WorldWideScience

Sample records for cylindrical iec neutron

  1. Cylindrical IEC neutron source design for driven research reactor operation

    International Nuclear Information System (INIS)

    Miley, G.H.; Ulmen, B.; Amadio, G.; Leon, H.; Hora, H.

    2009-01-01

    A resurgence in nuclear power use is now underway worldwide. However, due many university research reactors shutdown, they must rely on using subcritical assemblies which employs a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The source is inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory. (author)

  2. Electron emitter pulsed-type cylindrical IEC

    International Nuclear Information System (INIS)

    Miley, G.H.; Gu, Y.; Stubbers, R.; Zich, R.; Anderl, R.; Hartwell, J.

    1997-01-01

    A cylindrical version of the single grid Inertial Electrostatic Confinement (IEC) device (termed the C-device) has been developed for use as a 2.5-MeV D-D fusion neutron source for neutron activation analysis. The C-device employs a hollow-tube type cathode with similar anodes backed up by ''reflector'' dishes. The resulting discharge differs from a conventional hollow cathode discharge, by creating an explicit ion beam which is ''pinched'' in the cathode region. Resulting fusion reactions generate ∼10 6 neutron/s. A pulsed version is under development for applications requiring higher fluxes. Several pulsing techniques are under study, including an electron emitter (e-emitter) assisted discharge in a thorated tungsten wire emitter located behind a slotted area in the reflector dishes. Pulsing is initiated after establishing a low power steady-state discharge by pulsing the e-emitter current using a capacitor switch type circuit. The resulting electron jet, coupled with the discharge by the biased slot array, creates a strong pulse in the pinched ion beam. The pulse length/repetition rate are controlled by the e-emitter pulse circuit. Typical parameters in present studies are ∼30micros, 10Hz and 1-amp ion current. Corresponding neutron measurements are an In-foil type activation counter for time averaged rates. Results for a wide variety of operating conditions are presented

  3. Inertial electrostatic confinement I(IEC) neutron sources

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C.; Miley, G.H.; Javedani, J.

    1995-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented

  4. IEC-based neutron generator for security inspection system

    International Nuclear Information System (INIS)

    Miley, G.H.; Wu, L.; Kim, H.J.

    2005-01-01

    Use of a combined X-ray and neutron source for security inspections based on Inertial Electrostatic Confinement (IEC) fusion is discussed. Current inspection systems typically use X-ray techniques, but thermal neutron analysis (TNA) and fast neutron analysis (FNA), allow expanded detection of certain types of explosives. The integrated unit proposed here uses three separate IEC sources producing 14 and 2.45 MeV neutrons plus soft X-rays. This combination allows multiple detection methods with the composite signal analysis being done by a fuzzy logic system, significantly reducing false signals. (author)

  5. The first IEC fusion industrial neutron generator and developments

    Science.gov (United States)

    Sved, John

    1999-06-01

    Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 107 D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 1010 by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.

  6. A Broad Coverage Neutron Source For Security Inspections

    Science.gov (United States)

    Yang, Yang; Robert, Stubbers; Linchun, Wu; George, Miley

    2004-05-01

    To meet the increasing demanding requirements for security safety inspections, a line-type neutron source employing a cylindrical IEC (RC-IEC) is proposed for non-destructive "in situ" security inspections. The advantages of such a neutron source include line geometry, modularity, swithcability, variable source strength, low cost with minimum maintenance. Detailed description of a 1/3 scale cylindrical device is presented, which might demonstrate that a reasonably long RC-IEC produces a stable discharge with reasonably uniform neutron production along the cylindrical axis. Aiming at the neutron production efficiency at the order of 106 n/J, several methods to maximize neutron production efficiency are discussed. The results of a two-dimensional computer code(MCP) using a Monte Carlo numerical approach for the RC-IEC device are presented together with an analysis of neutron yield vs. different operation parameters.

  7. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. DD fusion neutron production at UW-Madison using IEC devices

    Science.gov (United States)

    Fancher, Aaron; Michalak, Matt; Kulcinski, Gerald; Santarius, John; Bonomo, Richard

    2017-10-01

    An inertial electrostatic confinement (IEC) device using spherical, gridded electrodes at high voltage accelerates deuterium ions, allowing for neutrons to be produced within the device from DD fusion reactions. The effects of the device cathode voltage (30-170 kV), current (30-100 mA), and pressure (0.15-1.25 mTorr) on the neutron production rate have been measured. New high voltage capabilities have resulted in the achievement of a steady state neutron production rate of 3.3x108 n/s at 175 kV, 100 mA, and 1.0 mTorr of deuterium. Applications of IEC devices include the production of DD neutrons to detect chemical explosives and special nuclear materials using active interrogation methods. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-AR1095 and the Grainger Foundation.

  9. US-Japan IEC Workshop on Small Plasma and Accelerator Neutron Sources. Final report

    International Nuclear Information System (INIS)

    Miley, George H.

    2008-01-01

    The history of IEC development will be briefly described, and some speculation about future directions will be offered. The origin of IEC is due to the brilliance of Phil Farnsworth, inventor of electronic TV in the US. Early experiments were pioneered in the late 1960s by Robert Hirsch who later became head of the DOE fusion program. At that time studies of IEC physics quickly followed at the University of Illinois and at Penn State University. However, despite many successes in this early work, IEC research died as DOE funding stopped in the mid 1980s. In the early 90's, R. W. Bussard of EMC revived work with a new major project based on a magnetic assisted IEC. While doing supportive studies for that project, G. Miley proposed a grided 'STAR mode' IEC as a neutron source for NAA. This concept was later used commercially by Daimler-Benz in Germany to analysis impurities in incoming ores. This represented a first practical application of the IEC. During this period other research groups at LANL, U of Wisconsin and Kyoto University entered IEC research with innovative new concepts and approaches to IEC physics and applications. Much of this work is documented in the present and in past US-Japan Workshops. At present we stand on the threshold of a new area of IEC applications as neutron source, for isotope production, and as a plasma source. These applications provide a way to continue IEC understanding and technology development with the ultimate goal being a fusion power plant. Indeed, a distinguishing feature of the IEC vs. other fusion confinement approaches is the unique opportunity for 'spin off' applications along the way to a power producing plant.

  10. Computational modeling of the axial-cylindrical inertial electrostatic confinement fusion neutron generator

    Science.gov (United States)

    Bromley, Blair Patrick

    2001-12-01

    The axial-cylindrical Inertial Electrostatic Confinement fusion neutron generator (IEC C-Device) is a high- voltage, low-pressure glow discharge device that produces neutrons from the deuterium-deuterium fusion reaction. Such a neutron source has potential applications for neutron activation analysis and capture therapies for cancer treatment. The IEC C-Device operating with deuterium fuel is modeled with the CHIMP computer code developed and written completely by the author to predict the fusion neutron generation rate and the plasma physics behavior using fundamental first principles. The CHIMP code is a time-dependent, spatially two-dimensional (r,z), particle-in-cell, Monte-Carlo-Collision (PIC-MCC) direct simulation model. The effects of secondary electron emission due to ion and electron impact on the metal electrodes and the glass walls and charge build-up on the glass wall are included. Either monatomic or molecular ions and electrons are modeled in a monatomic or molecular background neutral deuterium gas. CHIMP code predictions are compared against experimental results for the C-Device operating between 10 and 30 kV of anode voltage, between 10 and 40 mA of electrode current, and between 0.29 and 1.1 milliTorr of deuterium gas pressure. A calibration factor for the pressure accounts for the calibration of the ionization pressure gauge in the experiment, and an estimated pressure drop between the main chamber of the C-Device and the pressure gauge that is downstream of the exhaust port. Upgraded versions of the CHIMP code which have modifications to the algorithms for the boundary conditions, and which include charge exchange processes, and the contribution of fast neutrals to the neutron generation rate are also tested against several experimental data points. Although the CHIMP code gives predictions for the neutron generation rate that exhibit the same near-linear trends with current found in the experiment, it is apparent that at least five types of

  11. Commercial IEC portable neutron source

    International Nuclear Information System (INIS)

    Sved, J.

    1997-01-01

    The inertial electrostatic confinement (IEC) fusion grade plasma devices are being developed as a commercial industrial product by Daimler-Benz Aerospace (DASA), Center Trauen, which has an exclusive license from the University of Illinois (UI) to manufacture the commercial implementation of the Miley et al. IEC inventions. DASA is funding the UI Fusion Studies Laboratory basic IEC research and the intellectual property protection process. The association of the DASA Space Infrastructure division with an apparently unrelated technology has arisen from the perception that IEC technology may benefit from certain aerospace technologies and eventually create a market for space infrastructure services. In addition, DASA Center Trauen has a number of environmental technology businesses

  12. Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1994-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2 * 10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  13. Energy corrections in pulsed neutron measurements for cylindrical geometry

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Woznicka, U.

    1982-01-01

    A solution of the thermal neutron diffusion equation for a two-region concentric cylindrical system, with a constant neutron flux in the inner medium assumed, is given. The velocity-averaged dynamic parameters for thermal neutrons are used in the method. The corrections due to the diffusion cooling are introduced into the dynamic material buckling and into the velocity distribution of the thermal neutron flux. Detailed relations obtained for a hydrogenous moderator are given. Results of the measurements of the thermal neutron macroscopic absorption cross-sections for the samples in the two-region cylindrical systems are presented. (author)

  14. Atomic processes in Inertial Electrostatic Confinement (IEC) devices

    International Nuclear Information System (INIS)

    Nebel, R.A.; Turner, L.; Tiouririne, T.N.; Barnes, D.C.; Nystrom, W.D.; Bussard, R.W.; Miley, G.H.; Javedani, J.; Yamamoto, Y.

    1993-01-01

    Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P. T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 10 neutrons/sec. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. Atomic physics effects strongly influence the performance of all of these systems. Important atomic effects include elastic scattering, ionization, excitation, and charge exchange. This paper discusses how an IEC system is influenced by these effects and how to design around them. Theoretical modeling and experimental results are presented

  15. Inertial electrostatic confinement (IEC) fusion fundamentals and applications

    CERN Document Server

    Miley, George H

    2014-01-01

    This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment propose...

  16. Neutron diffusion approximation solution for the the three layer borehole cylindrical geometry. Pt. 1. Theoretical description

    International Nuclear Information System (INIS)

    Czubek, J.A.; Woznicka, U.

    1997-01-01

    A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n + 2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R 1 surrounded by the intermediate region (e.g. mud cake) of thickness (R 2 -R 1 ) and finally surrounded by the geological formation which spreads from R 2 up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author)

  17. Neutron diffusion approximation solution for the the three layer borehole cylindrical geometry. Pt. 1. Theoretical description

    Energy Technology Data Exchange (ETDEWEB)

    Czubek, J.A.; Woznicka, U. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-12-31

    A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n{sup +}2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R{sub 1} surrounded by the intermediate region (e.g. mud cake) of thickness (R{sub 2}-R{sub 1}) and finally surrounded by the geological formation which spreads from R{sub 2} up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author) 6 refs, 2 figs

  18. Determination of neutron buildup factor using analytical solution of one-dimensional neutron diffusion equation in cylindrical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio, E-mail: julio.lombaldo@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada; Borges, Volnei; Bodmann, Bardo Ernest, E-mail: bardo.bodmann@ufrgs.b, E-mail: borges@ufrgs.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2011-07-01

    The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S{sub N} consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S{sub 2} approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)

  19. Determination of neutron buildup factor using analytical solution of one-dimensional neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Borges, Volnei; Bodmann, Bardo Ernest

    2011-01-01

    The principal idea of this work, consist on formulate an analytical method to solved problems for diffusion of neutrons with isotropic scattering in one-dimensional cylindrical geometry. In this area were develop many works that study the same problem in different system of coordinates as well as cartesian system, nevertheless using numerical methods to solve the shielding problem. In view of good results in this works, we starting with the idea that we can represent a source in the origin of the cylindrical system by a Delta Dirac distribution, we describe the physical modeling and solved the neutron diffusion equation inside of cylinder of radius R. For the case of transport equation, the formulation of discrete ordinates S N consists in discretize the angular variables in N directions and in using a quadrature angular set for approximate the sources of scattering, where the Diffusion equation consist on S 2 approximated transport equation in discrete ordinates. We solved the neutron diffusion equation with an analytical form by the finite Hankel transform. Was presented also the build-up factor for the case that we have neutron flux inside the cylinder. (author)

  20. Approximate first collision probabilities for neutrons in cylindrical and cluster lattices

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1979-05-01

    Methods for calculating approximate first collision probabilities for neutrons in cylindrical and cluster lattices are presented and compared with numerical solution methods. The methods differ from those of other authors in the inclusion of anisotropic boundary conditions for both geometries. The methods, which are fast enough for routine use in multigroup and resonance subgroup calculations, have been coded in FORTRAN and included in modules of the AUS scheme for reactor neutronics calculations

  1. Secondary extinction in cylindrical and spherical crystals for X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Hu Huachen; Li Zhaohuan; Yang Bin; Shen Caiwan

    2001-01-01

    The distribution of the reflection power ratio for a neutron or x-ray diffracted from a cylindrical crystal immersed in an homogenous incident beam is obtained by the numerical solution of the transfer equations for the first time. The profile well reflects all the physical properties of the absorption and extinction behaviour in the crystals. A systematic investigation of the secondary extinction for cylindrical and spherical crystals was carried out based on these results

  2. Cylindrization of a PWR core for neutronic calculations

    International Nuclear Information System (INIS)

    Santos, Rubens Souza dos

    2005-01-01

    In this work we propose a core cylindrization, starting from a PWR core configuration, through the use of an algorithm that becomes the process automated in the program, independent of the discretization. This approach overcomes the problem stemmed from the use of the neutron transport theory on the core boundary, in addition with the singularities associated with the presence of corners on the outer fuel element core of, existents in the light water reactors (LWR). The algorithm was implemented in a computational program used to identification of the control rod drop accident in a typical PWR core. The results showed that the algorithm presented consistent results comparing with an production code, for a problem with uniform properties. In our conclusions, we suggest, for future works, for analyzing the effect on mesh sizes for the Cylindrical geometry, and to compare the transport theory calculations versus diffusion theory, for the boundary conditions with corners, for typical PWR cores. (author)

  3. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of neutron flux distribution and its reactivity ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Aredes, Vitor O.G.; Mura, Luiz E.C.; Santos, Diogo F. dos; Silva, Alexandre P. da, E-mail: ubitelli@ipen.br, E-mail: vitoraredes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    When compared to a rectangular parallelepiped configuration the cylindrical configuration of a nuclear reactor core has a better neutron economy because in this configuration the probability of the neutron leakage is smaller, causing an increase in overall reactivity in the system to the same amount of fuel used. In this work we obtained a critical cylindrical configuration with the control rods 89.50% withdraw from the active region of the IPEN/MB-01 core. This is the cylindrical configuration minimum possible excess of reactivity. Thus we obtained a cylindrical configuration with a diameter of only 28 fuel rods with lowest possible excess of reactivity. For this purpose, 112 peripheral fuel rods are removed from standard reactor core (rectangular parallelepiped of 28x28 fuel rods). In this configuration the excesses of reactivity is approximated 279 pcm. From there, we characterize the neutron field by measuring the spatial distribution of the thermal and epithermal neutron flux for the reactor operating power of 83 watts measured by neutron noise analysis technique and 92.08± 0.07 watts measured by activation technique [10]. The values of thermal and epithermal neutron flux in different directions, axial, radial north-south and radial east-west, are obtained in the asymptotic region of the reactor core, away from the disturbances caused by the reflector and control bar, by irradiating thin gold foils infinitely diluted (1% Au - 99% Al) with and without (bare) cadmium cover. In addition to the distribution of neutron flux, the moderator temperature coefficient, the void coefficient, calibration of the control rods were measured. (author)

  4. One group neutron flux at a point in a cylindrical reactor cell calculated by Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A [Institute of Nuclear Sciences Vinca, Beograd (Serbia and Montenegro)

    1974-01-15

    Mean values of the neutron flux over material regions and the neutron flux at space points in a cylindrical annular cell (one group model) have been calculated by Monte Carlo. The results are compared with those obtained by an improved collision probability method (author)

  5. The Los Alamos Intense Neutron Source

    International Nuclear Information System (INIS)

    Nebel, R.A.; Barnes, D.C.; Bollman, R.; Eden, G.; Morrison, L.; Pickrell, M.M.; Reass, W.

    1997-01-01

    The Intense Neutron Source (INS) is an Inertial Electrostatic Confinement (IEC) fusion device presently under construction at Los Alamos National Laboratory. It is designed to produce 10 11 neutrons per second steady-state using D-T fuel. Phase 1 operation of this device will be as a standard three grid IEC ion focus device. Expected performance has been predicted by scaling from a previous IEC device. Phase 2 operation of this device will utilize a new operating scheme, the Periodically Oscillating Plasma Sphere (POPS). This scheme is related to both the Spherical Reflect Diode and the Oscillating Penning Trap. With this type of operation the authors hope to improve plasma neutron production to about 10 13 neutrons/second

  6. A collimator-converter system for IEC propulsion

    International Nuclear Information System (INIS)

    Momota, Hiromu; Miley, George H.

    2002-01-01

    The collimator-converter system extracts fusion power from D- 3 He fueled IEC devices and provides electricity needed to operate ionic thrusters and other-power components. The whole system is linear and consists of a series of collimator units at the center, magnetic expander units at both sides of the fusion units, followed by direct energy converters at both ends. This system is enclosed in a vacuum chamber with a magnetic channel provided by magnetic solenoids out of respective chambers. The fusion unit consists of an IEC fusion core, a pair of coils anti-parallel to the solenoid coils, and a stabilization coil that stabilizes the position of coil pair coils. The IEC fusion core is installed at the center of the pair coils. After the magnetic expander, velocities of fusion particles from D- 3 He fueled IEC units are directed to the magnetic channel, which guides energetic fusion particles as well as leaking unburned fuel components to a high-efficiency traveling wave direct energy converter (TWDEC). Leaking unburned fuel components are separated with a magnetic separator at the entrance of a direct energy converter and pumped out for further refueling. A TWDEC is made of an array of metallic meshed grids, each of which is connected to every terminal with an external transmission circuit. The transmission line couples to the direct energy converter. Substations for electricity, a cryogenic plant, and various power control systems are outside of the vacuum chamber. The length of the cylindrical system is essentially determined by the proton energy of 14.8 MeV and the radius should be large so as to reduce power flow density. The present system provides 250 MW f fusion power and converting it to 150 MW c electricity. Its size is 150 m(length)x6.6 m(diameter) in size and 185 tons in weight

  7. Study of thermal neutron currents near cylindrical absorbers located in heavy water

    International Nuclear Information System (INIS)

    Simard, Y.N.

    1973-01-01

    The experiments reported involved determining the angular response of detectors to neutrons exterior to the surface of long cylindrical absorbers immersed in a scattering medium. The absorbers consisted of solid cylinders of copper, cadmium, or natural uranium in a fuel lattice, and combinations of copper and cadmium, as well as voided cylinders. The scattering (moderating) medium consisted of heavy water. (author)

  8. From IEC 61131 to IEC 61499 for Distributed Systems: A Case Study

    Directory of Open Access Journals (Sweden)

    Christian Gerber

    2008-02-01

    Full Text Available A new concept for distributed control systems based on the new IEC 61499 standard is tested in this work in cooperation with LAE Engineering GmbH, a medium-sized company. Based on a catalogue of requirements, a customer-related testbed is developed. In the following this testbed is used as a reference to realise an IEC 61499 compliant-distributed control system based on PC technics. By doing this, rules are defined to convert user-owned IEC 61131 function blocks to IEC 61499 compliant function blocks. Concluding, some trends for IEC 61499-based distributed control systems will be summarised.

  9. IEC fusion: The future power and propulsion system for space

    International Nuclear Information System (INIS)

    Hammond, Walter E.; Coventry, Matt; Miley, George H.; Nadler, Jon; Hanson, John; Hrbud, Ivana

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production

  10. IEC 61850 and IEC 62351 Cyber Security Acceleration Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clements, Samuel L.; Edgar, Thomas W.; Manz, David O.

    2012-04-01

    The purpose of this workshop was to identify and discuss concerns with the use and adoption of IEC 62351 security standard for IEC 61850 compliant control system products. The industry participants discussed performance, interoperability, adoption, challenges, business cases, and future issues.

  11. An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst

    2011-01-01

    Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)

  12. Calculation of the effective D-d neutron energy distribution incident on a cylindrical shell sample

    International Nuclear Information System (INIS)

    Gotoh, Hiroshi

    1977-07-01

    A method is proposed to calculate the effective energy distribution of neutrons incident on a cylindrical shell sample placed perpendicularly to the direction of the deuteron beam bombarding a deuterium metal target. The Monte Carlo method is used and the Fortran program is contained. (auth.)

  13. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni Garcia

    2014-01-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  14. Buckling analysis of a cylindrical shell, under neutron radiation environment

    International Nuclear Information System (INIS)

    Arani, A. Ghorbanpour; Ahmadi, M.; Ahmadi, A.; Rastgoo, A.; Sepyani, H.A.

    2012-01-01

    Highlights: ► The work investigates the buckling of a shell in the neutron radiation environment. ► Radiation induced porosity in elastic materials affects the material's properties. ► The data based technique was used to determine the volume fraction porosity. ► The theoretical formulations are presented based on the classical shell theory (CST). ► It was concluded that both T and neutron induced swelling have significant effects. - Abstract: This research investigates the buckling of a cylindrical shell in the neutron radiation environment, subjected to combined static and periodic axial forces. Radiation induced porosity in elastic materials affects the thermal, electrical and mechanical properties of the materials. In this study, the data based technique was used to determine the volume fraction porosity, P, of shell material. A least-squares fit of the Young's module data yielded the estimated Young's modulus. The shell assumed made of iron irradiated in the range of 2–15e−7 dPa/s at 345–650 °C and theoretical formulations are presented based on the classical shell theory (CST). The research deals with the problem theoretically; keeping in mind that one means of generating relevant design data is to investigate prototype structures. A parametric study is followed and the stability of shell is discussed. It is concluded that both temperature and neutron induced swelling have significant effects on the buckling load.

  15. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Saion, E.B.; Watt, D.E. (Saint Andrews Univ. (UK). Dept. of Physics); East, B.W. (Scottish Universities Research and Reactor Centre, Glasgow (UK)); Colautti, P. (Istituto Nazionale di Fisica Nucleare, Padua (Italy))

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against {gamma} ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author).

  16. A coaxial double cylindrical TEPC for the microdosimetry of selected neutron energy bands in mixed fields of fast neutrons

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.; Colautti, P.

    1990-01-01

    A new low pressure tissue-equivalent proportional counter (TEPC) in a coaxial double cylindrical form has been developed to measure separately the microdose spectrum from any desired energy band of neutrons in the presence of mixed fields of faster neutrons, by selecting the thickness of the common TE dividing wall to be equivalent to the corresponding maximum proton ranges and by appropriate use of coincidence/anti-coincidence pulse arrangements. This thickness ensures charged particle equilibrium for the relevant neutron energy. Event spectra due to recoils generated by faster neutrons which interact with both the counters are removed completely by anti-coincidence techniques, thereby optimising the sensitivity of the inner microdosemeter to the event spectra of interest. The ability of this counter to discriminate in favour of events due to neutrons of energy <850 keV was achieved in microdosimetric measurements from mixed fields of a nuclear reactor. Mean values of lineal energy and quality factor for neutrons of energy <850 keV from a nuclear reactor were determined from the anti-coincidence spectrum. Good discrimination against γ ray induced events is also achieved for the spectrum recorded in the anti-coincidence mode. This is an advantageous feature for other applications and requires further investigation. (author)

  17. Linear extrapolation distance for a black cylindrical control rod with the pulsed neutron method

    International Nuclear Information System (INIS)

    Loewenhielm, G.

    1978-03-01

    The objective of this experiment was to measure the linear extrapolation distance for a central black cylindrical control rod in a cylindrical water moderator. The radius for both the control rod and the moderator was varied. The pulsed neutron technique was used and the decay constant was measured for both a homogeneous and a heterogeneous system. From the difference in the decay constants the extrapolation distance could be calculated. The conclusion is that within experimental error it is safe to use the approximate formula given by Pellaud or the more exact one given by Kavenoky. We can also conclude that linear anisotropic scattering is accounted for in a correct way in the approximate formula given by Pellaud and Prinja and Williams

  18. Time dependet behaviour of the neutron field in in two interacting cylindrical disks

    International Nuclear Information System (INIS)

    Hedlund, T.

    1979-01-01

    The influence of a void on the neutron flux in a moderating system has been studied mainly by the Monte Carlo method. The calculations simulate the decay of the neutron field in a pulsed neutron source measurement. The neutron flux was studied as a function of space, angle, energy and time for a system of two flat cylindrical polyethylene disks. The slab thickness was varied between 1.1 and 4.4 cm and the radius was 9.0 cm. The gap between the slabs was varied from zero to 18 cm. Some calculations have also been made for absorbers in the gap. The purpose of these absorbers was to eliminate the time delay effect for the low velocity neutrons accumulating in the gap. The calculations showed the usefulness of the absorber method. From the results in the time dependent cases the interaction parameter for the two slabs in the corresponding stationary cases has been calculated. The agreement with measurements made by Grosshoeg is good. In the one velocity cases some other methods have also been used to predict the decay rates. For small gap widths the best agreement with the Monte Carlo results was obtained with the variational method. (author)

  19. IEC Newsletter, No. 53/3 (2015)

    International Nuclear Information System (INIS)

    2015-12-01

    The IEC Newsletter is prepared by the Incident and Emergency Centre (IEC), Department of Nuclear Safety and Security of the IAEA. The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. The following topics are presented in this newsletter: Prepared to Respond International Conference on Global EPR; Launch of EPRIMS; First meeting of EPR Standards Committee; IEC and French experts test assessment and prognosis arrangements; IEC and Swiss counterparts conduct an assessment and prognosis drill; Consultancy on CANDUspecific EALs; Regional Workshops; Recently reported events; Member State preparedness; IEC welcomes young visitors on Bring Your Children to Work day

  20. Inertial electrostatic confinement fusion neutron source R ampersand D and issues

    International Nuclear Information System (INIS)

    Ohnishi, Masami; Yamamoto, Yasushi; Hasegawa, Mitsunori

    1997-01-01

    An inertial electrostatic confinement (IEC) fusion is the scheme of injecting the ions and electrons toward the spherical center, trapping both species in the electrostatic self-field and giving rise to fusion reactions in the dense core. An IEC is expected to have wide application from a small neutron source to a D- 3 He fusion reactor. Hirsch reported 10 9 n/s deuterium-tritium (D-T) neutron production in the device equipped with ion guns. Recently, Gu et al. measured 10 6 n/s using a D 2 gas discharge between the spherical wire cathode and the anode vacuum vessel, where the applied voltage is 60 kV and the current is 15 mA. We have also obtained similar neutron production at a lower voltage, ∼45 kV in a single-grid IEC device. Fusion reaction rates obtained by IEC experiments so far cannot be explained by a model of a simple potential well structure because the electrical potential peaked at the center prevents making a dense core. Hirsch proposed a multiwell structure called open-quotes poissorsclose quotes to explain the experiments. It is generally believed that there may be some correlation between the potential well structure and the neutron production rate. The scaling of neutron production on the injected ion current is a most important aspect of the problem for the prospect of utilizing IEC for fusion energy. The potential structure and its behavior are keys to the physics in understanding the principle of an IEC

  1. Model for Generation of Neutrons in a Compact Diode with Laser-Plasma Anode and Suppression of Electron Conduction Using a Permanent Cylindrical Magnet

    Science.gov (United States)

    Shikanov, A. E.; Vovchenko, E. D.; Kozlovskii, K. I.; Rashchikov, V. I.; Shatokhin, V. L.

    2018-04-01

    A model for acceleration of deuterons and generation of neutrons in a compact laser-plasma diode with electron isolation using magnetic field generated by a hollow cylindrical permanent magnet is presented. Experimental and computer-simulated neutron yields are compared for the diode structure under study. An accelerating neutron tube with a relatively high neutron generation efficiency can be constructed using suppression of electron conduction with the aid of a magnet placed in the vacuum volume.

  2. IEC Newsletter, No. 49, Third Quarter 2014

    International Nuclear Information System (INIS)

    2014-12-01

    The IEC Newsletter is prepared by the Incident and Emergency Centre (IEC), Department of Nuclear Safety and Security of the IAEA. The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. Table of contents: • Spolighting IEC Activities at the 58th IAEA General Conference; • TM on Lessons Learned from Past Emergency Preparedness Review (EPREV) Missions; • Third Full Response Exercise of 2014; • Israel joins RANET; • Launch of Emergency Preparedness Network (EPnet); • IEC Response to Recent Events; Member State Prepaedness; • New Publications Translation; • New USIE Training Video; • The IEC in Numbers

  3. IEC Newsletter, No. 49, Third Quarter 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The IEC Newsletter is prepared by the Incident and Emergency Centre (IEC), Department of Nuclear Safety and Security of the IAEA. The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. Table of contents: • Spolighting IEC Activities at the 58th IAEA General Conference; • TM on Lessons Learned from Past Emergency Preparedness Review (EPREV) Missions; • Third Full Response Exercise of 2014; • Israel joins RANET; • Launch of Emergency Preparedness Network (EPnet); • IEC Response to Recent Events; Member State Prepaedness; • New Publications Translation; • New USIE Training Video; • The IEC in Numbers.

  4. Development of a High Fluence Neutron Source for Nondestructive Characterization of Nuclear Waste

    International Nuclear Information System (INIS)

    Pickrell, Mark M.

    1999-01-01

    We are addressing the need to measure nuclear wastes, residues, and spent fuel in order to process these for final disposition. For example, TRU wastes destined for the WIPP must satisfy extensive characterization criteria outlined in the Waste Acceptance Criteria, the Quality Assurance Program Plan, and the Performance Demonstration Plan. Similar requirements exist for spent fuel and residues. At present, no nondestructive assay (NDA) instrumentation is capable of satisfying all of the PDP test cycles (particularly for Remote-Handled TRU waste). One of the primary methods for waste assay is by active neutron interrogation. The objective of this project is to improve the capability of all active neutron systems by providing a higher intensity neutron source (by about a factor of 1,000) for essentially the same cost, power, and space requirements as existing systems. This high intensity neutron source is an electrostatically confined (IEC) plasma device. The IEC is a symmetric sphere that was originally developed in the 1960s as a possible fusion reactor. It operates as DT neutron generator. Although it is not likely that this device will scale to fusion reactor levels, previous experiments1 have demonstrated a neutron yield of 2 x 1010 neutrons/second on a table-top device that can be powered from ordinary laboratory circuits (9 kilowatts). Subsequently, the IEC physics has been extensively studied at the University of Illinois and other locations. We have established theoretically the basis for scaling the output up to 1 x 1011 neutrons/second. In addition, IEC devices have run for cumulative times approaching 10,000 hours, which is essential for practical application to NDA. They have been operated in pulsed and continuous mode. The essential features of the IEC plasma neutron source, compared to existing sources of the same cost, size and power consumption, are: Table 1: Present and Target Operating Parameters for Small Neutron Generators Parameter Present IEC

  5. Effective IEC approaches for Asia. IEC evaluation workshop.

    Science.gov (United States)

    1996-02-01

    The UNFPA-supported project on development and distribution of information, education, and communication (IEC) materials in support of improving women's health and status was evaluated at a workshop held in Tokyo in December 13-15, 1995. The 1992-95 cycle of the project was analyzed by experts from Bangladesh, China, India, Indonesia, Malaysia, Nepal, the Philippines, and Vietnam plus three experts from the UNFPA/Country Support Team. The workshop also made it possible for the experts to identify needs as well as effective utilization of existing IEC materials. It was suggested that a nongovernmental organization be established for the distribution and effective use of these materials. The workshop mostly reviewed the print and audiovisual materials. Videos were also evaluated. The materials were found useful for the targeted region. Among other subregional issues it was noted that youth needs were inadequately addressed as they related to sexually transmitted diseases (STDs), unwanted pregnancy, risk of maternal mortality and morbidity, low birth weight, and premature birth. Although the women of the region comprise one-third of the world's population, 70% of the global annual maternal mortality of 500,000 occurs in the subregion. IEC materials should also target adolescents and their support groups. Other needs were also outlined: the expansion of educational opportunities for women, the promotion of employment, the involvement of men, and the training of personnel. The strategies used in the cycle helped strengthen self-reliance through information and experience sharing. The focus on women should be continued with more attention paid to adolescents and young adults, including males. Women's health issues should be expanded to include menopause, reproductive tract infections, STDs, HIV/AIDS prevention, and legal rights including abortion. The production of IEC materials should be identified through research and analysis of existing materials, focus group

  6. Improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1986-01-01

    An improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell has been developed. Expanding the neutron flux and source into a series of even powers of the radius, one' gets a convenient method for integration of the one-energy group integral transport equation. It is shown that it is possible to perform an analytical integration in the x-y plane in one variable and to use the effective Gaussian integration over another one. Choosing a convenient distribution of space points in fuel and moderator the transport matrix calculation and cell reaction rate integration were condensed. On the basis of the proposed method, the computer program DISKRET for the ZUSE-Z 23 K computer has been written. The suitability of the proposed method for the calculation of the thermal-neutron-flux distribution in a reactor cell can be seen from the test results obtained. Compared with the other collision probability methods, the proposed treatment excels with a mathematical simplicity and a faster convergence. (author)

  7. Contribution to analytical theory of neutron resonance absorption in heterogeneous reactor systems with cylindrical geometry

    International Nuclear Information System (INIS)

    Slipicevic, K.

    1968-12-01

    Following a review of the existing theories od resonance absorption this thesis includes a new approach for calculating the effective resonance integral of absorbed neutrons, new approximate formula for the penetration factor, an analysis of the effective resonance integral and the correction of the resonance integral taking into account the interference of potential and resonance dissipation. A separate chapter is devoted to calculation of the effective resonance integral for the regular reactor lattice with cylindrical fuel elements

  8. Consideration of a ultracold neutron source in two-dimensional cylindrical geometry by taking simulated boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Gheisari, R., E-mail: gheisari@pgu.ac.ir [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Nuclear Energy Research Center, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Firoozabadi, M. M.; Mohammadi, H. [Department of Physics, University of Birjand, Birjand 97175 (Iran, Islamic Republic of)

    2014-01-15

    A new idea to calculate ultracold neutron (UCN) production by using Monte Carlo simulation method to calculate the cold neutron (CN) flux and an analytical approach to calculate the UCN production from the simulated CN flux was given. A super-thermal source (UCN source) was modeled based on an arrangement of D{sub 2}O and solid D{sub 2} (sD{sub 2}). The D{sub 2}O was investigated as the neutron moderator, and sD{sub 2} as the converter. In order to determine the required parameters, a two-dimensional (2D) neutron balance equation written in Matlab was combined with the MCNPX simulation code. The 2D neutron-transport equation in cylindrical (ρ − z) geometry was considered for 330 neutron energy groups in the sD{sub 2}. The 2D balance equation for UCN and CN was solved using simulated CN flux as boundary value. The UCN source dimensions were calculated for the development of the next UCN source. In the optimal condition, the UCN flux and the UCN production rate (averaged over the sD{sub 2} volume) equal to 6.79 × 10{sup 6} cm{sup −2}s{sup −1} and 2.20 ×10{sup 5} cm{sup −3}s{sup −1}, respectively.

  9. Evaluation of neutronic characteristics of STACY 80-cm-diameter cylindrical core fueled with 6% enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yanagisawa, Hiroshi; Sono, Hiroki

    2003-06-01

    For the examination of neutronic safety design of forthcoming experimental core configurations in the Static Experiment Critical Facility (STACY), neutronic characteristics of 80-cm-diameter cylindrical cores fueled with 6% enriched uranyl nitrate solution have been evaluated by computational analyses. In the analyses, the latest nuclear data library, JENDL-3.3, was used as neutron cross section data. The neutron diffusion and transport calculations were performed using a diffusion code, CITATION, in the SRAC code system and a continuous-energy Monte Carlo code, MVP. Critical level heights of the cores were obtained using such parameters as uranium concentration (up to 500 gU/l), free nitric acid concentration (up to 8 mol/l), and concentration of soluble neutron poisons, gadolinium and boron. It has been confirmed from the evaluation that all critical cores comply with safety criteria required in the STACY operation concerning excess reactivity, reactivity addition rates and shutdown margins by safety rods. (author)

  10. IEC 61850. Integrated supervision of auxiliary power equipment; IEC 61850. Prozess und Eigenbedarf wachsen zusammen

    Energy Technology Data Exchange (ETDEWEB)

    Ostertag, Robert; Jung, Matthias [Siemens AG, Erlangen (Germany)

    2009-07-01

    It is state of technology today: Having process control and auxiliary power control integrated in one DCS. The integration is based on the international standard IEC 61850 which allows standardization of electrical structures from the process interface up to the DCS level. Modern control systems are designed to realize a system structure according to IEC 61850. A wide range of systems is available from systems with interfaces to realize a standardized data exchange up to systems with a complete integration of the standard IEC 61850. (orig.)

  11. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  12. IEC Newsletter, No. 50, Fourth Quarter, 2014

    International Nuclear Information System (INIS)

    2014-12-01

    The IEC Newsletter is prepared by the Incident and Emergency Centre (IEC), Department of Nuclear Safety and Security of the IAEA. The Incident and Emergency Centre (… IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. The following topics are presented in this newsletter: Three Workshops at the Fukushima RANET Capacity Building Centre; Belgium joins RANET; IEC Response to Recent Events; Recent Exercises; Israel conducts National Response Exercise at Soreq; IACRNE: 24th Regular Meeting; Safety Requirements on Emergency Preparedness and Response; NIRS 2014 Workshop on Radiation Emergency Medicine; Member State Preparedness; New Publications and Translations and Forthcoming Events

  13. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  14. IEC 61850: integrating substation automation into the power plant control system; IEC 61850: Integration der Schaltanlagenautomatisierung in die Kraftwerksleittechnik

    Energy Technology Data Exchange (ETDEWEB)

    Orth, J. [ABB AG, Mannheim (Germany)

    2008-07-01

    The new communication standard IEC 61850 has been developed in the substation automation domain and was released 2004 as a worldwide standard. Meanwhile IEC 61850 is already established in many substation automation markets. The paper discusses the implementation of IEC 61850 integrating process control and substation automation into one consistent system in a power plant. (orig.)

  15. Developing IEC prototypes for adolescents. IEC workshop.

    Science.gov (United States)

    1997-01-01

    Participants of the IEC Workshop for the Production of OHP Material on Reproductive Health for Adolescents and Young Adults held November 25-30 in Japan developed innovative, visually appealing overhead projector (OHP) transparencies to serve as prototype information, education, and communication (IEC) materials for the Asian Region. The materials cover a wide range of topics from early marriage to unwanted pregnancy. This paper briefly describes the prototypes. One group focused upon early marriage, an issue of considerable importance to the health and welfare of young women in countries such as Bhutan, India, and Nepal. Participants from China, Laos, Malaysia, and Thailand focused upon the issue of gender equality, while a third group developed OHP material to teach a range of issues related to young people's sexual and reproductive health. Finally, the fourth group, drawn from Indonesia, the Philippines, and Vietnam, focused upon the topic of menstruation with a prototype targeted to boys and girls aged 9-14 years. Boys were included to foster their understanding of menstruation as a natural phenomenon.

  16. IEC Newsletter, No. 51, First Quarter, 2015

    International Nuclear Information System (INIS)

    2015-06-01

    The IEC Newsletter is prepared by the Incident and Emergency Centre (IEC), Department of Nuclear Safety and Security of the IAEA. The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. The following topics are presented in this newsletter: IEM 8; Internal Full Response Exercise; Board of Governors establishes Safety Requirements in EPR as IAEA Safety Standard; ConvEx-2a; EURDEP Meeting; Train the Trainers Workshop on Medical Aspects of EPR; EPR-Medical 2005 Review Process; EPRIMS; Member State Preparedeness; EPREV Mission to Kenya; RENEB Meeting; Update by Finland of its RANET registration; Recent Events; Upgraded IEC videoconferencing infrastracture; EPREG Meeting and Forthcoming Event: EPR Conference

  17. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  18. IEC Newsletter, No. 48, Second Quarter 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-15

    The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. Table of contents: • Competent Authorities Meeting; • ConvEx-1b Exercise in May 2014; • ConvEx-2a Exercise in April 2014; • IAEA Participates in First ConvEx-2e Exercise; • Second Full Response Mode Exercise of 2014; • New Interactive Learning Tool on INES; • INES Technical Meeting; • Participation in the RAD 2014 Conference; • Member State Preparedness; • Pilot Workshop for the Optimization of National Radiation Emergency Plans; • IEC Response to Recent Events; • China and Switzerland Join RANET; Japan Registers in New Functional Area; • Workshop on Radiation Monitoring; • New Publication Translation; • New USIE Feature: USIE Connect; • Twitter Milestone; • IEC News; • IEC Launches New Website.

  19. IEC Newsletter, No. 48, Second Quarter 2014

    International Nuclear Information System (INIS)

    2014-09-01

    The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. Table of contents: • Competent Authorities Meeting; • ConvEx-1b Exercise in May 2014; • ConvEx-2a Exercise in April 2014; • IAEA Participates in First ConvEx-2e Exercise; • Second Full Response Mode Exercise of 2014; • New Interactive Learning Tool on INES; • INES Technical Meeting; • Participation in the RAD 2014 Conference; • Member State Preparedness; • Pilot Workshop for the Optimization of National Radiation Emergency Plans; • IEC Response to Recent Events; • China and Switzerland Join RANET; Japan Registers in New Functional Area; • Workshop on Radiation Monitoring; • New Publication Translation; • New USIE Feature: USIE Connect; • Twitter Milestone; • IEC News; • IEC Launches New Website

  20. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of spatial and energetic distribution of neutron flux distribution; Caracterizacao do nucleo cilindrico de menor excesso de reatividade do reator IPEN/MB-01, pela medida da distribuicao espacial e energetica do fluxo de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni Garcia

    2014-07-01

    In this work was conducted the mapping of the thermal and epithermal neutrons flux and the energy spectrum of the neutrons in the reactor core IPEN/MB-01 for a cylindrical core configuration with minor excess reactivity, which is 28 x 28 fuel rods arranged in north-south and east-west directions. The calibration of control rods for this configuration determined their excess reactivity. The lower excess reactivity in the core decreased neutron flux disturbance caused by the neutron absorbing rods , given that the nuclear reactor was operated with the rods almost completely removed . Was used the 'Activation Analysis Technique' with the thin foil activation detectors ( infinitely diluted and hyper-pure), of different materials that work in different energy ranges, to calculate the saturation activity, used for determining the neutron flux and in the SANDBP code as input for the calculation of the neutrons energy spectrum. To discriminate thermal and epithermal flux , was used the 'Cadmium RatioTechnique' . The activation detectors were distributed in a total of 140 radial and axial positions in the reactor core and 16 irradiation, with bare and covered with cadmium activation foils. A model of this configuration was simulated by MCNP-5 code to determine the cadmium correction factor and comparison of the results obtained experimentally. The cylindrical configuration desired, with 17% less fuel than the standard rectangular configuration (28 x 26 fuel rods), reached criticality with the control rods approximately 90% removed, which decreased considerably the disturbance in neutron flux. Given the highest power density of the 28 x 28 cylindrical core, the neutron flux increased by over 50% in the central regions of the core compared to the values of the 28 x 26 standard rectangular core. (author)

  1. Thermal neutron absorption cross-section for small samples (experiments in cylindrical geometry)

    International Nuclear Information System (INIS)

    Czubek, J.A.; Drozdowicz, K.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1982-01-01

    Measurement results for thermal neutron macroscopic absorption cross-sections Σsub(a)1 when applying the cylindrical sample-moderator system are presented. Experiments for liquid (water solutions of H 3 BO 3 ) and solid (crushed basalts) samples are reported. Solid samples have been saturated with the H 3 BO 3 ''poisoning'' solution. The accuracy obtained for the determination of the absorption cross-section of the solid material was σ(Σsub(ma))=(1.2+2.2) c.u. in the case when porosity was measured with the accuracy of σ(phi)=0.001+0.002. The dispersion of the Σsub(ma) data obtained for basalts (taken from different quarries) was higher than the accuracy of the measurement. All experimental data for the fundamental decay constants lambda 0 together with the whole information about the samples are given. (author)

  2. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  3. IEC planning: eight state-of-the-art principles.

    Science.gov (United States)

    Middleton, J

    1983-12-01

    Considerable experience and research has been accumulated in the last 20 years on the ways in which information/education/communication (IEC) programs can be effectively designed, implemented, and evaluated. Possibly more effort has focused on population and family planning IEC than on any other sectoral program of development communication. Several principles have emerged which, taken together, define the state of the art in the field. These principles provide a framework of experience which can guide the development of comprehensive IEC programs. They include: policy and resource assessment; audience analysis; strategy design; message research and pretesting; participation and feedback; management; evaluation; and collaboration. The nature of the national policy base for population and family planning programs will determine the goals and approaches of the IEC program. Strong policies of limitation on popultion growth lead to equally strong and pervasive IEC efforts designed to directly affect contraceptive behavior. Assessment of existing policy is an essential aspect of the design of an effective IEC program. Policies establish the rationale and boundaries for action. Population and family planning programs are concerned with some of the most intimate human behavior. Consequently, structured and sensitive audience analysis has become an integral part of the design of IEC programs. The design of communication strategy requires clearly stated objectives. Principles of human learning are used to structure information appropriately. Message research and pretesting have become integral components of the strategy design process. Small scale research on specific objectives is necessary to establish the basis for message design. Audience participation and feedback in remaining phases of program development and implementation are important. The management of an IEC program requires a specific combination of planning, flexibility, and creativity. Evaluation of program

  4. IEC Newsletter, No. 52/2 (2015)

    International Nuclear Information System (INIS)

    2015-10-01

    The IEC Newsletter is prepared by the Incident and Emergency Centre (IEC), Department of Nuclear Safety and Security of the IAEA. The Incident and Emergency Centre (IEC) is the global focal point for emergency preparedness and response for nuclear and radiological safety or security related incidents, emergencies, threats or events of media interest. The IEC is also the world’s centre for coordination of international assistance in emergency. The following topics are presented in this newsletter: Peer Review of UAE’s Emergency Plans for Barakah NPP; IEM 9: Assessment and Prognosis in Response to a Nuclear or Radiological Emergency; Tabletop exercise simulating marime transport emergency; Establishment of EPR Standards Committee; Annual ConvEx-1c; Advisory Mission to Kuwait on medical aspects of EPR; EPR self-assessment for Arab Member States; Event at Cattenom NPP; Train the Trainers Workshop for first responders in Vienna; Member States Preparedness; Republic of Korea joins RANET — USA registers new capabilities; Workshop on Emergency Radiation Monitoring; #EPR15: International Conference on Global EPR; Recent Events

  5. Absorption factor for cylindrical samples

    International Nuclear Information System (INIS)

    Sears, V.F.

    1984-01-01

    The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)

  6. Developing IEC strategies for population programmes.

    Science.gov (United States)

    Cohen, S I

    1993-01-01

    The thrust of this article is to define terms of IEC, IEC strategies, the stepwise planning process for IEC, data requirements, the ideational change process, and the need for situational and institutional analysis. A chart provided an at-a-glance perspective on the 11 steps in IEC strategic planning for as many specific target groups as needed. The steps are to state the goals, select and prioritize the target audience, describe the target audience,, determine the IEC activities, outline appropriate messages, identify communication channels, identify managerial and organizational strategies, calculate the amount of resources required, identify a realistic time frame, and evaluate critical factors and obstacles. IEC goals are to contribute to solving a problem or supporting an issue, which involved attitudinal and/or behavioral changes. Many strategies are possible. The common weaknesses are the lack of priorities, the view of targets as a mass audience, a lack in support for population strategies, a lack of integration with family planning or specific population sectors, a lack of integration of up-to-data research findings on population programs, vague or difficult-to-measure objectives, reliance on printed media, and sporadic assessment of personnel needs. THe levels of strategy are identified as follows: 1) national and multisectoral, 2) national and sectoral specific, and 3) project specific. Traditional sociocultural research and KAP surveys are not sufficient to provide an understanding of the target audience. There must be an understanding of the stages of individual change: unaware, aware, concerned, information seeking, learning, motivated to change, initial behavior change, sustained behavior change, and adoption or refusal of behavior change. Beliefs must be distinguished from attitudes in measurement. Changes in beliefs may involve correction of misinformation; attitude change requires a motivational approach. Behavior may be determined by other

  7. Information security in accordance with ISO/IEC 27000

    OpenAIRE

    Košćak , Damjan

    2011-01-01

    The diploma assignment discusses Information Technology Security according to standards ISO/IEC 27001 and ISO/IEC 27002. Diploma consists of two parts. In the first part of the diploma a theoretical bases of information security are presented. The second part presents the introduction of ISO/IEC 27001 security standard in the company »X« in wich I performed a practical training. In the closure my diploma work is upgraded with results of my research work and their analysis as well as wit...

  8. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  9. Contribution to analytical theory of neutron resonance absorption in heterogeneous reactor systems with cylindrical geometry; Prilog analitickoj teoriji rezonzntne apsorpcije neutron u heterogenom reaktorskim sistemima sa cilindricnom geometrijom

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1968-07-01

    Following a review of the existing theories od resonance absorption this thesis includes a new approach for calculating the effective resonance integral of absorbed neutrons, new approximate formula for the penetration factor, an analysis of the effective resonance integral and the correction of the resonance integral taking into account the interference of potential and resonance dissipation. A separate chapter is devoted to calculation of the effective resonance integral for the regular reactor lattice with cylindrical fuel elements.

  10. Effectiveness of Information, Education and Communication (IEC) on ...

    African Journals Online (AJOL)

    IEC) on the public acceptability of unsafe abortion solution options of contraception, family life education including sex education and liberalization of abortion laws. Our aim was to use IEC to improve public acceptability of the recommended ...

  11. Calculation of the apparent neutron parameters in a borehole geometry for neutron porosity tools

    International Nuclear Information System (INIS)

    Woznicka, U.; Drabina, A.

    2001-01-01

    This paper presents the next step of a development of the theoretical solutions, which gives a possibility to calculate the apparent neutron slowing down and migration lengths in the three region cylindrical system which represents the borehole, the intermediate zone (e.g. mud cake at the borehole walls), and the geological formation. A solution of the neutron diffusion equation in energy two-group approach for spatial moments of the neutron flux is given for the three-region cylindrical coaxial geometry. The influence of the intermediate zone is presented. The numerical code MOM3 has been written to calculate the apparent slowing down and migration lengths for the three-region cylindrical system as mentioned above. Additionally the MCNP calculation for the three-region borehole geometry is presented in the paper

  12. Power system EMC and IEC publication 1000

    International Nuclear Information System (INIS)

    Teichmann, H.

    1997-01-01

    A classification of the principal phenomena causing electromagnetic disturbances has been prepared by the International Electrotechnical Commission (IEC). Electromagnetic compatibility was defined (by the IEC) as 'the ability of a device, equipment or system to function satisfactorily in its electromagnetic environment without introducing intolerable electromagnetic disturbances in that environment'. The classification includes the following phenomena relative to power systems: (1) low-frequency phenomena, (2) radiated low-frequency phenomena, (2) conducted high-frequency phenomena, (3) radiated high-frequency phenomena, and (4) electrostatic discharge phenomena. The structure of the IEC publication 1000 was explained. Parts 1, 2, 3 and 6 of the publication were highlighted. The issues covered in those parts were: (Part 1) general, (Part 2) environment, (Part 3) limits, and (Part 6) generic standards. 6 refs

  13. Measurement of energy deposition distributions produced in cylindrical geometry by irradiation with 15 MeV neutrons

    International Nuclear Information System (INIS)

    Brandan, M.E.

    1979-01-01

    Cellular survival experiments have shown that the biological damage induced by radiation depends on the density of energy deposition along the trajectory of the ionizing particle. The quantity L is defined to measure the density of energy transfer along a charged particle's trajectory. It is equal to sigma/l, where sigma is the energy transferred to a medium and l is the path length along which the transfer takes place. L is the stochastic quantity whose mean value is the unrestricted linear energy transfer, L/sub infinity/. Measurements of the distribution of L in a thin medium by secondary charged particles from fast neutron irradiation were undertaken. A counter operating under time coincidence between two coaxial cylindrical detectors was designed and built for this purpose. Secondary charged particles enter a gas proportional counter and deposit some energy sigma. Those particles traversing the chamber along a radial trajectory strike a CsI scintillator. A coincidence between both detectors' signals selects a known path length for these events, namely the radius of the cavity. Measurements of L distributions for l = 1 μm in tissue were obtained for 3 and 15 MeV neutron irradiation of a tissue-equivalent target wall and for 15 MeV neutron irradiation of a graphite wall. Photon events were corrected for by measurements with a Pb target wall and 15 MeV neutron irradiation as well as exposure to a pure photon field. The measured TE wall distributions with 15 MeV neutron bombardment show contributions from protons, α-particles, 9 Be and 12 C recoils. The last three comprise the L distribution for irradiation of the graphite wall. The proton component of the measured L distributions at 3 and 15 MeV was compared to calculated LET distributions

  14. Numerical and experimental results of the operational neutron dosemeter 'Saphydose-N'

    International Nuclear Information System (INIS)

    Lahaye, T.; Chau, Q.; Menard, S.; Ndontcheung-Moyo, M.; Bolognese-Milsztajn, T.; Rannou, A.

    2004-01-01

    Since 1993, the Inst. for Radiological Protection and Nuclear Safety (IRSN) has lead, in association with Electricite de France (EDF), a R and D study of a neutron personal electronic dosemeter. This dosemeter, called 'Saphydose-N', is manufactured by the SAPHYMO company. This paper presents first the optimisation of some detector components using Monte Carlo calculations, and second the test of the manufactured Saphydose-N under radiation following the IEC 1323 standard's recommendations for active personal neutron dosemeters. The measurements with the manufactured dosemeter were performed on the one hand at PTB (Physikalisch-Technische Bundesanstalt) in mono-energetic neutron fields and, on the other hand at IRSN in neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources and a realistic spectrum (CANEL/T400). The manufactured dosemeter Saphydose-N was also tested during measurement campaigns of the European programme EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields') at different nuclear workplaces. The study showed that Saphydose-N complies with the recommendations of standard IEC 1323 and can be used at any workplace with no previous knowledge of the neutron field characteristics. (authors)

  15. Changes in IEC standards related to diagnostic radiology

    International Nuclear Information System (INIS)

    Porubszky, T.; Barsai, J.

    2007-01-01

    Complete test of publication follows. Purposes. Technical Committee TC62 of International Electrotechnical Commission (IEC) deals with medical electrical equipment (i.e. medical devices using electricity). Standardization concerning diagnostic radiology equipment is task of its Sub-Committee SC62B. An outlook of its activities and present situation, and especially of radiation protection aspects, is given. Materials and methods. Third edition of basic safety standard for medical electrical equipment IEC 60601-1 was issued in 2005. Elaboration of new collateral and particular standards - applicable together with it - is in progress. These standards are generally at the same time also European - EN - and national standards. There is a great importance of radiation protection in diagnostic X-ray equipment. Collateral standard IEC 6060-1-3 about it was at first issued in 1994. Rapid development of imaging technology demands updating of requirements. SC62B in 2003 founded a maintenance team MT37 for preparation of the second edition of this standard. According to new safety philosophy of IEC all modality specific requirements are to be collected in 'safety and essential performance' particular standards. A new working group WG42 - founded in 2006 - elaborates a new particular standard IEC 60601-2-54 for radiographic and radioscopic equipment. Maintenance team MT32 deals with safety and performance standards for X-ray tube assemblies. The authors actively participate in these activities. Results and discussion. Present and future system of diagnostic radiology IEC standards and some interesting details are presented. Conclusions. International standards - although they are not 'obligatory' - are generally the basis of safety and performance certification of diagnostic radiology equipment and often also of their quality assurance.

  16. China and IEC international standardization activities

    Institute of Scientific and Technical Information of China (English)

    Su Zhongmin; Guo Chenguang

    2006-01-01

    @@ International Electrotechnical Commission (IEC), one of the currently worlswide largest and most authoritative international standardization organizations,is specialized in developing and promulgating international standards for the electric and electronic fields, which are widespread adopted through out the world and play an important role in the international trade of electric and electronic products. Moreover, according to the 2005 statistics by the World Bank, the population of countries participating in the IEC activities accounts for 92% of the world total and their trade volume accounts for 95% of the global total.

  17. A multi-function IEC 61850 packet generator based on FPGA

    International Nuclear Information System (INIS)

    Wei, Wei; Li, Hong-bin; Cheng, Han-miao

    2016-01-01

    An IEC 61850 packet generator is used to produce IEC 61850-9-2 packets by simulating the merging unit and testing the IEC 61850 digital device. While the existing IEC packet generator can produce ideal digital without any noise, it does not take into account the fact that the merging unit output signal packets will be inevitably superimposed with noise. Since the International Electrical Commission standard of the electronic current transformer specifies the minimum output signal-to-noise ratio of the merging unit to be 30 dB, and the signal superimposed with noise will influence the operation performance of the digital device, it is necessary to design a multi-function IEC 61850-9-2 packet generator for a digital device test. Therefore, in this paper, a multi-function IEC 61850 packet generator has been developed, which not only can output various IEC 61850-9-2 packets, but also can add white Gaussian noise to the signal for digital device testing. By testing three digital electricity meters from different manufacturers, we showed that the error of the digital electricity meter is significantly larger when the signal packet is superimposed with noise. Also when the signal-to-noise ration is 30 dB, the error of one of the meters exceeds the allowed range of the accuracy class. This indicates that the noise testing and the noise setting function of the system has an important role in the testing of a digital device. (paper)

  18. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  19. The transmission probability method in one-dimensional cylindrical geometry

    International Nuclear Information System (INIS)

    Rubin, I.E.

    1983-01-01

    The collision probability method widely used in solving the problems of neutron transpopt in a reactor cell is reliable for simple cells with small number of zones. The increase of the number of zones and also taking into account the anisotropy of scattering greatly increase the scope of calculations. In order to reduce the time of calculation the transmission probability method is suggested to be used for flux calculation in one-dimensional cylindrical geometry taking into account the scattering anisotropy. The efficiency of the suggested method is verified using the one-group calculations for cylindrical cells. The use of the transmission probability method allows to present completely angular and spatial dependences is neutrons distributions without the increase in the scope of calculations. The method is especially effective in solving the multi-group problems

  20. Perancangan SMKI Berdasarkan SNI ISO/IEC27001:2013 dan SNI ISO/IEC27005:2013 (Studi Kasus DPTSI-ITS

    Directory of Open Access Journals (Sweden)

    Furqon Mauladani

    2018-03-01

    Full Text Available Institut Teknologi Sepuluh Nopember (ITS adalah salah satu universitas di Surabaya. ITS telah menggunakan TIK untuk keperluan operasional bisnisnya (contohnya isi kartu program studi, proses absensi, pembaharuan informasi, dan lainnya. Penggunaan TIK tidak dapat dipisahkan dari ancaman yang dapat mengganggu operasional TIK. Ancaman terdiri dari ancaman yang berasal dari luar (penyebaran malware, aktifitas social engineering, orang dalam (sengaja, tidak sengaja, kegagalan teknis (kesalahan penggunaan, kegagalan perangkat keras/lunak ataupun bencana alam (kebakaran, gempa, banjir. Metode yang digunakan pada penelitian ini adalah melakukan manajemen resiko keamanan informasi berdasarkan SNI ISO/IEC 27005 dan perancangan dokumen SMKI berdasarkan SNI ISO/IEC 27001. Hasil penelitian ini adalah 60 resiko yang tidak diterima dari total 228 resiko yang telah teridentifikasi. Dari 60 resiko tersebut, terdapat 58 risk modification, 1 risk avoidance, dan 1 risk sharing. Tata kelola keamanan informasi yang dirancang berdasarkan SNI ISO/IEC 27001 adalah ruang lingkup SMKI, kebijakan SMKI, proses penilaian resiko, proses penanganan resiko, statement of applicability, dan sasaran keamanan informasi.

  1. Study of a solid state micro-dosemeter based on a monolithic silicon telescope: Irradiations with low-energy neutrons and direct comparison with a cylindrical TEPC

    International Nuclear Information System (INIS)

    Agosteo, S.; Colautti, P.; Fanton, I.; Fazzi, A.; Introini, M. V.; Moro, D.; Pola, A.; Varoli, V.

    2011-01-01

    A silicon device based on the monolithic silicon telescope technology coupled to a tissue-equivalent converter was proposed and investigated for solid state microdosimetry. The detector is constituted by a DE stage about 2 μm in thickness geometrically segmented in a matrix of micrometric diodes and a residual-energy measurement stage E about 500 μm in thickness. Each thin diode has a cylindrical sensitive volume 9 μm in nominal diameter, similar to that of a cylindrical tissue-equivalent proportional counter (TEPC). The silicon device and a cylindrical TEPC were irradiated in the same experimental conditions with quasi-monoenergetic neutrons of energy between 0.64 and 2.3 MeV at the INFN-Legnaro National Laboratories (LNLINFN, Legnaro (Italy)). The aim was to study the capability of the silicon-based system of reproducing microdosimetric spectra similar to those measured by a reference micro-dosemeter. The TEPC was set in order to simulate a tissue site about 2 μm in diameter. The spectra of the energy imparted to the ΔE stage of the silicon telescope were corrected for tissue-equivalence through an optimized procedure that exploits the information from the residual energy measurement stage E. A geometrical correction based on parametric criteria for shape-equivalence was also applied. The agreement between the dose distributions of lineal energy and the corresponding mean values is satisfactory at each neutron energy considered. (authors)

  2. Accreditation - ISO/IEC 17025

    Science.gov (United States)

    Kaus, Rüdiger

    This chapter gives the background on the accreditation of testing and calibration laboratories according to ISO/IEC 17025 and sets out the requirements of this international standard. ISO 15189 describes similar requirements especially tailored for medical laboratories. Because of these similarities ISO 15189 is not separately mentioned throughout this lecture.

  3. Information security for energy automation. IEC 62351 Challenges and possible solutions; Informationsicherheit fuer die Energieautomatisierung. IEC 62351 - Herausforderungen und Loesungsansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, K.; Fries, S. [Sector Corporate Technology, Siemens AG, Muenchen (Germany); Seewald, M.G. [Sector Energy, Siemens AG, Nuernberg (Germany)

    2008-10-06

    Information security has gained tremendous importance for energy automation systems over the last years. New standards like IEC 62351 address this topic and specify technical requirements which have to be met by the vendors. Especially vendors that cover the entire energy automation chain with their product portfolio have to face several new demanding challenges. The authors describe suitable approaches and implementation issues that are derived from selected IEC 62351 requirements following the product lifecycle process. (orig.)

  4. Determination of buckling and probability of leakage of neutron in the IPEN/MB-01 reactor in cylindrical configuration

    International Nuclear Information System (INIS)

    Purgato, Rafael Turrini

    2014-01-01

    One of the key parameters in reactor physics is the Buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the Buckling depends on the geometric and material characteristics of the reactor core. This work presents the results of experimental Buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the 239 Np (276,6 keV) for neutron capture (n,γ) and the 143 Ce (293,3 keV) for fission (n,f) on both 238 U and 235 U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The Buckling Total obtained from the three methods by weighted mean is 96,55 ± 7,47 m -2 . The goal is to obtain experimental values of a set of experimental data to allow one direct comparison with values calculated by the codes used in reactor physics CITATION and MCNP. (author)

  5. Migración de un SGSI basado en ISO/IEC 27001:2005 a la versión ISO/IEC 27001:2013

    OpenAIRE

    Espol; Rendón Freire, María José

    2015-01-01

    Este proyecto tiene como objetivo identificar los cambios en los requisitos de la norma ISO/IEC 27001:2013 respecto a la versión 2005, para lograr la actualización de un sistema de gestión de seguridad de la información basado en ISO/IEC 27001:2005 acorde a lo establecido en el nuevo estándar. Guayaquil Magíster en Seguridad Informática Aplicada

  6. Concept for a high performance MHD airbreathing-IEC fusion rocket

    International Nuclear Information System (INIS)

    Froning, H.D. Jr.; Miley, G.H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-01-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion

  7. Concept for a high performance MHD airbreathing-IEC fusion rocket

    Science.gov (United States)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  8. Nodal integral method for the neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes

  9. [Approval of ISO/IEC 17025 and quality control of laboratory testing].

    Science.gov (United States)

    Yamamoto, Shigeki; Asakura, Hiroshi; Machii, Kenji; Igimi, Shizunobu

    2010-01-01

    First section of Division of Biomedical Food Research, National Institute of Health Sciences (NIHS) was approved by ISO/IEC 17025 as a laboratory having an appropriate laboratory testing technique. NIHS is the first national laboratory approved by ISO/IEC 17025. NIHS has also been accepted the appropriate technique and facility for the BSL3 level pathogens by ISO/IEC 17025. NIHS is necessary to take an external audit almost every year. This approval is renewed every 4 years.

  10. The role of the IEC and ISO in radiological protection

    International Nuclear Information System (INIS)

    White, D.F.

    1976-01-01

    The history, objectives, structures and functions of the International Electrotechnical Commission (IEC) and the International Organisation for Standardisation (ISO) are summarized. The IEC is affiliated to the ISO as its electrical division, but has technical and financial autonomy. Member countries of the EEC may be committed to the adoption of their formal agreements ('Standards') if these become incorporated as Directives. The national standardisation organisations, such as BSI in the U.K., form national committees and are responsible for submitting to the IEC the co-ordinated national viewpoints on particular subjects. The overall links between the technical committees and sub-committees of the ISO, IEC and BSI in the field of radiological protection are tabulated, and the relevant International Standards produced, or in the course of preparation, by the appropriate committees of the ISO and the IEC are listed. The bulk of the effort of the BSI committees is now aimed at the production of acceptable international standards. Compatible national standards then follow. This policy is in contrast to the earlier initial emphasis on national standards, and the improved international collaboration has had two welcome effects. The selection of proposals for standards is more critical, and compatibility with the relevant ICRP and ICRU publications is almost a prerequisite for any international standard. (U.K.)

  11. IEC Information Bulletin, No. 39, First Quarter 2012

    International Nuclear Information System (INIS)

    2012-01-01

    On 28 March, the Incident and Emergency Centre (IEC) conducted its first Full Response Exercise of 2012. Over 30 staff members from the Department of Nuclear Safety and Security and the Division of Public Information participated. The IEC was activated into full response mode at approximately 9 a.m. This full response lasted most of the day and led up to a 'lessons learned' discussion at the end of the day. Florian Baciu, the IEC Response System Coordinator, noted: ''Although many of the participants were involved in the IAEA response to the accident at TEPCO's Fukushima Daiichi nuclear power plant, this exercise gave them the opportunity to practice procedures which they had not used since then. In addition, we had several staff members relatively new to the IAEA's Incident and Emergency System among the participants.'' Hilaire Mansoux, one of the Emergency Response Managers for the exercise, stated: ''The scenario was quite complex, requiring a good flow of information.'' The IEC staff had developed a scenario in which a meltdown and resulting release of radioactive materials to the environment from a nuclear power plant in a Member State was caused by a criminal act. All outside organizations were represented by the IEC staff in a simulation cell, which periodically contributed information using telephone calls, faxes, emails and messages through the IAEA's Unified System for Information Exchange in Incidents and Emergencies (USIE). The tasks of the IAEA in the area of emergency response were expanded through the mandate given by Member States following the events at Fukushima Daiichi last year. In the area of communication and information dissemination, the IAEA was also given, among other tasks, the mandate to assess emergency situations by providing 'analysis of available information and prognosis of possible scenarios'. Together with other matters, the assessment aspect was addressed in this full response exercise.

  12. COSTANZA-AX, 1-D Neutronics and Thermodynamics of Liquid Cooled Reactor in Axial Geometry. COSTANZA-CYL, 1-D Neutronics and Thermodynamics of Liquid Cooled Reactor in Cylindrical Geometry

    International Nuclear Information System (INIS)

    Agazzi, A.; Forti, G.; Vincenti, E.

    1984-01-01

    1 - Nature of physical problem solved: Purpose of the programmes is to study reactor dynamics, considering the variation of the spatial flux distribution. The two programmes COSTANZA-CYL and COSTANZA-AX, solve the kinetics diffusion equations in two groups and one dimension (plane geometry for COSTANZA-AX, radial geometry for COSTANZA-CYL). The neutronic calculation is coupled with the calculation of the heat transmission from the fuel to the cladding and to the coolant, and with the thermo-hydraulics of channels with forced circulation of liquid coolant. The geometry of fuel element and channel may be cylindrical or slab. Up to ten groups of delayed neutrons are allowed. Temperature feedback of fuel (Doppler) and coolant are considered independently and affect the nuclear constants. Control rod movement or diffused poison concentrations are simulated by externally imposed variations of the thermal absorption cross section in the different regions of the reactors. Inlet temperatures and mass flow in the coolant channels may be varied according to any externally given time table. 2 - Method of solution: The kinetic diffusion equations in two groups are solved by finite-difference method. 3 - Restrictions on the complexity of the problem: 10 concentric regions; 10 coolant channels; 10 groups of delayed neutrons

  13. Progress in IEC 61400-27

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Andresen, Björn; Bech, John

    2012-01-01

    turbines (part 1) and wind power plants (part 2), which are intended for short-term power system stability analyses. WG27 submitted the first CD of Part 1 in December 2012. The CD describes generic wind turbine models and a procedure for validation of wind turbine models. The generic model description......This paper presents the status of the ongoing work in IEC Technical Committee 88 Working Group 27 (TC88 WG27) developing a standard IEC 61400-27 for “Electrical simulation models for wind power generation”. The purpose of this standardization work is to define generic simulation models for wind...... consists of a general model structure intending to cover existing as well as future types of wind turbines, and specific fundamental frequency positive sequence models for the four wind turbine types which are widely used today. The validation procedure can be applied to the generic models specified...

  14. IEC Based D-3He Fusion for Space Propulsion

    International Nuclear Information System (INIS)

    Miley, George H.; Burton, R.; Richardson, N.; Shaban, Y.; Momota, Hiromu

    2002-01-01

    A preliminary system design is presented for a high performance 100-MWe manned space vehicle in the 500 metric ton class, based on Inertial Electrostatic Fusion (IEC), allowing trip times to the outer planets of several months. An IEC is chosen because it's simplified structure results in a very high power-to-weight ratio. D- 3 He fuel is used to give 14.7-MeV protons as a primary fusion reaction product. Direct conversion of proton energy to electricity is employed, providing a high efficiency. An IEC reactor with a proton energy gain (power in 14.7-MeV protons/input electric power) of 4 or better is assumed. Extrapolation of present laboratory scale IEC experiments to such conditions is possible theoretically, but faces several open issues that require further study such as stability under high-density conditions. The final thruster is based on an NSTAR-extrapolated krypton ion design with a specific impulse of 16,000 seconds and a total thrust of 1020 N. Round trip thrust time for mission set to Jupiter ΔV of 100 km/s is then ∼950 days. (authors)

  15. Can we use IEC 61850 for safety related functions?

    Directory of Open Access Journals (Sweden)

    Luca Rocca

    2016-08-01

    Full Text Available Safety is an essential issue for processes that present high risk for human beings and environment. An acceptable level of risk is obtained both with actions on the process itself (risk reduction and with the use of special safety systems that switch the process into safe mode when a fault or an abnormal operation mode happens. These safety systems are today based on digital devices that communicate through digital networks. The IEC 61508 series specifies the safety requirements of all the devices that are involved in a safety function, including the communication network. Also electrical generation and distribution systems are processes that may have a significant level of risk, so the criteria stated by the IEC 61508 applies. Starting from this consideration, the paper analyzes the safety requirement for the communication network and compare them with the services of the communication protocol IEC 61850 that represents the most used protocol for automation of electrical plants. The goal of this job is to demonstrate that, from the technical point of view, IEC 61850 can be used for implementing safety-related functions, even if a formal safety certification is still missing.

  16. Tight multilattices calculated by extended-cell cylindrization

    Energy Technology Data Exchange (ETDEWEB)

    Segev, M; Carmona, S

    1983-01-01

    Among the common features of advanced LWR concepts are the tightness of lattices and the symbiotic setting of different fuels. Such symbioses often come in the form of multilattices, whose numerically-repeated unit is a configuration of several pins, typically with one pin type at the center and pins of a second type surrounding the center pin. If this extended-cell (EC) unit is cylindricized, then a simple transport calculation of the unit will be possible. If the lattice of such units is tight, there is further an a priori reason to expect the cylindrization to introduce only a small distortion of the true neutron fluxes in the lattice. A strict numerical validation of the EC cylindrization approximation is impractical, but similar validations can be carried out for regular lattices, viewed as being made up of multicell units whose centers are moderators and whose peripheries are fuel pins. In these comparisons the EC cylindrization approximation gives good results.

  17. Calibration of the nuclear power channels for the cylindrical configuration of the IPEN/MB-01 reactor obtained from the measurements of the spatial neutron flux distribution in the reactor core through the irradiation of gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Silva, Alexandre F. Povoa da; Mura, Luiz Ernesto Credidio; Aredes, Vitor Ottoni Garcia; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br, E-mail: alexpovoa@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The activation foil is one of the most used techniques to obtain and compare nuclear parameters from the nuclear data libraries, given by a gamma spectrometry system. Through the measurements of activity induced in the foils, it is possible to determine the neutron flux profile exactly where it has been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. The objective of this work is to obtain, for a cylindrical configuration, the power generation through a spatial thermal neutron flux distribution in the core of IPEN/MB-01 Reactor, by irradiating gold foils positioned symmetrically into the core. They are put in a Lucite plate which will not interfere in the analysis of the neutron flux, because of its low microscopic absorption cross section for the analyzed neutrons. The foils are irradiated with and without cadmium covered small plates, to obtain the thermal and epithermal neutron flux, through specific equations. The correlation between the average power neutron flux, as a result of the foil's irradiation, and the average power digital neutron flux of the nuclear power channels, allows the calibration of the nuclear channels of the reactor. This same correlation was done in 2008 with the reactor in a rectangular configuration, which resulted in a specific calibration of the power level operation. This calibration cannot be used in the cylindrical configuration, because the nuclear parameters could change, which may lead to a different neutron profile. Furthermore, the precise knowledge of the power neutron flux in the core also validates the mathematics used to calculate the power neutron flux. (author)

  18. The neutron silicon lens. An update of the thermal neutron lens results

    International Nuclear Information System (INIS)

    Johnson, M.W.; Daymond, M.R.

    2001-01-01

    This paper introduces the concept of the Neutron Silicon Lens (NSL) and provides and update on the experimental results achieved to date. The NSL design is a cylindrical neutron lens based on the use of multiple neutron mirrors supported and separated by silicon wafers. Such lenses would have many applications in both the primary and scattered beams on neutron instruments, and would lead to immediate improvements where the sample to be illuminated is small, as in high pressure or engineering strain scanning instruments. (author)

  19. The neutron silicon lens. An update of the thermal neutron lens results

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.W.; Daymond, M.R. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)

    2001-03-01

    This paper introduces the concept of the Neutron Silicon Lens (NSL) and provides and update on the experimental results achieved to date. The NSL design is a cylindrical neutron lens based on the use of multiple neutron mirrors supported and separated by silicon wafers. Such lenses would have many applications in both the primary and scattered beams on neutron instruments, and would lead to immediate improvements where the sample to be illuminated is small, as in high pressure or engineering strain scanning instruments. (author)

  20. Qualification of a Human-System Interface to Meet IEC 61513

    International Nuclear Information System (INIS)

    Malcom, Scott; Kim, Sun Ho; Macdonald, Marienna

    2011-01-01

    This paper describes the steps Atomic Energy of Canada Limited (AECL TM ) undertook to qualify its Advanced Control Centre Information System (ACCIS TM ) to meet the requirements of IEC 61513. It will address the different strategies used for software versus hardware. As well, the paper will discuss the steps that have been taken to qualify third-party commercial-off-the-shelf products that are used in conjunction with a qualified product. ACCIS is a display, monitoring and supervisory control system that is designed to be readily configurable and scalable to satisfy the display requirements for single functions or complex industrial plant systems. The ACCIS software services are configured and deployed across a distributed computing environment to meet the needs of a given implementation. From small single-node applications to large, complex, multi-node configurations, system behaviour is largely configured via data specifications. This design reduces the costs associated with development of custom software and allows the user to have greater control of behavioral attributes of the system, including data sampling and storage rates, the appearance and behaviour of displays, alarm annunciation features, and the configuration of system health checks. Utilities and regulators are demanding that these computer-based systems are developed and maintained with an appropriate amount of engineering rigor. To meet this challenge, AECL is qualifying its ACCIS HSI, which is intended for use in all future CANada Nuclear Deuterium (CANDU TM ) nuclear power plants, to meet the requirements of the International Electrotechnical Commission's (IEC) standard for instrumentation and control systems important to safety, IEC 61513. Transitioning to the IEC standards has not been without its challenges. While AECL previously used a software development model very similar to the IEC model, absorbing the volume of the IEC standards and understanding how they should be applied has been

  1. Jefferson Lab IEC 61508/61511 Safety PLC Based Safety System

    International Nuclear Information System (INIS)

    Mahoney, Kelly; Robertson, Henry

    2009-01-01

    This paper describes the design of the new 12 GeV Upgrade Personnel Safety System (PSS) at the Thomas Jefferson National Accelerator Facility (TJNAF). The new PSS design is based on the implementation of systems designed to meet international standards IEC61508 and IEC 61511 for programmable safety systems. In order to meet the IEC standards, TJNAF engineers evaluated several SIL 3 Safety PLCs before deciding on an optimal architecture. In addition to hardware considerations, software quality standards and practices must also be considered. Finally, we will discuss R and D that may lead to both high safety reliability and high machine availability that may be applicable to future accelerators such as the ILC.

  2. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...... spectrum is very low, and does not pose a problem for radiation therapy. However, the contribution from fast neutrons is much more significant. The dose equivalent contribution from neutrons originate from the patient alone and reaches levels which are found in passive moderated proton therapy. The exact...

  3. Standardization in SEK/IEC 2012; Standardisering inom SEK/IEC 2012

    Energy Technology Data Exchange (ETDEWEB)

    Olausson, Susanne

    2013-02-15

    This report describes the work of standardization in the electrotechnical area and collaboration in selected committees of SEK, IEC and CENELEC. Electrotechnical standardization is traditionally an area characterized of large international collaboration, cooperation between government agencies, manufacturers and users. Standardization work has previously been a natural part of power companies' activities related to the extensive expansion activities, own construction business and to generally maintain a good knowledge base of staff. Taking part in the establishment of standards have been a good way to ensure long-term approach made in investments and a guarantee of open competition between manufacturers. Maintenance efforts have also been reduced by using established standards. The acceleration of technological progress has, however, increased pressure on standardization organizations, committee work etc. to keep up with time before the de facto standards have been applied in excessive degree. Reregulation of the electricity market in Sweden has also led to a difference in the standardization process. An increasing number of experts who have worked with standards is currently located at power companies consultancy activities. What was once a natural part of the power companies' internal skills provision today are exposed to a commercial assessment. In 1994 Elforsk was appointed by the owners the task of coordinating the power companies' joint standardization work within specifically electrical engineering. After an initial assessment of the activities was decided that remunera would be paid to the members in SEK, IEC and CENELEC who either participated in selected projects with international character or was either secretary or chairman of the Swedish technical committees (SEK)

  4. Diffusion coefficient calculations for cylindrical cells

    International Nuclear Information System (INIS)

    Lam-Hime, M.

    1983-03-01

    An accurate and general diffusion coefficient calculation for cylindrical cells is described using isotropic scattering integral transport theory. This method has been particularly applied to large regular lattices of graphite-moderated reactors with annular coolant channels. The cells are divided into homogeneous zones, and a zone-wise flux expansion is used to formulate a collision probability problem. The reflection of neutrons at the cell boundary is accounted for by the conservation of the neutron momentum. The uncorrected diffusion coefficient Benoist's definition is used, and the described formulation does not neglect any effect. Angular correlation terms, energy coupling non-uniformity and anisotropy of the classical flux are exactly taken into account. Results for gas-graphite typical cells are given showing the importance of these approximations

  5. Adaptive Micro-Grid Operation Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Wei Deng

    2015-05-01

    Full Text Available Automatically identifying the new equipment after its integration and adjusting operation strategy to realize “plug and play” functionality are becoming essential for micro-grid operations. In order to improve and perfect the micro-grid “plug and play” function with the increased amount of equipment with different information protocols and more diverse system applications, this paper presents a solution for adaptive micro-grid operation based on IEC 61850, and proposes the design and specific implementation methods of micro-grid “plug and play” function and system operation mode conversion in detail, by using the established IEC 61850 information model of a micro-grid. Actual operation tests based on the developed IED and micro-grid test platform are performed to verify the feasibility and validity of the proposed solution. The tests results show that the solution can automatically identify the IEC 61850 information model of equipment after its integration, intelligently adjust the operation strategies to adapt to new system states and achieves a reliable system operation mode conversion.

  6. SU-E-T-542: Measurement of Internal Neutrons for Uniform Scanning Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M; Ahmad, S [University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Zheng, Y; Rana, S [Procure Proton Therapy Center, Oklahoma City, OK (United States); Collums, T [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Monsoon, J; Benton, E [Oklahoma State University, Stillwater, OK (United States)

    2015-06-15

    Purpose: In proton radiotherapy, the production of neutrons is a wellknown problem since neutron exposure can lead to increased risk of secondary cancers later in the patient’s lifetime. The assessment of neutron exposure is, therefore, important for the overall quality of proton radiotherapy. This study investigates the secondary neutrons created inside the patient from uniform scanning proton beams. Methods: Dose equivalent due to secondary neutrons was measured outside the primary field as a function of distance from beam isocenter at three different angles, 45, 90 and 135 degree, relative to beam axis. Plastic track nuclear detector (CR-39 PNTD) was used for the measurement of neutron dose. Two experimental configurations, in-air and cylindrical-phantom, were designed. In a cylindrical-phantom configuration, a cylindrical phantom of 5.5 cm diameter and 35 cm long was placed along the beam direction and in an in-air configuration, no phantom was used. All the detectors were placed at nearly identical locations in both configurations. Three proton beams of range 5 cm, 18 cm, and 32 cm with 4 cm modulation width and a 5 cm diameter aperture were used. The contribution from internal neutrons was estimated from the differences in measured dose equivalent between in-air and cylindrical-phantom configurations at respective locations. Results: The measured ratio of neutron dose equivalent to the primary proton dose (H/D) dropped off with distance and ranged from 27 to 0.3 mSv/Gy. The contribution of internal neutrons near the treatment field edge was found to be up to 64 % of the total neutron exposure. As the distance from the field edge became larger, the external neutrons from the nozzle appear to dominate and the internal neutrons became less prominent. Conclusion: This study suggests that the contribution of internal neutrons could be significant to the total neutron dose equivalent.

  7. An IEC standard on quality assurance for diagnostic X-ray systems

    International Nuclear Information System (INIS)

    Boer, J.A. den

    1985-01-01

    A presentation is given of some characteristics of the International Electrotechnical Commission (IEC). This is followed by a short discussion of general aspects of quality assurance in the diagnostic department. From this discussion it becomes apparent to which aspects of quality assurance IEC can contribute. Within that framework a working group of Sub-Committee 62 is at present active in developing a standard on quality assurance for diagnostic X-ray systems. The standard will contain a set of constancy tests that is claimed to allow a balanced quality assurance programme. The democratic procedure of IEC should guarantee that the proposed standard gains wide acceptance. (author)

  8. Impact Of IEC Intervention On Knowledge Regarding AIDS Amongst Senior Secondary School Children Of East Delhi

    Directory of Open Access Journals (Sweden)

    Bhasin S. K

    1999-01-01

    Full Text Available Research questions: 1. What is the level of awareness regarding HIV/AIDS amongst school children in East Delhi? 2. What is the impact of IEC intervention on the level of awareness regarding HIV/AIDS in these children? Objective: To find out the impact of IEC intervention on awareness regarding HIV/AIDS amongst senior secondary boys and girls in schools of East Delhi. Study design: Pre and post IEC interventional study. Settings: In four randomly selected senior secondary schools in East Delhi. Participants: 294 boys and 333 girls of class XI and XII in pre IEC group and 239 boys and 203 girls in post IEC group. Intervention: An IEC package of exhibition of posters, videotapes and intra group open discussion. Outcome variables: Proportion (prevalence of school children having correct knowledge of various aspects of HIV/AIDS after IEC intervention. Statistical analysis: Chi-square test. Results: IEC intervention significantly generated an enhancing effect on most aspects of their awareness towards HIV/AIDS among both boys and girls. Conclusions: There is an urgent need to impart health education for dispelling misconceptions regarding this disease.

  9. Production of neutronic discrete equations for a cylindrical geometry in one group energy and benchmark the results with MCNP-4B code with one group energy library

    International Nuclear Information System (INIS)

    Salehi, A. A.; Vosoughi, N.; Shahriari, M.

    2002-01-01

    In reactor core neutronic calculations, we usually choose a control volume and investigate about the input, output, production and absorption inside it. Finally, we derive neutron transport equation. This equation is not easy to solve for simple and symmetrical geometry. The objective of this paper is to introduce a new direct method for neutronic calculations. This method is based on physics of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equation series without production of neutron transport differential equation and mandatory passing form differential equation bridge. This method, which is named Direct Discrete Method, was applied in static state, for a cylindrical geometry in one group energy. The validity of the results from this new method are tested with MCNP-4B code with a one group energy library. One energy group direct discrete equation produces excellent results, which can be compared with the results of MCNP-4B

  10. TU-G-213-01: IEC and US Committee Activities and Organizational Structure

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G. [UT MD Anderson Cancer Center (United States)

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  11. Microdosimetry of intermediate energy neutrons in fast neutron fields

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1988-01-01

    A coaxial double cylindrical proportional counter has been constructed for microdosimetry of intermediate energy neutrons in mixed fields. Details are given of the measured gas gain and resolution characteristics of the counter for a wide range of anode voltages. Event spectra due to intermediate neutrons in any desired energy band is achieved by an appropriate choice of thickness of the common dividing wall in the counter and by appropriate use of the coincidence, anticoincidence pulse counting arrangements. Calculated estimates indicate that the dose contribution by fast neutrons to the energy deposition events in the intermediate neutron range may be as large as 25%. Empirical procedures being investigated aim to determine the necessary corrections to be applied to the microdose distributions, with a precision of 10%. (author)

  12. Competence Requirements of ISO/IEC Standards for Information Security Professionals

    Directory of Open Access Journals (Sweden)

    Natalia G. Miloslavskaya

    2017-11-01

    Full Text Available The rapid progress in the filed of information security (IS puts one in a need of periodic revision of professional competencies (formulated in the federal state educational standards –FSESs and working functions (formulated in the professional standards – PSs. Under these conditions, a timely reaction to everything new that emerges or will appear in modern regulatory documents (primarily in standards is extremely important. We make a forecast for the content of the ISO/IEC 27021 and ISO/IEC 19896 standards drafted by the International Organization for Standardization (ISO, which should contain the requirements for the competencies of IS management system professionals and the competence of IS testers and evaluators. Our forecast takes into account the requirements of the ISO/IEC 27000 standard group and the recommendations of the European e-Competence Framework e-CF 3.0.

  13. Interpretation of MS ISO/ IEC 17020

    International Nuclear Information System (INIS)

    Mohamad Pauzi Ismail

    2012-01-01

    MS ISO/ IEC 17020 is an international standard which adopted by Malaysian Standard states the requirement criteria for inspection bodies. The author involved in the NDT technical assessment to several NDT companies in Malaysia. The experience in performing NDT assessment activity is explained and discussed. (author)

  14. Determination of buckling in the IPEN/MB-01 Reactor in cylindrical configuration

    Energy Technology Data Exchange (ETDEWEB)

    Purgato, Rafael Turrini; Bitelli, Ulysses d' Utra; Aredes, Vitor Ottoni; Silva, Alexandre F. Povoa da; Santos, Diogo Feliciano dos; Mura, Luis Felipe L.; Jerez, Rogerio, E-mail: rtpurgato@ipen.br, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    One of the key parameters in reactor physics is the buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the buckling depends on the geometric and material characteristics of the reactor core. This paper presents the results of experimental buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total buckling of the cylindrical configuration. The reactor was operated for an hour. Then, the activation of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the {sup 239}Np (276,6 keV) for neutron capture and the {sup 143}Ce (293,3 keV) for fission on both {sup 238}U and {sup 235}U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The results showed that the cylindrical configuration compared to standard rectangular configuration of the IPEN/MB-01 reactor has a higher neutron economy, since in this configuration there is less leakage of neutrons. The Buckling Total obtained from the three methods was 95.84 ± 2.67 m{sup -2}. (author)

  15. Answering the request for emergency assistance worldwide. The Incident and Emergency Centre (IEC)

    International Nuclear Information System (INIS)

    2007-01-01

    In 2005, the IAEA announced the establishment of a fully integrated Incident and Emergency Centre (IEC). The functions of the IEC include coordinating prompt assistance to requesting States in the case of a nuclear security incident. As the global focal point for international preparedness, communication and response to nuclear and radiological incidents or emergencies irrespective of their cause, the IEC stands at the centre of coordinating effective and efficient activities worldwide. The IEC's work includes the evaluation of emergency plans and assistance in their development. The Centre also develops accident classifications based on plant conditions and supports effective communication between neighbouring countries. In addition, it develops various response procedures and facilitates national exercises on response to reactor emergencies. This includes training a broad range of IAEA staff to respond to emergencies as well as training of external experts. Response to incidents and emergencies can involve the exchange of information, provision of advice and/or the coordination of field response. In order to coordinate a global response, the IEC hosts a Response Assistance Network (RANET) under which Member States, Parties to the Emergency Conventions and relevant international organizations are able to register their response capabilities. This network aims to facilitate assistance in case of a nuclear or radiological incident or emergency in a timely and effective manner. An important component of the global emergency response system is the notification and reporting arrangements and systems operated by the IEC. The IEC operates systems that are reliable and secure. Member States, Non-Member States and international organizations have historically reported events and requests for assistance to the IAEA through the ENATOM arrangements using the ENAC web site, phone or fax. Under these arrangements, States have nominated Competent Authorities and National Warning

  16. DEVELOPMENT OF HETEROGENEOUS PROPORTIONAL COUNTERS FOR NEUTRON DOSIMETRY.

    Science.gov (United States)

    Forouzan, Faezeh; Waker, Anthony J

    2018-01-10

    The use of a custom-made cylindrical graphite proportional counter (Cy-GPC) along with a cylindrical tissue equivalent proportional counter (TEPC) for neutron-gamma mixed-field dosimetry has been studied in the following steps: first, the consistency of the gamma dose measurement between the Cy-TEPC and the Cy-GPC was investigated over a range of 20 keV (X-ray) to 0.661 MeV (Cs-137 gamma ray). Then, with both the counters used simultaneously, the neutron and gamma ray doses produced by a P385 Neutron Generator (Thermo Fisher Scientific) together with a Cs-137 gamma source were determined. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Inertial electro-magnetostatic plasma neutron sources

    International Nuclear Information System (INIS)

    Barnes, D.C.; Nebel, R.A.; Schauer, M.M.; Pickrel, M.M.

    1997-01-01

    Two types of systems are being studied experimentally as D-T plasma neutron sources. In both concepts, spherical convergence of either electrons or ions or both is used to produce a dense central focus within which D-T fusion reactions produce 14 MeV neutrons. One concept uses nonneutral plasma confinement principles in a Penning type trap. In this approach, combined electrostatic and magnetic fields provide a vacuum potential well within which electrons are confined and focused. A small (6 mm radius) spherical machine has demonstrated a focus of 30 microm radius, with a central density of up to 35 times the Brillouin density limit of a static trap. The resulting electron plasma of up to several 10 13 cm -3 provides a multi-kV electrostatic well for confining thermonuclear ions as a neutron source. The second concept (Inertial Electrostatic Confinement, or IEC) uses a high-transparence grid to form a global well for acceleration and confinement of ions. Such a system has demonstrated steady neutron output of 2 x 10 10 s -1 . The present experiment will scale this to >10 11 s -1 . Advanced designs based on each concept have been developed recently. In these proposed approaches, a uniform-density electron sphere forms an electrostatic well for ions. Ions so trapped may be focused by spherical convergence to produce a dense core. An alternative approach produces large amplitude spherical oscillations of a confined ion cloud by a small, resonant modulation of the background electrons. In both the advanced Penning trap approach and the advanced IEC approach, the electrons are magnetically insulated from a large (up to 100 kV) applied electrostatic field. The physics of these devices is discussed, experimental design details are given, present observations are analyzed theoretically, and the performance of future advanced systems are predicted

  18. Characteristic Determination Of Self Shielding Factor And Cadmium Ratio Of Cylindrical Probe

    International Nuclear Information System (INIS)

    Hamzah, Amir; Budi R, Ita; Pinem, Suriam

    1996-01-01

    Determination of thermal, epithermal and total self shielding factor and cadmium ratio of cylindrical probe has been done by measurement and calculation. Self shielding factor can be determined by dividing probe activity to Al-alloy probe activity. Due to the lack of cylindrical probe made of Al-alloy, self shielding factor can be determined by parabolic extrapolation of measured activities to 0 cm radius to divide those activities. Theoretically, self shielding factor can be determined by making numerical solution of two dimensional integral equations using Romberg method. To simplify, the calculation is based on single collision theory with the assumption of monoenergetic neutron and isotropic distribution. For gold cylindrical probe, the calculation results are quite close to the measurement one with the relative discrepancy for activities, cadmium ratio and self shielding factor of bare probe are less then 11.5%, 3,5% and 1.5% respectively. The program can be used for the calculation of other kinds of cylindrical probes. Due to dependency to radius, cylindrical probe made of copper has the best characteristic of self shielding factor and cadmium ratio

  19. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d'Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza

    2015-01-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10 8 ± 5.25% n/cm 2 s. (author)

  20. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  1. A numerical method for two-dimensional anisotropic transport problem in cylindrical geometry

    International Nuclear Information System (INIS)

    Du Mingsheng; Feng Tiekai; Fu Lianxiang; Cao Changshu; Liu Yulan

    1988-01-01

    The authors deal with the triangular mesh-discontinuous finite element method for solving the time-dependent anisotropic neutron transport problem in two-dimensional cylindrical geometry. A prior estimate of the numerical solution is given. Stability is proved. The authors have computed a two dimensional anisotropic neutron transport problem and a Tungsten-Carbide critical assembly problem by using the numerical method. In comparision with DSN method and the experimental results obtained by others both at home and abroad, the method is satisfactory

  2. Parametric studies of target/moderator configurations for the Weapons Neutron Research (WNR) facility

    International Nuclear Information System (INIS)

    Russell, G.J.; Seeger, P.A.; Fluharty, R.G.

    1977-03-01

    Parametric studies, using continuous-energy Monte Carlo codes, were done to optimize the neutronics of the Weapons Neutron Research (WNR) target and three possible target/moderator configurations: slab target/slab moderators, cylindrical target/cylindrical moderator, and cylindrical target/double-wing moderators. The energy range was 0.5 eV to 800 MeV. A general figure-of-merit (FOM) approach was used. The WNR facility performance can be doubled or tripled by optimizing the target and target/moderator configurations; this approach is more efficient than increasing the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator power by an equivalent factor. A bare target should be used for neutron energies above approximately 100 keV. The FOM for the slab target/slab moderator configuration is the best by a factor of at least 2 to 3 below approximately 1 keV. The total neutron leakage from 0.5 eV to 100 keV through a 100- by 100-mm area centered at the peak leakage is largest for the slab moderator, exceeding that of the cylindrical moderator and double-wing moderator by factors of 1.7 and 3.4, respectively. The neutron leakage at 1 eV from one 300- by 150-mm surface of a slab moderator is 1.5 times larger than that from one 155- by 150-mm surface of a cylindrical moderator. When compared with the 1-eV leakage from two 100- by 150-mm surfaces of a double-wing moderator, that from the slab moderator is 3.4 times larger. 107 figures, 13 tables

  3. Can non-regulators audit Independent Ethic Committees (IEC), and if so, how?

    Science.gov (United States)

    Dent, N J; Sweatman, W J

    A number of guidelines and directives have reinforced the need for a more formalised approach to Independent Ethic Committees (IECs) and support the need to audit IECs. The key elements of an audit of an IEC are reviewed within the context of the European Guidelines for Auditing Independent Ethics Committees published by the European Forum for Good Clinical Practice (EFGCP). Auditing requirements in these recent guidelines and the EU Clinical Trial Directive are discussed as well as the methodology and type of documentation and SOPs that should be present at an audit. It is argued that both inspectorates and independent auditors need to conduct such audits to improve the overall global standard.

  4. IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms.

    Science.gov (United States)

    Alexandraki, Krystallenia I; Philippou, Anastassios; Boutzios, Georgios; Theohari, Irini; Koutsilieris, Michael; Delladetsima, Ioanna Kassiani; Kaltsas, Gregory A

    2017-10-03

    Different Insulin-like growth factor-I (IGF-I) mRNA transcripts are produced by alternative splicing and particularly the IGF-IEc isoform has been implicated in the development and/or progression of various types of cancer. In the present study, we examined the potential role of IGF-IEc expression as a new immunohistochemical marker of aggressiveness in neuroendocrine neoplasms (NENs). We utilized immunohistochemical analysis in tissue specimens of 47 patients with NENs, to evaluate the expression of IGF-IEc (%) and Ki-67 proliferation index (%). Specimens from patients with tumors of different tissue origin, of either primary or metastatic lesions and of different grade were examined. Cytoplasmic IGF-IEc staining was found in 23 specimens of NENs or NECs: 10 pancreatic, 4 small bowel, 3 gastric, 1 lung, 1 uterine and 4 poorly differentiated of unknown primary origin. Ki-67 and IGF-IEc expression was positively correlated in all the samples studied (r=0.31, p=0.03). IGF-1Ec expression was more prevalent in specimens originating from metastatic foci with high Ki-67 compared to primary sites with low Ki-67 expression (p=0.036). These findings suggest a possible role of IGF-IEc in NEN tumorigenesis and progression to metastases that could be used as an additional new marker of a more aggressive behavior and a potential drugable target.

  5. ITIL and ISO/IEC 20000 a practical handbook

    CERN Document Server

    Hernandez, Alex

    2012-01-01

    The purpose of this publication is to provide your organization with a pragmatic approach to effectively implementing service management, incorporating practices from the ITIL framework and the ISO/IEC 20000 standard.

  6. Neutron metrology in the HFR

    International Nuclear Information System (INIS)

    Voorbraak, W.P.; Freudenreich, W.E.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-10-01

    Neutron fluence rate and gamma dose data are presented for the first series of experiments at the filtered HFR beam HB11 at full reactor power. Measurements were performed on two beagle dogs and one cylindrical phantom. The main results for thermal and epithermal fluence rates, physical neutron dose and gamma dose are presented in the tables 1 and 2. (author). 10 refs.; 9 figs.; 8 tabs

  7. Development of a discrete-ordinate approximation of the neutron transport equation for coupled xy-R-geometry

    International Nuclear Information System (INIS)

    Maertens, H.D.

    1982-01-01

    The inhomogenious structure of modern heavy water reactor fuel elements result in a strong spacial dependence of the neutron flux. The flux distribution can be calculated in detail by numerical methods, which describe exactly the geometrical heterogeniety and take into account the neutron flux anisotropy by higher transport theoretical approximations. Starting from the discrete ordinate method an approximation of the neutron transport equation has been developed, allowing for a cylindrical representation of the fuel-elements in a rectangular array of rods. The discretisation of the space variables, is based on the finite-difference approximation, defining a rectangular lattice in a two-dimensional cartesian coordinate system, which can be cut and replaced by circular mesh elements of a partially one-dimensional cylindrical coordinate system at arbitrary space points. To couple the two spacial regions the outer circle line of a cylindrical geometry is approximated in the cartesian system by a polygon with n >= 8. A cylindrical geometry is approximated in the cartesian system by a polygon with n>=8. A cylindrical geometry is thus enclosed by a system of two-dimensional rectangular, triangular and trapezoid mesh elements. The directional distribution of the neutron flux is conserved when switching from the xy-system to the cylindrical coordinate system. The angle discretisation by balanced sets of squares (EQsub(n)) allows a simple definition of transfer-coefficients for the redistribution of the neutron flux due to coordinate transformations. The procedure is verified and tested by selected problems. Possible applications and limits are discussed. (orig.) [de

  8. SU-G-IeP4-04: DD-Neutron Source Collimation for Neutron Stimulated Emission Computed Tomography: A Monte Carlo Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Fong, G; Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, North Carolina (United States)

    2016-06-15

    Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm{sup 3} polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm from source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan

  9. SU-G-IeP4-04: DD-Neutron Source Collimation for Neutron Stimulated Emission Computed Tomography: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Fong, G; Kapadia, A

    2016-01-01

    Purpose: To optimize collimation and shielding for a deuterium-deuterium (DD) neutron generator for an inexpensive and compact clinical neutron imaging system. The envisioned application is cancer diagnosis through Neutron Stimulated Emission Computed Tomography (NSECT). Methods: Collimator designs were tested with an isotropic 2.5 MeV neutron source through GEANT4 simulations. The collimator is a 52×52×52 cm"3 polyethylene block coupled with a 1 cm lead sheet in sequence. Composite opening was modeled into the collimator to permit passage of neutrons. The opening varied in shape (cylindrical vs. tapered), size (1–5 cm source-side and target-side openings) and aperture placements (13–39 cm from source-side). Spatial and energy distribution of neutrons and gammas were tracked from each collimator design. Parameters analyzed were primary beam width (FWHM), divergence, and efficiency (percent transmission) for different configurations of the collimator. Select resultant outputs were then used for simulated NSECT imaging of a virtual breast phantom containing a 2.5 cm diameter tumor to assess the effect of the collimator on spatial resolution, noise, and scan time. Finally, composite shielding enclosure made of polyethylene and lead was designed and evaluated to block 99.99% of neutron and gamma radiation generated in the system. Results: Analysis of primary beam indicated the beam-width is linear to the aperture size. Increasing source-side opening allowed at least 20% more neutron throughput for all designs relative to the cylindrical openings. Maximum throughput for all designs was 364% relative to cylindrical openings. Conclusion: The work indicates potential for collimating and shielding a DD neutron generator for use in a clinical NSECT system. The proposed collimator designs produced a well-defined collimated neutron beam that can be used to image samples of interest with millimeter resolution. Balance in output efficiency, noise reduction, and scan time

  10. Review and Outlook of China Electronic and IT Industry Footprints in IEC International Standardization Activities

    Institute of Scientific and Technical Information of China (English)

    Hu Jingping

    2006-01-01

    @@ Year 2006 is the year marking the 100th anniversary of the founding of International Electrotechnical Commission (IEC). IEC is mainly engaged in the international standardization for electrical and electronic technology field aiming at promoting international trade and technology cooperation and exchange, improving product and service quality, upgrading productivity and protecting the environment as well as human health and safety. Most countries worldwide adopt standards developed and promulgated by IEC, providing a platform to international trade and technical exchange. China has being a member since 1957. Electronic and IT are the most developed and energetic filed in recent decades. Number of IEC TC/SC specialized in electronic and IT amounts up to 52.

  11. ISO/IEC 38500 the IT governance standard

    CERN Document Server

    Calder, Alan

    2008-01-01

    The emergence of ISO/IEC 38500 - the international standard for the corporate governance of information and communication technology - puts boards around the world in a position from which they can take effective action to apply core governance principles to their information and communication technology.

  12. Errors due to the cylindrical cell approximation in lattice calculations

    Energy Technology Data Exchange (ETDEWEB)

    Newmarch, D A [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1960-06-15

    It is shown that serious errors in fine structure calculations may arise through the use of the cylindrical cell approximation together with transport theory methods. The effect of this approximation is to overestimate the ratio of the flux in the moderator to the flux in the fuel. It is demonstrated that the use of the cylindrical cell approximation gives a flux in the moderator which is considerably higher than in the fuel, even when the cell dimensions in units of mean free path tend to zero; whereas, for the case of real cells (e.g. square or hexagonal), the flux ratio must tend to unity. It is also shown that, for cylindrical cells of any size, the ratio of the flux in the moderator to flux in the fuel tends to infinity as the total neutron cross section in the moderator tends to zero; whereas the ratio remains finite for real cells. (author)

  13. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  14. Calculation of the exit probability of a particle from a cylinder of matter; Calcul de la probabilite de sortie d'une particule d'un cylindre de matiere

    Energy Technology Data Exchange (ETDEWEB)

    Ertaud, A; Mercier, C

    1949-02-01

    In the elementary calculation of the {epsilon} coefficient and of the slowing down length inside a nuclear pile made of a network of cylindrical rods, it is necessary to know the exit probability of a neutron initially located inside a cylinder filled up with a given substance. This probability is the ratio between the number of output neutrons and the number of neutrons produced inside the surface of the cylinder. This report makes the resolution of this probabilistic equation (integral calculation) both for the cylindrical case and for the spherical case. (J.S.)

  15. Studsvik thermal neutron facility

    International Nuclear Information System (INIS)

    Pettersson, O.A.; Larsson, B.; Grusell, E.; Svensson, P.

    1992-01-01

    The Studsvik thermal neutron facility at the R2-0 reactor originally designed for neutron capture radiography has been modified to permit irradiation of living cells and animals. A hole was drilled in the concrete shielding to provide a cylindrical channel with diameter of 25.3 cm. A shielding water tank serves as an entry holder for cells and animals. The advantage of this modification is that cells and animals can be irradiated at a constant thermal neutron fluence rate of approximately 10 9 n cm -2 s -1 (at 100 kW) without stopping and restarting the reactor. Topographic analysis of boron done by neutron capture autoradiography (NCR) can be irradiated under the same conditions as previously

  16. Plan de implementación de la ISO/IEC 27001:2013

    OpenAIRE

    Gorriti Aranguren, Iñaki

    2015-01-01

    En el desarrollo del proyecto se analizaron las directrices establecidas en la norma ISO/IEC 27001:2013, que especifica los requisitos necesarios para establecer, implantar, mantener y mejorar un SGSI mediante un proceso de mejora continua. In the development there were analyzed the directives established in the norm ISO/IEC27001:2013, which specifies the necessary requirements to establish, to implement, to support and to improve a SGSI by means of a process of constant improvement. En...

  17. A primer on the Petri Net Markup Language and ISO/IEC 15909-2

    DEFF Research Database (Denmark)

    Hillah, L. M.; Kindler, Ekkart; Kordon, F.

    2009-01-01

    Standard, defines a transfer format for high-level nets. The transfer format defined in Part 2 of ISO/IEC 15909 is (or is based on) the \\emph{Petri Net Markup Language} (PNML), which was originally introduced as an interchange format for different kinds of Petri nets. In ISO/IEC 15909-2, however...

  18. Pulsed neutron source well logging system

    International Nuclear Information System (INIS)

    Dillingham, M.E.

    1975-01-01

    A pulsed neutron source arrangement is provided in which a sealed cylindrical chamber encloses a rotatable rotor member carrying a plurality of elongated target strips of material which emits neutrons when bombarded with alpha particles emitted by the plurality of source material strips. The rotor may be locked in a so-called ON position by an electromagnetic clutch drive mechanism controllable from the earth's surface so as to permit the making of various types of logs utilizing a continuously emitting neutron source. (Patent Office Record)

  19. Auto-Mapping and Configuration Method of IEC 61850 Information Model Based on OPC UA

    Directory of Open Access Journals (Sweden)

    In-Jae Shin

    2016-11-01

    Full Text Available The open-platform communication (OPC unified architecture (UA (IEC62541 is introduced as a key technology for realizing a variety of smart grid (SG use cases enabling relevant automation and control tasks. The OPC UA can expand interoperability between power systems. The top-level SG management platform needs independent middleware to transparently manage the power information technology (IT systems, including the IEC 61850. To expand interoperability between the power system for a large number of stakeholders and various standards, this paper focuses on the IEC 61850 for the digital substation. In this paper, we propose the interconnection method to integrate communication with OPC UA and convert OPC UA AddressSpace using system configuration description language (SCL of IEC 61850. We implemented the mapping process for the verification of the interconnection method. The interconnection method in this paper can expand interoperability between power systems for OPC UA integration for various data structures in the smart grid.

  20. Magnetic compound refractive lens for focusing and polarizing cold neutron beams

    International Nuclear Information System (INIS)

    Littrell, K. C.; Velthuis, S. G. E. te; Felcher, G. P.; Park, S.; Kirby, B. J.; Fitzsimmons, M. R.

    2007-01-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given

  1. Magnetic compound refractive lens for focusing and polarizing cold neutron beams.

    Science.gov (United States)

    Littrell, K C; te Velthuis, S G E; Felcher, G P; Park, S; Kirby, B J; Fitzsimmons, M R

    2007-03-01

    Biconcave cylindrical lenses are used to focus beams of x rays or neutrons using the refractive properties of matter. In the case of neutrons, the refractive properties of magnetic induction can similarly focus and simultaneously polarize the neutron beam without the concomitant attenuation of matter. This concept of a magnetic refractive lens was tested using a compound lens consisting of 99 pairs of cylindrical permanent magnets. The assembly successfully focused the intensity of a white beam of cold neutrons of one spin state at the detector, while defocusing the other. This experiment confirmed that a lens of this nature may boost the intensity locally by almost an order of magnitude and create a polarized beam. An estimate of the performance of a more practically dimensioned device suitable for incorporation in reflectometers and slit-geometry small angle scattering instruments is given.

  2. Advances in 14 MeV neutron activation analysis by means of a new intense neutron source

    International Nuclear Information System (INIS)

    Pepelnik, R.; Fanger, H.-U.; Michaelis, W.; Anders, B.

    1982-01-01

    A new intense 14 MeV neutron generator with cylindrical acceleration structure has been put in operation at the GKSS Research Center Geesthacht. The sealed neutron tube is combined with a fast pneumatic rabbit system with particular capabilities for neutron activation analysis involving short-lived reaction products. The sample transfer time is less than 140 ms. The maximum neutron flux available for activation is 5.2x10 10 n/cm 2 s. Theoretical sensitivity predictions made in a previous study have been verified for some important trace elements. As a first application, samples of freeze-dried suspended matter and fishes of the Elbe river were analyzed. (author)

  3. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    International Nuclear Information System (INIS)

    Wei, J.; Yang, S.

    2013-01-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  4. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    International Nuclear Information System (INIS)

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the ''QED'' engine) offered a thrust-to-weight ratio of 10 milli-g's, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built

  5. Uncertainty Estimation of Neutron Activation Analysis in Zinc Elemental Determination in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Muhayatun; Diah Dwiana L

    2009-01-01

    Beside to complished the requirements of international standard of ISO/IEC 17025:2005, uncertainty estimation should be done to increase quality and confidence of analysis results and also to establish traceability of the analysis results to SI unit. Neutron activation analysis is a major technique used by Radiometry technique analysis laboratory and is included as scope of accreditation under ISO/IEC 17025:2005, therefore uncertainty estimation of neutron activation analysis is needed to be carried out. Sample and standard preparation as well as, irradiation and measurement using gamma spectrometry were the main activities which could give contribution to uncertainty. The components of uncertainty sources were specifically explained. The result of expanded uncertainty was 4,0 mg/kg with level of confidence 95% (coverage factor=2) and Zn concentration was 25,1 mg/kg. Counting statistic of cuplikan and standard were the major contribution of combined uncertainty. The uncertainty estimation was expected to increase the quality of the analysis results and could be applied further to other kind of samples. (author)

  6. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2008-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  7. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2009-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  8. Criticality calculations by source-collision iteration technique for cylindrical systems

    International Nuclear Information System (INIS)

    Sundaram, V.K.; Gopinath, D.V.

    1977-01-01

    A fast-converging iterative technique is presented which uses first collision probabilities developed for obtaining criticality parameters in two-region cylindrical systems with multigroup structure in energy of the neutrons. The space transmission matrix is obtained part analytically and part numerically through evaluation of a single-fold integral. Critical dimensions for condensed systems of uranium and plutonium computed using this method are presented and compared with published values

  9. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  10. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  11. TU-G-213-02: IEC Subcommittee 62B (Diagnostic Imaging Equipment): Recent and Active Projects

    International Nuclear Information System (INIS)

    Supanich, M.

    2015-01-01

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists

  12. TU-G-213-02: IEC Subcommittee 62B (Diagnostic Imaging Equipment): Recent and Active Projects

    Energy Technology Data Exchange (ETDEWEB)

    Supanich, M. [Rush University Medical Center (United States)

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  13. Effect of high gamma background on neutron sensitivity of fission detectors

    International Nuclear Information System (INIS)

    Balagi, V.; Prasad, K.R.; Kataria, S.K.

    2004-01-01

    Tests were performed on two parallel plate and two cylindrical fission detectors in pulse and dc mode. The effect of gamma background on neutron sensitivity was studied in thermal neutron flux from 30 nv to 60 nv over which gamma field intensity ranging from 230 kR/h to 3.7 MR/h was superposed. In the case of one of the parallel plate detectors the fall in neutron sensitivity was observed to be 3.7% at 1 MR/h and negligible below 1 MR/h. In the case of one of the cylindrical counters the fall in neutron sensitivity was negligible below 500 kR/h and 37% at 1 MR/h. The data was used to derive the design parameters for a wide range fission detector to be procured for PFBR instrumentation for operation at 600 degC and gamma background of 1 MR/h. (author)

  14. Internal Audit Status For ISO 9001 And ISO/ IEC 17025 In Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Fazila Said; Nurul Huda Mudri; Nik Arlina Ali

    2012-01-01

    The development of MS ISO 9001 and MS ISO/ IEC 17025 in Malaysian Nuclear Agency is the basic step to enhance and improve the Quality Management System (QMS) for processes and laboratories that involve customers and suppliers in delivering products and services. The effectiveness of QMS is monitored by Research and Innovation Management Centre (RIMC) to ensure that all activities related to audit such as Internal Audit are well organized and implemented as documented in quality manual and procedure. This paper will discuss the status of internal audit for processes that implement MS ISO 9001 and laboratories that accredited with MS/ ISO IEC 17025 in year 2008, 2009 and 2010. The total of non-conformance (nc) and opportunity for improvement (ofi) for processes and laboratories and their numbers as per clause in MS ISO 9001 and MS ISO/ IEC 17025 are the indicators that reflects the effectiveness of QMS. Then, the total effectiveness of QMS for MS 9001 and MS ISO/ IEC 17025 is also determined via the number of conformance clause versus non-conformance clause for those three years. (author)

  15. Scaling of the Inertial Electrostatic Confinement (IEC) for near-term thrusters and future fusion propulsion

    International Nuclear Information System (INIS)

    Miley, G.; Bromley, B.; Jurczyk, B.; Stubbers, R.; DeMora, J.; Chacon, L.; Gu, Y.

    1998-01-01

    Inertial Electrostatic Confinement (IEC) is a unique approach to fusion and plasma energy systems that was conceptualized in the 1960s (Hirsch 1967) and has been the focus of recent development in the 1990s (Miley et al. 1995a). In the interests of space power and propulsion systems, conceptual rocket design studies (Bussard and Jameson 1994, Miley et al. 1995b) using the IEC have predicted excellent performance for a variety of space missions, since the power unit avoids the use of magnets and heavy drives resulting in a very high, specific impulse compared to other fusion systems. In their recent survey of prior conceptual design studies of fusion rockets, Williams and Borowski (1997) found that the Bussard IEC conceptual study (the open-quotes QEDclose quotes engine) offered a thrust-to-weight ratio of 10 milli-g close-quote s, a factor of five higher than conventional magnetic confinement concepts and even slightly above anti-proton micro fission/fusion designs. Thus there is considerable motivation to study IEC concepts for eventual space applications. However, the physics feasibility of the IEC still requires experimental demonstration, and an expanded data base is needed to insure that a power unit can in fact be built. copyright 1998 American Institute of Physics

  16. Determination of buckling and probability of leakage of neutron in the IPEN/MB-01 reactor in cylindrical configuration; Medida do buckling e da probabilidade de fuga de neutrons do nucleo do reator IPEN/MB-01

    Energy Technology Data Exchange (ETDEWEB)

    Purgato, Rafael Turrini

    2014-07-01

    One of the key parameters in reactor physics is the Buckling of a reactor core. It is related to important parameters such as reaction rates, nuclear power operation, fuel burning, among others. In a critical reactor, the Buckling depends on the geometric and material characteristics of the reactor core. This work presents the results of experimental Buckling in the reactor IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts, it is a versatile nuclear facility which allows the simulation of all the characteristics of a large nuclear power reactor and ideal for this type of measurement. We conducted a mapping of neutron flux inside the reactor and thereby determined the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods was measured by gamma spectrometry on a rod scanner HPGe detector. We analyzed the gamma photons of the {sup 239}Np (276,6 keV) for neutron capture (n,γ) and the {sup 143}Ce (293,3 keV) for fission (n,f) on both {sup 238}U and {sup 235}U, respectively. We analyzed the axial and radial directions. Other measurements were performed using wires and gold foils in the radial and axial directions of the reactor core. The Buckling Total obtained from the three methods by weighted mean is 96,55 ± 7,47 m{sup -2}. The goal is to obtain experimental values of a set of experimental data to allow one direct comparison with values calculated by the codes used in reactor physics CITATION and MCNP. (author)

  17. Thickness optimization of various moderator materials for maximization of thermal neutron fluence

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    Plasma focus device is widely being used as pulsed neutron source for variety of applications. Measurements of neutron yield by largely preferred Helium-3 proportional counter and Silver activation counter are mainly sensitive to thermal neutrons and are typically used with a neutron moderator. Thermalization of neutron is based on scattering reaction and hydrogenous materials are the best thermalizing medium. The efficiency of aforementioned neutron detectors is considerably affected by physical and geometrical properties of thermalizing medium i.e. moderator material, its thickness and shape. In view of the same, simulations have been performed to explore the effective utilization of Polyethylene, Perspex and Light water as moderating mediums for cylindrical and spherical geometry. In this study, estimated thermal fluence value up to 0.5 eV has been considered as the benchmark factor for comparing efficient thermalization by specific material, its thickness and shape. In either of the shapes being cylindrical or spherical, use of Polyethylene as moderating medium has resulted in minimum optimum thickness along with highest thermal fluence. (author)

  18. TIMEX, 1-D Time-Dependent Multigroup Transport Theory with Delayed Neutron, Planar Cylindrical and Spherical Geometry

    International Nuclear Information System (INIS)

    Hill, T. R.; Reed, W. H.

    1980-01-01

    1 - Description of problem or function: TIMEX solves the time- dependent, one-dimensional multigroup transport equation with delayed neutrons in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous problems subject to vacuum, reflective, periodic, white, albedo or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. 2 - Method of solution: The discrete ordinates approximation for the angular variable is used with the diamond (central) difference approximation for the angular extrapolation in curved geometries. A linear discontinuous finite element representation for the angular flux in each spatial mesh cell is used. Negative fluxes are eliminated by a local set-to-zero and correct algorithm. The time variable is differenced by an explicit technique that is unconditionally stable so that arbitrarily large time-steps can be taken. Two acceleration methods, exponential extrapolation and re-balance, are utilized to improve the accuracy of the time differencing scheme. 3 - Restrictions on the complexity of the problem: Variable dimensioning is used so that any combination of problem parameters leading to a container array less than MAXCOR can be accommodated. In addition, the CDC version permits the use of extended core storage less than MAXECS

  19. Design of a linear neutron source

    International Nuclear Information System (INIS)

    Buzarbaruah, N.; Dutta, N.J.; Bhardwaz, J.K.; Mohanty, S.R.

    2015-01-01

    Highlights: • This paper reports the design of a linear neutron source based on inertial electrostatic confinement fusion scheme. • The voltage and current that is to be applied to the grid is computed theoretically. • Neutron production rate is theoretically estimated and found to be of the order of 10 7 –10 8 neutrons/s. • Electric potential distribution and ion trajectories are studied using SIMION code. • Optimized condition for the inner grid transparency has been found out. - Abstract: In this paper, we present the design of a linear neutron source based on the concept of inertial electrostatic confinement fusion. The source mainly comprises of a concentric coaxial cylindrical grid assembly housed inside a double walled cylindrical vacuum chamber, a gas injection system, a high voltage feedthrough and a high voltage negative polarity power supply. The inner grid will be kept at a high negative potential with respect to the outer grid that will be grounded. The effect of grid transparency on electric potential distribution and ion trajectories has been studied using SIMION. A diffuse deuterium plasma will be initially created by making filament discharge and subsequently, on application of high negative voltage to the inner grid, deuterons will be accelerated towards the axis of the device. These deuterons will oscillate in the negative potential and consequently fuse in between the grids to produce neutrons. This source is expected to produce 10 7 –10 8 neutrons/s. The proposed linear neutron source will be operated both in the continuous and pulse modes and it will be utilized for a few near term applications namely fusion reactor material studies and explosive detection

  20. Study of the neutron flux distribution in acylindrical reactor

    Directory of Open Access Journals (Sweden)

    A. Vidal-Ferràndiz

    2017-08-01

    Full Text Available In the Energy Engineering Degree of the Universitat Politècnica de València, the students attend to the Nuclear Technology course, in which the basic knowledge of this technology is presented. A main objective of this technology is to obtain neutron population distribution inside a reactor core, in order to maintain the fission reaction chain. As this activity cannot be experimentally developed, mathematical modelling is of great importance to achieve such objective.  One of the computer laboratories proposed consists in the neutron flux determination analytically and numerically in a cylindrical geometry. The analytical solution makes use of the Bessel functions and is a good example of their applications. Alternatively, a numerical solution based on finite differences is used to obtain an approximate solution of the neutron flux. In this work, different discretizations of the cylindrical geometry are implemented and their results are compared.

  1. Improving the quality control program for patient dose calibrator according to IEC 60580

    International Nuclear Information System (INIS)

    Costa, Nathalia Almeida; Potiens, Maria da Penha Albuquerque

    2013-01-01

    The objective of this work was to improve the program quality control of this equipment based on the International Standard IEC 60580 - Medical electrical equipment - Dose area product meters . The initial program was established following the recommendations of IEC 61674 quoting dosimeters with ionization chambers and / or semiconductor detectors used in diagnostic X-ray image, however, the IEC 60580 is referred specifically to gauges and KAP (kerma-area product) presents additional tests. Tests included: intrinsic relative error, repeatability, scanning resolution, settling time, restarting, float values, response time and spatial uniformity of response. As a rule, all measurements are within the range characteristic of equipment performance. Thus, the PDC (Patient Dose Calibrator) again shows a device with excellent functionality and reliability in characterization tests carried out to quality control as( for the test in clinical PKA meters

  2. Accounting for the thermal neutron flux depression in voluminous samples for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Overwater, R.M.W.; Hoogenboom, J.E.

    1994-01-01

    At the Delft University of Technology Interfaculty Reactor Institute, a facility has been installed to irradiate cylindrical samples with diameters up to 15 cm and weights up to 50 kg for instrumental neutron activation analysis (INAA) purposes. To be able to do quantitative INAA on voluminous samples, it is necessary to correct for gamma-ray absorption, gamma-ray scattering, neutron absorption, and neutron scattering in the sample. The neutron absorption and the neutron scattering are discussed. An analytical solution is obtained for the diffusion equation in the geometry of the irradiation facility. For samples with known composition, the neutron flux--as a function of position in the sample--can be calculated directly. Those of unknown composition require additional flux measurements on which least-squares fitting must be done to obtain both the thermal neutron diffusion coefficient D s and the diffusion length L s of the sample. Experiments are performed to test the theory

  3. Standard IEC 61850 substation automation

    Energy Technology Data Exchange (ETDEWEB)

    Bricchi, A.; Mezzadri, D. [Selta, Tortoreto (Italy)

    2008-07-01

    The International Electrotechnical Commission (IEC) 61850 standard is the reference communication protocol for all electrical substations protection and control systems. It creates models of all the elements and functionalities of an electrical substation, including physical elements such as switches or circuit breakers, as well as protection, control and monitoring functionalities. Network managers need to renew power substation automation and control systems in order to improve the efficiency and quality of services offered by electric utilities. Selta has proposed a new integrated solution for the automation of power substations which is fully compliant with the IEC 61850 norms. The solution involves the integration of control, automation, protection, monitoring and maintenance functions and applies leading edge technology to its systems, particularly for the TERNA network. The system is based on the use of many electronic devices at a power plant, each one with a specialized function, and all interconnected via a Station LAN. This solution, was tested on the TERNA network in Italy, in VHV and HV stations. It was shown to offer many advantages, such as an architecture based on full interoperability between control, monitoring and protection equipment; centralized and distributed automation; a LAN station that allows full interoperability between different bay units and protection relays in order to integrate equipment from various suppliers; the integration of automation systems in existing bay units and protection relays equipped with standard communication buses or with proprietary interfaces; and time synchronization for the entire system through a station GPS reception system. 10 refs., 1 tab., 7 figs.

  4. Rational Calibration of Four IEC 61400-1 Extreme External Conditions

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2008-01-01

    Based on a set of asymptotic statistical models on closed form this paper presents a rational and consistent calibration of four extreme external conditions defined in the International Electrotechnical Commission (IEC) 61400-1 standard: extreme operating gust, extreme wind shear, extreme coheren...... and proposed specifications of the magnitudes of the extreme external wind conditions are highlighted and discussed using an illustrative example based on two selected terrain types. Copyright © 2008 John Wiley & Sons, Ltd....... gust with direction change and extreme wind direction change. These four extreme external conditions are used in the definition of six of the IEC 61400-1 ultimate load cases. The statistical models are based on simple and easily accessible mean wind speed and turbulence characteristics...

  5. Type tests performed on a personnel dosimetry system according to IEC 61066

    International Nuclear Information System (INIS)

    Castillo, Romel; Huamanlazo, Paula; Rojas, Enrique

    2015-01-01

    In this study, the verification of the Harshaw 6600 Plus TLD personal dosimetry system was made using the method of the IEC-61066 type tests and the recommendations of the ISO 4037 standards. For this purpose, five dosimeters were irradiated over a water phantom using an irradiator with a 137 Cs source; five dosimeters as control were also used. The evaluated parameters were homogeneity, detection limit, residual reading, linearity, reproducibility, droppings and temperature and humidity variations. The obtained results show that the Harshaw 6600 TLD dosimetric system fulfills the IEC 61066 criteria. (author)

  6. Optimization studies of photo-neutron production in high-Z metallic ...

    Indian Academy of Sciences (India)

    Monte Carlo calculations have been performed using MCNP code to study the optimization of photo-neutron yield for different electron beam energies impinging on Pb, W and Ta cylindrical targets of varying thickness. It is noticed that photo-neutron yield can be increased for electron beam energies ≥ 100 MeV for ...

  7. Implementation of IEC Generic Models of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    Institute of Scientific and Technical Information of China (English)

    Haoran ZHAO; Qiuwei WU; Ioannis MARGARIS; Poul S(O)RENSEN

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented.The following items are described,i.e.model structure,model blocks and how to implement these blocks in the PowerFactory environment.Case studies under both normal and fault conditions are done with the implemented IEC generic models of Type 1 WTG,and dynamic responses are captured and analyzed.The case study results show that the IEC generic models of Type 1 WTG can correctly represent the performances of Type 1 WTG under both normal and fault conditions.

  8. Thirty years of international nuclear standards in ISO and IEC

    International Nuclear Information System (INIS)

    Becker, K.

    1991-01-01

    Of over 4700 nuclear and radiation protection standards, laws, regulations, recommendations, etc., which have been issued by 52 countries and several governmental international organizations such as IAEA, or non-government organizations such as ICRP, ICRU, ISO and IEC, more than 90% are national, and more than half of those of a non-regulatory nature. Both number and importance of international standards are, however, increasing. The two most important non-governmental international standards organizations are the International Organization for Standardization (ISO), which founded a Technical Committee (TC) 85 'Nuclear Energy' with several Sub-Committees in 1957, and the closely associated International Electrotechnical Commission (IEC) with its TC 45 'Nuclear Instrumentation' formed in 1960. There are over 20 member countries actively participating in the work in each of them, with additional observer countries and liaison to the relevant other international organizations. A brief review is given on some of the experience which has been gained by ISO/TC 85 and IEC/TC 45, and its work program and accomplishments, considering in particular recent developments. It covers nuclear safety and instrumentation, radiation protection, and the nuclear fuel cycle, as well as interface issues including definitions and terminology, interaction of the activities with the work of other national and international bodies, etc. Some problem areas are also briefly discussed. (orig.)

  9. The common information model CIM IEC 61968/61970 and 62325 : a practical introduction to the CIM

    CERN Document Server

    Uslar, Mathias; Rohjans, Sebastian; Trefke, Jörn; Vasquez Gonzalez, Jose Manuel

    2012-01-01

    Within the Smart Grid, the combination of automation equipment, communication technology and IT is crucial. Interoperability of devices and systems can be seen as the key enabler of smart grids. Therefore, international initiatives have been started in order to identify interoperability core standards for Smart Grids.   IEC 62357, the so called Seamless Integration Architecture, is one of these very core standards, which has been identified by recent Smart Grid initiatives and roadmaps to be essential for building and managing intelligent power systems. The Seamless Integration Architecture provides an overview of the interoperability and relations between further standards from IEC TC 57 like the IEC 61970/61968: Common Information Model - CIM.   CIM has proven to be a mature standard for interoperability and engineering; consequently, it is a cornerstone of the IEC Smart Grid Standardization Roadmap. This book provides an overview on how the CIM developed, in which international projects and roadmaps is h...

  10. Generation of organic scintillators response function for fast neutrons using the Monte Carlo method

    International Nuclear Information System (INIS)

    Mazzaro, A.C.

    1979-01-01

    A computer program (DALP) in Fortran-4-G language, has been developed using the Monte Carlo method to simulate the experimental techniques leading to the distribution of pulse heights due to monoenergetic neutrons reaching an organic scintillator. The calculation of the pulse height distribution has been done for two different systems: 1) Monoenergetic neutrons from a punctual source reaching the flat face of a cylindrical organic scintillator; 2) Environmental monoenergetic neutrons randomly reaching either the flat or curved face of the cylindrical organic scintillator. The computer program has been developed in order to be applied to the NE-213 liquid organic scintillator, but can be easily adapted to any other kind of organic scintillator. With this program one can determine the pulse height distribution for neutron energies ranging from 15 KeV to 10 MeV. (Author) [pt

  11. Neutron slowing down in the resonance region

    International Nuclear Information System (INIS)

    Matausek, M.V.

    1971-01-01

    This paper describes the procedure for solving space, lethargy and angular dependent transport equation for resonant neutrons in cylindrical infinite reactor lattice cell. The procedure is suitable for practical application on its own or in combination with some more complex procedure

  12. Approaches to the ISO/IEC 17025 accreditation for Pu and U accountancy analysis

    International Nuclear Information System (INIS)

    Okazaki, Hiro; Sumi, Mika; Abe, Katsuo; Sato, Mitsuhiro; Kageyama, Tomio

    2013-01-01

    The quality control section of Plutonium Fuel Development Center (PFDC) of Japan Atomic Energy Agency has been analyzing isotopic compositions by Mass Spectrometry as well as content by Isotope Dilution Mass Spectrometry (IDMS) of plutonium and uranium in nuclear materials. Along with establishing and managing the quality assurance system, ensuring the reliability of the analysis data is important. PFDC has been establishing the quality management system with ISO9001. ISO9001 consists of management requirements for quality system of organizations. While ISO/IEC 17025 consists of technical requirements for the competence of testing and calibration laboratories in addition to the management requirements. The quality control section addressed technical improvement to improve further reliability of analysis quality and we have accredited for ISO/IEC 17025 of isotopic compositions and content of plutonium and uranium in nuclear materials in March 2010. In this presentation, we report our approaches to the ISO/IEC 17025 accreditation and operation status. (author)

  13. Direct Discrete Method for Neutronic Calculations

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    2002-01-01

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for a cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)

  14. Evolution of IEC/TC 45 works and its sub-committees from 1960 to 1983

    International Nuclear Information System (INIS)

    Weill, J.

    1983-10-01

    The IEC, founded in 1906, is an independent international standards organization. Its standardization work deals with almost all branches of electrotechnology in the electrotechnical, electronical and data-processing field, covering all applications, as for example telecommunications and nuclear energy. The IEC Central Office is situated in Geneva (Switzerland). The Technical Committee No. 45 was set up in 1960 at the IEC general meeting in New Delhi, with the scope as given in the IEC Directory. Its revised scope is under consideration in the Committee of Action of the IEC and reads: ''To prepare international standards relating to electrical and electronic equipment and systems specific to nuclear applications''. The chart shows the organigram of the Technical Committee which comprises about 75 experts in the nuclear field from about 20 industrial countries. We can see here the standard diagram of a Technical Committee with its Sub-committees and Working Groups. The meetings are held in a member country at the request of its National Committee. One shows the places of the plenary meetings of TC 45 as well as the meetings of its Sub-committees and their Working Groups held till now. The Technical Committee 45 has in addition to its seven Working Groups also two Sub-committees having several further Working Groups of their own. The Sub-committee 45 A ''Reactor Instrumentation''. The Sub-committee 45 B ''Radiation protection instrumentation''. Till now TC 45 has published about 85 standards. Regarding work in preparation, one shows the present and future work within the Technical Committee and its Sub-committees. Impact of works and liaisons is briefly discussed [fr

  15. Architectural constraints in IEC 61508: Do they have the intended effect?

    International Nuclear Information System (INIS)

    Lundteigen, Mary Ann; Rausand, Marvin

    2009-01-01

    The standards IEC 61508 and IEC 61511 employ architectural constraints to avoid that quantitative assessments alone are used to determine the hardware layout of safety instrumented systems (SIS). This article discusses the role of the architectural constraints, and particularly the safe failure fraction (SFF) as a design parameter to determine the hardware fault tolerance (HFT) and the redundancy level for SIS. The discussion is based on examples from the offshore oil and gas industry, but should be relevant for all applications of SIS. The article concludes that architectural constraints may be required to compensate for systematic failures, but the architectural constraints should not be determined based on the SFF. The SFF is considered to be an unnecessary concept

  16. Harmonization of IEEE323 and IEC60780 standards For Environmental Qualificaiton of Electric Equipment

    International Nuclear Information System (INIS)

    Kim, Jong Seog

    2009-01-01

    IEEE323 standard has been widely used for the qualification of electric equipment in Asian pacific area while IEC6070 has been mostly used in European area. Since each plant use different standard for environmental qualification, manufacturer has to perform the qualification test twice in accordance with each standard. Problem also can be happened in the plant site when they are going to purchase equipment qualified by different qualification standard which are not used in his plant. The need of harmonization of each standard has been raised several years and it is known that some studies are in progress by IEEE committee. KEPRI has a plan of comparing EQ relative standards of IEEE, IEC and RCC in 2009. In this paper, brief comparing result between IEEE323 and IEC60780 and the proper harmonization method is introduced

  17. Analysis of ISO/IEC 17025 for establishment of KOLAS (Korea Laboratory Accreditation Scheme) quality assurance system

    International Nuclear Information System (INIS)

    Nam, Ji Hee

    2000-12-01

    Besides one existent accredited lab, radioactive material chemical analysis lab, five test laboratories and two calibration labs are under plan to acquire the accreditation from KOLAS. But the current Quality Manual was developed according to ISO Guide 25 that was superceded by ISO/IEC 17025. Since it is tailored to the radioactive material chemical analysis lab, a number of requirements of the Manual are not applicable to the labs other than radioactive material chemical analysis lab. Through the analysis of ISO/IEC 17025, a model of quality system was established which is not only consistent with ISO/IEC 17025 but reflective of the KAERI's situation

  18. Consistent integrated automation. Optimized power plant control by means of IEC 61850; Durchgaengig automatisieren. Optimierte Kraftwerksleittechnik durch die Norm IEC 61850

    Energy Technology Data Exchange (ETDEWEB)

    Orth, J. [ABB AG, Mannheim (Germany). Geschaeftsbereich Power Generation

    2007-07-01

    Today's power plants are highly automated. All subsystems of large thermal power plants can be controlled from a central control room. The electrical systems are an important part. In future the new standard IEC 61850 will improve the integration of electrical systems into automation of power plants supporting the reduction of operation and maintenance cost. (orig.)

  19. Resonance integral of cylindrical absorber; Rezonantni integral cilindricnog absorbera

    Energy Technology Data Exchange (ETDEWEB)

    Slipicevic, K [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1968-07-01

    This paper presents the procedure for calculating effective resonance integral for cylindrical rod which enables derivation of improved spatial distribution of source neutron flux. Application of this new expression for penetration factor, simultaneously with Doppler broadening of Breight-Wigner line enabled derivation of new equation for resonance integral which is valid for the whole range of surface-volume ratio of the rod, has correct boundary conditions and gives as special, results same as Wigner and Pomeranchuk. Functions for correcting the effects of interference of potential and resonance dissipation are derived separately.

  20. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  1. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  2. Neutronic feasibility design of a small long-life HTR

    International Nuclear Information System (INIS)

    Ding Ming; Kloosterman, Jan Leen

    2011-01-01

    Highlights: ► We propose the neutronic feasibility design of a small, long lifetime and transportable HTR. ► Comparison of cylindrical, annular and scatter cores of the small block-type HTR. ► The design of the scatter core effectively reduces the number of the fuel block and increases the lifetime and burnup of the reactor. - Abstract: Small high temperature gas-cooled reactors (HTRs) have the advantages of transportability, modular construction and flexible site selection. This paper presents the neutronic feasibility design of a 20 MWth U-Battery, which is a long-life block-type HTR. Key design parameters and possible reactor core configurations of the U-Battery were investigated by SCALE 5.1. The design parameters analyzed include fuel enrichment, the packing fraction of TRISO particles, the radii of fuel compacts and kernels, and the thicknesses of top and bottom reflectors. Possible reactor core configurations investigated include five cylindrical, two annular and four scatter reactor cores for the U-Battery. The neutronic design shows that the 20 MWth U-Battery with a 10-year lifetime is feasible using less than 20% enriched uranium, while the negative values of the temperature coefficients of reactivity partly ensure the inherent safety of the U-Battery. The higher the fuel enrichment and the packing fraction of TRISO particles are, the lower the reactivity swing during 10 years will be. There is an optimum radius of fuel kernels for each value of the fuel compact design parameter (i.e., radius) and a specific fuel lifetime. Moreover, the radius of fuel kernels has a small influence on the infinite multiplication factor of a typical fuel block in the range of 0.2–0.25 mm, when the radius of fuel compacts is 0.6225 cm and the lifetime of the fuel block is 10 years. The comparison of the cylindrical reactor cores with the non-cylindrical ones shows that neutron under-moderation is a basic neutronic characteristic of the reactor core of the U

  3. Collision probability method for discrete presentation of space in cylindrical cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1969-08-01

    A suitable numerical method for integration of one-group integral transport equation is obtained by series expansion of flux and neutron source by radius squared, when calculating the parameters of cylindrically symmetric reactor cell. Separation of variables in (x,y) plane enables analytical integration in one direction and efficient Gauss quadrature formula in the second direction. White boundary condition is used for determining the neutron balance. Suitable choice of spatial points distribution in the fuel and moderator condenses the procedure for determining the transport matrix and accelerates the convergence when calculating the absorption in the reactor cell. In comparison to other collision probability methods the proposed procedure is a simple mathematical model which demands smaller computer capacity and shorter computing time

  4. Development of criticality accident detector measuring neutrons and gamma-rays

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Ishii, Masato

    2005-01-01

    The authors developed a new criticality accident detector measuring neutrons and gamma-rays. The detector is a cylindrical plastic scintillator coupled to a current-mode operated photomultiplier, and is covered by an inner cadmium shell, acting as a neutron to gamma-ray converter, and a 5cm thick outer polyethylene moderator in order to respond to the same threshold triggering dose regardless of whether it was exposed to neutrons, gamma-rays or a mixture of the two radiations. (author)

  5. Plan de implementación de un SGSI acorde a la norma ISO/IEC 27001:2005

    OpenAIRE

    Álvarez Verdugo, Joaquín

    2014-01-01

    Plan de implementación de un SGSI acorde a la norma ISO/IEC 27001:2005 en un organismo público municipal. Pla d'implementació d'un SGSI d'acord amb la norma ISO/IEC 27001:2005 en un organisme públic municipal. Master thesis for the ICT Security management program.

  6. Study of two-zone reactor system using a pulsed neutron technique

    Energy Technology Data Exchange (ETDEWEB)

    Shishin, B P; Platovskikh, Yu A; Didejkin, T S

    1977-05-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t..-->..infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations.

  7. Numerical solution of diffusion equation to study fast neutrons flux distribution for variant radii of nuclear fuel pin and moderator regions

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi Shirazi, Seyed Alireza [Islamic Azad Univ. (I.A.U.), Dept. of Physics, Tehran (Iran, Islamic Republic of)

    2015-07-15

    In this symbolic investigation, a cylindrical cell in a LWR, which consists of one fuel pin and moderator (water), is considered. The width of this cylindrical cell is divided into 100 equal units. Since the neutron flux in a cylindrical fuel pin is resulting from the diffusion equation: -(1)/(r)(d)/(dr)Dr(d)/(dr)φ(r) + Σ{sub a}φ(r) = S(r), the amount of fast neutron fluxes are obtained on the basis of the numeric solution of this equation, and the applied boundary conditions are considered: φ'(0) = φ'(1) = 0. This differential equation is solved by the tridiagonal method for variant enrichments of uranium. Neutron fluxes are obtained in variant radii of fuel pin and moderator and are finally compared with each other. There are some interesting outcomes resulting from this investigation. It can be inferred that because of the fuel enrichment increment, the fast neutron flux increases significantly at the centre of core, while many of the fast neutrons produced are absorbed after entering the water region, moderation of lots of them causes the reduced neutron flux to get improved in this region.

  8. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, Malcolm J., E-mail: m.joyce@lancaster.ac.uk [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Agar, Stewart [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom); Aspinall, Michael D. [Hybrid Instruments Ltd., Gordon Manley Building, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW (United Kingdom); Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie [Department of Engineering, Lancaster University, Lancaster, Lancashire LA1 4YW (United Kingdom)

    2016-10-21

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×10{sup 7} per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm{sup 3} concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  9. Implementing IEC 61850-7-420 DER Logical Nodes in a single board

    Directory of Open Access Journals (Sweden)

    Anderson Salazar-Zuluaga

    2017-09-01

    Full Text Available This article discusses the implementation of a variety of logical nodes (LNs of power generation systems based on distributed energy resources (DER in a single board computer (SBC. The SBC allows for the acquisition and encapsulation of analog signals from a photovoltaic (PV array with batteries, based on the IEC 61850-7-420 standard. To achieve this, an SBC integrated with an analog-digital conversion card (ADC enables to read the system’s analog values. The SBC communicates with the ADC card to encapsulate the collected data in the IEC 61850 data object by using the corresponding logical node (LN. An open license library was used to create the IEC 61850 server inside the SBC and the driver of the ADC card manufacturer to communicate both cards. This work aims to develop LNs for DERs in such way that manufacturers of power generation technologies based on renewable sources (such as the sun and/or the wind implement Intelligent Electronic Devices (IED and controllers in accordance with the scope of the standard for these logical nodes (LNs. Finally, the communication testing of the implementation and the results obtained are presented.

  10. Optimized sub thermal neutron source to Linac of CAB

    International Nuclear Information System (INIS)

    Torres, L; Granada, R

    2006-01-01

    We present the results of calculations performed with the code M C N P relative to the neutron field behavior within the moderator for the Bariloche-Linac cold neutron source, using polyethylene as pre moderator and solid mesitylene as moderating material at 90 K.The optimum dimensions for a moderator were obtained, with and without a pre moderator, from the point of view of neutron production and time-width of the neutron pulse.Finally, we adopted for our cold neutron source, a slab pre moderator of P L E at room temperature, and a cylindrical moderator of mesitylene at 90 K with a cooler system of stainless steel with windows of Zircaloy-4 [es

  11. Inhomogeneity of neutron and gamma-ray attenuation in biological shields

    Energy Technology Data Exchange (ETDEWEB)

    El-bakkoush, F A; El-Ghobary, A M; Megahid, R M [Reactor and Neutron physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    Measurements have been carried-out to investigate the attenuation properties of some materials which are used as biological shields around nuclear radiation sources. Investigation was performed by measuring the transmitted fast neutron and gamma-spectra through cylindrical samples of magnetite- limonite, steel and cellulose shields. The neutron and gamma spectra were measured by a neutron-gamma spectrometer with stilbene scintillator. Discrimination between neutron and gamma pulses was achieved by a discrimination method. The obtained results are displayed in the form of neutron and gamma spectra and attenuation relations which are used to derive the total macroscopic cross-sections for neutrons and total linear attenuation coefficients for gamma-rays. The values of neutron and gamma relaxation lengths are also derived for the investigated materials. 10 figs., 1 tabs.

  12. Neutron interference by division of wave front

    International Nuclear Information System (INIS)

    Klein, A.G.; Kearney, P.D.; Opat, G.I.; Cimmimo, A.

    1981-01-01

    The highly successful perfect cyrstal neutron interferometer of the type first developed by Bonse and Rauch exhibits interference by amplitude division. It relies on dynamical Bragg diffraction in a highly perfect single crystal to provide the beamsplitting. This type of interferometer, topologically analogous to the Nach-Zehnder interferometer of classical optics, has been employed in a variety of interesting experiments using thermal neutrons. Its shortcomings, however, are its extreme sensitivity to mechanical and thermal disturbances, and its applicability only to wavelegths shorter than the Bragg cutoff (6.27 Angstrom in silicon). The authors discuss a novel type of neutron interferometer which was constructed and tested employing a split cylindrical zone plate with neutrons of 20 Angstrom wavelength. Its performance and relative merits are discussed

  13. Evaluation of the implementation and use of active personal dosimeters for neutrons in Brazil; Evaluacion de la implementacion y del uso de los dosimetros individuales activos para neutrones en el Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Castro B, C. P.; Wagner P, W.; De Souza P, K. C., E-mail: karla@ird.gov.br [Instituto de Radioprotecao e Dosimetria, Av. Salvador Allende s/n, Recreio Bandeirantes, 22780-160 Rio de Janeiro (Brazil)

    2014-08-15

    This work was conducted through of a field research based on a questionnaire sent to users of active personal dosimeters. A retrospective study of the last six years was also carried out of the services in the Neutron Metrology Laboratory (2008-2013) referent to the active personal dosimeters, taking into consideration the standards ISO-8529-3 and IEC-61526. The active personal dosimeters are defined as any instrument of individual monitoring with direct reading capacity, used by individuals exposed to ionizing radiation fields. Through research was verified that the active personal dosimeters work associated with other dosimeter types. Considering all dosimeters declared in the questionnaire, only two dosimeters (MGP brand Dmc 2000-GN model and the brand ATOMTEX model AT2503A) have conformity declaration with the international standard IEC-61526: 2005 reported by the manufacturers. (author)

  14. Understanding IEC standard wind turbine models using SimPowerSystems

    DEFF Research Database (Denmark)

    Das, Kaushik; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    This article describes and exemplifies the IEC 61400-27 generic wind turbine models through an interactive multimedia learning environment - Matlab SimPowerSystems. The article aims help engineers with different backgrounds to get a better understanding of wind turbine dynamics and control...

  15. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    Science.gov (United States)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo; Pedersen, Ib H.; Capaccioli, Simone; Adrjanowicz, Karolina; Paluch, Marian; Gonthier, Julien; Frick, Bernhard; Lelièvre-Berna, Eddy; Peters, Judith; Niss, Kristine

    2018-02-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data on dipropylene glycol, using both backscattering and time-of-flight instruments. We have carried out the experiments at different combinations of temperature and pressure in both the supercooled liquid and glassy state.

  16. Preparation of rock samples for measurement of the thermal neutron macroscopic absorption cross-section

    International Nuclear Information System (INIS)

    Czubek, J.A.; Burda, J.; Drozdowicz, K.; Igielski, A.; Kowalik, W.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1986-03-01

    Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)

  17. IEC 61850 based refurbishment strategies for protection and automation systems

    Energy Technology Data Exchange (ETDEWEB)

    Tholomier, D. [Areva T and D Automation Canada Inc., Monteal, PQ (Canada); Hossenlopp, L. [Areva T and D Automation Inc., Paris (France); Apostolov, A. [Omicron Electronics, Houston, TX (United States)

    2008-07-01

    Electric utilities are currently facing the challenge of refurbishing aging transmission networks and power system infrastructure at a time of severe economic, environmental and competitive constraints. This paper addressed the issue of an appropriate approach to retrofit the hardware and software of substation secondary systems, and how IEC standards could be used to set up a long term strategy. The first part of the paper considered an asset management strategy for refurbishing substation secondary systems, while the second part of the paper addressed the strategies for refurbishing existing power plants. The final section of the paper analyzed refurbishment strategies designed to protect power distribution systems. The impact of IEC 61850 and how legacy devices can be integrated in substation automation systems were discussed. It was concluded that new SCADA systems are needed to handle new technology. Additional features like remote control, remote settings, remote disturbance records analysis and remote maintenance are also needed to properly operate the power system. The value of preventive maintenance using remote monitoring systems to determine the status of all the digital electronic devices installed in substation was also discussed. IEC 61850 offers several opportunities to improve grid operation and control. It supports interoperability between protective relays and control devices from different manufacturers in the substation, which is required in order to achieve substation level interlocking, protection and control functions and improve the efficiency of microprocessor based relays applications. This technology has now passed the initial stage of implementation and several projects are underway worldwide. 13 figs.

  18. Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications

    Science.gov (United States)

    Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.

    2015-02-01

    The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.

  19. TU-G-213-00: The International Electrotechnical Commission (IEC): What Is It and Why Should Medical Physicists Care?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  20. IEC-TC88WG8 testing of rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D R.V. van [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands)

    1996-09-01

    In 1994 the TC88 of IEC installed a working group (WG8) to draft a guideline on blade testing. This paper gives a description of the task of the working group. Furthermore it gives a report of the progress of the work and summarizes the possible contents of the working group document on blade testing. (au)

  1. Wind Plant Models in IEC 61400-27-2 and WECC - latest developments in international standards on wind turbine and wind plant modeling

    DEFF Research Database (Denmark)

    Fortmann, Jens; Miller, Nicholas; Kazachkov, Yuri

    2015-01-01

    This paper describes the latest developments in the standardization of wind plant and wind plant controller models. As a first step IEC TC88 WG 27 and WECC jointly developed generic wind turbine models which have been published by WECC in 2014 and IEC in 2015 as IEC 61400-27-1, which also include...

  2. Evaluation of the implementation and use of active personal dosimeters for neutrons in Brazil

    International Nuclear Information System (INIS)

    Castro B, C. P.; Wagner P, W.; De Souza P, K. C.

    2014-08-01

    This work was conducted through of a field research based on a questionnaire sent to users of active personal dosimeters. A retrospective study of the last six years was also carried out of the services in the Neutron Metrology Laboratory (2008-2013) referent to the active personal dosimeters, taking into consideration the standards ISO-8529-3 and IEC-61526. The active personal dosimeters are defined as any instrument of individual monitoring with direct reading capacity, used by individuals exposed to ionizing radiation fields. Through research was verified that the active personal dosimeters work associated with other dosimeter types. Considering all dosimeters declared in the questionnaire, only two dosimeters (MGP brand Dmc 2000-GN model and the brand ATOMTEX model AT2503A) have conformity declaration with the international standard IEC-61526: 2005 reported by the manufacturers. (author)

  3. Measurement and analysis of leakage neutron energy spectra around the Kinki University Reactor, UTR-KINKI

    CERN Document Server

    Ogawa, Y; Sagawa, H; Tsujimoto, T

    2002-01-01

    The highly sensitive cylindrical multi-moderator type neutron spectrometer was constructed for measurement of low level environmental neutrons. This neutron spectrometer was applied for the determination of leakage neutron energy spectra around the Kinki University Reactor. The analysis of the leakage neutron energy spectra was performed by MCNP Monte Carlo code. From the obtained results, the agreement between the MCNP predictions and the experimentally determined values is fairly good, which indicates the MCNP model is correctly simulating the UTR-KINKI.

  4. Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yamamoto, Y.; Yoshikawa, K.; Sato, K.H.

    1997-01-01

    The electrostatic potential well in inertial electrostatic confinement (IEC) is studied using two approaches. First, the equilibrium potential profile is obtained by solving the charge neutrality condition, i.e. n i n e , assuming the appropriate distribution functions for the ions and the electrons. The formation of a double well structure is demonstrated, with a depth depending upon the ratio between the focus radii of the electrons and the ions. The correlations between the well depth and the volume integrated neutron production due to deuterium-deuterium (DD) reactions are obtained. Second, in order to study the stability of the well, the dynamic behaviours of the potential well are calculated by performing time advancing numerical simulations on the basis of the particle in cell method. Single, double and triple wells, depending on the amount of injected ion current, are observed to be formed for ions with a monoenergetic distribution. The well in the centre of the multiwell structure is unstable and oscillates with a periods much longer than the inverse ion plasma frequency. A double well structure can be formed even for ions with a spread out energy distribution when the ion current is larger than the threshold value. The time averaged neutron production by DD fusion events is proportional to a power of the ion current involved in forming the double well structure. The results strongly suggest that the high neutron production rate should be attributed to not only the well depth but also the unstable behaviour of the potential, i.e. the intermittent peaking of the density in the centre region. A numerical simulation reveals that IEC possesses a favourable dependence of fusion reactions on the injected ion current for the application to a neutron source or a fusion reactor. (author). 9 refs, 9 figs

  5. Convergence Analysis of ISO/IEC 12207 and CMMI-DEV: Complementary Result from Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Javier Crisóstomo

    2017-12-01

    Full Text Available The organizations and people are demanding more and better software products and services, which implies adequate processes for its development. In the context of the software industry, there are two models, the CMMI-DEV and ISO/IEC 12207 that are influencing it. Though, they are evolving separately, recurrently they have been compared to determine its coverage (in both directions. In this study is analyzed the results of those comparisons (partials and completed to determine if the models ISO/IEC 12207 and CMMI-DEV converge at processes level. This study identified eight articles where the comparison is carried out between ISO/IEC 12207 and CMMI-DEV. The results show that technique most used is the mapping comparisons between the models and according to the analyzed studies is not possible to determine whether there is convergence in the time. However, we found some items and criterions for use in comparisons.

  6. ISO/IEC 17025 Sysmex R-500 hematology reticulocyte analyzer validation.

    Science.gov (United States)

    Dimopoulou, H A; Theodoridis, T; Galea, V; Christopoulou-Cokkinou, V; Spyridaki, M-H E; Georgakopoulos, C G

    2007-01-01

    The Sysmex R-500 (R-500) Hematology Analyzer is a bench-top system appropriate for the analysis of limited batches of blood samples. The R-500 provides percentage proportional (RET%), absolute reticulocyte (RET#), and absolute red blood cell (RBC#) counts. The system was validated at the Doping Control Laboratory of Athens, according to the International Committee for Standardization in Hematology, International Standards Organization (ISO/IEC) 17025, and World Antidoping Agency (WADA) specifications. The instrument calibration was performed according to the manufacturer and validation parameters comprised linearity, precision, uncertainty (intermediate and long-term precision), comparability, effect of drift, carryover, stability, and accuracy. The linearity and the comparability studies for RET#, RET%, and RBC# were expressed in regression factors (R2) and coefficients of correlation [r(x, y)], respectively. For the precision studies, the coefficients of variation for RET#, RET%, and RBC# were 9.49%, 9.83%, and ISO/IEC 17025 and WADA specifications.

  7. Exact analytical solution of time-independent neutron transport equation, and its applications to systems with a point source

    International Nuclear Information System (INIS)

    Mikata, Y.

    2014-01-01

    Highlights: • An exact solution for the one-speed neutron transport equation is obtained. • This solution as well as its derivation are believed to be new. • Neutron flux for a purely absorbing material with a point neutron source off the origin is obtained. • Spherically as well as cylindrically piecewise constant cross sections are studied. • Neutron flux expressions for a point neutron source off the origin are believed to be new. - Abstract: An exact analytical solution of the time-independent monoenergetic neutron transport equation is obtained in this paper. The solution is applied to systems with a point source. Systematic analysis of the solution of the time-independent neutron transport equation, and its applications represent the primary goal of this paper. To the best of the author’s knowledge, certain key results on the scalar neutron flux as well as their derivations are new. As an application of these results, a scalar neutron flux for a purely absorbing medium with a spherically piecewise constant cross section and an isotropic point neutron source off the origin as well as that for a cylindrically piecewise constant cross section with a point neutron source off the origin are obtained. Both of these results are believed to be new

  8. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  9. Modelling of plug and play interface for energy router based on IEC61850

    Science.gov (United States)

    Shi, Y. F.; Yang, F.; Gan, L.; He, H. L.

    2017-11-01

    Under the background of the “Internet Plus”, as the energy internet infrastructure equipment, energy router will be widely developed. The IEC61850 standard is the only universal standard in the field of power system automation which realizes the standardization of engineering operation of intelligent substation. To eliminate the lack of International unified standard for communication of energy router, this paper proposes to apply IEC61850 to plug and play interface and establishes the plug and play interface information model and information transfer services. This paper provides a research approach for the establishment of energy router communication standards, and promotes the development of energy router.

  10. Overview, status and outline of the new IEC 61400-27. Electrical simulation models for wind power generation

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Poul [Wiley (John) and Sons, Inc., New York, NY (United States). Journal Dept.; Andresen, Bjoern [Siemens Wind Power (Denmark); Fortmann, Jens [RE-Power Systems AG (Germany); Johansen, Knud [Energinet.dk (Denmark); Pourbeik, Pouyan [EPRI (United States)

    2011-07-01

    This paper presents the ongoing work in Working Group (WG) 27 of IEC Technical Committee (TC) 88 developing a standard IEC 61400-27 for 'Electrical simulation models for wind power generation'. The purpose of the standardization work is to define generic simulation models for wind turbines and wind power plants, which are intended for power systems stability analyses. Thus, the models will be applicable for dynamic simulations of power system events such as faults, loss of generation or loads and switching of lines. The paper presents the actual status of the IEC TC88 WG27 work. Some of the challenges encountered during the process of the development of the standard are described, and expected outcome of the standard is also presented. (orig.)

  11. Investigation of some possible changes in Am-Be neutron source configuration in order to increase the thermal neutron flux using Monte Carlo code

    Science.gov (United States)

    Basiri, H.; Tavakoli-Anbaran, H.

    2018-01-01

    Am-Be neutrons source is based on (α, n) reaction and generates neutrons in the energy range of 0-11 MeV. Since the thermal neutrons are widely used in different fields, in this work, we investigate how to improve the source configuration in order to increase the thermal flux. These suggested changes include a spherical moderator instead of common cylindrical geometry, a reflector layer and an appropriate materials selection in order to achieve the maximum thermal flux. All calculations were done by using MCNP1 Monte Carlo code. Our final results indicated that a spherical paraffin moderator, a layer of beryllium as a reflector can efficiently increase the thermal neutron flux of Am-Be source.

  12. Comparison and Analysis of IEEE 344 and IEC 60980 standards for harmonization of seismic qualification of safety-related equipment

    International Nuclear Information System (INIS)

    Lee, Young Ok; Kim, Jong Seog; Seo, Jeong Ho; Kim, Myung Jun

    2011-01-01

    The seismic qualification of safety related equipment in nuclear power plants should demonstrate an equipment's ability to perform its safety function during/or after the time it is subjected to the forces resulting from one SSE. In addition, the equipment must withstand the effects of a number of OBEs, preceding the SSE. IEEE 344 and IEC 60980 present the criteria for establishing procedures demonstrating that the Class 1E equipment can meet its performance requirement during seismic events. Currently, IEEE 344 is used for regulation of nuclear power plant in the United State whereas IEC 60980 is mainly used in Europe. In particular, NPPs of France and China apply with RCC-E and GB that are domestic standards, respectively. Equipment supplier and Utility have difficulties because of different applicable standards. Equipment supplier to export S/R components/equipment to other standard area performs additional seismic qualification. For example, equipment are qualifies according to IEC 60980, RCC-E, GB although they have been qualified in accordance with IEEE 344. Also, utility to attempt power up-rate, life extension of NPP constructed under rules of RCC-E such as Ulchin NPP 1 and 2 has similar difficulties. RCC-E endorses IEC 60980 and GB is almost same as IEC 60980 except minor difference of earthquake environment definition. Therefore this paper surveys the similarities and differences between IEEE 344 and IEC 60980. In addition, this paper considers how the two sets of standards may be used in a complementary fashion to be possible using one or the other standard area

  13. Asymptotic equivalence of Dancoff factors in cylindrical and square fuel cells

    International Nuclear Information System (INIS)

    Rodrigues, Leticia Jenisch; Leite, Sergio de Queiroz Bogado; Vilhena, Marco Tullio de

    2009-01-01

    In its classical formulation, the Dancoff factor for a perfectly absorbing fuel rod is defined as the relative reduction in the incurrent of resonance neutrons into the rod in the presence of neighboring rods, as compared to the incurrent into a single fuel rod immersed in an infinite moderator. Alternatively, this factor can be viewed as the probability that a neutron emerging from the surface of a fuel rod will enter another fuel rod without any collision in the moderator or cladding. For perfectly absorbing fuel these definitions are equivalent. In the last years, several works appeared in literature reporting improvements in the calculation of Dancoff factors, using both the classical and the collision probability definitions. So far, collision probabilities have been determined in the WIMS (Winfrith Improved Multi-group Scheme) code by numerical integration of the third order Bickley functions, for cells with both cylindrical and square outer boundaries. In this work, we step further reporting Dancoff factors for perfectly absorbing (Black) and partially absorbing (Grey) fuel rods calculated by the collision probability method, in cluster cells with square outer boundaries. In order to validate the results, comparisons are made with the equivalent cylindricalized cell in hypothetical test cases. The calculation is performed considering specularly reflecting boundary conditions for the square lattice and diffusive reflecting boundary conditions for the cylindrical geometry. The results show the expected asymptotic behavior of the solution with increasing cell sizes. (author)

  14. Using ISO/IEC 12207 to analyze open source software development processes: an E-learning case study

    OpenAIRE

    Krishnamurthy, Aarthy; O'Connor, Rory

    2013-01-01

    peer-reviewed To date, there is no comprehensive study of open source software development process (OSSDP) carried out for open source (OS) e-learning systems. This paper presents the work which objectively analyzes the open source software development (OSSD) practices carried out by e-learning systems development communities and their results are represented using DEMO models. These results are compared using ISO/IEC 12207:2008. The comparison of DEMO models with ISO/IEC...

  15. Measurement and analysis of neutron flux spectra in a neutronics mock-up of the HCLL test blanket module

    International Nuclear Information System (INIS)

    Klix, A.; Batistoni, P.; Boettger, R.; Lebrun-Grandie, D.; Fischer, U.; Henniger, J.; Leichtle, D.; Villari, R.

    2010-01-01

    Fast neutron and gamma-ray flux spectra and time-of-arrival spectra of slow neutrons have been measured in a neutronics mock-up of the European Helium-Cooled Lithium-Lead Test Blanket Module with the aim to validate nuclear cross-section data. The mock-up was irradiated with fusion peak neutrons from the DT neutron generator of the Technical University of Dresden. A well characterized cylindrical NE-213 scintillator was inserted into two positions in the LiPb/EUROFER assembly. Pulse height spectra from neutrons and gamma-rays were recorded from the NE-213 output. The spectra were then unfolded with experimentally obtained response matrices of the NE-213 detector. Time-of-arrival spectra of slow neutrons were measured with a 3 He counter placed in the mock-up, and the neutron generator was operated in pulsed mode. Monte Carlo calculations using the MCNP code and nuclear cross-section data from the JEFF-3.1.1 and FENDL-2.1 libraries were performed and the results are compared with the experimental results. A good agreement of measurement and calculation was found with some deviations in certain energy intervals.

  16. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  17. Characterization of detectors of neutrons from B+ZnS (Ag) as an alternative to 3He detectors

    International Nuclear Information System (INIS)

    Gonzalez, Juan A.; Suarez, Maria J.; Pujol, Luis; Lorente, Alfredo; Gallego, Eduardo

    2013-01-01

    The objective of this paper is to present the progress made in the design of prototypes for dynamic detection of neutron detectors based on scintillation of B + ZnS (Ag), which can replace existing 3 He detectors for the detection of illicit traffic of radioactive material and special nuclear material. These detectors B + ZnS (Ag) can be used, together with gamma detectors, PVT and NaI (Tl) also developed in the UPM. Two neutron detectors of different shapes and sizes were characterized using two neutron sources of 241 Am + Be. Were determined depth, overall efficiency, intrinsic efficiency and limit of detection. The results of these tests allow to verify that: 1) two cylindrical detectors B + ZnS (Ag) of 5x68 cm, or 4x15x132 cm rectangular detector can replace the cylindrical detector of 5x180 cm 3 He currently employed in the arcades. 2) the dynamic detection limit obtained is less than 20000 neutrons per second, when the sample becomes 2 m to 2m/s, with a probability of having no false positive or negative of the 99.99% 3) digital electronics eliminates interference from gamma emissions samples when their dose rate in the neutron detector is 65 μSv/h in less than factor 10 - 8, and keeps its detection limit and 4) two cylindrical detectors with two moderators of different thickness, of 25 to 50 mm of high density polyethylene, allow to measure the average energy of the neutrons

  18. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  19. Buckling measurement in the IPEN/MB-01 nuclear reactor in cylindrical configuration of minor excess of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Purgato, Rafael Turrini; Bitelli, Ulysses d' Utra; Aredes, Vitor Ottoni; Silva, Alexandre F. Povoa da; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work presents the results of experimental Buckling in the IPEN/MB-01 nuclear reactor in its cylindrical configuration with 28 fuel rods along its diameter. The IPEN/MB-01 is a zero power reactor designed to operate at a maximum power of 100 watts. It is a versatile nuclear facility, which allows for the simulation of all the characteristics of a nuclear power reactor making it an ideal test bed for this kind of measurement. A mapping of neutron flux inside the reactor is carried out in order to determine the total Buckling of the cylindrical configuration. The reactor was operated for one hour. Then, the activity of the fuel rods is measured by gamma ray spectrometry using a HPGe solid state detector and a suitable rod scanner. Photon energies of 276.6keV from {sup 239}Np (neutron capture (n,?) nuclear reaction) and 293.3keV from {sup 143}Ce (fission (n,f) nuclear reaction on both {sup 238}U and {sup 235}U) , are respectively along both axial and radial directions. Other measurements are performed using gold wires and foils along radial and axial directions of the reactor core. The three methods above resulted in a weighted average value of 93.18 ± 8.47 m-2 for the Total Buckling of this cylindrical core configuration with 28 control rods along its diameter with 568 fuel rods and only 271 pcm of excess reactivity. (author)

  20. Neutron spectra from radionuclide sources for cardiac pacemakers

    International Nuclear Information System (INIS)

    Kluge, H.

    1975-01-01

    Neutron spectra from Plutonium 238 radioisotope batteries powering cardiac pacemakers are measured in the energy range above 0.7 MeV. The results are used to calculate radiation doses within a cylindrical phantom. There are only minor differences between the different types of plutonium 238-batteries and californium 252-batteries

  1. Calorimetric dosimetry in neutron and charged particle beams

    International Nuclear Information System (INIS)

    McDonald, J.C.; Ma, I.C.; Laughlin, J.S.

    1978-01-01

    A portable tissue-equivalent (TE) calorimetric, constructed of A-150 plastic, has been employed for the measurement of absorbed dose in several neutron radiotherapy fields. Comparisons of spherical, cylindrical, and thimble shaped TE ionization chambers have been carried out using either air, or a flow of TE gas in the chamber

  2. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    Energy Technology Data Exchange (ETDEWEB)

    Culberson, W. [University of Wisconsin - Madison (United States)

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetric safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.

  3. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  4. Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint

    International Nuclear Information System (INIS)

    van Dam, J. J. D.; Forsyth, T. L.; Hansen, A. C.

    2001-01-01

    This paper provides a status of the changes currently being made by IEC Maintenance Team 02 (MT02) to the existing IEC 61400-2 ''Safety of small wind turbines.'' In relation to the work done by IEC MT02, work has been done by NREL and Windward Engineering under the DOE/NREL Small Wind Turbine (SWT) Project. Aeroelastic models were built and measurements taken on a Whisper H40 turbine and an AOC 15/50. Results from this study were used to verify the simple design equations. This verification will be used to evaluate how changes made in the design load estimation section of the standard work out for a broad range of turbine configurations. The work presented here builds on work performed by Van Hulle (1996)

  5. Measurement of accelerator-based neutron distributions using nuclear track detectors

    International Nuclear Information System (INIS)

    Al-Jarallah, M.I.; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R.

    2000-01-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n) 4 He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within ±4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons

  6. Measurement of accelerator-based neutron distributions using nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jarallah, M.I. E-mail: mibrahim@kfupm.edu.sa; Abu-Jarad, F.; Rehman, Fazal-ur-; Khiari, F.Z.; Aksoy, A.; Nassar, R

    2000-12-01

    Nuclear track detectors were used to measure the longitudinal and transverse distributions of slow neutrons in a moderated neutron field as well as the longitudinal and transverse distributions of fast neutrons produced on the 0 deg. beam line of the KFUPM 350 keV ion accelerator. The neutrons were first produced from the T(d,n){sup 4}He reaction with a neutron energy of approximately 14 MeV and were then moderated in a cylindrical polyethylene moderator placed at the end of the 0 deg. beam line. The optimal transverse slow neutron distribution was found to be uniform within {+-}4.5% at a 3 cm depth inside the moderator. The fast neutron distribution component along the moderator central axis exhibited an exponential-like drop in intensity with depth. Linearity checks of alpha and proton recoil track density with irradiation time for the nuclear track detectors were verified for both slow and fast neutrons.

  7. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    International Nuclear Information System (INIS)

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and 60 Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al 2 O 3

  8. Characterization and standardized radiation qualities deployment - NBR IEC 61225 - in a animal irradiator

    International Nuclear Information System (INIS)

    Carvalho, Samara; Magalhaes, Luis Alexandre Goncalves

    2015-01-01

    The present work consisted in the determination of additional aluminum filters, so that the Animal Irradiator of the Laboratory of Radiological Sciences-UERJ can operate in accordance with standard IEC 61267: 2005. In order to perform the measurements necessary for the determination of these filters, it was developed an additional filter positioning system coupled to the X-ray tube. The determination of these filters was performed to obtain the first half value layer (HVL) according to the window with the values given by the IEC 61267: 2005. It was used IPEN SRS-78 (Institute of Physics and Engineering in Medicine) software for the estimation of the total amount of the additional filtration through the measurements values of the first HVL. (author)

  9. Maintaining and assessing extended 9 test methods in accordance with ISO/IEC 17025: 2005 for Isotopes Hydrology Laboratory

    International Nuclear Information System (INIS)

    Nguyen Thi Hong Thinh; Ha Lan Anh; Vo Thi Anh; Tran Khanh Minh; Vu Hoai

    2016-01-01

    The ISO/IEC 17025:2005 ''General requirements for the competence of testing and calibration laboratories'' is basis for the accreditation body of the country in general and VILAS in particular recognizing the competence of laboratories. With the desire to prove that we have sufficient technique and management capacity , and the ability to provide the legally recognized and technically valuable test results, the Isotope Hydrology Laboratory have developed and maintain a quality management system in accordance with ISO/IEC 17025:2005. In 2013, Isotope Hydrology Laboratory received a certificate of accreditation issued by Bureau of Accreditation which recognized the laboratory in accordance with ISO/IEC 17025:2005 with VILAS 670 accredited code. Scope of recognition is analyzed 14 parameters: F"-, Cl"-, NO_2"-, NO_3"-, Br"-, PO_4"3"-, SO_4"2"-, Li"+, Na"+, NH_4"+, K"+, Mg"2"+, Ca"2"+ and "3H in water by ion chromatography and liquid scintillator counting method. The laboratory has successfully implemented the task of maintaining quality management systems conform to ISO/IEC 17025: 2005 and expanded the scope of accreditation by 9 parameters in water: pH, EC, TSS, TDS, DO, BOD5, pH, Fe and Mn in 2015. (author)

  10. Implementation and Practical Benefits of ISO/IEC 17025:2005 in a ...

    African Journals Online (AJOL)

    User

    support of top management. ... quality management system, based on ISO/IEC 17025:2005, is achievable if there ... services of an accredited laboratory knowing that their decisions will be .... reports containing test results of the methods included in the Accreditation ..... As XYZ Laboratory is a water and wastewater testing.

  11. Implementing service quality based on ISO/IEC 20000 a management guide

    CERN Document Server

    Kunas, Michael

    2012-01-01

    Potential customers will look for suppliers with ISO/IEC 20000 certification, seeking the reassurance it provides. This book will guide you through implementation and certification. Your streamlined management processes will enable you to offer first-class customer service at competitive prices. The impact on your profit margins is clear!

  12. Monte Carlo prediction of neutron interactions in sonofusion experiment

    International Nuclear Information System (INIS)

    Walter, J.; Gert, G.; Bougaev, A.; Bertodano, B.; Tsoukalas, I.H.; Jevremovic, T. . E-mail address of corresponding author: tatjanaj@ecn.purdue.edu

    2005-01-01

    Evidence of neutron induced sonofusion has been reported by Taleyarkhan, et. al, (Science, 8 March 2002). This involves the creation and collapse of cavities with acoustic waves and neutrons in deuterated acetone. The collapse of these bubbles creates conditions sufficient for D-D fusion to occur. As part of a bigger effort to reproduce these results, the neutral condition (without the acoustic waves) case was considered. This limits the neutron interactions to scattering and attenuation. MCNP5 was used to simulate the experiment for this neutral case. The set-up consisted of a cylindrical glass vessel that contained 500 mL of 99.9% D-acetone that was exposed to a 9.70 Ci Americium Beryllium neutron source. MCNP5 gave a production rate of 4.99E-11 (Relative Error: +/- 0.0005) tritons per source neutron for neutron absorption in deuterium. The resulting simulation's tritium activity was corrected for decay and detector efficiency, then compared to the actual experimental results. (author)

  13. Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27

    Directory of Open Access Journals (Sweden)

    Andrés Honrubia-Escribano

    2016-12-01

    Full Text Available Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis.

  14. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    Science.gov (United States)

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  15. Neutron spectrum at 900 from 800 MeV (p,n) reactions on a Ta target

    International Nuclear Information System (INIS)

    Howe, S.D.; Lisowski, P.W.; King, N.S.P.; Russell, G.J.; Donnert, H.J.

    1979-01-01

    The neutron time-of-flight spectrum produced by a thick tantalum target bombarded by 800-MeV protons was measured at an angle of 90 0 . The data were taken at the Weapons Neutron Research facility by use of a cylindrical Ta target with a radius of 1.27 cm and a length of 15 cm. An NE-213 liquid scintillator was used to detect the neutrons over an energy range of 0.5 to 350 MeV. The neutron yield is presented and compared to a intranuclear-cascade/evaporation model prediction. 3 figures

  16. IEC ready for turnaround in nuclear industry

    International Nuclear Information System (INIS)

    Schomberg, R.; Corte, E.; Thompson, I.

    2005-01-01

    The activity of IEC Technical Committee (TC) 45 (Nuclear Instrumentation) in conditions of turnaround in nuclear industry is considered. TC 45's main task is to lay down a comprehensive strategy for itself and its two subcommittees as well as to improve the relevance of the nuclear safety standards. Subcommittee 45A develops standards that apply to the electronic and electrical functions and associated systems and equipment used in the instrumentation and control systems of nuclear energy generation facilities. Subcommittee 45B develops and issues standards covering all aspects of instrumentation associated with radiation protection including radiation detectors, radiation monitoring, dosimetry and radiology [ru

  17. Calibration Laboratory for Medical Physics towards ISO/ IEC 17025 accreditation: Experience and challenges

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Abdul Aziz Ramli; Muhammad Jamal Isa; Sharul Azlan Azizan

    2011-01-01

    Medical Physics Calibration Laboratory is laboratory where placed under Medical Physics Group, Radiation Healthy and Safety Division. This laboratory offers calibration services to their customers that covered doses calibration, tube voltan (kVp), exposure doses, sensitometer and densitometer. After 12 years of operation, it is the right time for this laboratory to upgrade their quality services based on ISO/ IEC 17025. Accreditation scope covered calibration for diagnostic doses only. Starting from 2009, serious effort was done to prepare the quality documents that covered quality manual, quality procedure and work orders. Meanwhile, several series of audit were done by Quality Management Center (QMC), now Innovation Management Center (IMC) with collaboration with Standard Department. This paper works revealed challenges and experience during the process toward ISO/ IEC 17025 accreditation. (author)

  18. Fast neutron dosimetry. Progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Attix, F.H.

    1980-01-01

    Progress is reported in: the development and testing of new gas mixtures more suitable for fast neutron dosimetry using the common A150-type Tissue-equivalent plastic ion chambers; comparison of photon doses determined with a graphite-walled proportional counter and with paired dosimeters irradiated by 14.8-MeV neutrons; a detector for the direct measurement of LET distributions from irradiation with fast neutrons; LET distributions from fast neutron irradiation of TE-plastic and graphite measured in a cylindrically symmetric geometry; progress in development of a tandem fast neutron and /sup 60/Co gamma ray source irradiation facility; an approach to the correlation of cellular response with lineal energy; calculated and measured HTO atmospheric dispersion rates within meters of a release site; application of cavity theory to fast neutrons; and fast neutron dosimetry by thermally stimulated currents in Al/sub 2/O/sub 3/. (GHT)

  19. Theoretical and Experimental Research in Neutron Spectra and Nuclear Waste Transmutation on Fast Subcritical Assembly with MOX Fuel

    Science.gov (United States)

    Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.

    2003-07-01

    The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.

  20. Application of direct discrete method (DDM) to multigroup neutron transport problems

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid

    2003-01-01

    The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)

  1. Generalization of Asaoka method to linearly anisotropic scattering: benchmark data in cylindrical geometry

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1975-11-01

    The Integral Transform Method for the neutron transport equation has been developed in last years by Asaoka and others. The method uses Fourier transform techniques in solving isotropic one-dimensional transport problems in homogeneous media. The method has been extended to linearly anisotropic transport in one-dimensional homogeneous media. Series expansions were also obtained using Hembd techniques for the new anisotropic matrix elements in cylindrical geometry. Carlvik spatial-spherical harmonics method was generalized to solve the same problem. By applying a relation between the isotropic and anisotropic one-dimensional kernels, it was demonstrated that anisotropic matrix elements can be calculated by a linear combination of a few isotropic matrix elements. This means in practice that the anisotropic problem of order N with the N+2 isotropic matrix for the plane and spherical geometries, and N+1 isotropic matrix for cylindrical geometries can be solved. A method of solving linearly anisotropic one-dimensional transport problems in homogeneous media was defined by applying Mika and Stankiewicz observations: isotropic matrix elements were computed by Hembd series and anisotropic matrix elements then calculated from recursive relations. The method has been applied to albedo and critical problems in cylindrical geometries. Finally, a number of results were computed with 12-digit accuracy for use as benchmarks [fr

  2. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo

    2018-01-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation......, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data...

  3. Leveraging Software Architectures through the ISO/IEC 42010 standard: A Feasibility Study

    NARCIS (Netherlands)

    Tamburri, D.A.; Lago, P.; Muccini, H.; Proper, E.; Lankhorst, M.; Schoenherr, M.

    2011-01-01

    The state of the practice in enterprise and software architecture learnt that relevant architectural aspects should be illustrated in multiple views, targeting the various concerns of different stakeholders. This has been expressed a.o. in the ISO/IEC 42010 Standard on architecture descriptions. In

  4. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  5. On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue

    International Nuclear Information System (INIS)

    Asadzadeh, M.; Thevenot, L.

    2010-01-01

    The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (D G) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ??in R3 with a polygonal convex cross-section ? The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.

  6. Measuring fast neutrons with large liquid scintillation detector for ultra-low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); College of Sciences, China Three Gorges University, Yichang 443002 (China); Mei, D.-M., E-mail: dongming.mei@usd.edu [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Davis, P.; Woltman, B. [Department of Physics, The University of South Dakota, Vermillion, SD 57069 (United States); Gray, F. [Department of Physics and Computational Science, Regis University, Denver, CO 80221 (United States)

    2013-11-21

    We developed a 12-liter volume neutron detector filled with the liquid scintillator EJ301 that measures neutrons in an underground laboratory where dark matter and neutrino experiments are located. The detector target is a cylindrical volume coated on the inside with reflective paint (95% reflectivity) that significantly increases the detector's light collection. We demonstrate several calibration techniques using point sources and cosmic-ray muons for energies up to 20 MeV for this large liquid scintillation detector. Neutron–gamma separation using pulse shape discrimination with a few MeV neutrons to hundreds of MeV neutrons is shown for the first time using a large liquid scintillator.

  7. Design of a cold-neutron source for the Bariloche LINAC with solid mesitylene as moderator material

    International Nuclear Information System (INIS)

    Torres, Lourdes; Granada, J.R.

    2006-01-01

    We present the results of calculations performed with the code MCNP-4C relative to the neutron-field behaviour within the moderator for the Bariloche-LINAC cold-neutron source, using mesitylene at 89 K as moderating material. Throughout the design calculations we used preliminary nuclear-data libraries for that material that were previously generated and partially validated. The optimum dimensions for a slab and a cylindrical moderator were obtained, with and without a premoderator, from the point of view of neutron production and time-width of the neutron pulse

  8. Monte Carlo calculations and experimental results of Bonner spheres systems with a new cylindrical Helium-3 proportional counter

    CERN Document Server

    Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L

    2002-01-01

    The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...

  9. CHARACTERIZATION OF A THIN SILICON SENSOR FOR ACTIVE NEUTRON PERSONAL DOSEMETERS.

    Science.gov (United States)

    Takada, M; Nunomiya, T; Nakamura, T; Matsumoto, T; Masuda, A

    2016-09-01

    A thin silicon sensor has been developed for active neutron personal dosemeters for use by aircrews and first responders. This thin silicon sensor is not affected by the funneling effect, which causes detection of cosmic protons and over-response to cosmic neutrons. There are several advantages to the thin silicon sensor: a decrease in sensitivity to gamma rays, an improvement of the energy detection limit for neutrons down to 0.8 MeV and an increase in the sensitivity to fast neutrons. Neutron response functions were experimentally obtained using 2.5 and 5 MeV monoenergy neutron beams and a (252)Cf neutron source. Simulation results using the Monte Carlo N-Particle transport code agree quite well with the experimental ones when an energy deposition region shaped like a circular truncated cone is used in place of a cylindrical region. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  11. Analysis of the Neutron Generator and Target for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius.

  12. The effect of an iron plug on the neutron flux distributions in water

    International Nuclear Information System (INIS)

    Lotfi, A.; Maayouf, R.M.A.; Megahid, R.

    1978-01-01

    This work is concerned with studying both fast and thermal neutron fluxes distribution in water and its perturbation due to the presence of a cylindrical iron plug. The measurements were carried out using a collimated neutron beam emitted from one of the horizontal channels of the ET-RR-1 reactor. The fast neutron fluxes were measured using phosphorus activation detectors, while the thermal neutron ones were measured using fission fragment track detectors from glass. The results show that the presence of an iron plug causes a remarkable change in the intensities of both the fast and thermal neutron fluxes distribution in the water medium surrounding the iron plug. The flux intensities at the peaks, formed beyond the iron plug in case of thermal neutrons, are also compared with values calculated using the available emperical formula

  13. Experimental test of a newly developed single-moderator, multi-detector, directional neutron spectrometer in reference monochromatic fields from 144 keV to 16.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Gómez-Ros, J.M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain); Pola, A.; Bortot, D. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Gentile, A. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Introini, M.V. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Buonomo, B. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria 16, 20133 Milano (Italy); Mazzitelli, M. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); Sacco, D. [INFN – LNF, via E. Fermi n. 40, 00044 Frascati (Roma) (Italy); INAIL – DPIA, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy)

    2015-05-11

    A new directional neutron spectrometer called CYSP (CYlindrical SPectrometer) was developed within the NESCOFI@BTF (2011–2013) collaboration. The device, composed by seven active thermal neutron detectors located along the axis of a cylindrical moderator, was designed to simultaneously respond from the thermal domain up to hundreds of MeV neutrons. The new spectrometer condenses the performance of the Bonner Sphere Spectrometer in a single moderator; thus requiring only one exposure to determine the whole spectrum. The CYSP response matrix, determined with MCNP, has been experimentally evaluated with monochromatic reference neutron fields from 144 keV to 16.5 MeV, plus a {sup 252}Cf source, available at NPL (Teddington, UK). The results of the experiment confirmed the correctness of the response matrix within an overall uncertainty of ±2.5%. The new active spectrometer CYSP offers an innovative option for real-time monitoring of directional neutron fields as those produced in neutron beam-lines.

  14. Design of a setup for {sup 252}Cf neutron source for storage and analysis purpose

    Energy Technology Data Exchange (ETDEWEB)

    Hei, Daqian [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Zhuang, Haocheng [Xi’an Middle School of Shanxi Province, Xi’an 710000 (China); Jia, Wenbao, E-mail: jiawenbao@163.com [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China); Cheng, Can; Jiang, Zhou; Wang, Hongtao [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Chen, Da [Department of Nuclear Science and Engineering, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106 (China); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000 (China)

    2016-11-01

    {sup 252}Cf is a reliable isotopic neutron source and widely used in the prompt gamma ray neutron activation analysis (PGNAA) technique. A cylindrical barrel made by polymethyl methacrylate contained with the boric acid solution was designed for storage and application of a 5 μg {sup 252}Cf neutron source. The size of the setup was optimized with Monte Carlo code. The experiments were performed and the results showed the doses were reduced with the setup and less than the allowable limit. The intensity and collimating radius of the neutron beam could also be adjusted through different collimator.

  15. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  16. Self shielding in cylindrical fissile sources in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1997-01-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results

  17. Implementation of draft IEC Generic Model of Type 1 Wind Turbine Generator in PowerFactory and Simulink

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Sørensen, Poul Ejnar

    2013-01-01

    This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink environm......This paper presents the implementation work of IEC generic model of Type 1 wind turbine generator (WTG) in two commercial simulation tools: DIgSILENT PowerFactory (PF) and Matlab Simulink. The model topology, details of the composite blocks and implementation procedure in PF and Simulink...

  18. Procedure for measurement of anisotropy factor for neutron sources

    International Nuclear Information System (INIS)

    Creazolla, Prycylla Gomes

    2017-01-01

    Radioisotope neutron sources allow the production of reference fields for calibration of neutron detectors for radiation protection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in source encapsulation and in the radioactive material concentration produce differences in its neutron emission rate, relative to the source axis, this effect is called anisotropy. In this study, is describe a procedure for measuring the anisotropy factor of neutron sources performed in the Laboratório de Metrologia de Neutrons (LN) using a Precision Long Counter (PLC) detector. A measurement procedure that takes into account the anisotropy factor of neutron sources contributes to solve some issues, particularly with respect to the high uncertainties associated with neutron dosimetry. Thus, a bibliographical review was carried out based on international standards and technical regulations specific to the area of neutron fields, and were later reproduced in practice by means of the procedure for measuring the anisotropy factor in neutron sources of the LN. The anisotropy factor is determined as a function of the angle of 90° in relation to the cylindrical axis of the source. This angle is more important due to its high use in measurements and also of its higher neutron emission rate if compared with other angles. (author)

  19. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L. [Univ. of Missouri, Columbus, MO (United States); Katz, J.J. [Argonne National Laboratory, IL (United States)

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  20. Comparison of IEEE383-2003 and IEC60505-2004 standards for harmonization of environmental qualification procedure of electric cable

    International Nuclear Information System (INIS)

    Kim, Jong Seog; Jeong, Sun Chul; Park, Kyung Heum; Jang, Kyung Nam

    2010-01-01

    Needs for harmonization of international equipment qualification(EQ) standards have been raised several years due to purchasing problem of nuclear equipment supplied from abroad country. To meet the regulatory requirement of domestic nuclear power plant, manufacturers have to qualify their equipment in accordance with each standard such as IEEE, IEC and RCC-E. Double qualification increase the equipment cost, which result in high construction cost. Even the unification of each standard have been discussed several years, we have got the long way to go yet. Comparison and harmonization of each international standard will give help to purchase the equipment qualified by not endorsed standard. Environmental qualification, seismic qualification and EMI/EMC qualification are major targets for harmonization. Since concern about cable qualification of 60 years life has been raised recently, harmonization of cable qualification standard also needs to be discussed. KEPRI launched a project for harmonization of EQ relative standards such as IEEE, IEC and RCC-E. A study for harmonization of IEEE323 and IEC60780 is known in progress by IEEE committee. In this paper, harmonization of international standards for cable qualification will be discussed. IEEE383 standard is qualification standard for electric cable broadly used in Asian pacific area while IEC60505 is mostly used in European area. Since these two standards have different requirements for environmental qualification of cable, problem can be happened in the plant site when they purchase cable qualified by not endorsed standard. IEEE383-2003 and IEC60505-2004 is the latest version of each standard. Comparison results and recommendations for harmonization of these two standards are introduced herein

  1. Quality assurance procedures in radiotherapy - IEC specifications for equipment

    Energy Technology Data Exchange (ETDEWEB)

    Rassow, J; Klieber, E

    1986-08-01

    The International Electrotechnical Commission (IEC) worked out international standards for requirements and tests of electrical, mechanical and radiation safety as well as for definition and tests of functional performance characteristics of radiotherapy equipments (medical electron accelerators, gamma beam teletherapy and afterloading equipments, simulators and accessories) and for clinical dosimeters and terminology for medical radiology. A survey is given on the actual state of standardization projects. The problems of such standards are shown for the standard for functional performance characteristics of medical electron accelerators as example.

  2. Quality assurance procedures in radiotherapy - IEC specifications for equipment

    International Nuclear Information System (INIS)

    Rassow, J.; Klieber, E.

    1986-01-01

    The International Electrotechnical Commission (IEC) worked out international standards for requirements and tests of electrical, mechanical and radiation safety as well as for definition and tests of functional performance characteristics of radiotherapy equipments (medical electron accelerators, gamma beam teletherapy and afterloading equipments, simulators and accessories) and for clinical dosimeters and terminology for medical radiology. A survey is given on the actual state of standardization projects. The problems of such standards are shown for the standard for functional performance characteristics of medical electron accelerators as example. (orig.) [de

  3. Protective effects of essential oil of Citrus limon against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-05-01

    Aspirin, one of the widely used nonsteroidal anti-inflammatory drugs, is the most highly consumed pharmaceutical product in the world. However, it has several side effects in cells. This study was designed to investigate the antioxidative activity and cytoprotective effects of essential oil of Citrus limon (EOC) extracted from leaves against aspirin-induced damages in the rat small intestine epithelial cells (IEC-6). Biochemical indicators were used to assess cytotoxicity and oxidative damages caused by aspirin treatment on IEC-6. Our results showed that the chemical characterization of EOC identified 25 compounds representing 98.19% of the total oil. The major compounds from this oil were z-citral (53.21%), neryl acetate (13.06%), geranyl acetate (10.33%), and limonene (4.23%). Aspirin induced a decrease in cell viability as well as an increase in superoxide dismutase (SOD) and catalase (CAT) activities. Contrariwise, the co-exposure of cells to aspirin and EOC alleviated every above syndrome by an increase in cell survival and decrease in SOD and CAT activities. In conclusion, the essential oil of C. limon has a potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  4. Maturity index on reliability: covering non-technical aspects of IEC61508 reliability certification

    International Nuclear Information System (INIS)

    Brombacher, A.C.

    1999-01-01

    One of the more recent developments in the field of reliability and safety is the realisation that these aspects are not only a function of the product itself, but also of the organisation realising this product. A second development is a trend from an often predominantly qualitative analysis towards a quantitative analysis. In contrast to the (older) DIN 0801, the (more recent) IEC61508 requires, on product level, also a quantitative analysis and, on organisational level, an assessment of the lifecycle of a product by analysing the (maturity of the) relevant business processes (DIN V VDE 0801. Grundsaetze fuer Rechner in Systemen mit Sicherheitsaufgaben, 1990; DIN V 0801. Grundlegende Sicherheitsbetrachtungen fuer MSR-Schutzeinrichtungen, 1994; DIN V VDE 0801 A1. Grundsaetze fuer Rechner in Systemen mit Sicherheitsaufgaben, Aenderung A1, 1994; IEC 61508 Functional Safety of electrical/electronic/programmable electronic safety-related systems, draft 4.0, 1997). The IEC standard 61508 covers: (i) technical aspects, both on a quantitative and a qualitative level; (ii) organisational aspects, both on aspects of maturity of business processes (quantitative) and on aspects of the definition and application of procedures (qualitative). This paper shows the necessity for an analysis on all aspects in a safety certification process, and presents an overview of the available tools and techniques for the various quadrants. As methods and tools for especially quadrant C are currently unavailable, this paper will propose a method to assess and improve the maturity of an organisation on reliability management: the maturity index on reliability (MIR)

  5. Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator

    DEFF Research Database (Denmark)

    Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo

    2013-01-01

    This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind tur...

  6. Automation of an energy-autarkic manufacturing plant following IEC 61499; Automatisierung einer energieautarken Fertigungsanlage nach IEC 61499

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Christian; Hirsch, Martin; Hanisch, Hans-Michael [Halle-Wittenberg Univ., Halle (Saale) (Germany). Lehrstuhl Automatisierungstechnik

    2009-07-01

    The requirements for future manufacturing plants are, beyond others, seamless reconfiguration, autonomy as far as possible as well as easy employment and maintenance for the end user. Within the EnAS project (Energy-Autarkic Actuators and Sensors), the group of the Automation Technology Lab in Halle has challenged the fulfillment of those requirements. Therefore, IEC 61499 compliant distributed controllers have been developed for the demonstrator-plant under particular consideration of reconfigurability. These controllers have been integrated into the process sequences of the demonstrator and afterwards several reconfiguration scenarios have been designed. The building of a Human-Machine-Interface for visualization and reconfiguration of the plant was an essential issue as well. The result is a highly flexible, easily reconfigurable system, which can be regarded as a prototype for automated manufacturing plants of a new generation. (orig.)

  7. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am–Be neutron source

    International Nuclear Information System (INIS)

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am–Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am–Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. - Highlights: • The scope of the affected area for

  8. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated 252 Cf, D 2 O-moderated 252 Cf, polyethylene-moderated 252 Cf, and WEP neutron howitzer with 252 Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 to 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated

  9. Thermal neutron pulsed parameters in non-hydrogenous systems. Experiment for lead grains

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Kosik, M.; Krynicka, E.; Woznicka, U.; Zaleski, T.

    1997-01-01

    In Czubek's method of measurement of the thermal neutron macroscopic absorption cross section a two-region geometry is applied where the investigated sample is surrounded by an external moderator. Both regions in the measurements made up till now were hydrogenous, which means the same type of the thermal neutron transport properties. In the paper a theoretical consideration to use non-hydrogenous materials as the samples is presented. Pulsed neutron measurements have been performed on homogeneous material in a geometry of the classic experiment with the variable geometric buckling. Two decay constants have been measured for different cylindrical samples of small lead grains (a lead shot). (author)

  10. Status of TRR-II cold neutron source

    International Nuclear Information System (INIS)

    Lee, C.H.; Guung, T.C.; Lan, K.C.; Chan, Y.K.; Wang, C.H.; Chen, S.K.

    2001-01-01

    The Taiwan research reactor improvement and the utilization promotion project (TRR-II) with a vertical cold neutron source (CNS) is carrying out at the Institute of Nuclear Energy Research (INER). The CNS with a two-phase thermosiphon loop consists of an annular cylindrical moderator cell, a single moderator transfer tube and a condenser. A cylindrical annulus moderator cell with boiling liquid hydrogen at 1.2 bar and 20.7 K gives an optimum moderation for cold neutrons in the wavelength range between 4 A and 15 A. The moderator cell lies around 400 mm away from the core center. Its perturbed thermal flux is about 1.4 x 10 14 cm -2 s -1 . It is close to the maximum thermal neutron flux area in D 2 O tank to get the maximum possible brightness about 1 x 10 12 n cm -2 s -1 A -1 sterad -1 at 4 A. An experimental study for thermal-hydraulic characteristics of the two-phase thermosiphon loop has been performed on a full-scale mockup loop using a Freon-11 as a working fluid. The objective of the mockup testing is to validate operation and heat removal capacity in CNS hydrogen loop design. Moreover, this loop will be used to demonstrate no onset of flooding and flow oscillations in a single transfer tube under CNS normal and abnormal conditions. The flooding limitation, the liquid level, and the void fraction in the moderator cell as a function of the initial Freon-11 inventory, the heat load, and the moderator cell geometry are also reported. (orig.)

  11. Mathematics and physics of neutron radiography

    International Nuclear Information System (INIS)

    Harms, A.A.; Wyman, D.R.

    1985-01-01

    This book provides detailed descriptions and analyses of selected experiments and their mathematical characterization. Also included are illustrative and quantitative procedures for applications. This book also discusses the radiography, nondestructive testing and nuclear reactor utilization. The contents discussed are: I: Introduction. II: Component Characterization. III: Object-Image Relations. IV: Rectangular Geometry. V: Cylindrical Geometry. VI: Two-Dimensional Analysis. VII: Object Scattering. VIII: Linear Systems Formulation. IX: Selected Topics. X: Neutron Radiographs. XI: Bibliography and References. Subject Index

  12. Analysis of Norm IEC 61850 in the transmission of data via communications network of substations

    Energy Technology Data Exchange (ETDEWEB)

    Renda, T.; Botura Junior, G. [Universidade Estadual Paulista (UNESP), Sorocaba, SP (Brazil); Mesquita, L.; Rizol, P.M.S.R. [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)

    2009-07-01

    The tendency of using a protocol allows electrical substations to become 'intelligent', that is, capable of communicating in a much more efficient manner. This greatly reduces the number of connections, and as a consequence optimizes the speed between messages. The Norm IEC 61850-9-2 came to minimize the use of cables for the interconnections of various equipment involved in safety procedures of a substation. The present paper, has the objective of identifying a way of integrating the Norm IEC-61850 with the transmission of data via 'Generic Object Oriented Substation Event' (GOOSE) and of substituting the direct connection of binary I/O's of the Intelligent Electronic Devices also known as IED's. (author)

  13. Metodología para la implementación de un Sistema de Gestión de Seguridad de la Información basado en la familia de normas ISO/IEC 27000

    OpenAIRE

    Valencia-Duque, Francisco Javier; Orozco-Alzate, Mauricio

    2017-01-01

    Se propone una metodología de implementación de un Sistema de Gestión de Seguridad de la Información (SGSI) basado en la familia de normas de la ISO/IEC 27000, con énfasis en la interrelación de cuatro normas fundamentales a través de las cuales se desarrollan las actividades requeridas para cumplir con lo establecido en la ISO/IEC 27001, los controles de seguridad presentados en la ISO/IEC 27002, el esquema de riesgos de la ISO/IEC 27005 y los pasos recomendados en la ISO/IEC 27003. Se gener...

  14. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro; Asahi, Koichiro; Hatanaka, Kichiji; Jeong, Sun-Chan; Kawasaki, Shinsuke; Matsumiya, Ryohei; Matsuta, Kensaku; Mihara, Mototsugu; Watanabe, Yutaka

    2012-01-01

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10 −28 e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  15. Neutron electric dipole moment measurement with a buffer gas comagnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Yasuhiro, E-mail: yasuhiro.masuda@kek.jp [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Asahi, Koichiro [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Hatanaka, Kichiji [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Jeong, Sun-Chan; Kawasaki, Shinsuke [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsumiya, Ryohei [RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsuta, Kensaku; Mihara, Mototsugu [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Watanabe, Yutaka [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-03-19

    A neutron EDM measurement with a comagnetometer is discussed. For magnetometry, polarized xenon atoms are injected into a cylindrical cell where a cylindrically symmetric magnetic field and an electric field are applied for the EDM measurement. The geometric phase effect (GPE), which originates from particle motion in a magnetic field gradient, is analyzed in terms of the Dyson series. The motion of the xenon atom is largely suppressed because of a small mean free path. The field gradient is controlled by means of NMR measurements, where the false effect of Earth's rotation is removed. As a result, the GPE is reduced below 10{sup −28}e cm. -- Highlights: ► A method of high precision neutron EDM measurement is described. ► Geometric phase effects are discussed in terms of Dyson series. ► A magnetic field drift is compensated by means of a buffer gas magnetometer. ► Geometric phase effects are greatly suppressed. ► The systematic error is reduced by two orders of magnitude compared with before.

  16. GEANT4 simulation study of a gamma-ray detector for neutron resonance densitometry

    International Nuclear Information System (INIS)

    Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki

    2013-01-01

    A design study of a gamma-ray detector for neutron resonance densitometry was made with GEANT4. The neutron resonance densitometry, combining neutron resonance transmission analysis and neutron resonance capture analysis, is a non-destructive technique to measure amounts of nuclear materials in melted fuels of the Fukushima Daiichi nuclear power plants. In order to effectively quantify impurities in the melted fuels via prompt gamma-ray measurements, a gamma-ray detector for the neutron resonance densitometry consists of cylindrical and well type LaBr 3 scintillators. The present simulation showed that the proposed gamma-ray detector suffices to clearly detect the gamma rays emitted by 10 B(n, αγ) reaction in a high environmental background due to 137 Cs radioactivity with its Compton edge suppressed at a considerably small level. (author)

  17. Study of two-zone reactor system using a pulsed neutron technique

    International Nuclear Information System (INIS)

    Shishin, B.P.; Platovskikh, Yu.A.; Didejkin, T.S.

    1977-01-01

    Theoretical and experimental investigations of a neutron flux time dependence after a sport fast neutron pulse in a reactor core - neutron reflector multiplying system have been conducted. A correlation between eigenvalues governing neutron flux decrease at t→infinity for the two-zone system and eigenvalues for each zone has been established in terms of the one-group diffusion approximation. Experiments have been performed in an experimental subcritical assembly comprising a cylindrical uranium core surrounded by a radial water reflector with different boric acid concentrations. The experiments show that the observed neutron flux decrease in the core is governed by an exponent exp(-Λ 1 t), whereas in the reflector by a sum of two exponents exp(-Λ 1 t) and exp(-Λ 2 t). The eigenvalue Λ 1 reflects multiplying properties of the reactor, and Λ 2 is determined by the reflector absorption cross section

  18. Basic Characteristics of IEC Flickermeter Processing

    Directory of Open Access Journals (Sweden)

    Jarosław Majchrzak

    2012-01-01

    . This paper presents the results of the numerical simulations that reconstruct the processing of flickermeter in frequency domain. With the use of standard test signals, the characteristics of flickermeter were determined for the case of amplitude modulation of input signal, frequency modulation of input signal, and for input signal with interharmonic component. For the needs of simulative research, elements of standard IEC flickermeter signal chain as well as test signal source and tools for acquisition, archiving, and presentation of the obtained results were modeled. The results were presented with a set of charts, and the specific fragments of the charts were pointed out and commented on. Some examples of the influence of input signal’s bandwidth limitation on the flickermeter measurement result were presented for the case of AM and FM modulation. In addition, the diagrams that enable the evaluation of flickermeter’s linearity were also presented.

  19. Nuclear Knowledge Capture and IEC Standards

    International Nuclear Information System (INIS)

    Sheldon, J.

    2016-01-01

    Full text: An International Standard is a document, established by consensus and approved by a recognized body that provides, for common and repeated use, rules, guidelines or characteristics for activities or their results, aimed at the achievement of the optimum degree of order in a given context. As such, it is a mechanism for sharing knowledge in a particular field. The consensus process used to approve the content of standards ensures that the content is essentially peer-reviewed. This presentation will explain how International Standards are developed and used and their importance in the dissemination of scientific and engineering information. It will also explain the role of the IEC in ensuring that the process for developing standards meets the core principles of the Code of Good Practice of the WTO TBT agreement: transparency, openness, impartiality and consensus, effectiveness and relevance, coherence, and addressing the concerns of developing countries. (author

  20. Improvement of proton source based on cylindrical inertial electrostatic confinement fusion with ion source

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Ohura, Sonoe; Tashiro, Atsushi; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-01-01

    Inertial Electrostatic Confinement Fusion (IECF) device is a compact fusion proton/neutron source with an extremely simple configuration, high controllability, and hence high safety. Therefore, it has been studied for practical use as a portable neutron/proton source for various applications such as landmine detection and medical positron emission tomography. However, some problems remain for the practical use, and the most critical one is the insufficiency of absolute neutron/proton yields. In this study, a new IECF device was designed and tested to obtain high neutron/proton yields. The key features of the new device are the cylindrical electrode configuration in consideration of better electrostatic confinement of ions and extraction of protons, and an integrated ion source that consists of sixteen ferrite magnets and biasing the grid anode. To investigate the performance characteristics of the device and the effect of the ion source, three kinds of experimental setup were used for comparison. At first, the device was operated with the basic setup. Then a cusp magnetic field was applied by using ferrite magnets, and the grid anode was negatively biased. As a result, it was confirmed that the ion source works effectively. At the same voltage and current, the obtained neutron production rate was about one order of magnitude higher than that of the conventional spherical IECF device. The maximum neutron production rate of 6.8x10 9 n/s was obtained at a pulsed discharge of -70 kV and 10 A with an anode bias voltage of -1.0 kV. (author)

  1. 4D space access neutron spectrometer 4SEASONS (SIKI)

    International Nuclear Information System (INIS)

    Kajimoto, Ryoichi; Nakamura, Mitsutaka

    2010-01-01

    The 4D Space Access Neutron Spectrometer (4SEASONS) is a high-intensity Fermi-chopper spectrometer. It is intended to provide high counting rate for thermal neutrons with medium resolution (ΔE/E i -6% at E=0) to efficiently collect weak inelastic signals from novel spin and lattice dynamics especially in high-T c superconductors and related materials. To achieve this goal, the spectrometer equips advanced instrumental design such as an elliptic-shaped converging neutron guide coated with high-Q c (m=3-4) supermirror, and long-length (2.5 m) 3 He position sensitive detectors (PSDs) arranged cylindrically inside the vacuum scattering chamber. Furthermore, the spectrometer is ready for multi-incident-energy measurements by the repetition rate multiplication method, which greatly improves the measurement efficiency. (author)

  2. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  3. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  4. Establishment of radiation qualities for radiodiagnostics in LCR/UERJ according to IEC 61267 and TRS 457

    International Nuclear Information System (INIS)

    Silva, D.B. da; Magalhaes, L.A.G.; Estrada, J.J.S.; Pires, E.J.; David, M.G.; Ferreira, N.M.P.D.

    2015-01-01

    The main goal of this work is to establish the radiation qualities of the Laboratório de Ciências Radiológicas (LCR) conventional X-ray equipment for calibrations in radiodiagnostics according to the recommendations of IEC 61267 and TRS 457. Tests were conducted to evaluate the homogeneity of the radiation field, high voltage applied to the X-ray tube, scattering, half-value layers (HVL) and homogeneity coefficients. The results obtained that characterize the radiation field, satisfy the conditions required by TRS 457. Invasive high voltage measures presented results compatible with the requirements of this standard. The HVL measures showed that for the first HVL the tolerance limits of IEC 61267, and the values for the homogeneity coefficients were within the limits established. The quality tests performed in this work were highly satisfactory in meeting the standard requirements. Thus, the main goal was achieved, and the methodology can be used by other similar X-ray systems. - Highlights: • Establishment the radiation qualities for X-ray calibrations in radiodiagnostics. • Comparison to kV between invasive and noninvasive method. • Determination of additional filtrations suggested by IEC 61267. • Determination of the radiation scattered by the experimental setup as TRS 457. • Determination of HVLs as TRS 457.

  5. ISO/IEC 17025 laboratory accreditation of NRC Acoustical Standards Program

    Science.gov (United States)

    Wong, George S. K.; Wu, Lixue; Hanes, Peter; Ohm, Won-Suk

    2004-05-01

    Experience gained during the external accreditation of the Acoustical Standards Program at the Institute for National Measurement Standards of the National Research Council is discussed. Some highlights include the preparation of documents for calibration procedures, control documents with attention to reducing future paper work and the need to maintain documentation or paper trails to satisfy the external assessors. General recommendations will be given for laboratories that are contemplating an external audit in accordance to the requirements of ISO/IEC 17025.

  6. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Directory of Open Access Journals (Sweden)

    Ersez Tunay

    2017-01-01

    Full Text Available The shielding for the neutron high-resolution backscattering spectrometer (EMU located at the OPAL reactor (ANSTO was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  7. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  8. On the design of a cold neutron irradiator (CNI) for quantitative materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Alexander Grover [Cornell Univ., Ithaca, NY (United States)

    1997-08-01

    A design study of a cold neutron irradiator (CNI) for materials characterization using prompt gamma-ray neutron activation analysis (PGNAA) is presented. Using 252Cf neutron sources in a block of moderator, a portion of which is maintained at a cryogenic temperature, the CNI employs cold neutrons instead of thermal neutrons to enhance the neutron capture reaction rate in a sample. Capture gamma rays are detected in an HPGe photon detector. Optimization of the CNI with respect to elemental sensitivity (counts per mg) is the primary goal of this design study. Monte Carlo simulation of radiation transport, by means of the MCNP code and the ENDF/B cross-section libraries, is used to model the CNI. A combination of solid methane at 22 K, room-temperature polyethylene, and room-temperature beryllium has been chosen for the neutron delivery subsystem of the CNI. Using four 250-microgram 252Cf neutron sources, with a total neutron emission rate of 2.3 x 109 neutrons/s, a thermal-equivalent neutron flux of 1.7 x 107 neutrons/cm2-s in an internally located cylindrical sample space of diameter 6.5 cm and height 6.0 cm is predicted by MCNP calculations. A cylindrical port with an integral annular collimator composed of bismuth, lead, polyethylene, and lithium carbonate, is located between the sample and the detector. Calculations have been performed of gamma-ray and neutron transport in the port and integral collimator with the objective of optimizing the statistical precision with which one can measure elemental masses in the sample while also limiting the fast neutron flux incident upon the HPGe detector to a reasonable level. The statistical precision with which one can measure elemental masses can be enhanced by a factor of between 2.3 and 5.3 (depending on the origin of the background gamma rays) compared with a neutron irradiator identical to the CNI except for the replacement of the cryogenic solid methane by room

  9. Wind power communication design and implementation of test environment for IEC61850/UCA2

    Energy Technology Data Exchange (ETDEWEB)

    Johnsson, A.; Svensson, J.

    2002-04-01

    Elforsk has sponsored a joint Swedish-Danish project aiming at finding and recommend a common solution for communication with wind power plants. The first stage of the work resulted in a requirement specification Functional Requirements on Communication System for Wind Turbine Applications. During the project a number of possible communication solutions were identified. The two most promising solutions have been tested in order to verify to what extent they fulfil the requirements in the specification. A version of the IEC 61850 standard based on the communication protocol MMS, has been tested at a wind power plant at Gotland, Sweden, and an OPC-interface has been tested in Denmark. This report includes a description of the design choices made for the test implementation of MMS, as well as a detailed description of the implementation of the IEC 61850/UCA2 software including information models and information exchange services. (BA)

  10. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  11. Realistic electrostatic potentials in a neutron star crust

    International Nuclear Information System (INIS)

    Ebel, Claudio; Mishustin, Igor; Greiner, Walter

    2015-01-01

    We study the electrostatic properties of inhomogeneous nuclear matter which can be formed in the crusts of neutron stars or in supernova explosions. Such matter is represented by Wigner–Seitz cells of different geometries (spherical, cylindrical, cartesian), which contain nuclei, free neutrons and electrons under the conditions of electrical neutrality. Using the Thomas–Fermi approximation, we have solved the Poisson equation for the electrostatic potential and calculated the corresponding electron density distributions in individual cells. The calculations are done for different shapes and sizes of the cells and different average baryon densities. The electron-to-baryon fraction was fixed at 0.3. Using realistic electron distributions leads to a significant reduction in electrostatic energy and electron chemical potential. (paper)

  12. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  13. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    Science.gov (United States)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  14. Radiography and tomography with polarized neutrons

    International Nuclear Information System (INIS)

    Treimer, Wolfgang

    2014-01-01

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm 3 in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified

  15. Radiography and tomography with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Treimer, Wolfgang, E-mail: treimer@helmholtz-berlin.de [University of Applied Sciences, Beuth Hochschule für Technik Berlin, Department Mathematics Physics and Chemistry, Luxemburgerstr. 10, D-13353 Berlin (Germany); Helmholtz Zentrum für Materialien und Energie, Department G – GTOMO, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany)

    2014-01-15

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm{sup 3} in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified.

  16. Neutrons Flux Distributions of the Pu-Be Source and its Simulation by the MCNP-4B Code

    Science.gov (United States)

    Faghihi, F.; Mehdizadeh, S.; Hadad, K.

    Neutron Fluence rate of a low intense Pu-Be source is measured by Neutron Activation Analysis (NAA) of 197Au foils. Also, the neutron fluence rate distribution versus energy is calculated using the MCNP-4B code based on ENDF/B-V library. Theoretical simulation as well as our experimental performance are a new experience for Iranians to make reliability with the code for further researches. In our theoretical investigation, an isotropic Pu-Be source with cylindrical volume distribution is simulated and relative neutron fluence rate versus energy is calculated using MCNP-4B code. Variation of the fast and also thermal neutrons fluence rate, which are measured by NAA method and MCNP code, are compared.

  17. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  18. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  19. PAD: a one-dimensional, coupled neutronic-thermodynamic-hydrodynamic computer code

    International Nuclear Information System (INIS)

    Peterson, D.M.; Stratton, W.R.; McLaughlin, T.P.

    1976-12-01

    Theoretical and numerical foundations, utilization guide, sample problems, and program listing and glossary are given for the PAD computer code which describes dynamic systems with interactive neutronics, thermodynamics, and hydrodynamics in one-dimensional spherical, cylindrical, and planar geometries. The code has been applied to prompt critical excursions in various fissioning systems (solution, metal, LMFBR, etc.) as well as to nonfissioning systems

  20. Accuracy of neutron dose evaluation in the area monitoring for LHD experiments

    CERN Document Server

    Yamanishi, H; Uda, T; Tanahashi, S; Saitou, M; Handa, H

    2000-01-01

    The error in the evaluation of neutron dose during calculation of the neutron field around the large helical device (LHD) in D-D operation is discussed. The expected neutron dose at each monitoring point was derived from the dose conversion factor and neutron fluence data, which was calculated with the radiation transport code DOT-3.5. In contrast, the detected dose at the neutron counter was obtained from the fluence data and the detector response given by calculation with MCNP-4b. The neutron counter used in these calculations consisted of a helium-3 proportional counter with a cylindrical polyethylene moderator. According to the results of the calculations, the ratio of the detected dose to the expected dose was found to lie in the range 1.0-3.0 on the outdoor monitoring points. Since the response of a single neutron counter may lead to inconsistencies in the dose conversion factor, we attempted to minimize these inconsistencies by using a pair of counters with moderators of different thickness. The ratio ...

  1. Scattering Light by а Cylindrical Capsule with Arbitrary End Caps in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    K. A. Shapovalov

    2015-01-01

    Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh

  2. Fundamental research on isotherm capillary absorption of concrete by neutron radiography

    International Nuclear Information System (INIS)

    Kanematsu, Manabu; Tsuchiya, Naoko; Noguchi, Takafumi

    2013-01-01

    This study focuses on the absorption process of concrete to determine the influence of aggregates on the local water behavior in concrete, by using neutron radiography. At first, water quantification method by using thermal neutron radiography is summarized which is developed in previous researches. With this method, the water absorption process was examined in concrete specimens containing artificial cylindrical aggregates. Using the obtained hydraulic diffusivity, an unsteady water diffusion analysis captured the experimentally observed water distribution around the aggregates. The result shows that the water behavior can be well explained by the geometric layout of the aggregates. (author)

  3. Control and management of distribution system with integrated DERs via IEC 61850 based communication

    Directory of Open Access Journals (Sweden)

    Ikbal Ali

    2017-06-01

    Full Text Available Distributed Energy Resources (DERs are being increasingly integrated in the distribution systems and resulting in complex power flow scenarios. In such cases, effective control, management and protection of distribution systems becomes highly challenging. Standardized and interoperable communication in distribution systems has the potential to deal with such challenges to achieve higher energy efficiency and reliability. Ed. 2 of IEC 61850 standards, for utility automation, standardizing the exchange of data among different substations, DERs, control centers, PMUs and PDCs. This paper demonstrates the modelling of information and services needed for control, management and protection of distribution systems with integrated DERs. This paper has used IP tunnels and/or mapping over IP layer for transferring IEC 61850 messages, such as sample values (SVs and GOOSE (Generic Object Oriented Substation Event, over distribution system Wide Area Network (WAN. Finally performance of the proposed communication configurations for different applications is analyzed by calculating End-to-End (ETE delay, throughput and jitter.

  4. Subcritical measurements with a cylindrical tank of Pu-U nitrate

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.; King, W.T.

    1997-01-01

    This series of measurements with a mixed Pu-U nitrate solution (280 g Pu/liter, 180 g U/liter) in a 35.54-cm-diam cylindrical tank provides a wide variety of experimental data for subcritical configurations that can be used to verify calculational methods and nuclear data. The Pu contained 7.85 wt% 240 Pu and the uranium was natural uranium. The measurements performed were: inverse count rate, prompt neutron decay constants, inverse kinetics, and frequency analysis by the 252 Cf source driven method. These data are presented in sufficient detail that the results of the experiments can be calculated directly. For purposes of extrapolating to the delayed critical height the ratio of spectral densities was linear with height and thus provided the best estimate of critical height

  5. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  6. Neutron diffractometers for structural biology at spallation neutron sources

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Pitcher, E.

    1994-01-01

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical 3 He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5 Angstrom with a flight path length of 10m and an energy resolution of 0.25 Angstrom. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux

  7. Neutron diffractometers for structural biology at spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; Pitcher, E. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Spallation neutron sources are ideal for diffraction studies of proteins and oriented molecular complexes. With spoliation neutrons and their time dependent wavelength structure, it is easy to electronically select data with an optimal wavelength bandwidth and cover the whole Laue spectrum as time (wavelength) resolved snapshots. This optimized data quality with best peak-to-background ratios and provides adequate spatial and energy resolution to eliminate peak overlaps. The application of this concept will use choppers to select the desired Laue wavelength spectrum and employ focusing optics and large cylindrical {sup 3}He detectors to optimize data collection rates. Such a diffractometer will cover a Laue wavelength range from 1 to 5{Angstrom} with a flight path length of 10m and an energy resolution of 0.25{Angstrom}. Moderator concepts for maximal flux distribution within this energy range will be discussed using calculated flux profiles. Since the energy resolution required for such timed data collection in this super Laue techniques is not very high, the use of a linac only (LAMPF) spoliation target is an exciting possibility with an order of magnitude increase in flux.

  8. Determining space-energy distribution of thermal neutrons in heterogeneous cylindrically symmetric reactor cell, Master Thesis

    International Nuclear Information System (INIS)

    Matausek, M. V.

    1966-06-01

    A combination of multigroup method and P 3 approximation of spherical harmonics method was chosen for calculating space-energy distribution of thermal neutron flux in elementary reactor cell. Application of these methods reduced solution of complicated transport equation to the problem of solving an inhomogeneous system of six ordinary firs-order differential equations. A procedure is proposed which avoids numerical solution and enables analytical solution when applying certain approximations. Based on this approach, computer codes were written for ZUSE-Z-23 computer: SIGMA code for calculating group constants for a given material; MULTI code which uses results of SIGMA code as input and calculates spatial ana energy distribution of thermal neutron flux in a reactor cell. Calculations of thermal neutron spectra for a number of reactor cells were compared to results available from literature. Agreement was satisfactory in all the cases, which proved the correctness of the applied method. Some possibilities for improving the precision and acceleration of the calculation process were found during calculation. (author)

  9. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  10. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  11. Qualification of the monitor Pug-7N like dosimeter for neutrons; Habilitacion del monitor PUG-7N como dosimetro para neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Av. Enfermeria, Fracc. Fray Junipero Serra, 63000 Tepic, Nayarit (Mexico); Vega C, H. R.; Murillo O, R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Velazquez F, J. B., E-mail: jlbenitesr@prodigy.net.mx [Universidad Autonoma de Nayarit, Postgrado CBAP, Carretera Tepic Compostela Km. 9, Xalisco, Nayarit (Mexico)

    2011-10-15

    By means of an inter-comparison method, the monitor for neutrons Pug-7N was enabled like dosimeter for neutrons of two magnitudes: the environmental equivalent dose, H*(10), and the H equivalent dose. The monitor Pug-7N has a plastic detector of scintillation Pns-20 that can be used inside or outside of its polyethylene cylindrical moderator. This designed to detect the neutrons presence that is shown in ana logical form by means of a fast count. Although the instrument is useful to detect the neutrons presence its design it does not allow to estimate the dose. With the purpose of enabling it as dosimeter for neutrons, their response was compared with the response of the area monitor for neutrons Bert hold Lb 6411 and Eberline NRD model Asp-1. Under the same irradiation conditions the 3 instruments were exposed to a source of {sup 241}AmBe of 3.7E(9) Bq (100 mCi) of activity whose spectrum and dosimetric magnitudes were determined with a spectrometric system of Bonner spheres with scintillator of {sup 6}Lil(Eu) and the NSDUAZ code. Conversion factors of H*(10)/cpm and H/cpm were obtained for the two options of the monitor detector Pug-7N, with this procedure the monitor Pug-7N besides determining the presence of neutrons, it has been enabled for their use as dosimeter for neutrons. (Author)

  12. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  13. Decay of the pulsed thermal neutron flux in two-zone hydrogenous systems - Monte Carlo simulations using MCNP standard data libraries

    International Nuclear Information System (INIS)

    Wiacek, Urszula; Krynicka, Ewa

    2006-01-01

    Pulsed neutron experiments in two-zone spherical and cylindrical geometry has been simulated using the MCNP code. The systems are built of hydrogenous materials. The inner zone is filled with aqueous solutions of absorbers (H 3 BO 3 or KCl). It is surrounded by the outer zone built of Plexiglas. The system is irradiated with the pulsed thermal neutron flux and the thermal neutron decay in time is observed. Standard data libraries of the thermal neutron scattering cross-sections of hydrogen in hydrogenous substances have been used to simulate the neutron transport. The time decay constant of the fundamental mode of the thermal neutron flux determined in each simulation has been compared with the corresponding result of the real pulsed neutron experiment

  14. Construction of a self-powered neutron detector prototype

    International Nuclear Information System (INIS)

    Pombo, J.B.S.M.; Correa, R.F.

    1986-01-01

    Description and testing of a self-powered neutron detector and related current measurement electronics, in construction at Centro de Desenvolviemnto da Tecnologia Nuclear (CDTN), are presented. The cylindrical detector has a 9-wires cobalt emitter, Inconel 600 tubing collector and sinterized alumina electrical insulation. The bifilar signal cable is plugged to the detector through a SHV connector. Preliminary testing has giving information about dielectrical properties of the set and impurities of the materials (by means of activation analysis). The main tests, done in a 100 KW Triga Reactor, allowed the verification of the detector response to the neutron flux, the stability and reproducibility of this response, and also the evaluation of sensitivity to gamma radiation. The detector performance is considered good. (Author) [pt

  15. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  16. The IEC-publication 336/1981 - new formulation of the standards for X-ray foci

    International Nuclear Information System (INIS)

    Geldner, E.; Schnitger, H.

    1982-01-01

    With the new IEC-standard for foci a clear distinction has been made between application oriented focus classification, expressed by the focus nominal value as a dimensionless number and the detectable real geometric focus measured in the sense of the principle 'Truth in advertising'. Now, even regions of a size [de

  17. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  18. Benchmark calculations with simple phantom for neutron dosimetry (2)

    International Nuclear Information System (INIS)

    Yukio, Sakamoto; Shuichi, Tsuda; Tatsuhiko, Sato; Nobuaki, Yoshizawa; Hideo, Hirayama

    2004-01-01

    Benchmark calculations for high-energy neutron dosimetry were undertaken after SATIF-5. Energy deposition in a cylindrical phantom with 100 cm radius and 30 cm depth was calculated for the irradiation of neutrons from 100 MeV to 10 GeV. Using the ICRU four-element loft tissue phantom and four single-element (hydrogen, carbon, nitrogen and oxygen) phantoms, the depth distributions of deposition energy and those total at the central region of phantoms within l cm radius and at the whole region of phantoms within 100 cm radius were calculated. The calculated results of FLUKA, MCNPX, MARS, HETC-3STEP and NMTC/JAM codes were compared. It was found that FLUKA, MARS and NMTC/JAM showed almost the same results. For the high-energy neutron incident, the MCNP-X results showed the largest ones in the total deposition energy and the HETC-3STEP results show'ed smallest ones. (author)

  19. Measurement of neutrons in the RA reactor cell; Merenje neutrona u elementarnoj celiji reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N; Bosevski, T [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    A special experimental device was constructed for measuring the neutron flux distribution in the RA reactor cell. This device simulated the reactor cell in order to avoid disturbance in the reactor core. It was made of an aluminium cylindrical vessel having outer diameter same as the vertical experimental channel and contained three fuel slugs. Hole was made in through the center of the fuel slugs and a copper wire was placed in the hole for measuring the thermal neutron flux distribution. It was placed in the experimental channel VK-5 in the location of highest neutron flux. Handling of samples for irradiation was quite simple.

  20. Application of the variational method for calculation of neutron spectra and group constants - Master thesis

    International Nuclear Information System (INIS)

    Milosevic, M.

    1979-01-01

    One-dimensional variational method for cylindrical configuration was applied for calculating group constants, together with effects of elastic slowing down, anisotropic elastic scattering, inelastic scattering, heterogeneous resonance absorption with the aim to include the presence of a number of different isotopes and effects of neutron leakage from the reactor core. Neutron flux shape P 3 and adjoint function are proposed in order to enable calculation of smaller size reactors and inclusion of heterogeneity effects by cell calculations. Microscopic multigroup constants were prepared based on the UKNDL data library. Analytical-numerical approach was applied for solving the equations of the P 3 approximation to obtain neutron flux moments and adjoint functions

  1. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  2. Assessment of Information Security Management System based on ISO/IEC 27001:2013 On Subdirectorate of Data Center and Data Recovery Center in Ministry of Internal Affairs

    Science.gov (United States)

    Kurnianto, Ari; Isnanto, Rizal; Widodo, Aris Puji

    2018-02-01

    Information security is a problem effected business process of an organization, so it needs special concern. Information security assessment which is good and has international standard is done using Information Security Management System (ISMS) ISO/IEC 27001:2013. In this research, the high level assessment has been done using ISO/IEC 27001:2013 to observe the strength of information secuity in Ministry of Internal Affairs. The research explains about the assessment of information security management which is built using PHP. The input data use primary and secondary data which passed observation. The process gets maturity using the assessment of ISO/IEC 27001:2013. GAP Analysis observes the condition now a days and then to get recommendation and road map. The result of this research gets all of the information security process which has not been already good enough in Ministry of Internal Affairs, gives recommendation and road map to improve part of all information system being running. It indicates that ISO/IEC 27001:2013 is good used to rate maturity of information security management. As the next analyzation, this research use Clause and Annex in ISO/IEC 27001:2013 which is suitable with condition of Data Center and Data Recovery Center, so it gets optimum result and solving problem of the weakness information security.

  3. Construction of a self-supporting tissue-equivalent dividing wall and operational characteristics of a coaxial double-cylindrical tissue-equivalent proportional counter

    International Nuclear Information System (INIS)

    Saion, E.B.; Watt, D.E.

    1994-01-01

    An additional feature incorporated in a coaxial double-cylindrical tissue-equivalent proportional counter, is the presence of a common tissue-equivalent dividing wall between the inner and outer counters of thickness equivalent to the corresponding maximum range of protons at the energy of interest. By appropriate use of an anti-coincidence arrangement with the outer counter, the inner counter could be used to discriminate microdosimetric spectra of neutrons at the desired low energy range from those of the faster neutrons. The construction of an A-150 self-supporting tissue-equivalent dividing wall and an anti-coincidence unit are described. Some operational characteristic tests have been performed to determine the operation of the new microdosimeter. (author)

  4. Reliability Prediction Approaches For Domestic Intelligent Electric Energy Meter Based on IEC62380

    Science.gov (United States)

    Li, Ning; Tong, Guanghua; Yang, Jincheng; Sun, Guodong; Han, Dongjun; Wang, Guixian

    2018-01-01

    The reliability of intelligent electric energy meter is a crucial issue considering its large calve application and safety of national intelligent grid. This paper developed a procedure of reliability prediction for domestic intelligent electric energy meter according to IEC62380, especially to identify the determination of model parameters combining domestic working conditions. A case study was provided to show the effectiveness and validation.

  5. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  6. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  7. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  8. Development and characterization of a neutron detector based on a lithium glass–polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Nattress, J.; Kukharev, V.; Foster, A.; Meddeb, A. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Trivelpiece, C. [Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Ounaies, Z. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Jovanovic, I., E-mail: ijovanovic@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2015-06-11

    We report on the fabrication and characterization of a neutron scintillation detector based on a Li-glass–polymer composite that utilizes a combination of pulse height and pulse shape discrimination (PSD) to achieve high gamma rejection. In contrast to fast neutron detection in a PSD medium, we combine two scintillating materials that do not possess inherent neutron/gamma PSD properties to achieve effective PSD/pulse height discrimination in a composite material. Unlike recoil-based fast neutron detection, neutron/gamma discrimination can be robust even at low neutron energies due to the high Q-value neutron capture on {sup 6}Li. A cylindrical detector with a 5.05 cm diameter and 5.08 cm height was fabricated from scintillating 1 mm diameter Li-glass rods and scintillating polyvinyltoluene. The intrinsic efficiency for incident fission neutrons from {sup 252}Cf and gamma rejection of the detector were measured to be 0.33% and less than 10{sup −8}, respectively. These results demonstrate the high selectivity of the detector for neutrons and provide motivation for prototyping larger detectors optimized for specific applications, such as detection and event-by-event spectrometry of neutrons produced by fission.

  9. The Load Level of Modern Wind Turbines according to IEC 61400-1

    International Nuclear Information System (INIS)

    Freudenreich, K; Argyriadis, K

    2007-01-01

    The paper describes some effects on the load level of state-of-the art multi megawatt wind turbines introduced by the new edition of the standard IEC 61400-1:2005 W ind Turbines - Part 1: Design requirements . Compared to the previous edition, especially the extreme load determination has been modified by applying stochastic and statistical analyses. Within this paper the effect on the overall load level of wind turbines is demonstrated and occurring problems are discussed. Load simulations have been carried out for four state-of-the-art multi-megawatt wind turbines of different design concepts and from different manufacturers. The blade root bending moments and tip deflection have been determined by applying different extrapolation methods. Advantages and disadvantages of these methods and tail fittings for different load components and wind turbine technologies are discussed and interpreted. Further on, the application of the extreme turbulence model is demonstrated. The dependence of the load level on the turbulence intensity and control system, as well as the interaction with extrapolated loads is discussed and limitations outlined. The obtained load level is compared to the overall load level of the turbines according to the previous edition of the standard, IEC 61400-1:1999

  10. A collimated neutron detector for RFP plasmas in MST

    Energy Technology Data Exchange (ETDEWEB)

    Capecchi, W. J., E-mail: capecchi@wisc.edu; Anderson, J. K.; Bonofiglo, P. J.; Kim, J.; Sears, S. [University of Wisconsin- Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The neutron emissivity profile in the Madison Symmetric Torus is being reconstructed through the use of a collimated neutron detector. A scintillator-photomultiplier tube (PMT) system is employed to detect the fusion neutrons with the plasma viewing volume defined by a 55 cm deep, 5 cm diameter aperture. Effective detection of neutrons from the viewing volume is achieved through neutron moderation using 1300 lbs of high density polyethylene shielding, which modeling predicts attenuates the penetrating flux by a factor of 10{sup 4} or more. A broad spectrum of gamma radiation is also present due to the unconfined fusion proton bombardment of the thick aluminum vacuum vessel. A 15 cm cylindrical liquid scintillator of 3.8 cm diameter is used to further increase directional sensitivity. A fast (5 ns rise time) preamplifier and digitization at 500 MHz prevent pulse pile-up even at high count rates (∼10{sup 4}/s). The entire neutron camera system is situated on an adjustable inclining base which provides the differing plasma viewing volumes necessary for reconstruction of the neutron emissivity profile. This profile, directly related to the fast-ion population, allows for an investigation of the critical fast-ion pressure gradient required to destabilize a neutral beam driven Alfvénic mode which has been shown to transport fast ions.

  11. Interpretation of active neutron measurements by the heterogeneous theory

    International Nuclear Information System (INIS)

    Birkhoff, G.; Depraz, J.; Descieux, J.P.

    1979-01-01

    In this paper are presented results from a study on the application of the heterogeneous method for the interpretation of active neutron measurements. The considered apparatus consists out of a cylindrical lead pile, which is provided with two axial channels: a central channel incorporates an antimony beryllium photoneutron source and an excentric channel serves for the insertion of the sample to be assayed for fissionable materials contents. The mathematical model of this apparatus is the heterogeneous group diffusion theory. Sample and source channel are described by multigroup monopolar and dipolar sources and sinks. Monopolar sources take account of neutron production within energy group and in-scatter from upper groups. Monopolar sinks represent neutron removal by absorption within energy group and outscatter to lower groups. Dipol sources describe radial streaming of neutrons across the sample channel. Multigroup diffusion theory is applied throughout the lead pile. The strengths of the monopolar and dipolar sources and sinks are determined by linear extrapolation distances of azimuthal mean and first harmonic flux values at the channels' surface. In an experiment we may measure the neutrons leaking out of the lead pile and linear extrapolation distances at the channels' surface. Such informations are utilized for interpretation in terms of fission neutron source strengh and mean neutron flux values in the sample. In this paper we summarized the theoretical work in course

  12. The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment★

    Directory of Open Access Journals (Sweden)

    Evans Samuel P.

    2017-01-01

    Full Text Available This paper investigates the applicability of the assumed wind fields in International Electrotechnical Commission (IEC standard 61400 Part 2, the design standard for small wind turbines, for a turbine operating in the built environment, and the effects these wind fields have on the predicted performance of a 5 kW Aerogenesis turbine using detailed aeroelastic models developed in Fatigue Aerodynamics Structures and Turbulence (FAST. Detailed wind measurements were acquired at two built environment sites: from the rooftop of a Bunnings Ltd. warehouse at Port Kennedy (PK (Perth, Australia and from the small wind turbine site at the University of Newcastle at Callaghan (Newcastle, Australia. For both sites, IEC 61400-2 underestimates the turbulence intensity for the majority of the measured wind speeds. A detailed aeroelastic model was built in FAST using the assumed wind field from IEC 61400-2 and the measured wind fields from PK and Callaghan as an input to predict key turbine performance parameters. The results of this analysis show a modest increase in the predicted mean power for the higher turbulence regimes of PK and Callaghan as well as higher variation in output power. Predicted mean rotor thrust and blade flapwise loading showed a minor increase due to higher turbulence, with mean predicted torque almost identical but with increased variations due to higher turbulence. Damage equivalent loading for the blade flapwise moment was predicted to be 58% and 11% higher for a turbine operating at Callaghan and PK respectively, when compared with IEC 61400-2 wind field. Time series plots for blade flapwise moments and power spectral density plots in the frequency domain show consistently higher blade flapwise bending moments for the Callaghan site with both the sites showing a once-per-revolution response.

  13. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  14. Improvement of neutron collimator design for thermal neutron radiography using Monte Carlo N-particle transport code version 5

    International Nuclear Information System (INIS)

    Thiagu Supramaniam

    2007-01-01

    The aim of this research was to propose a new neutron collimator design for thermal neutron radiography facility using tangential beam port of PUSPATI TRIGA Mark II reactor, Malaysia Institute of Nuclear Technology Research (MINT). Best geometry and materials for neutron collimator were chosen in order to obtain a uniform beam with maximum thermal neutron flux, high L/ D ratio, high neutron to gamma ratio and low beam divergence with high resolution. Monte Carlo N-particle Transport Code version 5 (MCNP 5) was used to optimize six neutron collimator components such as beam port medium, neutron scatterer, neutron moderator, gamma filter, aperture and collimator wall. The reactor and tangential beam port setup in MCNP5 was plotted according to its actual sizes. A homogeneous reactor core was assumed and population control method of variance reduction technique was applied by using cell importance. The comparison between experimental results and simulated results of the thermal neutron flux measurement of the bare tangential beam port, shows that both graph obtained had similar pattern. This directly suggests the reliability of MCNP5 in order to obtained optimal neutron collimator parameters. The simulated results of the optimal neutron medium, shows that vacuum was the best medium to transport neutrons followed by helium gas and air. The optimized aperture component was boral with 3 cm thickness. The optimal aperture center hole diameter was 2 cm which produces 88 L/ D ratio. Simulation also shows that graphite neutron scatterer improves thermal neutron flux while reducing fast neutron flux. Neutron moderator was used to moderate fast and epithermal neutrons in the beam port. Paraffin wax with 90 cm thick was bound to be the best neutron moderator material which produces the highest thermal neutron flux at the image plane. Cylindrical shape high density polyethylene neutron collimator produces the highest thermal neutron flux at the image plane rather than divergent

  15. Tailoring ISO/IEC 27001 for SMEs: A Guide to Implement an Information Security Management System in Small Settings

    Science.gov (United States)

    Valdevit, Thierry; Mayer, Nicolas; Barafort, Béatrix

    While Information Security Management Systems (ISMS) are being adopted by the biggest IT companies, it remains quite difficult for smaller entities to implement and maintain all the requirements of ISO/IEC 27001. In order to increase information security in Luxembourg, the Public Research Centre Henri Tudor has been charged by the Luxembourg Ministry of Economy and Foreign Trade to find solutions to facilitate ISMS deployment for SMEs. After an initial experiment aiming at assisting a SME in getting the first national ISO/IEC 27001 certification for a private company, an implementation guide for deploying an ISMS, validated by local experts and experimented in SMEs, has been released and is presented in this paper.

  16. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    NARCIS (Netherlands)

    Costa-Felix, R.P.B.; Alvarenga, A.V.; Hekkenberg, R.

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement)

  17. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  18. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  19. Hybrid Multi-Agent Control in Microgrids: Framework, Models and Implementations Based on IEC 61850

    Directory of Open Access Journals (Sweden)

    Xiaobo Dou

    2014-12-01

    Full Text Available Operation control is a vital and complex issue for microgrids. The objective of this paper is to explore the practical means of applying decentralized control by using a multi agent system in actual microgrids and devices. This paper presents a hierarchical control framework (HCF consisting of local reaction control (LRC level, local decision control (LDC level, horizontal cooperation control (HCC level and vertical cooperation control (VCC level to meet different control requirements of a microgrid. Then, a hybrid multi-agent control model (HAM is proposed to implement HCF, and the properties, functionalities and operating rules of HAM are described. Furthermore, the paper elaborates on the implementation of HAM based on the IEC 61850 Standard, and proposes some new implementation methods, such as extended information models of IEC 61850 with agent communication language and bidirectional interaction mechanism of generic object oriented substation event (GOOSE communication. A hardware design and software system are proposed and the results of simulation and laboratory tests verify the effectiveness of the proposed strategies, models and implementations.

  20. Neutron beam experiments using nuclear research reactors: honoring the retirement of professor Bernard W. Wehring -II. 5. Testing Moderating Detection Systems with 252Cf-Based Reference Neutron Fields

    International Nuclear Information System (INIS)

    Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.; Vaughn, David; Cook, Andrew; Tays, Jeff; Ro, Tae-Ik

    2001-01-01

    In recent years, Georgia Institute of Technology (Georgia Tech) has been involved in a number of neutron dosimetry research projects. Several reference neutron fields are now available for such projects. They are all based on the use of a 252 Cf source. The source can be used by itself to create a reference un-moderated 252 Cf neutron field, or it can be placed inside several different moderating assemblies. The spectra created by placing the source inside these assemblies and the un-moderated source are employed to investigate detector and dosimeter responses. Currently, the set of moderators available includes a 30-cm diam cadmium-covered D 2 O spherical shell, a 30-cm-thick iron spherical shell, a 30-cm-diam polyethylene spherical shell, an 18.3-cm-thick tungsten spherical shell, a 16-cm-thick lead spherical shell, and a 9-cm-thick tantalum spherical shell. In addition, the 252 Cf source can be placed inside a neutron howitzer recently constructed at Georgia Tech. The howitzer is a WEP cylinder loaded with boron that has a 10.16-cm-diam cylindrical opening. When the source is placed in the cylindrical penetration of the howitzer, a neutron field ∼30 cm in diameter is created at a distance of 50 cm from the californium source. Over the last few years, Bonner sphere spectrometers using LiI(Eu) scintillators and LiF thermoluminescence dosimeters have been calibrated using this facility at Georgia Tech. Recently, the Neely Nuclear Research Center (NNRC) acquired an LB 6411 neutron probe (product of EG and G Berthold). This probe is designed to measure ambient dose equivalent in accordance with International Commission on Radiological Protection Publication 60 recommendations. It consists of a cylindrical 3 He proportional counter surrounded by a 25-cm-diam spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV (Ref. 5). As a test of the instrument's ability to measure ambient

  1. IEC60193存在的部分问题及新国标对其的修正%Some Problems which Exist in IEC 60193 and the Amendment by the New National Standard

    Institute of Scientific and Technical Information of China (English)

    徐洪泉; 刘诗琪; 宫让勤; 梁妍

    2012-01-01

    本文在肯定IEC60193的同时,指出了其存在的部分问题,并结合新修订的国家标准对这些问题加以修正,从水轮机公称直径的定义、流道测量偏差要求的表述及空化系数定义等三个方面提出了比较符合中国实际的定义或表述.%This paper affirms the achievements of the IEC 60193, meanwhile, it points out some problems which exist in it, and considering the amendment by the New Chinese National Standard. It puts forward the definition or description which is in accord with actual situation of China from the three aspects of the definition for nominal diameter of the hydraulic turbines, the statement for requirement of the water passage flow measurement deviation and the definition of the cavitation sigma.

  2. Calculation of neutron spectra in the reactor cell of the RA experimental reactor in Vinca

    International Nuclear Information System (INIS)

    Bosevski, T.; Altiparmakov, D.; Marinkovic, N.

    1974-01-01

    In the frame of neutron properties of RA experimental reactor the study of energy neutron spectra in the reactor cell are planned. Complex reactor cell geometry, nine cylindrical regions causes high space-energy variations of neutron flux with a significant gradient both in energy and space variables. Treatment of such a complex problem needs adequate methodology which ensures reliable results and control of accuracy. This paper describes in detail the method for calculating group constants based on lattice cell calculation for the need of calculation of reactor core parameters. In 26 group approximation for the energy region from 0 - 10.5 MeV, values of neutron spectra are obtained in 18 space points chosen to describe, with high accuracy, integral reactor cell parameters of primary importance for the reactor core calculation. Obtained space-energy distribution of neutron flux in the reactor cell is up to now unique in the study of neutron properties of Ra reactor [sr

  3. Measured and Predicted Neutron Flux Distributions in a Material Surrounding a Cylindrical Duct

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J; Sandlin, R

    1966-03-15

    The radial fast neutron flux attenuations in the material (iron) surrounding ducts of diameters 7, 9, and 15 cm and total duct length of about 1.5 m have been investigated with and without neutron scattering cans filled with D{sub 2}O in the duct. Experimentally the problem was solved by the use of foil activation techniques. Theoretically it was attacked by, in the first place, a Monte Carlo program specially written for this purpose and utilizing an importance sampling technique. In the second place non- and single-scattering removal flux codes were tried, and also simple hand calculations. The Monte Carlo results accounted well for the fast flux attenuation, while the non- and single-scattering methods overestimated the attenuation generally by a factor of 10 or less. Simple hand calculations using three empirical parameters could be fitted to the measured data within a factor of 1.2 - 1.3 at penetration depths greater than 3 - 4 cm. The distribution of the D{sub 2}O-scattered flux could well be described in terms of single scattering.

  4. RBMK nuclear reactors: Proposals for instrumentation and control improvements to enhanced safety and availability. IEC technical report of type 3. Working material

    International Nuclear Information System (INIS)

    1995-01-01

    The present material presents a CD+V draft report ''RBMK nuclear reactors: Proposals for instrumentation and control improvements to enhance safety and availability'' prepared by the Joint IEC/IAEA team during 1993-1995. Experience has demonstrated the need to improve the safety instrumentation of the RBMK type reactors using well proven modern technology. The working group identified the upgrades and changes of the highest priority based on the evaluation of the RBMK systems and the events where the instrumentation was found to be inadequate for safe operation. The subjects discussed in this document were not selected on a systematic basis but were selected by the IEC and IAEA experts as considered to be appropriate to the activities of the IEC and for which technical experience was available. The items identified therefore do not reflect any ranking of the safety issues or any priority or impact on safety of any of the measures were they to be implemented. Many important safety issued and areas where physical measures are required to improve safety have been omitted and indeed not even acknowledged in this document. The recommendations presented in the document differ from those normally produced by the IEC in the form of standards as they are of a transitory nature and some have already been overtaken by the continuing process of improvements to plant safety. Figs and tabs

  5. Neutron absorbing element

    International Nuclear Information System (INIS)

    Kasai, Shigeo.

    1991-01-01

    The present invention concerns a neutron absorbing element of a neutron shielding member used for an LMFBR type reactor. The inside of a fuel can sealed at both of the upper and the lower ends thereof with plugs is partitioned into an upper and a lower chambers by an intermediate plug. A discharging hole is disposed at the upper end plug, which is in communication with the outside. A communication tube is disposed at the intermediate end plug and it is in communication with the lower chamber containing B 4 C pellets. A cylindrical support member having three porous plugs connected in series is disposed at the lower surface of the discharging hole provided at the upper end plug. Further, the end of the discharging hole is sealed with high temperature solder and He atmosphere is present at the inside of the fuel can. With such a constitution, the supporting differential pressure of the porous plugs can be made greater while discharging He gases generated from B 4 C to the outside. Further, the porous plugs can be surely wetted by coolants. Accordingly, it is possible to increase life time and shorten the size. (I.N.)

  6. Assessment of Information Security Management System based on ISO/IEC 27001:2013 On Subdirectorate of Data Center and Data Recovery Center in Ministry of Internal Affairs

    Directory of Open Access Journals (Sweden)

    Kurnianto Ari

    2018-01-01

    Full Text Available Information security is a problem effected business process of an organization, so it needs special concern. Information security assessment which is good and has international standard is done using Information Security Management System (ISMS ISO/IEC 27001:2013. In this research, the high level assessment has been done using ISO/IEC 27001:2013 to observe the strength of information secuity in Ministry of Internal Affairs. The research explains about the assessment of information security management which is built using PHP. The input data use primary and secondary data which passed observation. The process gets maturity using the assessment of ISO/IEC 27001:2013. GAP Analysis observes the condition now a days and then to get recommendation and road map. The result of this research gets all of the information security process which has not been already good enough in Ministry of Internal Affairs, gives recommendation and road map to improve part of all information system being running. It indicates that ISO/IEC 27001:2013 is good used to rate maturity of information security management. As the next analyzation, this research use Clause and Annex in ISO/IEC 27001:2013 which is suitable with condition of Data Center and Data Recovery Center, so it gets optimum result and solving problem of the weakness information security.

  7. Propagation of thermal neutrons in mock-up screw-shaped steel elements with water protection; Propagation des neutrons thermiques dans des fausses cartouches d'acier en helice dans une protection d'eau. Programme tournesol 3

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, C L; Lanore, J M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report treats the streaming of thermal neutrons in a cylindrical duct in light water. The duct contains a spiral iron shield. Transmission and reflection matrices are used to describe the probabilities for the thermal neutrons to be absorbed or to be scattered on the surfaces. The neutron paths across the void are represented by geometrical matrices. The numerical resolution is performed by the Monte-Carlo method. (authors) [French] Dans ce rapport on traite un probleme de fuites de neutrons thermiques dans un canal cylindrique plonge dans l'eau et obture par un ecran helicoidal en acier. On utilise des matrices de transmission-reflexion pour decrire les probabilites d'absorption et de diffusion des neutrons sur les parois et l'helicoide et des matrices de correspondance geometrique pour representer la propagation dans le vide. La resolution numerique se fait par une methode de Monte-Carlo. (auteur)

  8. Optimization of spherical ionization chambers for neutron diagnostics in Tokamak plants

    International Nuclear Information System (INIS)

    Hoenen, F.

    1983-05-01

    For the investigation of neutron emission from fusion plasmas Pulse-Ion-Chamber are favored because of their high temporal resolution, the availability of results immedately after the discharge and their insensitivity to hard X-rays. However to measure ion temperatures below 2 keV with the aid of neutron spectroscopy the detectors have to be improved. Difficulties arise from the fact that in Pulse-Ion-Chambers the pulse height is a function of the position in the chamber where the ion pairs are produced (Induction effect). It will be shown that the induction effect is smaller in spherical ionisation chambers than in cylindrical ones. This means an increase in energy resolution so that neutrons from the D(D,n) 3 He reaction can be analysed with an energy resolution of better than 3% in spherical chambers. (orig./HP) [de

  9. Hydrostatic pressure cells development for X-ray and neutron experiments

    International Nuclear Information System (INIS)

    Passamai Junior, Jose Luis

    2010-01-01

    It was developed and built two pressure cell original models in order to be applied in X-ray elastic scattering (X-ray diffraction), X-ray absorption and neutron scattering experiments (neutron diffraction) under hydrostatic pressure. For the first two experimental cases, where X-ray beam is used, the pressure cell built with two B 4 C anvil mounted in a CuBe body. The B 4 C anvil was prepared at CTA research center in order to present an enhanced X-ray transparence and hardness. The special detail and advantage of the CuBe cell with B 4 C anvil is that this cell can be also used to measure de AC magnetic susceptibility in situ. This special characteristic is highlight as new concept of labeled here as multipurpose pressure cell. A second type of cell pressure was developed in order to be used in neutron elastic scattering experiments, specific in neutron diffraction experiments. The neutron cell pressure was developed using carbon fibers composite to improve the mechanical resistance a cylindrical geometry. The B 4 C pressure cells were available to researches in LNLS. The neutron pressure cell was given to research staff of IPEN Nuclear Reactor. This work show details and draws of these two types of hydrostatic pressure cells. (author)

  10. Fundamentals and applications of neutron imaging. Applications part 8. Application of neutron imaging to inspection of art objects and ancient artifacts

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Masuzawa, Fumitake

    2007-01-01

    Neutron radiography is an imaging technique which provides images similar to X-ray radiography and is often used to study ancient artifacts and art objects because the measurements are non-destructive. While metallic elements contained in ancient artifacts, namely gold, silver, mercury, copper, tin, lead, or iron, have X-ray mass attenuation coefficient much higher than light elements composing organic substances, for neutron attenuation the coefficient values are entirely opposite. The method is particularly useful for examination of the internal structure and composition of cultural object made of organic materials inside the metallic vessel. Here some of the research results using JAEA-JRR3M facility are presented: sutras in a cylindrical copper tube, the interior structure of Buddha statues, bone materials in metallic bottles, bronze mirrors, ancient jars and textiles. (S. Ohno)

  11. Magnetostatic interactions and forces between cylindrical permanent magnets

    International Nuclear Information System (INIS)

    Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr

    2009-01-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  12. Sophisticated Calculation of the 1oo4-architecture for Safety-related Systems Conforming to IEC61508

    International Nuclear Information System (INIS)

    Hayek, A; Al Bokhaiti, M; Schwarz, M H; Boercsoek, J

    2012-01-01

    With the publication and enforcement of the standard IEC 61508 of safety related systems, recent system architectures have been presented and evaluated. Among a number of techniques and measures to the evaluation of safety integrity level (SIL) for safety-related systems, several measures such as reliability block diagrams and Markov models are used to analyze the probability of failure on demand (PFD) and mean time to failure (MTTF) which conform to IEC 61508. The current paper deals with the quantitative analysis of the novel 1oo4-architecture (one out of four) presented in recent work. Therefore sophisticated calculations for the required parameters are introduced. The provided 1oo4-architecture represents an advanced safety architecture based on on-chip redundancy, which is 3-failure safe. This means that at least one of the four channels have to work correctly in order to trigger the safety function.

  13. Use of the TEM Cell for Compliance Testing of Emissions and Immunity, an IEC Perspective

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1996-01-01

    The current work of the IEC on preparing a standard for the use of TEM cells for compliance testing of emissions and immunity is reviewed. The requirements of TEM cells are related to the established procedures: “open area test site” and “shielded enclosure with area of uniform field”, respective...

  14. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  15. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  16. Characterization of a PET-NEMA/IEC body phantom for quality control tests of PET/CT equipment

    International Nuclear Information System (INIS)

    Oliveira, Cassio M.; Vieira, Igor F.; Lima, Fernando R.A.; Sa, Lidia V. de

    2011-01-01

    The Brazilian Sanitary Agency from Ministry of Health requires that all PET/CT equipment must undergo minimal quality control tests using manufacturer simulators. The PET-NEMA/IEC body phantom is recommended by the IEC and NEMA to perform acceptance testing and quality control in PET/CT equipment according to specific protocols. It is essential that all simulator components (spheres and body) are properly characterized in relation to their size and internal structure volumes, since they are used to calculate the overall activity concentration and the total weight. The objective of this work was characterize a PET-NEMA/IEC body phantom for the true reconstruction in computational modeling and correct analysis of experimental results. The simulator is basically composed of three structures: the body (simulating a portion of the chest), an inner cylinder (simulating the lung tissue) and a top cover in which are coupled spheres of different sizes simulating 'hot' (tumors) and cold lesions. The spheres were evaluated in terms of volume. The same evaluations were performed with the body of the simulator and the inner cylinder, beyond of analysis of their weights (filled with water) and wall thickness. The data showed that the total weight of the simulator with all its internal structures is 12.5 kg and the volume of the 'hot' and 'cold' spheres are approximately equal to those presented by the manufacturer. The inner cylinder volume showed a significant difference between the measured and the presented in the manual. The results were used for reconstruction of the simulator in computational modeling using the code GATE. (author)

  17. Neutronic performance optimization study of Indian fusion demo reactor first wall and breeding blanket

    International Nuclear Information System (INIS)

    Swami, H.L.; Danani, C.

    2015-01-01

    In frame of design studies of Indian Nuclear Fusion DEMO Reactor, neutronic performance optimization of first wall and breeding blanket are carried out. The study mainly focuses on tritium breeding ratio (TBR) and power density responses estimation of breeding blanket. Apart from neutronic efficiency of existing breeding blanket concepts for Indian DEMO i.e. lead lithium ceramic breeder and helium cooled solid breeder concept other concepts like helium cooled lead lithium and helium-cooled Li_8PbO_6 with reflector are also explored. The aim of study is to establish a neutronically efficient breeding blanket concept for DEMO. Effect of first wall materials and thickness on breeding blanket neutronic performance is also evaluated. For this study 1 D cylindrical neutronic model of DEMO has been constructed according to the preliminary radial build up of Indian DEMO. The assessment is being done using Monte Carlo based radiation transport code and nuclear cross section data file ENDF/B- VII. (author)

  18. A Monte Carlo evaluation of analytical multiple scattering corrections for unpolarised neutron scattering and polarisation analysis data

    International Nuclear Information System (INIS)

    Mayers, J.; Cywinski, R.

    1985-03-01

    Some of the approximations commonly used for the analytical estimation of multiple scattering corrections to thermal neutron elastic scattering data from cylindrical and plane slab samples have been tested using a Monte Carlo program. It is shown that the approximations are accurate for a wide range of sample geometries and scattering cross-sections. Neutron polarisation analysis provides the most stringent test of multiple scattering calculations as multiply scattered neutrons may be redistributed not only geometrically but also between the spin flip and non spin flip scattering channels. A very simple analytical technique for correcting for multiple scattering in neutron polarisation analysis has been tested using the Monte Carlo program and has been shown to work remarkably well in most circumstances. (author)

  19. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  20. Compatibility of IEC 61400-27-1 Ed 1 and WECC 2nd Generation Wind Turbine Models

    DEFF Research Database (Denmark)

    Göksu, Ömer; Sørensen, Poul Ejnar; Morales, Ana

    2016-01-01

    , respectively. Although the two working groups have been collaborating closely, there are small differences between the approaches of the two modelling standards, especially in terms of parameter sets and complexities for different functions. In this paper, compatibility of the IEC and WECC wind turbine models...

  1. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  2. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  3. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  4. Implementation of IEC Generic Model of Type 1 Wind Turbine Generator in DIgSILENT PowerFactory

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Margaris, Ioannis

    2013-01-01

    The implementation method for the International Electrotechnical Commission (IEC) generic models of Type 1 wind turbine generator (WTG) in DIgSILENT PowerFactory is presented. The following items are described, i.e. model structure, model blocks and how to implement these blocks in the PowerFactory...

  5. X radiation qualities characterization following the standard IEC 61267 recommendations at the calibration laboratory of IPEN

    International Nuclear Information System (INIS)

    Franciscatto, Priscila Cerutti

    2009-01-01

    This work presents a methodology for the X radiation qualities characterization following the new recommendations of the standard 61267 of the International Electrotechnical Commission (IEC) to establish a new procedure for calibration of dosimetric systems used in the field of diagnostic radiology. The reference qualities radiation of IEC 61267: RQR 2 to RQR 10, RQA 2 to RQA 10, RQB 2 to RQB 10 and RQN 2 to RQN 10 were implanted at the calibration laboratory of IPEN (LCI). Their characteristics were analyzed through measurements of beam parameters such as: Practical peak voltage (PPV), specific additional filtrations for each qualities (high purity aluminum of about 99.9%), 1st and 2nd Half Value Layers, homogeneity coefficient. The inherent filtration of the X ray tube was also determined. With the establishment of these radiation qualities, the LCI will be ready to calibrate the measuring instruments of radiation in the new qualities, allowing an improvement in radiological services offered by IPEN. (author)

  6. QA Programme of the TLD laboratory of the University of Costa Rica: IEC 61066 testing

    International Nuclear Information System (INIS)

    Mora, Patricia; Porras Chaverria, Mariela

    2008-01-01

    The Thermoluminescence Personal Dosimetry Laboratory of the University of Costa Rica provides dose measurements for around 90% of occupational radiation workers in the country. The assessment of doses to workers routinely exposed to external sources of radiation constitutes an integral part of any radiation protection programme and helps national authorities to ensure acceptably safe and satisfactory radiological conditions in workplaces. Harshaw Readers Model 4000 and 4500, dosimeter holders Type 8814 with TLD-100 in 0110 cards and loose TLD-100 chips are used to monitor personal dose equivalent, Hp(10) and Hp(0.07). In order to provide a reliable measurement of the operational quantities, a study was undertaken to verify the fulfillment of international requirements in our system (Model 4500 with cards) against the Thermoluminescence dosimetry systems for personal and environmental monitoring CEI IEC 61066 (1991 -2012). The type tests performed were nine in total: batch homogeneity, reproducibility, linearity, detection threshold, effect of climate conditions on reader, effect of light exposure on dosimeters, isotropy, transient voltage and dropping on dosimeters. A Cesium-137 source was used to irradiate the dosimeters and all procedures follow the indications given on the standard. Results showed that all IEC criteria were met by our Laboratory. Acceptable uncertainties were also studied under the ICRP recommendations; the analysis of the Trumpet Curve was done with satisfactory results (for doses above 0.5 mSv; quotient of measure to real dose less than 3%). For purposes of accreditation (ISO/IEC 17025:2005) and performance testing this work is very relevant since the University of Costa Rica wants to establish a solid individual monitoring programme for external radiation exposure that will provide users, registrants, licensees and regulatory bodies with information that can be used for the optimization of protection and dose limitation of Costa Rican workers

  7. Long-trace profiler for neutron focusing mirrors

    International Nuclear Information System (INIS)

    Puzyrev, Yevgeniy S.; Ice, Gene E.; Takacs, Peter Z.

    2009-01-01

    A long-trace profiler (LTP) optimized for measuring the shape of large neutron supermirrors has been designed and built. This LTP can measure 1.6 m long mirrors in both vertically and horizontally deflecting geometries, which is essential to achieve best performance from bendable mirrors. The LTP suppresses the influence of angular deviations of the linear-stage carriage during translation with a pentaprism and a cylindrical lens. The stationary optical head and the carriage-mounted pentaprism are precisely aligned to rotate about the optical axis between the two components. This feature allows measurements to be made on mirrors mounted vertically, horizontally or at any angle in between. The LTP software allows for rapid optimization of parameters for dynamically bent elliptical mirrors. Here we describe the motivation for the LTP, the design, and a first application of the LTP to study the effect of gravity on a bent microfocusing neutron supermirror.

  8. Protective Effect of Wheat Peptides against Indomethacin-Induced Oxidative Stress in IEC-6 Cells

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available Recent studies have demonstrated that wheat peptides protected rats against non-steroidal anti-inflammatory drugs-induced small intestinal epithelial cells damage, but the mechanism of action is unclear. In the present study, an indomethacin-induced oxidative stress model was used to investigate the effect of wheat peptides on the nuclear factor-κB(NF-κB-inducible nitric oxide synthase-nitric oxide signal pathway in intestinal epithelial cells-6 cells. IEC-6 cells were treated with wheat peptides (0, 125, 500 and 2000 mg/L for 24 h, followed by 90 mg/L indomethacin for 12 h. Wheat peptides significantly attenuated the indomethacin-induced decrease in superoxide dismutase and glutathione peroxidase activity. Wheat peptides at 2000 mg/L markedly decreased the expression of the NF-κB in response to indomethacin-induced oxidative stress. This study demonstrated that the addition of wheat peptides to a culture medium significantly inhibited the indomethacin-induced release of malondialdehyde and nitrogen monoxide, and increased antioxidant enzyme activity in IEC-6 cells, thereby providing a possible explanation for the protective effect proposed for wheat peptides in the prevention of indomethacin-induced oxidative stress in small intestinal epithelial cells.

  9. Qualidade e educação superior: a norma de qualidade para a aprendizagem, educação e formação: ISO/IEC 19796-1 = Quality and Higher Education: the standard ISO/IEC 19796-1 for learning, education and training

    Directory of Open Access Journals (Sweden)

    Viebrantz, Rosalir

    2009-01-01

    Full Text Available Em 2005, uma nova norma de qualidade para a aprendizagem, educação e formação, a ISO/IEC 19796-1, foi publicada. O objetivo desta norma é orientar as organizações educacionais e desenvolver sistemas de qualidade e melhorar a qualidade dos seus processos, produtos e serviços. Este artigo busca entender a norma com base em conceitos de qualidade e na tendência à garantia da qualidade. A ISO/IEC é apresentada de forma sucinta, mostrando a metodologia e suas vantagens para as organizações educacionais. É ressaltado que a norma é um modelo de referência e necessita ser adaptada às necessidades e exigências de cada organização

  10. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  11. Diffusion of graphite. The effect of cylindrical canals

    International Nuclear Information System (INIS)

    Carle, R.; Clouet d'Orval, C.; Martelly, J.; Mazancourt, T. de; Sagot, M.; Lattes, R.; Teste du Bailler, A.

    1957-01-01

    Experiments on thermal neutron diffusion in the graphite used as moderator in the pile G1 have been carried out. The object of these experiments is to determine: - the intrinsic quality of this graphite, characterised by its diffusion length L or its Laplacian 1/L 2 - the effect of the canals, which modifies anisotropically the macroscopic diffusion equation and is characterized by two principal diffusion regions (or two principal Laplacian), valid respectively for the diffusion in the direction of the canals and in a perpendicular direction. In order to determine them two experiments are necessary, in which the second derivatives of the flux in relation to the space coordinates are very different. These experiments form the object of the first two parts. Part 1: Diffusion along the axis of a flux coming from the pile source, and limited radially by a quasi cylindrical screen of cadmium bars. This screen, or Faraday cage is designed to give to the thermal flux produced the same radius of extrapolation to zero as that of the pile source. The determination of L (with the graphite full) has been made under the same conditions. The measurements have been interpreted in two ways. The influence of the brackets holding the detectors is discussed. Part 2: Radial diffusion in the graphite surrounding the 'long' cylindrical pile. This is well described by a sum of Bessel functions. Part 3: Results (valid for d = 1.61 t = 17 deg. C). For the graphite without cavity L = 52.7 ± 0.4 cm. The effect of the canals on the diffusion area and its anisotropy are in excellent agreement with the theory of Behrens: L(parallel) = 64.6 cm and L(perpendicular) 62.2 cm. Appendix: Theory of the Faraday cage. (author) [fr

  12. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  13. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  14. Fast neutron dosimetry: Progress summary

    International Nuclear Information System (INIS)

    DeLuca, P.M. Jr.

    1988-01-01

    The purpose was to investigate the radiological physics and biology of very low energy photons derived from a 1-GeV electron synchrotron storage ring. An extensive beam line and irradiation apparatus was designed, developed, and constructed. Dosimetry measurements required invention and testing of a miniature absolute calorimeter and a cell irradiation fixture suitable for scanning exposures under computer control. Measurements of the kerma factors of oxygen, aluminum and silicon for 14-20 MeV neutrons. Custom designed miniature proportional counters of cylindrical symmetry were employed in these determinations. The oxygen kerma factor was found significantly lower than values calculated from microscopic cross sections. We also tested Mg and Fe walled conventional spherical counters. The direct neutron-counting gas interaction is significant enough for these counters that a correction is needed. We also investigated the application of Nuclear Magnetic Resonance spectroscopy to radiation dosimetry. Our purpose was to take advantage of recent development of very high-field magnets, complex RF-pulse techniques for solvent suppression, and improved spectral analysis techniques

  15. Confinement of a non cylindrical z discharge by a cusp geometry

    International Nuclear Information System (INIS)

    Watteau, J.H.

    1968-03-01

    The plasma of a non-cylindrical z discharge is accumulated in the centre of a cusp geometry and then captured and confined by the rising cusp magnetic field. The cusp geometry is produced by two identical coaxial coils the currents of which are equal but in opposite directions. Stability and confinement properties of this zero minimum B geometry are recalled; in particular it is shown (the coils cross section being supposed punctual) that the magnetic well depth of the configuration without plasma is maximum for an optimum coils distance. Two modes of confinement are observed experimentally : - a collisional mode for which the plasma confinement is limited to 10 μsec (temperature 5 eV, density 7 x 10 16 cm -3 ) as a result of the gradual interpenetration of the plasma and of the magnetic field. - a collisionless mode (temperature 40 eV) where the radial leak thickness is of the order of the ion cyclotron radius. Plasma accumulation occurs even without confinement and is due to the non-cylindrical shape of the discharge chamber. The two-dimensional snow-plough model gives good account of the discharge dynamics. A comparison is made with plasma focus experiments: in particular experimental conditions (deuterium, pressure 1 torr,energy 3 kJ, current 100 kA) a 10 7 neutron yield is detected which appears to be connected with the unstable behavior of the discharge. (authors) [fr

  16. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  17. Sensitivity Calculation of Vanadium Self-Powered Neutron Detector

    International Nuclear Information System (INIS)

    Cha, Kyoon Ho

    2011-01-01

    Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the rhodium SPND has been used in many nuclear power plants. The lifetime of rhodium is too short (about 3∼5 years) to operate the nuclear power plant economically. The vanadium (V) SPND is also primarily sensitive to neutrons like rhodium, but is a somewhat slower reaction time as that of a rhodium SPND. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. For this reason, a vanadium SPND has been being developed to replace the rhodium SPND which is used in OPR1000. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina (Al 2 O 3 ) insulator with a cylindrical geometry. An MCNP-X code was used to simulate some factors (neutron self shielding factor and electron escape probability from the emitter) necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND

  18. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    International Nuclear Information System (INIS)

    Shafii, Mohammad Ali; Meidianti, Rahma; Wildian,; Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto

    2014-01-01

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation

  19. Theoretical analysis of integral neutron transport equation using collision probability method with quadratic flux approach

    Energy Technology Data Exchange (ETDEWEB)

    Shafii, Mohammad Ali, E-mail: mashafii@fmipa.unand.ac.id; Meidianti, Rahma, E-mail: mashafii@fmipa.unand.ac.id; Wildian,, E-mail: mashafii@fmipa.unand.ac.id; Fitriyani, Dian, E-mail: mashafii@fmipa.unand.ac.id [Department of Physics, Andalas University Padang West Sumatera Indonesia (Indonesia); Tongkukut, Seni H. J. [Department of Physics, Sam Ratulangi University Manado North Sulawesi Indonesia (Indonesia); Arkundato, Artoto [Department of Physics, Jember University Jember East Java Indonesia (Indonesia)

    2014-09-30

    Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.

  20. Safety critical systems handbook a straightforward guide to functional safety : IEC 61508 (2010 edition) and related standards

    CERN Document Server

    Smith, David J

    2010-01-01

    Electrical, electronic and programmable electronic systems increasingly carry out safety functions to guard workers and the public against injury or death and the environment against pollution. The international functional safety standard IEC 61508 was revised in 2010, and this is the first comprehensive guide available to the revised standard. As functional safety is applicable to many industries, this book will have a wide readership beyond the chemical and process sector, including oil and gas, power generation, nuclear, aircraft, and automotive industries, plus project, instrumentation, design, and control engineers. * The only comprehensive guide to IEC 61508, updated to cover the 2010 amendments, that will ensure engineers are compliant with the latest process safety systems design and operation standards* Helps readers understand the process required to apply safety critical systems standards* Real-world approach helps users to interpret the standard, with case studies and best practice design examples...

  1. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  2. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  3. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  4. Simplified geometric model for the calculation of neutron yield in an accelerator of 18 MV for radiotherapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.; Balcazar G, M.; Francois L, J.L.; Azorin N, J.

    2008-01-01

    The results of the neutrons yield in different components of the bolster of an accelerator Varian Clinac 2100C of 18 MV for radiotherapy are presented, which contribute to the radiation of flight of neutrons in the patient and bolster planes. For the calculation of the neutrons yield, a simplified geometric model of spherical cell for the armor-plating of the bolster with Pb and W was used. Its were considered different materials for the Bremsstrahlung production and of neutrons produced through the photonuclear reactions and of electro disintegration, in function of the initial energy of the electron. The theoretical result of the total yield of neutrons is of 1.17x10 -3 n/e, considering to the choke in position of closed, in the patient plane with a distance source-surface of 100 cm; of which 15.73% corresponds to the target, 58.72% to the primary collimator, 4.53% to the levelled filter of Fe, 4.87% to the levelled filter of Ta and 16.15% to the closed choke. For an initial energy of the electrons of 18 MeV, a half energy of the neutrons of 2 MeV was obtained. The calculated values for radiation of experimental neutrons flight are inferior to the maxima limit specified in the NCRP-102 and IEC-60601-201.Ed.2.0 reports. The absorbed dose of neutrons determined through the measurements with TLD dosemeters in the isocenter to 100 cm of the target when the choke is closed one, is approximately 3 times greater that the calculated for armor-plating of W and 1.9 times greater than an armor-plating of Pb. (Author)

  5. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  6. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  7. Perencanaan dan Implementasi Information Security Management System Menggunakan Framework ISO/IEC 20071

    Directory of Open Access Journals (Sweden)

    Anggi Anugraha Putra

    2016-01-01

    Full Text Available Penerapan tata kelola Teknologi Informasi saat ini sudah menjadi kebutuhan dan tuntutan di setiap instansi penyelenggara pelayanan publik mengingat peran TI yang semakin penting bagi upaya peningkatan kualitas layanan sebagai salah satu realisasi dari tata kelola pemerintahan yang baik (Good Corporate Governance. Dalam penyelenggaraan tata kelola TI, faktor keamanan informasi merupakan aspek yang sangat penting diperhatikan mengingat kinerja tata kelola TI akan terganggu jika informasi sebagai salah satu objek utama tata kelola TI mengalami masalah keamanan informasi yang menyangkut kerahasiaan (confidentiality, keutuhan (integrity dan ketersediaan (availability. Information Security Management System (ISMS adalah seperangkat kebijakan berkaitan dengan manajemen keamanan informasi atau terkait dengan risiko TI. Prinsip yang mengatur di balik ISMS adalah bahwa organisasi harus merancang, menerapkan dan memelihara seperangkat kebijakan, proses dan sistem untuk mengelola risiko aset informasi mereka, sehingga memastikan tingkat risiko keamanan informasi yang dapat diterima. Dari perencanaan dan implementasi sistem manajemen keamanan informasi ini, dihasilkan daftar nilai risiko akhir aset- aset kritikal dan dokumen-dokumen tata kelola penunjang ISMS. Metode penelitian yang digunakan adalah studi kasus yang didalam hal ini, merupakan penelitian kualitatif. Adapun proses yang digunakan untuk mengukur tingkat kematangan dari tata kelola keamanan sistem informasi ini berdasarkan kerangka kerja ISO/IEC 27001. Dari kerangka tersebut kemudian dilakukan evaluasi terhadap objek kontrol yang dimiliki ISO/IEC 27001. Hasil yang didapat adalah peningkatan terhadap tata kelola keamanan sistem informasi. Kesimpulan dari penelitian ini adalah dibutuhkannya tata kelola keamanan sistem informasi agar IT dapat diandalkan untuk mencapai tujuan bisnis.

  8. Comparative study on implementation of management requires from ABNT NBR ISO/IEC 17025

    International Nuclear Information System (INIS)

    Suplino Filho, Carlos Alberto Lucas; Souza, Luciane de Rezende; Oliveira, Estela Maria de

    2014-01-01

    This work was developed in order to emphasize the importance of laboratory management system in the direction and control of the company or institute with regard to the quality of delivery of ionizing radiation service to society. It was developed a comparative study of managerial points of Deming with the managerial requirements of ISO / IEC 17025, which found that the difficulties of the laboratories indicated by nonconformities tracked during audits, are related to specific points cited by Deming. (author)

  9. Qualification of the monitor Pug-7N like dosimeter for neutrons

    International Nuclear Information System (INIS)

    Benites R, J. L.; Vega C, H. R.; Murillo O, R.; Velazquez F, J. B.

    2011-10-01

    By means of an inter-comparison method, the monitor for neutrons Pug-7N was enabled like dosimeter for neutrons of two magnitudes: the environmental equivalent dose, H*(10), and the H equivalent dose. The monitor Pug-7N has a plastic detector of scintillation Pns-20 that can be used inside or outside of its polyethylene cylindrical moderator. This designed to detect the neutrons presence that is shown in ana logical form by means of a fast count. Although the instrument is useful to detect the neutrons presence its design it does not allow to estimate the dose. With the purpose of enabling it as dosimeter for neutrons, their response was compared with the response of the area monitor for neutrons Bert hold Lb 6411 and Eberline NRD model Asp-1. Under the same irradiation conditions the 3 instruments were exposed to a source of 241 AmBe of 3.7E(9) Bq (100 mCi) of activity whose spectrum and dosimetric magnitudes were determined with a spectrometric system of Bonner spheres with scintillator of 6 Lil(Eu) and the NSDUAZ code. Conversion factors of H*(10)/cpm and H/cpm were obtained for the two options of the monitor detector Pug-7N, with this procedure the monitor Pug-7N besides determining the presence of neutrons, it has been enabled for their use as dosimeter for neutrons. (Author)

  10. MULTI - A multigroup or multipoint P{sub 3} programme for calculating thermal neutron spectra in a reactor cell

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1968-06-15

    Programme MULTI calculates the space energy distribution of thermal neutrons in a multizone, cylindrical, infinitely long reactor lattice by using the multigroup or multipoint P{sub 3} approximation. This report presents a short description of the algorithm and the programme and gives the instructions for its exploitation. (author)

  11. A solution of the thermal neutron diffusion equation for a two-region cyclindrical system program for ODRA-1305 computer

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Woznicka, U.

    1982-01-01

    The program in FORTRAN for the ODRA-1305 computer is described. The dependence of the decay constant of the thermal neutron flux upon the dimensions of the two-region concentric cylindrical system is the result of the program. The solution (with a constant neutron flux in the inner medium assumed) is generally obtained in the one-group diffusion approximation by the method of the perturbation calculation. However, the energy distribution of the thermal neutron flux and the diffusion cooling are taken into account. The program is written for the case when the outer medium is hydrogenous. The listing of the program and an example of calculation results are included. (author)

  12. Certification of boiler safety equipment with ALSPA P320 system, to IEC 61508 standard; Certification des equipements de securite chaudiere avec le systeme ALSPA P320 selon la norme IEC 61508

    Energy Technology Data Exchange (ETDEWEB)

    Dalzon, J.P. [Alstom Power (France)

    2002-02-01

    Safety and environmental protection are major priorities governing Alstom work on control systems (Alspa P320) for power plant applications, especially when potentially dangerous processes like high-power flame boilers (typically rated at 100 to 600 MW) are involved. Here, automatic protection chains are implemented to guard against the risk of serious incident such as explosion and equipment destruction. In this kind of situation, the IEC 61508 standard provides baseline specifications for certification of safety systems. (authors)

  13. Pembuatan Tata Kelola Keamanan Informasi Kontrol Akses Berbasis ISO/IEC 27001:2005 Pada Kantor Pelayanan Perbendaharaan Surabaya I

    Directory of Open Access Journals (Sweden)

    Margo Utomo

    2012-09-01

    Full Text Available Perkembangan teknologi informasi yang pesat saat ini turut berimbas kepada penggunaan teknologi informasi di lingkungan pemerintahan. KPPN Surabaya I sebagai instansi vertikal dari Direktorat Jenderal Perbendaharaan juga menerapkan teknologi informasi dalam untuk mendukung kegiatan pelayanan terhadap satuan kerja yang berada di lingkup bayarnya. Sayangnya masalah keamanan informasi yang merupakan bagian penting dari teknologi informasi sering kali kurang mendapatkan perhatian. Tidak dapat dipungkiri bahwa munculnya ancaman ataupun kelemahan dalam teknologi informasi dapat menggangu jalannya kegiatan pelayanan yang menggunakan teknologi informasi. Oleh karena itu diperlukan pengelolaan teknologi informasi berbasis risiko yang dituangkan dalam tata kelola untuk mengelola ancaman ataupun kelemahan yang muncul. ISO/IEC 27001:2005 merupakan framework sistem manajemen keamanan informasi yang dapat dijadikan dasar dalam pengelolaan keamanan informasi. Tata kelola keamanan informasi yang dibuat ini menitikberatkan pada kontrol akses yang merupakan salah satu kotrol keamanan dari ISO/IEC 27001:2005

  14. Implementation of the OECD principles of good laboratory practice in test facilities complying with a quality system accredited to the ISO/IEC 17025 standard.

    Science.gov (United States)

    Feller, Etty

    2008-01-01

    Laboratories with a quality system accredited to the ISO/IEC 17025 standard have a definite advantage, compared to non-accredited laboratories, when preparing their facilities for the implementation of the principles of good laboratory practice (GLP) of the Organisation for Economic Co-operation and Development (OECD). Accredited laboratories have an established quality system covering the administrative and technical issues specified in the standard. The similarities and differences between the ISO/IEC 17025 standard and the OECD principles of GLP are compared and discussed.

  15. Optimization of a neutron transmission beamline applied to materials science for the CAB linear accelerator

    International Nuclear Information System (INIS)

    Ramirez, S; Santisteban, J.R

    2009-01-01

    The Neutrons and Reactors Laboratory (NYR) of CAB (Centro Atomico Bariloche) is equipped with a linear electron accelerator (LINAC - Linear particle accelerator). This LINAC is used as a neutron source from which two beams are extracted to perform neutron transmission and dispersion experiments. Through these experiments, structural and dynamic properties of materials can be studied. The neutron transmission experiments consist in a collimated neutron beam which interacts with a sample and a detector behind the sample. Important information about the microstructural characteristics of the material can be obtained from the comparison between neutron spectra before and after the interaction with the sample. In the NYR Laboratory, cylindrical samples of one inch of diameter have been traditionally studied. Nonetheless, there is a great motivation for doing systematic research on smaller and with different geometries samples; particularly sheets and samples for tensile tests. Hence, in the NYR Laboratory it has been considered the possibility of incorporating a neutron guide into the existent transmission line. According to all mentioned above, the main objective of this work consisted in the optimization of the flight transmission tube optics of neutrons. This optimization not only improved the existent line but also contributed to an election criterion for the neutron guide acquisition. [es

  16. The effect of cadmium shielding on the spatial neutron flux distribution inside one of the outer irradiation sites

    International Nuclear Information System (INIS)

    Shaaban, I.

    2009-06-01

    A permanent epithermal neutron irradiation facility was designed in the Syrian Miniature Neutron Source Reactor (MNSR) by using the cadmium (cylindrical vial 1.0 mm in thickness, 38.50 mm in diameter and 180 mm in length) as thermal neutron shielding material, for a permanent epithermal neutron activation analysis (ENAA). This site was designed by shielding the internal surface of the aluminum tube of the first outer irradiation site in the MNSR reactor. I was used the activation detectors 0.1143% Au-Al alloy foils with 0.1 mm thickness and 2.0 mm diameter for measurement the thermal neutron flux, epithermal and R c d=A b are/A c over ratio in the outer irradiation site. Distribution of the thermal neutron flux in the outer irradiation capsule has been found numerically using MCNP-4C code with and without cadmium shield, and experimentally by irradiating five copper wires using the outer irradiation capsule. Good agreements were obtained between the calculated and the measured results. (author)

  17. Establishing the Isotope Hydrology Laboratory in accordance with ISO/IEC 17025:2005 standard

    International Nuclear Information System (INIS)

    Nguyen Thi Hong Thinh; Ha Lan Anh; Vo Thi Anh; Dinh Thi Bich Lieu; Vo Thi Tuong Hanh

    2013-01-01

    The ISO/IEC 17025:2005 General requirements for the competence calibration laboratories is basis for the accreditation body of the country in general and VILAS in particular recognizing the competence of laboratories. With the desire to prove that we have sufficient technical , management capacity , and the ability to provide the legally recognized and technically valuable test results, the Isotope Hydrology Laboratory have developed a quality management system in accordance with ISO / IEC 17025:2005, in which the laboratory quality manual has been developed. It describes the laboratory management system , scope of activities related to quality assurance of 13 major ions and tritium content measurement services in water samples. Under quality management system, there are management and technical procedures, analysis procedures, work instructions, technical documentation, file and form system. These documents define the roles, responsibilities, powers, detailed instructions for applying and maintaining effective quality management system. Isotope Hydrology Laboratory received a certificate of accreditation issued by Bureau of Accreditation which recognized the laboratory in accordance with ISO 17025:2005 with VILAS 670 accreditation code. Scope of recognition is analyzed 14 parameters: F - , Cl - , NO 2 - , NO 3 - , Br - , PO 4 3- , SO 4 2- , Li + , Na + , NH 4 + , K + , Mg 2+ , Ca 2+ and 3 H in water by ion chromatography and liquid scintillator counting method. (author)

  18. A facility to produce collimated neutron beams at the Legnaro Laboratories

    International Nuclear Information System (INIS)

    Colautti, P.; Talpo, G.; Tornielli, G.

    1988-01-01

    The 7 MV Van de Graaff and the 16 MV Tandem accelerators at the Legnaro National Laboratories can be used to produce fast neutron fluxes of moderate intensity, ranging in energy from 1 MeV to 50 MeV. A W-polyethylene-Pb cylindrical collimator has been constructed in order to produce a collimated neutron beam, with well defined dose and microdose characteristics for radiobiological experiments. The collimator can be assembled in different configurations allowing both for different thicknesses and different beam apertures. Dosimetric measurements have been made with a d(4.5)+Be source. These demonstrate sharp beam edges with attenuation behind the shield of 20% with the 15 cm collimator and 1.5% with the 50 cm collimator. (author)

  19. Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International Standard

    International Nuclear Information System (INIS)

    Michail, C.; Valais, I.; Martini, N.; Koukou, V.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.

    2016-01-01

    The purpose of the present study was to determine the Detective Quantum Efficiency (DQE) of CMOS imaging detectors, coupled to structured CsI:Tl and Gd_2O_2S:Tb scintillating screens, following the new IEC 62220-1-1:2015 International Standard. DQE was assessed after the experimental determination of the Modulation Transfer Function (MTF) and the Normalized Noise Power Spectrum (NNPS) in the general radiography energy range. Two CMOS sensors were used; one with a pixel size of 22.5 μmcoupled to a columnar CsI:Tl scintillator screen with thickness of 490 μm, which was placed in direct contact with the optical sensor and one with a pixel size of 74.8 μmcoupled to a 200 μmcolumnar CsI:Tl scintillator screen. The MTF was measured using the slanted-edge method (following both the IEC 62220-1:2003 and IEC 62220-1-1:2015 methods) while NNPS was determined by 2D Fourier transforming uniformly exposed images. Both parameters were assessed by irradiation under the RQA-3 and RQA-5 (IEC 62220-1-1:2015) beam qualities. The detector response functions were linear for the exposure ranges under investigation. MTFs calculated following the 62220-1:2003 protocol, were found in all cases overestimated in the higher frequency range (spatial frequencies higher than 2 cycles/mm). DQE values, determined with the IEC 62220-1:2003 method, were also found overestimated (spatial frequencies higher than 2 cycles/mm), due to the influence of both MTF and NNPS. The influence of both additive and multiplicative lag effects were found below 0.005, insuring that lag contributes less than 0.5% of the effective exposure. - Highlights: • DQE was measured with the novel 62220-1-1:2015 protocol and compared to 62220-1:2003. • Two CMOS sensors were evaluated. • DQE of the 62220-1:2003 was overestimated due to the addition of noise when averaging MTFs.

  20. Theory of Pulsed Neutron Experiments in Highly Heterogeneous Multiplying Media

    International Nuclear Information System (INIS)

    Corno, S.E.

    1965-01-01

    In this work we investigate the time and space dependence of the neutron flux within a highly heterogeneous assembly, in which pulsed or sinusoidally modulated neutrons are injected. We consider, for the sake of simplicity, a device consisting of a cylindrical block of heavy moderator, along the axis of which a line-shaped region of fissionable material is located. The driving neutron source is assumed to be located on one of the end faces of the cylinder. The extent of the fissionable region allows us to deal with it as with an absorbing and multiplying singularity of the neutron field. As our attention is mostly concentrated on space and time variation of the neutron flux, rather crude approximations are assumed as far as the energy dependence of the neutron population is concerned. Within the limits of the age-diffusion theory, the response of the device to any neutron excitation may be found in closed form. For a sinusoidally modulated source of given frequency, it may easily be shown that, if the axial singularity were a purely absorbing one, the neutron waves being propagated along the device would possess a phase shift; a wavelength and an attenuation constant depending on the absorbing properties of the singularity. This picture becomes more and more complicated when neutron multiplication occurs. For this general case the solution derived in our paper obviously turns out to be dependent on both absorption and multiplication properties of the singularity. This circumstance suggests, among others, the idea of using a device of the type described above for testing fuel elements of heterogeneous reactors. (author) [fr

  1. BCG: a code for calculating pointwise neutron spectra and criticality in fast reactor cells

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-02-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is presented. The code solves the unidimensional neutron transport equation together with interface current relations at each energy in an unionized grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstructed total microscopic cross sections of the atomic species in the cell. Results for a defined sample problem illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  2. Dose distributions in thorax inhomogeneity for fast neutron beam from NIRS cyclotron

    International Nuclear Information System (INIS)

    Kutsutani-Nakamura, Yuzuru; Furukawa, Shigeo; Iinuma, T.A.; Kawashima, Katsuhiro; Hoshino, Kazuo; Hiraoka, Takeshi; Maruyama, Takashi; Sakashita, Kunio; Tsunemoto, Hiroshi

    1990-01-01

    The power law tissue-air ratio (TAR) method developed by Batho appears to be practical use for inhomogeneity corrections to the dose calculated in a layered media for photon beam therapy. The validity was examined in applying the modified power law TAR and the isodose shift methods to the dose calculation in thorax tissue inhomogeneity containing the boundary region for fast neutron beam. The neutron beam is produced by bombarding a thick beryllium target with 30 MeV deuterons. Lung phantom was made of granulated tissue equivalent plastic, which resulted in density of 0.30 and 0.60 g/cm 3 . Depth dose distributions for neutron beam were measured in thorax phantom by an air-filled cylindrical ionization chamber with TE plastic wall. The power law TAR method considering TAR of zero depth at boundary was compared with the measured data and a good result was obtained that the calculated dose was within ±3 % against the measured. But the isodose shift method is not so good for dose calculation in thorax tissue inhomogeneity using fast neutron beam. (author)

  3. Unperturbed moderator brightness in pulsed neutron sources

    International Nuclear Information System (INIS)

    Batkov, K.; Takibayev, A.; Zanini, L.; Mezei, F.

    2013-01-01

    The unperturbed neutron brightness of a moderator can be defined from the number of neutrons leaving the surface of a moderator completely surrounded by a reflector. Without openings for beam extraction, it is the maximum brightness that can be theoretically achieved in a moderator. The unperturbed brightness of a cylindrical cold moderator filled with pure para-H 2 was calculated using MCNPX; the moderator dimensions were optimised, for a fixed target and reflector geometry corresponding to the present concept for the ESS spallation source. This quantity does not depend on openings for beam extraction and therefore can be used for a first-round optimisation of a moderator, before effects due to beam openings are considered. We find that such an optimisation yields to a factor of 2 increase with respect to a conventional volume moderator, large enough to accommodate a viewed surface of 12×12 cm 2 : the unperturbed neutron brightness is maximum for a disc-shaped moderator of 15 cm diameter, 1.4 cm height. The reasons for this increase can be related to the properties of the scattering cross-section of para-H 2 , to the added reflector around the exit surface in the case of a compact moderator, and to a directionality effect. This large optimisation gain in the unperturbed brightness hints towards similar potentials for the perturbed neutron brightness, in particular in conjunction with advancing the optical quality of neutron delivery from the moderator to the sample, where by Liouville theorem the brightness is conserved over the beam trajectory, except for absorption and similar type losses

  4. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  5. NC ISO/IEC1725:00 Accreditation process of CPHR main laboratories

    International Nuclear Information System (INIS)

    Marrero Garcia, Mariela; Molina perez, Daniel; Fernandez Gomez, Maria; Walwyn Salas, Gonzalo

    2003-01-01

    With the objective of offering technically qualified and competitive services one works in our laboratories under the requirements of a System of the Quality from 1993. In 1999 that was already with a draft of the new model ISO/IEC 17025:00 the steps they were given for the change of the Guide 25. At the moment with 3 laboratories accredited by the Cuban organ (ONARC), we are pioneer in these changes because alone a very reduced group of laboratories in the country has achieved it. The present work enunciates the antecedents of the change, the main non conformities during the evaluations for the accreditation and the obtained results

  6. COMBINING ITIL, COBIT AND ISO/IEC 27002 FOR STRUCTURING COMPREHENSIVE INFORMATION TECHNOLOGY FOR MANAGEMENT IN ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    Maico Gehrmann

    2012-09-01

    Full Text Available Several methodologies, tools and standards have been designed to help IT management within organizations. Companies seek, with the use of these mechanisms, the placement of IT management and organizational strategies, mainly to ensure that IT helps with the objectives of the business and the results of the organization. Despite the vast amount of options for tools, methodologies and standards available, when they are used independently, these are not sufficiently wide-ranging to meet all the needs of IT management. This document analyzes ITIL, COBIT and ISO/IEC 27002 methodologies through literature review, highlighting their similarities and differences through the comparison between them. From this analysis, an overall structure is proposed which uses a combination of ITIL, COBIT and ISO/IEC 27002 that can be used by any organization as a more comprehensive solution for the handling and servicing of IT management. As any process, there are positive and negative points. Some negative points of a methodology may be strengthened by the positive ones of other methodologies. This creates more efficient processes.

  7. Combining ITIL, COBIT and ISO/IEC 27002 for structuring comprehensive information technology for management in organizations

    Directory of Open Access Journals (Sweden)

    Maico Gehrmann

    2012-09-01

    Full Text Available Several methodologies, tools and standards have been designed to help IT management within organizations. Companies seek, with the use of these mechanisms, the placement of IT management and organizational strategies, mainly to ensure that IT helps with the objectives of the business and the results of the organization. Despite the vast amount of options for tools, methodologies and standards available, when they are used independently, these are not sufficiently wide-ranging to meet all the needs of IT management. This document analyzes ITIL, COBIT and ISO/IEC 27002 methodologies through literature review, highlighting their similarities and differences through the comparison between them. From this analysis, an overall structure is proposed which uses a combination of ITIL, COBIT and ISO/IEC 27002 that can be used by any organization as a more comprehensive solution for the handling and servicing of IT management. As any process, there are positive and negative points. Some negative points of a methodology may be strengthened by the positive ones of other methodologies. This creates more efficient processes.

  8. Design of a cold neutron source for 25MeV Linac of CAB (Centro Atomico Bariloche - Argentina)

    International Nuclear Information System (INIS)

    Torres, Lourdes

    2006-01-01

    Cold neutrons are widely used in fields of research such as the dynamics of solids and liquids, the investigation of magnetic materials, material science, biology, and nuclear physics in general. Accelerator-based cold neutron sources have already proved to be well adapted to perform neutron scattering studies in all those fields.In this work we present the design of a cold neutron source in the electron Linac-based pulsed source at Centro Atomico Bariloche.The objective of this work is to develop an inexpensive yet efficient cold source with a simple moderator material.Although ideal materials for that purpose would be solid methane or liquid H2, due to economical and safety reasons light water ice, benzene or solid mesitylene were considered as cold moderators. In order to proceed with the design and optimization process of the neutron source, total cross sections for light water ice, benzene and mesitylene were measured at low temperature and thermal nuclear data libraries for such materials had to be developed.The purpose of these calculations was to optimize shape and size for the moderator at a working temperature.To calculations were performed using the MCNP-4C code and our libraries, together with files for (free-atom) carbon, hydrogen and oxygen at that temperature.The geometry studied consisted of a neutron source and different moderator (slab, cylindrical slab, grids, and sets premoderator - moderator with and without coupled).To simplify the system cooler, the slab geometry was changed to a coin shaped moderator using liquid nitrogen as cooler.From the variety of simulations performed, it was clear that a premoderator was necessary to obtain higher intensities.Furthermore, with a premoderator the thickness of the moderator was reduced, simplifying the cooling system.Finally, we adopted for our cold neutron source, a slab premoderator of PLE at room temperature, and a cylindrical moderator of mesitylene at 89K with a cooler system of stainless steel with

  9. A method for solving the spherical harmonics equations applied for space-energy transport of fast and resonance neutrons

    International Nuclear Information System (INIS)

    Matausek, M.

    1972-01-01

    A new proposed method for solving the space-energy dependent spherical harmonics equations represents a methodological contribution to neutron transport theory. The proposed method was applied for solving the problem of spec-energy transport of fast and resonance neutrons in multi-zone, cylindrical y symmetric infinite reactor cell and is related to previously developed procedure for treating the thermal energy region. The advantages of this method are as follows: a unique algorithm was obtained for detailed determination of spatial and energy distribution of neutrons (from thermal to fast) in the reactor cell; these detailed distributions enable more precise calculations of criticality conditions, obtaining adequate multigroup data and better interpretation of experimental data; computing time is rather short

  10. Read/write performance of perpendicular double-layered cylindrical media

    International Nuclear Information System (INIS)

    Yamada, H.; Shimatsu, T.; Watanabe, I.; Tsuchiyama, R.; Aoi, H.; Muraoka, H.; Nakamura, Y.

    2005-01-01

    A cylindrical magnetic storage system using perpendicular double-layered media has been developed. CoCrTa/CoZrNb deposited on a rotating cylindrical substrate shows perpendicular anisotropy and magnetic properties, which have almost the same characteristics as conventional disk-media. The fundamental read/write characteristics of perpendicular double-layered cylindrical media were measured using a single-pole-type (SPT) writer with a sliding-contact-type slider and a merged giant magneto-resistive (GMR) reader with a one-pad-type slider designed for use with cylindrical media. Preliminary studies for improving the characteristics of the recording layer are also described

  11. Ideal response function of a 3He proportional counter to thermal neutrons determined by different length counters

    International Nuclear Information System (INIS)

    Takeda, Naoto; Kudo, Katsuhisa; Kobayashi, Katsuhei; Yoshimoto, Takaaki

    2000-01-01

    The relative gas multiplication along the cylindrical axis of three 3 He proportional counters with different length were measured by using a thermal neutron beam at the Kyoto University Reactor and an ideal response function by taking into account the difference of pulse height spectra were measured by different length counters. The three 3 He proportional counters (model type of P4-0806, P4-0806 and P4-0808 manufactured by Reuter-Stokes) prepared for relative gas multiplication measurements had identical structure having cylindrical outer shells of 304 stainless steel except for different sensitive lengths of 10 cm, 15 cm and 20 cm, respectively. All counters were filled with 400 kPa of 3 He gas and 200 kPa of Ar gas. The pulse height distributions were measured by moving the counter in the direction of it's cylindrical axis perpendicular to the thermal neutron beam. The measured pulse heights corresponding to the full energy peaks at various entrance points were normalized to that of the whole counter irradiation. The results as a function of the distance from the bottom edge of the stainless steel cylinder are shown. The total transition region of gas gain corresponded to about 23 %, 15 % and 10 % of each nominal sensitive region corresponding to shot, middle and long counters. The ideal pulse height spectrum (dots) obtained by using proportional counters of 10 cm and 20 cm in nominal sensitive length to thermal neutron beam is shown in the paper in comparison to simulated one which was calculated assuming the constant gain within the sensitive region and zero gas gain outside the sensitive regions. The simulation realized the ideal response function fairly well. (S.Y.)

  12. Characterization of an active dosemeter according to IEC 61526:2010

    International Nuclear Information System (INIS)

    Cardoso, J.; Santos, L.; Santos, J.A.M.; Alves, J.G.; Oliveira, C.

    2016-01-01

    The active personal dosemeter, RaySafe i2, allows the measurement and record of Hp(10) in real time, every second, via wireless technology for real-time display on a portable computer and/or a local network. The system seems particularly attractive for individual monitoring at clinical facilities where high intensity and varying radiation fields may occur, as it enables the user to acknowledge and optimize the dose and dose rate values in real time for each procedure. Prior to its use, the system was characterized at the Metrology Laboratory of Ionizing Radiation of IST-LPSR aiming at the metrological characterization of the system in accordance with IEC 61526:2010 for metrological control purposes and to verify the technical specifications stated by the manufacturer. (authors)

  13. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4

    International Nuclear Information System (INIS)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R.

    2014-01-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H p (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm 3 , composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm 2 ). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  14. Preliminary results on neutron production from a Pb/U target irradiated by deuteron beam at 1.25 GeV/amu

    International Nuclear Information System (INIS)

    Fragopoulou, M.; Manolopoulou, M.; Jokic, S.; Zamani, M.; Krivopustov, M.; Sosnin, A.; Stoulos, S.

    2008-01-01

    A spallation neutron source consisted of a cylindrical Pb target and surrounded by uranium blanket was irradiated by deuteron beam 1.25 GeV/amu provided from the Nuclotron accelerator at High Energy Laboratory, JINR, Dubna. For radiation protection purpose a polyethylene shielding was placed around the spallation neutron source. Neutron distributions along the surface of the U-blanket were measured by using solid state nuclear track detectors (SSNTDs) as particle and fission detectors. The neutron distributions appear to be similar to those obtained by proton irradiations. Applying a fitting procedure to the experimental data the inelastic cross section of deuteron in Pb was estimated. The escaping neutron distribution from the polyethylene shielding and parallel to the target was also measured and presented to be two orders of magnitude less than that over the U-blanket surface

  15. Transmission of 14 MeV neutrons through concrete, soil, sugar, wood and coal samples - a Monte Carlo Study

    International Nuclear Information System (INIS)

    Abdelmonem, M.S.; Naqvi, A.A.

    2006-01-01

    Full text: Fast neutrons transmission measurements are ideal for the elemental analysis of bulk samples. In particular, they can be used to determine the hydrogen concentration in bulk samples. In the present study, Monte Carlo simulations have been carried to calculate the intensity of 14 MeV neutrons transmitted through concrete, soil, sugar, wood and coal samples. The simulated set-up consists of a cylindrical sample, placed at a distance of 9 cm from the neutron source. Fast neutrons transmitted through the sample are collimated through a double truncated neutron collimator to a fast neutron detector. The collimator contains a mixture of paraffin and lithium carbonate. In this study, transmitted intensity of fast neutron through each sample was calculated as a function of moisture contents of the sample for 14 MeV neutrons. The moisture contents of the samples were varied over 0-7 wt. %. The calculated intensity of 14 MeV neutrons transmitted through the samples, shows effects related to fast neutron thermalization in hydrogen of moisture and energy dependence of neutron transmission through the sample materials. This is clearly shown by different gradients of neutron yield vs moisture content curves of these samples. The gradient of the neutron yield curves for the 14 MeV neutrons has a lower value than those reported for a 241 Am-Be neutron source

  16. Software validation applied to spreadsheets used in laboratories working under ISO/IEC 17025

    Science.gov (United States)

    Banegas, J. M.; Orué, M. W.

    2016-07-01

    Several documents deal with software validation. Nevertheless, more are too complex to be applied to validate spreadsheets - surely the most used software in laboratories working under ISO/IEC 17025. The method proposed in this work is intended to be directly applied to validate spreadsheets. It includes a systematic way to document requirements, operational aspects regarding to validation, and a simple method to keep records of validation results and modifications history. This method is actually being used in an accredited calibration laboratory, showing to be practical and efficient.

  17. DWARF, 1-D Few-Group Neutron Diffusion with Thermal Feedback for Burnup and Xe Oscillation

    International Nuclear Information System (INIS)

    Anderson, E.C.; Putnam, G.E.

    1975-01-01

    1 - Description of problem or function: DWARF allows one-dimensional simulation of reactor burnup and xenon oscillation problems in slab, cylindrical, or spherical geometry using a few-group diffusion theory model. 2 - Method of solution: The few-group, neutron diffusion theory equations are reduced to a system of finite-difference equations that are solved for each group by the Gauss method at each time point. Fission neutron source iteration can be accelerated with Chebyshev extrapolation. A thermal feedback iterative loop is used to obtain consistent solutions for the distributions of reactor power, neutron flux, and fuel and coolant properties with the neutron group constants functions of the latter. Solutions for the new nuclide concentrations of a time-point are made with the flux assumed constant in the time interval. 3 - Restrictions on the complexity of the problem - Maxima of: 4 groups; 40 regions; 50 macroscopic materials (Only 10 are functions of the feedback variables); 50 nuclides per region; 250 mesh points

  18. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    Energy Technology Data Exchange (ETDEWEB)

    Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); Sperduti, A. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pietropaolo, A.; Pillon, M. [ENEA C.R. Frascati, via E. Fermi n. 45, 00044 Frascati, Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, via La Masa 34, 20156 Milano (Italy); INFN–Milano, Via Celoria 16, 20133 Milano (Italy); Gómez-Ros, J.M. [INFN–LNF, via E. Fermi n. 40, 00044 Frascati, Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2017-01-21

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a {sup 241}Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm{sup −2} s{sup −1} to 1000 cm{sup −2} s{sup −1} can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  19. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  20. Study of response of 3He detectors to monoenergetic neutrons

    International Nuclear Information System (INIS)

    Abanades, A.; Andriamonje, S.; Arnould, H.; Barreau, G.; Bercion, M.; Casagrande, F.; Cennini, P.; Del Moral, R.; Gonzales, E.; Lacoste, V.; Pdemay, G.; Pravikoff, M.S.

    1997-01-01

    In the search of a hybrid system (the coupling of the particle accelerator to an under-critical reactor) for radioactive waste transmutation the TARC (Transmutation by Adiabatic Resonance Crossing) program has been developed. Due to experimental limitations, the time-energy relation at higher neutron energies, particularly, around 2 MeV, which is an important domain for TARC, cannot be applied. Consequently the responses of the 3 He ionization neutron detector developed for TARC experiment have been studied using a fast monoenergetic neutron source. The neutrons were produced by the interaction of the proton delivered by Van de Graaff accelerator of CENBG. The originality of the detector consists in its structure of three series of electric conductors which are mounted around the anode: a grid ensuring the detector proportionality, a cylindrical suit of alternating positive voltage and grounded wires aiming at eliminating the radial end effects, serving as veto and two cylinders serving as end plugs to eliminate the perpendicular end effects. Examples of anode spectra conditioned (in anticoincidence) by the mentioned vetoes are given. One can see the contribution of the elastic scattering from H and 3 He. By collimating the neutron beam through a borated polyethylene system it was possible to obtain a mapping of the detector allowing the study of its response as a function of the irradiated zones (anode and grid)

  1. An organic scintillator neutron spectrometer suitable for in-phantom studies

    International Nuclear Information System (INIS)

    Harrison, K.G.

    1981-07-01

    A transportable organic scintillator spectrometry system based on a 1 cm high x 1 cm dia. cylindrical stilbene scintillator with a 30 cm light-pipe has been developed for neutron spectrometry inside anthropomorphic phantoms in order to improve knowledge of dose and dose-equivalent distributions in the body. Electronic pulse-shape discrimination is used to discriminate between neutron and gamma-ray events in the scintillator. The spectrometer is shown to give excellent results in the range of neutron energies from 1.5 to 7 MeV when used with an unfolding program based on differentiation of the pulse-height distribution. Below 1 MeV problems are experienced with pulse-shape discrimination, and below 2 MeV there are found to be some shortcomings in the differentiation method for this size of scintillator. Above about 9 MeV more sophisticated unfolding methods are shown to be desirable. Problems of stability of the system, difficulties in the measurement and calculation of the response functions, and disadvantages of using stilbene are discussed. (author)

  2. Monte Carlo method for neutron transport problems

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1977-01-01

    Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)

  3. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  4. Distributions of neutron and gamma doses in phantom under a mixed field

    International Nuclear Information System (INIS)

    Beraud-Sudreau, E.

    1982-06-01

    A calculation program, based on Monte Carlo method, allowed to estimate the absorbed doses relatives to the reactor primary radiation, in a water cubic phantom and in cylindrical phantoms modelized from tissue compositions. This calculation is a theoretical approach of gamma and neutron dose gradient study in an animal phantom. PIN junction dosimetric characteristics have been studied experimentally. Air and water phantom radiation doses measured by PIN junction and lithium 7 fluoride, in reactor field have been compared to doses given by dosimetry classical techniques as tissue equivalent plastic and aluminium ionization chambers. Dosimeter responses have been employed to evaluate neutron and gamma doses in plastinaut (tissue equivalent plastic) and animal (piglet). Dose repartition in the piglet bone medulla has been also determined. This work has been completed by comparisons with Doerschell, Dousset and Brown results and by neutron dose calculations; the dose distribution related to lineic energy transfer in Auxier phantom has been also calculated [fr

  5. A methodology for distinguishing divergent cell fates within a common progenitor population: adenoma- and neuroendocrine-like cells are confounders of rat ileal epithelial cell (IEC-18 culture

    Directory of Open Access Journals (Sweden)

    Paxton Jessica B

    2005-01-01

    Full Text Available Abstract Background IEC-18 cells are a non-transformed, immortal cell line derived from juvenile rat ileal crypt cells. They may have experimental advantages over tumor-derived gastrointestinal lineages, including preservation of phenotype, normal endocrine responses and retention of differentiation potential. However, their proclivity for spontaneous differentiation / transformation may be stereotypical and could represent a more profound experimental confounder than previously realized. We hypothesized that IEC-18 cells spontaneously diverge towards a uniform mixture of epigenetic fates, with corresponding phenotypes, rather than persist as a single progenitor lineage. Results IEC-18 cells were cultured for 72 hours in serum free media (SFM, with and without various insulin-like growth factor agonists to differentially boost the basal rate of proliferation. A strategy was employed to identify constitutive genes as markers of divergent fates through gene array analysis by cross-referencing fold-change trends for individual genes against crypt cell abundance in each treatment. We then confirmed the cell-specific phenotype by immunolocalization of proteins corresponding to those genes. The majority of IEC-18 cells in SFM alone had a loss in expression of the adenomatous polyposis coli (APC gene at the mRNA and protein levels, consistent with adenoma-like transformation. In addition, a small subset of cells expressed the serotonin receptor 2A gene and had neuroendocrine-like morphology. Conclusions IEC-18 cells commonly undergo a change in cell fate prior to reaching confluence. The most common fate switch that we were able to detect correlates with a down regulation of the APC gene and transformation into an adenoma-like phenotype.

  6. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  7. The extended range neutron rem counter LINUS: overview and latest developments

    International Nuclear Information System (INIS)

    Birattari, C.; Rancati, T.; Esposito, A.; Pelliccioni, M.; Ferrari, A.; Silari, M.

    1997-01-01

    The 'history' of the extended range neutron rem counter LINUS, since its first conception in 1990 is reviewed, along with the latest developments. These include the calibration of the initially cylindrical version with nearly monoenergetic neutrons in the energy range 34-66 MeV, a detailed evaluation of the anisotropy of its response function, the construction and calibration of an improved spherical version, and recent measurements in reference high energy stray radiation fields. The instrument can now be considered as being fully characterized. Similar monitors built by other laboratories following the present design have confirmed its performances. The instrument is now in semi-routine use at a number of particle accelerator facilities and is one of several devices used on-board of aircrafts for assessing the exposure to cosmic rays at commercial flight altitudes. (author)

  8. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  9. Modular structure of wind turbine models in IEC 61400-27-1

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Andresen, Bjørn; Fortmann, Jens

    2013-01-01

    This paper presents the modular structure of wind turbine models to be published in a new standard IEC 61400-27 for “Electrical simulation models for wind power generation”. The purpose of this standardization work is to define generic simulation models for wind turbines (Part 1) and wind power...... plants (Part 2), which are intended for short-term power system stability analyses. Part 1 has passed the first committee draft stage, whereas Part 2 is in an early stage of development. Initially, the paper describes the interfaces between wind turbine, wind power plant and grid models, and then gives...... a more detailed description of the modular structure of the types of wind turbines that are included in Part 1....

  10. Characterization of radiation qualities used for the determination of characteristic in CT application according to IEC 61267:2005

    International Nuclear Information System (INIS)

    Dias, Daniel M.; Silva Junior, Iremar A. da; Potiens, Maria da Penha A.

    2009-01-01

    The purpose of this study was to establish the standard RQT radiation qualities which represent simulations of the unattenuated beam used in Computed Tomography (CT). Thus, to avoiding excessive efforts for establishing a radiation quality by means of the spectral distribution of the photon fluence, the characterization of these standard radiation qualities was expressed in terms of the X-ray tube voltage, first and second half-value layer (HVL). To establishing the standard radiation beam, according to the IEC 61267 and the TRS 457 was measured first of all the correct values of the X ray tube voltages in terms of Practical Peak Voltage. The standard radiation qualities RQT were produced using the same set up mounted for the RQR qualities which had been early established, and for simulating the patient in order to achieve the standard RQT series, suitable thicknesses of layers of copper were used to obtain the values of the first HVL according to IEC 61267. (author)

  11. An optimum source neutron spectrum and holder shape for extra-corporal treatment of liver cancer by BNCT

    International Nuclear Information System (INIS)

    Nievaart, Sander; Moss, Ray; Sauerwein, Wolfgang; Malago, Massimo; Kloosterman, Jan Leen; Hagen, Tim van der; Dam, Hugo van

    2006-01-01

    In extra-corporal treatment of liver cancer by BNCT, it is desired to have an as homogeneous as possible thermal neutron field throughout the organ. Previous work has shown that when using an epithermal neutron beam, the shape of the holder in which the liver is placed is the critical factor. This study develops the notion further as to what is the optimum neutron spectrum to perform such treatments. In the design calculations, when using Monte Carlo techniques, it is shown that when the expected contributions of the source neutrons in every part of the liver is calculated, a linear optimization scheme such as the Simplex method results in a mix of thermal and epithermal source neutrons to get the highest homogeneity for the thermal neutron field. This optimisation method is demonstrated in 3 holder shapes: cuboid, cylindrical and spherical with each 3 volumes of 2, 4 and 6 litres. A 10 cm thick cuboid model, irradiated from both sides gives the highest homogeneity. The spherical (rotating) holder has the lowest homogeneity but the highest contribution of every source neutron to the thermal neutrons in the liver. This can be advantageous when using a relatively small sized neutron beam with a low strength. (author)

  12. Production cross section measurement of discrete gammas-ray at 90 degree for interactions of 14. 9 MeV neutrons with carbon and niobium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hongyu; Yan Yiming; Tang lin; Wen Chenlin; Zhang Shenji; Hua Ming; Han Chongzhan; Ding Xiaoji; Lan Liqiao; Fan Guoying; Yan Hua; Wang Xingfu; Wang Qi; Sun Suxu; Rong Yaning; Liu Shuzhen (Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing (CN))

    1989-05-01

    The cross sections of discrete gamma-ray produced by interactions of 14.9 MeV neutrons with carbon and niobium were investigated. A pulsed {ital T}({ital d},{ital n}){sup 4} He neutron source was used in the measurement. Neutron flux incident upon the sample was determined with the associated particle method. Technique of time-of-flight was used for reducing the background. A new method to calculate neutron flux attenuation in large cylindrical sample was proposed. The split of 4.439 MeV gamma-ray line from {sup 12}C({ital n},{ital n}{prime}{gamma}){sup 12}C reactions was confirmed. 79 discrete gamma-ray lines and their production cross sections for the interactions of 14.9 MeV neutrons with niobium were obtained for the first time.

  13. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  14. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  15. MURLI, 1-D Flux, Reaction Rate in Cylindrical Geometry Thermal Reactor Lattice by Transport

    International Nuclear Information System (INIS)

    Huria, H.C.

    1985-01-01

    1 - Description of problem or function: MURLI is an integral transport theory code to calculate fluxes and reaction rates in one- dimensional cylindrical geometry lattice cells of a thermal reactor. For a specified buckling, it computes k-effective using few-group diffusion theory and a few-group collapsed set of Cross sections. The code can optionally be used to solve a first order differential equation for the number density of fissile, fertile and fission product nuclei as a function of time, and to recalculate fluxes, reaction rates and k-effective at different stages of burnup. A 27-group cross section data library is included. There are four pseudo-fission products each associated with the decay chains of plutonium and uranium isotopes in addition to Rh-105, Xe-135, Np-239, U-236, Am-241, Am-242 and Am-243. There is also data for one lumped pseudo-fission product. 2 - Method of solution: Multiple collision probabilities and escape probabilities are calculated for each cylindrical shell region assuming protons are born uniformly and isotropically over the entire region volume. The equations of integral transport theory can then be solved for neutron flux. The first order differential burnup equation is solved by a fourth order Runge-Kutta method. 3 - Restrictions on the complexity of the problem: There are maxima of 8 fissionable elements, 8 resonant elements, and 20 spatial regions

  16. Neutron Flux Interpolation with Finite Element Method in the Nuclear Fuel Cell Calculation using Collision Probability Method

    International Nuclear Information System (INIS)

    Shafii, M. Ali; Su'ud, Zaki; Waris, Abdul; Kurniasih, Neny; Ariani, Menik; Yulianti, Yanti

    2010-01-01

    Nuclear reactor design and analysis of next-generation reactors require a comprehensive computing which is better to be executed in a high performance computing. Flat flux (FF) approach is a common approach in solving an integral transport equation with collision probability (CP) method. In fact, the neutron flux distribution is not flat, even though the neutron cross section is assumed to be equal in all regions and the neutron source is uniform throughout the nuclear fuel cell. In non-flat flux (NFF) approach, the distribution of neutrons in each region will be different depending on the desired interpolation model selection. In this study, the linear interpolation using Finite Element Method (FEM) has been carried out to be treated the neutron distribution. The CP method is compatible to solve the neutron transport equation for cylindrical geometry, because the angle integration can be done analytically. Distribution of neutrons in each region of can be explained by the NFF approach with FEM and the calculation results are in a good agreement with the result from the SRAC code. In this study, the effects of the mesh on the k eff and other parameters are investigated.

  17. On the Implementation of the IEC 61850 Standard: Will Different Manufacturer Devices Behave Similarly under Identical Conditions?

    Directory of Open Access Journals (Sweden)

    Mohamad El Hariri

    2016-12-01

    Full Text Available Standardization in smart grid communications is necessary to facilitate complex operations of modern power system functions. However, the strong coupling between the cyber and physical domains of the contemporary grid exposes the system to vulnerabilities and thus places more burden on standards’ developers. As such, standards need to be continuously assessed for reliability and are expected to be implemented properly on field devices. However, the actual implementation of common standards varies between vendors, which may lead to different behaviors of the devices even if present under similar conditions. The work in this paper tested the implementation of the International Electro-technical Commission’s Generic Object Oriented Substation Event GOOSE (IEC 61850 GOOSE messaging protocol on commercial Intelligent Electronic Devices (IEDs and the open source libiec61850 library—also used in commercial devices—which showed different behaviors in identical situations. Based on the test results and analysis of some features of the IEC 61850 GOOSE protocol itself, this paper proposes guidelines and recommendations for proper implementation of the standard functionalities.

  18. Ingestion of six cylindrical and four button batteries

    DEFF Research Database (Denmark)

    Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G

    2010-01-01

    We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....

  19. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  20. Creep test under irradiation with thermal gradient for the cylindrical carbon fiber reinforced carbon composite. Interim report on irradiation examinations: 03M-47AS

    International Nuclear Information System (INIS)

    Baba, Shin-ichi; Sawa, Kazuhiro; Yamaji, Masatoshi; Matsui, Yoshinori; Ishihara, Masahiro

    2007-03-01

    The creep test under irradiation with thermal gradient for the cylindrical carbon fiber reinforced carbon composites (c/c composite) are carried out in the Japan Material Testing Reactor (JMTR). This report described 4-items; first item is design/evaluation of the capsule for the irradiation test, second is before irradiation measurements for the residual strain due to manufactured cylindrical c/c composite, and third is also before irradiation measurements of the distance between 2-holes of predrilled in the specimen and last item is examination of analysis for the irradiation creep with thermal gradient by VIENUS Code. The normal creep test is static mechanical load on the specimen in thermal condition, but this creep test under irradiation capsule is thermal stress due to thermal gradient at inside specimen in the thermal condition. Consequently, it is necessary as large as possible thermal gradient in the narrow space of the capsule inside volume. In which the tungsten rod (W-rod) was inserted to the cylindrical c/c composite specimen, for γ-ray heat generation density occurred highly and so maximize the difference temperatures of surface wall between inside and outside wall of the specimen. The measurement method of the deflection due to the irradiation creep of cylindrical c/c composite was adopted as way of ruptured the specimen among the predrilled distance of 2-holes before/after irradiation. Accordingly as the laser dimensional apparatus used to measure the distance between the 2-holes of specimen exactly, easy and untouchable. And also before irradiation measurement of the residual stress due to the manufactured process was estimated by neutron diffraction used Residual Stress Analyzer (RESA) at JRR-3M in JAEA. The irradiation test was finished as total irradiation time, average temperature and neutron dose showed 4189 hours, 873 K and 8.2x10 24 (E>1.0MeV:m -2 ) respectively. The thermal stress was estimated by the difference temperatures of 4

  1. The fortran programme for the calculation of the absorption and double scattering corrections in cross-section measurements with fast neutrons using the monte Carlo method (1963); Programme fortran pour le calcul des corrections d'absorption et de double diffusion dans les mesures de sections efficaces pour les neutrons rapides par la methode de monte-carlo (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    A calculation for double scattering and absorption corrections in fast neutron scattering experiments using Monte-Carlo method is given. Application to cylindrical target is presented in FORTRAN symbolic language. (author) [French] Un calcul des corrections de double diffusion et d'absorption dans les experiences de diffusion de neutrons rapides par la methode de Monte-Carlo est presente. L'application au cas d'une cible cylindrique est traitee en langage symbolique FORTRAN. (auteur)

  2. Functional Suitability Measurement using Goal-Oriented Approach based on ISO/IEC 25010 for Academics Information System

    Directory of Open Access Journals (Sweden)

    Ajeng Savitri Puspaningrum

    2017-10-01

    Full Text Available Rapid of information technology development grow a new competitive environment. Including higher education, they need to improve their service quality in order to provide education service in more competitive. One of the ways of using information technology in higher education is the used of Academic Information System (AIS. AIS was developed to achieve the goals of the learning process which is one of vision and mission organization success factor. The measurement is needed to evaluate the quality of AIS. Functionality is one of the quality factors which is measured by observing the correlation between function and functional suitability. In this study, the quality of AIS functional suitability is measured using goal-oriented approach base on ISO/IEC 25010 in the perspective of a lecturer. The strategic plan of an institution is used as a reference to measure if the system used to have meet institution goals when using this approach. The result shows that the measurement using goal-oriented approach become more objective and suitable to the need of used AIS quality improvement for the institution than the measurement with ISO/IEC 25010 only.

  3. Minimum dimensions of rock models for calibration of radiometric probes for the neutron-gamma well logging

    International Nuclear Information System (INIS)

    Czubek, J.A.; Lenda, A.

    1979-01-01

    The minimum dimensions have been calculated assuring 91, 96 and 98 % of the probe response in respect to the infinite medium. The models are of cylindrical form, the probe (source-to-detector distance equal to 60 or 90 cm) being placed on the model axis, symmetrically with respect to the two end-faces. All the models are ''embedded'' in various media, such as: air, sand of 40% porosity and completely saturated with water, sand of 30 % porosity and of moisture content equal to 10 %, and water. The models are of three types of material: sandstone, limestone and dolomite, with various porosities, ranging from 0 to 100 %. The probe response is due to gamma rays arising from the radiativecapture of thermal neutrons. The calculations were carried out for the highest energy line of gamma rays arising in given litology. Gamma-ray flux from the neutron radiative capture has been calculated versus rock porosity and model dimensions and radiation migration lengths determined for given litologies. The minimum dimensions of cylindrical models are given as functions of: porosity, probe length (source-to-detector distance) lithology of model and type of medium surrounding our model. (author)

  4. Spallation neutron source target design for radioactive waste transmutation

    International Nuclear Information System (INIS)

    Beard, C.A.

    1992-01-01

    The disposal of high-level radioactive waste has long been one of the most serious problems facing the nuclear industry. Transmutation of this waste through particle bombardment has been suggested numerous times as a possible method of enhancing the waste management process. Due to advances in accelerator technology, the feasibility of an accelerator based transmutation system has increased enough to allow serious investigation of this process. Therefore, in pursuit of this goal, an accelerator target was designed for use in an accelerator based transmutation system. The target design consists of an array of tantalum rods, cooled by liquid sodium, which are arranged in a cylindrical configuration 40 cm in diameter and 125 cm in height. Tantalum was chosen as the target material over tungsten, lead, bismuth, and a lead-bismuth alloy (55 w/o bismuth) due to a large neutron yield, low activation, low chemical toxicity, and the fact that it does not produce significant amounts of long-lived isotopes through spallation or activation. The target yields a neutron source of 29.7 neutrons/proton when exposed to a 1600 MeV proton beam, and is suitable for use with both thermal or fast spectrum transmutation systems

  5. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    International Nuclear Information System (INIS)

    Tornow, W.; Corse, W.; Crimi, S.; Fox, J.

    2010-01-01

    Two cylindrical LiTaO 3 crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z + and z - cut crystal faces, neutrons were produced via the 2 H(d,n) 3 He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D 2 + ) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10 4 neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  6. A comparison of Nodal methods in neutron diffusion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak [Israel Electric Company, Haifa (Israel) Nuclear Engineering Dept. Research and Development Div.

    1996-12-01

    The nuclear engineering department at IEC uses in the reactor analysis three neutron diffusion codes based on nodal methods. The codes, GNOMERl, ADMARC2 and NOXER3 solve the neutron diffusion equation to obtain flux and power distributions in the core. The resulting flux distributions are used for the furl cycle analysis and for fuel reload optimization. This work presents a comparison of the various nodal methods employed in the above codes. Nodal methods (also called Coarse-mesh methods) have been designed to solve problems that contain relatively coarse areas of homogeneous composition. In the nodal method parts of the equation that present the state in the homogeneous area are solved analytically while, according to various assumptions and continuity requirements, a general solution is sought out. Thus efficiency of the method for this kind of problems, is very high compared with the finite element and finite difference methods. On the other hand, using this method one can get only approximate information about the node vicinity (or coarse-mesh area, usually a feel assembly of a 20 cm size). These characteristics of the nodal method make it suitable for feel cycle analysis and reload optimization. This analysis requires many subsequent calculations of the flux and power distributions for the feel assemblies while there is no need for detailed distribution within the assembly. For obtaining detailed distribution within the assembly methods of power reconstruction may be applied. However homogenization of feel assembly properties, required for the nodal method, may cause difficulties when applied to fuel assemblies with many absorber rods, due to exciting strong neutron properties heterogeneity within the assembly. (author).

  7. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments.

    Science.gov (United States)

    Miller, Marcelo E; Sztejnberg, Manuel L; González, Sara J; Thorp, Silvia I; Longhino, Juan M; Estryk, Guillermo

    2011-12-01

    A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comisión Nacional de Energía Atómica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Local mixed-field thermal neutron sensitivities and global thermal and mixed

  8. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

    2011-12-15

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and

  9. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments

    International Nuclear Information System (INIS)

    Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo

    2011-01-01

    Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global

  10. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  11. Tearing instability in cylindrical plasma configuration

    International Nuclear Information System (INIS)

    Zelenyj, L.M.

    1979-01-01

    The effect of the neutral-layer cylindrical geometry on the development of the tearing instability has been investigated in detail. The increments of the instability for all the regimes have been found. The influence of cylindrical effects becomes manifesting itself at small, as compared to the layer characteristic thickness, distances from the axis, and, finally, the electron regime of the instability development transforms into an ion one. The results obtained are of interest for studying the plasma stability in the devices of the ''Astron'' type and in magnetospheres of cosmic objects

  12. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  13. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  14. Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT

    Science.gov (United States)

    Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing

    2017-04-01

    The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.

  15. BCG: a computer code for calculating neutron spectra and criticality in cells of fast reactors

    International Nuclear Information System (INIS)

    Leite, S.B.; Caldeira, A.D.; Garcia, R.D.M.

    1988-01-01

    The BCG code for determining the space and energy neutron flux distribution and criticality of fast reactor cylindrical cells is discussed. The code solves the unidimensional neutron transport equation together with interface current relations at each energy point in an unionized energy grid prepared for the cell and at an arbitrary number of spatial zones. While the spatial resolution is user specified, the energy dependence of the flux distribution is resolved according to the degree of variation in the reconstruced total microscopic cross sections of the atomic species in the cell. Results for a simplified fuel cell illustrate the high resolution and accuracy that can be obtained with the code. (author) [pt

  16. Introducción al modelo Topic Maps (ISO/IEC13250:2003

    Directory of Open Access Journals (Sweden)

    Maria Jesús Colmenero Ruiz

    2005-07-01

    Full Text Available Se realiza una revisión del estándar ISO/IEC 13250:2003 Topic Maps, resaltando sus posibilidades en el ámbito documental. Tras describir su evolución histórica y la situación actual se desarrollan los conceptos que componen este modelo, los tres elementos básicos (topic, association, y occurrence y dos más (scope y public subject, analizando sus posibilidades para la organización del conocimiento, como estructura de navegación semántica y para la interoperabilidad. Se analizan los elementos más interesantes de la especificación XTM 1.0 y, por último, se detallan algunos de los entornos en los que está siendo aplicado.

  17. Studies on neutron production in the interaction of 7.4 GeV protons with extended lead target

    CERN Document Server

    Hashemi-Nezhad, S R; Ochs, M; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevskij, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Phlippen, P W; Adloff, J C; Debeauvais, M; Zamani-Valassiadou, M; Dwivedi, K K; Wilson, B

    1999-01-01

    A cylindrical lead target of diameter 8 cm and length 20 cm was irradiated with 7.4 GeV protons along the axis of the cylinder. The lead target was surrounded with a paraffin layer of thickness 6 cm to moderate the neutrons produced in p + Pb reactions. The spatial distribution of the slow and fast neutrons on different surfaces of the moderator were determined using LR 115 2B detectors (through sup 1 sup 0 B(n,alpha) sup 7 Li reactions) and CR39 detectors (through proton recoils) respectively. Such results can be valuable in the studies and design of Accelerator Driven Subcritical Nuclear Reactors and Nuclear Waste Incinerators.

  18. Integrating RAMS engineering and management with the safety life cycle of IEC 61508

    International Nuclear Information System (INIS)

    Lundteigen, Mary Ann; Rausand, Marvin; Utne, Ingrid Bouwer

    2009-01-01

    This article outlines a new approach to reliability, availability, maintainability, and safety (RAMS) engineering and management. The new approach covers all phases of the new product development process and is aimed at producers of complex products like safety instrumented systems (SIS). The article discusses main RAMS requirements to a SIS and presents these requirements in a holistic perspective. The approach is based on a new life cycle model for product development and integrates this model into the safety life cycle of IEC 61508. A high integrity pressure protection system (HIPPS) for an offshore oil and gas application is used to illustrate the approach.

  19. Convergence Analysis of ISO/IEC 12207 and CMMI-DEV: Complementary Result from Systematic Literature Review

    OpenAIRE

    Javier Crisóstomo; Karin Melendez; Luis Flores; Abraham Dávila

    2017-01-01

    The organizations and people are demanding more and better software products and services, which implies adequate processes for its development. In the context of the software industry, there are two models, the CMMI-DEV and ISO/IEC 12207 that are influencing it. Though, they are evolving separately, recurrently they have been compared to determine its coverage (in both directions). In this study is analyzed the results of those comparisons (partials and completed) to determine if the models ...

  20. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  1. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  2. Development of new cylindrical magnetrons for industrial use

    International Nuclear Information System (INIS)

    Clayton, B.

    2000-09-01

    A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key properties (such as adhesion level and hardness) of the coatings deposited. In all cases good results were obtained. A 22mm o.d. device based on the same design was shown to operate, but with less satisfactory characteristics. In an attempt to improve the miniaturised design, the feasibility of gas cooling (rather than water cooling) the cylindrical magnetron was demonstrated. A system incorporating four 40mm o.d. cylindrical magnetrons was designed, constructed and briefly tested. This was intended to prove the feasibility of using a multi-magnetron system to reduce the cost to coat. Its dimensions and design were tailored to an industrially specified engine block. In use the plasma rings formed on the 40mm magnetron target surfaces during operation were found to be of unequal intensities, especially on the shorter magnetron design used in the four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. (author)

  3. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  4. Characteristics of self-powered neutron detectors used in power reactors

    International Nuclear Information System (INIS)

    Todt, W.H.

    1997-01-01

    Self-Powered Neutron Detectors have been used effectively as in-core flux monitors for over twenty-five years in nuclear power reactors world-wide. The basic properties of these radiation sensors are described including their nuclear, electrical and mechanical characteristics. Recommendations are given for the proper choice of the self-powered detector emitter to provide the proper response time and radiation sensitivity desired for use in an effective in-core radiation monitoring system. Examples are shown of specific self-powered detector designs which are being effectively used in in-core instrumentation systems for pressurised water, heavy water and graphite moderated light water reactors. Examples are also shown of the mechanical configurations of in-core assemblies of self-powered detectors combined with in-core thermocouples presently used in pressurised water and heavy water reactors worldwide. This paper is a summary of a new IEC standard to be issued in 1996 describing the characteristics and test methods of self-powered detectors used in nuclear power reactors. (author)

  5. Development of SCINFUL-CG code to calculate response functions of scintillators in various shapes used for neutron measurement

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Akira; Kim, Eunjoo; Yamaguchi, Yasuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-10-01

    A Monte Carlo code SCINFUL has been utilized for calculating response functions of organic scintillators for high-energy neutron spectroscopy. However, the applicability of SCINFUL is limited to the calculations for cylindrical NE213 and NE110 scintillators. In the present study, SCINFUL-CG was developed by introducing a geometry specifying function and high-energy neutron cross section data into SCINFUL. The geometry package MARS-CG, the extended version of the CG (Combinatorial Geometry), was programmed into SCINFUL-CG to express various geometries of detectors. Neutron spectra in the regions specified by the CG can be evaluated by the track length estimator. The cross section data of silicon, oxygen and aluminum for neutron transport calculation were incorporated up to 100 MeV using the data of LA150 library. Validity of SCINFUL-CG was examined by comparing calculated results with those by SCINFUL and MCNP and experimental data measured using high-energy neutron fields. SCINFUL-CG can be used for the calculations of the response functions and neutron spectra in the organic scintillators in various shapes. The computer code will be applicable to the designs of high-energy neutron spectrometers and neutron monitors using the organic scintillators. The present report describes the new features of SCINFUL-CG and explains how to use the code. (author)

  6. Data analysis of a polycrystalline nickel sample obtained with neutron diffraction

    International Nuclear Information System (INIS)

    Parente, C.B.R.; Mazzochi, V.L.; Araujo Kaschny, J.R. de; Costa, M.S. da; Rizzo, P.; Campos, W.M.S.

    1990-01-01

    A simple analysis of the nickel structure was made. Neutron diffraction data were used, obtained with polycrystalline nickel placed in a cylindrical sample-holder with dimensions of 1,5cm of diameter and 5cm of height. The theoretical intensities were calculated of 3 forms: 1. without considering the temperature and obsorption effects, 2. considering only the temperature effect and 3. considering both the temperature and absorption effects. The disagreement factors found in this 3 cases were, respectively, R 1 = 13.4%, R 2 = 7,7% e R 3 = 7,5%. (L.C.)

  7. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...

  8. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  9. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  10. A quality assurance system for personal monitoring in Ireland: experience to date and transition from EN 45001 to ISO/IEC 17025

    International Nuclear Information System (INIS)

    Currivan, L.; Spain, D.; Rafferty, B.

    2002-01-01

    Up to 2000 the RPII was the competent authority for approval of dosimetry services operating within Ireland. However the transposition into Irish Law of Council Directive 96/29 Euratom in May 2000 means that dosimetry services operating in Ireland must now attain accreditation to the standard of EN-45001 or its equivalent. To comply with this new legislation the RPII sought accreditation for the Dosimetry Service from the Irish National Accreditation Board (NAB). In accordance with the EN-45000 series of European Standards and the relevant ISO guides NAB tests accuracy of results and accredits organisations as appropriate. In September 2000 accreditation was granted to the Dosimetry Service for individual monitoring of personnel who are occupationally exposed to ionising radiation. The scope of the accreditation covers the evaluation of personal doses, for photon and beta, using TLD. Frequent internal quality audits, together with periodic inter-laboratory test programmes, ensure that these quality standards are maintained. This accreditation fulfils the approval under legislation for dosimetry services. The new standard, ISO/IEC 17025, was introduced by ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) in 1999. This standard was introduced in Ireland by NAB and will be implemented for future assessments. The aim of this paper is to describe the quality system currently operated by the RPII's Dosimetry Service, our practical experience to date, and to outline the transition from EN-45001 to ISO/IEC 17025

  11. Low-energy impact of adaptive cylindrical piezoelectric-composite shells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanos, D.A. [University of Patras (United Kingdom). Dept. of Mechanical Engineering and Aeronautics; Christoforou, A.P. [Kuwait Univ. (Kuwait). Dept. of Mechanical Engineering

    2002-04-01

    A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-plane Ritz solution for the impact of open cylindrical piezoelectric-composite shells is developed and solved numerically using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cylindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact force. (author)

  12. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    International Nuclear Information System (INIS)

    Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di

    2015-01-01

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained

  13. Evaluation of the central libraries information security management at governmental universities located in Tehran, according to the international standard ISO/IEC 27002

    Directory of Open Access Journals (Sweden)

    Milad Malekolkalami

    2014-02-01

    Full Text Available This study assessed the evaluation of information security management status in central Libraries of governmental universities located in Tehran, according to ISO / I.E.C. 27002. Research method applied for the study is descriptive Survey and a questionnaire was used for collecting information. The questionnaire was distributed between the 74 central library managers of governmental universities in Tehran according to the recent list on the website of Ministry of Science, Research and Technology, that includes 39 components based on 11 indicators of the standard ISO/ I.E.C. 27002. Analysis of data has been done by using both descriptive and inferential statistics by Microsoft Excel 2007and SPSS statistical softwares. The results of research showed that the mean for libraries in 11 indexes are as follows: The mean for the first index, Security policy, is 3.91 , in the second index, organization of information security, is 4.23, in the third index, asset security management, is 4.38, in the fourth index, Human Resources Security management, is 4, in the fifth index, physical and environment Security management, is 4.07, in the sixth index, operations management and communications, is 4.15, in the Seventh index, access controls management, is 4.38, in the eighth index, information system acquisition, development and maintenance, is 3.92, in the ninth index, information security incident management, is 3.84, in the tenth index, business continuity management, is 3.46, in the eleventh index, compliance, is 3.69 that match with the standard ISO / IEC. 27002. The results of Research shown that totally mean for standard ISO/I.E.C. 27002 in the field of information security management in the central libraries, is 4 being in a good condition and there is no significant differences between the performance of the Central libraries of the governmental Universities in Tehran, since It is not observed significant difference between them in the field of

  14. ISO/IEC 17025–2017 "New requirements to the competence of test and calibration laboratories"

    Directory of Open Access Journals (Sweden)

    Baranova P. O.

    2018-05-01

    Full Text Available due to the continuous improvement of the regulatory framework, there is a growing demand for laboratory centers that provide services in the field of testing. The relevance of the topic lies in the transition of laboratories to the new version of ISO/IEC 17025–2017 «General requirements for the competence of test and calibration laboratories». The article compares two versions of the standard, reveals differences and similarities. And changes in the gradation of changes are also highlighted.

  15. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.ed [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Corse, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crimi, S. [Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458 (United States); Fox, J. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2010-12-21

    Two cylindrical LiTaO{sub 3} crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z{sup +} and z{sup -} cut crystal faces, neutrons were produced via the {sup 2}H(d,n){sup 3}He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D{sub 2}{sup +}) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10{sup 4} neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  16. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  17. Sensitivity optimization in whispering gallery mode optical cylindrical biosensors

    Science.gov (United States)

    Khozeymeh, F.; Razaghi, M.

    2018-01-01

    Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.

  18. Neutron radiographic testing of samples of special concrete containing recycled PET granules as aggregate

    International Nuclear Information System (INIS)

    Moraes, Antonio Carlos Alves de; Crispim, Verginia Reis

    2011-01-01

    This study aimed at inspecting microcracks in test specimens of special concrete, through neutron radiography tests. The thermal neutron flux used was extracted from the J-9 irradiation channel, placed in the thermal column of Argonauta/IEN/CNEN/RJ reactor, where a neutron radiographic system is installed. The test specimens inspected were molded in a cylindrical shape, with standard concrete and modified concrete where coarse sand was substituted by granules of recycled PET. They were submitted to compression in a SHIMADSU UH F 1000 press, causing microcracks. Then, slices of 50 μm thickness were obtained using an electrical saw. Gadolinium nitrate was used as contrast liquid in order to enhance the visualization of those microcracks. The Neutron Radiography technique proved to be appropriate for this kind of inspection, allowing to clearly visualizing the microcracks. Recycled PET granules met ABNT standards, and may be used in the construction of low income people houses, as structural concrete (25 % PP) or house floors (25% to 50% PEAD). The mechanical properties of compression and elasticity demonstrated for this special concrete, on Civil Engineering conventional tests, and by the neutron radiographic images obtained, showed that its use is viable even for civil construction in areas subject to seismic vents. (author)

  19. A 150 kV Isolation Transformer for a Neutron Generator

    International Nuclear Information System (INIS)

    Dechthummarong, C.; Pratumtip, P.; Thongleurm, C.; Vichaimongkol, P.; Charoennugul, R.; Vilaithong, T.

    1998-01-01

    The work aims at the design and construction of a 150 kV isolation transformer for a neutron generator. The transformer windings are designed to use cylindrical layers with circular enamel copper wires. The insulation of the dry type transformer uses the epoxy resin for encapsulated winding. This insulation is non-flammable under temperature 350 degree celsius and the breakdown voltage is 10-18 kV/mm. This insulation is suitable for insulating high voltage. The design of provides the temperature rise of winding not exceeding 65 degree celsius for protection of the cracking of epoxy resin due to the expansion of winding

  20. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    Science.gov (United States)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  1. On an analytical formulation for the mono-energetic neutron space-kinetic equation in full cylinder symmetry

    International Nuclear Information System (INIS)

    Oliveira, F.R.; Bodmann, B.E.J.; Vilhena, M.T.; Carvalho, F.

    2017-01-01

    Highlights: • The present work presents an exact solution to neutron spatial kinetic equation. • It is an exact solution in a heterogeneous cylinder with temporal dependence. • The solution was constructed through the separation of variables method. - Abstract: In the present work we discuss a system of partial differential equations that model neutron space-kinetics in cylindrical geometry and are defined by two sectionally homogeneous cylinder cells, mono-energetic neutrons and one group of delayed neutron precursors. The solution is determined using the technique of variable separation. The associated complete spectra with respect to each variable separation are analysed and truncated such as to allow a parameterized global solution. For the obtained solution we present some numerical results for the scalar neutron flux and its time dependence and projection on the cylinder axis z and the radial and cylinder axis projection. As a case study we consider an insertion of an absorbing medium in the upper cylinder cell. Continuity of the scalar flux at the interface between the two cylinder elements and conserved current density is explained and related to scale invariance of the partial differential equation system together with the initial and boundary conditions. Some numerical results for the scalar angular neutron flux and associated current densities are shown.

  2. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  3. Settling of a cylindrical particle in a stagnant fluid

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen

    The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...

  4. Power deposition in a cylindrical geometry using B-10 coatings

    International Nuclear Information System (INIS)

    Chung, A.K.; Prelas, M.A.

    1983-01-01

    The transport of charged particles produced by 10 B (n, α) Li and 235 U (n, νn) ff nuclear reactions in a two region cylindrical geometry is predicted. We employed a mean-range straight-flight approximation to calculate the power deposition by the charged particles in a gaseous medium. Our model demonstrated some features in a cylindrical experiment which were suspected but not proven. In the common slab model used by Guyot et al 1 and Romero 2 , the spatial distribution of power deposition is much flatter than it would be in a cylindrical model. A steeper gradient in the power deposition is expected in a cylindrical geometry than in a slab geometry. We also found that for a standard thickness of Boron-10 coating (1.73 μm) used in NPLs, the expected efficiency of a cylindrical geometry (7.5%) is much lower than the 12% efficiency predicted by the slab model. Indeed the use of slab geometry in modeling current NPL experimental devices is not accurate

  5. Experiments and calculations on neutron streaming through bent ducts

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, J.L.; Hoogenboom, J.E. (Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.); Zsolnay, E.M.

    1993-07-01

    Neutron spectra in a cylindrical straight duct and in bent ducts with angles of 30deg, 60deg and 90deg have been measured by the multiple foil activation and thermoluminescence dosimetry methods. Two-dimensional discrete ordinates and three-dimensional Monte Carlo calculations are executed, and the results are compared with the measurements. The flow rate at the duct entrance calculated by the DOT3.5 code is underestimated by approximately 30 %, due to a conversion of the core and reflector geometry from XY to RZ geometry. The fast neutron flux in the ducts is underestimated by 20 % by the MORSE-SGC/S code due to a too coarse angular mesh of the source, which does not properly represent the actual angular distribution of the fast flux, which is highly peaked forwardly into the ducts. The thermal neutron flux was over-estimated by the Monte Carlo calculation. A method is proposed to calculate the angular distribution of the flow rate at the duct entrance and to calculate the source strength and the angular distribution of the flow rate at the entrance of the second leg of the duct. The results are compared with those of the transport calculations. Generally, the agreement is quite satisfactory. (author).

  6. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Martin Johann

    2013-07-19

    exchanged for an array of cylindrical shaped neutron lenses. The measurements conducted with this temporary setup gave a first impression of the interaction of the multi-beam geometry and the employed neutron lenses. The Q-range accessible with such a setup at a standard SANS instrument was determined by means of calibration samples. Within this work especially the formation of the primary beam profile plays a significant role because of its substantial influence on the achievable resolution and data evaluation. Within this scope similarities and differences of the basic layout for neutron imaging and SANS or USANS are highlighted.

  7. Neutron μstiX. Micrometer structure investigation with real space and reciprocal space crossover using neutron imaging detectors

    International Nuclear Information System (INIS)

    Muehlbauer, Martin Johann

    2013-01-01

    exchanged for an array of cylindrical shaped neutron lenses. The measurements conducted with this temporary setup gave a first impression of the interaction of the multi-beam geometry and the employed neutron lenses. The Q-range accessible with such a setup at a standard SANS instrument was determined by means of calibration samples. Within this work especially the formation of the primary beam profile plays a significant role because of its substantial influence on the achievable resolution and data evaluation. Within this scope similarities and differences of the basic layout for neutron imaging and SANS or USANS are highlighted.

  8. Measurement and analysis of angular neutron spectra in a manganese pile

    International Nuclear Information System (INIS)

    Selvi, S.; Hayashi, S.A.; Kimura, I.; Kobayashi, K.; Yamamoto, S.; Mori, T.; Nishihara, H.; Kanazawa, S.; Nakagawa, M.

    1984-01-01

    The energy and angular distribution of neutrons in a Mn pile were measured by the linac time-of-flight method. A cylindrical Pb target for the production of photoneutrons was placed at the center of the pile. The experimental results were compared with the theoretical calculations using the group constants from the nuclear data files, JENDL-2 and ENDF/B-IV. Good agreement can be seen in the general shapes between calculated and measured angular spectra in three decades of energy range form a few keV to a few MeV. As far as can be concluded from the intercomparison, the neutron cross section data for Mn in ENDF/B-IV may be applicable to reactor design: however, several improvements for its resonance parameters can be recommended. A little more improvements are recommended for that in JENDL-2 from this intercomparison. (orig.) [de

  9. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  10. Spherical Harmonics Treatment of Epithermal Neutron Spectra in Reactor lattices

    International Nuclear Information System (INIS)

    Matausek, M.V.

    1972-04-01

    A procedure has been developed to solve the slowing down transport equation for neutrons in a cylindrized reactor lattice cell. Treating the anisotropy of the epithermal neutron flux by the spherical harmonics formalism, which reduces the space-angle-lethargy-dependent transport equation to the matrix integrodifferential equation in space and lethargy, and replacing the lethargy transfer integrals by finite-difference forms, a set of matrix ordinary differential equations, with lethargy and space dependent coefficients, is obtained. In the resonance region this set takes a lower block triangular form and can be directly solved by forward block substitution; in the lethargy range, where the fast fission effects have to be considered, the iterative procedure is introduced. A simple and efficient approximation is then proposed, making possible the analytical solution for the spatial dependence of the spherical harmonics flux moments. The proposed procedure has been numerically examined and approved. Some typical results are presented and discussed. (author)

  11. Study on Public Flood Risk Cognition and Behavioral Response Based on IEC Strategy

    Science.gov (United States)

    Shen, Xin; Xu, Xiaofeng; Zhou, Guilin; Pan, Shaolin; Mi, Tengfei

    2017-11-01

    In order to disseminate knowledge and information on flood risks in flood-prone areas, raise public awareness of flood risks and reduce possible damage to the public, a questionnaire survey was coducted among 260 residents of nine selected communities in Jiaozhou City to learn the public awareness and behavioral response to flood risks at different early warning levels. IEC key information of flood risk awareness was modified and formulated through group discussions, in-depth individual interviews and on-site observation. The awareness of residents in the project area was enhanced through the public participation, environmental management and flood management training, which plays a very important role in reducing flood losses.

  12. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  13. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  14. Total neutron cross sections of berkelium-249 and californium-249 below 100 eV

    International Nuclear Information System (INIS)

    Benjamin, R.W.; Harvey, J.A.; Hill, N.W.; Pandey, M.S.; Carlton, R.F.

    1979-01-01

    The neutron total cross sections of 249 Bk and 249 Cf have been measured from 0.03 to 100 eV using the Oak Ridge Electron Linear Accelerator (ORELA) as a source of pulsed neutrons. The 1.6 mm dia. cylindrical transmission samples contained initially up to 5.3 mg of 98% 249 Bk and 2% 249 Cf: 4.5 years later, when the final measurements were made, the composition of the samples had become 2.5% 249 Bk, 96.9% 249 Cf, and 0.6% 245 Cm. Samples were cooled with liquid nitrogen to reduce Doppler broadening. Thirty-nine resonances were identified in 249 Bk and analyzed using a single-level Breit-Wigner formalism. Fifty-five resonances were identified in 249 Cf and analyzed using an R-matrix multilevel formalism. Fifty-five resonances were identified in 249 Cf and analyzed using an R-matrix multilevel formalism. The resonance parameters obtained have been used to determine the average level spacings and the s-wave neutron and fission strength functions. Where possible, bound-level parameters were derived to fit the thermal neutron total cross section data

  15. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  16. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  17. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  18. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  19. Analysis of neutron flux measurement systems using statistical functions

    International Nuclear Information System (INIS)

    Pontes, Eduardo Winston

    1997-01-01

    This work develops an integrated analysis for neutron flux measurement systems using the concepts of cumulants and spectra. Its major contribution is the generalization of Campbell's theorem in the form of spectra in the frequency domain, and its application to the analysis of neutron flux measurement systems. Campbell's theorem, in its generalized form, constitutes an important tool, not only to find the nth-order frequency spectra of the radiation detector, but also in the system analysis. The radiation detector, an ionization chamber for neutrons, is modeled for cylindrical, plane and spherical geometries. The detector current pulses are characterized by a vector of random parameters, and the associated charges, statistical moments and frequency spectra of the resulting current are calculated. A computer program is developed for application of the proposed methodology. In order for the analysis to integrate the associated electronics, the signal processor is studied, considering analog and digital configurations. The analysis is unified by developing the concept of equivalent systems that can be used to describe the cumulants and spectra in analog or digital systems. The noise in the signal processor input stage is analysed in terms of second order spectrum. Mathematical expressions are presented for cumulants and spectra up to fourth order, for important cases of filter positioning relative to detector spectra. Unbiased conventional estimators for cumulants are used, and, to evaluate systems precision and response time, expressions are developed for their variances. Finally, some possibilities for obtaining neutron radiation flux as a function of cumulants are discussed. In summary, this work proposes some analysis tools which make possible important decisions in the design of better neutron flux measurement systems. (author)

  20. The sensitivity of LaBr{sub 3}:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tain, J.L., E-mail: tain@ific.uv.es [Instituto de Física Corpuscular, CSIC–Universidad de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Agramunt, J.; Algora, A. [Instituto de Física Corpuscular, CSIC–Universidad de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Aprahamian, A. [University of Notre Dame, Department of Physics, IN 46556, Notre Dame (United States); Cano-Ott, D. [Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Fraile, L.M. [Universidad Complutense, Grupo de Fisica Nuclear, CEI Moncloa, E-28040 Madrid (Spain); Guerrero, C. [CERN, Geneva (Switzerland); Jordan, M.D. [Instituto de Física Corpuscular, CSIC–Universidad de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Mach, H. [University of Notre Dame, Department of Physics, IN 46556, Notre Dame (United States); Universidad Complutense, Grupo de Fisica Nuclear, CEI Moncloa, E-28040 Madrid (Spain); Martinez, T.; Mendoza, E. [Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Mosconi, M.; Nolte, R. [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany)

    2015-02-21

    The neutron sensitivity of a cylindrical ⊘1.5 in.×1.5 in. LaBr{sub 3}:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to γ-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.