal in a target of finite thickness is described. Another example refers to the feedout mechanism of seeding the perturbations that come from the nonuniformities of the rear (inner) surface of the laser target. The coherent interaction between the strong shock wave from the main laser pulse and the rippled rarefaction wave produced by a low-intensity foot of the pulse produces observable effects, such as an extra phase reversal compared to the case of no foot. Some of these predictions are shown to be consistent with our new experimental results obtained in the feedout geometry on the Nike laser facility [S. P. Obenschain et al. Phys. Plasmas 3, 2098 (1996)

  14. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    Science.gov (United States)

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  15. Implosion spectroscopy in Rugby hohlraums on OMEGA

    Science.gov (United States)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  16. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  17. Lithium beam characterization of cylindrical PBFA II hohlraum experiments

    International Nuclear Information System (INIS)

    Moats, A.R.; Derzon, M.S.; Chandler, G.A.; Haill, T.A.; Johnson, D.J.; Leeper, R.J.; Ruiz, C.L.; Wenger, D.F.

    1995-01-01

    Sandia National Laboratories is actively engaged in exploring indirect-drive inertial confinement fusion on the Particle Beam Fusion Accelerator (PBFA II) with pulsed-power accelerated lithium ions as the driver. Experiments utilizing cylindrical hohlraum targets were conducted in 1994. Using the incoming ion beam-induced line radiation from titanium wires surrounding these hohlraums, beam profiles during these experiments have been measured and characterized. These data, their comparison/cross-correlation with particle-based beam diagnostics, and an analysis of the beam parameters that most significantly influence target temperature are presented

  18. Log-Likelihood Ratio Calculation for Iterative Decoding on Rayleigh Fading Channels Using Padé Approximation

    Directory of Open Access Journals (Sweden)

    Gou Hosoya

    2013-01-01

    Full Text Available Approximate calculation of channel log-likelihood ratio (LLR for wireless channels using Padé approximation is presented. LLR is used as an input of iterative decoding for powerful error-correcting codes such as low-density parity-check (LDPC codes or turbo codes. Due to the lack of knowledge of the channel state information of a wireless fading channel, such as uncorrelated fiat Rayleigh fading channels, calculations of exact LLR for these channels are quite complicated for a practical implementation. The previous work, an LLR calculation using the Taylor approximation, quickly becomes inaccurate as the channel output leaves some derivative point. This becomes a big problem when higher order modulation scheme is employed. To overcome this problem, a new LLR approximation using Padé approximation, which expresses the original function by a rational form of two polynomials with the same total number of coefficients of the Taylor series and can accelerate the Taylor approximation, is devised. By applying the proposed approximation to the iterative decoding and the LDPC codes with some modulation schemes, we show the effectiveness of the proposed methods by simulation results and analysis based on the density evolution.

  19. Chromo-Rayleigh interactions of dark matter

    International Nuclear Information System (INIS)

    Bai, Yang; Osborne, James

    2015-01-01

    For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.

  20. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Science.gov (United States)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  1. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  2. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    Science.gov (United States)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  3. Numerical solutions to critical problem of reflected cylindrical reactor

    International Nuclear Information System (INIS)

    Horie, Junnosuke

    1977-01-01

    The multi-region critical problem can be transformed into an eigenvalue problem in the classical sense by using the method of Kuscer and Corngold and of Wing. This transformation is applied to derive a variational formulation for a reflected reactor. An approximate critical value of the multiplying factor is determined by maximizing the Rayleigh quotient for radially and totally reflected cylindrical reactors. It is shown that this approximate critical value is an upper bound of the true critical value. From the facts that the operator is self-adjoint and the eigenfunction is positive, an expression is derived for the upper and lower bounds of the true eigenvalue, by making use of the approximate distribution. The difference of the upper and lower bounds is an uncertainty of the presumption of the true critical value. It is found that we can compute the bounds to any required precision. The narrow bounds are calculated for two radially and one totally reflected cylindrical reactors. (auth.)

  4. Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion cores

    International Nuclear Information System (INIS)

    Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2007-01-01

    The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data

  5. Simple spectral method for solving propagation problems in cylindrical geometry with fast Fourier transforms

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1989-01-01

    We describe a spectral method for solving the paraxial wave equation in cylindrical geometry that is based on expansion of the exponential evolution operator in a Taylor series and use of fast Fourier transforms to evaluate derivatives. A fourth-order expansion gives excellent agreement with a two-transverse-dimensional split-operator calculation at a fraction of the cost in computation time per z step and at a considerable savings in storage

  6. An endogenous Taylor condition in an endogenous growth monetary policy model

    OpenAIRE

    Le, Mai Vo; Gillman, Max; Minford, Patrick

    2007-01-01

    The paper derives a Taylor condition as part of the agent's equilibrium behavior in an endogenous growth monetary economy. It shows the assumptions necessary to make it almost identical to the original Taylor rule, and that it can interchangably take a money supply growth rate form. From the money supply form, simple policy experiments are conducted. A full central bank policy model is derived that includes the Taylor condition along with equations comparable to the standard aggregate-demand/...

  7. Linear theory of equatorial spread F

    International Nuclear Information System (INIS)

    Hudson, M.K.; Kennel, C.F.

    1975-01-01

    A fluid dispersion relation for the drift and interchange (Rayleigh-Taylor) modes in a collisional plasma forms the basis for a linear theory of equatorial spread F. The collisional drift mode growth rate will exceed the growth rate of the Rayleigh-Taylor mode at short perpendicular wavelengths and density gradient scale lengths, and the drift mode can grow on top side as well as on bottom side density gradients. However, below the F peak, where spread F predominates, it is concluded that both the drift and the Rayleigh-Taylor modes contribute to the total spread F spectrum, the Rayleigh-Taylor mode dominating at long and the drift mode at short perpendicular wavelengths above the ion Larmor radius

  8. The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics

    KAUST Repository

    Li, Yuan

    2018-04-13

    The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.

  9. The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics

    KAUST Repository

    Li, Yuan; Samtaney, Ravi; Wheatley, Vincent

    2018-01-01

    The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface. The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.

  10. The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts

    Science.gov (United States)

    Bednarek, Stanislaw; Krysiak, Jerzy

    2011-01-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…

  11. An Application of Taylor Models to the Nakao Method on ODEs

    OpenAIRE

    Yamamoto, Nobito; Komori, Takashi

    2009-01-01

    The authors give short survey on validated computaion of initial value problems for ODEs especially Taylor model methods. Then they propose an application of Taylor models to the Nakao method which has been developed for numerical verification methods on PDEs and apply it to initial value problems for ODEs with some numerical experiments.

  12. Transitions between Taylor vortices and spirals via wavy Taylor vortices and wavy spirals

    International Nuclear Information System (INIS)

    Hoffmann, Ch; Altmeyer, S; Pinter, A; Luecke, M

    2009-01-01

    We present numerical simulations of closed wavy Taylor vortices and of helicoidal wavy spirals in the Taylor-Couette system. These wavy structures appearing via a secondary bifurcation out of Taylor vortex flow and out of spiral vortex flow, respectively, mediate transitions between Taylor and spiral vortices and vice versa. Structure, dynamics, stability and bifurcation behaviour are investigated in quantitative detail as a function of Reynolds numbers and wave numbers for counter-rotating as well as corotating cylinders. These results are obtained by solving the Navier-Stokes equations subject to axial periodicity for a radius ratio η=0.5 with a combination of a finite differences method and a Galerkin method.

  13. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  14. Hydrodynamic instability experiments on the HIPER laser facility at the Institute of Laser Engineering, Osaka University

    International Nuclear Information System (INIS)

    Shigemori, K.; Azechi, H.; Fujioka, S.

    2003-01-01

    We present recent results on the hydrodynamic instability experiments on the HIPER (High Intensity Plasma Experimental Research) laser facility at ILE, Osaka University. We measured the Rayleigh-Taylor growth rate on the HIPER laser. Also measured were all parameters that determine the RT growth rate. We focused on the measurements of the ablation density of laser-irradiated targets, which had not been experimentally measured. The experimental results were compared with calculations with one dimensional simulation coupled with Fokker-Planck equation for electron transport. (author)

  15. 3rd year final contractor report for: U.S. Department of Energy Stewardship Science Academic Alliances Program Project Title: Detailed Measurements of Rayleigh-Taylor Mixing at Large and Small Atwood Numbers

    International Nuclear Information System (INIS)

    Malcolm J. Andrews

    2006-01-01

    This project had two major tasks: Task 1. The construction of a new air/helium facility to collect detailed measurements of Rayleigh-Taylor (RT) mixing at high Atwood number, and the distribution of these data to LLNL, LANL, and Alliance members for code validation and design purposes. Task 2. The collection of initial condition data from the new Air/Helium facility, for use with validation of RT simulation codes at LLNL and LANL. This report describes work done in the last twelve (12) months of the project, and also contains a summary of the complete work done over the three (3) life of the project. As of April 1, 2006, the air/helium facility (Task 1) is now complete and extensive testing and validation of diagnostics has been performed. Initial condition studies (Task 2) is also complete. Detailed experiments with air/helium with Atwood numbers up to 0.1 have been completed, and Atwood numbers of 0.25. Within the last three (3) months we have been able to successfully run the facility at Atwood numbers of 0.5. The progress matches the project plan, as does the budget. We have finished the initial condition studies using the water channel, and this work has been accepted for publication on the Journal of Fluid Mechanics (the top fluid mechanics journal). Mr. Nick Mueschke and Mr. Wayne Kraft are continuing with their studies to obtain PhDs in the same field, and will also continue their collaboration visits to LANL and LLNL. Over its three (3) year life the project has supported two(2) Ph.D.'s and three (3) MS's, and produced nine (9) international journal publications, twenty four (24) conference publications, and numerous other reports. The highlight of the project has been our close collaboration with LLNL (Dr. Oleg Schilling) and LANL (Drs. Dimonte, Ristorcelli, Gore, and Harlow)

  16. Compression of an Accelerated Taylor State in SSX

    Science.gov (United States)

    Shrock, J. E.; Suen-Lewis, E. M.; Barbano, L. J.; Kaur, M.; Schaffner, D. A.; Brown, M. R.

    2017-10-01

    In the Swarthmore Spheromak Experiment (SSX), compact toroidal plasmas are launched from a plasma gun and evolve into minimum energy twisted Taylor states. The plumes initially have a velocity 40 km/s, density 0.4 ×1016 cm-3 , and proton temperature 20 eV . After formation, the plumes are accelerated by pulsed pinch coils with rise times τ1 / 4 = (π / 2) √{ LC } less than 1 μ s and currents Ipeak =V0 / Z =V0 /√{ L / C } on the order of 104 A. The accelerated Taylor States are abruptly stagnated in a copper flux conserver, and over the course of t plasma, the other to particle motion parallel to the field. We observe Taylor state compression most in agreement with the parallel equation of state: d / dt (P∥B2 /n3) = 0 . DOE ARPA-E ALPHA Program.

  17. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  18. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  19. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  20. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    Science.gov (United States)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  1. Taylor-Made Libraries

    Science.gov (United States)

    Lonergan, David

    2011-01-01

    Frederick Winslow Taylor (1856-1915) was an efficiency expert whose concerns were less about avoiding worker fatigue and more about increasing profit margins by any means necessary. Taylor was devoted to finding the One Best Way to carry out a task and then training workers to do that task unvaryingly; attempts by employees to improve their own…

  2. Criticality experiments with annular cylinders containing plutonium solutions; Experiences de criticite sur des cylindres annulaires contenant des solutions de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Molbert, M; Sauve, A; Houelle, M; Deilgat, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The criticality station of Dijon involves three cells, shielded by concrete walls of 1.46 meter thickness. Those cells are designed to contain the criticality experiment apparatus. The engineering building is also involving: one chemical laboratory where plutonium solutions are prepared, one analysis laboratory, several activated solutions storages, several control rooms, One cell contains the B system, which is designed to study: annular cylindrical geometries, slab of 10 cm thickness, interaction between annular cylinders. This report includes the first results given by experiments on annular cylinders defined by their own geometry (outer and inner diameter of ring containing plutonium solutions). Those results have been plotted in curves, for several concentrations and for different reflection conditions (outer or inner light water reflector, cadmium screen), H{sub c} and M{sub c} = f (c) (where H{sub c} is the critical height of solution, M{sub c} is the critical mass, c is the plutonium concentration: 42,3 g/lexperiments on this cylinder being unfinished to the date of this present report publication. On this miscellaneous results, we have following informations know: - Screen effect of light water in central hole. Strengthened effect by cadmium foil on the inside wall. - Normalized interaction curves ( {alpha}*H{sub c}/H{sub c{infinity}} ) versus the distance between the two vessels, where H{sub c{infinity}} critical height of an insulated cylinder, shows that: 1) In light water, two cylinders set aside from 15 cm, can be considers like separated. 2) For some configurations, {alpha} vary

  3. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  4. Direct-drive laser-fusion in the US

    International Nuclear Information System (INIS)

    McCrory, R.L.; Soures, J.M.; Audebert, P.

    1986-01-01

    Direct-drive experiments at the University of Rochester's Laboratory for Laser Energetics (LLE) and the Naval Research Laboratory (NRL) are presently addressing issues in pellet compression and heating: efficiency of coupling of laser energy to the target and the coupling of absorbed energy to the fuel, drive uniformity, hydrodynamic stability, preheat arising from laser plasma instabilities and x-rays, and target diagnostics. The 24-beam, 2500-Joule, 351 nm OMEGA laser system at LLE has been used in an experimental effort to achieve high compressed DT fuel densities. Detailed hydrodynamic computer simulations at NRL predict that the growth rate of the ablative Rayleigh-Taylor instability is less than the classical values. Recent Rayleigh-Taylor experiments ar NRL are testing these predictions

  5. Nonlinear evolution of the sausage instability

    International Nuclear Information System (INIS)

    Book, D.L.; Ott, E.; Lampe, M.

    1976-01-01

    Sausage instabilities of an incompressible, uniform, perfectly conducting Z pinch are studied in the nonlinear regime. In the long wavelength limit (analogous to the ''shallow water theory'' of hydrodynamics), a simplified set of universal fluid equations is derived, with no radial dependence, and with all parameters scaled out. Analytic and numerical solutions of these one-dimensional equations show that an initially sinusoidal perturbation grows into a ''spindle'' or cylindrical ''spike and bubble'' shape, with sharp radial maxima. In the short wavelength limit, the problem is shown to be mathematically equivalent to the planar semi-infinite Rayleigh--Taylor instability, which also grows into a spike-and-bubble shape. Since the spindle shape is common to both limits, it is concluded that it probably obtains in all cases. The results are in agreement with dense plasma focus experiments

  6. Using Magnetic Fields to Create and Control High Energy Density Matter

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Mark [Sandia National Laboratory

    2012-05-09

    The recently refurbished Z facility at Sandia National Laboratories is the world’s largest pulsed power driver. Z can efficiently deliver currents as large as 26 Million Amperes to centimeter scale loads. These large currents create large magnetic fields that, in turn, create very large pressures in conducting materials. These very large pressures have been used to create unique conditions for high energy density science experiments for a variety of applications. Recently, we have been exploring the use of very strong magnetic fields to significantly relax the requirements for achieving inertial confinement fusion self heating1. The magnetized liner inertial fusion (MagLIF) concept relies on a cylindrically imploding liner, an axial magnetic field, and a laser heated fuel region. We hope to achieve significant fusion yield on the Z facility with this concept. Initial experiments assessing the growth of the Magneto-Rayleigh Taylor instability are promising and recent calculational work has identified an approach to achieving high gain with this concept.

  7. An Experimental Study on Rayleigh-Benard Natural Convection

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2012-01-01

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. Due to the decay heat generated in oxide pool, Rayleigh- Benard natural convection heated from below and cooled from above occurs in the metallic pool. Experiments were performed to investigate Rayleigh- Benard natural convection as a preparatory study before an in-depth severe accident study. The natural convection heat transfers were measured varying the plate separation distance and the area of plate with and without the side wall. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat

  8. Who believes in the Taylor Principle?

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Pierdzioch; Rülke

    2012-01-01

    The Livingston survey data are used to investigate whether economists’ forecasts are consistent with the Taylor principle. Consistency with the Taylor principle is strong for academics and Federal Reserve economists, and less strong for private-sector economists.......The Livingston survey data are used to investigate whether economists’ forecasts are consistent with the Taylor principle. Consistency with the Taylor principle is strong for academics and Federal Reserve economists, and less strong for private-sector economists....

  9. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  10. A heuristic model of the wire array z-pinch

    International Nuclear Information System (INIS)

    Haines, M.G.

    1998-01-01

    Recent experimental results at the Sandia National Laboratory have shown that the X-ray power increases as the number of wires n employed is increased, with a sharper increase in power when the wire gap is below a critical value. This paper proposes a model that can not only explain these phenomena, but also shows how the initial perturbations that lead to the Rayleigh-Taylor instability scale as n -1/2 . The model predicts the shell thickness at merger of the expanding separate wires which will mainly determine the final pinch radius. The largest amplitude Rayleigh-Taylor mode at the pinch time is also found, in reasonable agreement with experiment

  11. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    Science.gov (United States)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417

  12. Production of direct drive cylindrical targets for inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Elliott, N.E.; Day, R.D.; Hatch, D.J.; Sandoval, D.L.; Gomez, V.M.; Pierce, T.H.; Elliott, J.E.; Manzanares, R.

    2002-01-01

    We have made targets with cylindrical geometry for Inertial Confinement Fusion (ICF) experiments. These targets are used in hydrodynamic experiments on the OMEGA laser at the University of Rochester. The cylindrical design allows the study of three dimensional hydrodynamic effects in a pseudo 2D mode, simplifying data gathering and analysis. Direct drive refers to the fact that the target is illuminated directly by approximately 50 laser beams and is imploded by the material pressure generated from ablation of the outside of the target. The production of cylindrical targets involves numerous steps. These steps are shared in common with many other types of ICF targets but no other single target type encompasses such a wide range of fabrication techniques. These targets consist of a large number of individual parts, all fabricated from commercially purchased raw material, requiring many machining, assembly, electroplating and chemical process steps. Virtually every manufacturing and assembly process we currently possess is involved in the production of these targets. The generic target consists of a plastic cylinder (ablator) that is roughly lmm in diameter by 2.25mm long. The wall of the cylinder is roughly 0.07mm thick. There is an aluminum cylinder 0.5mm wide and O.Olmm thick centered on the inside of the plastic cylinder and coaxial with the outside plastic cylinder. The outside of this aluminum band has surface finishes of differing random average roughness. The required average surface roughness is determined in advance by experimental design based on the amount of turbulent mix to be observed. The interior of the cylinder is filled with low density polystyrene foam that is made in house. To produce a finished target additional features are added to each target. X-ray backlighters are cantilevered off the target that allow time resolved x-ray images of the imploding target to be recorded during the experiment. The x-ray backlighters are driven by additional

  13. Non-Taylor magnetohydrodynamic self-organization

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya.

    1994-10-01

    A self-organization process in a plasma with a finite pressure is investigated by means of a three-dimensional magnetohydrodynamic simulation. It is demonstrated that a non-Taylor finite β self-organized state is realized in which a perpendicular component of the electric current is generated and the force-free(parallel) current decreases until they reach to almost the same level. The self-organized state is described by an MHD force-balance relation, namely, j perpendicular = B x ∇p/B·B and j parallel = μB where μ is not a constant, and the pressure structure resembles the structure of the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor (non-force-free) self-organized state. This state becomes more prominent for a weaker resistivity condition. The non-Taylor state has a rather universal property, for example, independence of the initial β value. Another remarkable finding is that the Taylor's conjecture of helicity conservation is, in a strict sense, not valid. The helicity dissipation occurs and its rate slows down critically in accordance with the stepwise relaxation of the magnetic energy. It is confirmed that the driven magnetic reconnection caused by the nonlinearly excited plasma kink flows plays the leading role in all of these key features of the non-Taylor self-organization. (author)

  14. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  15. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  16. Taylor instability in rhyolite lava flows

    Science.gov (United States)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  17. Rayleigh-Benard Natural Convection Cell Formation and Nusselt number

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2013-01-01

    The experimental results lie within the predictions of the existing heat transfer correlations for the Rayleigh-Benard natural convections even though the material properties were different. For shorter separation distances, the heat transfers enhance due to the active interaction between heated and cooled plumes. For a step temperature difference, the time dependent Nusselt number variations were investigated. Both experimental and numerical results showed that with time the Nusselt number decreases monotonically to a minimum point presenting the onset of convection. As the hot and cold plumes increase and convey the heat to the other plates, the Nusselt number increases to the local maximum point, presenting the vertical movements of the plumes. Then, the Nusselt number fluctuates with the formation of square cells and larger vortices. This also predicted by the mass transfer experiment. The experiments and calculations show similar trend but the timings were different. These discrepancies are caused by the disturbances inherent in both systems. The molten pool is formed in a hypothetical severe accident condition at the lower head of reactor vessel and is stratified into two layers by the density difference: an upper metallic layer and a lower oxide pool. Rayleigh-Benard natural convection occurs in the metallic layer of relocated molten pool. This study aimed at the investigation of the time-dependent cell formation and Nusselt number variation in Rayleigh-Benard natural convection. Time dependent variation of Nusselt number was also measured experimentally and analyzed numerically to investigate the relationship between the cell formation and Nusselt number. Based on the analogy, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and heating conditions

  18. Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, M.; Srnka, Aleš; Skrbek, L.

    2014-01-01

    Roč. 16, č. 5 (2014), 053042: 1-40 ISSN 1367-2630 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : Rayleigh-Bénard convection * heat transfer efficiency * cryogenic helium Subject RIV: BK - Fluid Dynamics Impact factor: 3.558, year: 2014

  19. Experiment and Simulation Analysis on Noise Attenuation of Al/MF Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Bin Li

    2017-01-01

    Full Text Available For the issue concerning internal noise reduction of Al-made cylindrical shell structure, the noise control method of laying melamine foam (MF layer is adopted for in-shell noise attenuation experiments of Al and Al/MF cylindrical shells and corresponding internal noise response spectrograms are obtained. Based on the Virtual.Lab acoustics software, a finite element model is established for the analysis of noise in the Al/MF cylinder shell and numerical simulation computation is conducted for the acoustic mode and in-shell acoustic response; the correctness of the finite element model is verified via comparison with measured data. On this basis, influence rules of different MF laying rate and different laying thickness on acoustic cavity resonance response within the low and medium frequency range of 100–400 Hz are studied. It is indicated that noise reduction increases with MF laying rate, but the amplification decreases along with the rising of MF laying rate; noise reduction per unit thickness decreases with the increase of laying thickness, while noise reduction per unit area increases.

  20. "Kaj" je Frederick Winslow Taylor = “What” is Frederick Winslow Taylor

    OpenAIRE

    Andrej Markovic

    2006-01-01

    Raising the issue of Taylor and his scientific management after less than a hundred years seems at first glance to be quite anachronistic. Today we are more likely to find Taylor’s works in antique shops than in the libraries of the schools of management. Has the memory of utilitarian and pragmatic managerial knowledge of a century back faded, or are we in a way ashamed of Taylor, the protagononist of management? How does the research into the origin and nature of management affect the effici...

  1. Effect of barrier layers in burnthrough experiments with 351-nm laser illumination

    International Nuclear Information System (INIS)

    Delettrez, J.; Bradley, D.K.; Jaanimagi, P.A.; Verdon, C.P.

    1990-01-01

    The time-resolved x-ray emission is measured from spherical targets consisting of glass shells overcoated with plastic in which thin signature layers are embedded. These targets are illuminated at 351 nm by the 24-beam OMEGA laser system at the Laboratory for Laser Energetics of the University of Rochester. We measure a large burnthrough rate for bare plastic targets that can only be replicated in one-dimensional hydrodynamic simulations with laser intensities in excess of ten times the nominal intensity. We observe that the burnthrough times are affected by the presence of a thin outer coating (barrier layer). The burnthrough times depend strongly on the barrier-layer material and thickness, whereas one-dimensional simulation results predict only a small effect. Several processes are considered to explain these results: illumination nonuniformity, early shinethrough of the laser light through the plastic, prepulses, filamentation, self-focusing of hot spots, and the Rayleigh-Taylor instability. We conclude that mixing due to the Rayleigh-Taylor instability, enhanced by early shinethrough, is the most probable cause of the observed large burnthrough rates

  2. Numerical Simulations of Scattering of Light from Two-Dimensional Rough Surfaces Using the Reduced Rayleigh Equation

    Directory of Open Access Journals (Sweden)

    Tor eNordam

    2013-09-01

    Full Text Available A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a non-absorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p- or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.

  3. Research Performance Progress Report: Diverging Supernova Explosion Experiments on NIF

    Energy Technology Data Exchange (ETDEWEB)

    Plewa, Tomasz [Florida State Univ., Tallahassee, FL (United States)

    2016-10-25

    The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) experiments on the National Ignition Facility (NIF). The experiments of this kind are relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address previously unanswered questions in high-energy density physics (HEDP) and astrophysics. The unmatched laser power of the NIF laser offers a unique chance to observe and study “new physics” like the mass extensions observed in HEDP RT experiments performed on the Omega laser [1], which might be linked to self-generated magnetic fields [2] and so far could not be reproduced by numerical simulations. Moreover, NIF is currently the only facility that offers the possibility to execute a diverging RT experiment, which would allow to observe processes such as inter-shell penetration via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).

  4. Theory of current instability experiments in magnetic Taylor-Couette flows

    OpenAIRE

    Ruediger, G.; Schultz, M.; Shalybkov, D.; Hollerbach, R.

    2006-01-01

    We consider the linear stability of dissipative MHD Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10-5, approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B$_\\phi$(R) close to the current-free solution. The profile with B$_{in}$=B$_{out}$ (the most un...

  5. Experiments on cylindrically converging blast waves in atmospheric air

    Science.gov (United States)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  6. Effect of matrix cracking on the time delayed buckling of viscoelastic laminated circular cylindrical shells

    Institute of Scientific and Technical Information of China (English)

    PENG Fan; FU YiMing; CHEN YaoJun

    2008-01-01

    The effect of matrix cracking on the bifurcation creep buckling of viscoelastic laminated circular cylindrical shells is investigated. The viscoelastic behavior of laminas is modeled by Schapery's integral constitutive equation with growing ma-trix cracks. The values of damage variables are correlated to non-dimensional density of matrix cracks relying on the formulas from meso-mechanics approach, and the evolution equation predicting the growth rate of density of matrix cracks is assumed to follow a power type relation with transverse tensile stress. The gov-erning equations for pre-buckling creep deformation and bifurcation buckling of laminated circular cylindrical shells under axial compression are obtained on the basis of the Donnell type shallow shell theory and Karman-Donnell geometrically nonlinear relationship. Corresponding solution strategy is constructed by inte-grating finite-difference technique, trigonometric series expansion method and Taylor's numerical recursive scheme for convolution integration. The bifurcation creep buckling of symmetrically laminated glass-epoxy circular cylindrical shells with matrix creep cracking coupled are examined for various geometrical parame-ters and parameters of damage evolution as well as boundary conditions. The nu-merical results show that matrix creep cracking remarkably shortens the critic time of bifurcation buckling and reduces the durable critic loads, and its effects become weak and finally vanish with the increase of the ratio of radius to thickness in the case of short laminated circular cylindrical shells, also the influence of the matrix creep cracking is mainly dependent on the boundary conditions at two ends for moderately long circular cylindrical shells.

  7. Experimental study of the Richtmyer-Meshkov instability induced by a Mach 3 shock wave

    International Nuclear Information System (INIS)

    BP Puranik; JG Oakley; MH Anderson; R Bonaazza

    2003-01-01

    OAK-B135 An experimental investigation of a shock-induced interfacial instability (Richtmyer-Meshkov instability) is undertaken in an effort to study temporal evolution of interfacial perturbations in the late stages of development. The experiments are performed in a vertical shock tube with a square cross-section. A membraneless interface is prepared by retracting a sinusoidally shaped metal plate initially separating carbon dioxide from air, with both gases initially at atmospheric pressure. With carbon dioxide above the plate, the Rayleigh-Taylor instability commences as the plate is retracted and the amplitude of the initial sinusoidal perturbation imposed on the interface begins to grow. The interface is accelerated by a strong shock wave (M=3.08) while its shape is still sinusoidal and before the Kelvin-Helmhotz instability distorts it into the well known mushroom-like structures; its initial amplitude to wavelength ratio is large enough that the interface evolution enters its nonlinear stage very shortly after shock acceleration. The pre-shock evolution of the interface due to the Rayleigh-Taylor instability and the post-shock evolution of the interface due to the Richtmyer-Meshkov instability are visualized using planar Mie scattering. The pre-shock evolution of the interface is carried out in an independent set of experiments. The initial conditions for the Richtmyer-Meshkov experiment are determined from the pre-shock Rayleigh-Taylor growth. One image of the post-shock interface is obtained per experiment and image sequences, showing the post-shock evolution of the interface, are constructed from several experiments. The growth rate of the perturbation amplitude is measured and compared with two recent analytical models of the Richtmyer-Meshkov instability

  8. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  9. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  10. Importance sampling the Rayleigh phase function

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2011-01-01

    Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....

  11. Extended MHD Effects in High Energy Density Experiments

    Science.gov (United States)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  12. Slow growth of the Rayleigh-Plateau instability in aqueous two phase systems

    NARCIS (Netherlands)

    Geschiere, S.D.; Ziemecka, I.; Van Steijn, V.; Koper, G.J.M.; Van Esch, J.H.; Kreutzer, M.T.

    2012-01-01

    This paper studies the Rayleigh-Plateau instability for co-flowing immiscible aqueous polymer solutions in a microfluidic channel. Careful vibration-free experiments with controlled actuation of the flow allowed direct measurement of the growth rate of this instability. Experiments for the

  13. Equatorial spread F: a review of recent experimental results

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1979-01-01

    In this paper the authors review an intense research effort aimed at understanding the large scale disruption of the equatorial F layer which often commences just after sunset, and lasts for most of the night. A very attractive explanation for the phenomena, although one not universally accepted, is that the F layer is unstable to the classic Rayleigh-Taylor condition in which a heavy fluid, the plasma, is supported against gravity by a light 'fluid', the Earth's magnetic field. It is concluded that a reasonable case has been made for this explanation provided that the concept is extended to include nonlinear Rayleigh-Taylor like buoyancy effects above the F peak where linear process is stable. Internal gravity waves in neutral atmosphere seem to play an important role in seeding the Rayleigh-Taylor process with large scale finite amplitude perturbations. One of the remarkable features of this phenomena is the nearly simultaneous generation of structure with scale sizes spanning five orders of magnitude. These results may have applications in astrophysical processes where the Rayleigh-Taylor instability is thought to play a role. (Auth.)

  14. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  15. The turbulent mixing of non-Newtonian fluids

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2013-07-01

    The turbulence caused by the Rayleigh-Taylor instability represents a complicated phenomenon. It is usually related to the major hydrodynamic activities, the tangling of the media contact boundary, merging, separation and intermixing of originally smoothed initial structures. An important role in the theory of the Rayleigh-Taylor instability is played by the discontinuity of density on a contact interface between two homogeneous (in terms of density) fluids. A numerical modeling of the intermixing of two fluids with different rheology whose densities differ twice as a result of the Rayleigh-Taylor instability has been carried out. The coefficients of turbulent intermixing in a multimode statement of the problem for the Bingham, dilatant and pseudo-plastic fluids have been obtained.

  16. On Amplify-and-Forward Relaying Over Hyper-Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    S. H. Alvi

    2014-12-01

    Full Text Available Relayed transmission holds promise for the next generation of wireless communication systems due to the performance gains it can provide over non-cooperative systems. Recently hyper-Rayleigh fading, which represents fading conditions more severe than Rayleigh fading, has received attention in the context of many practical communication scenarios. Though power allocation for Amplify-and-Forward (AF relaying networks has been studied in the literature, a theoretical analysis of the power allocation problem for hyper-Rayleigh fading channels is a novel contribution of this work. We develop an optimal power allocation (OPA strategy for a dual-hop AF relaying network in which the relay-destination link experiences hyper-Rayleigh fading. A new closed-form expression for the average signal-to-noise ratio (SNR at destination is derived and it is shown to provide a new upper-bound on the average SNR at destination, which outperforms a previously proposed upper-bound based on the well-known harmonic-geometric mean inequality. An OPA across the source and relay nodes, subject to a sum-power constraint, is proposed and it is shown to provide measurable performance gains in average SNR and SNR outage at the destination relative to the case of equal power allocation.

  17. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  18. Dynamic shear-bending buckling experiments of cylindrical shells

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Akiyama, H.

    1995-01-01

    Dynamic experimental studies of the plastic shear/bending buckling of cylindrical shells were performed. They clarified the inelastic response reduction and the seismic margin of FBR reactor vessels. The test results were incorporated into the draft of the seismic buckling design guidelines of FBR. (author). 15 refs., 3 figs

  19. 76 FR 76689 - Cibola National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling

    Science.gov (United States)

    2011-12-08

    ... National Forest, Mount Taylor Ranger District, NM, Mount Taylor Combined Exploratory Drilling AGENCY... proposed action is to approve two Plans of Operations for exploratory uranium drilling on the Cibola... San Mateo. In total, there are up to 279 drill holes that would be drilled over a period not to exceed...

  20. Recent results in Rayleigh scattering

    International Nuclear Information System (INIS)

    Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva

    1997-01-01

    New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)

  1. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  2. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators.

    Science.gov (United States)

    Liao, Bolin; Zhang, Yunong; Jin, Long

    2016-02-01

    In this paper, a new Taylor-type numerical differentiation formula is first presented to discretize the continuous-time Zhang neural network (ZNN), and obtain higher computational accuracy. Based on the Taylor-type formula, two Taylor-type discrete-time ZNN models (termed Taylor-type discrete-time ZNNK and Taylor-type discrete-time ZNNU models) are then proposed and discussed to perform online dynamic equality-constrained quadratic programming. For comparison, Euler-type discrete-time ZNN models (called Euler-type discrete-time ZNNK and Euler-type discrete-time ZNNU models) and Newton iteration, with interesting links being found, are also presented. It is proved herein that the steady-state residual errors of the proposed Taylor-type discrete-time ZNN models, Euler-type discrete-time ZNN models, and Newton iteration have the patterns of O(h(3)), O(h(2)), and O(h), respectively, with h denoting the sampling gap. Numerical experiments, including the application examples, are carried out, of which the results further substantiate the theoretical findings and the efficacy of Taylor-type discrete-time ZNN models. Finally, the comparisons with Taylor-type discrete-time derivative model and other Lagrange-type discrete-time ZNN models for dynamic equality-constrained quadratic programming substantiate the superiority of the proposed Taylor-type discrete-time ZNN models once again.

  3. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  4. "Kaj" je Frederick Winslow Taylor = “What” is Frederick Winslow Taylor

    Directory of Open Access Journals (Sweden)

    Andrej Markovic

    2006-06-01

    Full Text Available Raising the issue of Taylor and his scientific management after less than a hundred years seems at first glance to be quite anachronistic. Today we are more likely to find Taylor’s works in antique shops than in the libraries of the schools of management. Has the memory of utilitarian and pragmatic managerial knowledge of a century back faded, or are we in a way ashamed of Taylor, the protagononist of management? How does the research into the origin and nature of management affect the efficiency of a particular manager, which seems to be the objective of management education? What is the difference between Taylor's management and contemporary management? Is it merely less scientific in approach? And where is modern management developing, if no longer in the field of exact science? And where do key notions of contemporary management, like ‘mission’ and ‘vision’ belong? Has management since its beginings proved to be only knowledge for managing organizations, or does it go beyond that? In a brief analysis of Taylor’s scientific management the author of the article tries to answer the above mentioned questions. Some of the questions are, however, only touched upon, awaiting an answer in the future.

  5. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  6. 33 CFR 117.987 - Taylor Bayou.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Bayou. 117.987 Section 117.987 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Texas § 117.987 Taylor Bayou. The draws of the Union Pacific...

  7. Linear Analyses of Magnetohydrodynamic Richtmyer-Meshkov Instability in Cylindrical Geometry

    KAUST Repository

    Bakhsh, Abeer

    2018-05-13

    We investigate the Richtmyer-Meshkov instability (RMI) that occurs when an incident shock impulsively accelerates the interface between two different fluids. RMI is important in many technological applications such as Inertial Confinement Fusion (ICF) and astrophysical phenomena such as supernovae. We consider RMI in the presence of the magnetic field in converging geometry through both simulations and analytical means in the framework of ideal magnetohydrodynamics (MHD). In this thesis, we perform linear stability analyses via simulations in the cylindrical geometry, which is of relevance to ICF. In converging geometry, RMI is usually followed by the Rayleigh-Taylor instability (RTI). We show that the presence of a magnetic field suppresses the instabilities. We study the influence of the strength of the magnetic field, perturbation wavenumbers and other relevant parameters on the evolution of the RM and RT instabilities. First, we perform linear stability simulations for a single interface between two different fluids in which the magnetic field is normal to the direction of the average motion of the density interface. The suppression of the instabilities is most evident for large wavenumbers and relatively strong magnetic fields strengths. The mechanism of suppression is the transport of vorticity away from the density interface by two Alfv ́en fronts. Second, we examine the case of an azimuthal magnetic field at the density interface. The most evident suppression of the instability at the interface is for large wavenumbers and relatively strong magnetic fields strengths. After the shock interacts with the interface, the emerging vorticity breaks up into waves traveling parallel and anti-parallel to the magnetic field. The interference as these waves propagate with alternating phase causing the perturbation growth rate of the interface to oscillate in time. Finally, we propose incompressible models for MHD RMI in the presence of normal or azimuthal magnetic

  8. O salário na obra de Frederick Winslow Taylor Frederick Winslow Taylor's oeuvre: an analysis of wages

    Directory of Open Access Journals (Sweden)

    Victor Paulo Gomes da Silva

    2011-08-01

    Full Text Available O presente artigo analisa e explica a perspectiva de Frederick Winslow Taylor sobre o salário, tal como enunciada em suas duas grandes obras: Shop management (1903 e Principles of scientific management (1911. A primeira parte consubstancia-se na apresentação de aspectos econômicos relevantes que caracterizaram o tempo em que ele viveu e o quanto influenciaram suas obras. Na segunda parte, é efetuada uma análise da forma como o salário é apresentado nas duas obras de F. W. Taylor. O artigo termina com um comentário sobre as obras supracitadas no que se refere à perspectiva taylorista do salário.This paper analyses and explains Frederick Winslow Taylor's perspective on wages, as it is presented in his main literary works: Shop management (1903 and Principles of scientific management (1911. The first part presents the main economic aspects that characterized his lifetime, which undoubtedly influenced his literary works. The second part analyses F. W. Taylor's two main books in which the author's perspective about wages is discussed. The paper concludes with a critical view of F. W. Taylor's view on wages.

  9. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  10. 33 CFR 117.335 - Taylor Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  11. Stability of accelerated metal shells

    International Nuclear Information System (INIS)

    Tahsiri, H.

    1976-01-01

    A systematic treatment has been developed for the Rayleigh-Taylor instability of an accelerated liner. It is applicable to one-dimensional models either compressible or incompressible. With this model several points have been clarified. For an incompressible liner model, the Rayleigh-Taylor instability will have about five e-folding periods and the usual growth rate is independent of the current distribution or current rise time. Adequate stability will therefore depend on the magnitude of the initial perturbations or the precision of the initial liner and the thickness over which the shell is accelerated. However, for a compressible model, theory predicts that the current rise time is important and the Rayleigh-Taylor instability is suppressed if the current rise time is less than the shock transit time

  12. Rayleigh wave effects in an elastic half-space.

    Science.gov (United States)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  13. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  14. String-theoretic deformation of the Parke-Taylor factor

    Science.gov (United States)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  15. Transmit selection for imperfect threshold-based receive MRC in Rayleigh fading channels

    KAUST Repository

    Radaydeh, Redha Mahmoud Mesleh; Alouini, Mohamed-Slim

    2010-01-01

    experience identically distributed and non-identically distributed Rayleigh fading conditions. New closed-form expressions for the combined SNR statistics and some performance measures are presented. The system models adopted herein and the presented

  16. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  17. Bivariate Rayleigh Distribution and its Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Saeed Akhter

    2007-01-01

    Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.

  18. Non-vanishing of Taylor coefficients and Poincaré series

    DEFF Research Database (Denmark)

    O'Sullivan, C.; Risager, Morten S.

    2013-01-01

    We prove recursive formulas for the Taylor coefficients of cusp forms, such as Ramanujan's Delta function, at points in the upper half-plane. This allows us to show the non-vanishing of all Taylor coefficients of Delta at CM points of small discriminant as well as the non-vanishing of certain...... Poincaré series. At a "generic" point, all Taylor coefficients are shown to be non-zero. Some conjectures on the Taylor coefficients of Delta at CM points are stated....

  19. Nonlinear traveling waves in rotating Rayleigh-Bacute enard convection: Stability boundaries and phase diffusion

    International Nuclear Information System (INIS)

    Liu, Y.; Ecke, R.E.

    1999-01-01

    We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society

  20. Measurement of the Rayleigh scattering length in liquid scintillators for JUNO

    Energy Technology Data Exchange (ETDEWEB)

    Hackspacher, Paul [Johannes Gutenberg-Universitaet Mainz, PRISMA Excellence Cluster (Germany); Collaboration: JUNO-Collaboration

    2016-07-01

    In liquid scintillator neutrino detectors such as the upcoming Jiangmen Underground Neutrino Observatory (JUNO), neutrino interactions are being detected by means of inverse beta decay and analysis of the resulting luminescent light. In order to reliably reconstruct these events from photomultiplier signals, the scattering properties of the detector materials need to be sufficiently well known. In the LAB-based liquid scintillator that has been proposed for JUNO, the primary contribution to the scattering process comes from Rayleigh scattering. The characteristic Rayleigh scattering length can be experimentally obtained in an optical laboratory setup. This talk presents the approach, the current status and the future plans of the experiment.

  1. Measurement of Rayleigh Wave Beams Using Angle Beam Wedge Transducers as the Transmitter and Receiver with Consideration of Beam Spreading.

    Science.gov (United States)

    Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo

    2017-06-20

    A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.

  2. Taylor series maps and their domain of convergence

    International Nuclear Information System (INIS)

    Abell, D.T.; Dragt, A.J.

    1992-01-01

    This paper tries to make clear what limits the validity of a Taylor series map, and how. We describe the concept of a transfer map and quote some theorems that justify not only their existence but also their advantages. Then, we describe the Taylor series representation for transfer maps. Following that, we attempt to elucidate some of the basic theorems from the theory of functions of one and several complex variables. This material forms the core of our understanding of what limits the domain of convergence of Taylor series maps. Lastly, we use the concrete example of a simple anharmonic oscillator to illustrate how the theorems from several complex variable theory affect the domain convergence of Taylor series maps. There we describe the singularities of the anharmonic oscillator in the complex planes of the initial conditions, show how they constrain our use of a Taylor series map, and then discuss our findings

  3. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  4. Taylorism and the Logic of Learning Outcomes

    Science.gov (United States)

    Stoller, Aaron

    2015-01-01

    This essay examines the shared philosophical foundations of Fredrick W. Taylor's scientific management principles and the contemporary learning outcomes movement (LOM). It analyses the shared philosophical ground between the focal point of Taylor's system--"the task"--and the conceptualization and deployment of "learning…

  5. Experiment and simulation on the thermal instability of a heavily deformed Cu-Fe composite

    International Nuclear Information System (INIS)

    Qu Lei; Wang Engang; Zuo Xiaowei; Zhang Lin; He Jicheng

    2011-01-01

    Research highlights: → Fe fibers undergo thermal instability at temperature above 600 deg. C. → Longitudinal boundary splitting is the dominant instability process. → Instability of cylindrical fibers is controlled by breakup, growth and coarsening. → Breakup times can be predicted by Rayleigh perturbation model accurately. → The increase of fiber diameters is due to the coarsening and growth. - Abstract: The thermal instability of the Fe fibers in the heavily deformed Cu-12.8 wt.%Fe composites is investigated experimentally and numerically. The fiber evolution is characterized by a field emission scanning electron microscopy (FESEM). The results show that the dominant instability of the Fe fibers is the longitudinal boundary splitting which is determined by the greater cross sectional aspect ratio (width/thickness, w/t) and the larger ratio of boundary to interfacial energy (γ B /γ S ). The longitudinal boundary splitting makes the ribbon-like Fe fibers evolve into a series of cylindrical fibers. Then the cylindrical Fe fibers undergo the instability process in terms of the breakup, growth and coarsening concurrently. The breakup times are accurately predicted by the Rayleigh perturbation model. The growth process primarily contributes to the higher increasing rate of the fiber radius during isothermal annealing at 700 deg. C than that calculated by the coarsening theory developed for cylindrical fibers, since the Cu-matrix of composites is highly supersaturated after casting/cold-working process.

  6. The Life and Legacy of G. I. Taylor

    Science.gov (United States)

    Batchelor, G. K.

    1996-07-01

    G.I. Taylor, one of the most distinguished physical scientists of this century, used his deep insight and originality to increase our understanding of phenomena such as the turbulent flow of fluids. His interest in the science of fluid flow was not confined to theory; he was one of the early pioneers of aeronautics, and designed a new type of anchor that was inspired by his passion for sailing. Taylor spent most of his working life in the Cavendish Laboratory in Cambridge, where he investigated the mechanics of fluid and solid materials; his discoveries and ideas have had application throughout mechanical, civil, and chemical engineering, meteorology, oceanography and materials science. He was also a noted research leader, and his group in Cambridge became one of the most productive centers for the study of fluid mechanics. How was Taylor able to be innovative in so many different ways? This interesting and unusual biography helps answer that question. Professor Batchelor, himself a student and close collaborator of Taylor, is ideally placed to describe Taylor's life, achievements and background. He does so without introducing any mathematical details, making this book enjoyable reading for a wide range of people--and especially those whose own interests have brought them into contact with the legacy of Taylor.

  7. Educar na autenticidade em Charles Taylor = Educating in the authenticity in Charles Taylor

    Directory of Open Access Journals (Sweden)

    Foschiera, Rogério

    2009-01-01

    Full Text Available Analiso a perspectiva tayloriana da autencidade através de uma hermenêutica de suas principais obras para propor o significado de educar na autencticidade a partir de Charles Taylor. Com autencidade e ontologia moral Taylor apresenta uma antropologia ancorada na moral e na ontologia. Com autencidade e epistemologia se percebe que a perspectiva da autencidade não exclui o paradigma científico, mas necessita de outros paradigmas, principalmente do hermenêutico. Com autencidade e linguagem evidencio a compreensão de Taylor sobre a natureza da linguagem e o destaque que ele dá á definição de ser humano como "animal portador de logos", bem como o significado e as decorrências da perspectiva expressivista. Duas políticas: a da igualdade de direitos de todos e a do reconhecimento das diferenças estão integradas na perspectiva tayloriana da autencidade. Necessariamente, o ser humano, para ser autêntico, estará em constante referência a horizontes de sentido que transcendem o indivíduo, é o que apresento com autencidade e transcendência

  8. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  9. Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.

    Science.gov (United States)

    Rajabi, M; Hasheminejad, Seyyed M

    2009-12-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.

  10. Quasi-cylindrical theory of wing-body interference at supersonic speeds and comparison with experiment

    Science.gov (United States)

    Nielsen, Jack N

    1955-01-01

    A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.

  11. On truncated Taylor series and the position of their spurious zeros

    DEFF Research Database (Denmark)

    Christiansen, Søren; Madsen, Per A.

    2006-01-01

    A truncated Taylor series, or a Taylor polynomial, which may appear when treating the motion of gravity water waves, is obtained by truncating an infinite Taylor series for a complex, analytical function. For such a polynomial the position of the complex zeros is considered in case the Taylor...

  12. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  13. Hydrodynamic instability of compressible fluid in porous medium

    International Nuclear Information System (INIS)

    Argal, Shraddha; Tiwari, Anita; Sharma, P K; Prajapati, R P

    2014-01-01

    The hydrodynamic Rayleigh -Taylor instability of two superposed compressible fluids in porous medium has been studied. The dispersion relation is derived for such a medium by using normal mode analysis. The RT instability is discussed for various simplified configuration. The effect of porosity and dynamic viscosity has been analyzed and it is observed that porosity and dynamic viscosity have stabilizing effect on the Rayleigh- Taylor instability of compressible fluids.

  14. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Science.gov (United States)

    2011-01-20

    ...-1189; Airspace Docket No. 10-AWP-19] Proposed Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is...

  15. Comparisons of LES and RANS Computations with PIV Experiments on a Cylindrical Cavity Flow

    Directory of Open Access Journals (Sweden)

    Wen-Tao Su

    2013-01-01

    Full Text Available A comparison study on the numerical computations by large eddy simulation (LES and Reynolds-averaged Navier-Stokes (RANS methods with experiment on a cylindrical cavity flow was conducted in this paper. Numerical simulations and particle image velocimetry (PIV measurement were performed for two Reynolds numbers of the flow at a constant aspect ratio of H/R = 2.4 (R is the radius of the cylindrical cavity, and H is liquid level. The three components of velocity were extracted from 100 sequential PIV measured velocity frames with averaging, in order to illustrate the axial jet flow evolution and circulation distribution in the radial direction. The results show that LES can reproduce well the fine structure inside the swirling motions in both the meridional and the horizontal planes, as well as the distributions of velocity components and the circulation, in good agreement with experimental results, while the RANS method only provided a rough trend of inside vortex structure. Based on the analysis of velocity profiles at various locations, it indicates that LES is more suitable for predicting the complex flow characteristics inside complicated three-dimensional geometries.

  16. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  17. Application of Taylor-Series Integration to Reentry Problems with Wind

    NARCIS (Netherlands)

    Bergsma, Michiel; Mooij, E.

    2016-01-01

    Taylor-series integration is a numerical integration technique that computes the Taylor series of state variables using recurrence relations and uses this series to propagate the state in time. A Taylor-series integration reentry integrator is developed and compared with the fifth-order

  18. Generalization of the Taylor Principle

    International Nuclear Information System (INIS)

    Jensen, T.H.

    1986-01-01

    The usual Taylor Principle can in general only be applied when the system is closed. This paper describes a suggestion of a generalization to cover the case that the plasma is surrounded by a conducting shell with narrow gaps where the external circuits connected to the gaps consist of just inductors. The suggested constraint of the generalized Taylor Principle is that no helicity is absorbed by the plasma. The usual assumption that the stable Taylor Equilibrium is that for which the magnetic energy in the plasma region as well as in the external inductors is minimized subject to the above constraint, again leads to a unique configuration. It is found that this configuration is dependent upon the inductances of the external inductors. For the sake of conceptual simplicity, consider a closed shell of conducting material. The interior of the shell may be divided into various compartments only corrected through narrow gaps in the conducting walls between these compartments. They assume plasma present in only one of the compartments; the neighboring compartments represent the external inductors connected across the gaps of the plasma compartment

  19. The New Taylorism: Hacking at the Philosophy of the University's End

    Science.gov (United States)

    Goodman, Robin Truth

    2012-01-01

    This article looks at the critical writings of Mark C. Taylor. It suggests that Mark C. Taylor is rewriting a global imaginary devoid of the kind of citizenship that Henry Giroux claims as the basis for public education. Instead, Taylor wants to see the university take shape as profit-generating. According to Taylor, in lieu of learning to take…

  20. Distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum

    International Nuclear Information System (INIS)

    De Zotti, G.

    1982-01-01

    The theory of the origin and evolution of distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum is reviewed. Some proposed experiments, designed to substantially improve our knowledge of that portion of the spectrum, are briefly described. (author)

  1. On the interaction of Rayleigh surface waves with structures

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-12-01

    A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)

  2. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    Science.gov (United States)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  3. Stagnation morphology in Magnetized Liner Inertial Fusion experiments

    Science.gov (United States)

    Gomez, M. R.; Harding, E. C.; Ampleford, D. J.; Jennings, C. A.; Awe, T. J.; Chandler, G. A.; Glinsky, M. E.; Hahn, K. D.; Hansen, S. B.; Jones, B.; Knapp, P. F.; Martin, M. R.; Peterson, K. J.; Rochau, G. A.; Ruiz, C. L.; Schmit, P. F.; Sinars, D. B.; Slutz, S. A.; Weis, M. R.; Yu, E. P.

    2017-10-01

    In Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility, an axial current of 15-20 MA is driven through a thick metal cylinder containing axially-magnetized, laser-heated deuterium fuel. The cylinder implodes, further heating the fuel and amplifying the axial B-field. Instabilities, such as magneto-Rayleigh-Taylor, develop on the exterior of the liner and may feed through to the inner surface during the implosion. Monochromatic x-ray emission at stagnation shows the stagnation column is quasi-helical with axial variations in intensity. Recent experiments demonstrated that the stagnation emission structure changed with modifications to the target wall thickness. Additionally, applying a thick dielectric coating to the exterior of the target modified the stagnation column. A new version of the x-ray self-emission diagnostic has been developed to investigate stagnation with higher resolution. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  4. The GeoFlow experiment-spherical Rayleigh-Benard convection under the influence of an artificial central force field

    International Nuclear Information System (INIS)

    Gellert, M; Beltrame, P; Egbers, C

    2005-01-01

    Spherical Rayleigh-Benard convection under the influence of an artificial central force field produced by the so-called dielectrophoretic effect is studied as a simplified model of the flow in the outer earth core. The fluid motion there is most probably driving the earth's dynamo and the energy source for the earth's magnetic field. Studying convective flows in earth-like geometry could lead to a deeper understanding of the basics of these processes. This research is a preparatory study for the experiments on the International Space Station (ISS). A bifurcation-theoretical approach shows the existence of heteroclinic cycles between spherical modes (l, l + 1) for the non-rotating system. This behavior depends strong on the radius ratio of the spheres and will be hard to detect in the experiment. For slow rotations interactions of the azimuthal modes (m, m + 1) found in numerical simulations for supercritical states are supposed to be experimentally observable

  5. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  6. The Kelvin-Helmholtz instability in National Ignition Facility hohlraums as a source of gold-gas mixing

    Energy Technology Data Exchange (ETDEWEB)

    Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-05-15

    Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all the conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.

  7. Dynamic Transition and Pattern Formation in Taylor Problem

    Institute of Scientific and Technical Information of China (English)

    Tian MA; Shouhong WANG

    2010-01-01

    The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow,by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors.In particular,it is shown that as the Taylor number crosses the critical number,the system undergoes either a continuous or a jump dynamic transition,dictated by the sign of a computable,nondimensional parameter R.In addition,it is also shown that the new transition states have the Taylor vortex type of flow structure,which is structurally stable.

  8. An investigation on cylindrical imploding turbulent mixing

    International Nuclear Information System (INIS)

    Liao Haidong; Yang Libin; Zhang Xilin; Ouyang Kai; Li Jun

    2001-01-01

    The interfacial instability experiments in cylindrically convergent geometry are performed by imploding jelly liner with high pressure gases; and instability growth were observed with high-speed framing camera. The relevant 2D numerical simulation programs were developed and their results are in good agreement with those of experiments

  9. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Science.gov (United States)

    2011-04-04

    ...-1189; Airspace Docket No. 10-AWP-19] Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action will amend Class E airspace at Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV...

  10. On cylindrically converging shock waves shaped by obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  11. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  12. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  13. Hydrodynamic model experiments for stabilized liquid liners with annular piston drive

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Cooper, A.L.

    1977-01-01

    The achievement of megagauss-level magnetic fields by flux compression using controlled liquid liner implosions will be studied in the LINUS-O experiments. This paper reports on experimental studies of the rotating liquid liner at lower energy density, using a one-third scale model with water as the liner material. Radial implosion of the free inside surface of the liquid is achieved by axial displacement of an annular piston, driven by helium. Azimuthally symmetric, repetitive implosion-reexpansion cycles have been demonstrated, with area compressions of over a hundred. The apparatus has also been used to investigate other problems inherent in the annular piston geometry, including piston guidance, seals, z-dependence of the imploding free surface trajectory, and Rayleigh-Taylor instability of the free surface. Methods for r-z plane tailoring of the free surface to provide three-dimensional payload compression are considered

  14. Boundary effects and the onset of Taylor vortices

    Science.gov (United States)

    Rucklidge, A. M.; Champneys, A. R.

    2004-05-01

    It is well established that the onset of spatially periodic vortex states in the Taylor-Couette flow between rotating cylinders occurs at the value of Reynolds number predicted by local bifurcation theory. However, the symmetry breaking induced by the top and bottom plates means that the true situation should be a disconnected pitchfork. Indeed, experiments have shown that the fold on the disconnected branch can occur at more than double the Reynolds number of onset. This leads to an apparent contradiction: why should Taylor vortices set in so sharply at the Reynolds number predicted by the symmetric theory, given such large symmetry-breaking effects caused by the boundary conditions? This paper offers a generic explanation. The details are worked out using a Swift-Hohenberg pattern formation model that shares the same qualitative features as the Taylor-Couette flow. Onset occurs via a wall mode whose exponential tail penetrates further into the bulk of the domain as the driving parameter increases. In a large domain of length L, we show that the wall mode creates significant amplitude in the centre at parameter values that are O( L-2) away from the value of onset in the problem with ideal boundary conditions. We explain this as being due to a Hamiltonian Hopf bifurcation in space, which occurs at the same parameter value as the pitchfork bifurcation of the temporal dynamics. The disconnected anomalous branch remains O(1) away from the onset parameter since it does not arise as a bifurcation from the wall mode.

  15. Generation of a rotating liquid liner by tangential injection

    International Nuclear Information System (INIS)

    Burton, R.L.; Turchi, P.J.; Jenkins, D.J.; Lanham, R.E.; Cameron, J.; Cooper, A.L.

    1979-01-01

    Efficient compression of low mass-density payloads by the implosion of higher mass-density liquid cylinders or liners, as in the NRL LINUS concept for controlled thermonuclear fusion, requires rotation of the liner material to avoid Rayleigh--Taylor instabilities at the liner-payload interface. Experimentally, such implosions have been demonstrated with liners formed within rotating implosion chambers. The present work uses a scale-model experimental apparatus to investigate the possibility of creating liner rotation by tangential injection of the liquid liner material. Different modes of behavior are obtained depending on the fluid exhaust procedures. Right-circular, cylindrical free surfaces are achieved with axial exhaust of fluid at radii interior to the injection nozzles, for which the liner exhibits a combination of solid-body and free vortex flows in different regions. Measurements allow estimates of power losses to viscous shear, turbulence, etc. A simple model based on open-channel flow is then derived, which is in good agreement with experiment, and is used to extrapolate results to the scale of a possible LINUS fusion reactor

  16. Experiment on vibration in water of a cylindrical shell fixed in water; Suichu ni koteisareta ento shell no sessui shindo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, K; Yasuzawa, Y; Kagawa, K; Nanatsuya, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    In order to utilize more effectively wide oceanic spaces, a feasibility study is performed on submerged large shell structures from the aspect of structural engineerings. As part of the study, for the purpose of deriving dynamic response characteristics of a structure, development was made on a numerical analysis code, `DASOR`, required to analyze natural frequency of a rotating shell fixed in water. The `DASOR` is a dynamic analysis code to derive added water mass effect, and effects of water depth on the dynamic response characteristics based on the shell theory by Donnell-Mushtari-Vlasov. This paper describes an experiment using a cylindrical shell to elucidate effects of the cylindrical shell on vibration characteristics due to contact with water. Comparisons and discussions were given on the result of numerical calculation using the `DASOR`, solution of a simplified theory analysis, and the result of the experiment to make clear the reasonability of the `DASOR`. The cylindrical shell in water has its natural frequency decreased due to the added water mass effect in association with increase in the water level. The `DASOR` showed good agreement with the experimental values as a result of giving considerations on the boundary conditions, by which its reasonability was verified. 3 refs., 9 figs., 2 tabs.

  17. G.I. Taylor and the Trinity Test

    Science.gov (United States)

    Deakin, Michael A. B.

    2011-01-01

    The story is often told of the calculation by G.I. Taylor of the yield of the first ever atomic bomb exploded in New Mexico in 1945. It has indeed become a staple of the classroom whenever dimensional analysis is taught. However, while it is true that Taylor succeeded in calculating this figure at a time when it was still classified, most versions…

  18. Self-consistent equilibria in cylindrical reversed-field pinch

    International Nuclear Information System (INIS)

    Lo Surdo, C.; Paccagnella, R.; Guo, S.

    1995-03-01

    The object of this work is to study the self-consistent magnetofluidstatic equilibria of a 2-region (plasma + gas) reversed-field pinch (RFP) in cylindrical approximation (namely, with vanishing inverse aspect ratio). Differently from what happens in a tokamak, in a RFP a significant part of the plasma current is driven by a dynamo electric field (DEF), in its turn mainly due to plasma turbulence. So, it is worked out a reasonable mathematical model of the above self-consistent equilibria under the following main points it has been: a) to the lowest order, and according to a standard ansatz, the turbulent DEF say ε t , is expressed as a homogeneous transform of the magnetic field B of degree 1, ε t =(α) (B), with α≡a given 2-nd rank tensor, homogeneous of degree 0 in B and generally depending on the plasma state; b) ε t does not explicitly appear in the plasma energy balance, as it were produced by a Maxwell demon able of extract the corresponding Joule power from the plasma. In particular, it is showed that, if both α and the resistivity tensor η are isotropic and constant, the magnetic field is force-free with abnormality equal to αη 0 /η, in the limit of vanishing β; that is, the well-known J.B. Taylor'result is recovered, in this particular conditions, starting from ideas quite different from the usual ones (minimization of total magnetic energy under constrained total elicity). Finally, the general problem is solved numerically under circular (besides cylindrical) symmetry, for simplicity neglecting the existence of gas region (i.e., assuming the plasma in direct contact with the external wall)

  19. Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow.

    Science.gov (United States)

    Stevens, Richard J A M; Clercx, Herman J H; Lohse, Detlef

    2012-11-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech. 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.

  20. Three dimensional Free Vibration and Transient Analysis of Two Directional Functionally Graded Thick Cylindrical Panels Under Impact Loading

    Directory of Open Access Journals (Sweden)

    Hassan Zafarmand

    Full Text Available AbstractIn this paper three dimensional free vibration and transient response of a cylindrical panel made of two directional functionally graded materials (2D-FGMs based on three dimensional equations of elasticity and subjected to internal impact loading is considered. Material properties vary through both radial and axial directions continuously. The 3D graded finite element method (GFEM based on Rayleigh-Ritz energy formulation and Newmark direct integration method has been applied to solve the equations in space and time domains. The fundamental normalized natural frequency, time history of displacements and stresses in three directions and velocity of radial stress wave propagation for various values of span angel of cylindrical panel and different power law exponents have been investigated. The present results show that using 2D-FGMs leads to a more flexible design than conventional 1D-FGMs. The GFEM solution have been compared with the results of an FG thick hollow cylinder and an FG curved panel, where a good agreement between them is observed.

  1. Turbulent thermal superstructures in Rayleigh-Bénard convection

    Science.gov (United States)

    Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .

  2. “What” is Frederick Winslow Taylor

    OpenAIRE

    Andrej Markovic

    2006-01-01

    Raising the issue of Taylor and his scientific management after less than a hundred years seems at first glance to be quite anachronistic. Today we are more likely to find Taylor’s works in antique shops than in the libraries of the schools of management. Has the memory of utilitarian and pragmatic managerial knowledge of a century back faded, or are we in a way ashamed of Taylor, the protagononist of management? How does the research into the origin and nature of management affect the effici...

  3. Bright and durable field emission source derived from refractory taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  4. Direct numerical simulations of a thin liquid film coating an axially oscillating cylindrical surface

    Energy Technology Data Exchange (ETDEWEB)

    Binz, Matthias; Rohlfs, Wilko; Kneer, Reinhold, E-mail: rohlfs@wsa.rwth-aachen.de [Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, D-52056 Aachen (Germany)

    2014-08-01

    Liquid films on cylindrical bodies like wires or fibers disintegrate into droplets if their length exceeds a critical measure (Plateau–Rayleigh instability). Stabilization of such films can be achieved by an axial oscillation of the solid core provided that a suitable combination of forcing amplitude and frequency is given. To investigate the stabilizing effect, direct numerical simulations of the axisymmetric problem are conducted in this study. Thus, a modified volume-of-fluid solver is employed based on the open source library OpenFOAM{sup ®}. The effect of film stabilization is demonstrated and the required conditions for a stable film configuration are found to be in accordance with other studies. Finally, parameter variations are conducted to investigate the influence on the long-term shape of the stabilized film surface. (paper)

  5. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  6. The application of front tracking to the simulation of shock refractions and shock accelerated interface mixing

    International Nuclear Information System (INIS)

    Sharp, D.H.; Grove, J.W.; Yang, Y.; Boston, B.; Holmes, R.; Zhang, Q.; Glimm, J.

    1993-01-01

    The mixing behavior of two or more fluids plays an important role in a number of physical processes and technological applications. The authors consider two basic types of mechanical (i.e., non-diffusive) fluid mixing. If a heavy fluid is suspended above a lighter fluid in the presence of a gravitational field, small perturbations at the fluid interface will grow. This process is known as the Rayleigh-Taylor instability. One can visualize this instability in terms of bubbles of the light fluid rising into the heavy fluid, and fingers (spikes) of the heavy fluid falling into the light fluid. A similar process, called the Richtmyer-Meshkov instability occurs when an interface is accelerated by a shock wave. These instabilities have several common features. Indeed, Richtmyer's approach to understanding the shock induced instability was to view that process as resulting from an acceleration of the two fluids by a strong gravitational field acting for a short time. Here, the authors report new results on the Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Highlights include calculations of Richtmyer-Meshkov instabilities in curved geometries without grid orientation effects, improved agreement between computations and experiments in the case of Richtmyer-Meshkov instabilities at a plane interface, and a demonstration of an increase in the Rayleigh-Taylor mixing layer growth rate with increasing compressibility, along with a loss of universality of this growth rate. The principal computational tool used in obtaining these results was a code based on the front tracking method

  7. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    Science.gov (United States)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  8. Thermal neutron absorption cross-section for small samples (experiments in cylindrical geometry)

    International Nuclear Information System (INIS)

    Czubek, J.A.; Drozdowicz, K.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1982-01-01

    Measurement results for thermal neutron macroscopic absorption cross-sections Σsub(a)1 when applying the cylindrical sample-moderator system are presented. Experiments for liquid (water solutions of H 3 BO 3 ) and solid (crushed basalts) samples are reported. Solid samples have been saturated with the H 3 BO 3 ''poisoning'' solution. The accuracy obtained for the determination of the absorption cross-section of the solid material was σ(Σsub(ma))=(1.2+2.2) c.u. in the case when porosity was measured with the accuracy of σ(phi)=0.001+0.002. The dispersion of the Σsub(ma) data obtained for basalts (taken from different quarries) was higher than the accuracy of the measurement. All experimental data for the fundamental decay constants lambda 0 together with the whole information about the samples are given. (author)

  9. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  10. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    Science.gov (United States)

    Taher, R.; Abid, C.

    2018-05-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  11. Rayleigh scattering from ions near threshold

    International Nuclear Information System (INIS)

    Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.

    1988-01-01

    Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt

  12. Animating Nested Taylor Polynomials to Approximate a Function

    Science.gov (United States)

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  13. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    Energy Technology Data Exchange (ETDEWEB)

    Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.

  14. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  15. Instabilities with polyacrylamide solution in small and large aspect ratios Taylor-Couette systems

    International Nuclear Information System (INIS)

    Smieszek, M; Egbers, C; Crumeyrolle, O; Mutabazi, I

    2008-01-01

    We have investigated the stability of viscoelastic polyacrylamide solution in Taylor-Couette system with different aspect ratios. The first instability modes observed in a Taylor-Couette system with Γ = 10 were TVF and WVF, as for Newtonian fluid. At higher Taylor numbers moving vortices occur, a wavy mode with non-stationary vortex size. In the Taylor-Couette system with Γ = 45.9 we note a coexistence of various instability modes. In addition to TVF, counterpropagating waves developed at the transition from the base state flow. At higher Taylor number values Taylor vortices of different sizes occurred. Reduced amplitude Wavy vortex flow has also been observed.

  16. Taylor impact of glass rods

    International Nuclear Information System (INIS)

    Willmott, G.R.; Radford, D.D.

    2005-01-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below ∼2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above ∼3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at ∼4 GPa, the average failure front velocities were 4.7±0.5 and 4.6±0.5 mm μs -1 for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density

  17. On specification of initial conditions in turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory

    2010-12-01

    Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.

  18. Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments

    International Nuclear Information System (INIS)

    Fei Xiang; Snow, W.M.

    1999-01-01

    Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles

  19. Cylindrical Penning traps with dynamic orthogonalized anharmonicity compensation for precision experiments

    CERN Document Server

    Fei Xiang

    1999-01-01

    Harmonic potentials can be produced in cylindrical ion traps by means of dynamic orthogonalized anharmonicity compensation with use of two (or multiple) sets of compensation electrodes. One special example is for traps with multiple identical electrodes which are not only easy to construct and allow access to the center region of the trap for particle loading and releasing, laser beams, and microwaves, but also flexible in forming harmonic potential wells in many locations. The nested trap configuration and the side-by-side trap configuration are readily available in this special scheme. Analytical solutions for cylindrical traps with multiple sets of compensation potentials are presented. This work will be useful for studies involving Penning trap diagnostics, atomic and molecular interactions (including the production of antihydrogen atoms), accurate mass measurements of exotic particles, and precision measurements of the spin precession frequencies of trapped particles.

  20. Stability and instability of hydromagnetic Taylor-Couette flows

    Science.gov (United States)

    Rüdiger, Günther; Gellert, Marcus; Hollerbach, Rainer; Schultz, Manfred; Stefani, Frank

    2018-04-01

    Decades ago S. Lundquist, S. Chandrasekhar, P. H. Roberts and R. J. Tayler first posed questions about the stability of Taylor-Couette flows of conducting material under the influence of large-scale magnetic fields. These and many new questions can now be answered numerically where the nonlinear simulations even provide the instability-induced values of several transport coefficients. The cylindrical containers are axially unbounded and penetrated by magnetic background fields with axial and/or azimuthal components. The influence of the magnetic Prandtl number Pm on the onset of the instabilities is shown to be substantial. The potential flow subject to axial fields becomes unstable against axisymmetric perturbations for a certain supercritical value of the averaged Reynolds number Rm bar =√{ Re ṡ Rm } (with Re the Reynolds number of rotation, Rm its magnetic Reynolds number). Rotation profiles as flat as the quasi-Keplerian rotation law scale similarly but only for Pm ≫ 1 while for Pm ≪ 1 the instability instead sets in for supercritical Rm at an optimal value of the magnetic field. Among the considered instabilities of azimuthal fields, those of the Chandrasekhar-type, where the background field and the background flow have identical radial profiles, are particularly interesting. They are unstable against nonaxisymmetric perturbations if at least one of the diffusivities is non-zero. For Pm ≪ 1 the onset of the instability scales with Re while it scales with Rm bar for Pm ≫ 1. Even superrotation can be destabilized by azimuthal and current-free magnetic fields; this recently discovered nonaxisymmetric instability is of a double-diffusive character, thus excluding Pm = 1. It scales with Re for Pm → 0 and with Rm for Pm → ∞. The presented results allow the construction of several new experiments with liquid metals as the conducting fluid. Some of them are described here and their results will be discussed together with relevant diversifications of

  1. Repainting, modifying, smashing Taylorism

    NARCIS (Netherlands)

    H.D. Pruijt (Hans)

    2000-01-01

    textabstractAbstract Survey data show that post-Tayloristic production concepts are not developing to the extent that many researchers had originally expected. It also is inadequate to portray post-Taylorism as a development that is happening, but just slower than expected. This is inadequate

  2. Dynamics of helicity transport and Taylor relaxation

    International Nuclear Information System (INIS)

    Diamond, P.H.; Malkov, M.

    2003-01-01

    A simple model of the dynamics of Taylor relaxation is derived using symmetry principles alone. No statistical closure approximations are invoked or detailed plasma model properties assumed. Notably, the model predicts several classes of nondiffusive helicity transport phenomena, including traveling nonlinear waves and superdiffusive turbulent pulses. A universal expression for the scaling of the effective magnetic Reynolds number of a system undergoing Taylor relaxation is derived. Some basic properties of intermittency in helicity transport are examined

  3. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  4. Linear Analysis of Converging Richtmyer-Meshkov Instability in the Presence of an Azimuthal Magnetic Field

    KAUST Repository

    Bakhsh, Abeer; Samtaney, Ravindra

    2017-01-01

    We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.

  5. Linear Analysis of Converging Richtmyer-Meshkov Instability in the Presence of an Azimuthal Magnetic Field

    KAUST Repository

    Bakhsh, Abeer

    2017-11-17

    We investigate the linear stability of both positive and negative Atwood ratio interfaces accelerated either by a fast magnetosonic or hydrodynamic shock in cylindrical geometry. For the magnetohydrodynamic (MHD) case, we examine the role of an initial seed azimuthal magnetic field on the growth rate of the perturbation. In the absence of a magnetic field, the Richtmyer-Meshkov growth is followed by an exponentially increasing growth associated with the Rayleigh-Taylor instability. In the MHD case, the growth rate of the instability reduces in proportion to the strength of the applied magnetic field. The suppression mechanism is associated with the interference of two waves running parallel and anti-parallel to the interface that transport of vorticity and cause the growth rate to oscillate in time with nearly a zero mean value.

  6. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  7. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  8. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  10. Vortex formation in Taylor-Couette flow with weakly spatial modulation

    International Nuclear Information System (INIS)

    Li, Z.; Khayat, R.E.

    2002-01-01

    The onset of the vortex structure in axisymmetric Taylor-Couette flow with spatially modulated cylinders is examined. The modulation amplitude is assumed to be small for a regular perturbation solution to be sought at small to moderate Taylor numbers. It is found that the presence of a weak modulation of the outer or inner cylinders leads unavoidably to the emergence of steady vortex flow even for a vanishingly small Taylor number. This situation is reminiscent of the onset of an imperfect bifurcation. The vortex structure of the forced TVF is found to have same periodicity when only one cylinder is modulated or the two modulations are commensurate for the Taylor number measured. The vortex structure is quasi-periodic when the two modulations are incommensurate. For a certain Taylor number, there exists a critical wavelength for the presence of the strongest vortex flow when the modulation is in the form of sinusoidal. This critical wavelength tends to the critical value predicted by the linear stability analysis when Ta approaches the supercritical value. (author)

  11. Integrated code development for studying laser driven plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Hideaki; Nagatomo, Hideo; Sunahara, Atsusi; Ohnishi, Naofumi; Naruo, Syuji; Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Present status and plan for developing an integrated implosion code are briefly explained by focusing on motivation, numerical scheme and issues to be developed more. Highly nonlinear stage of Rayleigh-Taylor instability of ablation front by laser irradiation has been simulated so as to be compared with model experiments. Improvement in transport and rezoning/remapping algorithms in ILESTA code is described. (author)

  12. An Instability in Stratified Taylor-Couette Flow

    Science.gov (United States)

    Swinney, Harry

    2015-11-01

    In the late 1950s Russell Donnelly began conducting experiments at the University of Chicago on flow between concentric rotating cylinders, and his experiments together with complementary theory by his collaborator S. Chandrasekhar did much to rekindle interest in the flow instability discovered and studied by G.I. Taylor (1923). The present study concerns an instability in a concentric cylinder system containing a fluid with an axial density gradient. In 2005 Dubrulle et al. suggested that a `stratorotational instability' (SRI) in this system could provide insight into instability and angular momentum transport in astrophysical accretion disks. In 2007 the stratorotational instability was observed in experiments by Le Bars and Le Gal. We have conducted an experiment on the SRI in a concentric cylinder system (radius ratio η = 0 . 876) with buoyancy frequency N / 2 π = 0.25, 0.50, or 0.75 Hz. For N = 0.75 Hz we observe the SRI onset to occur for Ωouter /Ωinner > η , contrary to the prediction of Shalybkov and Rüdiger. Research conducted with Bruce Rodenborn and Ruy Ibanez.

  13. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    Science.gov (United States)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  14. A design of inverse Taylor projectiles using material simulation

    International Nuclear Information System (INIS)

    Tonks, Michael; Harstad, Eric; Maudlin, Paul; Trujillo, Carl

    2008-01-01

    The classic Taylor cylinder test, in which a right circular cylinder is projected at a rigid anvil, exploits the inertia of the projectile to access strain rates that are difficult to achieve with more traditional uniaxial testing methods. In this work we present our efforts to design inverse Taylor projectiles, in which a tapered projectile becomes a right circular cylinder after impact, from annealed copper and show that the self-correcting geometry leads to a uniform compressive strain in the radial direction. We design projectiles using finite element simulation and optimization that deform as desired in tests with minor deviations in the deformed geometry due to manufacturing error and uncertainty in the initial velocity. The inverse Taylor projectiles designed in this manner provide a simple means of validating constitutive models. This work is a step towards developing a general method of designing Taylor projectiles that provide stress–strain behavior relevant to particular engineering problems

  15. Techniques for optimizing nanotips derived from frozen taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2017-12-05

    Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.

  16. Power deposition in a cylindrical geometry using B-10 coatings

    International Nuclear Information System (INIS)

    Chung, A.K.; Prelas, M.A.

    1983-01-01

    The transport of charged particles produced by 10 B (n, α) Li and 235 U (n, νn) ff nuclear reactions in a two region cylindrical geometry is predicted. We employed a mean-range straight-flight approximation to calculate the power deposition by the charged particles in a gaseous medium. Our model demonstrated some features in a cylindrical experiment which were suspected but not proven. In the common slab model used by Guyot et al 1 and Romero 2 , the spatial distribution of power deposition is much flatter than it would be in a cylindrical model. A steeper gradient in the power deposition is expected in a cylindrical geometry than in a slab geometry. We also found that for a standard thickness of Boron-10 coating (1.73 μm) used in NPLs, the expected efficiency of a cylindrical geometry (7.5%) is much lower than the 12% efficiency predicted by the slab model. Indeed the use of slab geometry in modeling current NPL experimental devices is not accurate

  17. A μp based automation system for Raman and Rayleigh spectrometers

    International Nuclear Information System (INIS)

    Kesavamoorthy, R.; Arora, A.K.; Vasumathi, D.

    1988-01-01

    μp based data acquisition cum automation system for Raman and Rayleigh Spectrometers is described. The experiments require simultaneous acquisition of different digital data in two separate counters, their storage and rotation of grating through stepper motor in a repetitive cycle. Various modes of operation are selected through a function keyboard. The current status of the experiment is also displayed using 7 segment 12 element display unit. The input parameters are fed through a hexadecimal keyboard before the start of the experiment. The stored data can be send to a printer/terminal or to a PC through a serial port after the completion of the experiment. (author)

  18. Complex astrophysical experiments relating to jets, solar loops, and water ice dusty plasma

    Science.gov (United States)

    Bellan, P. M.; Zhai, X.; Chai, K. B.; Ha, B. N.

    2015-10-01

    > Recent results of three astrophysically relevant experiments at Caltech are summarized. In the first experiment magnetohydrodynamically driven plasma jets simulate astrophysical jets that undergo a kink instability. Lateral acceleration of the kinking jet spawns a Rayleigh-Taylor instability, which in turn spawns a magnetic reconnection. Particle heating and a burst of waves are observed in association with the reconnection. The second experiment uses a slightly different setup to produce an expanding arched plasma loop which is similar to a solar corona loop. It is shown that the plasma in this loop results from jets originating from the electrodes. The possibility of a transition from slow to fast expansion as a result of the expanding loop breaking free of an externally imposed strapping magnetic field is investigated. The third and completely different experiment creates a weakly ionized plasma with liquid nitrogen cooled electrodes. Water vapour injected into this plasma forms water ice grains that in general are ellipsoidal and not spheroidal. The water ice grains can become quite long (up to several hundred microns) and self-organize so that they are evenly spaced and vertically aligned.

  19. Measurement of local heat transfer coefficient during gas–liquid Taylor bubble train flow by infra-red thermography

    International Nuclear Information System (INIS)

    Mehta, Balkrishna; Khandekar, Sameer

    2014-01-01

    Highlights: • Infra-red thermographic study of Taylor bubble train flow in square mini-channel. • Design of experiments for measurement of local streamwise Nusselt number. • Minimizing conjugate heat transfer effects and resulting errors in data reduction. • Benchmarking against single-phase flow and three-dimensional computations. • Local heat transfer enhancement up to two times due to Taylor bubble train flow. -- Abstract: In mini/micro confined internal flow systems, Taylor bubble train flow takes place within specific range of respective volume flow ratios, wherein the liquid slugs get separated by elongated Taylor bubbles, resulting in an intermittent flow situation. This unique flow characteristic requires understanding of transport phenomena on global, as well as on local spatio-temporal scales. In this context, an experimental design methodology and its validation are presented in this work, with an aim of measuring the local heat transfer coefficient by employing high-resolution InfraRed Thermography. The effect of conjugate heat transfer on the true estimate of local transport coefficients, and subsequent data reduction technique, is discerned. Local heat transfer coefficient for (i) hydrodynamically fully developed and thermally developing single-phase flow in three-side heated channel and, (ii) non-boiling, air–water Taylor bubble train flow is measured and compared in a mini-channel of square cross-section (5 mm × 5 mm; D h = 5 mm, Bo ≈ 3.4) machined on a stainless steel substrate (300 mm × 25 mm × 11 mm). The design of the setup ensures near uniform heat flux condition at the solid–fluid interface; the conjugate effects arising from the axial back conduction in the substrate are thus minimized. For benchmarking, the data from single-phase flow is also compared with three-dimensional computational simulations. Depending on the employed volume flow ratio, it is concluded that enhancement of nearly 1.2–2.0 times in time

  20. Territorial characteristics of low frequency electrostatic fluctuations in a simple magnetized torus

    International Nuclear Information System (INIS)

    Kaur, R.; Singh, R.; Sarada Sree, A.; Mattoo, S. K.; Singh, A. K.

    2011-01-01

    This paper presents an experimental investigation of turbulence in simple toroidal plasma devices without rotational transform. It is argued that Rayleigh-Taylor (flute interchange) mode may be one of the source mechanisms for the observed turbulence but is not sufficient to explain its observed global characteristics. Taking BETA device as an example, we show that pure Rayleigh-Taylor mode cannot explain (i) the observation of mode maximum at the location other than where density scale length is minimum, (ii) the comparable value of amplitude level of fluctuations in good curvature region, and (iii) the decrease in the mode amplitude with increasing magnetic field. Investigations have revealed that there exists not only poloidal plasma flow but also that it is sheared. Including this effect explains the first observation. However, modification brought about by velocity shear in the Rayleigh-Taylor mode still does not explain our second and third observations. We have taken an approach that since Rayleigh-Taylor is not excited in a good curvature region, it cannot be the source of turbulence there. Nor is it defensible to say that turbulence born in a bad curvature region is carried over through ExB rotation to the good curvature region. Consequently, we have invoked cross-field Simon-Hoh instability for this region. Experimental evidence supporting our proposal is presented. This paper concludes that toroidal devices have simultaneous existence of different self-consistent sources of turbulence in different regions of the device.

  1. DSM-5 and ADHD - an interview with Eric Taylor.

    Science.gov (United States)

    Taylor, Eric

    2013-09-12

    In this podcast we talk to Prof Eric Taylor about the changes to the diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) in DSM-5 and how these changes will affect clinical practice. The podcast for this interview is available at: http://www.biomedcentral.com/sites/2999/download/Taylor.mp3.

  2. A review of hydrodynamic instabilities and their relevance to mixing in molten fuel coolant interactions

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-03-01

    A review of the literature on Rayleigh-Taylor, Kelvin-Helmholtz and capillary instability is presented. The concept of Weber breakup is examined and found to involve a combination of the above instabilities. Sample calculations are given which show how these instabilities may contribute to the mixing of melt and coolant in a molten fuel coolant interaction. It is concluded that Rayleigh-Taylor instability is likely to be important as the melt falls into the coolant and that Kelvin-Helmholtz instability is likely to develop when significant vapour velocities occur. (author)

  3. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  4. On Using Taylor's Hypothesis for Three-Dimensional Mixing Layers

    Science.gov (United States)

    LeBoeuf, Richard L.; Mehta, Rabindra D.

    1995-01-01

    In the present study, errors in using Taylor's hypothesis to transform measurements obtained in a temporal (or phase) frame onto a spatial one were evaluated. For the first time, phase-averaged ('real') spanwise and streamwise vorticity data measured on a three-dimensional grid were compared directly to those obtained using Taylor's hypothesis. The results show that even the qualitative features of the spanwise and streamwise vorticity distributions given by the two techniques can be very different. This is particularly true in the region of the spanwise roller pairing. The phase-averaged spanwise and streamwise peak vorticity levels given by Taylor's hypothesis are typically lower (by up to 40%) compared to the real measurements.

  5. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  6. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    Science.gov (United States)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  7. An algorithm for symplectic implicit Taylor-map tracking

    International Nuclear Information System (INIS)

    Yan, Y.; Channell, P.; Syphers, M.

    1992-10-01

    An algorithm has been developed for converting an ''order-by-order symplectic'' Taylor map that is truncated to an arbitrary order (thus not exactly symplectic) into a Courant-Snyder matrix and a symplectic implicit Taylor map for symplectic tracking. This algorithm is implemented using differential algebras, and it is numerically stable and fast. Thus, lifetime charged-particle tracking for large hadron colliders, such as the Superconducting Super Collider, is now made possible

  8. 78 FR 12307 - Taylor, G. Tom; Notice of Filing

    Science.gov (United States)

    2013-02-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ID-5705-001] Taylor, G. Tom; Notice of Filing Take notice that on February 14, 2013, G. Tom Taylor filed an application to hold interlocking positions pursuant to section 305(b) of the Federal Power Act, 16 U.S.C. 825d(b), Part 45 of the...

  9. arXiv The new cylindrical GEM inner tracker of BESIII

    CERN Document Server

    Lavezzi, L.; Amoroso, A.; Ferroli, R. Baldini; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, Jy; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Leng, Cy; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo,; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-05-03

    The Cylindrical GEM-Inner Tracker (CGEM-IT) is the upgrade of the internal tracking system of the BESIII experiment. It consists of three layers of cylindrically-shaped triple GEMs, with important innovations with respect to the existing GEM detectors, in order to achieve the best performance with the lowest material budget. It will be the first cylindrical GEM running with analog readout inside a 1T magnetic field. The simultaneous measurement of both the deposited charge and the signal time will permit to use a combination of two algorithms to evaluate the spatial position of the charged tracks inside the CGEM-IT: the charge centroid and the micro time projection chamber modes. They are complementary and can cope with the asymmetry of the electron avalanche when running in magnetic field and with non-orthogonal incident tracks. To evaluate the behaviour under different working settings, both planar chambers and the first cylindrical prototype have been tested during various test beams at CERN with 150 GeV/c...

  10. Taylor dispersion of nanoparticles

    Science.gov (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2017-08-01

    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  11. Effect of gas expansion on the front shape of a Taylor bubble: an experimental contribution

    Directory of Open Access Journals (Sweden)

    Santos Laura

    2014-03-01

    Full Text Available An experimental study where an individual Taylor bubble rises through water with different bubble volume expansion rates is presented with the (front bubble shape determination as main objective. A combination of two techniques, Particle Image Velocimetry (PIV and Pulsed Shadowgraphy (PS, was used to collect images for further treatment in order to characterize the liquid flow pattern in front of the bubble and the bubble shape. Processing the images acquired with pulsed illumination from behind the bubble it was possible to define with precision the bubble shape at different stages when it was expanding. The operation conditions used allowed a wide range of volume expansion rates (0 to 28.5 × 10-6 m3/s with a significant effect on the Taylor bubble velocity; increases in bubble velocity up to 21% were observed relatively to constant volume system condition. Nevertheless, it seems that the front shape of Taylor bubbles does not change significantly with the upward liquid flow rates induced by gas expansion, at least for the volume expansion rates used in the experiments.

  12. Electrochemical Analysis of Taylor Vortices.

    Czech Academy of Sciences Publication Activity Database

    Wouahbi, F.; Allaf, K.; Sobolík, Václav

    2007-01-01

    Roč. 37, 1 (2007) , s. 57-62 ISSN 0021-891X Institutional research plan: CEZ:AV0Z40720504 Keywords : electrodiffusion method * taylor vortices * three-segment electrode Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.417, year: 2007

  13. An experimental study of the connection between the hydrodynamic and phase-transition descriptions of the Couette-Taylor instability

    International Nuclear Information System (INIS)

    Berland, T.; Joessang, T.; Feder, J.

    1986-04-01

    The laser doppler velocimetry technique has been used to measure the radial flow velocity in the Taylor vortex flow at several Taylor numbers close to and above the critical value. The first four harmonics of the flow field have been analyzed using a model described by Davey. The analysis demonstrates that the amplitude of the first harmonic of the super-critical flow field can be regarded as the ''order parameter'' of the transition from the laminar Couette flow to the Taylor vortex flow. This transition is described by a generalized Landau theory for classical second order mean-field phase transitions. The analysis of the results of carefully performed experiments not only confirms the findings of earlier experimental work, but in addition all the significant parameters of the full Davey model for this hydrodynamic instability are determied

  14. Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method

    Science.gov (United States)

    Verachtert, R.; Lombaert, G.; Degrande, G.

    2018-03-01

    This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.

  15. Thermal convection in a co-rotating cylindrical annulus

    Science.gov (United States)

    Kang, Changwoo; Meyer, Antoine; Mutabazi, Innocent

    2017-11-01

    We investigate thermal convection in a fluid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ in a cylindrical annulus of inner radius a and outer radius bwith a solid body rotation of angular frequency Ω and an inward heating with a temperature difference ΔT. The control parameters are η = a/b, Pr = ν / κ and the Rayleigh number Ra = αΔ T gd3 / νκ where the centrifugal gravity gc =Ω2 (a +b)/2. We adopt the generalized Boussinesq approximation. Linear stability analysis shows that for infinite annulus, the threshold Rac decreases with η and tends to the value Rac = 1708 when η -> 1 and that critical modes are columnar vortices. Direct numerical simulations using periodic boundary conditions in the axial direction, show that the columnar vortices appear via a supercritical bifurcation. Higher modes of columnar vortices have been determined using the frequency spectra and the Nusselt number for Pr =1 and η = 0.5 : drifting vortices, vacillation modes and chaotic modes have been identified from Ra =1700 to Ra =107 The contribution of the centrifugal buoyancy to the variation of the kinetic energy in the flow is analysed. This work was supported by the project BIOENGINE (CPER-FEDER, Normandie) and CNES.

  16. Cylindrical-confinement-induced phase behaviours of diblock copolymer melts

    International Nuclear Information System (INIS)

    Mei-Jiao, Liu; Shi-Ben, Li; Lin-Xi, Zhang; Xiang-Hong, Wang

    2010-01-01

    The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement. (cross-disciplinary physics and related areas of science and technology)

  17. Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space

    Directory of Open Access Journals (Sweden)

    Baljeet Singh

    2013-01-01

    Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.

  18. On coupled development of MHD instabilities of Rayleigh-Taylor and Kelvin-Helmholtz types in nonuniform gas-plasmas flows

    International Nuclear Information System (INIS)

    Likhachev, A P; Medin, S A

    2010-01-01

    The simultaneous development of the MHD instabilities of Raylegh-Taylor and Kelvin-Helmholtz types at the interface between high-conducting plasmoid and surrounding non- or low-conducting gas is considered. The linear stage of the RTI development is studied analytically for incompressible and compressible fluids. The nonlinear stage of the individual development of the RTI and the coupled development of both instabilities has been investigated numerically. The time-dependent two-dimensional numerical model based on the solution of the Euler gasdynamic equations with body momentum and energy sources of MHD origin has been developed and used in calculations. A disturbance introducing in the background flow has been periodic with varied assignment type and wave length. Fundamental difference between the results of linear and nonlinear analysis has been revealed. In particular, the increment of the RTI development at nonlinear stage is one-two order of magnitude less than that predicted by linear theory and rather weakly depends on initial disturbance mode. In linear analysis the coupled development of the RTI and the KHI is determined by simple summing of the two effects in the expression of wave increment, whereas in nonlinear case the mutual influence of the instabilities leads to essential alterations in their development, main of which is the intensive 'layer-by-layer' destruction of the plasmoid surface.

  19. Rotating thermal convection at very large Rayleigh numbers

    Science.gov (United States)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  20. Visualization of the flow in a cylindrical container with a rotating disk

    Science.gov (United States)

    Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun

    2017-11-01

    We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.