WorldWideScience

Sample records for cylindrical metamaterial-based subwavelength

  1. Cylindrical metamaterial-based subwavelength antenna

    DEFF Research Database (Denmark)

    Erentok, Aycan; Kim, Oleksiy S.; Arslanagic, Samel

    2009-01-01

    A subwavelength monopole antenna radiating in the presence of a truncated cylindrical shell, which has a capped top face and is made of a negative permittivity metamaterial, is analyzed numerically by a method of moments for the volume-surface integral equation oil the one hand, and a finite...

  2. Sub-Wavelength Resonances in Metamaterial-Based Multi-Cylinder Configurations

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    Sub-wavelength resonances known to exist in isolated metamaterial-based structures of circular cylindrical shape are investigated with the purpose of determining whether the individual resonances are retained when several of such resonant structures are grouped to form a new structure. To this end......, structures consisting of 1, 2 and 4 sets of metamaterial-based concentric cylinders excited by an electric line current are analyzed numerically. It is demonstrated that these structures recover the resonances of the individual structures even when the cylinders are closely spaced and the new structure...... is thus electrically small. The investigation is conducted through a detailed analysis of the electric near-field distribution as well as the radiation resistance in those cases where the individual structures are made of simple dielectric materials in conjunction with simple, but lossy and dispersive...

  3. Directive metamaterial-based subwavelength resonant cavity antennas - Applications for beam steering

    Science.gov (United States)

    Ourir, Abdelwaheb; Burokur, Shah Nawaz; Yahiaoui, Riad; de Lustrac, André

    2009-06-01

    This article presents the use of composite resonant metamaterials for the design of highly directive subwavelength cavity antennas. These metamaterials, composed of planar metallic patterns periodically organized on dielectric substrates, exhibit frequency dispersive phase characteristics. Different models of metamaterial-based surfaces (metasurfaces), introducing a zero degree reflection phase shift to incident waves, are firstly studied where the bandwidth and operation frequency are predicted. These surfaces are then applied in a resonant Fabry-Perot type cavity and a ray optics analysis is used to design different models of ultra-compact high-gain microstrip printed antennas. Another surface presenting a variable reflection phase by the use of a non-periodic metamaterial-based metallic strips array is designed for a passive low-profile steering beam antenna application. Finally, the incorporation of active electronic components on the metasurfaces, allowing an electronic control of the phase responses, is applied to an operation frequency reconfigurable cavity and a beam steering cavity. All these cavity antennas operate on subwavelength modes, the smallest cavity thickness being of the order of λ/60. To cite this article: A. Ourir et al., C. R. Physique 10 (2009).

  4. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices

    Science.gov (United States)

    Kim, Kyoung-Ho; No, You-Shin

    2017-12-01

    In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.

  5. Nonlinear effects in acoustic metamaterial based on a cylindrical pipe with ordered Helmholtz resonators

    Science.gov (United States)

    Lan, Jun; Li, Yifeng; Yu, Huiyang; Li, Baoshun; Liu, Xiaozhou

    2017-04-01

    We theoretically investigate the nonlinear effects of acoustic wave propagation and dispersion in a cylindrical pipe with periodically arranged Helmholtz resonators. By using the classical perturbation method in nonlinear acoustics and considering a nonlinear response up to the third-order at the fundamental frequency, the expressions of the nonlinear impedance ZNHR of the Helmholtz resonator and effective nonlinear bulk modulus Bneff of the composite structure are derived. In order to confirm the nonlinear properties of the acoustic metamaterial, the transmission spectra have been studied by means of the acoustic transmission line method. Moreover, we calculate the effective acoustic impedance and dispersion relation of the system using the acoustic impedance theory and Bloch theory, respectively. It is found that with the increment of the incident acoustic pressure level, owing to the nonlinearity of the Helmholtz resonators, the resonant frequency ω0 shifts toward the lower frequency side and the forbidden bandgap of the transmission spectrum is shown to be broadened. The perturbation method employed in this paper extends the general analytical framework for a nonlinear acoustic metamaterial.

  6. Aperiodic-metamaterial-based absorber

    OpenAIRE

    Quanlong Yang; Xieyu Chen; Yanfeng Li; Xueqian Zhang; Yuehong Xu; Zhen Tian; Chunmei Ouyang; Jianqiang Gu; Jiaguang Han; Weili Zhang

    2017-01-01

    The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber), how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based abs...

  7. Ab initio analytical model of light transmission through a cylindrical subwavelength hole in an optically thick film

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2011-01-01

    The rigorous analytical theory of light transmission through a cylindrical hole of arbitrary diameter in an optically thick film is developed. The approach is based on the introduction of fictitious surface currents at both hole openings and both film surfaces. The solution of Maxwell’s equations...... obeying the boundary conditions at all interfaces is obtained in the form of the Fourier integral over the axial-wave-vector component. The exact integral equation which determines the field-amplitude Fourier transforms is derived. The general approach is simplified in the case of an elongated hole, where...... the film thickness considerably exceeds the hole diameter. It is emphasized that a specific pole corresponding to excitation of surface plasmon polaritons does not appear in the analysis. The theory is illustrated by the calculation of light transmission through a subwavelength hole in an Ag film....

  8. Topology Optimization of Metamaterial-Based Electrically Small Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2007-01-01

    A topology optimized metamaterial-based electrically small antenna configuration that is independent of a specific spherical and/or cylindrical metamaterial shell design is demonstrated. Topology optimization is shown to provide the optimal value and placement of a given ideal metamaterial in space...

  9. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  10. Aperiodic-metamaterial-based absorber

    Science.gov (United States)

    Yang, Quanlong; Chen, Xieyu; Li, Yanfeng; Zhang, Xueqian; Xu, Yuehong; Tian, Zhen; Ouyang, Chunmei; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-09-01

    The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber), how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  11. Properties of Sub-wavelength Resonances in Metamaterial Cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.

    2008-01-01

    The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the ......The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths......, and the line source impedance are investigated for varying electromagnetic and geometrical parameters. The results of this study are of importance for metamaterial-based miniaturization of antennas....

  12. Riemann-Hilbert technique scattering analysis of metamaterial-based asymmetric 2D open resonators

    Science.gov (United States)

    Kamiński, Piotr M.; Ziolkowski, Richard W.; Arslanagić, Samel

    2017-12-01

    The scattering properties of metamaterial-based asymmetric two-dimensional open resonators excited by an electric line source are investigated analytically. The resonators are, in general, composed of two infinite and concentric cylindrical layers covered with an infinitely thin, perfect conducting shell that has an infinite axial aperture. The line source is oriented parallel to the cylinder axis. An exact analytical solution of this problem is derived. It is based on the dual-series approach and its transformation to the equivalent Riemann-Hilbert problem. Asymmetric metamaterial-based configurations are found to lead simultaneously to large enhancements of the radiated power and to highly steerable Huygens-like directivity patterns; properties not attainable with the corresponding structurally symmetric resonators. The presented open resonator designs are thus interesting candidates for many scientific and engineering applications where enhanced directional near- and far-field responses, tailored with beam shaping and steering capabilities, are highly desired.

  13. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes.

    Science.gov (United States)

    Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V

    2014-01-01

    The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.

  14. Metamaterials based on the phase transition of VO2

    Science.gov (United States)

    Liu, Hongwei; Lu, Junpeng; Renshaw Wang, Xiao

    2018-01-01

    In this article, we present a comprehensive review on recent research progress in design and fabrication of active tunable metamaterials and devices based on phase transition of VO2. Firstly, we introduce mechanisms of the metal-to-insulator phase transition (MIPT) in VO2 investigated by ultrafast THz spectroscopies. By analyzing the THz spectra, the evolutions of MIPT in VO2 induced by different external excitations are described. The superiorities of using VO2 as building blocks to construct highly tunable metamaterials are discussed. Subsequently, the recently demonstrated metamaterial devices based on VO2 are reviewed. These metamaterials devices are summarized and described in the categories of working frequency. In each working frequency range, representative metamaterials based on VO2 with different architectures and functionalities are reviewed and the contributions of the MIPT of VO2 are emphasized. Finally, we conclude the recent reports and provide a prospect on the strategies of developing future tunable metamaterials based on VO2.

  15. A new metamaterial-based wideband rectangular invisibility cloak

    Science.gov (United States)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  16. Metamaterial-based perfect absorber: polarization insensitivity and broadband

    Science.gov (United States)

    Hien Nguyen, Thi; Bui, Son Tung; Nguyen, Trong Tuan; Nguyen, Thanh Tung; Lee, YoungPak; Nguyen, Manh An; Vu, Dinh Lam

    2014-06-01

    We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%.

  17. Electrically tunable terahertz metamaterials based on graphene stacks array

    Science.gov (United States)

    Liu, Hanqing; Liu, Peiguo; Bian, Li-an; Liu, Chenxi; Zhou, Qihui; Chen, Yuwei

    2017-12-01

    With the ability of tuning chemical potential via gate voltage, the permittivity of graphene stack can be dynamically adjusted over a wide range. In this paper, we design electrically tunable metamaterials based on the graphene/Al2O3 stacks array, which can achieve a good modulation of resonant frequency and peak value in terahertz region. Due to the enlargement of plasmonic resonance response and the broaden distribution of electric field, our proposed structures perform a better tunability compared with traditional metamaterials loaded monolayer graphene. Since the dipole-dipole coupling between adjacent stacks strengthens immensely as reduces the filling factor of array, the modulated capacity could be further improved. It is found that for oblique incidence, the transmission property is also sensitive to the chemical potential of graphene as well as the polarization direction of incident terahertz wave. These results could be very instructive for the potential applications in voltage-sensitive devices, tunable sensors and photovoltaic switches.

  18. Symmetric metamaterials based on flower-shaped structure

    Energy Technology Data Exchange (ETDEWEB)

    Tuong, P.V. [Department of Physics, Quantum Photonic Science Research Center and Research Institute for Nature Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Material Sciences, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Park, J.W. [Department of Physics, Quantum Photonic Science Research Center and Research Institute for Nature Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhee, J.Y. [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, K.W. [Sunmoon University, Asan (Korea, Republic of); Cheong, H. [Sogang University, Seoul (Korea, Republic of); Jang, W.H. [Electromagnetic Wave Institute, Korea Radio Promotion Association, Seoul (Korea, Republic of); Lee, Y.P., E-mail: yplee@hanyang.ac.kr [Department of Physics, Quantum Photonic Science Research Center and Research Institute for Nature Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-08-15

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave.

  19. CMOS-compatible fabrication of metamaterial-based absorbers for the mid-IR spectral range

    NARCIS (Netherlands)

    Karimishahmarvandi, E.; Ghaderi, M.; Wolffenbuttel, R.F.

    2016-01-01

    A CMOS-compatible approach is presented for the fabrication of a wideband mid-IR metamaterial-based absorber on top of a Si3N4 membrane, which contains poly-Si thermopiles. The application is in IR microspectrometers that are intended for implementation in portable microsystem for use in absorption

  20. Analytical solutions of electromagnetic waves in focusing and magnifying cylindrical hyperlenses: Green's function approach.

    Science.gov (United States)

    Tapsanit, Piyawath; Yamashita, Masatsugu; Otani, Chiko

    2014-01-13

    The analytical solutions of the electromagnetic waves in the inhomogeneous cylindrical hyperlens (CH) comprising concentric cylindrical layers (CCLs) with multiple point sources located either outside the structure in the focusing process or inside the core in the magnifying process are obtained by means of Green's function analysis. The solutions are consistent with FDTD simulation in both processes. The sub-wavelength focal spot λ/16.26 from two point sources with wavelength 465 nm is demonstrated in the CH made by alternating silver and silica CCLs. Our solutions are expected to be the efficient tools for designing the sub-wavelength focusing and imaging cylindrical hyperlens.

  1. Metamaterials based on wedge-shaped electrodynamic structures

    Directory of Open Access Journals (Sweden)

    Mitrokhin Vladimir

    2017-01-01

    Full Text Available The paper studies a possibility of simulation of artificial composite media with negative values of the real part of the equivalent dielectric (magnetic permittivity, by the use of segments of hollow composite waveguides with cylindrical guided waves in evanescent mode. Reactive evanescent fields of wedge-shaped waveguide eigenmodes are formed in the evanescent region before the critical section of the waveguide which separates the quasistatic field region from the distributing field of the evanescent waveguide mode. The possibility of simulation is determined by the equivalence of dispersion equation of the eigenmode propagation constant and the dispersion equation for the electric (magnetic permittivity of plasma-like medium if cut-off frequency and electric (magnetic plasma frequency of the medium are equal.

  2. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set....... The dispersion and loss, inevitably present in realistic metamaterials, are modeled by the Drude and Lorentz dispersion models to study the bandwidth properties of the resonances....

  3. A Summary of Recent Developments on Metamaterial-based and Metamaterial-inspired Efficient Electrically Small Antennas

    OpenAIRE

    ERENTOK, Aycan; ZIOLKOWSKI, Richard W.

    2014-01-01

    This paper summarizes our recent research efforts to realize efficient electrically small antenna (EESA) systems based on ideal analytical and numerical metamaterial-based antenna systems, and physically realized metamaterial-inspired antenna designs. Our theoretical and numerical studies of the radiation and resonance behaviors of the proposed metamaterial-based EESA systems, as well as our efforts to conceptualize structures which might be used to build them, have led to the discove...

  4. Novel metamaterial based on the coupling effect of a dielectric trimer

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui; Chen, Wan, E-mail: dhtyyobdc@126.com; Lv, Bo; Wang, Zhefei

    2017-01-23

    Highlights: • Novel metamaterial based on the coupling effect of a dielectric trimer is proposed. • The phenomenon of vanishing mode is explained by the zero-sum effect. • Due to the vanishing mode, the bandwidth of the dielectric trimer has been expanded to 37%. - Abstract: In this paper, a novel periodic 2D all-dielectric metamaterial based on dielectric trimer is proposed. The electromagnetic responses are explained by the corrected equations of motion using coupled mode theory (CMT). An abnormal vanishment mode phenomenon is also discovered and explained using the zero-sum effect of magnetic dipole, by which the relative bandwidth of the metamaterial has been improved significantly compared with other structures. The presented design is easy for fabrication and can be applied in microwave region by scaling the dimensions of the cubes.

  5. A Compact Multiband Metamaterial based Microstrip Patch Antenna for Wireless communication Applications

    OpenAIRE

    Nikhil Kulkarni; G. B. Lohiya

    2017-01-01

    In this paper, a metamaterial based compact multiband microstrip antenna is proposed which can give high gain and directivity. Metamaterials are periodic structures and have been intensively investigated due to the particular features such as ultra-refraction phenomenon and negative permittivity and/or permeability. A metamaterialbased microstrip patch antenna with enhanced characteristics and multi band operation will be investigated in this work. The multiple frequency operation will be ach...

  6. Electronically tunable metamaterials using subwavelength magnetoresponsive particles

    Science.gov (United States)

    Allen, Monica; Allen, Jeffery; Parrow, Jacob; Asif, Sajid; Iftikar, Adnan; Wenner, Brett; Braaten, Benjamin

    We demonstrate tunability of material properties of an engineered electromagnetic material in the RF regime using microparticles that respond to static magnetic biasing fields. The magnetic particles align with field lines creating a short/inductive state of the switch in the addressed voxel. When the biasing magnetic field is removed, the switch returns to an open/capacitive state. Each voxel measures 1.5 mm x 1.5 mm x 0.508 mm in the x, y, and z direction respectively, with a 0.9 mm diameter cylindrical cavity. The cavity is along the z-axis and is partially filled with microparticles composed of a magnetite core with Ag coating. Cu foil placed on the top and bottom encloses the particles in the cavity and acts as the biasing electrodes. Switching between inductive and capacitive states in spatially addressed voxels controls the cumulative ɛ and μ of the host material (i.e., layer) and controls the phase of an incident wave. We present finite element based models of prototype voxels with experimental measurements that validate the models on a host. This research can be applied to real-time tuning of material parameters with subwavelength voxel precision enabling wave control/manipulation as well as devices for switching and software-dictated tunable impedance capabilities. Authors JWA, MSA and BRW are grateful for support from AFOSR Lab Task 17RWCOR397 (Dr. H. Weinstock). NDSU was supported by (FA-8651-15-2-002) from the US Air Force Research Laboratory Munitions Directorate.

  7. Subwavelength metamaterial engineering for silicon photonics

    Science.gov (United States)

    Halir, Robert; Ortega-Moñux, Alejandro; Soler-Penades, Jordi; Luque-González, José M.; Sarmiento-Merenguel, Dario; Sánchez-Postigo, Alejandro; Wangüemert-Pérez, Gonzalo; Schmid, Jens; Xu, Dan-Xia; Janz, Siegfried; Lapointe, Jean; Molina-Fernández, Íñigo; Nedeljkovic, Milos; Mashanovich, Goran Z.; Cheben, Pavel

    2017-02-01

    Waveguides structured at the subwavelength scale frustrate diffraction and behave as optical metamaterials with controllable refractive index. These structures have found widespread applications in silicon photonics, ranging from sub-decibel efficiency fibre-chip couplers to spectrometers and polarization rotators. Here, we briey describe the design foundations for sub-wavelength waveguide devices, both in terms of analytic effective medium approximations, as well as through rigorous Floch-Bloquet mode simulation. We then focus on two novel structures that exemplify the use of subwavelength waveguides: mid-infrared waveguides and ultra-broadband beamsplitters.

  8. Subwavelength micropillar array terahertz lasers.

    Science.gov (United States)

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  9. Subwavelength Hyperlens Resolution With Perfect Contrast Function

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Repän, Taavi; Zhukovsky, Sergei

    2018-01-01

    Recently it has been shown that plasmonic effects in hyperbolic metamaterials may facilitate overcoming the diffraction limit and enhance the contrast function of an image by filtering background radiation. Unfortunately, the contrast function of such a dark‐field hyperlens degrades in the deep......‐subwavelength regime. We push forward the concept of the contrast function revival in the subwavelength imaging by introduction of the proper phase difference between coherent sources. To study this effect we develop a simplified theory of the wave propagation through a hyperbolic metamaterial and show that......, in principle, two sources standing apart at any subwavelength distance can be distinguished. We suggest two feasible designs, the first of which employs the obliquely incident light, while the second one is based on a properly designed metasurface. The concept can be used in high‐contrast subwavelength...

  10. A Summary of Recent Developments on Metamaterial-based and Metamaterial-inspired Efficient Electrically Small Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Ziolkowski, Richard W.

    2008-01-01

    This paper summarizes our recent research efforts to realize efficient electrically small antenna (EESA) systems based on ideal analytical and numerical metamaterial-based antenna systems, and physically realized metamaterial-inspired antenna designs. Our theoretical and numerical studies...... of the radiation and resonance behaviors of the proposed metamaterial-based EESA systems, as well as our efforts to conceptualize structures which might be used to build them, have led to the discovery of several realizable metamaterial-inspired EESA systems. The measurement results confirm the numerical...

  11. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  12. Deep-subwavelength Decoupling for MIMO Antennas in Mobile Handsets with Singular Medium.

    Science.gov (United States)

    Xu, Su; Zhang, Ming; Wen, Huailin; Wang, Jun

    2017-09-22

    Decreasing the mutual coupling between Multi-input Multi-output (MIMO) antenna elements in a mobile handset and achieving a high data rate is a challenging topic as the 5(th)-generation (5G) communication age is coming. Conventional decoupling components for MIMO antennas have to be re-designed when the geometries or frequencies of antennas have any adjustment. In this paper, we report a novel metamaterial-based decoupling strategy for MIMO antennas in mobile handsets with wide applicability. The decoupling component is made of subwavelength metal/air layers, which can be treated as singular medium over a broad frequency band. The flexible applicable property of the decoupling strategy is verified with different antennas over different frequency bands with the same metamaterial decoupling element. Finally, 1/100-wavelength 10-dB isolation is demonstrated for a 24-element MIMO antenna in mobile handsets over the frequency band from 4.55 to 4.75 GHz.

  13. Miniaturized Wideband Bandpass Filter with Wide Stopband using Metamaterial-based Resonator and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    S. Chaimool

    2012-06-01

    Full Text Available This paper presents a miniaturized wideband bandpass filter with wide stopband performance. It is shown that the coupled metamaterial-based resonators (MBRs incorporating with the defected ground structure (DGS can significantly increase the coupling value to achieve wideband bandpass filter. This technique has been extended to realize wideband bandpass filter having fractional bandwidth of 63 % and low insertion loss in the passband. To further suppress the spurious harmonics and upper stopband, the combining of the zero-degree feed structure and embedded slot-loaded resonators in both input and output ports is introduced. The proposed filter has not only compact size but also good out-of-band response. The experimental results are demonstrated and discussed.

  14. Origami mechanical metamaterials based on the Miura-derivative fold patterns

    Science.gov (United States)

    Zhou, Xiang; Zang, Shixi; You, Zhong

    2016-07-01

    This paper presents two new types of origami-inspired mechanical metamaterials based on the Miura-derivative fold patterns that consist of non-identical parallelogram facets. The analytical models to predict dimension changes and deformation kinematics of the proposed metamaterials are developed. Furthermore, by modelling the creases as revolute hinges with certain rotational spring constants, we derived analytical models for stretching and bulk moduli. The analytical models are validated through finite-element simulation results. Numerical examples reveal that the proposed metamaterials possess some intriguing properties, including negative Poisson's ratios and bulk modulus. The work presented in this paper can provide a highly flexible framework for the design of versatile tunable mechanical metamaterials.

  15. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Antonio S.; Scalerandi, Marco [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Miniaci, Marco; Bosia, Federico [Department of Physics, University of Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Pugno, Nicola M. [Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Povo (Trento) (Italy); School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2015-10-19

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  16. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor

    Directory of Open Access Journals (Sweden)

    Burak Ozbey

    2014-10-01

    Full Text Available We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar, and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  17. Subwavelength light confinement with surface plasmon polaritons

    NARCIS (Netherlands)

    Verhagen, E.

    2009-01-01

    In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a

  18. Subwavelength terahertz imaging with graphene hyperlens

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei

    2012-01-01

    of the homogeneous medium approach. Our numerical simulations in COMSOL and CST Microwave Studio confirm the subwavelength imaging properties of the graphene hyperlens. An example of magnification of two point sources separated by λ/5 to the size of few wavelength, which then can be detected with conventional optics...

  19. Subwavelength nanopatterning of photochromic diarylethene films

    Energy Technology Data Exchange (ETDEWEB)

    Cantu, Precious; Brimhall, Nicole; Menon, Rajesh [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Andrew, Trisha L. [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castagna, Rossella; Bertarelli, Chiara [Dipartimento di Chimica, Materiali e Ingegneria Chimica ' ' Giulio Natta' ' , Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology - PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy)

    2012-04-30

    The resolution of optical patterning is constrained by the far-field diffraction limit. In this letter, we describe an approach that exploits the unique photo- and electro-chemistry of diarylethene photochromic molecules to overcome this diffraction limit and achieve sub-wavelength nanopatterning.

  20. Subwavelength line imaging using plasmonic waveguides

    NARCIS (Netherlands)

    Podoliak, N.; Horak, P.; Prangsma, Jord; Pinkse, Pepijn Willemszoon Harry

    2015-01-01

    We investigate the subwavelength imaging capacity of a 2-D fanned-out plasmonic waveguide array, formed by air channels surrounded by gold metal layers for operation at near-infrared wavelengths, via finite-element simulations. High resolution is achieved on one side of the device by tapering down

  1. Graphene based metamaterials for terahertz cloaking and subwavelength imaging

    Science.gov (United States)

    Forouzmand, Seyedali

    Graphene is a two-dimensional carbon crystal that became one of the most controversial topics of research in the last few years. The intense interest in graphene stems from recent demonstrations of their potentially revolutionary electromagnetic applications -- including negative refraction, subdiffraction imaging, and even invisibility -- which have suggested a wide range of new devices for communications, sensing, and biomedicine. In addition, it has been shown that graphene is amenable to unique patterning schemes such as cutting, bending, folding, and fusion that are predicted to lead to interesting properties. A recent proposed application of graphene is in engineering the scattering properties of objects, which may be leveraged in applications such as radar-cross-section management and stealth, where it may be required to make one object look like another object or render an object completely invisible. We present the analytical formulation for the analysis of electromagnetic interaction with a finite conducting wedge covered with a cylindrically shaped nanostructured graphene metasurface, resulting in the scattering cancellation of the dominant scattering mode for all the incident and all the observation angles. Following this idea, the cylindrical graphene metasurface is utilized for cloaking of several concentric finite conducting wedges. In addition, a wedge shaped metasurface is proposed as an alternative approach for cloaking of finite wedges. The resolution of the conventional imaging lenses is restricted by the natural diffraction limit. Artificially engineered metamaterials now offer the possibility of creating a superlens that overcomes this restriction. We demonstrate that a wire medium (WM) slab loaded with graphene sheets enables the enhancement of the near field for subwavelength imaging at terahertz (THz) frequencies. The analysis is based on the nonlocal homogenization model for WM with the additional boundary condition in the connection of

  2. Design and analysis of all-dielectric subwavelength focusing flat lens

    Science.gov (United States)

    Turduev, M.; Bor, E.; Kurt, H.

    2017-09-01

    In this letter, we numerically designed and experimentally demonstrated a compact photonic structure for the subwavelength focusing of light using all-dielectric absorption-free and nonmagnetic scattering objects distributed in an air medium. In order to design the subwavelength focusing flat lens, an evolutionary algorithm is combined with the finite-difference time-domain method for determining the locations of cylindrical scatterers. During the multi-objective optimization process, a specific objective function is defined to reduce the full width at half maximum (FWHM) and diminish side lobe level (SLL) values of light at the focal point. The time-domain response of the optimized flat lens exhibits subwavelength light focusing with an FWHM value of 0.19λ and an SLL value of 0.23, where λ denotes the operating wavelength of light. Experimental analysis of the proposed flat lens is conducted in a microwave regime and findings exactly verify the numerical results with an FWHM of 0.192λ and an SLL value of 0.311 at the operating frequency of 5.42 GHz. Moreover, the designed flat lens provides a broadband subwavelength focusing effect with a 9% bandwidth covering frequency range of 5.10 GHz-5.58 GHz, where corresponding FWHM values remain under 0.21λ. Also, it is important to note that the designed flat lens structure performs a line focusing effect. Possible applications of the designed structure in telecom wavelengths are speculated upon for future perspectives. Namely, the designed structure can perform well in photonic integrated circuits for different fields of applications such as high efficiency light coupling, imaging and optical microscopy, with its compact size and ability for strong focusing.

  3. Plasmonics: Manipulating Light at the Subwavelength Scale

    Directory of Open Access Journals (Sweden)

    Yong-Yuan Zhu

    2007-12-01

    Full Text Available The coupling of light to collective oscillation of electrons on the metal surface allows the creation of surface plasmon-polariton wave. This surface wave is of central interest in the field of plasmonics. In this paper, we will present a brief review of this field, focusing on the plasmonic waveguide and plasmonic transmission. In the plasmonic waveguide, the light can be guided along the metal surface with subwavelength lateral dimensions, enabling the possibility of high-density integration of the optical elements. On the other hand, in the plasmonic transmission, the propagation of light through a metal surface can be tailored with the subwavelength holes, leading to the anomalous transmission behaviors which have received extensive investigations in recent years. In addition, as a supplement to plasmonics in the visible and near-infrared region, the study of THz plasmonics has also been discussed.

  4. Terahertz Subwavelength Structures for Sensing and Nde

    Science.gov (United States)

    Gopalsami, N.; Heifetz, A.; Chien, H. T.; Raptis, A. C.

    2010-02-01

    The ability to control and concentrate electromagnetic (EM) energy in length scales much smaller than the excitation wavelength opens up new opportunities for sensing and NDE. Ordinarily EM wave transmission through such structures becomes infinitesimally small as the slit opening becomes much smaller than the wavelength; however, extraordinary transmission through these structures has been observed by researchers, which is believed to be due to surface plasmonic effect. We have investigated THz subwavelength slit structures for sensing and NDE. In a deep slit structure with subwavelength width, not only are the waves transmitted through, but also are found to be resonating because of the reflections caused by the impedance mismatch at the open ends. As a result, this structure can sense the dielectric properties of materials, which may be in gas, liquid, or solid forms, with high sensitivity and selectivity depending on the quality factor of the cavity resonance. Subwavelength aperture allows for near field imaging of materials with spatial resolution below the Abbe diffraction limit. To understand the electromagnetic (EM) wave propagation through subwavelength structures, we have performed a computational analysis of the EM fields with finite difference time domain (FDTD) technique. Simulated responses were compared with swept-frequency cw THz waves (230-300 GHz) in straight and stepped cavities with 50 μm slits on both ends and increased width in the middle. FDTD modeling of straight slits indicated Fabry-Perot (F-P) resonance peaks with low quality factor. We modified the slit to form a stepped cavity which increased the quality factor because of increased reflection coefficient at the slit ends. We fabricated straight and stepped cavities and tested with THz radiation in the 250-300 GHz range. The stepped cavity appears to have desirable features for sensing: good transmissivity, high-Q F-P resonance, compactness, and ruggedness.

  5. High-index-contrast subwavelength grating VCSEL

    DEFF Research Database (Denmark)

    Gilet, Philippe; Olivier, Nicolas; Grosse, Philippe

    2010-01-01

    In this article, we report our results on 980nm high-index-contrast subwavelength grating (HCG) VCSELs for optical interconnection applications. In our structure, a thin undoped HCG layer replaces a thick p-type Bragg mirror. The HCG mirror can feasibly achieve polarization-selective reflectivities...... structures. These results build a bridge between a standard VCSEL and a hybrid laser on silicon, making them of potential use for the realization of silicon photonics....

  6. Subwavelength resonant nanostructured films for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Bernacki, Bruce E.; Suter, Jonathan D.; Bennett, Wendy D.; Edwards, Daniel L.; Mendoza, Albert

    2013-05-29

    We present a novel subwavelength nanostructure architecture that may be utilized for optical standoff sensing applications. The subwavelength structures are fabricated via a combination of nanoimprint lithography and metal sputtering to create metallic nanostructured films encased within a transparent media. The structures are based on the open ring resonator (ORR) architecture and have their analog in resonant LC circuits, which display a resonance frequency that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any perturbation of the nanostructured films due to chemical or environmental effects can alter the inductive or capacitive behavior of the subwavelength features, which can shift the resonant frequency and provide an indication of the external stimulus. This shift in resonance can be interrogated remotely either actively using either laser illumination or passively using hyperspectral or multispectral sensing. These structures may be designed to be either anisotropic or isotropic, which can also provide polarization-sensitive interrogation. Due to the nanometer-scale of the structures, they can be tailored to be optically responsive in the visible or near infrared spectrum with a highly reflective resonant peak that is dependent solely on structural dimensions and material characteristics. We present experimental measurements of the optical response of these structures as a function of wavelength, polarization, and incident angle demonstrating the resonant effect in the near infrared region. Numerical modeling data showing the effect of different fabrication parameters such as structure parameters are also discussed.

  7. An Object-Independent ENZ Metamaterial-Based Wideband Electromagnetic Cloak.

    Science.gov (United States)

    Islam, Sikder Sunbeam; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul

    2016-09-16

    A new, metamaterial-based electromagnetic cloaking operation is proposed in this study. The metamaterial exhibits a sharp transmittance in the C-band of the microwave spectrum with negative effective property of permittivity at that frequency. Two metal arms were placed on an FR-4 substrate to construct a double-split-square shape structure. The size of the resonator was maintained to achieve the effective medium property of the metamaterial. Full wave numerical simulation was performed to extract the reflection and transmission coefficients for the unit cell. Later on, a single layer square-shaped cloak was designed using the proposed metamaterial unit cell. The cloak hides a metal cylinder electromagnetically, where the material exhibits epsilon-near-zero (ENZ) property. Cloaking operation was demonstrated adopting the scattering-reduction technique. The measured result was provided to validate the characteristics of the metamaterial and the cloak. Some object size- and shape-based analyses were performed with the cloak, and a common cloaking region was revealed over more than 900 MHz in the C-band for the different objects.

  8. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology

    Science.gov (United States)

    Matsui, Tatsunosuke

    2017-09-01

    Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.

  9. Sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2008-01-01

    It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonica...

  10. Topology Optimization of Sub-Wavelength Antennas

    DEFF Research Database (Denmark)

    Erentok, Aycan; Sigmund, Ole

    2011-01-01

    We propose a topology optimization strategy for the systematic design of a three-dimensional (3D), conductor-based sub-wavelength antenna. The post-processed finite-element (FE) models of the optimized structure are shown to be self-resonant, efficient and exhibit distorted omnidirectional......, elliptically polarized far-field radiation patterns. The computed approximate Q value for this antenna is QZ(ω0)≈ 7.74 for ω0=2π × 350.8 MHz and it is 1.64 times larger than the theoretical lower bound value....

  11. Double-negative acoustic metamaterial based on hollow steel tube meta-atom

    CERN Document Server

    Chen, Huaijun; Ding, Changlin; Luo, Chunrong; Zhao, Xiaopeng

    2012-01-01

    We presented an acoustic 'meta-atom' model of hollow steel tube (HST). The simulated and experimental results demonstrated that the resonant frequency is closely related to the length of the HST. Based on the HST model, we fabricated a two-dimensional (2D) acoustic metamaterial (AM) with negative effective mass density, which put up the transmission dip and accompanied inverse phase in experiment. By coupling the HST with split hollow sphere (SHS), another kind of 'meta-atom' with negative effective modulus in the layered sponge matrix, a three-dimensional (3D) AM was fabricated with simultaneously negative modulus and negative mass density. From the experiment, it is shown that the transmission peak similar to the electromagnetic metamaterials exhibited in the double-negative region of the AM. We also demonstrated that this kind of doble-negative AM can faithfully distinguish the acoustic sub-wavelength details ({\\lambda}/7) at the resonance frequency of 1630Hz.

  12. Subwavelength metastructures for dispersion engineering in planar waveguide devices

    Science.gov (United States)

    Halir, Robert; Ortega-Moñux, Alejandro; Cheben, Pavel; Maese-Novo, Alejandro; Pérez-Galacho, Diego; Alonso-Ramos, Carlos; Molina-Fernández, Íñigo; Wangüemert-Pérez, J. G.; Schmid, Jens H.; Xu, Dan-Xia; Janz, Siegfried

    2014-02-01

    High contrast structures with a sub-wavelength pitch, small enough to suppress diffraction, exhibit extraordinary optical properties: depending on the design they may behave as perfect mirrors, anti-reflective interfaces, homogenous materials with controllable refractive index, or strongly dispersive materials. Here we discuss on the design possibilities such structures offer in planar waveguide devices in silicon-on-insulator. We briefly review the application of sub-wavelength structures in a variety of waveguide devices. We then focus on some of the latest advances in the design ultra-compact and ultra-wideband multimode interference couplers based on dispersion engineered sub-wavelength structures.

  13. Liquid crystal on subwavelength metal gratings

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P.; Barnik, M. I.; Artemov, V. V.; Shtykov, N. M.; Geivandov, A. R.; Yudin, S. G.; Gorkunov, M. V. [Shubnikov Institute of Crystallography of Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation)

    2015-06-14

    Optical and electrooptical properties of a system consisting of subwavelength metal gratings and nematic liquid crystal layer are studied. Aluminium gratings that also act as interdigitated electrodes are produced by focused ion beam lithography. It is found that a liquid crystal layer strongly influences both the resonance and light polarization properties characteristic of the gratings. Enhanced transmittance is observed not only for the TM-polarized light in the near infrared spectral range but also for the TE-polarized light in the visible range. Although the electrodes are separated by nanosized slits, and the electric field is strongly localized near the surface, a pronounced electrooptical effect is registered. The effect is explained in terms of local reorientation of liquid crystal molecules at the grating surface and propagation of the orientational deformation from the surface into the bulk of the liquid crystal layer.

  14. Subwavelength line imaging using plasmonic waveguides

    CERN Document Server

    Podoliak, Nina; Prangsma, Jord C; Pinkse, Pepijn W H

    2015-01-01

    We investigate the subwavelength imaging capacity of a two-dimensional fanned-out plasmonic waveguide array, formed by air channels surrounded by gold metal layers for operation at near-infrared wavelengths, via finite element simulations. High resolution is achieved on one side of the device by tapering down the channel width while simultaneously maintaining propagation losses of a few dB. On the other, low-resolution side, output couplers are designed to optimize coupling to free space and to minimize channel cross talk via surface plasmons. Point sources separated by {\\lambda}/15 can still be clearly distinguished. Moreover, up two 90% of the power of a point dipole is coupled to the device. Applications are high-resolution linear detector arrays and, by operating the device in reverse, high-resolution optical writing.

  15. Electrically Tunable Metamaterials Based on Multimaterial Nanowires Incorporating Transparent Conductive Oxides.

    Science.gov (United States)

    Salary, Mohammad Mahdi; Mosallaei, Hossein

    2017-08-30

    We present novel design approaches for metasurfaces and metamaterials with electrical tunability offering real-time manipulation of light and serving as multifunctional devices in near-infrared frequency regime (at the specific wavelength of 1.55 μm). For this purpose, we integrate indium-tin-oxide (ITO) as a tunable electro-optical material into multimaterial nanowires with metal-oxide-semiconductor and metal-insulator-metal configurations. In particular, an active metasurface operating in the transmission mode is designed which allows for modulation of the transmitted light phase over 280 degrees. This large phase modulation is afforded in the cost of low transmission efficiency. We demonstrate the use of such active metasurfaces for tunable bending and focusing in free-space. Moreover, we investigate the implementation of this material in deeply subwavelength multimaterial nanowires, which can yield strong variations in the effective refractive index by the virtue of internal homogenization enabling tunability of the performance in gradient refractive index metamaterials. In the theoretical modeling of these structures, we adopt a hierarchical multiscale approach by linking drift-diffusion transport model with the electromagnetic model which rigorously characterizes the electro-optical effects.

  16. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke

    2016-03-22

    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  17. Crystalline metamaterials for topological properties at subwavelength scales

    Science.gov (United States)

    Yves, Simon; Fleury, Romain; Berthelot, Thomas; Fink, Mathias; Lemoult, Fabrice; Lerosey, Geoffroy

    2017-01-01

    The exciting discovery of topological condensed matter systems has lately triggered a search for their photonic analogues, motivated by the possibility of robust backscattering-immune light transport. However, topological photonic phases have so far only been observed in photonic crystals and waveguide arrays, which are inherently physically wavelength scaled, hindering their application in compact subwavelength systems. In this letter, we tackle this problem by patterning the deep subwavelength resonant elements of metamaterials onto specific lattices, and create crystalline metamaterials that can develop complex nonlocal properties due to multiple scattering, despite their very subwavelength spatial scale that usually implies to disregard their structure. These spatially dispersive systems can support subwavelength topological phases, as we demonstrate at microwaves by direct field mapping. Our approach gives a straightforward tabletop platform for the study of photonic topological phases, and allows to envision applications benefiting the compactness of metamaterials and the amazing potential of topological insulators. PMID:28719573

  18. Extreme localization of light with femtosecond subwavelength rogue waves

    KAUST Repository

    Liu, Changxu

    2015-01-01

    By using theory and experiments, we investigate a new mechanism based on spontaneous synchronization of random waves which generates ultrafast subwavelength rare events in integrated photonic chips. © 2014 Optical Society of America.

  19. Bulk magnetic terahertz metamaterial based on TiO2 microresonators(Conference Presentation)

    Science.gov (United States)

    Kadlec, Christelle; Sindler, Michal; Dominec, Filip; Němec, Hynek; Elissalde, Catherine; Mounaix, Patrick; Kuzel, Petr

    2017-05-01

    Dielectric spheres with high permittivity represent a Mie resonance-based metamaterial. Owing to its high far-infrared permittivity and low dielectric losses, TiO2 is a suitable material for the realization of magnetic metamaterials based on micro-resonators for the terahertz (THz) range. In a previous work, we experimentally demonstrated the magnetic effective response of TiO 2 microspheres dispersed in air, forming nearly a single-layer sample enclosed between two sapphire wafers [1]. Here we embedded the polycrystalline TiO2 microparticles into a polyethylene matrix, which enabled us to prepare a rigid bulk metamaterial with a controllable concentration of micro- resonators. TiO2 microspheres with a diameter of a few tens of micrometers were prepared by a bottom up approach. A liquid suspension of TiO2 nanoparticles was first spray-dried producing fragile TiO2 microspheres. These were subsequently sintered in a furnace at 1200° C for two hours, in order to consolidate individually each sphere. The particles show polycrystalline rutile structure with a porosity of 15%. The microspheres were finally sieved and sorted along their diameters in order to obtain a narrow size distribution. They were mixed with polyethylene powder and a pressure of 14 MPa was used to prepare rigid pellets with random spatial distribution of the TiO2 microspheres. Using finite-difference time-domain simulations, we investigated how the filling fraction and the ratio between the permittivities of the microspheres and the host matrix affect the position and the strength of the magnetic response associated with the lowest Mie mode. We found that a range of negative effective magnetic permeability can be achieved for sufficiently high filling factors and contrasts between the permittivities of the resonators and the embedding medium. Using time-domain THz spectroscopy we experimentally characterized the response of the realized structures and confirmed the magnetic character of their

  20. Coupling polariton quantum boxes in sub-wavelength grating microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Wang, Zhaorong; Deng, Hui, E-mail: dengh@umich.edu [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); Höfling, Sven [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074 Würzburg (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-02-02

    We report the construction of decoupled, coupled, and quasi-one dimensional polariton systems from zero dimensional polariton quantum boxes using microcavities with sub-wavelength gratings as the top mirror. By designing the tethering patterns around the suspended sub-wavelength gratings, we control the coupling between individual quantum boxes through different optical potentials. Energy levels and real-space or momentum space distributions of the confined modes were measured, which agreed well with simulations.

  1. Rabi oscillations and stimulated mode conversion on the subwavelength scale.

    Science.gov (United States)

    Zhang, Xiao; Ye, Fangwei; Kartashov, Yaroslav V; Chen, Xianfeng

    2015-03-09

    We study stimulated mode conversion and dynamics of Rabi-like oscillations of weights of guided modes in deeply subwavelength guiding structures, whose dielectric permittivity changes periodically in the direction of light propagation. We show that despite strong localization of the fields of eigenmodes on the scales below the wavelength of light, even weak longitudinal modulation couples modes of selected parity and causes periodic energy exchange between them, thereby opening the way for controllable transformation of the internal structure of subwavelength beams. The effect is reminiscent of Rabi oscillations in multilevel quantum systems subjected to the action of periodic external fields. By using rigorous numerical solution of the full set of the Maxwell's equations, we show that the effect takes place not only in purely dielectric, but also in metallic-dielectric structures, despite the energy dissipation inherent to the plasmonic waveguides. The stimulated conversion of subwavelength light modes is possible in both linear and nonlinear regimes.

  2. Elastic metamaterial-based seismic shield for both Lamb and surface waves

    Directory of Open Access Journals (Sweden)

    Qiujiao Du

    2017-07-01

    Full Text Available Controlling the propagation of seismic waves to protect critical infrastructure via metamaterial is of new topical interest. This approach can be implemented by remote shielding of incoming waves rather than with vibration isolating structures. In this paper, a two-dimensional elastic metamaterial with periodically square concrete-filled steel piles embedded in soil is proposed to achieve a seismic shield for guided Lamb waves and surface waves. Its properties are numerically investigated using the finite element method. For Lamb waves, we first identify complete bandgaps appearing in a periodic composite with cylindrical piles. By comparison, it is found that if the shape of the pile is replaced with the square shape, the bandgaps become wider and shift to the lower frequencies, which is more suitable for practical applications. Furthermore, it is demonstrated that a complete low frequency bandgap also exists for surface waves. The vibration modes for both types of waves at the bandgap edges are computed and analyzed to clarify the mechanism of the bandgap generation. The study focuses on realistic structures that can be effective in the frequency ranges for seismic waves. Although we have focused on the geophysical setting, elastic waves are also very important in applications involving acoustic wave devices.

  3. Transmission of electromagnetic waves through sub-wavelength channels

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-ε isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel...... without being cut off, as if it has just passed through the original empty waveguide. Both the magnitude and phase information of the EM fields can be effectively restored after passing this channel, regardless of the polarization of the incoming wave. The performance of this subwavelength channel, which...

  4. Transmission of electromagnetic waves through sub-wavelength channels.

    Science.gov (United States)

    Zhang, Jingjing; Luo, Yu; Mortensen, Niels Asger

    2010-02-15

    We propose a method of tunneling electromagnetic (EM) waves through a channel with sub-wavelength cross section. By filling the channel with high-epsilon isotropic material and implementing two matching layers with uniaxial metamterial substrates, the guided waves can go through the narrow channel without being cut off, as if it has just passed through the original empty waveguide. Both the magnitude and phase information of the EM fields can be effectively restored after passing this channel, regardless of the polarization of the incoming wave. The performance of this sub-wavelength channel, which is designed with coordinate transformation methodology, is studied theoretically and numerically.

  5. Low-loss intersection of subwavelength plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    The properties of crossing for two perpendicular subwavelength plasmonic slot waveguides are theoretically investigated. Results show when encountering a nano intersection the crosstalk for the direct crossing is around 25%, almost the same as throughput. In terms of symmetry considerations and r...

  6. Subwavelength propagation and localization of light using surface ...

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... ... methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.

  7. Retrieval of Effective Parameters of Subwavelength Periodic Photonic Structures

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Yankovskaya, Elizaveta A.; Zhukovsky, Sergei

    2014-01-01

    We revisit the standard Nicolson Ross Weir method of effective permittivity and permeability restoration of photonic structures for the case of subwavelength metal-dielectric multilayers. We show that the direct application of the standard method yields a false zero-epsilon point and an associated...

  8. Sub-wavelength metamaterial cylinders with multiple dipole resonances

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM configu...

  9. Ultrathin cylindrical cloak

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Mortensen, N. Asger

    2011-01-01

    We propose a cylindrical invisibility cloak achieved utilizing two dimensional split-ring resonator structured metamaterials at microwave frequencies. The cloak has spatially uniform parameters in the axial direction, and can work very well even when the cloak shell is very thin compared...... with the concealed object and the working wavelength. Numerical simulation is performed to verify the functionality of the cloak, where the cloak layer is only around 1/4 of the operating wavelength. Our work provides a feasible solution to the experimental realization of cloaks with ideal parameters....

  10. Simulation of light scattering for surfaces with statistically distributed subwavelength cavities

    Science.gov (United States)

    Tausendfreund, A.; Patzelt, S.; Mader, D.; Simon, S.; Goch, G.

    2006-04-01

    This paper deals with an efficient computation method for scattered light intensity distributions, which occur, if a nanostructured surface is illuminated with a monochromatic laser beam of several millimeters in diameter. The minimization of the computational amount is an essential precondition in connection with the development of powerful design tools for laser optical surface measuring methods, which derive structure characterizing attributes from structure dependent scattering effects. The presented approach differs from concepts based on near-field solutions of the Maxwell equations (finite element methods (FEM), finite difference time domain methods (FDTD)) or approximation methods for the near-field (Discrete Dipole Approximation (DDA), Generalized Multipole Technique (GMT)) as the near-field is not computed. Instead, an electrically equivalent model based on pre-computed radiation sources like Huygens point sources, dipoles, quadrupoles, etc. is used, which for standard geometrical nanostructures (cylindrical holes, spheres and ellipsoids) leads to the same far-field distributions as the conventional methods. In order to simulate the scattered light by an arbitrary surface it is divided into subwavelength geometries, which can be substituted by electrically equivalent dipole radiation sources. The far-field is calculated with a numerical scalar method. The computational effort is much smaller compared to algorithms based on the solution of Maxwell's equations.

  11. Detecting and identifying DNA via the THz backbone frequency using a metamaterial-based label-free biosensor

    Science.gov (United States)

    Mirzaei, Sahar; Green, Nicolas G.; Rotaru, Mihai; Pu, Suan Hui

    2017-02-01

    In genetic diagnostics, laboratory-based equipment generally uses analytical techniques requiring complicated and expensive fluorescent labelling of target DNA molecules. Intense research effort into, and commercial development of, Point-of-Care diagnostics and Personalized Healthcare are driving the development of simple, fast and cost-effective detection methods. One potential label-free DNA detection method uses Terahertz (THz) spectroscopy of the natural responses of DNA in metamaterial structures, which are engineered to have properties that are impossible to obtain in natural materials. This paper presents a study of the development of metamaterials based on asymmetric X-shaped resonator inclusions as a functional sensor for DNA. Gold X-shaped resonator structures with dimensions of 90/85 μm were demonstrated to produce trapped mode resonant frequency in the correct range for DNA detection. Realistic substrate materials in the form of 375 μm thick quartz were investigated, demonstrating that the non-transparent nature of the material resulted in the production of standing waves, affecting the system response, as well as requiring a reduction in scale of the resonator of 85%. As a result, the effect of introducing etched windows in the substrate material were investigated, demonstrating that increased window size significantly reduces the effect of the substrate on the system response. The device design showed a good selectivity when RNA samples were introduced to the model, demonstrating the potential for this design of device in the development of sensors capable of performing cheap and simple genetic analysis of DNA, giving label-free detection at high sensitivity.

  12. Consider a Cylindrical Cow

    Science.gov (United States)

    Harte, John

    Cylindrical Cow will help students achieve a whole new level of environmental modeling and problem solving. Featuring a new core set of 25 fully worked-out problems, this book uses real problems in environmental science rather than relying on the more traditional cookbook problems found in textbooks. It is organized according to five thematic sections on probability, optimization, scaling, differential equations, and stability & feedback. Each section begins with a general treatment of the relevant mathematical concepts, and concludes with a range of homework exercises to help students sharpen their modeling skills. Like its predecessor, this book will empower students with the mathematical skills needed to cut through the complexity of real-world problems.

  13. Polymers under Cylindrical Confinement

    Science.gov (United States)

    Russell, Thomas

    2009-03-01

    Anodized alumina oxide (AAO) membranes offer a unique platform to investigate polymers under confinement. AAO membranes have been prepared where the diameters of the nanopores in the membrane have been varied from 8 to 50 nm by varying the anodization conditions. Capillary force is sufficiently large to draw high molecular weight polymers into the membrane, producing either nanotubes or nanorods. Polymer solutions can also be used place a thin film on the walls of the nanopores, forming nanotubes. With pore diameters less than the radius of gyration, a quantitative understanding of perturbations to chain dynamics due to geometric constraints was examined. We found a weak molecular weight-dependent mobility of polymers confined within AAO nanopores having diameters smaller than the dimension of the chains in the bulk. The measured mobility of polymers in the confined geometry was much higher than the mobility of the unconfined chain. Rayleigh instabilities in thin polymer films confined within nanoporous alumina membranes were also found where periodic undulations on the film surface were found to increase with time, eventually bridging across the cylindrical nanopore, resulting in the formation of polymer nanorods with a periodic array of encapsulated holes. With microphase separated block copolymers, where the characteristic period of the BCP morphology is comparable to the pore diameter, significant deviations from the bulk morphology as revealed by electron tomography. Small angle neutron scattering was also used to investigate the influence of cylindrical confinement on the order-to-disordered transition. This work was done in collaboration with T. J. McCarthy (UMass), K. Shin (Seoul National University), H. Jinnai (Kyoto University), D. Chen, J. Chen, H. Xiang, T. Kim, and P. Dobriyal, and was supported by the DOE, NSF MRSEC, NSF CHM.

  14. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  15. Subwavelength coupling strengthened optical amplification in nematic liquid crystal cells

    Science.gov (United States)

    Zhao, Hua; Xue, Tingyu; Su, Hang; Wang, Yingce; Zhang, Jingwen

    2017-09-01

    We observed strikingly different first reflection dynamics of two counter-propagating laser beams passing through a wedge-shaped C60-doped liquid crystal cell sandwiched between two ZnSe-coated ITO glass plates without applied electric field, suggesting a strong subwavelength energy coupling between light beams. Exponential gain coefficient as high as 10 574 cm-1 was obtained from the 1.1 μm-thick portion of the cell under applied voltage U0 = 3.0 V, consisting with the subwavelength coupling picture. Surface plasmon polariton (SPP) supporting layer is identified by considering dipolar properties of liquid crystal molecules that are well aligned. The specific features in energy coupling dynamics and 2D diffraction patterns perceived suggest that SPP mediated coupling is responsible for all the findings.

  16. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  17. Directional perfect absorption using deep subwavelength low permittivity films

    CERN Document Server

    Luk, Ting S; Kim, Iltai; Feng, Simin; Jun, Young Chul; Liu, Sheng; Wright, Jeremy B; Brener, Igal; Catrysse, Peter B; Fan, Shanhui; Sinclair, Michael B

    2014-01-01

    We experimentally demonstrate single beam directional perfect absorption (to within experimental accuracy) of p-polarized light in the near-infrared using unpatterned, deep subwavelength films of indium tin oxide (ITO) on Ag. The experimental perfect absorption occurs slightly above the epsilon-near-zero (ENZ) frequency of ITO where the permittivity is less than one. Remarkably, we obtain perfect absorption for films whose thickness is as low as ~1/50th of the operating free-space wavelength and whose single pass attenuation is only ~ 5%. We further derive simple analytical conditions for perfect absorption in the subwavelength-film regime that reveal the constraints that the ITO permittivity must satisfy if perfect absorption is to be achieved. Then, to get a physical insight on the perfect absorption properties, we analyze the eigenmodes of the layered structure by computing both the real-frequency/complex-wavenumber and the complex-frequency/real-wavenumber modal dispersion diagrams. These analyses allow u...

  18. Far-Field Microscopy of Sparse Subwavelength Objects

    CERN Document Server

    Szameit, A; Dana, H; Steiner, S; Gazit, S; Cohen-Hyams, T; Bullkich, E; Cohen, O; Eldar, Y C; Shoham, S; Kley, E B; Segev, M

    2010-01-01

    We present the experimental reconstruction of sub-wavelength features from the far-field of sparse optical objects. We show that it is sufficient to know that the object is sparse, and only that, and recover 100 nm features with the resolution of 30 nm, for an illuminating wavelength of =532 nm. Our technique works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.

  19. Ultra-High and Near-Zero Refractive Indices of Magnetron Sputtered Thin-Film Metamaterials Based on TixOy

    Directory of Open Access Journals (Sweden)

    Vukoman Jokanović

    2016-01-01

    Full Text Available Metamaterials based on TixOy with ultra-high and near-zero refractive indices were obtained by DC magnetron sputtering. The data on refractive indices, extinction coefficients, film thickness, and band gaps, obtained by spectroscopic ellipsometry, showed very high potential of these materials as metamaterials. Phase analysis performed by XRD revealed the presence of titanium phases with lower titanium oxidation states resulting from high concentration of oxygen vacancies, which are crucial for such extraordinary jumps and drops of refractive indices. Numerous band gaps for direct and indirect electron transitions additionally confirmed unique properties of these materials.

  20. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  1. Stage Cylindrical Immersive Display

    Science.gov (United States)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  2. Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture.

    Science.gov (United States)

    Alici, Kamil Boratay; Bilotti, Filiberto; Vegni, Lucio; Ozbay, Ekmel

    2009-04-13

    In the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with lambda/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency.

  3. Ultra sub-wavelength surface plasmon confinement using air-gap, sub-wavelength ring resonator arrays

    DEFF Research Database (Denmark)

    Lee, Jaehak; Sung, Sangkeun; Choi, Jun-Hyuk

    2016-01-01

    Arrays of sub-wavelength, sub-10 nm air-gap plasmonic ring resonators are fabricated using nanoimprinting. In near infra-red (NIR) range, the resonator supports a single dipole mode which is excited and identified via simple normal illumination and explored through transmission measurements...... sensitivity up to 69 nm/nm is achieved as the modal height approaches the thickness of the adsorbed molecule layers....

  4. Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Peng, Liang; Mortensen, Asger

    2010-01-01

    Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin...

  5. Resonating Terahertz Response of Periodic Arrays of Subwavelength Apertures

    KAUST Repository

    D’Apuzzo, Fausto

    2014-10-11

    Extraordinary optical transmission (EOT) peaks mediated by plasmonic excitations can be observed in a variety of subwavelength patterned metallic surfaces. In this paper, we have fabricated and spectroscopically characterized plasmon devices exhibiting EOT peaks at terahertz (THz) frequencies. These devices, which resonate with intermediate and collective modes of macromolecules, can be used for detection of materials of biological interest and their performances have been experimentally determined by measuring the variation of the EOT frequencies for thin sub-micrometric organic layers deposited onto the device surface.

  6. Broadband high reflectivity in subwavelength-grating slab waveguides.

    Science.gov (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-10-19

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  7. Subwavelength grating-mirror VCSEL with a thin oxide gap

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Gilet, Philippe

    2008-01-01

    A new vertical-cavity surface-emitting laser (VCSEL) structure based on a subwavelength grating mirror and a thin oxide gap is suggested and numerically investigated. The structure is shown to exhibit similar threshold gain, suppression of higher order transverse modes, and polarization stability...... as a grating-mirror VCSEL reported in the literature based on a thick air gap. The thin oxide gap structure has a number of advantages including easier fabrication, better mechanical stability, and very strong single-mode properties....

  8. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  9. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  10. High speed optical filtering using active resonant subwavelength gratings

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Ellis, A. R.; Marshall, L. H.; Carter, T. R.; Hunker, J. D.; Samora, S.

    2010-02-01

    In this work, we describe the most recent progress towards the device modeling, fabrication, testing and system integration of active resonant subwavelength grating (RSG) devices. Passive RSG devices have been a subject of interest in subwavelength-structured surfaces (SWS) in recent years due to their narrow spectral response and high quality filtering performance. Modulating the bias voltage of interdigitated metal electrodes over an electrooptic thin film material enables the RSG components to act as actively tunable high-speed optical filters. The filter characteristics of the device can be engineered using the geometry of the device grating and underlying materials. Using electron beam lithography and specialized etch techniques, we have fabricated interdigitated metal electrodes on an insulating layer and BaTiO3 thin film on sapphire substrate. With bias voltages of up to 100V, spectral red shifts of several nanometers are measured, as well as significant changes in the reflected and transmitted signal intensities around the 1.55um wavelength. Due to their small size and lack of moving parts, these devices are attractive for high speed spectral sensing applications. We will discuss the most recent device testing results as well as comment on the system integration aspects of this project.

  11. A super-oscillatory lens optical microscope for subwavelength imaging.

    Science.gov (United States)

    Rogers, Edward T F; Lindberg, Jari; Roy, Tapashree; Savo, Salvatore; Chad, John E; Dennis, Mark R; Zheludev, Nikolay I

    2012-03-25

    The past decade has seen an intensive effort to achieve optical imaging resolution beyond the diffraction limit. Apart from the Pendry-Veselago negative index superlens, implementation of which in optics faces challenges of losses and as yet unattainable fabrication finesse, other super-resolution approaches necessitate the lens either to be in the near proximity of the object or manufactured on it, or work only for a narrow class of samples, such as intensely luminescent or sparse objects. Here we report a new super-resolution microscope for optical imaging that beats the diffraction limit of conventional instruments and the recently demonstrated near-field optical superlens and hyperlens. This non-invasive subwavelength imaging paradigm uses a binary amplitude mask for direct focusing of laser light into a subwavelength spot in the post-evanescent field by precisely tailoring the interference of a large number of beams diffracted from a nanostructured mask. The new technology, which--in principle--has no physical limits on resolution, could be universally used for imaging at any wavelength and does not depend on the luminescence of the object, which can be tens of micrometres away from the mask. It has been implemented as a straightforward modification of a conventional microscope showing resolution better than λ/6.

  12. Active resonant subwavelength grating for scannerless range imaging sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Kemme, Shanalyn A.; Nellums, Robert O.; Boye, Robert R.; Peters, David William

    2006-11-01

    In this late-start LDRD, we will present a design for a wavelength-agile, high-speed modulator that enables a long-term vision for the THz Scannerless Range Imaging (SRI) sensor. It takes the place of the currently-utilized SRI micro-channel plate which is limited to photocathode sensitive wavelengths (primarily in the visible and near-IR regimes). Two of Sandia's successful technologies--subwavelength diffractive optics and THz sources and detectors--are poised to extend the capabilities of the SRI sensor. The goal is to drastically broaden the SRI's sensing waveband--all the way to the THz regime--so the sensor can see through image-obscuring, scattering environments like smoke and dust. Surface properties, such as reflectivity, emissivity, and scattering roughness, vary greatly with the illuminating wavelength. Thus, objects that are difficult to image at the SRI sensor's present near-IR wavelengths may be imaged more easily at the considerably longer THz wavelengths (0.1 to 1mm). The proposed component is an active Resonant Subwavelength Grating (RSG). Sandia invested considerable effort on a passive RSG two years ago, which resulted in a highly-efficient (reflectivity greater than gold), wavelength-specific reflector. For this late-start LDRD proposal, we will transform the passive RSG design into an active laser-line reflector.

  13. A polarization-independent terahertz plasmon-induced transparency metamaterial based on hybrid graphene-gold structure for bio-sensing

    Science.gov (United States)

    Zhao, Xiaolei; Yuan, Cai; Lv, Wenhua; Xu, Shilin; Yao, Jianquan

    2016-02-01

    A polarization-independent terahertz metamaterial based on hybrid graphene-gold structure with excellent refractive index sensing characteristics is proposed. The proposed structure exhibits a sharply narrow plasmon-induced transparency peak in the transmission spectrum at the terahertz regime. Obvious frequency shift in the transparency peak can be observed by varying the surrounding medium's refractive index or the Fermi level in graphene, which can be well applied in bio-sensing technology. Moreover, an electrical RLC circuit model is used to provide a reasonable explanation for the optical response process in the proposed structure. Our work can offer reference value for the application of graphene technology as well as new idea for designing novel biosensors.

  14. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  15. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  16. Electrically reconfigurable optical metamaterials based on orientationally ordered dispersions of metal nano-rods in dielectric fluids

    Science.gov (United States)

    Golovin, Andrii B.; Xiang, Jie; Nastishin, Yuriy A.; Lavrentovich, Oleg D.

    2010-08-01

    Optical metamaterials capture the imagination with potential applications such as sub-wave imaging, invisibility cloaking and solar energy collection. The challenge is to learn how to construct and reconfigure a metamaterial with a spatially varying refractive index. We describe an approach based on colloidal dispersion of metal nano-rods in a dielectric fluid placed in a non-uniform electric field. Because of the dielectrophoretic effect, the nano-rods accumulate in the regions with the maximum field and align along the field lines. High concentration of nano-rods lowers the effective local refractive index of the dispersion. The nano-rods are much smaller than the wavelength of light. We illustrate the approach with a dispersion of gold nanorods (length 40-70 nm, diameter 10-20 nm) in toluene, using flat and cylindrical cells. In the first case, the electric field is created by two mutually perpendicular electrodes, in the second case, it is created by two coaxial electrodes. When the field is applied, the initially isotropic dispersion of nanorods transforms into birefringent orientationally ordered structures with the director following the electric field lines. We describe how the optical properties of the field-induced structures are controlled by dichroism and birefringence of the dispersion and determine the spatial variation of the field-induced optical phase retardation. In cylindrical capillaries, the index gradient bends lights around the central electrode, thus reducing its visibility. Our approach can be used as a starting point for the development of self-assembled and reconfigurable optical metamaterials with optical properties controlled by the dielectrophoretic effect on submicron scales.

  17. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    Science.gov (United States)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments are described and claimed.

  18. Bio-functional subwavelength optical waveguides for biodetection

    Energy Technology Data Exchange (ETDEWEB)

    Sirbuly, D J; Fischer, N; Huang, S; Artyukhin, A

    2007-07-10

    We report a versatile biofunctional subwavelength photonic device platform for real-time detection of biological molecules. Our devices contain lipid bilayer membranes fused onto metal oxide nanowire waveguides stretched across polymeric flow channels. The lipid bilayers incorporating target receptors are submersed in the propagating evanescent field of the optical cavity. We show that the lipid bilayers in our devices are continuous, have very high mobile fraction, and are resistant to fouling. We also demonstrate that our platform allows rapid membrane exchange. Finally we use this device for detection of specific DNA sequences in solution by anchoring complementary DNA target strands in the lipid bilayer. This evanescent wave sensing architecture holds great potential for portable, all-optical detection systems.

  19. Massively sub-wavelength guiding of electromagnetic waves.

    Science.gov (United States)

    Hooper, I R; Tremain, B; Dockrey, J A; Hibbins, A P

    2014-12-16

    Recently a new form of ultra-thin flexible waveguide consisting of a conducting comb-like structure with a thickness of the order of 1/600(th) of the operating wavelength was presented. However, whilst the thickness of the guide was massively sub-wavelength, the remaining dimensions (the height and period of the comb) were much longer. In this paper we propose, and experimentally verify, that a modified guiding geometry consisting of a chain of ultra-thin conducting spirals allows guiding of electromagnetic waves with wavelengths that are many times (40+) longer than any characteristic dimension of the guide, enabling super-sub-wavelength guiding and localisation of electromagnetic energy.

  20. Complete polarimetry on the asymmetric transmission through subwavelength hole arrays.

    Science.gov (United States)

    Arteaga, Oriol; Maoz, Ben M; Nichols, Shane; Markovich, Gil; Kahr, Bart

    2014-06-02

    Dissymmetric, periodically nanostructured metal films can show non-reciprocal transmission of polarized light, in apparent violation of the Lorentz reciprocity theorem. The wave vector dependence of the extraordinary optical transmission in gold films with square and oblique subwavelength hole arrays was examined for the full range of polarized light input states. In normal incidence, the oblique lattice, in contrast to square lattice, showed strong asymmetric, non-reciprocal transmission of circularly polarized light. By analyzing the polarization of the input and the output with a complete Mueller matrix polarimeter the mechanisms that permits asymmetric transmission while preserving the requirement of electromagnetic reciprocity is revealed: the coupling of the linear anisotropies induced by misaligned surface plasmons in the film. The square lattice also shows asymmetric transmission at non-normal incidence, whenever the plane of incidence does not coincide with a mirror line.

  1. Robust subwavelength focusing of surface plasmons on graphene

    Science.gov (United States)

    Long, Yang; Zhang, Zhengren; Su, Xiaopeng

    2016-11-01

    Graphene plays a substantial role in nano-scale optical engineering and miniature information signal processing systems gradually. In this letter, we propose a pipe-like substrate scheme to achieve the properly designed inhomogeneous, nonuniform conductivity distribution on a single sheet of graphene. The transverse-magnetic surface plasmon polariton wave supported by graphene will oscillate like water running in an inclined pipe and focus onto one point in a deep-subwavelength scale in the graphene sheet. Importantly, we find that this focusing behavior is robust and insensitive to the variance of background Fermi energy and incident frequency based on the analytic analysis. We verify our scheme by exploiting Hamiltonian optics and numerical calculation. This nano-scale optical manipulation will lead to the development of miniature optical system integration on a 1-atom-thick structure.

  2. High-Q Supercavity Modes in Subwavelength Dielectric Resonators.

    Science.gov (United States)

    Rybin, Mikhail V; Koshelev, Kirill L; Sadrieva, Zarina F; Samusev, Kirill B; Bogdanov, Andrey A; Limonov, Mikhail F; Kivshar, Yuri S

    2017-12-15

    Recent progress in nanoscale optical physics is associated with the development of a new branch of nanophotonics exploring strong Mie resonances in dielectric nanoparticles with a high refractive index. The high-index resonant dielectric nanostructures form building blocks for novel photonic metadevices with low losses and advanced functionalities. However, unlike extensively studied cavities in photonic crystals, such dielectric resonators demonstrate low quality factors (Q factors). Here, we uncover a novel mechanism for achieving giant Q factors of subwavelength nanoscale resonators by realizing the regime of bound states in the continuum. In contrast to the previously suggested multilayer structures with zero permittivity, we reveal strong mode coupling and Fano resonances in homogeneous high-index dielectric finite-length nanorods resulting in high-Q factors at the nanoscale. Thus, high-index dielectric resonators represent the simplest example of nanophotonic supercavities, expanding substantially the range of applications of all-dielectric resonant nanophotonics and meta-optics.

  3. Characteristics and applications of acoustic metasurfaces with subwavelength apertures

    Science.gov (United States)

    Liu, Xuanjun; Zeng, Xinwu; Wang, Jianli; Gao, Dongbao

    2017-10-01

    The reflection characteristics of a unit cell consisting of a grating with subwavelength apertures and a reflection wall are theoretically discussed. An analysis focusing on the influence of material impedance is implemented. The assumption that the grating and the reflection wall were considered as perfectly rigid in previous papers is proven to have little effect on the ultimate results. Meanwhile, the influence of the geometrical parameters of unit cell is also analyzed, which acts as a guide for designing an acoustic metasurface. Applications of an acoustic metasurface in abnormal reflection and acoustic lensing are then realized. COMSOL simulations demonstrate that the designed acoustic metasurfaces with a total thickness of just one-tenth of incident wavelength could indeed control the wavefronts of reflected waves and realize novel phenomena that traditional interfaces cannot achieve.

  4. Efficient Vortex Generation in Subwavelength Epsilon-Near-Zero Slabs

    Science.gov (United States)

    Ciattoni, Alessandro; Marini, Andrea; Rizza, Carlo

    2017-03-01

    We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order 2 in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the transverse magnetic and transverse electric asymmetric response of the rotationally invariant system. In addition, in the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in subwavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portions of the bulk. Our theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements for manipulating the angular momentum of the radiation, since they are available without resorting to complicated micro- or nanofabrication processes and can operate even at very small (ultraviolet) wavelengths.

  5. Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction

    CERN Document Server

    Colquitt, D J; Craster, R V; Roux, P; Guenneau, S R L

    2016-01-01

    We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials, and metasurfaces, in the bulk and at the surface respectively. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve that transitions from Rayleigh...

  6. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...... the reflection at the semiconductor #x2013;air interface using an anti-reflective coating (ARC). We demonstrate how the ARC can be integrated in a monolithic structure by oxidizing AlGaAs with high Al-content. The HCG VCSEL has the potential to achieve polarization stable single-mode output with high tuning...... efficiency. The HCG VCSEL shows a total tuning range of 16 nm around an emission wavelength of 1060 nm with 1-mW output power....

  7. Subwavelength plasmonic color printing protected for ambient use.

    Science.gov (United States)

    Roberts, Alexander S; Pors, Anders; Albrektsen, Ole; Bozhevolnyi, Sergey I

    2014-02-12

    We demonstrate plasmonic color printing with subwavelength resolution using circular gap-plasmon resonators (GPRs) arranged in 340 nm period arrays of square unit cells and fabricated with single-step electron-beam lithography. We develop a printing procedure resulting in correct single-pixel color reproduction, high color uniformity of colored areas, and high reproduction fidelity. Furthermore, we demonstrate that, due to inherent stability of GPRs with respect to surfactants, the fabricated color print can be protected with a transparent dielectric overlay for ambient use without destroying its coloring. Using finite-element simulations, we uncover the physical mechanisms responsible for color printing with GPR arrays and suggest the appropriate design procedure minimizing the influence of the protection layer.

  8. Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction.

    Science.gov (United States)

    Lee, Kanghee; Yi, Minwoo; Park, Sang Eon; Ahn, Jaewook

    2013-01-15

    Terahertz time-domain spectroscopy probes anomalous phase-shift caused by wave diffraction from a subwavelength-scale metal slit or aperture. Carrier frequency phase measurements in the far-field region reveals that nearly 30° phase advance is induced from a subwavelength slit diffraction and that 180° phase-advance from a subwavelength aperture. These results indicate that the conventional 90° phase advance of diffracted waves in the far-field region, known as the Gouy phase shift, is not valid for subwavelength diffraction phenomena. The physical origin of these phase-shift anomalies is attributed to induced electric currents or magnetic dipole radiation, and theoretical analyses based on these factors are in good agreement with the experimental results.

  9. Experimental testing of focusing properties of subwavelength photon sieves using exposure method

    Science.gov (United States)

    Jiang, Wenbo; Zhang, Xiaohua

    2016-04-01

    An exposure method is proposed to test the focusing properties of subwavelength photon sieves. To solve the problems caused by the subwavelength photon sieves (such as short focal length and small focal spot size), a grating moiré fringe phase detection technique and a microcontact sensor with lead zirconium titanate (PZT) stepping hybrid technique are used in the experimental setup. The focusing properties of the subwavelength photon sieves are tested by this setup. The results show that the focal length and the focal spot size are close to the designed value. Finally, the intensity distribution of the focal spot is proposed. This research result will be beneficial for understanding the focusing properties of subwavelength photon sieves, will help us to improve the imaging quality, and will provide a good experimental basis for practical applications in the nanolithography field.

  10. PECASE: Resonantly-Enhanced Lanthanide Emitters for Subwavelength-Scale, Active Photonics

    Science.gov (United States)

    2015-03-19

    AFRL-AFOSR-VA-TR-2016-0052 PECASE- RESONATLY-ENHANCHED LANTHANIDE EMITTERS FOR SUBWAVELENGTH-SCALE, ACTIVE Photonics Rashid Zia BROWN UNIVERSITY IN...From - To) 15 Dec. 2009 – 14 Dec. 2014 4. TITLE AND SUBTITLE i i i 5a. CONTRACT NUMBER PECASE: Resonantly-Enhanced Lanthanide Emitters for...PECASE: Resonantly-Enhanced Lanthanide Emitters for Subwavelength-Scale, Active Photonics Contract/Grant #: FA9550-10-1-0026 Reporting Period: 15

  11. Electron beam written subwavelength gratings for polarization separation in the infrared

    Science.gov (United States)

    Pramitha, V.; Gayathri, M. S.; Bhattacharya, Shanti

    2015-03-01

    The design and fabrication of transmission subwavelength binary gratings for operation as polarizing beam splitters (PBSs) at 1550 nm is presented in this paper. An analytical method called the modal method was used for the design as well as to predict the efficiencies of the polarization components in each order. Electron beam lithography has been employed to fabricate the subwavelength grating structures on poly methyl methacrylate (PMMA). The performance of the fabricated PBS has been evaluated by optical testing.

  12. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  13. Sound Radiation of Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    B Alzahabi

    2016-09-01

    Full Text Available The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Submarines rely on low acoustic signature level to remain undetected. Reduction of sound radiation is most efficiently achieved at the design stage. Acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. The nature of sound radiation of submarine is fiction of its speed. At low speed the acoustic signature is dominated by tonal noise, while at high speed, the acoustic signature is mainly dominated by broadband noise. Submarine hulls are mainly constructed of circular cylindrical shells. Unlike that of simpler structures such as beams and plates, the modal spectrum of cylindrical shell exhibits very unique characteristics. Mode crossing, the uniqueness of modal spectrum, and the redundancy of modal constraints are just to name a few. In cylindrical shells, the lowest natural frequency is not necessarily associated with the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index either. Solution of the vibration problem of cylindrical shells also indicates repeated natural frequencies. These modes are referred to as double peak frequencies. Mode shapes associated with each one of the natural frequencies are usually a combination of Radial (flexural, Longitudinal (axial, and Circumferential (torsional modes. In this paper, the wave equation will be set up in terms of the pressure fluctuations, p(x, t. It will be demonstrated that the noise radiation is a fluctuating pressure wave.

  14. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  15. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    Science.gov (United States)

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  16. Application of plasmonic subwavelength structuring to enhance infrared detection

    Science.gov (United States)

    Peters, David W.; Davids, Paul S.; Kim, Jin K.; Leonhardt, Darin; Beechem, Thomas E.; Howell, Stephen W.; Ohta, Taisuke; Wendt, Joel R.; Montoya, John A.

    2014-02-01

    Nanoantennas are an enabling technology for visible to terahertz components and may be used with a variety of detector materials. We have integrated subwavelength patterned metal nanoantennas with various detector materials for infrared detection: midwave infrared indium gallium arsenide antimonide detectors, longwave infrared graphene detectors, and shortwave infrared germanium detectors. Nanoantennas offer a means to make infrared detectors much thinner, thus lowering the dark current and improving performance. The nanoantenna converts incoming plane waves to more tightly bound and concentrated surface waves. The active material only needs to extend as far as these bound fields. In the case of graphene detectors, which are only one or two atomic layers thick, such field concentration is a necessity for usable device performance, as single pass absorption is insufficient. The nanoantenna is thus the enabling component of these thin devices. However nanoantenna integration and fabrication vary considerably across these platforms as do the considerations taken into account during design. Here we discuss the motivation for these devices and show examples for the three material systems. Characterization results are included for the midwave infrared detector.

  17. Metallic Strip Gratings in the Sub-Subwavelength Regime

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2014-07-01

    Full Text Available Metallic strip gratings (MSG have different applications, ranging from printed circuits to filters in microwave domains. When they are under the influence of an electromagnetic field, evanescent and/or abnormal modes appear in the region between the traces, their utilization leading to the development of new electromagnetic nondestructive evaluation methods. This paper studies the behavior of MSGs in the sub-subwavelength regime when they are excited with TEz or TMz polarized plane waves and the slits are filled with different dielectrics. The appearance of propagating, evanescent and abnormal modes is emphasized using an electromagnetic sensor with metamaterials lens realized with two conical Swiss rolls, which allows the extraction of the information carried by the guided evanescent waves. The evanescent waves, manipulated by the electromagnetic sensor with metamaterial lenses, improve the electromagnetic images so that a better spatial resolution is obtained, exceeding the limit imposed by diffraction. Their theoretical and experimental confirmation opens the perspective for development of new types of sensors working in radio and microwave frequencies.

  18. Optomechanical THz detection with a sub-wavelength resonator

    CERN Document Server

    Belacel, Cherif; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2016-01-01

    The terahertz spectral domain offers a myriad of applications spanning chemical spectroscopy, medicine, security and imaging [1], it has also recently become a playground for fundamental studies of light-matter interactions [2-6]. Terahertz science and technology could benefit from optomechanical approaches, which harness the interaction of light with miniature mechanical resonators [7,8]. So far, optomechanics has mostly focused on the optical and microwave domains, leading to new types of quantum experiments [9-11] and to the development of optical-microwave converters [12-14]. Here we propose and validate the concept of terahertz optomechanics, by coupling far-infrared photons to the mechanical degrees of freedom of the flexible part of a sub-wavelength split-ring resonator [15]. The resulting mechanical signal is read-out optically, allowing our semiconductor/metal device to operate as a compact and efficient terahertz detector with a noise equivalent power of 8 nW/Hz^0.5 and a linear dynamics over five d...

  19. Subwavelength-Sized Narrow-Band Anechoic Waveguide Terminations

    Science.gov (United States)

    Santillán, Arturo; Ćrenlund, Emil; Bozhevolnyi, Sergey I.

    2016-11-01

    We propose and demonstrate the use of a pair of detuned acoustic resonators to efficiently absorb narrow-band sound waves in a terminated waveguide. The suggested configuration is relatively simple and advantageous for usage at low frequencies, since the dimensions of the resonators are very small compared to the wavelength. We present a theoretical description based on lumped parameters to calculate the absorption coefficient, which agrees very well with experimental data. The experimental results verify that the anechoic (reflection approximately -38 dB ) narrow-band (Δ f /f ˜0.1 ) termination with deeply subwavelength (<λ /10 ) sizes can be realized at a target frequency, suggesting thereby applications for noise control and sensing. As an illustration of possible applications for sound absorption in a room, we demonstrate by use of numerical simulations that a given axial resonant excitation in a room can be practically eliminated. Thus, a reduction of approximately 24 dB in the average acoustic energy is achieved in the room when using only four Helmholtz resonators. We also discuss various scenarios of noise control in rooms.

  20. Monolithic subwavelength high refractive-index-contrast grating VCSELs

    Science.gov (United States)

    Gebski, Marcin; Dems, Maciej; Lott, James A.; Czyszanowski, Tomasz

    2016-03-01

    In this paper we present optical design and simulation results of vertical-cavity surface-emitting lasers (VCSELs) that incorporate monolithic subwavelength high refractive-index-contrast grating (MHCG) mirrors - a new variety of HCG mirror that is composed of high index material surrounded only on one side by low index material. We show the impact of an MHCG mirror on the performance of 980 nm VCSELs designed for high bit rate and energy-efficient optical data communications. In our design, all or part of the all-semiconductor top coupling distributed Bragg reflector mirror is replaced by an undoped gallium-arsenide MHCG. We show how the optical field intensity distribution of the VCSEL's fundamental mode is controlled by the combination of the number of residual distributed Bragg reflector (DBR) mirror periods and the physical design of the topmost gallium-arsenide MHCG. Additionally, we numerically investigate the confinement factors of our VCSELs and show that this parameter for the MHCG DBR VCSELs may only be properly determined in two or three dimensions due to the periodic nature of the grating mirror.

  1. Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation

    Science.gov (United States)

    Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG

    2018-01-01

    The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.

  2. Models of cylindrical bubble pulsation

    Science.gov (United States)

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  3. Weyl fermions in cylindrical wires

    Science.gov (United States)

    Erementchouk, Mikhail; Mazumder, Pinaki

    2018-01-01

    The key feature of Weyl semimetals (WSMs) is the presence of topologically protected Dirac cones in a three-dimensional material. We consider the effect of restricting geometry on the spectrum of excitations in WSMs using as a model a cylindrical WSM wire. For the full manifold of hard boundary conditions, we derive the general form of the dispersion equation relating the energy of the excitations and their momentum along the wire. We show that only the special class of boundary conditions, corresponding to decoupled helicities or, equivalently, to pinned directions of the electron spin on the surface, support massless excitations. For a general boundary condition, these excitations acquire mass inversely proportional to the radius of the wire. This demonstrates that boundary phenomena may play a crucial role in formation of excitations in WSM based structures.

  4. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    CERN Document Server

    Ganapati, Vidya; Yablonovitch, Eli

    2013-01-01

    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall...

  5. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... forces and motion of the inner cylindrical magnet....

  6. On cylindrical near-field scanning techniques

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1980-01-01

    The agreement between the coupling equations obtained in the literature by using the reciprocity theorem and the scattering matrix formulation is demonstrated. The field is expanded in cylindrical vector wave functions and the addition theorem for these functions is used. The communication may se...... serve as a tutorial introduction to the cylindrical scanning techniques....

  7. Sparsity-based single-shot sub-wavelength coherent diffractive imaging

    CERN Document Server

    Szameit, A; Osherovich, E; Bullkich, E; Sidorenko, P; Dana, H; Steiner, S; Kley, E B; Gazit, S; Cohen-Hyams, T; Shoham, S; Zibulevsky, M; Yavneh, I; Eldar, Y C; Cohen, O; Segev, M

    2011-01-01

    We present the experimental reconstruction of sub-wavelength features from the far-field intensity of sparse optical objects: sparsity-based sub-wavelength imaging combined with phase-retrieval. As examples, we demonstrate the recovery of random and ordered arrangements of 100 nm features with the resolution of 30 nm, with an illuminating wavelength of 532 nm. Our algorithmic technique relies on minimizing the number of degrees of freedom; it works in real-time, requires no scanning, and can be implemented in all existing microscopes - optical and non-optical.

  8. Polymer Dynamics under Cylindrical Nano-Confinement

    Science.gov (United States)

    Winey, Karen; Tung, Wei-Shao; Riggleman, Robert

    2015-03-01

    Polymer melts under cylindrical confinement have previously been shown to exhibit chain conformations elongated parallel to the cylinder axis and compressed perpendicular to the cylinder. Further, simulations and theory found that the number of entanglements per chain decreases as the cylinder diameter decreases. This talk presents the local dynamics and polymer diffusion under cylindrical nanoconfinement using simulations and experiments. For the molecular dynamics simulations, an entangled polymer is confined by an amorphous cylindrical confinement. Local dynamics and local packing of monomers are affected by the cylindrical confinement and an anisotropic mean-squared displacement is observed with faster motion along the cylinder axes that increases with increasing confinement. Using elastic recoil detection experiments, polymer diffusion coefficients along cylindrical nanopores were measured for deuterated polystyrene diffusing into nanoporous membranes infiltrated with polystyrene. The tracer diffusion coefficient increased with decreasing pore size, although the increase is less pronounced than found in the simulations. Results will be discussed in terms of the reptation model.

  9. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Volkov, V.S.; Nielsen, Rasmus Bundgaard

    2008-01-01

    We report on subwavelength plasmon-polariton guiding by triangular metal wedges at telecom wavelengths. A high-quality fabrication procedure for making gold wedge waveguides, which is also mass- production compatible offering large-scale parallel fabrication of plasmonic components, is developed...

  10. Local investigation of the optical properties of subwavelength rectangular holes with a focused beam of electrons

    NARCIS (Netherlands)

    Prangsma, J.C.; van Oosten, D.|info:eu-repo/dai/nl/269286470; Kuipers, L.

    2011-01-01

    The optical properties of rectangular subwavelength holes in a gold film are investigated using the light generated when a focused beam of electrons impinges on the sample close to the hole. Using this technique, multi-spectral maps of the holes are obtained with a resolution beyond the optical

  11. Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate

    Science.gov (United States)

    Oudich, Mourad; Li, Yong

    2017-08-01

    We report theoretically on sub-wavelength acoustic energy harvesting (AEH) using a thin acoustic metamaterial (AM) made of spring-mass resonators attached to the surface of a homogeneous elastic thin plate. Considering an incident acoustic wave hitting the AM plate, tunable and highly efficient AEH is achieved by introducing a sub-wavelength defect inside the AM structure to confine the elastic energy into a spot which is then electromechanically converted into electrical power using a ceramic PZT patch. Several types of sub-wavelength cavities capable of confining acoustic energy at the sonic regime are extensively investigated for the optimization of AEH. Three analytical approaches—band structure, sound transmission loss and electrical-to-mechanical energy conversion—are proposed to fully describe the system interaction with the acoustic wave and quantify the AEH performance. The computed results show that an average power of 18 μW can be harvested using a specific cavity design of only 3 × 3 cm2 size from an incident acoustic wave with a sound pressure level of 100 dB at 520 Hz. Such a system can open up a way through the design of effective tunable sub-wavelength acoustic energy harvesters based on AM applied to scavenge energy from sound.

  12. Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Iakovlev, Vladimir; Sirbu, Alexei

    2010-01-01

    A widely-tunable single-mode 1.3 μm vertical-cavity surface-emitting laser structure incorporating a microelectromechanical system-tunable high-index-contrast subwavelength grating (HCG) mirror is suggested and numerically investigated. A linear tuning range of 100 nm and a wavelength tuning effi...

  13. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  14. Cylindrical Antenna Using Near Zero Index Metamaterial

    Science.gov (United States)

    2012-07-24

    about their vertical axes could also be used. These include, but are not be limited to, dipole antennas and biconical antennas . [0022] The anomalous...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Cylindrical Antenna Using Near Zero Index Metamaterial 5a. CONTRACT NUMBER 5b. GRANT...1 Attorney Docket No. 101380 CYLINDRICAL ANTENNA USING NEAR ZERO INDEX METAMATERIAL STATEMENT OF GOVERNMENT INTEREST [0001] The invention

  15. Experimental and Numerical Research on Cylindrical Tubes under Outer Cylindrical Explosive Waves

    OpenAIRE

    Sui Yaguang; Zhang Dezhi; Tang Shiying; Chen Bo

    2017-01-01

    Cylindrical explosive loading has an important application in explosive working, researching on weapon damage, and explosive-driving load. This study uses experimental and numerical methods to study the response of long and thin tubes when subjected to cylindrical explosive loading. The flake-like charge and multipoint initiation technique were adopted to load cylindrical explosive waves. Experimental results showed that the method could produce uniform deformation in certain parts of the lon...

  16. Achieving planar plasmonic subwavelength resolution using alternately arranged insulator-metal and insulator-insulator-metal composite structures.

    Science.gov (United States)

    Cheng, Bo Han; Chang, Kai Jiun; Lan, Yung-Chiang; Tsai, Din Ping

    2015-01-23

    This work develops and analyzes a planar subwavelength device with the ability of one-dimensional resolution at visible frequencies that is based on alternately arranged insulator-metal (IM) and insulator-insulator-metal (IIM) composite structures. The mechanism for the proposed device to accomplish subwavelength resolution is elucidated by analyzing the dispersion relations of the IM-IIM composite structures. Electromagnetic simulations based on the finite element method (FEM) are performed to verify that the design of the device has subwavelength resolution. The ability of subwavelength resolution of the proposed device at various visible frequencies is achieved by slightly varying the constituent materials and geometric parameters. The proposed devices have potential applications in multi-functional material, real-time super-resolution imaging, and high-density photonic components.

  17. Extraordinary mid-infrared transmission of subwavelength holes in gold films

    KAUST Repository

    Yue, Weisheng

    2014-04-01

    Gold (Au) nanoholes are fabricated with electron-beam lithography and used for the investigation of extraordinary transmission in mid-infrared regime. Transmission properties of the nanoholes are studied as the dependence on hole-size. Transmittance spectra are characterized by Fourier transform infrared spectroscopy (FTIR) and enhanced transmittance through the subwavelength holes is observed. The transmission spectra exhibit well-defined maximum and minimum of which the position are determined by the lattice of the hole array. The hole-size primarily influence the transmission intensity and bandwidth of the resonance peak. With an increase of hole-size, while keep lattice constant fixed, the intensity of the resonance peak and the bandwidth increases, which are due to the localized surface plasmons. Numerical simulation for the transmission through the subwavelength holes is performed and the simulated results agree with the experimental observations. Copyright © 2014 American Scientific Publishers.

  18. Subwavelength wave manipulation in a thin surface-wave bandgap crystal.

    Science.gov (United States)

    Gao, Zhen; Wang, Zhuoyuan; Zhang, Baile

    2018-01-01

    It has been recently reported that the unit cell of wire media metamaterials can be tailored locally to shape the flow of electromagnetic waves at deep-subwavelength scales [Nat. Phys.9, 55 (2013)NPAHAX1745-247310.1038/nphys2480]. However, such bulk structures have a thickness of at least the order of wavelength, thus hindering their applications in the on-chip compact plasmonic integrated circuits. Here, based upon a Sievenpiper "mushroom" array [IEEE Trans. Microwave Theory Tech.47, 2059 (1999)IETMAB0018-948010.1109/22.798001], which is compatible with standard printed circuit board technology, we propose and experimentally demonstrate the subwavelength manipulation of surface waves on a thin surface-wave bandgap crystal with a thickness much smaller than the wavelength (1/30th of the operating wavelength). Functional devices including a T-shaped splitter and sharp bend are constructed with good performance.

  19. Dispersion free control of hydroelastic waves down to sub-wavelength scale

    Science.gov (United States)

    Domino, Lucie; Fermigier, Marc; Fort, Emmanuel; Eddi, Antonin

    2017-11-01

    Hydroelastic surface waves propagate at the surface of water covered by a thin elastic sheet and can be directly measured with accurate space and time resolution. We present an experimental approach using hydroelastic waves that allows us to control waves down to the sub-wavelength scale. We tune the wave dispersion relation by varying locally the properties of the elastic cover and we introduce a local index contrast. This index contrast is independent of the frequency leading to a dispersion-free Snell-Descartes law for hydroelastic waves. We then show experimental evidence of broadband focusing, reflection and refraction of the waves. We also investigate the limits of diffraction through the example of a macroscopic analog to optical nanojets, revealing that any sub-wavelength configuration gives access to new features for surface waves.

  20. A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber

    OpenAIRE

    Yunsong Xie; Xin Fan; Yunpeng Chen; Jeffrey D. Wilson; Rainee N. Simons; John Q. Xiao

    2017-01-01

    The design, fabrication and characterization of a novel metamaterial absorber based camera with subwavelength spatial resolution are investigated. The proposed camera is featured with simple and lightweight design, easy portability, low cost, high resolution and sensitivity, and minimal image interference or distortion to the original field distribution. The imaging capability of the proposed camera was characterized in both near field and far field ranges. The experimental and simulated near...

  1. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    OpenAIRE

    Ganapati, Vidya; Miller, Owen D.; Yablonovitch, Eli

    2013-01-01

    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions ...

  2. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  3. Electronic Quantum Confinement in Cylindrical Potential Well

    CERN Document Server

    Baltenkov, A S

    2016-01-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limi...

  4. Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers.

    Science.gov (United States)

    Liu, Ning; Gocalinska, Agnieszka; Justice, John; Gity, Farzan; Povey, Ian; McCarthy, Brendan; Pemble, Martyn; Pelucchi, Emanuele; Wei, Hong; Silien, Christophe; Xu, Hongxing; Corbett, Brian

    2016-12-14

    Hybrid plasmonic lasers provide deep subwavelength optical confinement, strongly enhanced light-matter interaction and together with nanoscale footprint promise new applications in optical communication, biosensing, and photolithography. The subwavelength hybrid plasmonic lasers reported so far often use bottom-up grown nanowires, nanorods, and nanosquares, making it difficult to integrate these devices into industry-relevant high density plasmonic circuits. Here, we report the first experimental demonstration of AlGaInP based, red-emitting hybrid plasmonic lasers at room temperature using lithography based fabrication processes. Resonant cavities with deep subwavelength 2D and 3D mode confinement of λ2/56 and λ3/199, respectively, are demonstrated. A range of cavity geometries (waveguides, rings, squares, and disks) show very low lasing thresholds of 0.6-1.8 mJ/cm2 with wide gain bandwidth (610 nm-685 nm), which are attributed to the heterogeneous geometry of the gain material, the optimized etching technique, and the strong overlap of the gain material with the plasmonic modes. Most importantly, we establish the connection between mode confinements and enhanced absorption and stimulated emission, which plays critical roles in maintaining low lasing thresholds at extremely small hybrid plasmonic cavities. Our results pave the way for the further integration of dense arrays of hybrid plasmonic lasers with optical and electronic technology platforms.

  5. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Gil; Jeong, Ki-Hun, E-mail: kjeong@kaist.ac.kr [Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Kanghee; Han, Daehoon; Ahn, Jaewook [KAIST Institute for Optical Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  6. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  7. Boosted cylindrical magnetized Kaluza-Klein wormhole

    Science.gov (United States)

    Hashemi, S. Sedigheh; Riazi, Nematollah

    2018-02-01

    In this work, we consider a vacuum solution of Kaluza-Klein theory with cylindrical symmetry. We investigate the physical properties of the solution as viewed in four dimensional spacetime, which turns out to be a stationary, cylindrical wormhole supported by a scalar field and a magnetic field oriented along the wormhole. We then apply a boost to the five dimensional solution along the extra dimension, and perform the Kaluza-Klein reduction. As a result, we show that the new solution is still a wormhole with a radial electric field and a magnetic field stretched along the wormhole throat.

  8. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  9. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  10. Metastable magnetic domain walls in cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, C.A.; MacLaren, D.A.; McVitie, S., E-mail: Stephen.McVitie@glasgow.ac.uk

    2015-05-01

    The stability of the asymmetric domain wall (ATDW) in soft magnetic cylindrical nanowires and nanotubes is investigated using micromagnetic simulations. Our calculated phase diagram shows that for cylindrical permalloy nanowires, the transverse domain wall (TDW) is the ground state for radii below 20 nm whilst the Bloch point wall (BPW) is favoured in thicker wires. The ATDW stabilises only as a metastable state but with energy close to that of the BPW. Characterisation of the DW spin structures reveals that the ATDW has a vortex-like surface spin state, in contrast to the divergent surface spins of the TDW. This results in lowering of surface charge above the critical radius. For both cylindrical nanotubes and nanowires we find that ATDWs only appear to exist as metastable static states and are particularly suppressed in nanotubes due to an increase in magnetostatic energy. - Highlights: • We simulate the micromagnetic structures of domain walls in cylindrical nanowires. • A phase diagram identifies ground and metastable states. • Asymmetric transverse walls are metastable in nanowires but suppressed in tubes. • Unrolling surface magnetisation aids visualisation of asymmetry and chirality. • We predict experimental discrimination based on magnetic charge distribution.

  11. Experimental and Numerical Research on Cylindrical Tubes under Outer Cylindrical Explosive Waves

    Directory of Open Access Journals (Sweden)

    Sui Yaguang

    2017-01-01

    Full Text Available Cylindrical explosive loading has an important application in explosive working, researching on weapon damage, and explosive-driving load. This study uses experimental and numerical methods to study the response of long and thin tubes when subjected to cylindrical explosive loading. The flake-like charge and multipoint initiation technique were adopted to load cylindrical explosive waves. Experimental results showed that the method could produce uniform deformation in certain parts of the long tube, but partial spall injuries occurred after the explosion. The macroscopic and microscopic deformation of tubes were analyzed. Numerical simulations were conducted to investigate the detailed response of the tube subjected to a cylindrical explosive wave. The results indicate that the collision of explosive waves brought inconsistencies in pressure and velocity. The pressure and velocity in the collision region were significantly higher than those of other parts, which caused the collision region to be easily damaged.

  12. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  13. Spectral-domain analysis of single and coupled cylindrical striplines

    Science.gov (United States)

    Deshpande, Manohar D.; Reddy, C. Jagadeswara

    1987-01-01

    A spectral-domain technique for finding the characteristic impedances of a single cylindrical stripline and a coupled pair of cylindrical striplines is presented. Assuming a charge distribution on the strip, the variational expression for the line capacitance for single cylindrical stripline is derived. Good agreement with published results is obtained. The cylindrical coupled strip and microstrip lines are also analyzed and a comparison with their planar counterparts is made.

  14. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  15. Buckling optimisation of sandwich cylindrical panels

    Science.gov (United States)

    Abouhamzeh, M.; Sadighi, M.

    2016-06-01

    In this paper, the buckling load optimisation is performed on sandwich cylindrical panels. A finite element program is developed in MATLAB to solve the governing differential equations of the global buckling of the structure. In order to find the optimal solution, the genetic algorithm Toolbox in MATLAB is implemented. Verifications are made for both the buckling finite element code and also the results from the genetic algorithm by comparisons to the results available in literature. Sandwich cylindrical panels are optimised for the buckling strength with isotropic or orthotropic cores with different boundary conditions. Results are presented in terms of stacking sequence of fibers in the face sheets and core to face sheet thickness ratio.

  16. Skyrmion oscillations in chiral cylindrical nanowires

    Science.gov (United States)

    Charilaou, Michalis; Loeffler, Joerg

    The occurrence of skyrmions on surfaces due to the competition of symmetric and antisymmetric interactions is a fascinating phenomenon with a promising potential for new technologies. The spatial confinement of spin textures in nanostructures, such as thin films, and the breaking of symmetry by an external or internal field enable the formation of skyrmions and skyrmion lattices. In cylindrical nanowires, the spatial confinement and the symmetry-breaking field are provided by the solid itself due to magnetostatics, i.e., shape anisotropy. Based on high-resolution micromagnetic simulations we will show that in cylindrical nanowires of FeGe non-trivial skyrmionic spin textures occur, which resemble a skyrmion chain. These break the translational symmetry along the wire via an oscillation of the topological charge. We will also discuss how external fields can manipulate the skyrmion-chain state and how magnetization switching occurs via the formation of Bloch points.

  17. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  18. Nanolaminate Membranes as Cylindrical Telescope Reflectors

    Science.gov (United States)

    Dooley, Jennifer; Dragovan, Mark; Hickey, Gregory; Lih, Shyh-Shiu Lih

    2010-01-01

    A document discusses a proposal to use axially stretched metal nanolaminate membranes as lightweight parabolic cylindrical reflectors in the Dual Anamorphic Reflector Telescope (DART) - a planned spaceborne telescope in which the cylindrical reflectors would be arranged to obtain a point focus. The discussion brings together a combination of concepts reported separately in several prior NASA Tech Briefs articles, the most relevant being "Nanolaminate Mirrors With Integral Figure-Control Actuators" NPO -30221, Vol. 26, No. 5 (May 2002), page 90; and "Reflectors Made From Membranes Stretched Between Beams" NPO -30571, Vol. 33, No. 10 (October 2009), page 11a. The engineering issues receiving the greatest emphasis in the instant document are (1) the change in curvature associated with the Poisson contraction of a stretched nanolaminate reflector membrane and (2) the feasibility of using patches of poly(vinylidene fluoride) on the rear membrane surface as piezoelectric actuators to correct the surface figure for the effect of Poisson contraction and other shape errors.

  19. Control of subwavelength flexural waves via kirigami-based hyperlens (Conference Presentation)

    Science.gov (United States)

    Zhu, Rui; Yasuda, Hiromi; Huang, Guoliang; Yang, Jinkyu

    2017-04-01

    In this presentation, we propose a novel design of elastic metamaterial that possesses unique anisotropic mass density and hyperbolic dispersion, which enables subwavelength-scale flexural wave manipulation. The metamaterial unit cell is inspired by kirigami, an ancient art of paper cutting and folding. A three-dimensional kirigami microstructure can be obtained by simply cutting and folding a thin metallic plate. By attaching the resonant kirigami microstructures periodically on the top of a host plate, a hyperbolic metamaterial plate can be manufactured without any perforation that degrades the strength of the pristine plate. A theoretical model based on the classic plate theory and mass-spring model is developed to understand the working mechanism of the elastic metamaterial. Dispersion curves are obtained by using an extended plane wave expansion method. An anisotropic effective mass density tensor is retrieved based on effective medium theory, which explains the different couplings between the local resonance of kirigami microstructure and the global flexural wave propagations in the host plate along two in-plane principal directions. Finally, numerical simulation on an elastic hyperlens is conducted to demonstrate the subwavelength-scale flexural wave control and super-resolution imaging abilities. The advantages of the proposed kirigami-based elastic hyperbolic metamaterial are twofold: (i) simple manufacturing process without perforation in the pristine plate and (ii) subwavelength flexural wave manipulation providing a high signal-to-noise ratio in plate-like engineering structures. Therefore, the proposed elastic hyperbolic metamaterial could be highly promising for high resolution damage imaging in nondestructive evaluation and structural health monitoring.

  20. Magnetic guns with cylindrical permanent magnets

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Beleggia, M.; Heller, Luděk

    2012-01-01

    Roč. 324, č. 9 (2012), s. 1715-1719 ISSN 0304-8853 R&D Projects: GA ČR(CZ) GAP107/11/0391; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520 Keywords : permanent magnet * cylindrical magnet * Earnshaw's theorem * magnet ic gun * magnet ostatic interaction Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 1.826, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304885311008997

  1. Marching Cubes in Cylindrical and Spherical Coordinates

    Science.gov (United States)

    Goldsmith, J.; Jacobson, A. S.

    1996-01-01

    Isosurface extraction is a common analysis and visualization technique for three-dimensional scalar data. Marching Cubes is the most commonly-used algorithm for finding polygonal representations of isosurfaces in such data. We extend Marching Cubes to produce geometry for data sets that lie in spherical and cylindrical coordinate systems as well as show the steps for derivation of transformations for other coordinate systems.

  2. Machining Thin-Walled Cylindrical Parts

    Science.gov (United States)

    Cimbak, Joe; Spagnolo, Jim; Kraus, Dan

    1988-01-01

    Cylindrical walls only few thousandths of inch thick machined accurately and without tears or punctures with aid of beryllium copper mandrel. Chilled so it contracts, then inserted in cylinder. As comes to room temperature, mandrel expands and fits snugly inside cylinder. Will not allow part to slide and provides solid backup to prevent deflection when part machined by grinding wheel. When machining finished, cylinder-and-mandrel assembly inserted in dry ice, mandrel contracts and removed from part.

  3. Subwavelength-Diameter Silica Wire and Photonic Crystal Waveguide Slow Light Coupling

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2007-01-01

    Full Text Available Counter-directional coupling between subwavelength-diameter silica wire and single-line-defect two-dimensional photonic crystal slab waveguide is studied numerically using parallel three-dimensional finite-different time-domain method. By modifying silica wire properties or engineering photonic crystal waveguide dispersion band, the coupling central wavelength can be moved to the slow light region and the coupling efficiency improves simultaneously. One design gives 82% peak power transmission from silica wire to photonic crystal waveguide over an interacting distance of 50 lattice constants. The group velocity is estimated as 1/35 of light speed in vacuum.

  4. The Subwavelength Optical Field Confinement in a Multilayered Microsphere with Quasiperiodic Spherical Stack

    Directory of Open Access Journals (Sweden)

    Gennadiy N. Burlak

    2008-01-01

    Full Text Available We study the frequency spectrum of nanoemitters placed in a microsphere with a quasiperiodic subwavelength spherical stack. The spectral evolution of transmittancy at the change of thickness of two-layer blocks, constructed following the Fibonacci sequence, is investigated. When the number of layers (Fibonacci order increases, the structure of spectrum acquires a fractal form. Our calculations show the radiation confinement and gigantic field enhancement, when the ratio of layers’ widths in twolayer blocks of the stack is close to the golden mean value.

  5. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini

    2014-01-01

    Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite...... difference time domain simulations. In a structure with only one groove, constructive interference of the generated SP waves will enhance transmitted light by a factor of 5.4 compared with that of a single hole. Increasing the groove number to 3 in the design, which supports constructive interference of SP...... waves, will enhance the transmission coefficient to 10.5 times that for the single-hole transmission coefficient....

  6. Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies.

    Science.gov (United States)

    Horie, Yu; Han, Seunghoon; Lee, Jeong-Yub; Kim, Jaekwan; Kim, Yongsung; Arbabi, Amir; Shin, Changgyun; Shi, Lilong; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Lee, Hong-Seok; Hwang, Sungwoo; Faraon, Andrei

    2017-05-10

    We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.

  7. ZnO subwavelength wires for fast-response mid-infrared detection.

    Science.gov (United States)

    Dai, Wei; Yang, Qing; Gu, Fuxing; Tong, Limin

    2009-11-23

    Room temperature operating thermal detection for mid-infrared light based on ZnO subwavelength wires has been demonstrated. Electric resistance in ZnO wires increases linearly with the intensity of incident light. Noise equivalent power (NEP) of 5.8 microW/Hz(1/2) (at 1 kHz) with typical response times as fast as 1.3 ms is obtained at 10.6-microm wavelength. The sensitivity and response time of the detector are also found to be insensitive to the ambient.

  8. Diffractive optics based on modulated subwavelength-domain V-ridge gratings

    Science.gov (United States)

    Bose, Gaurav; Verhoeven, Antonie; Vartiainen, Ismo; Roussey, Matthieu; Kuittinen, Markku; Tervo, Jani; Turunen, Jari

    2016-08-01

    We study the properties of reflection-type V-ridge gratings in the subwavelength domain and describe a method to realize diffractive optical elements by using such gratings as signal carriers. In particular, we utilize a coding scheme based on position modulation of a high-frequency V-ridge carrier grating. We design and demonstrate beam splitting elements using this coding scheme, electron-beam lithography, anisotropic wet etching of silicon, hot embossing of polymer, and metal deposition. These elements have the outstanding property of operating over a large spectral range from 406 to 520 nm. The measured diffraction patterns show excellent agreement with theoretical results given by rigorous diffraction theory.

  9. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    Science.gov (United States)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2011-06-01

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  10. Interferometric characterization of a sub-wavelength near-infrared negative index metamaterial.

    Science.gov (United States)

    Zhang, Xuhuai; Davanço, Marcelo; Maller, Kara; Jarvis, Thomas W; Wu, Chihhui; Fietz, Chris; Korobkin, Dmitriy; Li, Xiaoqin; Shvets, Gennady; Forrest, Stephen R

    2010-08-16

    Negative phase advance through a single layer of near-IR negative index metamaterial (NIM) is identified through interferometric measurements. The NIM unit cell, sub-wavelength in both the lateral and light propagation directions, is comprised of a pair of Au strips separated by two dielectric and one Au film. Numerical simulations show that the negative phase advance through the single-layer sample is consistent with the negative index exhibited by a bulk material comprised of multiple layers of the same structure. We also numerically demonstrate that the negative index band persists in the lossless limit.

  11. Deep-subwavelength plasmonic-photonic hybrid band gap opening by acoustic Lamb waves

    Science.gov (United States)

    Hsu, Jin-Chen; Shih, Jheng-Hong; Lin, Tzy-Rong

    2017-07-01

    In this letter, the efficient generation of tunable optical band gaps with the help of acousto-optic (AO) interactions in the deep subwavelength regime is proposed. The optical system consists of a thin dielectric slab and a metal surface separated by a nanoscale air gap. This structure allowed for the confinement of hybridized plasmonic-photonic gap modes, which are highly guided within the air gap. The enhanced AO interaction originated from the disturbance of the acoustic Lamb waves of the slab that can strongly boost the AO interface effect and scatter the optical fields. Therefore, wide optical band gaps and forbidden transmissions were observed in hybrid gap modes at telecommunication wavelengths.

  12. Optical surface edge Bloch modes: low-loss subwavelength-scale 2D light localization

    CERN Document Server

    Su, Shu-Yu

    2012-01-01

    Edge modes of a finite-size woodpile can appear within a complete bandgap on an edge. The mode area is as small as 0.066 squared half-in-vacuum-wavelengths, and the propagation loss is small. The field maxima occur at a dielectric-vacuum interface, like at a metal-dielectric interface for surface plasmon modes. The edge mode is a subwavelength-scale 2D light localization mode in non-metallic materials. Analysis of two-mode co-directional coupling between identical surface Bloch modes suggests that a large photonic crystal or surface designing would be needed for suppressing the evanescent field coupling in the woodpile.

  13. Broadband subwavelength grating mirror and its application to vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Gilet, Philippe

    2008-01-01

    Various high-index-contrast sub-wavelength grating (HCG) mirror designs have been investigated. It reveals that transverse magnetic (TM-) and transverse electric (TE-) HCG reflect the incident fields in quite different ways and that the TM-HCG enables very thin gap below the grating. Based...... on these results, a new HCG VCSEL design with a thin oxide gap has been suggested. The thin oxide gap structure has a number of advantages including easier fabrication, better mechanical stability, and very strong single-mode properties....

  14. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers.

    Science.gov (United States)

    Zhang, Eric J; Sacher, Wesley D; Poon, Joyce K S

    2010-10-11

    An etch method based on surface tension driven flows of hydrofluoric acid microdroplets for the fabrication of low-loss, subwavelength-diameter biconical fiber tapers is presented. Tapers with losses less than 0.1 dB/mm are demonstrated, corresponding to an order of magnitude increase in the optical transmission over previous acid-etch techniques. The etch method produces adiabatic taper transitions with minimal surface corrugations. A biconical fiber taper fabricated using this method is used to demonstrate an erbium doped silica microsphere laser.

  15. Extraordinary light transmission through a metal film perforated by a subwavelength hole array

    Science.gov (United States)

    Zyablovskii, A. A.; Pavlov, A. A.; Klimov, V. V.; Pukhov, A. A.; Dorofeenko, A. V.; Vinogradov, A. P.; Lisyanskii, A. A.

    2017-08-01

    It is shown that, depending on the incident wave frequency and the system geometry, the extraordinary transmission of light through a metal film perforated by an array of subwavelength holes can be described by one of the three mechanisms: the "transparency window" in the metal, excitation of the Fabry-Perot resonance of a collective mode produced by the hybridization of evanescence modes of the holes and surface plasmons, and excitation of a plasmon on the rear boundary of the film. The excitation of a plasmon resonance on the front boundary of the metal film does not make any substantial contribution to the transmission coefficient, although introduces a contribution to the reflection coefficient.

  16. Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask.

    Science.gov (United States)

    Ogiwara, Akifumi; Watanabe, Minoru; Mabuchi, Takayuki; Kobayashi, Fuminori

    2011-12-01

    Holographic polymer-dispersed liquid crystal (HPDLC) memory formed by a subwavelength grating (SWG) mask is presented for new optical information processing. The SWG structure in a photomask is formed on the SiO(2) plate using the anisotropic reactive ion etching technique. The configuration contexts for optically reconfigurable gate arrays (ORGAs) are stored in the HPDLC memory by polarization modulation property based on the form birefringence of the SWG plate. The configuration context pattern in the HPDLC memory is reconstructed to write it for the ORGAs under parallel programmability. © 2011 Optical Society of America

  17. The mechanism of the polarization dependence of the optical transmission in subwavelength metal hole arrays

    CERN Document Server

    Zhao, Qian; Zhou, Yun-Song; Wang, Huai-Yu

    2011-01-01

    We investigate the mechanism of extraordinary optical transmission in subwave-length metal hole arrays. Experimental results for the arrays consisting of square or rectangle holes are well explained about the dependence of transmission strength on the polarization direction of the incident light. This polarization dependence occurs in each single-hole. For a hole array, there is in addition an interplay between the adjacent holes which is caused by the transverse magnetic field of surface plasmon polariton on the metal film surfaces. Based on the detailed study of a single-hole and two-hole structures, a simple method to calculate the total tranmissivity of hole arrays is proposed.

  18. Enhancing monochromatic multipole emission by a subwavelength enclosure of degenerate Mie resonances

    KAUST Repository

    Zhao, Jiajun

    2017-07-06

    Sound emission is inefficient at low frequencies as limited by source size. This letter presents enhancing emission of monochromatic monopole and multipole sources by enclosing the source with a subwavelength circular enclosure filled of an anisotropic material of a low radial sound speed. The anisotropy is associated with an infinite tangential density along the azimuth. Numerical simulations show that emission gain is produced at frequencies surrounding degenerate Mie resonant frequencies of the enclosure, and meanwhile the radiation directivity pattern is well preserved. The degeneracy is theoretically analyzed. A realization of the material is suggested by using a space-coiling structure.

  19. Local investigation of the optical properties of subwavelength rectangular holes with a focused beam of electrons.

    Science.gov (United States)

    Prangsma, J C; van Oosten, D; Kuipers, L

    2011-09-13

    The optical properties of rectangular subwavelength holes in a gold film are investigated using the light generated when a focused beam of electrons impinges on the sample close to the hole. Using this technique, multi-spectral maps of the holes are obtained with a resolution beyond the optical diffraction limit. The results show the influence of hole shape on the spectrum of locally scattered light. Rectangular holes of varying shape and size are investigated, and the spatial distribution of the polarization of the observed light is measured. The influence of neighbouring holes is investigated by measuring small clusters of holes.

  20. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    Science.gov (United States)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  1. Semiconductor-metal subwavelength grating VCSELs: new concept of emission mirror enabling vertical current injection

    Science.gov (United States)

    Czyszanowski, Tomasz; Gebski, Marcin; Dems, Maciej; Panajotov, Krassimir

    2017-02-01

    We propose semiconductor-metal subwavelength grating (SMSG) which can be implemented as VCSEL mirror. Such new type of SMSG plays a double role of the electric contact and mirror simultaneously. It facilitates high optical power reflectance, perfectly vertical current injection. Such construction eliminates the inbuilt current confinement and allows scaling of emitted power by simple variation of SMSG spatial dimensions. To give the credibility to proposed design we perform numerical analysis of VCSEL with SMSG using fully vectorial optical model. We discuss properties of the proposed design realized in arsenide-based material configuration.

  2. Circuit-tunable sub-wavelength THz resonators: hybridizing optical cavities and loop antennas.

    Science.gov (United States)

    Paulillo, B; Manceau, J M; Degiron, A; Zerounian, N; Beaudoin, G; Sagnes, I; Colombelli, R

    2014-09-08

    We demonstrate subwavelength electromagnetic resonators operating in the THz spectral range, whose spectral properties and spatial/angular patterns can be engineered in a similar way to an electronic circuit. We discuss the device concept, and we experimentally study the tuning of the resonant frequency as a function of variable capacitances and inductances. We then elucidate the optical coupling properties. The radiation pattern, obtained by angle-resolved reflectance, reveals that the system mainly couples to the outside world via a magnetic dipolar interaction.

  3. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  4. Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths.

    Science.gov (United States)

    Yan, Changchun; Zhang, Dao Hua; Zhang, Yuan; Li, Dongdong; Fiddy, M A

    2010-07-05

    We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

  5. Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Jepsen, Peter Uhd

    2013-01-01

    We experimentally demonstrate graphene-plasmon polariton excitation in a continuous graphene monolayer resting on a two-dimensional subwavelength silicon grating. The subwavelength silicon grating is fabricated by a nanosphere lithography technique with a self-assembled nanosphere array...... as a template. Measured transmission spectra illustrate the excitation of graphene-plasmon polaritons, which is further supported by numerical simulations and theoretical prediction of plasmon-band diagrams. Our grating-assisted coupling to graphene-plasmon polaritons forms an important platform for graphene......-based opto-electronics applications....

  6. Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications

    Science.gov (United States)

    Han, Katherine; Chang, Chih-Hung

    2014-01-01

    This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered. PMID:28348287

  7. Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses

    Science.gov (United States)

    Yang, Yang; Yang, Jianjun; Liang, Chunyong; Wang, Hongshui; Zhu, Xiaonong; Kuang, Dengfeng; Yang, Yong

    2008-08-01

    Generation of self-organized sub-wavelength surface structures on a nickel titanium alloy plate by femtosecond laser pulses is investigated experimentally through line-scribing experiments in air. It is found that Bragg-like relief gratings, with the orientation perpendicular to the laser polarization, are formed over the entire laser-scribed regions. The average period is measured as 630±30 nm. Distinctive features of these novel surface structures include nanoparticle-covered grating ridges and the maintainable spatial period regardless of incidence angles. With different laser parameters and sample scan speeds, sub-wavelength grating structures can evolve into cellular-like nanotextures. Optimal conditions for forming these surface structures are determined in terms of laser energy and scan speed. Elementary analyses of the structured surfaces by X-ray diffraction and photoelectron spectroscopy reveal that both the crystal structures and the chemical elements can remain in their original states, but the surface grains are refined and the atomic percentages are varied after femtosecond laser treatments.

  8. Research on radiation characteristics of dipole antenna modulation by sub-wavelength inhomogeneous plasma layer

    Science.gov (United States)

    Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao

    2018-02-01

    The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.

  9. Highly Efficient Colored Perovskite Solar Cells Integrated with Ultrathin Subwavelength Plasmonic Nanoresonators.

    Science.gov (United States)

    Lee, Kyu-Tae; Jang, Ji-Yun; Zhang, Jing; Yang, Sung-Mo; Park, Sanghyuk; Park, Hui Joon

    2017-09-06

    Highly efficient colored perovskite solar cells that exploit localized surface plasmon resonances in ultrathin subwavelength plasmonic nanoresonators are demonstrated. Localized resonances in ultrathin metal nano-strip optical resonators consisting of an array of metallic subwavelength nanowires on a transparent substrate, fabricated by using low-cost nanoimprint lithography over a large area, lead to a sharp peak in a reflection spectrum for distinctive color generation with angle-insensitive property up to 60°, and simultaneously transmit the complementary spectrum of visible light that can be efficiently harvested by the perovskite solar cells for electric power generation. The plasmonic color filter-integrated perovskite solar cells provide 10.12%, 8.17% and 7.72% of power conversion efficiencies with capabilities of creating vivid reflective red, green and blue colors. The scheme described in this work could be applied to a variety of applications such as power-generating decorations, tandem cells, power-saving wearable devices and energy-efficient reflective display technologies.

  10. Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam.

    Science.gov (United States)

    Liu, Shenggang; Hu, Min; Zhang, Yaxin; Li, Yuebao; Zhong, Renbin

    2009-09-01

    This paper explores the physics of the electromagnetic diffraction radiation of a subwavelength holes array excited by a set of evanescent waves generated by a line charge of electron beam moving parallel to the array. Activated by a uniformly moving line charge, numerous physical phenomena occur such as the diffraction radiation on both sides of the array as well as the electromagnetic penetration or transmission below or above the cut-off through the holes. As a result the subwavelength holes array becomes a radiation array. Making use of the integral equation with relevant Green's functions, an analytical theory for such a radiation system is built up. The results of the numerical calculations based on the theory agree well with that obtained by the computer simulation. The relation among the effective surface plasmon wave, the electromagnetic penetration or transmission of the holes and the diffraction radiation is revealed. The energy dependence of and the influence of the hole thickness on the diffraction radiation and the electromagnetic penetration or transmission are investigated in detail. Therefore, a distinct diffraction radiation phenomenon is discovered.

  11. Fabrication and characterization of subwavelength nanostructures on freestanding GaN slab.

    Science.gov (United States)

    Wang, Yongjin; Hu, Fangren; Kanamori, Yoshiaki; Sameshima, Hidehisa; Hane, Kazuhiro

    2010-02-01

    We develop a novel way to fabricate subwavelength nanostructures on the freestanding GaN slab using a GaN-on-silicon system by combining self-assemble technique and backside thinning method. Silicon substrate beneath the GaN slab is removed by bulk silicon micromachining, generating the freestanding GaN slab and eliminating silicon absorption of the emitted light. Fast atom beam (FAB) etching is conducted to thin the freestanding GaN slab from the backside, reducing the number of confined modes inside the GaN slab. With self-assembled silica nanospheres acting as an etching mask, subwavelength nanostructures are realized on the GaN surface by FAB etching. The reflection losses at the GaN interfaces are thus suppressed. When the InGaN/GaN multiple quantum wells (MQWs) active layers are excited, the light extraction efficiency is significantly improved for the freestanding nanostructured GaN slab. This work provides a very practical approach to fabricate freestanding nanostructures on the GaN-on-silicon system for further improving the light extraction efficiency.

  12. Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces

    Directory of Open Access Journals (Sweden)

    Ali Forouzmand

    2015-07-01

    Full Text Available In this paper, we demonstrate that a wire medium slab loaded with graphene-nanopatch metasurfaces (GNMs enables the enhancement of evanescent waves for the subwavelength imaging at terahertz (THz frequencies. The analysis is based on the nonlocal homogenization model for wire medium with the additional boundary condition at the connection of wires to graphene. The physical mechanism behind this lens can be described as the surface plasmons excitement at the lower and upper GNMs which are coupled by an array of metallic wires. The dual nature (capacitive/inductive of the GNM is utilized in order to design a dual-band lens in which the unique controllable properties of graphene and the structural parameters of wire medium (WM slab provide more degrees of freedom in controlling two operating frequency bands. The lens can support the subwavelength imaging simultaneously at two tunable distinct frequencies with the resolution better than λ/6 even if the distance between GNMs is a significant fraction of wavelength (>λ/5.5. The major future challenges in the fabrication of the lens have been demonstrated and a promising approach for the practical configuration of the lens has been proposed.

  13. Refraction index sensor based on phase resonances in a subwavelength structure with double period.

    Science.gov (United States)

    Skigin, Diana C; Lester, Marcelo

    2016-10-01

    In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.

  14. Motion parallax in immersive cylindrical display systems

    Science.gov (United States)

    Filliard, N.; Reymond, G.; Kemeny, A.; Berthoz, A.

    2012-03-01

    Motion parallax is a crucial visual cue produced by translations of the observer for the perception of depth and selfmotion. Therefore, tracking the observer viewpoint has become inevitable in immersive virtual (VR) reality systems (cylindrical screens, CAVE, head mounted displays) used e.g. in automotive industry (style reviews, architecture design, ergonomics studies) or in scientific studies of visual perception. The perception of a stable and rigid world requires that this visual cue be coherent with other extra-retinal (e.g. vestibular, kinesthetic) cues signaling ego-motion. Although world stability is never questioned in real world, rendering head coupled viewpoint in VR can lead to the perception of an illusory perception of unstable environments, unless a non-unity scale factor is applied on recorded head movements. Besides, cylindrical screens are usually used with static observers due to image distortions when rendering image for viewpoints different from a sweet spot. We developed a technique to compensate in real-time these non-linear visual distortions, in an industrial VR setup, based on a cylindrical screen projection system. Additionally, to evaluate the amount of discrepancies tolerated without perceptual distortions between visual and extraretinal cues, a "motion parallax gain" between the velocity of the observer's head and that of the virtual camera was introduced in this system. The influence of this artificial gain was measured on the gait stability of free-standing participants. Results indicate that, below unity, gains significantly alter postural control. Conversely, the influence of higher gains remains limited, suggesting a certain tolerance of observers to these conditions. Parallax gain amplification is therefore proposed as a possible solution to provide a wider exploration of space to users of immersive virtual reality systems.

  15. Experimental investigation of cylindrical detonation wave

    Science.gov (United States)

    Dudin, S. V.; Sosikov, V. A.; Torunov, S. I.

    2016-11-01

    One of the methods of experimental investigation of cylindrical detonation wave formed by the multipoint initiation method is presented in this work. The experimental setup was specially developed for this purpose. Two types of “Nanogate” high-speed cameras were used in the experiments. The phenomenological descriptions of initiation process, dynamic of formation of detonation wave and gas dynamic flow of detonation products are presented. This method in combination with the other modern methods will allow carrying out more profound investigations of such problems.

  16. Retaining Walls Made of Precast Cylindrical Valuts

    Directory of Open Access Journals (Sweden)

    N. Ungureanu

    2005-01-01

    Full Text Available Retaining walls are large category of engineering structures of multiple uses, having an essential safety ensuring role. The structural systems are varied because the situations and requirements derived from both site conditions and other criteria are varied. The paper enlarges upon retaining walls systems that use an outstanding amount of precast units and multiple cylindrical vault type structural systems supported by abutments [1], [2]. The paper proposes extending the structural system to retaining walls and develops certain specific issues. Some considerations regarding structural design are made.

  17. OPTIMAL THICKNESS OF A CYLINDRICAL SHELL

    Directory of Open Access Journals (Sweden)

    Paul Ziemann

    2015-01-01

    Full Text Available In this paper an optimization problem for a cylindrical shell is discussed. The aim is to look for an optimal thickness of a shell to minimize the deformation under an applied external force. As a side condition, the volume of the shell has to stay constant during the optimization process. The deflection is calculated using an approach from shell theory. The resulting control-to-state operator is investigated analytically and a corresponding optimal control problem is formulated. Moreover, necessary conditions for an optimal solution are stated and numerical solutions are presented for different examples.

  18. Free vibrations of circular cylindrical shells

    CERN Document Server

    Armenàkas, Anthony E; Herrmann, George

    1969-01-01

    Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are

  19. Acoustically Driven Vibrations in Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-10-11

    The purpose of this investigation is to explore the interaction of acoustics and vibration in fluid-filled cylindrical structures. Our emphasis is on describing longitudinal (axial) propagation within the structure for acoustic signals that enter externally. This paper reviews the historical and theoretical treatments of the relevant phenomenon important to the propagation of these signals along pipe structures. Our specific contribution is a detailed analysis of how external acoustic signals are coupled to a free standing pipe. There have been numerous phenomena for which these analyses are applicable. They have ranged from physical property measurements, to indoor environmental noise abatement, and onto quite significant explorations of active and passive submerged structures.

  20. Pembuatan Knowledge Management pada External Cylindrical Grinding

    Directory of Open Access Journals (Sweden)

    Ikhwan Arief

    2016-04-01

    The design began by analyzing the external cylindrical grinding systems and translate them into Unified Modelling Language (UML which was followed by the design of database and computer software, and test the software. The application software is web-based and can be accessed by multiple users. The application will help the operator in determining parameters with given option of parameter recommendation. The system gives recommendations based on the tacit knowledge that has been gathered into explicit knowledge. The output of the application is a list of selected parameters and report cases. Report data in the case will be used to set up the machine.

  1. Role of shape ans localized resonances in extraordanary transmission through periodic arrays of subwavelength holes: Ecperiment and theory

    NARCIS (Netherlands)

    van der Molen, K.L.; Klein Koerkamp, K.J.; Enoch, S.; Segerink, Franciscus B.; van Hulst, N.F.; Kuipers, L.

    2005-01-01

    The effect of the aspect ratio of rectangular holes on the transmissivity of periodic arrays of subwavelength holes in optically thick metal films is investigated. The transmissivity is found to be highly dependent on the aspect ratio of the holes. Moreover, the wavelengths of maximum transmissivity

  2. 80-nm-tunable high-index-contrast subwavelength grating long-wavelength VCSEL: Proposal and numerical simulations

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Sirbu, Alexei

    2010-01-01

    A widely-tunable single-mode long wavelength vertical-cavity surface-emitting laser structure employing a MEMStunable high-index-contrast subwavelength grating (HCG) is suggested and numerically investigated. A very large 80- nm linear tuning range was obtained as the HCG was actuated by -220 to ...

  3. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  4. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  5. Optical alignment of a cylindrical object

    Science.gov (United States)

    Song, Chaolong; Nguyen, Nam-Trung; Krishna Asundi, Anand

    2009-03-01

    This paper reports the use of theory of geometrical optics to analyze how an optical field interacts with a cylindrical object. Of great interest is the mechanism with which a laser beam with a special profile manipulates a particle which has a similar shape as the beam profile. The present paper investigates the interaction between a cylinder-shape fiber and a laser beam with a line-shape profile. Based on the Fresnel equation, a numerical model was formulated to describe the optical torque generated by a projected line-shape optical image. The drag force was also considered in the model to accurately describe the fiber's movement in a liquid. A differential equation is established to describe this damped movement of the cylinder. Parametric analysis was carried out to investigate the influence of the beam power and the liquid viscosity as well as the density, the length, and the diameter of the cylindrical object. The movement of a carbon fiber was measured with a CCD camera. The observed experimental results agree well with the theoretical results.

  6. Cylindrical Optic Figuring and Dwell Time Optimization

    Science.gov (United States)

    Waluschka, Eugene

    2000-01-01

    Grazing incidence x-ray telescopes consist of surfaces which are nearly cylindrical in shape. The abrasive figuring of these surfaces is accomplished by moving a grinding tool along a helical path on this almost cylindrical surface. The measurement of the surface is, however, performed along "axial" scan lines which intercept this helical path. This approach to figuring and measuring permits a relatively simple scheme to be implemented for the determination of the optimal dwell times of the figuring tool. These optimal dwell times are determined by a deconvolution which approaches the problem in a linear programming context and uses the Simplex Method. The approach maximizes the amount of material removed at any point subject to inequality constraints. The effect of using these ''optimum" dwell times is to significantly improve the tools effectiveness at removing the higher spatial frequencies while staying (strictly) within the bounds and constraints imposed by the hardware. In addition, the ringing at the edges of the optic, frequently present in deconvolution problems, is completely eliminated.

  7. Deep Subwavelength Electromagnetic Transparency through Dual Metallic Gratings with Ultranarrow Slits

    CERN Document Server

    Qiu, Chunyin; Chen, Ruirui; Hou, Bo; Li, Feng; Liu, Zhengyou

    2012-01-01

    In this Letter, we study the transmission response of microwaves through two identical metallic plates machined with ultranarrow slit arrays. The measured and calculated transmission spectra consistently display a striking transmission peak at wavelength much larger than any characteristic length of the structure (e.g., about twenty-fold of the lattice period), which can not be directly explained by the existing mechanisms. Both the LC-circuit-based microscopic picture and the effective-medium-based macroscopic model are established to capture the essential physics behind such unexpected resonance at the deep subwavelength scale. Prospective applications of this novel transmission property can be anticipated, considering the merits of compact and excellent immunity to structural imperfections.

  8. Efficient vortex generation in sub-wavelength epsilon-near-zero slabs

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We show that a homogeneous and isotropic slab, illuminated by a circularly polarized beam with no topological charge, produces vortices of order two in the opposite circularly polarized components of the reflected and transmitted fields, as a consequence of the difference between transverse magnetic and transverse electric dynamics. In the epsilon-near-zero regime, we find that vortex generation is remarkably efficient in sub-wavelength thick slabs up to the paraxial regime. This physically stems from the fact that a vacuum paraxial field can excite a nonparaxial field inside an epsilon-near-zero slab since it hosts slowly varying fields over physically large portion of the bulk. Our theoretical predictions indicate that epsilon-near-zero media hold great potential as nanophotonic elements for manipulating the angular momentum of the radiation, since they are available without resorting to complicated micro/nano fabrication processes and can operate even at very small (ultraviolet) wavelengths.

  9. All-Si photodetector for telecommunication wavelength based on subwavelength grating structure and critical coupling

    Science.gov (United States)

    Taghizadeh, Alireza; Zali, Aref Rasoulzadeh; Chung, Il-Sug; Moravvej-Farshi, Mohammad Kazem

    2017-09-01

    We propose an efficient planar all-Si internal photoemission photodetector operating at the telecommunication wavelength of 1550 nm and numerically investigate its optical and electrical properties. The proposed polarization-sensitive detector is composed of an appropriately engineered subwavelength grating structure topped with a silicide layer of nanometers thickness as an absorbing material. It is shown that a nearly-perfect light absorption is possible for the thin silicide layer by its integration to the grating resonator. The absorption is shown to be maximized when the critical coupling condition is satisfied. Simulations show that the external quantum efficiency of the proposed photodetector with a 2-nm-thick PtSi absorbing layer at the center wavelength of 1550 nm can reach up to ˜60%.

  10. Plasmon-enhanced Kerr nonlinearity via subwavelength-confined anisotropic Purcell factors

    Science.gov (United States)

    Ren, Juanjuan; Chen, Hongyi; Gu, Ying; Zhao, Dongxing; Zhou, Haitao; Zhang, Junxiang; Gong, Qihuang

    2016-10-01

    We theoretically investigate the enhancement of Kerr nonlinearity through anisotropic Purcell factors provided by plasmon nanostructures. In a three-level atomic system with crossing damping, larger anisotropism of Purcell factors leads to more enhanced Kerr nonlinearity in electromagnetically induced transparency windows. While for fixed anisotropic Purcell factors, Kerr nonlinearity with orthogonal dipole moments increases with the decrease of its crossing damping, and Kerr nonlinearity with nonorthogonal dipole moments is very sensitive to both the value of crossing damping and the orientation of the dipole moments. We design the non-resonant gold nanorods array, which only provides subwavelength-confined anisotropic Purcell factors, and demonstrate that the Kerr nonlinearity of cesium atoms close to the nanorods array can be modulated at the nanoscale. These findings should have potential application in ultracompact quantum logic devices.

  11. Subwavelength InSb-based Slot wavguides for THz transport: concept and practical implementations

    Science.gov (United States)

    Ma, Youqiao; Zhou, Jun; Pištora, Jaromír; Eldlio, Mohamed; Nguyen-Huu, Nghia; Maeda, Hiroshi; Wu, Qiang; Cada, Michael

    2016-12-01

    Seeking better surface plasmon polariton (SPP) waveguides is of critical importance to construct the frequency-agile terahertz (THz) front-end circuits. We propose and investigate here a new class of semiconductor-based slot plasmonic waveguides for subwavelength THz transport. Optimizations of the key geometrical parameters demonstrate its better guiding properties for simultaneous realization of long propagation lengths (up to several millimeters) and ultra-tight mode confinement (~λ2/530) in the THz spectral range. The feasibility of the waveguide for compact THz components is also studied to lay the foundations for its practical implementations. Importantly, the waveguide is compatible with the current complementary metal-oxide-semiconductor (CMOS) fabrication technique. We believe the proposed waveguide configuration could offer a potential for developing a CMOS plasmonic platform and can be designed into various components for future integrated THz circuits (ITCs).

  12. A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber

    Science.gov (United States)

    Xie, Yunsong; Fan, Xin; Chen, Yunpeng; Wilson, Jeffrey D.; Simons, Rainee N.; Xiao, John Q.

    2017-01-01

    The design, fabrication and characterization of a novel metamaterial absorber based camera with subwavelength spatial resolution are investigated. The proposed camera is featured with simple and lightweight design, easy portability, low cost, high resolution and sensitivity, and minimal image interference or distortion to the original field distribution. The imaging capability of the proposed camera was characterized in both near field and far field ranges. The experimental and simulated near field images both reveal that the camera produces qualitatively accurate images with negligible distortion to the original field distribution. The far field demonstration was done by coupling the designed camera with a microwave convex lens. The far field results further demonstrate that the camera can capture quantitatively accurate electromagnetic wave distribution in the diffraction limit. The proposed camera can be used in application such as non-destructive image and beam direction tracer.

  13. A subwavelength resolution microwave/6.3 GHz camera based on a metamaterial absorber.

    Science.gov (United States)

    Xie, Yunsong; Fan, Xin; Chen, Yunpeng; Wilson, Jeffrey D; Simons, Rainee N; Xiao, John Q

    2017-01-10

    The design, fabrication and characterization of a novel metamaterial absorber based camera with subwavelength spatial resolution are investigated. The proposed camera is featured with simple and lightweight design, easy portability, low cost, high resolution and sensitivity, and minimal image interference or distortion to the original field distribution. The imaging capability of the proposed camera was characterized in both near field and far field ranges. The experimental and simulated near field images both reveal that the camera produces qualitatively accurate images with negligible distortion to the original field distribution. The far field demonstration was done by coupling the designed camera with a microwave convex lens. The far field results further demonstrate that the camera can capture quantitatively accurate electromagnetic wave distribution in the diffraction limit. The proposed camera can be used in application such as non-destructive image and beam direction tracer.

  14. Tarnishing of silver subwavelength slit gratings and its effect on extraordinary optical transmission

    Science.gov (United States)

    Gorkunov, M. V.; Artemov, V. V.; Yudin, S. G.; Palto, S. P.

    2014-04-01

    We study the impact of tarnishing of silver subwavelength gratings on their optical performance. We report that in the course of months under regular laboratory conditions, the gratings undergo tarnishing very differently from plain silver films: instead of thin layer of evenly distributed silver sulfide, a random pattern of rare larger crystals is formed across the grating area. As typical of plasmonic metamaterials, the gratings appear to be very sensitive to the arising structural disorder and show a very specific modification of the optical transmittance spectra - total degradation of the Wood diffraction anomaly and attenuation of the near-infrared transmission peak. The identified 'optical fingerprints' of the microscopic grating contamination pave a way for prospective plasmonic sensor applications.

  15. Graphene coated subwavelength wires: a theoretical investigation of emission and radiation properties

    Science.gov (United States)

    Cuevas, Mauro

    2017-10-01

    This work analyzes the emission and radiation properties of a single optical emitter embedded in a graphene-coated subwavelength wire. We discuss the modifications of the spontaneous emission rate and the radiation efficiency as a function of the position and orientation of the dipole inside the wire. Our results show that these quantities can be enhanced by several orders of magnitude when the emission frequency coincides with one of the resonance frequencies of the graphene-coated wire. In particular, high-order plasmon resonances are excited when the emitter is moved from the wire center. Modifications resulting from varying the orientation of the dipole in the near field distribution and in the far field intensities are shown.

  16. Asymmetric Fabry-Perot-inspired subwavelength phase shifters for tunable metasurfaces

    CERN Document Server

    Colburn, Shane; Majumdar, Arka

    2016-01-01

    Metasurfaces with tunable spatial phase functions could benefit numerous applications. Currently, most approaches to tuning rely on mechanical stretching which cannot control phase locally, or by modulating the refractive index to exploit rapid phase changes with the drawback of also modulating amplitude. Here, we propose a method to realize phase modulation at subwavelength length scales while maintaining unity amplitude. Our device is inspired by an asymmetric Fabry-Perot resonator, with pixels comprising a scattering nanopost on top of a distributed Bragg reflector, capable of providing a nearly 2{\\pi} nonlinear phase shift with less than 2% refractive index modulation. Using the designed pixels, we simulate a tunable metasurface composed of an array of moderately coupled nanopost resonators, realizing axicons, vortex beam generators, and aspherical lenses with both variable focal length and in-plane scanning capability, achieving nearly diffraction-limited performance. The experimental feasibility of the ...

  17. Exploiting evanescent-wave amplification for subwavelength low-contrast particle detection

    Science.gov (United States)

    Roy, S.; Pereira, S. F.; Urbach, H. P.; Wei, Xukang; El Gawhary, O.

    2017-07-01

    The classical problem of subwavelength particle detection on a flat surface is especially challenging when the refractive index of the particle is close to that of the substrate. We demonstrate a method to improve the detection ability several times for such a situation, by enhancing the "forbidden" evanescent waves in the substrate using the principle of super-resolution with evanescent waves amplification. The working mechanism of the system and experimental validation from a design with a thin single dielectric layer is presented. The resulting system is a simple but complete example of evanescent-wave generation, amplification, and the consequent modulation of the far field. This principle can have far reaching impact in the field of particle detection in several applications ranging from contamination control to interferometric scattering microscopy for biological samples.

  18. Ultradense, Deep Subwavelength Nanowire Array Photovoltaics As Engineered Optical Thin Films

    KAUST Repository

    Tham, Douglas

    2010-11-10

    A photovoltaic device comprised of an array of 20 nm wide, 32 nm pitch array of silicon nanowires is modeled as an optical material. The nanowire array (NWA) has characteristic device features that are deep in the subwavelength regime for light, which permits a number of simplifying approximations. Using photocurrent measurements as a probe of the absorptance, we show that the NWA optical properties can be accurately modeled with rigorous coupled-wave analysis. The densely structured NWAs behave as homogeneous birefringent materials into the ultraviolet with effective optical properties that are accurately modeled using the dielectric functions of bulk Si and SiO 2, coupled with a physical model for the NWA derived from ellipsometry and transmission electron microscopy. © 2010 American Chemical Society.

  19. Strong coupling in the sub-wavelength limit using metamaterial nanocavities.

    Science.gov (United States)

    Benz, A; Campione, S; Liu, S; Montaño, I; Klem, J F; Allerman, A; Wendt, J R; Sinclair, M B; Capolino, F; Brener, I

    2013-01-01

    The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (~10 μm) to the near-infrared (~1.5 μm). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 × 10(-4) (λ/n)(3) from which we infer that only ~2,400 electrons per resonator participate in this energy exchange process.

  20. Strong coupling in the sub-wavelength limit using metamaterial nanocavities

    Science.gov (United States)

    Benz, A.; Campione, S.; Liu, S.; Montaño, I.; Klem, J.F.; Allerman, A; Wendt, J.R.; Sinclair, M.B.; Capolino, F.; Brener, I.

    2013-01-01

    The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (~10 μm) to the near-infrared (~1.5 μm). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 × 10−4 (λ/n)3 from which we infer that only ~2,400 electrons per resonator participate in this energy exchange process. PMID:24287692

  1. Theoretical and numerical investigations of sub-wavelength diffractive optical structures

    DEFF Research Database (Denmark)

    Dridi, Kim

    2000-01-01

    defect is described via the effective propagation puted for different crystal lattices and waveguide widths. Both strong positive, strong negative and zero disperions are possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect width......The work in this thesis concerns theoretical and numerical investigations of sub-wavelength diffractive optical structures, relying on advanced two-dimensional vectorial numerical models that have applications in Optics and Electromagnetics. Integrated Optics is predicted to play a major role......, such as in dielectric waveguides with gratings and periodic media or photonic crystal structures. The vectorial electromagnetic nature of light is therefore taken into account in the modeling of these diffractive structures. An electromagnetic vector-field model for optical components design based on the classical...

  2. Diffraction theory of high numerical aperture subwavelength circular binary phase Fresnel zone plate.

    Science.gov (United States)

    Zhang, Yaoju; An, Hongchang; Zhang, Dong; Cui, Guihua; Ruan, Xiukai

    2014-11-03

    An analytical model of vector formalism is proposed to investigate the diffraction of high numerical aperture subwavelength circular binary phase Fresnel zone plate (FZP). In the proposed model, the scattering on the FZP's surface, reflection and refraction within groove zones are considered and diffraction fields are calculated using the vector Rayleigh-Sommerfeld integral. The numerical results obtained by the proposed phase thick FZP (TFZP) model show a good agreement with those obtained by the finite-difference time-domain (FDTD) method within the effective extent of etch depth. The optimal etch depths predicted by both methods are approximately equal. The analytical TFZP model is very useful for designing a phase and hybrid amplitude-phase FZP with high-NA and short focal length.

  3. Propagation of coherent transverse waves: Influence of the translational and rotational subwavelength resonances.

    Science.gov (United States)

    Valier-Brasier, Tony; Conoir, Jean-Marc

    2017-08-01

    The propagation of coherent transverse waves through a homogeneous elastic medium containing a set of spherical dense inclusions is an interesting topic. In such a material, in addition to the coherent longitudinal wave, two coherent transverse waves can propagate. The modeling used is based on the multiple scattering theory, which requires the scattering coefficients of the single scattering problem. These coefficients are calculated for moving rigid particles, leading to approximations of the two subwavelength dipolar resonances, one associated to a translational motion and the other to a rotational motion. Numerical simulations are carried out in order to compare the effective wavenumbers of the coherent elastic waves through the analysis of their phase velocity and attenuation. This comparison is performed for elastic and moving rigid spheres. It is shown that both dipolar resonances may have a great influence on the propagation of coherent transverse waves.

  4. Coherent perfect absorption in deeply subwavelength films in the single photon regime

    CERN Document Server

    Roger, Thomas; Bolduc, Eliot; Valente, Joao; Heitz, Julius J F; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay; Faccio, Daniele

    2016-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single photon regime is of great interest yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply sub-wavelength 50% absorber. We show that while absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, e.g. a localised plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications.

  5. Far field subwavelength imaging and focusing using a wire medium based resonant metalens

    CERN Document Server

    Lemoult, Fabrice; Fink, Mathias

    2010-01-01

    This is the second article in a series of two dealing with the concept of "resonant metalens" we introduced recently [Phys. Rev. Lett. 104, 203901 (2010)]. It is a new type of lens capable of coding in time and radiating efficiently in the far field region sub-diffraction information of an object. A proof of concept of such a lens is performed in the microwave range, using a medium made out of a square lattice of parallel conducting wires with finite length. We investigate a sub-wavelength focusing scheme with time reversal and demonstrate experimentally spots with focal widths of {\\lambda}/25. Through a cross-correlation based imaging procedure we show an image reconstruction with a resolution of {\\lambda}/80. Eventually we discuss the limitations of such a lens which reside essentially in losses.

  6. Subwavelength Microstructures Fabrication by Self-Organization Processes in Photopolymerizable Nanocomposite

    Directory of Open Access Journals (Sweden)

    I. Yu. Denisyuk

    2012-01-01

    Full Text Available This paper describes our research results on nanometers sizes subwavelength nanostructure fabrication by UV curing of special nanocomposite material with self-organization and light self-focusing effects. For this purpose, special UV curable nanocomposite material with a set of effects was developing: light self-focusing in the photopolymer with positive refractive index change, self-organization based on photo-induced nanoparticles transportation, and oxygen-based polymerization threshold. Both holographic and projection lithography writing methods application for microstructure making shows geometrical optical laws perturbation as result of nanocomposite self-organization effects with formation of nanometers-sized high-aspect-ratio structures. Obtained results will be useful for diffraction limit overcoming in projection lithography as well as for deep lithography technique.

  7. Femtosecond dynamics of the transmission of gold arrays of sub-wavelength holes

    Energy Technology Data Exchange (ETDEWEB)

    Halte, V.; Benabbas, A.; Guidoni, L.; Bigot, J.Y. [IPCMS-GONLO (UMR 7504 CNRS/ULP), 23 rue du Loess, 67034 Strasbourg (France)

    2005-07-01

    We have studied the dynamics of arrays of sub-wavelength holes in a gold film using femtosecond pump-probe optical spectroscopy. The real and imaginary parts of the complex non linear dielectric function {epsilon} of the nanostructures strongly depend on the time-dependent redistribution of the electrons excited by the pump pulses. The dynamical behavior of {epsilon} allows us to explain the spectral broadening and the shift of the two resonances present in the linear transmission of the arrays. In addition, we present new experimental results allowing to compare the spectral behavior of the two transmission resonances as well as the transmission window of thick films near the interband transitions of gold. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Subwavelength grating as both emission mirror and electrical contact for VCSELs in any material system

    Science.gov (United States)

    Czyszanowski, Tomasz; Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert; Panajotov, Krassimir

    2017-01-01

    Semiconductor-metal subwavelength grating (SMSG) can serve a dual purpose in vertical-cavity surface-emitting lasers (VCSELs), as both optical coupler and current injector. SMSGs provide optical as well as lateral current confinement, eliminating the need for ring contacts and lateral build-in optical and current confinement, allowing their implementation on arbitrarily large surfaces. Using an SMSG as the top mirror enables fabrication of monolithic VCSELs from any type of semiconductor crystal. The construction of VCSELs with SMSGs requires significantly less p-type material, in comparison to conventional VCSELs. In this paper, using a three-dimensional, fully vectorial optical model, we analyse the properties of the stand-alone SMSG in a number of semiconductor materials for a broad range of wavelengths. Integrating the optical model with thermal and electrical numerical models, we then simulate the threshold operation of an exemplary SMSG VCSEL.

  9. Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance

    Science.gov (United States)

    Vargas Catalán, E.; Huby, E.; Forsberg, P.; Jolivet, A.; Baudoz, P.; Carlomagno, B.; Delacroix, C.; Habraken, S.; Mawet, D.; Surdej, J.; Absil, O.; Karlsson, M.

    2016-11-01

    Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims: We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods: Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results: The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10-5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions: Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT.

  10. Possibilities of Bragg filtering structures based on subwavelength grating guiding mechanism (Conference Presentation)

    Science.gov (United States)

    Kwiecien, Pavel; Litvik, Ján.; Richter, Ivan; Ctyroký, Jirí; Cheben, Pavel

    2017-05-01

    Silicon-on-insulator (SOI), as the most promising platform, for advanced photonic integrated structures, employs a high refractive index contrast between the silicon "core" and surrounding media. One of the recent new ideas within this field is based on the alternative formation of the subwavelength sized (quasi)periodic structures, manifesting as an effective medium with respect to propagating light. Such structures relay on Bloch wave propagation concept, in contrast to standard index guiding mechanism. Soon after the invention of such subwavelength grating (SWG) waveguides, the scientists concentrated on various functional elements such as couplers, crossings, mode transformers, convertors, MMI couplers, polarization converters, resonators, Bragg filters, and others. Our contribution is devoted to a detailed numerical analysis and design considerations of Bragg filtering structures based on SWG idea. Based on our previous studies where we have shown impossibility of application of various 2 and "2.5" dimensional methods for the proper numerical analysis, here we effectively use two independent but similar in-house approaches based on 3D Fourier modal methods, namely aperiodic rigorous coupled wave analysis (aRCWA) and bidirectional expansion and propagation method based on Fourier series (BEX) tools. As it was recently demonstrated, SWG Bragg filters are feasible. Based on this idea, we propose, simulate, and optimize spectral characteristics of such filters. In particular, we have investigated several possibilities of modifications of original SWG waveguides towards the Bragg filtering, including firstly - simple single-segment changes in position, thickness, and width, and secondly - several types of Si inclusions, in terms of perturbed width and thickness (and their combinations). The leading idea was to obtain required (e.g. sufficiently narrow) spectral characteristic while keeping the minimum size of Si features large enough. We have found that the second

  11. Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-07-30

    The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr3) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 μm3/pC for the MAPbBr3 perovskite crystal. Using XeF2 for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr3 perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.

  12. Optically resonant subwavelength films for tamper-indicating tags and seals

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Suter, Jonathan D.; Bernacki, Bruce E.; Bennett, Wendy D.

    2015-05-23

    We present the design, modeling and performance of a proof-of-concept tamper indicating approach that exploits newly-developed subwavelength-patterned films. These films have a nanostructure-dependent resonant optical reflection that is wavelength, angle, and polarization dependent. As such, they can be tailored to fabricate overlay transparent films for tamper indication and authentication of sensitive or controlled materials not possible with currently-known technologies. An additional advantage is that the unique optical signature is dictated by the geometry and fabrication process of the nanostructures in the film, rather than on the material used. The essential structure unit in the subwavelength resonant coating is a nanoscale Open-Ring Resonator (ORR). This building block is fabricated by coating a dielectric nanoscale template with metal to form a hemispherical shell-like structure. This curved metallic shell structure has a cross-section with an intrinsic capacitance and inductance and is thus the optical equivalent to the well-known “LC” circuit where the capacitance and inductance are determined by the nanoshell dimensions. For structures with sub 100 nm scale, this resonance occurs in the visible electromagnetic spectrum, and in the IR for larger shells. Tampering of the film would be visible though misalignment of the angular dependence of the features in the film. It is additionally possible to add in intrinsic oxidation and strain sensitive matrix materials to further complicate tamper repair and counterfeiting. Cursory standoff readout would be relatively simple using a combination of a near-infrared (or visible) LED flashlight and polarizer or passively using room lighting illumination and a dispersive detector.

  13. Model-assisted measuring method for periodical sub-wavelength nanostructures.

    Science.gov (United States)

    Alexe, Gabriela; Tausendfreund, Andreas; Stöbener, Dirk; Fischer, Andreas

    2018-01-01

    This paper describes a scatterometry approach designed by simulations for the in-line characterization of sub-wavelength sinusoidal gratings, which are formed on a transparent foil in a roll-to-roll procedure. Currently used methods are based on series of in situ measurements of the specular optical response at different incident angles or wavelengths for acquiring dimensional information on the gratings. The capability of single measurements of the first diffraction maxima at a fixed incident angle and wavelength to accurately measure the height of the sub-wavelength sinusoidal gratings is investigated in this work. The relation between the scattered powers of the diffraction maxima and the grating height is extracted from light scattering simulations, i.e., the inverse problem is solved. Optimal setup parameters for the measurement of grating heights ranging from 100 nm to 300 nm are derived from simulations. Limits of measurability and the measurement uncertainty are evaluated for different instrumentation and simulation parameters. When using laser light in the visible wavelength range, the measurement uncertainty is physically limited by the photon shot noise to the picometer range, but the systematic contributions dominate the uncertainty. As a result, the measurement uncertainty for the grating height is estimated to ≤12  nm, with a potential for <4  nm. Large-area scanning measurements performed offline and reference atomic force microscopy measurements verify the sensitivity of the presented measurement approach for identifying local variations of the spatial surface properties. Depending on the chosen detection system, sampling rates up to the MHz range are feasible, meeting the requirements of in-line process control of the roll-to-roll production process.

  14. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  15. Plasmonic oligomers in cylindrical vector light beams

    Directory of Open Access Journals (Sweden)

    Mario Hentschel

    2013-01-01

    Full Text Available We investigate the excitation as well as propagation of magnetic modes in plasmonic nanostructures. Such structures are particularly suited for excitation with cylindrical vector beams. We study magneto-inductive coupling between adjacent nanostructures. We utilize high-resolution lithographic techniques for the preparation of complex nanostructures consisting of gold as well as aluminium. These structures are subsequently characterized by linear optical spectroscopy. The well characterized and designed structures are afterwards studied in depth by exciting them with radial and azimuthally polarized light and simultaneously measuring their plasmonic near-field behavior. Additionally, we attempt to model and simulate our results, a project which has, to the best of our knowledge, not been attempted so far.

  16. Indentation of ellipsoidal and cylindrical elastic shells.

    Science.gov (United States)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-10-05

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [following paper, Phys. Rev. Lett. 109, 144301 (2012)] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells.

  17. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  18. MIRW properties of cylindrical holes array nanostructure

    Science.gov (United States)

    Wen, Chunchao; Fu, Yuegang; Dong, Tingting; Zhou, Jianhong; Guo, Xudong

    2017-03-01

    To improve mediate infrared wavelength (MIRW) light energy transferring efficiency, the optical properties of antireflection micro/nanostructure with cylindrical holes periodic array on incident angle, wavelength, polarized angle and azimuth orientation was researched based on finite time-domain difference (FDTD) method. Results shows that the antireflection characteristics can be promised in wider spectral range and lager incident angles. Reflectivity function also presents different features as polarization and azimuth angles changed. These structure parameters were optimized to be period of 1 µm, duty cycle of 0.85 and erosion height of 0.5 µm. Samples of the structure were fabricated by electron beam exposure and reaction ion etch technology on silicon substrate. Finally, the diverse shape effect of bionic moth-eye was explored to give respective ideal parameters suitable for MIRW.

  19. Unbalanced Cylindrical Magnetron for Accelerating Cavities Coating

    CERN Document Server

    Rosaz, Guillaume; Calatroni, Sergio; Sublet, Alban; Tobarelli, Mauro

    2016-01-01

    We report in this paper the design and qualification of a cylindrical unbalanced magnetron source. The dedicated magnetic assemblies were simulated using a finite element model. A hall-effect magnetic probe was then used to characterize those assemblies and compared to the theoretical magnet profiles. These show a good agreement between the expected and actual values. the qualification of the different magnetic assemblies was then performed by measuring the ion flux density reaching the surface of the sample to be coated using a commercial retarding field energy analyzer. The strongest unbalanced configuration shows an increase from 0.016A.cm^-2 to 0.074A.cm^-2 of the ion flux density reaching the sample surface compared to the standard balanced configuration for a pressure 5.10^-3 mbar and a plasma source power of 300W.

  20. Confocal unrolled areal measurements of cylindrical surfaces

    Science.gov (United States)

    Matilla, A.; Bermudez, C.; Mariné, J.; Martínez, D.; Cadevall, C.; Artigas, R.

    2017-06-01

    Confocal microscopes are widely used for areal measurements thanks to its good height resolution and the capability to measure high local slopes. For the measurement of large areas while keeping few nm of system noise, it is needed to use high numerical aperture objectives, move the sample in the XY plane and stitch several fields together to cover the required surface. On cylindrical surfaces a rotational stage is used to measure fields along the round surface and stitch them in order to obtain a complete 3D measurement. The required amount of fields depends on the microscope's magnification, as well as on the cylinder diameter. However, for small diameters, if the local shape reaches slopes not suitable for the objective under use, the active field of the camera has to be reduced, leading to an increase of the required number of fields to be measured and stitched. In this paper we show a new approach for areal measurements of cylindrical surfaces that uses a rotational stage in combination with a slit projection confocal arrangement and a highspeed camera. An unrolled confocal image of the cylinder surface is built by rotating the sample and calculating the confocal intensity in the centre of the slit using a gradient algorithm. A set of 360º confocal images can be obtained at different heights of the sample relative to the sensor and used to calculate an unrolled areal measure of the cylinder. This method has several advantages over the conventional one such as no stitching required, or reduced measurement time. In addition, the result shows less residual flatness error since the surface lies flat in the measurement direction in comparison to field measures where the highest slope regions will show field distortion and non-constant sampling. We have also studied the influence on the areal measurements of wobble and run-out introduced by the clamping mechanism and the rotational axis.

  1. Concentration profiles in drying cylindrical filaments

    Science.gov (United States)

    Czaputa, Klaus; Brenn, Günter; Meile, Walter

    2008-12-01

    We analyze theoretically the drying of cylindrical filaments. For modelling the mass transfer on the gas side of the liquid-gas interface of the shrinking circular cylindrical filament, we apply the model of Abramzon and Sirignano, which was originally developed for spherical geometry. As a consequence of mass transfer at constant Sherwood number, we obtain a d2-law for the shrinkage of the cylinder as in the case of the spherical geometry, which expresses that the cross-sectional area of the cylinder shrinks at a constant rate with time. For this situation, the diffusion equation for the liquid phase mixture components becomes separable upon transformation into similarity coordinates and is solved analytically to obtain the concentration profiles inside the filament as functions of time. The dependency of the profiles on the radial coordinate is determined by a series of Kummer’s functions. Applying this result, we study the evolution of the concentration profiles in the liquid phase with time as dependent on a parameter given as the ratio of rate of shrinkage of the cross-sectional area of the cylinder to liquid-phase diffusion coefficient, which was identified as relevant for the shape of the concentration profiles formed in the liquid during the drying process. As an example, we present computed results for the constant evaporation rate regime in the dry-spinning process of a polyvinyl-alcohol (PVA)-water system. Comparison of our analytical results with full numerical solutions of the diffusion equation from the literature, achieved with concentration-dependent diffusion coefficient, reveals very good agreement.

  2. Concentration profiles in drying cylindrical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Czaputa, Klaus; Brenn, Guenter; Meile, Walter [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria)

    2008-12-15

    We analyze theoretically the drying of cylindrical filaments. For modelling the mass transfer on the gas side of the liquid-gas interface of the shrinking circular cylindrical filament, we apply the model of Abramzon and Sirignano, which was originally developed for spherical geometry. As a consequence of mass transfer at constant Sherwood number, we obtain a d{sup 2}-law for the shrinkage of the cylinder as in the case of the spherical geometry, which expresses that the cross-sectional area of the cylinder shrinks at a constant rate with time. For this situation, the diffusion equation for the liquid phase mixture components becomes separable upon transformation into similarity coordinates and is solved analytically to obtain the concentration profiles inside the filament as functions of time. The dependency of the profiles on the radial coordinate is determined by a series of Kummer's functions. Applying this result, we study the evolution of the concentration profiles in the liquid phase with time as dependent on a parameter given as the ratio of rate of shrinkage of the cross-sectional area of the cylinder to liquid-phase diffusion coefficient, which was identified as relevant for the shape of the concentration profiles formed in the liquid during the drying process. As an example, we present computed results for the constant evaporation rate regime in the dry-spinning process of a polyvinyl-alcohol (PVA)-water system. Comparison of our analytical results with full numerical solutions of the diffusion equation from the literature, achieved with concentration-dependent diffusion coefficient, reveals very good agreement. (orig.)

  3. Ingestion of six cylindrical and four button batteries

    DEFF Research Database (Denmark)

    Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G

    2010-01-01

    We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....

  4. Settling of a cylindrical particle in a stagnant fluid

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen

    2007-01-01

    The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...

  5. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear ...

  6. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    Energy Technology Data Exchange (ETDEWEB)

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  7. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  8. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  9. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  10. Surface tension and long range corrections of cylindrical interfaces.

    Science.gov (United States)

    Bourasseau, E; Malfreyt, P; Ghoufi, A

    2015-12-21

    The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential, (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.

  11. Thermoelastoplastic deformation of noncircular cylindrical shells

    Science.gov (United States)

    Merzlyakov, V. A.

    2008-08-01

    A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed

  12. Cylindrical isentropic compression by ultrahigh magnetic field

    Science.gov (United States)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei

    2014-05-01

    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  13. Technology Selections for Cylindrical Compact Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  14. Optimal attitude corrections for cylindrical spacecraft

    Science.gov (United States)

    Zanardi, M. C.; Santos, R. M. K.; da Silva Fernandes, S.

    2003-04-01

    A first order analytical model for optimal small amplitude attitude maneuvers of spacecraft with cylindrical symmetry in an elliptical orbits is presented. The optimization problem is formulated as a Mayer problem with the control torques provided by a power limited propulsion system. The state is defined by Serret-Andoyer's variables and the control by the components of the propulsive torques. The Pontryagin Maximum Principle is applied to the problem and the optimal torques are given explicitly in Serret-Andoyer's variables and their adjoints. For small amplitude attitude maneuvers, the optimal Hamiltonian function is linearized around a reference attitude. A complete first order analytical solution is obtained by simple quadrature and is expressed through a linear algebraic system involving the initial values of the adjoint variables. A numerical solution is obtained by taking the Euler angles formulation of the problem, solving the two-point boundary problem through the shooting method, and, then, determining the Serret-Andoyer variables through Serret-Andoyer transformation. Numerical results show that the first order solution provides a good approximation to the optimal control law and also that is possible to establish an optimal control law for the artificial satellite's attitude.

  15. Residence time distribution of a cylindrical microreactor.

    Science.gov (United States)

    Hsu, Jyh-Ping; Wei, Tzu-Hsuan

    2005-05-12

    The residence time distribution for the flow of liquid reactants containing electrolytes in a cylindrical microreactor is derived under the conditions of constant surface potential and negligible end effects. The influences of the key parameters, including the thickness of the double layer, the strength of the applied electric field, and the magnitude of the applied pressure gradient, on the behavior of residence time distribution are discussed. The results obtained provide necessary information for the design and optimization of microreactors which involve liquid electrolyte reactants. The results of the numerical simulation reveal that a thin double layer, a strong applied electric field, and a greater applied pressure gradient lead to a faster fluid flow and, therefore, a short residence time. We show that if kappaa residence time distribution can be approximated by that for the case of a laminar flow, and if kappaa >/= 500, the residence time distribution can be approximated by that for the case of a plug flow, with kappa and a being the reciprocal Debye length and the radius of the microreactor, respectively.

  16. Cylindrical Optic Polishing Dwell Time Optimization

    Science.gov (United States)

    Waluschka, Eugene

    2000-01-01

    The Constellation-X x-ray telescope consists of replicated grazing incidence optics. The polishing of the "master' mandrel is accomplished by moving a polishing tool along a helical path on the surface of this almost cylindrical surface. The measurement of the surface is, however, performed along "axial" scan lines which intercept this helical path. This approach to polishing and measuring permits a relatively simple scheme to be implemented for the determination of the optimal dwell times of the polishing tool. These optimal dwell times are determined by a deconvolution which approaches the problem as a linear programming problem and uses the simplex method. This approach maximizes the amount of material removed at any point subject to inequality constraints. The effects of using these "optimum" dwell times is to significantly improve the "tools" effectiveness at removing the higher spatial frequencies while staying (strictly) within the bounds and constraints imposed by the hardware. In addition the "ringing" at the edges of the optic, frequently present in deconvolution problems, is completely eliminated.

  17. Jet Mixing in a Reacting Cylindrical Crossflow

    Science.gov (United States)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1995-01-01

    This paper addresses the mixing of air jets into the hot, fuel-rich products of a gas turbine primary zone. The mixing, as a result, occurs in a reacting environment with chemical conversion and substantial heat release. The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from round orifices. A specially designed reactor, operating on propane, presents a uniform mixture without swirl to mixing modules consisting of 8, 9, 10, and 12 holes at a momentum-flux ratio of 57 and a jet-to-mainstream mass-flow ratio of 2.5. Concentrations of O2, CO2, CO, and HC are obtained upstream, downstream, and within the orifice plane. O2 profiles indicate jet penetration while CO2, CO, and HC profiles depict the extent of reaction. Jet penetration is observed to be a function of the number of orifices and is found to affect the mixing in the reacting system. The results demonstrate that one module (the 12-hole) produces near-optimal penetration defined here as a jet penetration closest to the module half-radius, and hence the best uniform mixture at a plane one duct radius from the orifice leading edge.

  18. On Hydrodynamic Instabilities in Cylindrical Geometry

    Science.gov (United States)

    Proano, Erik; Rollin, Bertrand

    2017-11-01

    Recent research has suggested that hydrodynamic instabilities induced mixing is one of the last major hurdles toward achieving optimum conditions for ignition in confined fusion approaches for energy production. We leave aside the complexities of multiple interacting physics that lead to a fusion target ignition to be able to focus on understanding the development of these hydrodynamic instabilities, namely Richtmyer-Meshkov and Rayleigh-Taylor, in the context of a converging geometry. The problem is reformulated into the cleaner case of a cylindrical shock wave imploding onto a pocket of Sulfur Hexafluoride immersed in air. This numerical experiment aims at characterizing qualitatively and quantitatively the relation between the instabilities initial conditions and their development until late time. Starting from carefully designed single- and multimode disturbances at the initial density interface, our simulations track the evolution of the mixing layer through successive occurrences of the Richtmyer-Meshkov and Rayleigh-Taylor instabilities. Evolution of the mixing zone width and growth rate are presented for selected initial conditions, along with a quantification of mixing. Also, the effect of the converging shock strength is discussed.

  19. Modular sub-wavelength diffractive light modulator for high-definition holographic displays

    Science.gov (United States)

    Stahl, Richard; Rochus, Veronique; Rottenberg, Xavier; Cosemans, Stefan; Haspeslagh, Luc; Severi, Simone; Van der Plas, Geert; Lafruit, Gauthier; Donnay, Stephane

    2013-02-01

    Holography is undoubtedly the ultimate 3D visualization technology, offering true 3D experience with all the natural depth cues, without the undesirable side-effects of current stereoscopic systems (uncomfortable glasses, strained eyes, fatiguing experience). Realization of a high-definition holographic display however requires a number of breakthroughs from existing prototypes. One of the main challenges lies in technology scaling, as holography is based on light diffraction and interference - to achieve wide viewing angles, the light-modulating pixels need to be spaced close to or below the wavelength of the used visible light. Furthermore, achieving high 3D image quality, hundreds of millions of such individually programmable pixels are needed. As a solution, we develop a modular sub-wavelength light modulator, consisting of three main sub-systems: the optical sub-system, comprising a 2D array of sub-wavelength pixels; the driver sub-system for individual pixel control, and the holographic computational engine. Based on conclusions from our state-of-the art studies, numerous experiments and holographic demonstrators, we have focused on reflective phase-modulating MEMS-based system and its scaling beyond 500nm pitch. We have devised a unique binary-programmable phase-modulating pixel architecture realizing vertical pixel displacement of up to 150nm at 500nm by 500nm pixel pitch, while sustaining low operating voltages compatible with CMOS driver circuitry. IMEC SiGe MEMS technology enables integration of the CMOS pixel-line drivers, scan-line drivers and I/O circuits underneath the 2D MEMS array, resulting in a compact and modular single-chip system design. Refresh rates of few hundred frames per second are achieved using our patented segmented driver-array architecture. Integrated circuits implementing parallel holographic computational engines can be added to the module using advanced 3D stacking technology. Herein we further report on our progress in realizing

  20. Electromagnetic Cylindrical Transparent Devices with Irregular Cross Section

    Directory of Open Access Journals (Sweden)

    C. Yang

    2010-04-01

    Full Text Available Electromagnetic transparent device is very important for antenna protection. In this paper, the material parameters for the cylindrical transparent devices with arbitrary cross section are developed based on the coordinate transformation. The equivalent two-dimensional (2D transparent devices under TE plane and cylindrical wave irradiation is designed and studied by full-wave simulation, respectively. It shows that although the incident waves are distorted in the transformation region apparently, they return to the original wavefronts when passing through the device. All theoretical and numerical results validate the material parameters for the cylindrical transparent devices with arbitrary cross section we developed.

  1. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum...

  2. Band structure of wurtzite quantum dots with cylindrical symmetry

    Science.gov (United States)

    Voon, Lok Lew Yan; Galeriu, Calin; Lassen, Benny

    2005-03-01

    A six-band k .p theory for wurtzite semiconductor nanostructures with cylindrical symmetry will be presented. Our work extends the formulation of Vahala and Sercel [Phys. Rev. Lett. 65, 239 (1990)] to the Rashba-Sheka-Pikus Hamiltonian for wurtzite semiconductors, without the need for the axial approximation. Results comparing this new formulation for studying the electronic structure of wurzite GaN and CdS cylindrical quantum dots with the conventional formulation will be shown; our formulation is computationally superior. An application to the search for level crossing in the valence band of cylindrical quantum rods as a function of aspect ratio will be given. Supported by NSF CAREER award.

  3. Ultrafast laser induced periodic sub-wavelength aluminum surface structures and nanoparticles in air and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Deepak, K. L. N. [Department of Physics and Center for Research in Photonics, University of Ottawa, 150 Louis Pasteur, Ottawa K1N6N5, Ontario (Canada)

    2014-09-21

    In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSS depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.

  4. Time Reversal in Subwavelength-Scaled Resonant Media: Beating the Diffraction Limit

    Directory of Open Access Journals (Sweden)

    Fabrice Lemoult

    2011-01-01

    Full Text Available Time reversal is a physical concept that can focus waves both spatially and temporally regardless of the complexity of the propagation medium. Time reversal mirrors have been demonstrated first in acoustics, then with electromagnetic waves, and are being intensively studied in many fields ranging from underwater communications to sensing. In this paper, we will review the principles of time reversal and in particular its ability to focus waves in complex media. We will show that this focusing effect depends on the complexity of the propagation medium rather than on the time reversal mirror itself. A modal approach will be utilized to explain the physical mechanism underlying the concept. A particular focus will be given on the possibility to break the diffraction barrier from the far field using time reversal. We will show that finite size media made out of coupled subwavelength resonators support modes which can radiate efficiently in the far field spatial information of the near field of a source. We will show through various examples that such a process, due to reversibility, permits to beat the diffraction limit using far field time reversal, and especially that this result occurs owing to the broadband inherent nature of time reversal.

  5. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.

    Science.gov (United States)

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H; Pagliano, Francesco; Fiore, Andrea; Schuck, P James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the "campanile tip", a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  6. Sub-wavelength resolution dynamics of semiconductor passively mode-locked lasers induced by optical feedback

    Science.gov (United States)

    Simos, Christos; Simos, Hercules; Syvridis, Dimitris

    2017-08-01

    We present a numerical analysis that focuses, for the first time to our knowledge, on the feedback-induced dynamics in a semiconductor passively mode-locked laser with sub-wavelength resolution. Our results and the corresponding theoretical explanations elucidate several aspects of the laser dynamics under self-injection including inherent properties of mode-locked lasers such as pulse intensity noise and timing jitter. We show that the dynamics of the laser exhibit a periodicity in the wavelength scale apparent only on integer multiples of the laser cavity and decays in the time scale of the pulse duration following the coherence of the mode-locked laser. The corresponding phenomena are dominant for external cavities that are shorter than the laser cavity and superimposed on the previously reported dynamics of the semiconductor mode-locked lasers for longer external delays. Since these dynamics are triggered by low feedback levels, our study could be useful for the optimization of the laser operation in cases where ultra-short external cavity lengths are involved (integrated designs, power collection with fiber tapers, etc.).

  7. In-line measuring method for periodical sub-wavelength nanostructures

    Science.gov (United States)

    Alexe, Gabriela; Tausendfreund, Andreas; Stöbener, Dirk; Fischer, Andreas

    2017-06-01

    The goal of this work is to describe a simulatively designed scatterometry approach for the in-line characterization of sub-wavelength sinusoidal gratings, which are formed on a transparent foil in a roll-to-roll procedure. The challenge is to acquire the 3D information of the workpiece, i.e., to measure the grating height in addition to the grating period with nm precision. The grating period is obtained straightforward from the position of the first order diffraction maxima in the reflection and the transmission region. For determining the grating height, the inverse problem is solved, i.e., the relation between the scattered intensities of the diffraction maxima and the grating height is extracted from light scattering simulations. The measurement uncertainty is evaluated for different instrumentation and simulation parameters, such as the detection and incidence angle, the laser wavelength as well as the input parameters of the simulation. As a result, the measurement uncertainty for the grating period and the height is estimated to 0.3 nm and ≤8 nm, respectively, when using laser light in the visible wavelength range. Large area scanning measurements performed offline using the setup parameters derived from simulations verify the sensitivity of the presented measurement approach for identifying local variations of the spatial surface properties. Depending on the chosen detection system, sampling rates up to the MHz range are feasible meeting the requirements of in-line process control of the roll-to-roll production procedure.

  8. Subwavelength Fabry-Perot resonator: a pair of quantum dots incorporated with gold nanorod.

    Science.gov (United States)

    Liaw, Jiunn-Woei; Huang, Chun-Hui; Chen, Bae-Renn; Kuo, Mao-Kuen

    2012-10-02

    The two apexes of an elongated gold nanorod (GNR) irradiated by a plane wave are shown to be the hotspots at the longitudinal plasmon modes. This phenomenon implies that a pair of quantum dots (QDs) located at these apexes might be excited simultaneously if the excitation band of QDs coincides with one of these modes. Consequently, a coherent emission of the two emitters could happen subsequently. In the following coherent emission, these two-level emitters are simulated as two oscillating dipoles (bi-dipole) with some possible phase differences. Our results show that the maximum radiative and nonradiative powers of the bi-dipole occur at the longitudinal plasmon dipole, quadrupole, sextupole, and octupole modes of GNR. Moreover, the strongest emissions are induced by the in-phase bi-dipole coupled to the odd modes and the 180° out-of-phase one to the even modes, respectively. The excitation and emission behaviors of a pair of QDs incorporated with GNR demonstrate the possibility of using this structure as a subwavelength resonator of Fabry-Perot type. In addition, the correlation between these modes of the GNR and the dispersion relation of gold nanowire is also discussed.

  9. A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinbeig, Ahmad; Pirooj, Azadeh [Faculty of Eng., Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zarrabi, Ferdows B., E-mail: ferdows.zarrabi@yahoo.com [Young Researchers and Elite Club, Babol Branch Islamic Azad University, Babol (Iran, Islamic Republic of)

    2017-02-01

    In this article, a reconfigurable subwavelength plasmonic nano-antenna with Fano resonance effect is presented based on the dual ring structure. In order to achieve reconfigurable characteristics, the interaction of gold with graphene is studied. SiN substrate with refractive index of 1.98 and gold with Palik optical characteristic modified for metal layer are utilized in the design of the proposed nano-antenna. Simulations are performed by using CST Microwave Studio. The biasing effect on extinction cross section is studied for 0 to 0.8 eV. It is shown that the gap method is useful for exciting the Fano resonance in the dual ring nano-antenna and there is only a plasmonic resonance in the simple dual ring antenna. The proposed nano-antenna is useful for THz medical spectroscopy due to its simple design and the ability to control the second resonance frequency by changing the bias of the graphene. - Highlights: • Dual ring structure for Fano resonance with reconfigurable characteristic is suggested. • The gap method is useful for exciting the Fano resonance in the dual ring nano-antenna. • By acheiving the Fano resonance the elctrical field enhanced drastically. • The ability to control the second resonance frequency by changing the bias of the graphene is studied.

  10. Lamb waves based fast subwavelength imaging using a DORT-MUSIC algorithm

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-02-01

    A Lamb wave-based, subwavelength imaging algorithm is developed for damage imaging in large-scale, plate-like structures based on a decomposition of the time-reversal operator (DORT) method combined with the multiple signal classification (MUSIC) algorithm in the space-frequency domain. In this study, a rapid, hybrid non-contact scanning system was proposed to image an aluminum plate using a piezoelectric linear array for actuation and a laser Doppler vibrometer (LDV) line-scan for sensing. The physics of wave propagation, reflection, and scattering that underlies the response matrix in the DORT method is mathematically formulated in the context of guided waves. The singular value decomposition (SVD) and MUSIC-based imaging condition enable quantifying the damage severity by a `reflectivity' parameter and super-resolution imaging. With the flexibility of this scanning system, a considerably large area can be imaged using lower frequency Lamb waves with limited line-scans. The experimental results showed that the hardware system with a signal processing tool such as the DORT-MUSIC (TR-MUSIC) imaging technique can provide rapid, highly accurate imaging results as well as damage quantification with unknown material properties.

  11. Fast evaluation of photomask near-fields in subwavelength 193-nm lithography

    Science.gov (United States)

    Tirapu-Azpiroz, Jaione; Yablonovitch, Eli

    2004-05-01

    Sub-wavelength lithography places a serious limitation on the conventional "thin mask" approximation of the field immediately behind the patterned mask. This approximation fails to account for the increasingly important topographical effects of the mask or "thick mask" effects. This approximation of the photomask near-fields results from the direct application of Kirchhoff Boundary Conditions, which multiply the incident field by a binary transmission function of the patterned mask. Polarization dependent edge diffraction effects, as well as phase and amplitude transmission errors that arise from the vector nature of light, and the finite thickness of the substrate and chrome layers, produce significant errors in the scalar simulations of the lithographic image. Based on the comparison of aerial images at the wafer plane produced by both rigorous electromagnetic solutions of the field on the mask and their "thin mask" counterparts, a more accurate model is proposed that consists of a fixed-width, locally-determined boundary layer of imaginary transmission coefficient added to every edge of the initial "thin mask" approximation. The accuracy of the resultant Boundary Layer model has been exhaustively tested against rigorously simulated aerial images of isolated as well as periodic features of very different profiles and dimensions. The conclusion being that this simple approach is capable of modeling "thick mask" effects at both 248nm and 193nm wavelength and high NA lithography. This greatly improves the accuracy of aerial image computation in photolithography simulations at a reasonable computational cost.

  12. Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Youming; Zhang, Baile

    2016-05-01

    Magnetic coupling is generally much weaker than electric Coulomb interaction. This also applies to the well-known magnetic "meta-atoms," or split-ring resonators (SRRs) as originally proposed by Pendry et al. [IEEE Trans. Microwave Theory Tech. 47, 2075 (1999), 10.1109/22.798002], in which the associated electric dipole moments usually dictate their interaction. As a result, stereometamaterials, a stack of identical SRRs, were found with electric coupling so strong that the dispersion from merely magnetic coupling was overturned. Recently, other workers have proposed a new concept of magnetic localized surface plasmons, supported on metallic spiral structures (MSSs) at a deep-subwavelength scale. Here, we experimentally demonstrate that a stack of these magnetic "meta-atoms" can have dominant magnetic coupling in both of its two configurations. This allows magnetic-coupling-dominant energy transport along a one-dimensional stack of MSSs, as demonstrated with near-field transmission measurement. Our work not only applies this type of magnetic "meta-atom" into metamaterial construction, but also provides possibilities of magnetic metamaterial design in which the electric interaction no longer takes precedence.

  13. Compact polarization rotator for silicon-based cross-slot waveguides using subwavelength gratings.

    Science.gov (United States)

    Wu, Shengbao; Xiao, Jinbiao

    2017-06-10

    A compact and broadband polarization rotator (PR) for silicon-based cross-slot waveguides using subwavelength gratings (SWGs) is proposed and analyzed. To significantly break the symmetry of the waveguide structure, the diagonal regular Si wires of the cross-slot waveguides are replaced with the full etching SWGs. Moreover, the special properties of the SWGs-whose effective index is adjustable-can effectively enhance the modal birefringence between the two lowest-order hybrid modes, resulting in a more compact device. By utilizing interference effect of the hybrid modes, both transverse electric to transverse magnetic (TE-to-TM) and TM-to-TE conversion can be efficiently realized. Numerical results show that a PR of 12.6 μm in length at a wavelength of 1.55 μm is achieved, where the polarization conversion efficiency (PCE) and insertion loss (IL) are, respectively, 97.2% and 0.71 dB, and the reflection loss is below -20.5  dB for both cases. Moreover, a wide bandwidth of ∼260  nm for both polarizations is obtained for keeping the PCE over 90% and IL below 1 dB. In addition, fabrication tolerances to the structural parameters are analyzed in detail, and field evolution along the propagation distance is also presented.

  14. Perfect sub-wavelength metamaterial fishnet-like film absorbers for THz applications

    Energy Technology Data Exchange (ETDEWEB)

    Shchegolov, Dmitry [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Smirnova, Evgenya I [Los Alamos National Laboratory

    2009-01-01

    We present two designs of robust, easy to manufacture meta material-based films of sub-wavelength thickness capable of full absorption of the incident terahertz (THz) radiation at certain frequencies. Both designs can be either made polarization sensitive, or have 90{sup o} rotation symmetry, which works equally well for waves of any polarization provided the incident angle is zero. All our designs work for a wide range of angles of incidence, and even if the films are optimized for normal incidence the absorption remains greater than 99% for angles up to {approx}35{sup o} in the TE and {approx}65{sup o} in the TM case. In the first design the maximum absorption frequency shifts considerably with angle, and in the second design the maximum absorption frequency remains almost the same at any angle. Theory, simulation data, and recent experimental results are all in a good agreement, and will be reported in the presentation. Having a low heat capacity these absorbers combined with thermo detectors can be utilized for precise frequency-selective detection of THz radiation.

  15. Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators.

    Science.gov (United States)

    Nasari, Hadiseh; Abrishamian, Mohammad Sadegh; Berini, Pierre

    2016-01-11

    We study the propagation characteristics of surface Plasmon polaritons (SPPs) on a patterned graphene sheet incorporating a subwavelength ribbon resonator and a Kerr nonlinear bounding medium (substrate or top cladding) which provides tunable bandpass filtering in the THz regime. We study theoretically and via modeling the tunability of maxima in the transmission spectrum, corresponding to the resonant frequencies of the ribbon resonator, by tuning the graphene Fermi level (via an applied gate voltage) and by altering the intensity of the incident THz wave. We determine the intensity-dependent increase in the refractive index of a Kerr nonlinear medium bounding graphene, via self-phase modulation and via the more efficient process of cross-phase modulation, revealing a noticeable red-shift in the resonant frequencies of the ribbon resonator. These concepts lead to ultrafast switching of SPP transmission through the ribbon (from a high to a low state). Using Kerr nonlinear media to bound graphene increases the tunability of graphene-based devices, enabling nonlinear plasmonic and ultrafast processing in the THz regime.

  16. External Cylindrical Nozzle with Controlled Vacuum

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice

  17. Investigation of HE driven cylindrical liner

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Tai-Ho

    1995-03-01

    We developed a technique that can compress most materials to densities much higher than their original values and shock them hard enough to undergo phase changes to various partially ionized states. The process involves using high explosives to drive a thin cylindrical liner so that it will progressively implode and converge along the axis at very high velocity. The device is simple yet versatile. Its configuration is ideally suited as a compact laboratory for the investigation of the behavior of dense media under extreme conditions. Code simulations show that liners made from most metals can be successfully imploded to converge on axis, producing over 10 MB pressure. For example, a 2D hydrocode calculation predicts that in a simple configuration where a hollow core PBX-9501 explosive cylinder is corner initiated to drive a thin seamless 304 SS tubing, the final convergence velocity can exceed 1 cm/[Ls to produce a 15 MB pressure at impact as the density increases to 19.5 g/cc. The temperature from shock heating rises rapidly above 8 eV, and the result is a combination of radiation and plasma emissions. We have carried out several experiments with a wide array of diagnostics to investigate the implosion dynamics and final state interaction phenomena, and the results are compared with the code predictions. Radiographs of the liner implosion strongly indicate that the hydrodynamic processes are well behaved and calculable. Temperature measurement from the optical radiation is generally consistent with the code prediction. The velocity of the plasma front is measured by using optical pins and fast framing photography, and is found to lie between 11--17 cm/{mu}s. Fast framing photographs were taken with the aid of self luminous light to observe the evacuated chamber inside the imploding liner. The experimental results and their comparison with the calculation are discussed.

  18. DETERMINATION OF ECONOMIC SIZES FOR RC CYLINDRICAL WATER STORAGE TANKS

    Directory of Open Access Journals (Sweden)

    Güneş KOZLUCA

    2007-03-01

    Full Text Available Water storage tanks are built in different shapes and sizes according to needs. Designs of water storage tanks with low costs are quite important for the national economy. Cylindrical and sphere tanks are the most economic types of tanks in terms of material cost. In this study several cylindrical tank designs are made. Then most economic tank radius – tank height ratio is searched by simply changing thickness, height and the radius of the tank considered. Storage capacity of these cylindrical tanks are all the same. All these reinforced tanks have cylindrical reinforced concrete walls fixed at the bottom and free top edge without roof. It is thought that tanks constructed with this optimal ratio will be beneficial.

  19. Mathematical model for characterizing noise transmission into finite cylindrical structures

    Science.gov (United States)

    Li, Deyu; Vipperman, Jeffrey S.

    2005-02-01

    This work presents a theoretical study of the sound transmission into a finite cylinder under coupled structural and acoustic vibration. Particular attention of this study is focused on evaluating a dimensionless quantity, ``noise reduction,'' for characterizing noise transmission into a small cylindrical enclosure. An analytical expression of the exterior sound pressure resulting from an oblique plane wave impinging upon the cylindrical shell is first presented, which is approximated from the exterior sound pressure for an infinite cylindrical structure. Next, the analytical solution of the interior sound pressure is computed using modal-interaction theory for the coupled structural acoustic system. These results are then used to derive the analytical formula for the noise reduction. Finally, the model is used to predict and characterize the sound transmission into a ChamberCore cylindrical structure, and the results are compared with experimental data. The effects of incidence angle and internal acoustic damping on the sound transmission into the cylinder are also parametrically studied. .

  20. Effect of SAR on human head modeling inside cylindrical enclosures.

    Science.gov (United States)

    Mary, T Anita Jones; Ravichandran, C S

    2013-09-01

    This study intends to discuss enclosed a realistic approach to determine and analyze the effects of radio frequency on human exposure inside a cylindrical enclosure. A scenario in which a mobile phone with inverted-F antenna (IFA) operating in the Global System for Mobile Communication (GSM) band (900 MHz) is used inside a cylindrical enclosure. Metallic enclosures are known to have resonance and reflection effects, thereby increasing electric field strength and hence resulting in a change of the human exposure to electromagnetic absorptions. So, this study examines and compares the levels of absorption in terms of specific absorption rate (SAR) values under various conditions. In this study, a human phantom with dielectric properties is designed and its interaction is studied with IFA inside fully enclosed cylindrical enclosures. The results show that SAR values are increased inside cylindrical enclosures compared with those in free space. The method of computation uses method of moments. Simulations are done in FEKO software.

  1. Environmental and geometric optimisation of cylindrical drinking water storage tanks

    OpenAIRE

    Sanjuan Delmás, David

    2015-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-015-0963-y Purpose: Urban water cycle construction processes are an important element to consider when assessing the sustainability of urban areas. The present study focuses on a structural and environmental analysis of cylindrical water tanks. The goal is to optimise cylindrical water tanks from both an environmental (environmental impacts due of life cycle assessment (LCA)) and a geometric perspective (bu...

  2. Properties of interface phonon spectra in complicated cylindrical nanosystem

    Directory of Open Access Journals (Sweden)

    O.M.Voitsekhivska

    2007-01-01

    Full Text Available The spectra of two types of interface phonons (top and side optical are studied within the framework of dielectric continuum model for combined nanoheterosystems consisting of semiconductor cylindrical quantum dots inside the cylindrical quantum wire placed into dielectric or semiconductor medium. The dependencies of both types of interface phonon energies on the quasiwave numbers and geometric parameters of nanosystem are calculated and analysed.

  3. Quantification of the geometrical parameters of non-cylindrical folds

    Science.gov (United States)

    Zulauf, G.; Zulauf, J.; Maul, H.

    2017-07-01

    The geometrical parameters of natural folds are used by structural geologists to estimate finite strain and rheological properties of deformed rocks. The relation between geometry and rheology is well understood in cases of cylindrical folds, but is still limited for non-cylindrical folds, although the latter are frequent in nature. The sparsity of quantitative geometrical data of non-cylindrical folds can be explained by the small number of 3D exposures and by the lack of robust methods to quantify their geometrical parameters in 3D space. We present a new workflow, which can be used to quantify geometrical parameters of non-cylindrical folds. 3D fold geometry is described using fold wavelength, λ, arc-length, L, and amplitude, A. As most natural folds do not show ideal shapes, but are affected by various types of discontinuities, the new procedure is not fully automatic, but requires the manual selection of measuring profiles along which the geometrical parameters are constrained. The new workflow is tested using natural and experimentally produced non-cylindrical folds. The geometric parameters obtained can be used to improve our understanding of fold kinematics and fold mechanics and should assist the quantitative analysis of non-cylindrical folds present in gneiss and salt domes and in rocks containing reservoirs of hydrocarbons and minerals deposits.

  4. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  5. Sub-wavelength grating structure on the planar waveguide (Conference Presentation)

    Science.gov (United States)

    Qing-Song, Zhu; Sheng-Hui, Chen

    2016-10-01

    Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.

  6. Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film

    Science.gov (United States)

    Shabani, Alireza; Roknabadi, Mahmood Rezaee; Behdani, Mohammad; Nezhad, Mehdi Khazaei; Rahmani, Neda

    2017-07-01

    We focused on the optical properties of square array of subwavelength holes created within a titanium nitride (TiN) thin film. The TiN layer was placed on top of the dielectric layer as a surface plasmonic system originated from an intermetallic-dielectric arrangement. The finite-difference time-domain method was used via an Optiwave package to simulate periodic array of square and circular holes within the TiN layer. The effect of geometrical and material parameters such as periodic constant (a), size (S), shape of the holes, and the electric permittivity of the dielectric substrate has been investigated. An extraordinary optical transmission was observed in comparison with the nonhole system. It was shown that the wavelength of plasmonic modes, as a characteristic feature of the system, was affected by changing the periodic constant and electric permittivity. Meanwhile, changing the size as well as the shape of the holes did not affect the position of the peaks. These results are in agreement with the characteristic equation for plasmonic structure, which relates the surface plasmon wavelength (λsp) to the geometrical and material parameters of the system. The intensity of excited peaks was explained by distribution of the z-component of the electric field obtained from simulation, which illustrated the role of the surface plasmon polariton, localized surface plasmon resonance, and waveguide mode in tuning the optical behavior of the system. The results showed that TiN is a promising candidate for replacing metals in a plasmonic application with particular chemical and mechanical features.

  7. Seismic metamaterials based on isochronous mechanical oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2014-05-12

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  8. Metamaterial-based wideband electromagnetic wave absorber.

    Science.gov (United States)

    La Spada, Luigi; Vegni, Lucio

    2016-03-21

    In this paper, an analytical and numerical study of a new type of electromagnetic absorber, operating in the infrared and optical regime, is proposed. Absorption is obtained by exploiting Epsilon-Near-Zero materials. The structure electromagnetic properties are analytically described by using a new closed-form formula. In this way, it is possible to correlate the electromagnetic absorption properties of the structure with its geometrical characteristics. Good agreement between analytical and numerical results was achieved. Moreover, an absorption in a wide angle range (0°-80°), for different resonant frequencies (multi-band) with a large frequency bandwidth (wideband) for small structure thicknesses (d = λp/4) is obtained.

  9. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy.

    Science.gov (United States)

    Marquet, Pierre; Rappaz, Benjamin; Magistretti, Pierre J; Cuche, Etienne; Emery, Yves; Colomb, Tristan; Depeursinge, Christian

    2005-03-01

    We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.

  10. Subwavelength silicon disk whispering-gallery-mode microcavities for size-dependent nanoparticles detection in the mid-infrared

    Science.gov (United States)

    Dionne, Jeffrey; Ashwath, Harshitha; Kuznetsova, Lyuba

    2017-05-01

    Three-dimensional finite-element-method numerical simulations are used to investigate a size-dependent sensing technique by observing the effects that a spherical nanoparticle had on the frequency resonances of whispering-gallery modes of a subwavelength silicon microdisk. Results show that the observed spectral shift varies significantly (˜2 to 8 nm) for the TM optical mode with an attached nanoparticle with radii between 150 and 400 nm. This frequency shift size-dependence makes it possible to identify viruses of different sizes by the resonant frequency change in the transmission spectrum in the mid-infrared.

  11. Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas

    Science.gov (United States)

    Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG

    2018-01-01

    Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.

  12. Enhanced ultrasonic focusing and temperature elevation via a therapeutic ultrasonic transducer with sub-wavelength periodic structure

    Science.gov (United States)

    Li, Chenghai; Yang, Yanye; Guo, Xiasheng; Tu, Juan; Huang, Pintong; Li, Faqi; Zhang, Dong

    2017-07-01

    In this paper, we report a therapeutic ultrasonic transducer with a sub-wavelength periodic structure, by which ultrasonic focusing and temperature elevation have been significantly enhanced compared to a conventional concave transducer with the same size. Enhanced acoustic focusing was demonstrated by both measuring and simulating acoustic pressure and temperature elevation. Compared to the conventional concave transducer, the proposed transducer exhibited stronger capacity in elevating acoustic pressure and temperature rise in the focal region, in which extraordinary acoustic transmission close to Wood's anomaly could be modulated by the spherically curved surface. This work is believed to possess great clinical potential in the safe and efficient application of ultrasonic therapy.

  13. Optical burst add-drop multiplexing technique for sub-wavelength granularity in wavelength multiplexed ring networks.

    Science.gov (United States)

    Cho, Jeong Sik; Seo, Young Kwang; Yoo, Hark; Park, Paul K; Rhee, June-Koo; Won, Yong Hyub; Kang, Min Ho

    2007-10-01

    We demonstrate optical burst add-drop multiplexing as a practical application of the optical burst switching technology in a wavelength-division-multiplexed ring network. To control optical bursts in the network, a burst identifier (BI) for delivering control information, and a BI processor for handling the BI, were designed. Optical bursts of 10- to 100-mus in length were optically multiplexed or demultiplexed in an intermediate node of the ring network. The demonstration shows that the optical burst add-drop multiplexing technique provides sub-wavelength granularity to a ring network.

  14. Comparison of Mutual Coupling Phenomena in Subwavelength Ridged Circular Apertures and Half-Wavelength Dipole Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Jong-Eon Park

    2012-01-01

    Full Text Available The resonant microwave transmission characteristics of several coupled subwavelength ridged circular aperture arrangements in a thin metallic film are investigated using the three-dimensional finite-difference time-domain (3D FDTD method. Simple equivalent circuits represented by the self and mutual conductances that have been quantitatively extracted for each resonance condition, including the mutual coupling effects, are also devised with the help of virtual magnetic current elements. Furthermore, a duality is identified between the ridged circular apertures and conventional half-wavelength dipole arrays based on comparing the respective resonance conditions.

  15. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhou; Tu, Juan; Cheng, Jianchun [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Guo, Xiasheng, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Wu, Junru [Department of Physics, University of Vermont, Burlington, Vermont 05405 (United States); Huang, Pingtong [Department of Ultrasound, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009 (China); Zhang, Dong, E-mail: guoxs@nju.edu.cn, E-mail: dzhang@nju.edu.cn [Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China); The State Key Laboratory of Acoustics, Chinese Academy of Science, Beijing 10080 (China)

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  16. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    Science.gov (United States)

    Lin, Zhou; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Wu, Junru; Huang, Pingtong; Zhang, Dong

    2015-09-01

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  17. A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas.

    Science.gov (United States)

    Csaki, Andrea; Garwe, Frank; Steinbrück, Andrea; Maubach, Gunter; Festag, Grit; Weise, Anja; Riemann, Iris; König, Karsten; Fritzsche, Wolfgang

    2007-02-01

    An optical technique for the parallel manipulation of nanoscale structures with molecular resolution is presented. Bioconjugated metal nanoparticles are thereby positioned at the location of interest, such as, e.g., certain DNA sequences along metaphase chromosomes, prior to pulsed laser light irradiation of the whole sample. The nanoparticles are designed to absorb the introduced energy highly efficiently, in that way acting as nanoantenna. As result of the interaction, structural changes of the sample with subwavelength dimensions and nanoscale precision are observed at the location of the particles. The process leading to the nanolocalized destruction is caused by particle ablation as well as thermal damage of the surrounding material.

  18. Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices

    Science.gov (United States)

    Yang, Peidong; Law, Matt; Sirbuly, Donald J.; Johnson, Justin C.; Saykally, Richard; Fan, Rong; Tao, Andrea

    2012-10-02

    Nanoribbons and nanowires having diameters less than the wavelength of light are used in the formation and operation of optical circuits and devices. Such nanostructures function as subwavelength optical waveguides which form a fundamental building block for optical integration. The extraordinary length, flexibility and strength of these structures enable their manipulation on surfaces, including the precise positioning and optical linking of nanoribbon/wire waveguides and other nanoribbon/wire elements to form optical networks and devices. In addition, such structures provide for waveguiding in liquids, enabling them to further be used in other applications such as optical probes and sensors.

  19. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  20. Laser confocal cylindrical radius measurement method and its system.

    Science.gov (United States)

    Xiao, Yang; Qiu, Lirong; Zhao, Weiqian

    2017-08-10

    This paper proposes a laser confocal cylindrical radius of the curvature measurement (CCRM) method. The CCRM method precisely identifies the positions of the vertex and curvature center of the test cylindrical surface by using the property so that the maximum point of the laser confocal axial intensity curve precisely corresponds to the focus of the laser confocal measurement system, and the accurate distance of these two positions is obtained by the distance measuring instrument, thus achieving the precise measurement of the cylindrical radius. The quadratic fitting method is used to further improve the measurement accuracy. Compared with existing measurement methods, the CCRM method has high measurement precision, simple structure, and strong environmental interference capability, and it is more suitable for engineering applications. Based on the CCRM, the CCRM system is established, and theoretical analysis and preliminary experiments indicate that the relative uncertainty of cylindrical radius measurement is better than 0.045%. Therefore, the CCRM provides an effective approach for the high-precision measurement of cylindrical radius.

  1. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  2. Evanescent channels and scattering in cylindrical nanowire heterostructures

    Science.gov (United States)

    Racec, P. N.; Racec, E. R.; Neidhardt, H.

    2009-04-01

    We investigate the scattering phenomena produced by a general finite-range nonseparable potential in a multichannel two-probe cylindrical nanowire heterostructure. The multichannel current scattering matrix is efficiently computed using the R -matrix formalism extended for cylindrical coordinates. Considering the contribution of the evanescent channels to the scattering matrix, we are able to put in evidence the specific dips in the tunneling coefficient in the case of an attractive potential. The cylindrical symmetry cancels the “selection rules” known for Cartesian coordinates. If the attractive potential is superposed over a nonuniform potential along the nanowire then resonant transmission peaks appear. We can characterize them quantitatively through the poles of the current scattering matrix. Detailed maps of the localization probability density sustain the physical interpretation of the resonances (dips and peaks). Our formalism is applied to a variety of model systems such as a quantum dot, a core/shell quantum ring, or a double barrier embedded into the nanocylinder.

  3. Experimental and numerical analysis of cylindrical straw drying

    Directory of Open Access Journals (Sweden)

    Goryl Wojciech

    2017-01-01

    Full Text Available The paper presents experimental and numerical results of the heat and mass transfer in a cylindrical bale of straw. The experimental measurements were made in a specialized stand of straw driers. Flue gasses, comes from straw combustion in the biomass boiler, are used as a drying medium. There were made measurements of humidity and temperature inside the cylindrical straw bale during the drying process. The results were used to prepare the drying rate curve. Moreover, data were used to validate the numerical model of straw drying. The numerical model was performed to depict the heat and mass transfer inside the straw bale. Furthermore, the model was used to optimize the drying process. The paper presents result of experimental and numerical drying rates of cylindrical straw bale and heat and mass transfer in its interior. As a result of the work numerical model was obtained. It satisfactorily describes the mechanisms inside the drying straw bale.

  4. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    Science.gov (United States)

    Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei

    2015-09-01

    The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  5. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    Directory of Open Access Journals (Sweden)

    Gu Zhuowei

    2015-01-01

    Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  6. Magnetostatic interactions in cylindrical nanostructures with non-uniform magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, O.J. [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile); Perez, L.M. [Departamento de Fisica y Matematica Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: david.laroze@gmail.com [Max Planck Institute for Polymer Research, D 55021 Mainz (Germany); Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7D, Arica (Chile); Altbir, D. [Departamento de Fisica and Center for the Development of Nanoscience and Nanotechnology, Universidad de Santiago de Chile, Av. Ecuador 3493, Santiago (Chile)

    2012-05-15

    Cylindrical magnetic nanostructures, like nanowires or nanotubes, should be used for the new generation of magnetic devices. Therefore, the investigation of inter-element interaction is an intense area of research. In this paper we investigated cylindrical nanostructures with non-uniform magnetization field. We focus on particles with a periodic magnetization function and using Fourier series we reduced the problem to a single integral expression. Analytical expressions for both, the self and the interaction magnetostatic energy, are given. These expressions are used to analyze multisegmented tubes, as a function of the number of segments and the distance between particles. - Highlights: Black-Right-Pointing-Pointer Magnetic cylindrical nanoparticles like nanowires or nanotubes. Black-Right-Pointing-Pointer Magnetostatic interaction between particles. Black-Right-Pointing-Pointer Non-uniform magnetization states.

  7. Determination of the Boltzmann Constant Using the Differential - Cylindrical Procedure

    CERN Document Server

    Feng, X J; Lin, H; Gillis, K A; Moldover, M R

    2015-01-01

    We report in this paper the progresses on the determination of the Boltzmann constant using the acoustic gas thermometer (AGT) of fixed-length cylindrical cavities. First, we present the comparison of the molar masses of pure argon gases through comparing speeds of sound of gases. The procedure is independent from the methodology by Gas Chromatography-Mass Spectrometry (GC-MS). The experimental results show good agreement between both methods. The comparison offers an independent inspection of the analytical results by GC-MS. Second, we present the principle of the novel differential-cylindrical procedure based on the AGT of two fixed-length cavities. The deletion mechanism for some major perturbations is analyzed for the new procedure. The experimental results of the differential-cylindrical procedure demonstrate some major improvements on the first, second acoustic and third virial coefficients, and the excess half-widths. The three acoustic virial coefficients agree well with the stated-of-the-art experime...

  8. Komar fluxes of circularly polarized light beams and cylindrical metrics

    Science.gov (United States)

    Lynden-Bell, D.; Bičák, J.

    2017-11-01

    The mass per unit length of a cylindrical system can be found from its external metric as can its angular momentum. Can the fluxes of energy, momentum, and angular momentum along the cylinder also be so found? We derive the metric of a beam of circularly polarized electromagnetic radiation from the Einstein-Maxwell equations. We show how the uniform plane wave solutions miss the angular momentum carried by the wave. We study the energy, momentum, angular momentum, and their fluxes along the cylinder both for this beam and in general. The three Killing vectors of any stationary cylindrical system give three Komar flux vectors which in turn give six conserved fluxes. We elucidate Komar's mysterious factor 2 by evaluating Komar integrals for systems that have no trace to their stress tensors. The Tolman-Komar formula gives twice the energy for such systems which also have twice the gravity. For other cylindrical systems their formula gives correct results.

  9. Far-field properties of a line source-excited electrically small quadrupolar metamaterial cylindrical shell

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Ziolkowski, Richard W.; Breinbjerg, Olav

    2007-01-01

    An antenna configuration that consists of an arbitrarily located electric line source that radiates in the presence of concentric metamaterial cylinders is examined. With the emphasis on the so-called quadrupolar structure, it is shown that such electrically small configurations may offer...... significant enhancements of the radiated power. Furthermore, the possibility of controlling the pattern by properly locating the electric line source with respect to the structure, thereby offering a means of obtaining electrically small metamaterial-based directive antennas, is also demonstrated....

  10. Nonlinear dynamo action in a precessing cylindrical container.

    Science.gov (United States)

    Nore, C; Léorat, J; Guermond, J-L; Luddens, F

    2011-07-01

    It is numerically demonstrated by means of a magnetohydrodynamics code that precession can trigger the dynamo effect in a cylindrical container. When the Reynolds number, based on the radius of the cylinder and its angular velocity, increases, the flow, which is initially centrosymmetric, loses its stability and bifurcates to a quasiperiodic motion. This unsteady and asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field thus generated is unsteady and quadrupolar. These numerical evidences of dynamo action in a precessing cylindrical container may be useful for an experiment now planned at the Dresden sodium facility for dynamo and thermohydraulic studies in Germany.

  11. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  12. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-06-15

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.

  13. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  14. Confined and interface phonons in combined cylindrical nanoheterosystem

    Directory of Open Access Journals (Sweden)

    O.M.Makhanets

    2006-01-01

    Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.

  15. Orbital trajectory of an acoustic bubble in a cylindrical resonator.

    Science.gov (United States)

    Desjouy, Cyril; Labelle, Pauline; Gilles, Bruno; Bera, Jean-Christophe; Inserra, Claude

    2013-09-01

    Acoustic cavitation-induced microbubbles in a cylindrical resonator filled with water tend to concentrate into ring patterns due to the cylindrical geometry of the system. The shape of these ring patterns is directly linked to the Bjerknes force distribution in the resonator. Experimental observations showed that cavitation bubbles located in the vicinity of this ring may exhibit a spiraling behavior around the pressure nodal line. This spiraling phenomenon is numerically studied, the conditions for which a single cavitation bubble follows an orbital trajectory are established, and the influences of the acoustic pressure amplitude and the initial bubble radius are investigated.

  16. Gravitational collapse of a cylindrical null shell in vacuum

    Directory of Open Access Journals (Sweden)

    S. Khakshournia

    2008-03-01

    Full Text Available   Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .

  17. Stand-off explosive detection utilizing low power stimulated emission nuclear quadrupole resonance detection and subwavelength focusing wideband super lens

    Science.gov (United States)

    Apostolos, John; Mouyos, William; Feng, Judy; Chase, Walter

    2015-05-01

    The need for advanced techniques to detect improvised explosive devices (IED) at stand-off distances greater than ten (10) meters has driven AMI Research and Development (AMI) to develop a solution to detect and identify the threat utilizing a forward looking Synthetic Aperture Radar (SAR) combined with our CW radar technology Nuclear Quadrupole Resonance (NQR) detection system. The novel features include a near-field sub-wavelength focusing antenna, a wide band 300 KHz to 300 MHz rapidly scanning CW radar facilitated by a high Q antenna/tuner, and an advanced processor utilizing Rabi transitions where the nucleus oscillates between states under the time dependent incident electromagnetic field and alternately absorbs energy from the incident field while emitting coherent energy via stimulated emission. AMI's Sub-wavelength Focusing Wide Band Super Lens uses a Near-Field SAR, making detection possible at distances greater than ten (10) meters. This super lens is capable of operating on the near-field and focusing electromagnetic waves to resolutions beyond the diffraction limit. When applied to the case of a vehicle approaching an explosive hazard the methodologies of synthetic aperture radar is fused with the array based super resolution and the NQR data processing detecting the explosive hazard.

  18. Development of new cylindrical magnetrons for industrial use

    CERN Document Server

    Clayton, B

    2000-01-01

    four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key pro...

  19. Magnetization curves for general cylindrical samples in a transverse ...

    Indian Academy of Sciences (India)

    The flux-fronts are to be determined by solving a system of nonlinear ordinary differential equations for the coefficients. Retaining only a certain finite number of leading coefficients we get an approximate solution. The procedure is illustrated by considering two cylindrical samples – one with an elliptical cross-section and the ...

  20. La production des cylindres chez Pathé

    OpenAIRE

    Chamoux, Henri

    2005-01-01

    Cette histoire de la production des cylindres chez Pathé a été publiée par Henri Chamoux, inventeur de l’archéophone, dans les Bulletins des adhérents de l'AFAS numéros 14 (automne 1999), 15 (hiver 1999), 16 (printemps-été 2000), 17 (automne 2000).

  1. A cylindrical drift chamber with azimuthal and axial position readout

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Shenhav, N.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Brabson, B.B.; Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Adams, T.; Bishop, J.M.; Cason, N.M.; Sanjari, A.H.; LoSecco, J.M.; Manak, J.J.; Shephard, W.D.; Stienike, D.L.; Taegar, S.A.; Thompson, D.R.; Brown, D.S.; Pedlar, T.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M. [Massachusetts Univ., North Dartmouth, MA (United States)]|[Brookhaven National Laboratory, Upton, L.I., NY 11973 (United States)]|[Indiana University, Bloomington, IN 47405 (United States)]|[Institute for High Energy Physics, Protvino (Russian Federation)]|[Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)]|[University of Notre Dame, Notre Dame, IN 46556 (United States)]|[Northwestern University, Evanston, IL 60208 (United States)]|[Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    1997-02-21

    A cylindrical multiwire drift chamber with axial charge-division has been constructed and used in experiment E852 at Brookhaven National Laboratory. It serves as a trigger element and as a tracking device for recoil protons in {pi}{sup -}p interactions. We describe the chamber`s design considerations, details of its construction, electronics, and performance characteristics. (orig.).

  2. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    Science.gov (United States)

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  3. Static Analysis of Circular Cylindrical Shell Under Hydrostatic and ...

    African Journals Online (AJOL)

    Analysis of circular cylindrical shell under the action of hydrostatic and stiffening ring forces is carried out in this work. The differential equation of equilibrium, similar to that of beam on elastic foundation, was obtained from static principles on the assumptions of P. L. Pasternak. The initial value method was used to solve the ...

  4. The cylindrical or tubiliform glands of Nephila clavipes.

    Science.gov (United States)

    Candelas, G C; Ortiz, A; Molina, C

    1986-02-01

    The cylindrical or tubiliform glands of the spider Nephila clavipes have been studied and compared to the large ampullates on which we have previously reported. The three pairs of cylindrical or tubiliform glands secrete the fibroin for the organism's egg case. Their solubilized luminar contents migrate as a homogeneous band in Sodium dodecyl sulfate polyacrylamide gel electrophoresis and turn out to be a larger protein than that produced by the large ampullates. The excised cylindrical glands remain metabolically active for several hours in a simple culture medium, where fibroin synthesis can be monitored through the incorporation of 14C alanine. The glands' response to a fibroin production stimulus does not reach the magnitude displayed by the large ampullates, but this is to be expected since their products supply different functions in this organism. This fibroin also seems to be elongated discontinuously. Translational pauses have been detected in the secretory epithelium of cylindrical and large ampullate glands of Nephila as well as in the silk glands of Bombyx mori. Since these glands produce the fibroin for the females egg case, they should prove to be an interesting model system.

  5. Detailed analysis of the intracavity phenomena inside a cylindrical microresonator

    OpenAIRE

    Klunder, D.J.W.; Balistreri, M.L.M.; Blom, F.C.; Hoekstra, Hugo; Driessen, A.; Kuipers, L.; van Hulst, N.F.

    2002-01-01

    Based o­n a rigorous analysis of the intensity distribution inside a cylindrical microresonator (MR), a detailed description of the wavelength and spatial dependence of the intracavity intensity is given. The theory is in accordance with photon scanning tunneling microscopy (PSTM) of an integrated optics MR. Good agreement between the theory and the PSTM measurements is found.

  6. Detailed analysis of the intracavity phenomena inside a cylindrical microresonator

    NARCIS (Netherlands)

    Klunder, D.J.W.; Balistreri, M.L.M.; Blom, F.C.; Hoekstra, Hugo; Driessen, A.; Kuipers, L.; van Hulst, N.F.

    2002-01-01

    Based o­n a rigorous analysis of the intensity distribution inside a cylindrical microresonator (MR), a detailed description of the wavelength and spatial dependence of the intracavity intensity is given. The theory is in accordance with photon scanning tunneling microscopy (PSTM) of an integrated

  7. Electron cyclotron resonance heating in a short cylindrical plasma ...

    Indian Academy of Sciences (India)

    Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ...

  8. The Structural Response of Cylindrical Shells to Internal Shock Loading

    NARCIS (Netherlands)

    Beltman, W.M.; Burcsu, E.N.; Shepherd, J.E.; Zuhal, L.

    The internal shock loading of cylindrical shells can be represented as a step load advancing at constant speed. Several analytical models are available to calculate the structural response of shells to this type of loading. These models show that the speed of the shock wave is an important

  9. On the dynamic buckling of stochastically imperfect finite cylindrical ...

    African Journals Online (AJOL)

    The dynamic buckling load of stochastically imperfect finite right circular cylindrical shells subjected to step loading is determined by means of regular perturbation procedures .The imperfection is assumed to be a Gaussian random function of position and consequently is homogeneous. The result obtained is implicit in the ...

  10. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    Waves propagating in radial direction of a poroelastic circular cylinder are termed as radial vibrations. Radial vibrations of poroelastic circular cylindrical shell of infinite extent immersed in an inviscid elastic fluid are examined employing Biot's theory. Biot's model consists of an elastic matrix permeated by a network of ...

  11. Magnetoresistance of cylindrical nanowires with artificial pinning site

    KAUST Repository

    Vidal, Enrique Vilanova

    2015-05-01

    New concepts of magnetic memory devices are exploiting the movement of data bits by current induced domain wall motion. This concept has been widely explored with rectangular nanowires (NWs) or stripes both theoretically and experimentally [1]. In the case of cylindrical NWs not much progress has been made on the experimental side, despite its promising advantages like the absence of Walker breakdown [2].

  12. Effect of bimodularity on frequency response of cylindrical panels ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    ASME J. Vibration, Acoustics, Stress and Reliability in Design 107: 92–97. Doong J L, Fung C P 1988 Vibration and buckling of bimodulus laminated plates according to a higher-order plate theory. J. Sound Vib. 125: 325–339. Khan K, Patel B P, Nath Y 2007 Free vibration of bimodulus laminated angle-ply cylindrical ...

  13. The Volume of a Torus Using Cylindrical and Spherical Coordinates

    Science.gov (United States)

    Farmer, Jim

    2005-01-01

    The author of this article, while recently working through some problem sets on determining volumes by triple integrals in cylindrical and spherical coordinate systems, realized that, although the textbook he was using included many interesting problems involving spheres, cylinders and cones and the increasingly complex solids that arose from the…

  14. Elastic waves along a cylindrical borehole in a poroelastic medium ...

    Indian Academy of Sciences (India)

    The propagation of elastic waves along a cylindrical borehole filled with/without liquid and embedded in an infinite porous medium saturated by two immiscible fluids has been studied. The theory of porous media saturated by two immiscible fluids developed by Tuncay and Corapcioglu (1997) is employed. Frequency ...

  15. On the dynamic buckling of lightly damped cylindrical shells ...

    African Journals Online (AJOL)

    The dynamic buckling load of finite imperfect, lightly but viscously damped cylindrical shells subjected to a periodic load, is determined using the technique of multiple scaling (two-timing) regular perturbation analysis. The geometric imperfection, assumed deterministic, are also assumed small and are expanded in a double ...

  16. Employing a cylindrical single crystal in gas-surface dynamics

    NARCIS (Netherlands)

    Hahn, C.; Shan, J.; Liu, Y.; Berg, O.; Kleijn, A. W.; Juurlink, L. B. F.

    2012-01-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a

  17. Surface waves in a cylindrical borehole through partially-saturated ...

    Indian Academy of Sciences (India)

    M D Sharma

    2018-02-14

    Feb 14, 2018 ... Keywords. Cylindrical waves; phase velocity; dispersion; porous solid; partial saturation; multiphase pore-fluid. Nomenclature t. Time ... on Biot's theory of poroelasticity (Biot 1956), was observed. In a later study, Chao et al. ... model and used it to obtain the analytical solution for wave propagation in a 1-D ...

  18. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  19. A winning strategy for 3 x n Cylindrical Hex

    DEFF Research Database (Denmark)

    Huneke, S. C.; Hayward, R.; Toft, Bjarne

    2014-01-01

    For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved....

  20. Phase transition properties of a cylindrical ferroelectric nanowire

    Indian Academy of Sciences (India)

    In the present paper, we apply the mean-field theory to investigate the phase transition properties of a cylindrical ferroelectric nanowire by taking into account two different exchange interactions and two different transverse field parameters in the. TIM. The effects of various parameters on the phase diagrams are given, and ...

  1. Experimental investigations on buckling of cylindrical shells under ...

    Indian Academy of Sciences (India)

    This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by ...

  2. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  3. Cylindrical dielectric elastomer actuators reinforced with inextensible fibers

    Science.gov (United States)

    Goulbourne, Nakhiah C. S.

    2006-03-01

    Novel actuator configurations for various applications can be obtained using cylindrical dielectric elastomer actuators. A new configuration for a contractile electro-elastomer is presented here for the first time. A cylindrical or tubular configuration is used to realize simultaneous axial shortening and radial expansion when a voltage is applied across the thickness of the hollow cylinder. In this configuration, the inner and outer surfaces of a cylindrical dielectric elastomer are coated with compliant electrodes. The outer cylindrical surface is then enclosed by a network of helical fibers that are very thin, very flexible and inextensible. Fiber networks or cord families are commonly used in many different materials and for a variety of applications. The primary purpose of these networks is structural, that is to say, for reinforcement. The composite active structure proposed here is reminiscent of the McKibben actuator, a pneumatically actuated cylindrical construct consisting of a flexible rubber bladder sheathed in a fiber network, which garners its impressive contracting force from the inextensible fibers that prevent axial extension when an inflation pressure is applied to the internal bladder [1]. The system is modeled using an electro- elastic formulation derived from the large deformation theory of reinforced cylinders [2]. The model combines Maxwell-Faraday electrostatics and nonlinear elasticity theory [3]. Illustratively, solutions are obtained assuming a Mooney-Rivlin material model for a silicone actuator. The results indicate that the relationship between the axial contraction force and the axial shortening is linear for the voltage range considered. The importance of other system parameters such as the fiber angle and the applied constant pressure is also reported.

  4. Broadband TM-mode-pass polarizer and polarization beam splitter using asymmetrical directional couplers based on silicon subwavelength grating

    Science.gov (United States)

    Zhang, Jingjing; Yang, Junbo; Liang, Linmei; Wu, Wenjun

    2018-01-01

    In this paper, an on-chip polarizer passing the transverse-magnetic mode and a polarization beam splitter are proposed. The polarizer achieves an extinction ratio exceeding 20 dB within a spectral range from 1500 nm to 1610 nm, and has a value of 24dB at 1550 nm with a coupling efficiency of 84%. By employing a specific wavelength of 1570 nm, the polarizer behaves as the polarization beam splitter with extinction ratio for the transverse-electric mode and the transverse-magnetic mode of 29dB and 24 dB, respectively. In addition, the coupling efficiency of 95.98% and 78.18% for above two polarizations, demonstrate that our approach has a potential to efficiently control coupling splitting ratio via silicon subwavelength grating.

  5. Switchable subwavelength plasmonic structures with phase-change materials for reflection-type active metasurfaces in the visible region

    Science.gov (United States)

    Hwang, Chi-Young; Lee, Seung-Yeol; Kim, Yong-Hae; Kim, Tae-Youb; Kim, Gi Heon; Yang, Jong-Heon; Pi, Jae-Eun; Choi, Ji Hun; Choi, Kyunghee; Kim, Hee-Ok; Hwang, Chi-Sun

    2017-12-01

    In this work, a switchable plasmonic structure is proposed for reflection-type spatial light modulation in the visible range with subwavelength resolution. This structure is based on a metallic grating in which each resonant cavity couples the incident light into a gap surface plasmon mode and then reflects the light modulated in the cavity. By incorporating an ultrathin layer of the phase-change material Ge2Sb2Te5 at the entrance of the cavity, the optical modulation characteristic of the structure can be switched between two modes. Numerical investigations are conducted to verify the proposed structure, with the focused analysis of two common types of binary modulations: amplitude-only and phase-only modulations.

  6. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    Science.gov (United States)

    Hendrickson, Joshua R.; Vangala, Shivashankar; Nader, Nima; Leedy, Kevin; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  7. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    Science.gov (United States)

    Nader, Nima; Vangala, Shivashankar; Hendrickson, Joshua R.; Leedy, Kevin D.; Look, David C.; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  8. Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings

    Science.gov (United States)

    Elshorbagy, Mahmoud H.; Alda, Javier

    2017-01-01

    Ultrathin amorphous silicon hydrogenated (aSi-H) solar cells grown on a one-dimensional (1-D) dielectric subwavelength gratings improve the short circuit current by a factor of more than 51% when compared with conventional, flat ultrathin aSi-H devices. This improvement is possible due to several mechanisms. In addition the increase in exposed area caused by the nanostructured surface, a reliable computational electromagnetic evaluation of the interaction of the solar spectrum with the cell structure demonstrates that absorption at the active layer is enhanced and also reflectivity is decreased. In addition, the absorbed power at the nonactive layers is larger, helping to increase the temperature and mitigate the Staebler-Wronski effect. The detailed analysis of the power flux inside the structure has also shown that funneling and guiding mechanism are at play, increasing the optical path within the active layer that produces a better performance of the cell.

  9. Complete Control of Polarization and Phase of Light with High Efficiency and Sub-wavelength Spatial Resolution

    CERN Document Server

    Arbabi, Amir; Bagheri, Mahmood; Faraon, Andrei

    2014-01-01

    Meta-surfaces are planar structures that locally change polarization, phase, and amplitude of light, thus enabling flat, lithographically patterned free-space optical components with functionalities controlled by design. Several types of meta-surfaces have been reported, but low efficiency and the inability to provide simultaneous phase and polarization control have limited their applications. Here we demonstrate a platform based on high-contrast dielectric elliptical nano-posts providing complete and efficient control of polarization and phase with sub-wavelength spatial resolution. The unprecedented freedom in manipulating light not only enables realization of conventional free-space transmissive optical elements such as phase-plates, wave-plates and beam-splitters, but also elements with novel functionalities such as general polarization switchable phase holograms and arbitrary vector beam generators which will change the design paradigms for free-space optical systems.

  10. Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Nader, Nima, E-mail: nima.nader@nist.gov; Vangala, Shivashankar [Solid State Scientific Corporation, 12 Simon St., Nashua, New Hampshire 03060 (United States); Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Hendrickson, Joshua R.; Leedy, Kevin D.; Cleary, Justin W. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Look, David C. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Wyle Laboratories, Inc., 2601 Mission Point Blvd., Suite 300, Dayton, Ohio 45435 (United States); Semiconductor Research Center, Wright State University, Dayton, Ohio 45435 (United States); Guo, Junpeng [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899 (United States)

    2015-11-07

    Experimental results pertaining to plasmon resonance tunneling through a highly conductive zinc oxide (ZnO) layer with subwavelength hole-arrays is investigated in the mid-infrared regime. Gallium-doped ZnO layers are pulsed-laser deposited on a silicon wafer. The ZnO has metallic optical properties with a bulk plasma frequency of 214 THz, which is equivalent to a free space wavelength of 1.4 μm. Hole arrays with different periods and hole shapes are fabricated via a standard photolithography process. Resonant mode tunneling characteristics are experimentally studied for different incident angles and compared with surface plasmon theoretical calculations and finite-difference time-domain simulations. Transmission peaks, higher than the baseline predicted by diffraction theory, are observed in each of the samples at wavelengths that correspond to the excitation of surface plasmon modes.

  11. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, Joshua R., E-mail: joshua.hendrickson.4@us.af.mil; Leedy, Kevin; Cleary, Justin W. [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Vangala, Shivashankar [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); SURVICE Engineering, 4141 Colonel Glenn Highway, Dayton, Ohio 45431 (United States); Nader, Nima [Air Force Research Laboratory, Sensors Directorate, 2241 Avionics Circle, Wright Patterson AFB, Ohio 45433 (United States); Solid State Scientific Corporation, 12 Simon St., Nashua, New Hampshire 03060 (United States); Guo, Junpeng [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899 (United States)

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  12. A Method to Calculate the Surface Tension of a Cylindrical Droplet

    Science.gov (United States)

    Wang, Xiaosong; Zhu, Ruzeng

    2010-01-01

    The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…

  13. Complete Classification of Cylindrically Symmetric Static Spacetimes and the Corresponding Conservation Laws

    Directory of Open Access Journals (Sweden)

    Farhad Ali

    2016-08-01

    Full Text Available In this paper we find the Noether symmetries of the Lagrangian of cylindrically symmetric static spacetimes. Using this approach we recover all cylindrically symmetric static spacetimes appeared in the classification by isometries and homotheties. We give different classes of cylindrically symmetric static spacetimes along with the Noether symmetries of the corresponding Lagrangians and conservation laws.

  14. Fem Formulation of Heat Transfer in Cylindrical Porous Medium

    Science.gov (United States)

    Azeem; Khaleed, H. M. T.; Soudagar, Manzoor Elahi M.

    2017-08-01

    Heat transfer in porous medium can be derived from the fundamental laws of flow in porous region ass given by Henry Darcy. The fluid flow and energy transport inside the porous medium can be described with the help of momentum and energy equations. The heat transfer in cylindrical porous medium differs from its counterpart in radial and axial coordinates. The present work is focused to discuss the finite element formulation of heat transfer in cylindrical porous medium. The basic partial differential equations are derived using Darcy law which is the converted into a set of algebraic equations with the help of finite element method. The resulting equations are solved by matrix method for two solution variables involved in the coupled equations.

  15. Experimental data for groundwave propagation over cylindrical surfaces

    DEFF Research Database (Denmark)

    King, Ray J.; Cho, Se.; Jaggard, D.

    1974-01-01

    Experimental data for the fields of EM groundwaves propagating over cylindrical homogeneous paths and two-section mixed paths were obtained by microwave (4.765 GHz) modeling. The cylindrical surfaces, which have a radius of20 lambda_{0}, closely approximate spherical surfaces insofar as groundwave...... propagation is concerned. The model is a curved tank which was constructed as a stratified combination of Plexiglas over distilled water, giving a predictable highly inductive surface impedance. Aluminum foil laid on the Plexiglas produced a nearly perfectly conducting surface wherever needed for the mixed...... the boundary where the residue series converges poorly. It is concluded that if the constitutive electrical parameters of the earth are precisely known and constant, the theory can be reliably applied to LF and VLF groundwave propagation over the earth where the constraints are even less severe....

  16. Three-dimensional global fluid simulations of cylindrical magnetized plasmas

    DEFF Research Database (Denmark)

    Naulin, Volker; Windisch, T.; Grulke, O.

    2008-01-01

    and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions......Plasma dynamics in cylindrical geometry, with many well diagnosed experiments in operation worldwide, is of fundamental interest. These linear machines can provide an unique testing ground for direct and detailed comparisons of numerical simulations of nonlinear plasma dynamics with experiments....... Thus, it is possible to assess the reproductive and predictive capabilities of plasma simulations in unprecedented detail. Here, three-dimensional global fluid simulations of a cylindrical magnetized plasma are presented. This plasma is characterized by the existence of spatially localized sources...

  17. Friction Compensation in the Upsetting of Cylindrical Test Specimens

    DEFF Research Database (Denmark)

    Christiansen, Peter; Martins, P. A. F.; Bay, Niels Oluf

    2016-01-01

    . The methodology is based on minimizing the errorbetween the average surface pressure obtained from the experimental measurements of the force and displacement and thatobtained from the slab method of analysis of metal plasticity.Three different friction models based on Coulomb friction, the constant friction......This manuscript presents a combined numerical andexperimental methodology for determining the stress-straincurve of metallic materials from the measurements of forceand displacement obtained in the axial compression of cylindrical test specimens with friction between the specimens and the platens...... model or combined friction models are utilized .Experimental results obtained from cylindrical and Rastegaev test specimens with different lubricants combined with the experimental determination of friction by means of ring compression tests allows compensating the effect of friction...

  18. Slow viscous flow of two particles in a cylindrical tube

    Science.gov (United States)

    Yao, Xin; Wong, Teck Neng; Marcos, -

    2015-11-01

    The slow viscous flow around two particles in a cylindrical tube is obtained theoretically. We employ the Lamb's general solution based on spherical harmonics and cylindrical harmonics to solve the flow field around the particles and the flow within the tube, respectively. We compute the drag and torque coefficients of the particles which are dependent on the distance among the cylinder wall and the two particles. The hydrodynamic forces are also a function of particle velocities and background velocity. Our results are in agreement with the existing theory of a single particle traveling in the tube when the distance between the two particles increases. We found that particle-particle interactions can be neglected when the separation distance is three times larger than the sum of particles radii. Furthermore, such analysis can give us insights to understand the mechanisms of collision and aggregation of particles.

  19. Design algorithm for generatrix profile of cylindrical crowned rollers

    Directory of Open Access Journals (Sweden)

    Creţu Spiridon

    2017-01-01

    Full Text Available The cross-section of roller profile controls the pressure distribution in the contact area and radically affects the roller bearings basic dynamic load rating and rating lives. Today the most used roller profiles are the logarithmic profile and cylindrical-crowned (ZB profile. The logarithmic profile has a continuous evolution with no discontinuities till the intersection with the end fillet while ZB profile has two more discontinuities at the intersections points between the crowning circle and straight line generatrix. Using a semianalytical method, a numerical study has been carried out to find the optimum ZB profile for rollers incorporated in cylindrical rollers bearings. The basic reference rating life (L10_r has been used as optimization criterion.

  20. The momentum relaxation rate between coupled cylindrical quantum wells

    Science.gov (United States)

    Qin, G.

    1995-09-01

    To study the momentum relaxation rate, ( {1}/{τ D}), between barrier coupled 2D and 1D systems as well as its transition behavior from 2D-2D coupled systems to 2D-1D or 1D-1D coupled systems, we investigate a system which is composed of a couple of barrier separated cylindrical quantum wells with a common rotated center. As the first step, we calculated the momentum relaxation rate between 2D and 1D cylindrical quantum wells. We find that {1}/{(τ D)} is a monotonically increasing function of T in the temperature range of 0-30 K and {1}/{(τ DT4) } exhibits a maximum at T=T max. The value of ( {τ D-1}/{(T max) 4}) is proportional to d -3 times a nearly periodic function of d where d is the separation distance between two wells.

  1. Performance of cylindrical-conical cyclones with different geometrical configurations

    Directory of Open Access Journals (Sweden)

    J.D.A.M. Santana

    2001-09-01

    Full Text Available The present work is a continuation of a study of the influence of geometric characteristics on the performance of reverse-flow cylindrical-conical cyclones. After studying the behavior of the pressure drop in previous work (Arnosti et al., 1998, here performance in terms of collection efficiency in the removal of particulate material is addressed. The independent variables considered in this study were inlet gas velocity (three velocities and the following dimensions of the cyclone: the cylindrical section (three heights and internal height of the gas exit duct (three heights. The tests were performed using an 3³ experimental design. Analysis of the results for overall efficiency was carried out using response surfaces and the statistical parameters were estimated from linear regression.

  2. Cylindrical PVDF film transmitters and receivers for air ultrasound.

    Science.gov (United States)

    Toda, Minoru

    2002-05-01

    Cylindrical polyvinylidene fluoride (PVDF) film transducers for transmission and reception of 40-kHz ultrasonic waves in air have been investigated. A key feature of such transducers is their omni-directional polar response. An optimized structure comprises a cylindrical PVDF film element resting on a spool without a mechanical bond to it. Various key design equations to obtain the required ultrasonic performance both as transmitter and receiver are shown, which include resonance frequency, acoustic pressure, angle performance, back air cavity effect, and receiver sensitivity. Measurements of actual frequency response of transmitter output and receiver sensitivity, angular performance, back air space effect, and temperature effect are presented. The results agree well with the theoretical predictions. It has been shown that this device is well-suited for practical application as an ultrasonic ranging device.

  3. Cylindrically symmetric cosmological model in the presence of bulk ...

    Indian Academy of Sciences (India)

    2016-09-06

    Sep 6, 2016 ... (2016) 87: 47 c Indian Academy of Sciences. DOI 10.1007/s12043-016-1235-5. Cylindrically symmetric cosmological model in the presence of bulk stress with varying. V G METE1,∗, A S NIMKAR2 and V D ELKAR3. 1Department of Mathematics, R.D.I.K. & K.D. College, Badnera-Amravati 444 701, India.

  4. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....

  5. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....

  6. Evolution of bulk strain solitons in cylindrical inhomogeneous shells

    Energy Technology Data Exchange (ETDEWEB)

    Shvartz, A., E-mail: andrew.shvartz@mail.ioffe.ru; Samsonov, A.; Dreiden, G.; Semenova, I. [Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021 (Russian Federation)

    2015-10-28

    Bulk strain solitary waves in nonlinearly elastic thin-walled cylindrical shells with variable geometrical and physical parameters are studied, and equation for the longitudinal strain component with the variable coefficients is derived. A conservative finite difference scheme is proposed, and the results of numerical simulation of the strain soliton evolution in a shell with the abrupt variations of cross section and physical properties of the material are presented.

  7. THE METHOD OF LINES IN A CYLINDRICAL COORDINATE SYSTEM

    Directory of Open Access Journals (Sweden)

    Levkivskiy D.V.

    2014-12-01

    Full Text Available In this paper the plane strain thick cylindrical shell is rigidly attached to the side faces. To reduce the dimension of initial differential equation method is used in combination with the direct projection of the Bubnov-Galerkin-Petrov. As a result of the reduction equations are reduced to a system of homogeneous first order differential equations in partial derivatives. In the future, the system is solved numerically using the method of discrete orthogonalization S.K.Hodunova.

  8. Fiber Optic Magnetometers Using Planar And Cylindrical Magnetostrictive Transducers

    Science.gov (United States)

    Bucholtz, F.; Yurek, A. M.; Koo, K. P.; Dandridge, A.

    1987-04-01

    Fiber optic magnetometers which require high sensitivity at low frequencies (dc-10 Hz) rely on the nonlinear magnetostriction of materials such as amorphous metallic glass alloys. Typically, fiber is bonded to a magnetostrictive sample to convert strain in the sample to phase shift in a fiber interferometer. We present the results of measurements of the frequency dependence and dc and ac magnetic field sensitivity of both planar and cylindrical transducing elements, and discuss the practical advantages and disadvan-tages of each configuration.

  9. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    OpenAIRE

    Evangelos Skoulas; Alexandra Manousaki; Costas Fotakis; Emmanuel Stratakis

    2016-01-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and d...

  10. Stabilization of a scroll ring by a cylindrical Neumann boundary.

    Science.gov (United States)

    Paulau, P V; Löber, J; Engel, H

    2013-12-01

    We study the interaction of phase singularities with homogeneous Neumann boundaries in one, two, and three spatial dimensions for the complex Ginzburg-Landau equation. The existence of a boundary-induced drift attractor, well known for spiral waves in two spatial dimensions, is demonstrated for scroll waves in three spatial dimensions. We find that a cylindrical Neumann boundary can lock a scroll ring, thus preventing the collapse of its closed filament.

  11. Bubbles and particles in a cylindrical rotating flow

    OpenAIRE

    Bluemink, J.J.

    2008-01-01

    To predict the behavior of bubbles and particles moving in fluids, the hydrodynamics forces acting on them need to be known. They are often written in the form of dimensionless coefficients. For some forces, in particular the force at right angles with the velocity, i.e. the lift force, the parameterization of these coefficients is not clear. In this thesis the forces on bubbles and particles in a cylindrical solid body rotating flow are studied, both experimentally and numerically. Experimen...

  12. Employing a cylindrical single crystal in gas-surface dynamics

    OpenAIRE

    Hahn, C.; Shan, J.; Liu, Y.; Berg, O.; Kleijn, A.W.; Juurlink, L.B.F.

    2012-01-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on ...

  13. Geometrical aspects of cylindric magnetic shields in strong static fields

    Science.gov (United States)

    Zhiwei, XIA; Wei, LI; Bo, LI; Qingwei, YANG

    2017-11-01

    Motivated by ITER (the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the finite element method with a nonlinear magnetization curve. The geometrical aspects of shielding performance are identified and corresponding suggestions for application are provided. Among them, the effects of the edge and cover thickness have not been mentioned elsewhere to our knowledge.

  14. DEVELOPMENT OF DEFORMATION STRIPS WHILE STRETCHING OF CYLINDRICAL SAMPLES

    Directory of Open Access Journals (Sweden)

    Y. V. Vasilevich

    2011-01-01

    Full Text Available Deformation strips have been experimentally revealed and described while stretching of cylindrical samples by means of computer thermography. It has been established that temperature of shift strip surface grows smoothly up to the stage of crack origin in material defect. Sharp growth of surface temperature occurs when tensile stresses reach tensile strength. Change in surface temperature occurs wavy after destruction (while cooling the sample. Processes of material destruction origin and development  characterize temperature changes in deformation strips.

  15. Effective thermoelastic properties of composites with periodicity in cylindrical coordinates

    KAUST Repository

    Chatzigeorgiou, George

    2012-09-01

    The aim of this work is to study composites that present cylindrical periodicity in the microstructure. The effective thermomechanical properties of these composites are identified using a modified version of the asymptotic expansion homogenization method, which accounts for unit cells with shell shape. The microscale response is also shown. Several numerical examples demonstrate the use of the proposed approach, which is validated by other micromechanics methods. © 2012 Elsevier Ltd. All rights reserved.

  16. Characteristics of Cylindrical Microwave Plasma Source at Low Pressure

    Science.gov (United States)

    Park, Seungil; Youn, S.; Kim, S. B.; Yoo, S. J.

    2016-10-01

    A microwave plasma source with a cylindrical resonance cavity has been proposed to generate the plasma at low pressure. This plasma source consists of magnetron, waveguide, antenna, and cavity. The microwave generating device is a commercial magnetron with 1 kW output power at the frequency of 2.45 GHz. The microwave is transmitted through the rectangular waveguide with the whistle shape, and coupled to the cavity by the slot antenna. The resonant mode of the cylindrical cavity is the TE111 mode. The operating pressure is between 0.1 Torr and 0.3 Torr with the Argon and nitrogen gas. The electron temperature and electron number density of argon plasma were measured with the optical emission spectroscopy measurement. And Ar1s5 metastable density was measured using tunable diode laser absorption spectroscopy (TDLAS). The plasma diagnostic results of a cylindrical microwave plasma source would be described in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  17. Microfluidic step-emulsification in a cylindrical geometry

    Science.gov (United States)

    Chakraborty, Indrajit; Leshansky, Alexander M.

    2016-11-01

    The model microfluidic device for high-throughput droplet generation in a confined cylindrical geometry is investigated numerically. The device comprises of core-annular pressure-driven flow of two immiscible viscous liquids through a cylindrical capillary connected co-axially to a tube of a larger diameter through a sudden expansion, mimicking the microfluidic step-emulsifier (1). To study this problem, the numerical simulations of axisymmetric Navier-Stokes equations have been carried out using an interface capturing procedure based on coupled level set and volume-of-fluid (CLSVOF) methods. The accuracy of the numerical method was favorably tested vs. the predictions of the linear stability analysis of core-annular two-phase flow in a cylindrical capillary. Three distinct flow regimes can be identified: the dripping (D) instability near the entrance to the capillary, the step- (S) and the balloon- (B) emulsification at the step-like expansion. Based on the simulation results we present the phase diagram quantifying transitions between various regimes in plane of the capillary number and the flow-rate ratio. MICROFLUSA EU H2020 project.

  18. A mathematical model of microalgae growth in cylindrical photobioreactor

    Science.gov (United States)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  19. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-01-01

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate. PMID:25658394

  20. Inflation of stressed cylindrical tubes: an experimental study

    Science.gov (United States)

    Guo, Zhiming; Wang, Shibin; Li, Linan; Ji, Hongwei; Wang, Zhiyong; Cai, Songbao

    2014-06-01

    The inflation of an initially stressed cylindrical shell provides a good illustration of the phenomenon of the initiation and propagation of an instability, which shares the same mathematical and mechanical features with a variety of other strain localization phenomena in engineering structures and materials. The high speed CCD camera and digital image processing system were used to measure the 3D shape of the inflated cylindrical tube. The localized bulge of a cylindrical tube with closed ends forms when the internal pressure reaches a critical value Pcr. As more air is filled into the tube, the pressure drops but the radius at the centre of the bulge will increase until it reaches a maximum value rmax. With continued inflation, the pressure stays at a constant value Pp. The purpose of this study is to investigate the critical and propagation pressures in the tubes and the profile outside when the shells under axial tension and internal pressure were inflating. We focus on the influence of the axial tension on the critical pressure. In this paper the problem is explored through experimental efforts. A series of experiments were conducted on commercially available natural rubber latex tubes involving different geometries and initial axial tensions, which were regarded as isotropic, homogeneous, incompressible and hyper-elastic materials.

  1. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-02-01

    Full Text Available Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs. Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS and Congestion adjusted PEGASIS (C-PEGASIS. Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  2. Chain-based communication in cylindrical underwater wireless sensor networks.

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  3. Experimental and numerical investigation of cylindrical and hemispherical jet formation

    Science.gov (United States)

    Betney, Matthew; Foster, Peta; Ringrose, Tim; Edwards, Thomas; Tully, Brett; Doyle, Hugo; Hawker, Nicholas; First Light Fusion Ltd. Team

    2016-11-01

    This paper presents a detailed investigation of the formation of jets in cylindrical and spherical cavities, when impacted by shocks at extreme pressures. As the shock pressure increases the effects of material strength lessen in proportion. Beyond a certain magnitude the behaviour is referred to as "hydrodynamic". In this domain both cylindrical and spherical cavities involute to form jets, which go on to strike the leeward cavity wall, compressing the cavity contents to high pressures and temperatures. In this study, the jet formation process is isolated by cutting hemispherical and half-cylindrical cavities from the rear side of PMMA and copper blocks. This allows direct measurement of the jet speed and shape using high speed imaging, providing data against which numerical models may be compared. Shock waves at pressures of up to 30 GPa are formed in the targets by the impact of projectiles from a two-stage light gas gun, at velocities of up to 7 km/s. Numerically, the jet formation process is modelled using our in-house front-tracking code. This code uses Lagrangian hypersurfaces to model the interfaces between different media, with an underlying Eulerian mesh used to model the bulk flow. Detailed comparisons between numerical and experimental results are presented.

  4. Fluid-structure coupled analysis of underwater cylindrical shells

    Science.gov (United States)

    Ai, Shang-Mao; Sun, Li-Ping

    2008-06-01

    Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.

  5. Cylindrical millimeter-wave imaging technique for concealed weapon detection

    Science.gov (United States)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    1998-03-01

    A novel cylindrical millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory for the detection of metallic and non-metallic concealed weapons. This technique uses a vertical array of millimeter- wave antennas which is mechanically swept around a person in a cylindrical fashion. The wideband millimeter-wave data is mathematically reconstructed into a series of high- resolution images of the person being screened. Clothing is relatively transparent to millimeter-wave illumination,whereas the human body and concealed items are reflective at millimeter wavelengths. Differences in shape and reflectivity are revealed in the images and allow a human operator to detect and identify concealed weapons. A full 360 degree scan is necessary to fully inspect a person for concealed items. The millimeter-wave images can be formed into a video animation sequence in which the person appears to rotate in front of a fixed illumination source.This is s convenient method for presenting the 3D image data for analysis. This work has been fully sponsored by the FAA. An engineering prototype based on the cylindrical imaging technique is presently under development. The FAA is currently opposed to presenting the image data directly to the operator due to personal privacy concerns. A computer automated system is desired to address this problem by eliminating operator viewing of the imagery.

  6. Macrophage uptake of cylindrical microparticles investigated with correlative microscopy.

    Science.gov (United States)

    Tscheka, Clemens; Hittinger, Marius; Lehr, Claus-Michael; Schneider-Daum, Nicole; Schneider, Marc

    2015-09-01

    Cylindrical particles offer the opportunity to develop controlled and sustained release systems for the respiratory tract. One reason is that macrophages can phagocyte such particles only from either of the two ends. We investigated the uptake behaviour of murine alveolar macrophages incubated with elongated submicron-structured particles. For that purpose, fluorescent model silica nanoparticles were interconnected with the biocompatible polysaccharide agarose, building up cylindrical particles within the pores of track-etched membranes. In contrast to common approaches we determined the uptake at different time points with scanning electron microscopy, fluorescence microscopy, and the combination of both techniques - correlative microscopy (CLEM). As a consequence, we could securely identify uptake events and observe in detail the engulfment of particles and confirm, that phagocytosis could only be observed from the tips of the cylinders. CLEM allowed a comparison of the uptake measured with different techniques at identical macrophages. Qualitative and quantitative evaluation of this cylindrical particle uptake showed substantial differences between fluorescence microscopy, electron microscopy and the combination of both (CLEM) within 24h. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Antireflective sub-wavelength structures for improvement of the extraction efficiency and color rendering index of monolithic white light-emitting diode

    DEFF Research Database (Denmark)

    Ou, Yiyu; Corell, Dennis Dan; Dam-Hansen, Carsten

    2011-01-01

    (CRI) and the correlated color temperature (CCT) of the monolithic white LED have been demonstrated. The CRI of the monolithic white LED could be improved from 92.68 to around 94 by applying a cylinder structure, and the CCT could be modified in a very large range with appropriate design......We have theoretically investigated the influence of antireflective sub-wavelength structures on a monolithic white light-emitting diode (LED). The simulation is based on the rigorous coupled wave analysis (RCWA) algorithm, and both cylinder and moth-eye structures have been studied in the work. Our...... simulation results show that a moth-eye structure enhances the light extraction efficiency over the entire visible light range with an extraction efficiency enhancement of up to 26 %. Also for the first time to our best knowledge, the influence of sub-wavelength structures on both the color rendering index...

  8. Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating.

    Science.gov (United States)

    Gustavsson, Johan; Haglund, Asa; Vukusić, Josip; Bengtsson, Jörgen; Jedrasik, Piotr; Larsson, Anders

    2005-08-22

    We have theoretically investigated the combined fundamental-mode and polarization selection in 850-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) using a locally etched sub-wavelength surface grating. The physical mechanisms behind the selection are, first, the strongly polarization sensitive effective refractive index of the volume occupied by the grating structure, and second, the dramatic change of the reflectivity of a multi-layer Bragg mirror that can occur by simply changing the refractive index of the outermost layer. For a VCSEL cavity this layer is the surface layer and its refractive index is changed by the introduction of the sub-wavelength grating; in this case the grating leads to a higher reflectivity for the desired polarization. By localizing the surface grating area to a carefully chosen region near the optical axis it is therefore possible to ensure that the fundamental mode experiences a high reflectivity, or low cavity loss, while other modes experience more of the low-reflectance region of the peripheral part of the Bragg mirror and thus suffer higher loss. Cold-cavity calculations on a VCSEL with oxide aperture and grating region diameters of 4.5 microm and 2.5 microm, respectively, indicate that a loss difference of ~20 cm(-1) between the fundamental mode and the first higher order mode can be obtained simultaneously with an orthogonal polarization mode discrimination of >15 cm-1. Based on previous experience, these values should enable robust single-mode operation with only the desired polarization orientation. What is also important, for the lasing mode the introduction of a sub-wavelength grating has no detrimental effect, so its characteristics, such as threshold current, slope efficiency, and far-field profile are unaffected. Moreover, since the effective index is a result of an averaging over several sub-wavelength grating periods, it is fairly insensitive to the detailed shape of the grating grooves, which should

  9. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  10. Interaction of cylindrically converging diffracted shock with uniform interface

    Science.gov (United States)

    Liang, Yu; Ding, Juchun; Zhai, Zhigang; Si, Ting; Luo, Xisheng

    2017-08-01

    The Richtmyer-Meshkov instability of an unperturbed air/SF6 interface subjected to a diffracted shock is experimentally studied by high-speed schlieren photography under cylindrical circumstances. The cylindrically converging diffracted shock (CCDS) is produced by a cylindrically uniform shock diffracting around a rigid cylinder(s), and the unperturbed interface is created by a soap film technique. The effects of coupling of multiple rigid cylinders and diverse spacings from the cylinder to interface on a flow field are highlighted. Schlieren images indicate that the amplitude of disturbances on the CCDS increases compared with the local shock radius. After the CCDS impact, a bulge is derived from the interface due to the shock-shock interaction inside the interface, and the number of bulges depends upon the number of cylinders. As the number of cylinders increases, the bulge becomes less pronounced, which is ascribed to additional shock-shock interactions inside the volume. As the distance between the cylinder and interface increases, an air cavity is first observed before the formation of a bulge. The amplitude of perturbation on the interface is found to reduce before the central reflected shock arrival because of the Rayleigh-Taylor stabilization effect. Through equating the pre-interface disturbance of the CCDS to the pre-shock perturbation of the perturbed interface, the initially linear growth rate is theoretically computed based on the impulsive model considering the Bell-Plesset effect. The theoretical results are found to deviate greatly from the experimental counterparts. Instead, taking the post-shock interface amplitude as an initial interface amplitude, the model works well. Therefore, the interface perturbations produced are notably smaller than the disturbances causing them. Moreover, the nonlinear behavior of perturbation growth is estimated by the model considering the Rayleigh-Taylor effect.

  11. Numerical modeling of micropolar cylindrical shells on supercomputers with GPUs

    Science.gov (United States)

    Varygina, M.

    2017-10-01

    The mathematical model of micropolar cylindrical shells is considered within the framework of the approximation approach. The constitutive equations of the theory are written in symmetric hyperbolic form. For the solution of dynamic problems on wave propagation in micropolar shells, parallel numerical algorithm based on the space-variable two-cyclic splitting method in combination with the monotone ENO-scheme is proposed. The parallelization of computations is performed with the CUDA technology for supercomputers with GPUs. The results of numerical solution of the problems on the action of distributed impulse loads and concentrated instant loads are shown.

  12. Dynamic characteristics of a partially fluid-filled cylindrical shell

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo; Yu, Seon Oh [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Yeong Taek [Tae Sung S and E Inc., Seoul (Korea, Republic of)

    2011-03-15

    A pressurizer in a small integral type pressurized water reactor is located inside the upper region of the reactor vessel, and uses a space between the upper head of the reactor vessel and the upper region of the upper guide structure which is partially filled with fluid depending on the operating power. This new design requires a comprehensive investigation of vibration characteristics. This study investigates the modal characteristics of a pressurizer which uses a simplified cylindrical shell model, focusing on how having fluid in the shell affects vibration and response characteristics. In addition, an analysis of sloshing is performed and the response characteristics are addressed

  13. Development and demonstration of a cylindrical glanc code

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, W.R.; Longmire, C.L.

    1987-04-01

    A numerical approach for determining the current on a wire in an ionizing radiation environment has been developed. This algorithm integrates Maxwell's equations along with Newton's Law for the primary electrons and the air chemistry equations for the secondary electrons in a one-dimensional cylindrical retarded time coordinate system. The algorithm is then used to predict the fields and air conductivities near a thin wire illuminated by a transient radiation pulse. It is shown that the air conductivity and radial electric field near the wire are significantly changed when the primary Compton ionization electrons are treated self-consistently as opposed to a prescribed source approach.

  14. Polar POLICRYPS diffractive structures generate cylindrical vector beams

    Energy Technology Data Exchange (ETDEWEB)

    Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare [Department of Physics and CNR-NANOTEC University of Calabria, I-87036 Rende (CS) (Italy); Paladugu, Sathyanarayana [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); Volpe, Giovanni [Soft Matter Lab, Department of Physics, Bilkent University, Ankara 06800 (Turkey); UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey)

    2015-11-16

    Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.

  15. Infinitesimal structure of inverse pinch effect cylindrical MHD shocks

    Energy Technology Data Exchange (ETDEWEB)

    Baty, Roy S [Los Alamos National Laboratory; Stanescu, Dan [UNIV OF WYOMING; Tucker, Don H [UNIV OF UTAH

    2008-01-01

    Nonstandard analysis is used to derive the relationships between the jump functions for density, pressure, velocity and magnetic field within a diverging cylindrical magnetohydrodynamic shock caused by the inverse pinch effect. The shock is assumed to have infinitesimal thickness. The obtained relationships allow explicit numerical constructions of the shock structure once the variation in one variable, here chosen to be the density, is specified. The shapes thus constructed offer additional insight into the physics of such shock waves from a perspective which would be extremely difficult to investigate experimentally.

  16. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  17. Scattering cross section in a cylindrical anisotropic layered metamaterial

    Science.gov (United States)

    Forouzeshfard, M. R.; Mohebbi, Masoud; Mollaei, Aliyeh

    2018-01-01

    To design a uniaxial anisotropic metamaterial, a layered cylindrical metamaterial is introduced for TE polarization. Unlike to the previous work, which the layers were in radial direction, here the layers are in azimuthal direction. Scattering efficiency for this metamaterial in different frequency is analyzed with solving Maxwell's wave equation. It is observed that in some frequencies when the effective permittivity of the structure goes to zero the scattering efficiency would be negligible. This result approves the previous predictions. It is also found out that the scattering cancellation depends on the relative permittivity of the environmental medium for the cylinder. The finite element simulations are also confirmed the results.

  18. Plasticity around an Axial Surface Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...

  19. Stability of Membrane Elastodynamics with Applications to Cylindrical Aneurysms

    Directory of Open Access Journals (Sweden)

    A. Samuelson

    2011-01-01

    Full Text Available The enlargement and rupture of intracranial and abdominal aortic aneurysms constitutes a major medical problem. It has been suggested that enlargement and rupture are due to mechanical instabilities of the associated complex fluid-solid interaction in the lesions. In this paper, we examine a coupled fluid-structure mathematical model for a cylindrical geometry representing an idealized aneurysm using both analytical and numerical techniques. A stability analysis for this subclass of aneurysms is presented. It is shown that this subclass of aneurysms is dynamically stable both with and without a viscoelastic contribution to the arterial wall.

  20. 3D impurity inspection of cylindrical transparent containers

    DEFF Research Database (Denmark)

    Kragh, Mikkel Fly; Bjerge, Kim; Ahrendt, Peter

    2016-01-01

    This paper presents a method for automatically detecting and three-dimensionally positioning particles based on sequences of 2D images of rotating cylindrical transparent containers. The method can be used in the manufacturing industry by distinguishing between particles residing inside or outside...... a closed container. A foreign particle on the inside is a cause of rejection, whereas a particle on the outside might represent harmless dirt. The proposed method detects, tracks and positions particles and classifies containers accordingly as either rejected or accepted. Experimental results have shown...... an accuracy of 85% on a test set of 20 containers and an average execution time per container of 1 s....

  1. Experimental Determination of Stress Intensity in a Cracked Cylindrical Specimen,

    Science.gov (United States)

    1980-05-01

    CRACKED CYLINDRICAL SPEC IMEN 7 ABSTRACT The range of stress intensity at the tip of a fatigue crack is the major factor controlling the crack growth...of this report will be similarly clesiied): The range of stress intensity at the tip of a fatigue crack is the major factor controlling the crack...EXPERIMENTAL STRESS INTENSITY CALIBRATION 3 3. EXPERIMENTAL DETAILS 4 3.1 Specimen Geometries 4 3.2 Material 5 3.3 Fatigue Loading 5 3.4 Crack Length

  2. Group velocity of cylindrical guided waves in anisotropic laminate composites.

    Science.gov (United States)

    Glushkov, Evgeny; Glushkova, Natalia; Eremin, Artem; Lammering, Rolf

    2014-01-01

    An explicit expression for the group velocity of wave packets, propagating in a laminate anisotropic composite plate in prescribed directions, is proposed. It is based on the cylindrical guided wave asymptotics derived from the path integral representation for wave fields generated in the composites by given localized sources. The expression derived is theoretically confirmed by the comparison with a known representation for the group velocity vector of a plane guided wave. Then it is experimentally validated against laser vibrometer measurements of guided wave packets generated by a piezoelectric wafer active sensor in a composite plate.

  3. Internally Pressurized Spherical and Cylindrical Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Krenk, Steen

    1978-01-01

    -linear zone and the volume reduction. Results are given for cavities in rock salt, and a comparison with measured stress concentrations is used to support the assumption of a hydrostatic stress state in undisturbed salt formations. Finally a method to estimate convergence due to creep is outlined.......The paper deals with the stress distribution around cavities under pressure in an infinite, non-linear elastic material. A homogeneous stress state is assumed at infinity. For spherical and cylindrical cavities simple formulae are derived for the stress concentration, the extent of the non...

  4. Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens

    1978-01-01

    The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...... the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations...

  5. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  6. Wax deposit accumulation in a ``cylindrical Couette'' geometry

    Science.gov (United States)

    Benallal, Amine; Maurel, Philippe; Agassant, Jean François

    2008-11-01

    Models used to predict wax deposits overestimate the deposit thickness, and they require fitting parameters to match computational results to experimental data. A new approach is proposed. Waxy crude oil is considered as a viscoplastic Bingham fluid in which both viscosity and yield stress depend on temperature and quantity of wax crystals. Numerical simulations of the flow in a "cylindrical Couette" geometry were carried out. The numerical results highlight the influence of wax crystal content on the flow pattern, especially when comparing yielded and unyielded regions. A static layer region appears near the colder wall, representing the deposit. To cite this article: A. Benallal et al., C. R. Mecanique 336 (2008).

  7. Coupled Analysis for Cylindrical Rotor Type Switched Reluctance Motor

    Science.gov (United States)

    Oyama, Jun; Higuchi, Tsuyoshi; Abe, Takashi; Hashiguchi, Shigenori; Shigematsu, Kouichi

    In previous papers, we proposed the Cylindrical Rotor Type Switched Reluctance Motor (SRM), in which q-axis short-circuited windings were wound around the q-axis iron poles of the rotor and the stator windings were excited by the usual pulse current. It is confirmed experimentally that the short-circuited windings reduced the q-axis leakage flux and caused additional torque generation. In this paper we describe characteristic analysis of the new type SRM using the circuit simulation considering all the inductances coupled with the FEM analysis.

  8. Response of an electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Rerup, T; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    During the last decade many experimental studies of surface charge phenomena have been undertaken employing right cylindrical spacers. Measurement of the surface charge was performed using small electrostatic field probes to scan across the dielectric surface. Charges are electrostatically induced...... on the sensor plate by the ambient surface charge, and hence as the probe is moved parallel to the surface the potential of the sensor plate changes. The probe sensor-plate potential is thus the parameter of interest as this parameter can be related in a quantitative manner to the surface charge density...

  9. Evaporation method of recording media onto cylindrical information carriers

    Science.gov (United States)

    Tarnai, Andriy; Bogdanova, Olessya V.; Kyrylenko, Valeriy; Durkot, Myron; Petrov, Viacheslav V.; Kryuchin, Andrey A.

    1997-02-01

    At present there exist many methods of preparing film structures on an inner surface of cylindrical elements by vacuum technology. They are designed for evaporation of metallic, oxide and other surface layers mainly and cannot practically be used for the formation of optical layers using multi-component, strong dissociative materials. Therefore we have developed the flash evaporation method using fiber as a film-forming material. This method allows us to obtain defect-free, x-ray amorphous, uniform over the thickness recording layers from multi-component strong dissociative materials.

  10. Magnetic forces between arrays of cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, D.; Tomassetti, G.; Beleggia, Marco

    2011-01-01

    Permanent magnet arrays are often employed in a broad range of applications: actuators, sensors, drug targeting and delivery systems, fabrication of self-assembled particles, just to name a few. An estimate of the magnetic forces in play between arrays is required to control devices and fabrication...... procedures. Here, we introduce analytical expressions for calculating the attraction force between two arrays of cylindrical permanent magnets and compare the predictions with experimental data obtained from force measurements with NdFeB magnets. We show that the difference between predicted and measured...... force values is less than 10%....

  11. An Analytical Solution for Cylindrical Concrete Tank on Deformable Soil

    Directory of Open Access Journals (Sweden)

    Shirish Vichare

    2010-07-01

    Full Text Available Cylindrical concrete tanks are commonly used in wastewater treatment plants. These are usually clarifier tanks. Design codes of practice provide methods to calculate design forces in the wall and raft of such tanks. These methods neglect self-weight of tank material and assume extreme, namely ‘fixed’ and ‘hinged’ conditions for the wall bottom. However, when founded on deformable soil, the actual condition at the wall bottom is neither fixed nor hinged. Further, the self-weight of the tank wall does affect the design forces. Thus, it is required to offer better insight of the combined effect of deformable soil and bottom raft stiffness on the design forces induced in such cylindrical concrete tanks. A systematic analytical method based on fundamental equations of shells is presented in this paper. Important observations on variation of design forces across the wall and the raft with different soil conditions are given. Set of commonly used tanks, are analysed using equations developed in the paper and are appended at the end.

  12. Effectiveness of the magnetostatic shielding by the cylindrical shells

    Energy Technology Data Exchange (ETDEWEB)

    Grabchikov, S.S.; Trukhanov, A.V. [SSPA “Scientific and practical materials research centre of NAS of Belarus”, 19 P. Brovki Str., 220072 Minsk (Belarus); Trukhanov, S.V., E-mail: truhanov@ifttp.bas-net.by [SSPA “Scientific and practical materials research centre of NAS of Belarus”, 19 P. Brovki Str., 220072 Minsk (Belarus); Kazakevich, I.S.; Solobay, A.A. [SSPA “Scientific and practical materials research centre of NAS of Belarus”, 19 P. Brovki Str., 220072 Minsk (Belarus); Erofeenko, V.T. [BSU Institution ' Scientific Research Institute of Applied Problems of Mathematics and Informatics ' , av. Nezavisimosti 4 – 702, 220030 Minsk (Belarus); Vasilenkov, N.A. [CJSC ' TESTPRIBOR' , st. Svobody, 31-1, 125362 Moscow (Russian Federation); Volkova, O.S. [Low temperatures physics and superconductivity department, MSU named after M.V. Lomonosov, Moscow (Russian Federation); National University of Science and Technology MISiS, 119049, Moscow, Leninsky Prospekt, 4 (Russian Federation); Shakin, A. [National University of Science and Technology MISiS, 119049, Moscow, Leninsky Prospekt, 4 (Russian Federation)

    2016-01-15

    The experimental research of the magnetostatic shielding effectiveness and the analytical calculations of the average magnetic permeability of single-layer cylindrical sample of the shields based on electrolytically deposited Ni{sub 80}Fe{sub 20} alloy are carried out. The locations of maxima on the Ef(H) and μ(H) curves do not match each other, which is difficult to interpret in terms of the shunting model. The results are explained by the non-linear distribution of the magnetic permeability through the thickness of the shield. It has been shown that in the magnetic fields range from 100 A/m up to 2700 A/m, the shields based on the Ni{sub 80}Fe{sub 20} alloy are preferred over ones based on the 84KHSR amorphous ribbon. It is concluded that at the selection of shield materials it should take into account not only the main magnetic characteristics – μ; H{sub s}; H{sub c} but also H{sub max} parameter, which is important to evaluate the effectiveness of magnetic shielding. - Highlights: • One-layer cylindrical shields based on electrodeposited Ni{sub 80}Fe{sub 20} alloy are obtained. • Magnetostatic shielding effectiveness is experimentally investigated. • Calculations of the average magnetic permeability are carried out. • Results are explained by the non-linear distribution of the magnetic permeability. • Parameters important for the magnetic shielding effectiveness are indicated.

  13. Implosion of Cylindrical Cavities via Short Duration Impulsive Loading

    Science.gov (United States)

    Huneault, Justin; Higgins, Andrew

    2014-11-01

    An apparatus has been developed to study the collapse of a cylindrical cavity in gelatin subjected to a symmetric impact-driven impulsive loading. A gas-driven annular projectile is accelerated to approximately 50 m/s, at which point it impacts a gelatin casting confined by curved steel surfaces that allow a transition from an annular geometry to a cylindrically imploding motion. The implosion is visualized by a high-speed camera through a window which forms the top confining wall of the implosion cavity. The initial size of the cavity is such that the gelatin wall is two to five times thicker than the impacting projectile. Thus, during impact the compression wave which travels towards the cavity is closely followed by a rarefaction resulting from the free surface reflection of the compression wave in the projectile. As the compression wave in the gelatin reaches the inner surface, it will also reflect as a rarefaction wave. The interaction between the rarefaction waves from the gelatin and projectile free surfaces leads to large tensile stresses resulting in the spallation of a relatively thin shell. The study focuses on the effect of impact parameters on the thickness and uniformity of the imploding shell formed by the cavitation in the imploding gelatin cylinder.

  14. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  15. Nanoparticle-wall collision in a laminar cylindrical liquid jet.

    Science.gov (United States)

    Xu, Xuefeng; Luo, Jianbin; Guo, Dan

    2011-07-15

    Although nanoparticle impacts on a solid surface always occur in natural or engineering processes and cause extensive investigations, less works have been reported on the nanoparticle-wall collisions in a liquid. In present paper, by considering the inertial effect and the Brownian motion of nanoparticles, a theoretical model was established for calculating the collision frequency between the nanoparticles and the solid surface in a laminar cylindrical liquid jet impacting normally on the solid surface. The analysis showed that the collision frequency grows as the square root of the impacting speed for low impacting speed regime in which the Brownian motion is predominant, whereas increases as the second power of the impacting speed for high impacting speed regime in which the inertial effect is predominant. Meanwhile, an observation system for nanoparticle-wall collisions in a laminar cylindrical liquid jet has been developed. The adsorption of the nanoparticles on the solid surface after collision has also been observed. Because of their lower attractive energy with the solid surface, these adsorbed nanoparticles are easier to be removed by the hydrodynamic force of the impacting liquid than that deposited on a dry surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. On the physics of propagating Bessel modes in cylindrical waveguides

    Science.gov (United States)

    Gómez-Correa, J. E.; Balderas-Mata, S. E.; Coello, V.; Puente, N. P.; Rogel-Salazar, J.; Chávez-Cerda, S.

    2017-05-01

    In this paper, we demonstrate that by using a mathematical physics approach—focusing attention on the physics and using mathematics as a tool—it is possible to visualize the formation of the transverse modes inside a cylindrical waveguide. The opposite (physical mathematics) approach looks at the mathematical problem and then tries to impose a physical interpretation. For cylindrical waveguides, the physical mathematics route leads to the Bessel differential equation, and it is argued that in the core of the waveguide there are only Bessel functions of the first kind in the description of the transverse modes. The Neumann functions are deemed non-physical due to their singularity at the origin and are eliminated from the final description of the solution. In this paper, by combining geometric optics and wave optics concepts, we show that the inclusion of the Neumann function is physically necessary to describe fully and properly the formation of the propagating transverse modes. With this approach, we also show that the field outside a dielectric waveguide arises in a natural way.

  17. A torquing shearing interferometer for cylindrical wire array experiments.

    Science.gov (United States)

    Pikuz, S A; Schrafel, P C; Shelkovenko, T A; Kusse, B R

    2008-10-01

    In standard shearing interferometry, a single probing beam passes through a perturbing medium and is then split into two beams. A linear shift results in an overlap, an interference, and a fringe pattern yielding the perturbing medium density profile. The probing beam usually needs to be larger than the perturbing medium so that part of it passes through a well separated low density region. During early time axial (end-on) views of imploding cylindrical wire arrays low density regions lie in between the high density regions that are near the initial wire positions. In addition, for end-on viewing, the probing beam diameter is limited by electrodes and is comparable to the array diameter. In this case a linear translation will not work but the overlap can be accomplished by an azimuthal rotation of one beam with respect to the other. Such a torquing shearing interferometer has been set up on the COBRA experiment to give time resolved, radial, and azimuthal electron density profiles during early time cylindrical wire array implosions.

  18. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Energy Technology Data Exchange (ETDEWEB)

    Melodelima, David [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Lafon, Cyril [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Prat, Frederic [Centre Hospitalier Bicetre, 78 Avenue General Leclerc, 94275 Le Kremlin Bicetre (France); Birer, Alain [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France); Cathignol, Dominique [INSERM, Unite 556, 151 Cours Albert Thomas, 69424 Lyon (France)

    2002-12-07

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm{sup -2}. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  19. Ultrasound cylindrical phased array for transoesophageal thermal therapy: initial studies

    Science.gov (United States)

    Melodelima, David; Lafon, Cyril; Prat, Frederic; Birer, Alain; Cathignol, Dominique

    2002-12-01

    This work was undertaken to investigate the feasibility of constructing a cylindrical phased array composed of 64 elements spread around the periphery (OD 10.6 mm) for transoesophageal ultrasound thermotherapy. The underlying operating principle of this applicator is to rotate a plane ultrasound beam electronically. For this purpose, eight adjacent transducers were successively excited with appropriate delay times so as to generate a plane wave. The exposure direction was changed by exciting a different set of eight elements. For these feasibility studies, we used a cylindrical prototype (OD 10.6 mm) composed of 16 elementary transducers distributed over a quarter of the cylinder, all operating at 4.55 MHz. The active part was mechanically reinforced by a rigid damper structure behind the transducers. It was shown that an ultrasound field similar to that emitted by a plane transducer could be generated. Ex vivo experiments on pig's liver demonstrated that the ultrasound beam could be accurately rotated to generate sector-based lesions to a suitable depth (up to 19 mm). Throughout these experiments, exposures lasting 20 s were delivered at an acoustic intensity of 17 W cm-2. By varying the power from exposure to exposure, the depth of the lesion at different angles could be controlled.

  20. Employing a cylindrical single crystal in gas-surface dynamics

    Science.gov (United States)

    Hahn, Christine; Shan, Junjun; Liu, Ying; Berg, Otto; Kleijn, Aart W.; Juurlink, Ludo B. F.

    2012-03-01

    We describe the use of a polished, hollow cylindrical nickel single crystal to study effects of step edges on adsorption and desorption of gas phase molecules. The crystal is held in an ultra-high vacuum apparatus by a crystal holder that provides axial rotation about a [100] direction, and a crystal temperature range of 89 to 1100 K. A microchannel plate-based low energy electron diffraction/retarding field Auger electron spectrometer (AES) apparatus identifies surface structures present on the outer surface of the cylinder, while a separate double pass cylindrical mirror analyzer AES verifies surface cleanliness. A supersonic molecular beam, skimmed by a rectangular slot, impinges molecules on a narrow longitudinal strip of the surface. Here, we use the King and Wells technique to demonstrate how surface structure influences the dissociation probability of deuterium at various kinetic energies. Finally, we introduce spatially-resolved temperature programmed desorption from areas exposed to the supersonic molecular beam to show how surface structures influence desorption features.

  1. Liquid bridging of cylindrical colloids in near-critical solvents

    Science.gov (United States)

    Labbé-Laurent, M.; Law, A. D.; Dietrich, S.

    2017-09-01

    Within mean field theory, we investigate the bridging transition between a pair of parallel cylindrical colloids immersed in a binary liquid mixture as a solvent that is close to its critical consolute point Tc. We determine the universal scaling functions of the effective potential and of the force between the colloids. For a solvent that is at the critical concentration and close to Tc, we find that the critical Casimir force is the dominant interaction at close separations. This agrees very well with the corresponding Derjaguin approximation for the effective interaction between the two cylinders, while capillary forces originating from the extension of the liquid bridge turn out to be more important at large separations. In addition, we are able to infer from the wetting characteristics of the individual colloids the first-order transition of the liquid bridge connecting two colloidal particles to the ruptured state. While specific to cylindrical colloids, the results presented here also provide an outline for identifying critical Casimir forces acting on bridged colloidal particles as such and for analyzing the bridging transition between them.

  2. Research on a lubricating grease print process for cylindrical cylinder

    Science.gov (United States)

    Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan

    2017-09-01

    In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.

  3. Magnetic mirror effect in a cylindrical Hall thruster

    Science.gov (United States)

    Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin

    2018-01-01

    For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0–5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.

  4. Natural frequency of a circular cylindrical shell filled with fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong Hoon; Kim, Tae Wan; Kim, Kang Soo; Park, Keun Bae [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-08-01

    This report presents an analytical method for evaluating the free vibration of a circular cylindrical shell filled with bounded compressible fluid. The analytical method was developed by means of the finite Fourier series expansion method. The compressible fluid motion was determined by means of the linear velocity potential theory. To clarify the validity of the analytical method, the natural frequencies of a circular cylindrical shell with the clamped-clamped boundary condition, and filled with water, were obtained by the analytical method and the finite element method using a commercial ANSYS 5.2 software. Excellent agreement on the natural frequencies of the fluid-filled shell structure was found. The compressibility and density of fluid effects the normalized coupled natural frequencies were investigated. The density of fluid affects on all coupled natural frequencies of the shell,, whereas the compressibility and bounding of fluid affects mainly on the natural frequencies of lower circumferential modes. The theory developed in this report will be applicable to the dynamic analysis of a core support barrel in SMART integral reactor filled with coolant. (author). 15 refs., 14 figs., 1 tab.

  5. Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers

    Science.gov (United States)

    Kumar, Samir; Shukla, Mukesh Kumar; Sona Maji, Partha; Das, Ritwick

    2017-09-01

    A coupled Tamm-plasmon-polariton (TPP) hybrid-mode based self-referenced refractive-index sensor is proposed. The geometry is comprised of a sub-wavelength analyte (sensing) layer sandwiched between two metal-clad distributed-Bragg-reflectors (DBRs). Reflection spectrum of the geometry exhibits two discernible reflectivity minima within the photonic-bandgap of DBR. The reflectivity minima are essentially due to excitation of two hybrid modes which have symmetric and anti-symmetric field distribution about the center resulting in an anti-crossing behaviour exhibited by hybrid-TPP mode dispersion curves. The low frequency symmetric mode exhibits strong dispersive properties by virtue of significant presence of mode-field in sensing medium. On the other hand, the high-frequency anti-symmetric mode remains unchanged with alterations in sensing layer. Thus, we propose a self-referenced sensing scheme using hybrid-TPP modes with sensitivity varying from 65~nm~RIU-1 to 180~nm~RIU-1 in the visible band. In addition, the TPP resonance are appreciably sharp as compared to surface-plasmon based geometries which results in improved detection accuracy and figure of merit. We also present an analysis for optimizing the sensor design for enhancing the sensitivity as well as detection accuracy.

  6. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere.

    Science.gov (United States)

    Geffrin, J M; García-Cámara, B; Gómez-Medina, R; Albella, P; Froufe-Pérez, L S; Eyraud, C; Litman, A; Vaillon, R; González, F; Nieto-Vesperinas, M; Sáenz, J J; Moreno, F

    2012-01-01

    Magnetodielectric small spheres present unusual electromagnetic scattering features, theoretically predicted a few decades ago. However, achieving such behaviour has remained elusive, due to the non-magnetic character of natural optical materials or the difficulty in obtaining low-loss highly permeable magnetic materials in the gigahertz regime. Here we present unambiguous experimental evidence that a single low-loss dielectric subwavelength sphere of moderate refractive index (n=4 like some semiconductors at near-infrared) radiates fields identical to those from equal amplitude crossed electric and magnetic dipoles, and indistinguishable from those of ideal magnetodielectric spheres. The measured scattering radiation patterns and degree of linear polarization (3-9 GHz/33-100 mm range) show that, by appropriately tuning the a/λ ratio, zero-backward ('Huygens' source) or almost zero-forward ('Huygens' reflector) radiated power can be obtained. These Kerker scattering conditions only depend on a/λ. Our results open new technological challenges from nano- and micro-photonics to science and engineering of antennas, metamaterials and electromagnetic devices.

  7. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    Science.gov (United States)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  8. Feasibility demonstration of a massively parallelizable optical near-field sensor for sub-wavelength defect detection and imaging.

    Science.gov (United States)

    Mostafavi, Mahkamehossadat; Diaz, Rodolfo E

    2016-05-17

    To detect and resolve sub-wavelength features at optical frequencies, beyond the diffraction limit, requires sensors that interact with the electromagnetic near-field of those features. Most instruments operating in this modality scan a single detector element across the surface under inspection because the scattered signals from a multiplicity of such elements would end up interfering with each other. However, an alternative massively parallelized configuration, capable of interrogating multiple adjacent areas of the surface at the same time, was proposed in 2002. Full physics simulations of the photonic antenna detector element that enables this instrument, show that using conventional red laser light (in the 600 nm range) the detector magnifies the signal from an 8 nm particle by up to 1.5 orders of magnitude. The antenna is a shaped slot element in a 60 nm silver film. The ability of this detector element to resolve λ/78 objects is confirmed experimentally at radio frequencies by fabricating an artificial material structure that mimics the optical permittivity of silver scaled to 2 GHz, and "cutting" into it the slot antenna. The experimental set-up is also used to demonstrate the imaging of a patterned surface in which the critical dimensions of the pattern are λ/22 in size.

  9. Comparison of 2D and 3D Fourier modal methods for modeling subwavelength-structured silicon waveguides

    Science.gov (United States)

    Kwiecien, Pavel; Richter, Ivan; Čtyroký, Jiří

    2012-02-01

    Frequency-domain Fourier modal methods have recently evolved into efficient tools for rigorous numerical modeling of a wide class of photonic and plasmonic structures and devices. In this contribution we describe the application of our 2D and 3D in-house tools, namely aperiodic rigorous coupled wave analysis (aRCWA) and bi-directional mode expansion propagation method using harmonic expansion (BEXX), on a recently described novel type of subwavelength grating (SWG) waveguides. They are created by means of periodically interlacing silicon segments with a superstrate material with a lower refractive index. It has been shown recently, both theoretically and experimentally, that for a suitable choice of SWG parameters such as grating period and duty cycle, the structure can support low-loss guided (Bloch) mode. Its effective index, mode profile and dispersion characteristics can thus be tailored to specific needs without the necessity of changing material composition. In our methods, either complex coordinate transformation or uniaxial anisotropic perfectly matched layers have been applied as efficient absorption boundary conditions. In order to reduce the number of expansion terms needed to reach required accuracy, the adaptive spatial resolution technique has been implemented. Structural symmetries of the devices can be fully utilized to this aim, too. Propagation constants of Bloch modes are also compared with those obtained with a full-vector film mode matching (FiMM) mode solver using the very simple effective medium theory (EMT).

  10. Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structures

    Science.gov (United States)

    Chou, Ta-Hsin; Cheng, Kuei-Yuan; Hsieh, Chih-Wei; Takaya, Yasuhiro

    2012-04-01

    The transparent conducting oxide (TCO) film is a significant component in flat panel display, e-paper and touch panel. The tin-doped indium oxide (ITO) material is one of the most popular TCOs. However, ITO has high refractive index, so the phenomenon of high-reflectance limits the wide use of ITO. In this study, the structure and mass production process of new low-reflectance TCO film is verified. Laser interference lithography and the roll-to-roll UV embossing process are used to fabricate subwavelength structures on PET film; then ITO was deposited on structures by roll-to-roll sputtering. When the dimension of structures reaches 300 nm pitch, the optical reflectance and electrical performance of film are reduced to 8.1% at wavelength 550 nm and its transmittance rate is 84.3% at the same wavelength, and the sheet resistance of this film is 50.44 Ω/□. This result indicates that the new TCO proposed in this study is suitable for touch panel and other display applications.

  11. Ultraviolet laser writing system based on polar scanning strategy to produce subwavelength metal gratings for surface plasmon resonance

    Science.gov (United States)

    Amako, Jun; Fujii, Eiichi

    2013-06-01

    We demonstrate the use of ultraviolet (UV) laser lithography in the production of subwavelength metal gratings. A laser writing system with a 413-nm Kr laser is used to write patterns on a resist-coated fused silica substrate mounted on a rotating table with a linear slider. One- and two-dimensional patterns are written in the resist at a selected sampling pitch or grating period, and the substrate is dry etched and coated with Au to obtain metallized gratings. Surface plasmon resonance dips, which appear in the reflectance spectra of the gratings, shift depending on the orientation of the incident polarization, because the gratings lack perfect symmetry owing to a system-induced skew in the writing beam. This dip shift can be considered tolerable when the gratings are used as a signal enhancer in Raman sensing applications. We conclude that UV laser writing based on polar coordinates is a candidate method for surface structuring on submicron scales. Devising a method to attain an unskewed beam will be the subject of future work.

  12. Graphene-based plasmonic electro-optic modulator with sub-wavelength thickness and improved modulation depth

    Science.gov (United States)

    Vahed, Hamid; Ahmadi, Sahar Soltan

    2017-11-01

    A graphene layer has high absorption with very low thickness. The chemical potential of graphene change by an applied voltage and then it leads to the variable optical absorption of graphene. These properties make graphene a suitable absorber layer in optoelectronic devices. The graphene layer is placed in the position of the maximum optical field that causes the maximum absorption. In this paper, an electro-optics modulator is designed with one and two graphene layers with the sub-wavelength thickness. The applied voltage causes change in the chemical potential of graphene and causes change in the graphene absorption. Therefore, the propagating wave would be modulated. The presence of the graphene layer has caused the proposed modulator to have a relatively uniform response in a broad range of frequencies. Simulations show that increasing the number of graphene layers improved the modulation properties. This modulator has a very low thickness and can be integrated into optical circuits. This modulator is applicable in mode-locking laser systems.

  13. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing.

    Science.gov (United States)

    Dai, Daoxin; Wu, Hao; Zhang, Wei

    2015-10-09

    Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, the field enhancement in plasmonic nanostructures occurs only for the polarization mode whose electric field is perpendicular to the metal/dielectric interface, and thus the strong birefringence is beneficial for realizing ultra-small polarization-sensitive/selective devices, including polarization beam splitters, and polarizers. Third, plasmonic nanostructures provide an excellent platform of merging electronics and photonics for some applications, e.g., thermal tuning, photo-thermal detection, etc. Finally, the field enhancement at the metal/dielectric interface helps a lot to realize optical sensors with high sensitivity when introducing plasmonic nanostrutures. In this paper, we give a review for recent progresses on the utilization of field enhancement in plasmonic nanostructures for these applications, e.g., waveguiding, polarization handling, heating, as well as optical sensing.

  14. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  15. Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission.

    Science.gov (United States)

    Valdivia-Valero, F J; Nieto-Vesperinas, M

    2010-03-29

    We study the excitation of whispering gallery modes (WGM) in dielectric nanocylinders by light transmitted through a subwavelength slit in a metallic slab. Calculations are done both by the finite elements method and using FDTD simulations. We discuss the effect of that excitation on extraordinary transmission by the slit. In this way, we show the dominant role of the WGMs over the aperture enhanced transmission as regards the resulting transmitted intensity and its concentration inside the cylinders. When sets of these particles are placed in front of the slit, like linear or bifurcated chains, with or without bends, the concentration of WGMs is controlled by designing the geometry parameters, so that these surface waves are coupled by both waveguiding of the nanocylinder eigenmodes and by scattered propagating waves. Also, the choice of the wavelength and polarization of the illumination, allows to select the excitation of either bonding or antibonding states of the field transmitted through the aperture into the particles. These resonances are further enhanced when a beam emerges from the slit due to adding a periodic corrugation in the slab.

  16. Cylindrical electron acoustic solitons for modified time-fractional nonlinear equation

    Science.gov (United States)

    Abdelwahed, H. G.; El-Shewy, E. K.; Mahmoud, Abeer A.

    2017-08-01

    The modulation of cylindrical electron acoustic characteristics using a time fractal modified nonlinear equation has been investigated in nonisothermal plasmas. The time fractional cylindrical modified-Korteweg-de Vries equation has been obtained by Agrawal's analysis. A cylindrical localized soliton has been obtained via the Adomian decomposition method. The pressure term and cylindrical time fractional effects on the modulated wave properties have been investigated with comparative auroral observations. It is established that the presence of the fractional order factor not only significantly modifies the solitary characteristics but also varies the profile polarity.

  17. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  18. Tunable cylindrical shell as an element in acoustic metamaterial

    CERN Document Server

    Titovich, Alexey S

    2014-01-01

    Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiffeners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell's effective acoustic properties (bulk modulus and density) can be tuned as desired. Subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. Effectiveness of the proposed metamaterial is demonstrated by matching the properties of a thin aluminum shell with a polymer insert to those of water. The scattering cross section in water is nearly zero over a broad range of frequencies at the lower end of the spectrum. By arranging the tuned shells in an array the resulting acoustic metamaterial is capable of steering waves. As an example, a cyl...

  19. Exact Thermal Analysis of Functionally Graded Cylindrical and Spherical Vessels

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Thermal analyses of radially functionally graded (FG thick-walled a spherical vessel and an infinite cylindrical vessel or a circular annulus are conducted analytically by the steady-state 1-D Fourier heat conduction theory under Dirichlet’s boundary conditions. By employing simple-power material grading pattern the differential equations are obtained in the form of Euler-Cauchy types. Analytical solution of the differential equations gives the temperature field and the heat flux distribution in the radial direction in a closed form. Three different physical metal-ceramic pairs first considered to study the effect of the aspect ratio, which is defined as the inner radius to the outer radius of the structure, on the temperature and heat flux variation along the radial coordinate. Then a parametric study is performed with hypothetic inhomogeneity indexes for varying aspect ratios.

  20. DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Minjie Wu

    2016-01-01

    Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.

  1. Rotating solitary wave at the wall of a cylindrical container

    KAUST Repository

    Amaouche, Mustapha

    2013-04-30

    This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of the base flow. The present formulation is based on a less restricting condition and consequently corrects the last shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first half of its lifetime and estimating the speed of the observed wave with good accuracy.

  2. Evaluation of hybrid composite materials in cylindrical specimen geometries

    Science.gov (United States)

    Liber, T.; Daniel, I. M.

    1976-01-01

    Static and fatigue properties of three composite materials and hybrids were examined. The materials investigated were graphite/epoxy, S-glass/epoxy, PRD-49 (Kevlar 49)/epoxy, and hybrids in angle-ply configurations. A new type of edgeless cylindrical specimen was developed. It is a flattened tube with two flat sides connected by curved sections and it is handled much like the standard flat coupon. Special specimen fabrication, tabbing, and tab region reinforcing techniques were developed. Axial modulus, Poisson's ratio, strength, and ultimate strain were obtained under static loading from flattened tube specimens of nine laminate configurations. In the case of graphite/epoxy the tubular specimens appeared to yield somewhat higher strength and ultimate strain values than flat specimens. Tensile fatigue tests were conducted with all nine types of specimens and S-N curves obtained. Specimens surviving 10 million cycles of tensile loading were subsequently tested statically to failure to determine residual properties.

  3. Anomalous sound absorption in lattices of cylindrical perforated shells

    Science.gov (United States)

    García-Chocano, Victor M.; Sánchez-Dehesa, José

    2015-03-01

    This work reports the enhancement of sound absorption by sonic crystals slabs made of cylindrical perforated shells. These building units, with perforations of millimeter size, show small losses and cannot explain the strong absorption observed at some specific frequencies when the slabs consist of just a few number of rows. It is found that this phenomenon is due to a resonant Wood anomaly which occurs when the incident wave couples with a leaky guided mode supported by the slab. This effect results in an enhancement of the absorption, since the energy transferred to the guided mode travels within the slab, along a direction perpendicular to the incident one. Multiple scattering and finite element simulations give support to the proposed behavior, the transmittance results being in good agreement with experimental data previously reported.

  4. Numerical Solutions for a Cylindrical Laser Diffuser Flowfield

    Science.gov (United States)

    1990-06-01

    W. B., and Finke, J. R. "Diffusers for Cylindrical Source Flow Lasers," Laser Digest , Fall 1974, AFWL-TR-74- 344. 8. Howard, James H. and Hasinger...Siegfried H., "Diffusion Characteristics of Large L/D Radial Outflow Nozzle Systems," Laser Digest , Summer 1975. AFIWL-TR-75-229. 9. Zumpano, F. R...040G GMo GM m a" an m OGGM M O 4m 4 4-m am am A1 M c" an mO WO) wre) XK2 MACH CONTOURS N=350K 47%NSR XKZ MACH CONTORS N=375K V7.NSR an Gn GMG M0004 4 MG

  5. Buckling and vibration of circular cylindrical shells containing hot liquid

    Science.gov (United States)

    Ganesan, N.; Pradeep, V.

    2005-11-01

    Cylindrical shell filled with hot liquid is analyzed for buckling and vibration behavior using semi-analytical finite element method. A parametric study is conducted on a 316L stainless-steel cylinder filled with hot liquid. The temperature distribution in shell domain is obtained by using axisymmetric eight-node ring finite elements, capable of taking axial variation of temperature into account. Three-node ring elements are used for buckling and vibration analysis, formulated using semi-analytical finite element method. Thermal stress resultants and moment resultants in the shell are estimated and static buckling analysis is carried out to find the buckling temperature of the container for different levels of filling of liquid and for two different boundary conditions. Free vibration analysis carried out by considering initial stress effect and added mass effect due to hot liquid. Two different geometries are considered to study the effect of geometry on buckling temperature.

  6. Dimension effects in plasma immersion ion implantation of cylindrical bore

    CERN Document Server

    Tian Xiu Bo; Tong Hong Hui; Chu, P K

    2002-01-01

    Plasma immersion ion implantation is a new technique pertaining to ion implantation. Different from the case of exterior surface treatment, plasma immersion ion implantation of interior surface possesses dimension effects. Consequently it is a challenge to implant the inner wall of a cylindrical bore due to this finite dimension.The ion energy cannot be linearly changed with applied voltage and there exists a saturation value due to overlap effect of plasma sheath. The plasma in the bore may rapidly be depleted, which is attributed to finite plasma volume and plasma-sheath con-flowing effect. For instance the plasma depletion time is about 0.55 mu s when a bore with a diameter of 20 cm is treated under conditions of applied voltage of 30 kV and plasma density of 2 x 10 sup 1 sup 5 ions/cm sup 3. Interior plasma-source hardware may be an effective solution

  7. Classical and quantum properties of cylindrically polarized states of light.

    Science.gov (United States)

    Holleczek, Annemarie; Aiello, Andrea; Gabriel, Christian; Marquardt, Christoph; Leuchs, Gerd

    2011-05-09

    We investigate theoretical properties of beams of light with non-uniform polarization patterns. Specifically, we determine all possible configurations of cylindrically polarized modes (CPMs) of the electromagnetic field, calculate their total angular momentum and highlight the subtleties of their structure. Furthermore, a hybrid spatio-polarization description for such modes is introduced and developed. In particular, two independent Poincaré spheres have been introduced to represent simultaneously the polarization and spatial degree of freedom of CPMs. Possible mode-to-mode transformations accomplishable with the help of Bconventional polarization and spatial phase retarders are shown within this representation. Moreover, the importance of these CPMs in the quantum optics domain due to their classical features is highlighted. © 2011 Optical Society of America

  8. Buckling of a thin rod under cylindrical constraint

    Science.gov (United States)

    Miller, Jay; Su, Tianxiang; Wicks, Nathan; Pabon, Jahir; Bertoldi, Katia; Reis, Pedro

    2013-03-01

    We investigate the buckling and post-buckling behavior of a thin elastic rod, under cylindrical constraint, with distributed loading. Our precision model experiments consist of injecting a custom-fabricated rod into a transparent glass pipe. Under imposed velocity (leading to frictional axial loading), a portion of the initially straight rod first buckles into a sinusoidal mode and eventually undergoes a secondary instability into a helical configuration. The buckling and post-buckling behavior is found to be highly dependent on the system's geometry, namely the injected rod length and the aspect ratio of the rod to pipe diameter, as well as material parameters. We quantify the critical loads for this sequence of instabilities, contrast our results with numerical experiments and rationalize the observed behavior through scaling arguments.

  9. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.

    2011-03-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.

  10. Vector cylindrical harmonics for low-dimensional convection models

    CERN Document Server

    Kelley, Douglas H; Knox, Catherine A

    2016-01-01

    Approximate empirical models of thermal convection can allow us to identify the essential properties of the flow in simplified form, and to produce empirical estimates using only a few parameters. Such "low-dimensional" empirical models can be constructed systematically by writing numerical or experimental measurements as superpositions of a set of appropriate basis modes, a process known as Galerkin projection. For Boussinesq convection in a cylinder, those basis modes should be defined in cylindrical coordinates, vector-valued, divergence-free, and mutually orthogonal. Here we construct two such basis sets, one using Bessel functions in the radial direction, and one using Chebyshev polynomials. We demonstrate that each set has those desired characteristics and demonstrate the advantages and drawbacks of each set. We show their use for representing sample simulation data and point out their potential for low-dimensional convection models.

  11. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils

    Science.gov (United States)

    Barros, P. L. A.

    2006-06-01

    A complete formulation and implementation for assessment of the response to dynamic loads of cylindrical rigid structures embedded in transversely isotropic elastic half-spaces is presented. The analysis is performed in the frequency domain and the steady-state structure response is obtained. The method is based on a non-singular version of the indirect boundary element method which uses influence functions, instead of Green's functions, as fundamental solutions. These influence functions are the response of an elastic half-space to distributed, internally applied loads. The proposed method imposes full bonding contact between the foundation and the surrounding soil. Numerical results for displacement (vertical and horizontal) and rotation (twisting and rocking) impedances, showing the influence of the soil anisotropy, are presented. Results for the soil-structure interface tractions and for the displacement field throughout the half-space are also shown.

  12. Effect of Light Conducting Cylindrical Inserts on Gingival Microleakage

    Directory of Open Access Journals (Sweden)

    SM. Moazzami

    2007-03-01

    Full Text Available Objective: Microleakage in the gingival floor of class II composite restorations can compromise the marginal adaptation of the filling material to the cavity edges. The aim of this study was to evaluate the effect of light conducting cylindrical inserts in decreasing the microleakage of the gingival floor in cavities 1mm below the CEJ.Materials and Methods: Eighty maxillary first molars were randomly divided into eight groups according to use of glass inserts, type of resin (Coltene unfilled resin versus Scotchbond multi purpose and filling technique (one-unit versus incremental. Proximal class II cavities were prepared in all samples with the gingival floor one millimeter below the CEJ. Etched and silan-treated glass inserts were made from 2mm cylindrical bioglass material and cavities were restored according to research protocol. The samples were subjected to 2500 thermal cycles (5-55oC, immersed in 0.5% basic fuchsin solution, embedded in epoxy resin and cut centrally and laterally (buccally or lingually in a mesiodistal direction. Microleakage was scored and collected data were statistically analyzed using Kruskal-Wallis and Mann-Whitney tests.Results: Minimal dye penetration was observed in the group that employed the incre-mental technique along with Scotchbond, with or without glass inserts. A significant difference was observed between the eight groups. In addition the use of the incremental technique and glass inserts had a significant effect on the microleakage of lateral and central sections, respectively. Application of dentin bonding agent signifi-cantly affected both sections.Conclusion: Glass inserts were effective in decreasing cervical microleakage of class II cavities restored with composite resin.

  13. Multi-objective inverse design of sub-wavelength optical focusing structures for heat assisted magnetic recording

    Science.gov (United States)

    Bhargava, Samarth; Yablonovitch, Eli

    2014-09-01

    We report using Inverse Electromagnetic Design to computationally optimize the geometric shapes of metallic optical antennas or near-field transducers (NFTs) and dielectric waveguide structures that comprise a sub-wavelength optical focusing system for practical use in Heat Assisted Magnetic Recording (HAMR). This magnetic data-recording scheme relies on focusing optical energy to locally heat the area of a single bit, several hundred square nanometers on a hard disk, to the Curie temperature of the magnetic storage layer. There are three specifications of the optical system that must be met to enable HAMR as a commercial technology. First, to heat the media at scan rates upward of 10 m/s, ~1mW of light (<1% of typical laser diode output power) must be focused to a 30nm×30nm spot on the media. Second, the required lifetime of many years necessitates that the nano-scale NFT must not over-heat from optical absorption. Third, to avoid undesired erasing or interference of adjacent tracks on the media, there must be minimal stray optical radiation away from the hotspot on the hard disk. One cannot design the light delivery system by tackling each of these challenges independently, because they are governed by coupled electromagnetic phenomena. Instead, we propose multiobjective optimization using Inverse Electromagnetic Design in conjunction with a commercial 3D FDTD Maxwell's equations solver. We computationally generated designs of a metallic NFT and a high-index waveguide grating that meet the HAMR specifications simultaneously. Compared to a mock industry design, our proposed design has a similar optical coupling efficiency, ~3x improved suppression of stray optical radiation, and a 60% (280°C) reduction in NFT temperature rise. We also distributed the Inverse Electromagnetic Design software online so that industry partners can use it as a repeatable design process.

  14. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  15. Effect of fluid viscosity on wave propagation in a cylindrical bore in ...

    Indian Academy of Sciences (India)

    Abstract. Wave propagation in a cylindrical bore filled with viscous liquid and situated in a micropolar elastic medium of infinite extent is studied. Frequency equation for surface wave propagation near the surface of the cylindrical bore is obtained and the effect of viscosity and micropolarity on dispersion curves is observed.

  16. Numerical computation of the restoring force in a cylindrical bearing containing magnetic liquid

    Directory of Open Access Journals (Sweden)

    Greconici Marian

    2008-01-01

    Full Text Available Present paper deals with the second order of magnetic levitation, applied to a cylindrical bearing holding a magnetized shaft and the magnetic liquid The magnetic restoring force acting on the shaft of the cylindrical bearing. was numerically evaluated, the liquid being considered a nonlinear medium.

  17. Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav

    2009-01-01

    A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...

  18. Second-harmonic generation of cylindrical electromagnetic waves propagating in an inhomogeneous and nonlinear medium.

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Yang, Xiaoxue; Wu, Ying

    2012-01-01

    A general description of cylindrical electromagnetic waves propagating in nonlinear and inhomogeneous media is given by deducing cylindrical coupled-wave equations. Based on the cylindrical coupled-wave equations, we analyze second-harmonic generation (SHG) of some special cases of inhomogeneity, and find that the inhomogeneity of the first- and second-order polarization can influence the amplitude of the SHG. From a different point of view, exact solutions of cylindrical electromagnetic waves propagating in a nonlinear medium with a special case of inhomogeneity have been obtained previously. We show that cylindrical SHG in an inhomogeneous and nonlinear medium can also be deduced from exact solutions. As verification, we compare the results obtained from the two different methods and find that descriptions of SHG by the coupled-wave equations are in good agreement with the exact solutions.

  19. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  20. Observing of tree trunks and other cylindrical objects using GPR

    Science.gov (United States)

    Jezova, Jana; Lambot, Sebastien

    2016-04-01

    Trees are a part of our everyday life, hence it is important to prevent their collapse to protect people and urban infrastructures. It is also important to characterize tree wood properties for usages in construction. In order to investigate internal parts of tree trunks non-invasively, ground-penetrating radar (GPR), or in this case, ultra-wideband microwave radar as a general tool, appears to be a very promising technology. Nevertheless, tree trunk tomography using microwave radar is a complicated task due to the circular shape of the trunk and the very complex (heterogeneous and anisotropic) internal structures of the trunk. Microwave sensing of tree trunks is also complicated due to the electromagnetic properties of living wood, which strongly depend on water content, density and temperature of wood. The objective of this study is to describe tree trunk radar cross sections including specific features originating from the particular circumferential data acquisition geometry. In that respect, three experiments were performed: (1) numerical simulations using a finite-difference time-domain software, namely, gprMax 2D, (2) measurements on a simplified laboratory trunk model including plastic and cardboard pipes, sand and air, and (3) measurements over a real tree trunk. The analysis was further deepened by considering: (1) common zero-offset reflection imaging, (2) imaging with a planar perfect electrical conductor (PEC) at the opposite side of the trunk, and (3) imaging with a PEC arc at the opposite side of the trunk. Furthermore, the shape of the reflection curve of a cylindrical target was analytically derived based on the straight-ray propagation approximation. Subsequently, the total internal reflection (TIR) phenomenon occurring in cylindrical objects was observed and analytically described. Both the straight-ray reflection curve and TIR were well observed on the simulated and laboratory radar data. A comparison between all experiments and radar

  1. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Gregory Russ [Portland State Univ., Portland, OR (United States)

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle

  2. Deformation analysis of horizontal stiffened cylindrical shells under the effects of gravity

    Directory of Open Access Journals (Sweden)

    LIU Dong

    2017-01-01

    Full Text Available In order to study the deformation of submarine pressure hulls under the effects of gravity,a sim-ple calculation formula of the deformation of the free ends of stiffened cylindrical shells is derived based on moment theory and non-moment theory,and the calculated results are compared with the results of Finite Element Analysis(FEAwhich tests the reliability of the formula. The results show that when a thin-wall cylindrical shell simply supported at the bottom is affected by its own gravity,the deformation degree at the free end is directly proportional to the fourth power of the inner diameter of the cylindrical shell,and in-versely proportional to the square of the wall thickness;for cantilever cylindrical shells,the gravity load has little effect on the roundness of the free end plane. With the nonlinear increase of distance between the free end and fixed supporting end,the increase rate increases gradually. With the increase of the inner di-ameter of the cylindrical shell,the deformation degree of the free end decreases gradually. When the inner diameter of the cylindrical shell is 0.75 times its longitudinal length,the deformation degree of the free end is at a minimum,then increases gradually as the inner diameter increases. The gravity deformation calcula-tion of ring stiffened cylindrical shells in a horizontal state and the strengthening measures can provide ref-erences for further study.

  3. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer.

    Science.gov (United States)

    Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan

    2017-12-08

    Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  4. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  5. Weak and strong confinements in prismatic and cylindrical nanostructures.

    Science.gov (United States)

    Vorobiev, Yuri V; Mera, Bruno; Vieira, Vítor R; Horley, Paul P; González-Hernández, Jesús

    2012-07-05

    Cylindrical nanostructures, namely, nanowires and pores, with rectangular and circular cross section are examined using mirror boundary conditions to solve the Schrödinger equation, within the effective mass approximation. The boundary conditions are stated as magnitude equivalence of electron's Ψ function in an arbitrary point inside a three-dimensional quantum well and image point formed by mirror reflection in the walls defining the nanostructure. Thus, two types of boundary conditions - even and odd ones - can be applied, when Ψ functions in a point, and its image, are equated with the same and the opposite signs, correspondingly. In the former case, the Ψ function is non-zero at the boundary, which is the case of a weak confinement. In the latter case, the Ψ function vanishes at the boundary, corresponding to strong quantum confinement. The analytical expressions for energy spectra of electron confined within a nanostructure obtained in the paper show a reasonable agreement with the experimental data without using any fitting parameters.

  6. Anisometropia is independently associated with both spherical and cylindrical ametropia.

    Science.gov (United States)

    Qin, Xue-Jiao; Margrain, Tom H; To, Chi Ho; Bromham, Nathan; Guggenheim, Jeremy A

    2005-11-01

    To explore the associations between anisometropia and spherical ametropia, astigmatism, age, and sex. Associations between the prevalence and magnitude of anisometropia with age, sex, spherical power, and cylindrical power, were assessed in a group of 90,884 subjects attending optometry practices in the United Kingdom. Logistic regression models were used to assess the independent contribution of each explanatory variable. Logistic regression analyses that included all subjects or just those aged 20 to 40 years showed that spherical ametropia and astigmatism were independently associated with anisometropia (myopes, P Anisometropia was relatively stable between the ages of 20 and 40 years, but then became more common with age, in myopes from the age of 40 years onward (P anisometropia to a clinically significant extent. This is the first study to show an independent association between anisometropia and both spherical ametropia and astigmatism. The results also suggest that the previously noted increased prevalence of anisometropia with age occurs later in hyperopes than in myopes, once other covariates have been controlled for. However, it could not be ruled out that this latter effect was due to clinical selection bias in our sample. The findings suggest that research projects involving the recruitment of highly ametropic subjects, such as those investigating the genetics of refractive error, may benefit by avoiding the use of stringent inclusion criteria for anisometropia, because otherwise a large proportion of the relevant population will be excluded.

  7. Jamming of Cylindrical Grains in Featureless Vertical Channels

    Science.gov (United States)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  8. Jamming of Monodisperse Cylindrical Grains in Featureless Vertical Channels

    Science.gov (United States)

    Friedl, Nicholas; Baxter, G. William

    2014-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel under the influence of gravity. These grains have an aspect-ratio less than two (H/D aspirin tablets, 35mm film canisters, poker chips, or coins. Monodisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. No combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College.

  9. Mechanically robust cylindrical metal terahertz waveguides for cryogenic applications

    Science.gov (United States)

    Wallis, Robert; Degl'Innocenti, Riccardo; Mitrofanov, Oleg; Waldie, Joanna; Bledt, Carlos M.; Melzer, Jeffrey E.; Harrington, James A.; Beere, Harvey E.; Ritchie, David A.

    2017-02-01

    As the ambition behind THz quantum cascade laser based applications continues to grow, abandoning free-space optics in favor of waveguided systems promises major improvements in targeted, easy to align, and robust radiation delivery. This is especially true in cryogenic environments, where illumination is traditionally challenging. Although the field of THz waveguides is rapidly developing, most designs have limitations in terms of mechanical stability at low temperatures, and are costly and complicated to fabricate to lengths > 1 m. In this work, we investigate readily available cylindrical metal waveguides which are suitable for effective power delivery in cryogenic environments, and explore the optimal dimensions and materials available. The materials chosen were extruded un-annealed and annealed copper, as well as stainless steel, with bore diameters of 1.75, 2.5, and 4.6 mm. Measurements were performed at three different frequencies, 2.0, 2.85 and 3.2 THz, with optimal transmission losses optical couplers are also presented and characterised, with the ability to change the beam path by 90° with a coupling loss of just 2.2 dB whilst maintaining mode quality, or thermally isolate sections of waveguide with a coupling loss as low as 0.5 dB. The work presented here builds on previous work1, and forms a comprehensive investigation of cryogenically compatible THz waveguides and optical couplers, paving the way for a new generation of systems to utilize THz QCLs for a host of low-temperature investigations.

  10. Particle model of a cylindrical inductively coupled ion source

    Science.gov (United States)

    Ippolito, N. D.; Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.

    2017-08-01

    In spite of the wide use of RF sources, a complete understanding of the mechanisms regulating the RF-coupling of the plasma is still lacking so self-consistent simulations of the involved physics are highly desirable. For this reason we are developing a 2.5D fully kinetic Particle-In-Cell Monte-Carlo-Collision (PIC-MCC) model of a cylindrical ICP-RF source, keeping the time step of the simulation small enough to resolve the plasma frequency scale. The grid cell dimension is now about seven times larger than the average Debye length, because of the large computational demand of the code. It will be scaled down in the next phase of the development of the code. The filling gas is Xenon, in order to minimize the time lost by the MCC collision module in the first stage of development of the code. The results presented here are preliminary, with the code already showing a good robustness. The final goal will be the modeling of the NIO1 (Negative Ion Optimization phase 1) source, operating in Padua at Consorzio RFX.

  11. Cylindrical Field Effect Transistor: A Full Volume Inversion Device

    KAUST Repository

    Fahad, Hossain M.

    2010-12-01

    The increasing demand for high performance as well as low standby power devices has been the main reason for the aggressive scaling of conventional CMOS transistors. Current devices are at the 32nm technology node. However, due to physical limitations as well as increase in short-channel effects, leakage, power dissipation, this scaling trend cannot continue and will eventually hit a barrier. In order to overcome this, alternate device topologies have to be considered altogether. Extensive research on ultra thin body double gate FETs and gate all around nanowire FETs has shown a lot of promise. Under strong inversion, these devices have demonstrated increased performance over their bulk counterparts. This is mainly attributed to full carrier inversion in the body. However, these devices are still limited by lithographic and processing challenges making them unsuitable for commercial production. This thesis explores a unique device structure called the CFET (Cylindrical Field Effect Transistors) which also like the above, relies on complete inversion of carriers in the body/bulk. Using dual gates; an outer and an inner gate, full-volume inversion is possible with benefits such as enhanced drive currents, high Ion/Ioff ratios and reduced short channel effects.

  12. Uniformity of cylindrical imploding underwater shockwaves at very small radii

    Science.gov (United States)

    Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.

    2017-11-01

    We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.

  13. Mathematical modelling of the development of a cylindrical tumour

    Directory of Open Access Journals (Sweden)

    Algis Kavaliauskas

    2014-08-01

    Full Text Available The article deals with interaction of tumour cells and leucocytes in the cylindrical cavities. This type of interaction is typical in the cases of development of a tumour in the intestine, blood vessel or in a bone cavity. Two cases are separated: the case of soft and hard tumour. In the case of a solid tumour, leucocytes can interact only with the surface cells of the tumour. This type of interaction is described by the system of two nonlinear first degree differential equations. The expressions of stationary points are obtained and analysis of their stability is performed. In the case of a soft tumour the system of two partial differential equations with first order derivatives and initial and boundary conditions is proposed. An algorithm for computing the numeric solution of the mathematical model is applied. In this case the diffusion of leucocytes and their ability to reach the tumour cells in the whole volume of the tumour is included. The algorithm is constructed and the system is solved numerically. Bifurcation curve is obtained. It separates two qualitatively different areas on the two parameter plane. Under the same initial parameters in the first area development of the tumour cells cannot be stopped, whereas in the second area leukocytes defeat the tumour cells.DOI: http://dx.doi.org/10.15181/csat.v2i1.183

  14. Fast liner proposal. [Magnetic implosions of cylindrical liners

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, A.R.; Freeman, B.L.; Gerwin, R.A.; Jarboe, T.R.; Krakowski, R.A.; Malone, R.C.; Marshall, J.; Miller, R.L.; Suydam, B.

    1977-08-01

    This is a proposal to study, both theoretically and experimentally, the possibility of making a fusion reactor by magnetically imploding a cylindrical metallic shell on a prepared plasma. The approach is characterized by the following features: (1) the nonrotating liner would be driven by an axial current, (2) the plasma would also carry an axial current that provides an azimuthal magnetic field for thermal insulation in both the radial and longitudinal directions, (3) solid end plugs would be utilized to prevent axial loss of particles, and (4) liner speeds would be in the 10/sup 6/ cm/s range. The preliminary calculations indicate (1) that the energetics are favorable (energy inputs of about 10 MJ might produce a machine in the break-even regime), (2) that radiation and heat losses could be made tolerable, (3) that alpha-particle heating could be made very effective, and (4) that Taylor instabilities in a fast liner might be harmless because of the large viscosities at high pressures. A preliminary conceptual design of the sort of fusion reactor that might result from such an approach is discussed, as are some of the relevant reactor scaling arguments.

  15. Reconfiguration parameters for drag of flexible cylindrical elements

    Science.gov (United States)

    John, Chapman; Wilson, Bruce; Gulliver, John

    2015-11-01

    This presentation compares parameters that characterize reconfiguration effects on flow resistance and drag. The drag forces occurring on flexible bluff bodies are different from the drag occurring on rigid bluff bodies due to reconfiguration. Drag force data, collected using a torque sensor in a flume, for simple cylindrical obstructions of the same shape and size but with different flexibility is used to fit drag parameters. The key parameter evaluated is a reference velocity factor u to account for drag reduction due to reconfiguration, similar to a Vogel exponent. Our equations preserves the traditional exponent of the drag relationship, but places a factor onto the drag coefficient for flexible elements, rather than a Vogel exponent arrangement applied to the flow velocity. Additionally we relate the reference velocity factor u to the modulus of elasticity of the material through the Cauchy Number. The use of a reference velocity factor u in place of a Vogel exponent appears viable to account for how the drag forces are altered by reconfiguration. The proposed formulation for drag reduction is more consistently estimated for the range of flexibilities in this study. Unfortunately, the mechanical properties of vegetation are not often readily available for reconfiguration relationships to the elastic modulus of vegetation to be of immediate practical use.

  16. Cylindrical sound wave generated by shock-vortex interaction

    Science.gov (United States)

    Ribner, H. S.

    1985-01-01

    The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.

  17. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  18. Analysis of the external radiation from circular cylindrical shells

    Science.gov (United States)

    Aslani, Pegah; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2017-11-01

    Structurally radiated sound power is a critical design parameter. The acoustic radiation mode approach for computing sound power was developed in the early 1990s and has since been widely used. It has been shown to be a rather efficient approach for determining the radiated sound power. In previous research, radiation mode expressions have been developed for planar and spherical structures, as well as axisymmetric modes of internal and external radiation from cylinders. In this work, the radiation modes for external radiating cylinders which account for both axial and circumferential dependence are presented. The expressions are uniquely developed using cylindrical basis functions which are a more natural match to the geometry than past developments, which have been based on spherical harmonics. Higher order radiation modes than have been previously presented are shown. The ;leapfrog effect;, whereby higher order modes leapfrog over lower modes in terms of their radiation efficiencies as the frequency goes above the cut-on frequency for those modes, is discussed in detail. The relationships between the mode efficiency and the coincidence effect associated with the cut-on frequencies of the vibration modes are described.

  19. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  20. Experimental observation of discrete helical modes in imploding cylindrical liners

    Science.gov (United States)

    Yager-Elorriaga, D. A.; Zhang, P.; Steiner, A. M.; Jordan, N. M.; Campbell, P. C.; Lau, Y. Y.; Gilgenbach, R. M.

    2016-10-01

    The 1-MA Linear Transformer Driver at the University of Michigan was used to implode ultrathin (400 nm thick) cylindrical aluminum liners1 that were pre-embedded with externally applied, axial magnetic fields of Bz = 0.2 - 2.0 T. Using 12-frame laser shadowgraphy and visible self-emission, helical striations were found that increased in pitch angle during the implosion and decreased in angle during the later time explosion, despite the relatively large, peak azimuthal magnetic field exceeding 40 T. The results are interpreted as a discrete, non-axisymmetric eigenmode of a helical instability that persists from implosion to explosion. The helical pitch angle φ was found to obey the simple relation φ = m / kR , where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Analytic growth rates2 for experimental parameters are presented, and show that early in the current pulse, axisymmetric modes (m = 0) are completely stabilized while non-axisymmetric modes (m > 1) are found to be unstable. This research was supported by DOE Award DE-SC0012328, Sandia National Laboratories, and the NSF. The fast framing camera was supported by AFOSR Grant #FA9550-15-1-0419.

  1. On mathematical modelling of solitary pulses in cylindrical biomembranes.

    Science.gov (United States)

    Engelbrecht, Jüri; Tamm, Kert; Peets, Tanel

    2015-01-01

    The propagation of action potentials in nerve fibres is usually described by models based on the ionic hypotheses. However, this hypothesis does not provide explanation of other experimentally verified phenomena like the swelling of fibres and heat production during the nerve pulse propagation. Heimburg and Jackson (Proc Natl Acad Sci USA 102(28):9790-9795, 2005, Biophys Rev Lett 2:57-78, 2007) have proposed a model describing the swelling of fibres like a mechanical wave related to changes of longitudinal compressibility of the cylindrical membrane. In this paper, the possible dispersive effects in such microstructured cylinders are analysed from the viewpoint of solid mechanics, particularly using the information from the analysis of the well-known rod models. A more general governing equation is proposed which satisfies the conditions imposed by the physics of wave processes. The numerical simulations demonstrate the influence of nonlinearities, the role of various dispersion terms and the formation and propagation of solitary waves along the wall together with the corresponding transverse displacement. It is conjectured that due to the coupling effects between longitudinal and transverse displacements of a cylinder, the transverse displacement (i.e. swelling) is related to the derivative of the longitudinal displacement. In this way, the correspondence between theoretical and experimental (Tasaki in Physiol Chem Phys Med NMR 20:251-268, 1988) results can be described.

  2. Comparative Fatigue Lives of Rubber and PVC Wiper Cylindrical Coatings

    Science.gov (United States)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.; Savage, Michael

    2002-01-01

    Three coating materials for rotating cylindrical-coated wiping rollers were fatigue tested in 2 Intaglio printing presses. The coatings were a hard, cross-linked, plasticized PVC thermoset (P-series); a plasticized PVC (A-series); and a hard, nitryl rubber (R-series). Both 2- and 3-parameter Weibull analyses as well as a cost-benefit analysis were performed. The mean value of life for the R-series coating is 24 and 9 times longer than the P- and A-series coatings, respectively. Both the cost and replacement rate for the R-series coating was significantly less than those for the P- and A-series coatings. At a very high probability of survival the R-series coating is approximately 2 and 6 times the lives of the P- and A-series, respectively, before the first failure occurs. Where all coatings are run to failure, using the mean (life) time between removal (MTBR) for each coating to calculate the number of replacements and costs provides qualitatively similar results to those using a Weibull analysis.

  3. Thermal Behavior of Cylindrical Buckling Restrained Braces at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Elnaz Talebi

    2014-01-01

    Full Text Available The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core’s surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.

  4. Cylindrical Bending of Deformable Textile Rectangular Patch Antennas

    Directory of Open Access Journals (Sweden)

    Freek Boeykens

    2012-01-01

    Full Text Available Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bending radius. Therefore, we propose a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression. It allows to predict the resonance frequency and the radiation pattern as a function of the bending radius. Its validity has been verified experimentally. Unlike previous contributions, which concerned only qualitative studies by means of measurements and numerical full-wave simulations, the proposed model offers advantages in terms of physical insight, accuracy, speed, and cost.

  5. Fatigue and Model Analysis of the CNC Cylindrical Grinder

    Directory of Open Access Journals (Sweden)

    Lin Jui-Chang

    2016-01-01

    Full Text Available The purpose of this study is to lower deviation of workpiece by meeting high stability and rigidity to prevent the resonance in producing procedure of the CNC universal cylindrical grinding machine. Using finite element analysis software ABAQUS in grinder machine tools for numerical simulation of several analyses for the following: structural rigidity analysis, optimized design, vibration frequency analysis and fatigue damage analysis. This work aims on state of the transmission of outer diameter spindle to proceed in stress and fatigue life analysis by FE-SAFE Subroutine. The max values of equivalent stress and average amount of displacement in structural rigidity analysis are 0.67(Mpa and 0.92(µm. Optimization design effectively reducing extreme value of stress, the largest decline of about 5.43%. Modal analysis compared with the experimental, the average error percentage was less than 10% of parts. The whole structure error does not exceed 3%. The fatigue life of approximately 1,193,988 times, estimates into real life time can use more than sixty years, from the viewpoint of structural strength, spindle has a good high breaking strength is designed to be safe.

  6. Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout

    Science.gov (United States)

    Nemeth, M. P.; Oterkus, E.; Madenci, E.

    2005-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  7. Mean mass transport in an orbitally shaken cylindrical container

    Science.gov (United States)

    Bouvard, Julien; Herreman, Wietze; Moisy, Frédéric

    2017-08-01

    A cylindrical container partially filled with a liquid in an orbital shaking motion, i.e., in circular translation with fixed orientation with respect to an inertial frame of reference, generates, along with a rotating sloshing wave, a mean flow rotating in the same direction as the wave. Here we investigate experimentally the structure and the scaling of the wave flow and the Lagrangian mean flow in the weakly nonlinear regime, for small forcing amplitude and for forcing frequency far from the resonance, using conventional and stroboscopic particle image velocimetry. The Lagrangian mean flow is composed of a strong global rotation near the center and a nontrivial pattern of poloidal recirculation vortices of weaker amplitude, mostly active near the contact line. The global rotation near the center is robust with respect to changes in viscosity and forcing frequency, and its amplitude compares well with the predicted Stokes drift for an inviscid rotating sloshing wave. On the other hand, the spatial structure of the poloidal vortices shows strong variation with viscosity and forcing frequency, suggesting that it results from nonlinear streaming driven by the oscillatory boundary layers near the contact line.

  8. Behaviour of Large Cylindrical Offshore Structures Subjected to Wave Loads

    Directory of Open Access Journals (Sweden)

    Begüm Yurdanur DAĞLI

    2017-08-01

    Full Text Available Spar-type and monopole substructures consisting of a large-diameter, single vertical cylinders have been used as wind turbine towers, oil storage platforms, tankers and wave energy converters at deepwater region in the sea. These towers and platforms are exposed to environmental forces such as wind, wave and current. Wave force is the most effective force in the total environmental force. The body disturbs the incident wave and Diffraction Theory is used for computing the pressure distribution for designing the structure. Therefore, this study aims to present the effect of structural design of towers on dynamic behavior due to wave actions. Two different cases of structural models are selected to employ bidirectional fluid structure interaction (FSI analysis. Diffraction Theory is utilized to investigate wave forces. Solid and fluid domains are modeled in Abaqus finite elements program. Behaviors of various types of offshore structures are evaluated and compared according to the significant stresses and displacements. The hydrodynamic pressure on the cylindrical structure surface and the diffraction forces acting on structures are presented. Mode shapes, first three natural frequencies are comparatively given.

  9. Formation of a cylindrical bridge in cell division

    Science.gov (United States)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  10. Optical Thomson scattering measurements of cylindrical wire array parameters

    Energy Technology Data Exchange (ETDEWEB)

    Harvey-Thompson, A. J.; Lebedev, S. V.; Patankar, S.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; Colaitis, A.; De Grouchy, P.; Hall, G. N.; Khoory, E.; Pickworth, L.; Suzuki-Vidal, F.; Smith, R. A.; Skidmore, J.; Suttle, L.; Swadling, G. F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Hohenberger, M. [Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2012-05-15

    A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas. The scattering operates in the collective regime ({alpha}>1) allowing spatially localised measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2-1.3 Multiplication-Sign 10{sup 7} cm/s in aluminium and {approx}1 Multiplication-Sign 10{sup 7} cm/s in tungsten arrays. Measurements of the precursor ion temperature shortly after formation are found to correspond to the kinetic energy of the converging ablation flow. Measurements during the implosion phase of tungsten arrays show the main imploding mass reaches velocities of {approx}1.4-1.7 Multiplication-Sign 10{sup 7} cm/s and is non-zero even at large radii close to the start of the x-ray pulse indicating current flow in the trailing mass.

  11. High-m Kink/Tearing Modes in Cylindrical Geometry

    CERN Document Server

    Connor, J W; Pusztai, I; Catto, P J; Barnes, M

    2014-01-01

    The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter, $\\Delta^\\prime$. In the presence of a steep monotonic current gradient, $\\Delta^\\prime$ becomes a function of a parameter, $\\sigma_0$, characterising the ratio of the maximum current gradient to magnetic shear, and $x_s$, characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current "spike", so that there is a non-monotonic current profile, $\\Delta^\\prime$ also depends on two parameters: $\\kappa$, related to the ratio of the curvature of the current density at its maximum to the magnetic shear, and $x_s$, which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyro-kinetic calculations of current driven instabilities, is discussed, together with pot...

  12. Extracting and focusing of surface plasmon polaritons inside finite asymmetric metal/insulator/metal structure at apex of optical fiber by subwavelength holes

    Science.gov (United States)

    Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro

    2013-09-01

    We have been studied a finite asymmetric metal-insulator-metal (MIM) structure on glass plate for near-future visible light communication (VLC) system with white LED illuminations in the living space (DOI: 10.1117/12.929201). The metal layers are vacuum-evaporated thin silver (Ag) films (around 50 nm and 200 nm, respectively), and the insulator layer (around 150 nm) is composed of magnesium fluoride (MgF2). A characteristic narrow band filtering of the MIM structure at visible region might cause a confinement of intense surface plasmon polaritons (SPPs) at specific monochromatic frequency inside a subwavelength insulator layer of the MIM structure. Central wavelength and depth of such absorption dip in flat spectral reflectance curve is controlled by changing thicknesses of both insulator and thinner metal layers. On the other hand, we have proposed a twin-hole pass-through wave guide for SPPs in thick Ag film (DOI: 10.1117/12.863587). At that time, the twin-hole converted a incoming plane light wave into a pair of channel plasmon polaritons (CPPs), and united them at rear surface of the Ag film. This research is having an eye to extract, guide, and focus the SPPs through a thicker metal layer of the MIM with FIBed subwavelength pass-through holes. The expected outcome is a creation of noble, monochromatic, and tunable fiber probe for scanning near-field optical microscopes (SNOMs) with intense white light sources. Basic experimental and FEM simulation results will be presented.

  13. Experimental verification of sub-wavelength holographic lithography physical concept for single exposure fabrication of complex structures on planar and nonplanar surfaces

    Science.gov (United States)

    Borisov, Michael V.; Chelyubeev, Dmitry A.; Chernik, Vitaly V.; Miheev, Peter A.; RakhovskiÑ-, Vadim I.; Shamaev, Alexei S.

    2017-06-01

    Authors of the report have been developing Sub-Wavelength Holographic Lithography (SWHL) methods of aerial image creation for IC layer topologies for the last several years. Sub-wavelength holographic masks (SWHM) have a number of substantial advantages in comparison with the traditional masks, which are used in projection photo-microlithography. The main advantages: there is no one-to-one correspondence between mask and image elements thus the effect of local mask defects almost completely eliminated [1]; holographic mask may consist of single-tipe elements with typical size many times bigger than projection mask elements [2]; technological methods of image quality optimization can be replaced by virtual routines in the process of the holographic mask calculating, that simplifies mask manufacturing and dramatically reduces the mask cost [3]; imaging via holographic mask does not need the projection lens, that significantly simplifies photolithographic tool and reduces ones cost. Our group developed effective methods of holographic mask synthesis and of aerial images modelling and created software package. This methods and calculation results were verified and reported many times [1-3].

  14. Behavior of R/C Cylindrical Panel Subjected to Combined Axial and Shear Loadings

    OpenAIRE

    Hara, Takashi

    2009-01-01

    p. 1722-1730 Reinforced concrete (R/C) cylindrical panels have been applied to the roof or the underground structures. Also, in constructing a high rise building, an R/C wall is often used to improve the lateral rigidity of the building comparing with beam column systems under wind or seismic loading. In this paper, the behavior of R/C cylindrical shell under combined axial and lateral shear loadings is analyzed numerically. R/C cylindrical shells are often adopted for the core wa...

  15. Variational principles and Lyapunov stability analysis for compressible cylindrical plasma flows with arbitrary cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Khater, A H; Moawad, S M [Department of Mathematics, Faculty of Science, Cairo University, Beni-Suef (Egypt)

    2003-03-01

    The equilibrium and stability properties of ideal compressible magnetohydrodynamic (MHD) flows are investigated. The domain is taken to be cylindrical with arbitrary cross-section. Variational principles for plasma equilibria with mass flow are formulated, where we associate the cylindrical MHD equilibrium states to critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross-helicity), the momentum and the magnetic helicity. Lyapunov stability conditions for compressible cylindrical ideal MHD flows with arbitrary cross-section are determined.

  16. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    Science.gov (United States)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  17. Excitation of a cylindrical cavity by a helical current and an axial electron beam current

    Science.gov (United States)

    Davidovich, M. V.; Bushuev, N. A.

    2013-07-01

    The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.

  18. Scaled-particle theory analysis of cylindrical cavities in solution.

    Science.gov (United States)

    Ashbaugh, Henry S

    2015-04-01

    The solvation of hard spherocylindrical solutes is analyzed within the context of scaled-particle theory, which takes the view that the free energy of solvating an empty cavitylike solute is equal to the pressure-volume work required to inflate a solute from nothing to the desired size and shape within the solvent. Based on our analysis, an end cap approximation is proposed to predict the solvation free energy as a function of the spherocylinder length from knowledge regarding only the solvent density in contact with a spherical solute. The framework developed is applied to extend Reiss's classic implementation of scaled-particle theory and a previously developed revised scaled-particle theory to spherocylindrical solutes. To test the theoretical descriptions developed, molecular simulations of the solvation of infinitely long cylindrical solutes are performed. In hard-sphere solvents classic scaled-particle theory is shown to provide a reasonably accurate description of the solvent contact correlation and resulting solvation free energy per unit length of cylinders, while the revised scaled-particle theory fitted to measured values of the contact correlation provides a quantitative free energy. Applied to the Lennard-Jones solvent at a state-point along the liquid-vapor coexistence curve, however, classic scaled-particle theory fails to correctly capture the dependence of the contact correlation. Revised scaled-particle theory, on the other hand, provides a quantitative description of cylinder solvation in the Lennard-Jones solvent with a fitted interfacial free energy in good agreement with that determined for purely spherical solutes. The breakdown of classical scaled-particle theory does not result from the failure of the end cap approximation, however, but is indicative of neglected higher-order curvature dependences on the solvation free energy.

  19. Generation of highly symmetric, cylindrically convergent shockwaves in water

    Science.gov (United States)

    Bland, S. N.; Krasik, Ya. E.; Yanuka, D.; Gardner, R.; MacDonald, J.; Virozub, A.; Efimov, S.; Gleizer, S.; Chaturvedi, N.

    2017-08-01

    We report on pulsed power driven, exploding copper wire array experiments conducted to generate cylindrical convergent shockwaves in water employing μs risetime currents >550 kA in amplitude and with stored energies of >15 kJ—a substantial increase over previous results. The experiments were carried out on the recently constructed Mega-Ampere-Compression-and-Hydrodynamics facility at Imperial College London in collaboration with colleagues of Technion, Israel. 10 mm diameter arrays consisting of 60 × 130 μm wires were utilized, and the current and voltage diagnostics of the load region suggested that ˜8 kJ of energy was deposited in the wires (and the load region close to the wires) during the experiments, resulting in the formation of dense, highly resistive plasmas that rapidly expanded driving the shockwaves in water. Laser-backlit framing images of the shockfront were obtained at radii 50:1. Framing images and streak photographs showed that the velocity of the shockwave reached ˜7.5 km s-1 at 0.1 mm from the axis. 2D hydrodynamic simulations that match the experimentally obtained implosion trajectory suggest that pressures >1 Mbar are produced within 10 μm of the axis along with water densities of 3gcm-3 and temperatures of many 1000 s of Kelvin. Under these conditions, Quotidian Equation of State suggests that a strongly coupled plasma with an ionization fraction of ˜0.7 would be formed. The results represent a "stepping stone" in the application of the technique to drive different material samples into high pressure, warm dense matter regimes with compact, university scale generators, and provide support in scaling the technique to multi-mega ampere currents.

  20. Experimental study of vortex breakdown in a cylindrical, swirling flow

    Science.gov (United States)

    Stevens, J. L.; Celik, Z. Z.; Cantwell, B. J.; Lopez, J. M.

    1996-01-01

    The stability of a steady, vortical flow in a cylindrical container with one rotating endwall has been experimentally examined to gain insight into the process of vortex breakdowwn. The dynamics of the flow are governed by the Reynolds number (Re) and the aspect ratio of the cylinder. Re is given by Omega R(sup 2)/nu, where Omega is the speed of rotation of the endwall, R is the cylinder radius, and nu is the kinematic viscosity of the fluid filling the cylinder. The aspect ratio is H/R, where H is the height of the cylinder. Numerical simulation studies disagree whether or not the steady breakdown is stable beyond a critical Reynolds number, Re(sub c). Previous experimental researches have considered the steady and unsteady flows near Re(sub c), but have not explored the stability of the steady breakdown structures beyond this value. In this investigation, laser induced fluorescence was utilized to observe both steady and unsteady vortex breakdown at a fixed H/R of 2.5 with Re varying around Re(sub c). When the Re of a steady flow was slowly increased beyond Re(sub c), the breakdown structure remained steady even though unsteadiness was possible. In addition, a number of hysteresis events involving the oscillation periods of the unsteady flow were noted. The results show that both steady and unsteady vortex breakdown occur for a limited range of Re above Re(sub c). Also, with increasing Re, complex flow transformations take place that alter the period at which the unsteady flow oscillates.