WorldWideScience

Sample records for cylindrical gel systems

  1. Formation and Characterization of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Joester, Derk; Burghardt, Wesley; Shull, Kenneth

    2012-02-01

    Cylindrical micelles formed from block copolymer solutions closely mimic biological fibers that are presumed to guide mineral formation during biosynthesis of hard tissues like bone. The goal of our work is to use acrylic block copolymers as oriented templates for studying mineral formation reactions in model systems where the structure of the underlying template is well characterized and reproducible. Self-consistent mean field theory is first applied to investigate the thermodynamically stable micellar morphologies as a function of temperature and block copolymer composition. Small-angle x-ray scattering, optical birefringence and shear rheometry are used to study the morphology development during thermal processing. Initial experiments are based on a thermally-reversible alcohol-soluble system that can be converted to an aqueous gel by hydrolysis of a poly(t-butyl methacrylate) block to a poly(methacrylic acid) block. Aligned cylindrical domains are formed in the alcohol-based system when shear is applied in an appropriate temperature regime, which is below the critical micelle temperature but above the temperature at which the relaxation time of the gels becomes too large. Processing strategies for producing the desired cylindrical morphologies are being developed that account for both thermodynamic and kinetic effects.

  2. Spiral modes in cold cylindrical systems

    International Nuclear Information System (INIS)

    Robe, H.

    1975-01-01

    The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de

  3. Cylindrical Induction Melter Modicon Control System

    International Nuclear Information System (INIS)

    Weeks, G.E.

    1998-04-01

    In the last several years an extensive R ampersand D program has been underway to develop a vitrification system to stabilize Americium (Am) and Curium (Cm) inventories at SRS. This report documents the Modicon control system designed for the 3 inch Cylindrical Induction Melter (CIM)

  4. Improvement in the accuracy of polymer gel dosimeters using scintillating fibers

    International Nuclear Information System (INIS)

    Tremblay, Nicolas M; Hubert-Tremblay, Vincent; Bujold, Rachel; Beaulieu, Luc; Lepage, Martin

    2010-01-01

    We propose a novel method for the absolute calibration of polyacrylamide gel (PAG) dosimeters with one or more reference scintillating fiber dosimeters inserted inside the gel. Four calibrated scintillating fibers were inserted into a cylindrical glass container filled with a PAG dosimeter irradiated with a wedge filtered 6 MV photon beam. Calibration curves using small glass vials containing the same gel as the cylindrical containers were used to obtain a first calibration curve. This calibration curve was then adjusted with the dose measured with one of the scintillating fibers in a low gradient part of the field using different approaches. Among these, it was found that a translation of the gel calibration curve yielded the highest accuracy with PAG dosimeters.

  5. Sol-gel additive for systems with inorganic binders

    International Nuclear Information System (INIS)

    Akstinat, M.; Antenen, D.; Suter, W.

    1996-01-01

    A sol-gel additive for inorganic binder systems and sol-gel process for producing air-placed concrete and mortar by using such sol-gel additives are disclosed. Sol-gel additives for gel-derived inorganic binder systems (for example plaster, cement, lime, special slags, etc.) marked improve the consistency of such binder systems during processing or allow their consistency to be regulated. In addition, these sol-gel additives regulate setting times and substantially improve durability (chemical resistance, reduced permeability) and the mechanical properties of the set binder system. (author)

  6. Respiration activity of Escherichia coli entrapped in a cone-shaped microwell and cylindrical micropore monitored by scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    Kaya, Takatoshi; Numai, Daisuke; Nagamine, Kuniaki; Aoyagi, Shigeo; Shiku, Hitoshi; Matsue, Tomokazu

    2004-06-01

    The metabolic activity of E. coli cells embedded in collagen gel microstructures in a cone-shaped well and in a cylindrical micropore was investigated using scanning electrochemical microscopy (SECM), based on the oxygen consumption rate and the conversion rate from ferrocyanide to ferricyanide. The analysis of the concentration profiles for oxygen and ferrocyanide afforded the oxygen consumption rate and the ferrocyanide production rate. A comparison indicated that the ferrocyanide production rates were larger than the oxygen consumption rate, and also that the rates observed in the cylindrical micropore were larger than those observed in the cone-shaped well. The ferrocyanide production rate of a single E. coli cell was calculated to be (5.4 +/- 2.6) x 10(-19) mol s(-1), using a cylindrical micropore system.

  7. Spherical and cylindrical particle resonator as a cloak system

    Science.gov (United States)

    Minin, I. V.; Minin, O. V.; Eremeev, A. I.; Tseplyaev, I. S.

    2018-05-01

    The concept of dielectric spherical or cylindrical particle in resonant mode as a cloak system is offered. In fundamental modes (modes with the smallest volume correspond to |m| = l, and s = 1) the field is concentrated mostly in the equatorial plane and at the surface of the sphere. Thus under resonance modes, such perturbation due to cuboid particle inserted in the spherical or cylindrical particle has almost no effect on the field forming resonance regardless of the value of internal particle material (defect) as long as this material does not cover the region where resonance takes place.

  8. Preparation and Properties of Polyester-Based Nanocomposite Gel Coat System

    Directory of Open Access Journals (Sweden)

    P. Jawahar

    2006-01-01

    Full Text Available Nanocomposite gel coat system is prepared using unsaturated polyester resin with aerosil powder, CaCO3, and organoclay. The influence of organoclay addition on mechanical and water barrier properties of gel coat system is studied for different amount (1, 2, and 3 wt % of organoclay. The nanolevel incorporation of organoclay improves the mechanical and water barrier properties of nanocomposite gel coat system. The nanocomposite gel coat system exhibits 55% improvement in tensile modulus and 25% improvement in flexural modulus. There is a 30% improvement in impact property of nanocomposite gel coat system. The dynamic mechanical analysis shows a slight increase in glass transition temperature for nanocomposite gel coat system.

  9. Contribution to the investigation of the structure and formation kinetics of a steroid gel

    International Nuclear Information System (INIS)

    Terech, Pierre

    1983-01-01

    This research thesis presents and discusses the results of the study of a thermally reversible gel made of a steroid system (nitroxide or amine)/cyclohexane. After a rheological characterization, the system in studied by EPR (Electronic Paramagnetic Resonance), small-angle neutron scattering, infrared absorption spectroscopy, optical and electronic microscopy, differential thermal analysis, and dichroism measurements (IR - visible - UV). The temperature/concentration phase diagram is determined for this over-saturation gel. The one-dimensional character of elements which make up the gel mesh, the radius of gyration for their section, the fibre linear compactness, and intermolecular distances are determined. Results can be interpreted by means of a hollow cylindrical fibre model in which molecules aggregate in helix. The electronic microscopy performed on the dried gel confirms the existence of long fibres with a secondary helical structure. Gelation kinetics can be described by a two-step model. The study of kinetic parameters confirms that over-saturation and H bonds are at the origin of the process [fr

  10. Modelling of erosion of bentonite gel by gel/sol flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu (Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2010-11-15

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  11. Modelling of erosion of bentonite gel by gel/sol flow

    International Nuclear Information System (INIS)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu

    2010-11-01

    Bentonite intrusion into a fracture intersecting the canister deposition hole is modelled. The model describes the expansion of the bentonite within the fracture. It accounts for the repulsive electrostatic double-layer forces, the attractive van der Waals forces and friction forces between the particles and the water. The model also takes into account the diffusion of the colloid particles in the smectite sol. Diffusion of a counterion, sodium, is accounted for as this strongly influences the double layer force and the viscosity of the gel/sol. The gel/sol is considered to be a fluid with a varying viscosity that is strongly dependent on the bentonite volume fraction in the gel and the sodium concentration in the water. Two different geometries were modelled; a rectangular and a cylindrical. The rectangular geometry was used to gain experience with the processes and mechanisms and how they interact since the cylindrical geometry was somewhat less stable numerically and more time consuming. In the rectangular geometry a fracture 1 metre long in the flow direction was modelled. In both geometries the fracture size was selected sufficiently large to ensure that the water velocity, near the distant border was nearly the same as the approaching water velocity and that the smectite concentration there was vanishingly small. It was found that the velocity of the fluid drops considerably where the bentonite volume fraction is larger than 1-2%. This is due to the strong increase in viscosity with increasing bentonite volume fraction. The loss of smectite by the slowly flowing fluid was found to be proportional to the square root of the seeping water velocity for the rectangular geometry. For the cylindrical geometry, the dependence is somewhat lower (exponent about 0.4) since the length of the gel/water interface decreases with increasing water flow rate. The penetration depth of the gel/water interface decreases with increasing water flow rate. For water velocity of the

  12. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  13. System of cylindrical drift chambers in a superconducting solenoid

    International Nuclear Information System (INIS)

    Camilleri, L.; Blumenfeld, B.J.; Dimcovski, Z.

    1978-01-01

    A superconducting solenoid at the CERN ISR was equipped with a system of high accuracy cylindrical drift chambers. This detector consists of eight layers of field shaped drift cells with a delay line opposite each sense wire to provide coupled two dimensional readout. The design, construction, and operation of this system are discussed. The resolution and performance of the delay lines and sense wires under ISR running conditions are shown

  14. ELECTROMAGNETIC FIELDS IN CYLINDRICAL INDUCTION INDUCTOR SYSTEM WITH MASSIVE SHIELD

    Directory of Open Access Journals (Sweden)

    D. Piskun

    2010-12-01

    Full Text Available The processes in a cylindrical induction inductor system with a massive additional non-magnetic shield and a thin ferromagnetic sheet blank are considered and the formula for induced currents and the strength of excited fields have been obtained.

  15. About local fractional three-dimensional compressible Navier-Stokes equations in Cantor-type cylindrical co-ordinate system

    Directory of Open Access Journals (Sweden)

    Gao Guo-Ping

    2016-01-01

    Full Text Available In this article, we investigate the local fractional 3-D compressible Navier-Stokes equation via local fractional derivative. We use the Cantor-type cylindrical co-ordinate method to transfer 3-D compressible Navier-Stokes equation from the Cantorian co-ordinate system to the Cantor-type cylindrical co-ordinate system.

  16. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    Science.gov (United States)

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A

  17. Feasibility of quantitative PET/CT dosimetry for proton therapy using polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, O A; Hsi, W C; Lopatiuk-Tirpak, O; Sriprisan, S I; Meeks, S L; Kupelian, P A; Li, Z; Palta, J R, E-mail: lenatirpak@gmail.co

    2010-11-01

    A feasibility study of proton beam PET/CT off-line quantitative dosimetry using polymer gels is presented. A newly developed proton-sensitive polymer gel dosimeter (BANG( (registered)) 3-Pro2) is used as a dosimeter and a tissue-equivalent phantom medium for this study. We explore a new approach to correlating measured proton 3-dimensional (3D) dose distributions directly to measured positron emission from in the gel medium using PET/CT imaging. A large cylindrical volume (2.2 Litres) of the gel was irradiated with a clinical modulated proton beam using irregular-shaped aperture geometry. The gel was imaged in a nearby PET/CT unit immediately (<3 min) after irradiation. Dose distribution in the gel was generated using an optical tomography scanning system. Direct 3D spatial comparison of dose and positron emission distributions was then performed. Profiles along the beam path show that the distal fall-off of the dose is nearly 2 cm deeper than the activity profile which is comparable to previous studies with plastic phantoms and Monte Carlo simulations of activity distributions. Planar PET and dose distributions at depth and perpendicular to beam axis show a strong one-to-one spatial correlation. This phantom study demonstrates that the gel medium could be potentially useful for quantifying various physical factors that can influence the PET activity range verification method in patients.

  18. The Pulsed Cylindrical Magnetron for Deposition

    Science.gov (United States)

    Korenev, Sergey

    2012-10-01

    The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.

  19. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    Science.gov (United States)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  20. Criticality calculations by source-collision iteration technique for cylindrical systems

    International Nuclear Information System (INIS)

    Sundaram, V.K.; Gopinath, D.V.

    1977-01-01

    A fast-converging iterative technique is presented which uses first collision probabilities developed for obtaining criticality parameters in two-region cylindrical systems with multigroup structure in energy of the neutrons. The space transmission matrix is obtained part analytically and part numerically through evaluation of a single-fold integral. Critical dimensions for condensed systems of uranium and plutonium computed using this method are presented and compared with published values

  1. [Semisynthetic cellulose derivatives as the base of hydrophilic gel systems].

    Science.gov (United States)

    Bajerová, M; Gajdziok, J; Dvorácková, K; Masteiková, R; Kollár, P

    2008-04-01

    The field of drug technology widely ulilizes gel systems of high-molecular substances, which have a number of advantages, such as low toxicity, availability, unique physical properties, biocompatibility, mucoadhesivity, and others. Gel systems are used in the field of local as well as general therapy, in both shape-specific and shape-non-specific dosage forms, in medicaments of the first, second, and third generations. An important group of gels employed in pharmacy are hydrophilic gels or hydrogels, most frequently composed of hydrophilic polymers of natural, semisynthetic and synthetic origin. Though cellulose derivatives as the representatives of polymers of semisynthetic origin are used in pharmaceutical technology for a long time, their research continues and their other possible uses are being searched for. Their advantages include especially safety, easy availability, and a relatively low price. The review paper describes selected cellulose derivatives, their properties and uses in pharmaceutical technology with regard to their use in the field of production of gel systems.

  2. The data acquisition system for a SPECT with cylindrical detector

    International Nuclear Information System (INIS)

    Jin Yongjie; Liu Yinong; Li Yuanjing

    1995-01-01

    The data acquisition and position estimation system has been developed for a multi-crystal SPECT with modular cylindrical detector. The electronics screen photon energy determines the detector module stricken by incident photon. The relevant PMT outputs are digitized and passed onto a Pentium PC. Then PMT gain normalization, detector bar identification, energy correction, event coordinates calculation and linearity correction are real-time performed by the PC. The system has been employed in clinical brain imaging

  3. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  4. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    Science.gov (United States)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  5. Superconductive ceramics obtained with sol gel method

    International Nuclear Information System (INIS)

    Arcangeli, A.; Mosci, A.; Nardi, A.; Vatteroni, R.; Zondini, C.

    1988-01-01

    Several sol gel routes have been considered, studied and developed to produce large quantities of granulates which can be processed to obtain ceramics having good superconducting characteristics. In the considered process a mixture of commercial nitrates is atomized, at room temperature, in a solution 1:1 of Primene JMT and Benzene and a pale blue gel of the starting elements is suddently formed. The granulates obtained are free flowing, very reactive and well suited for pressing. For their intrinsic characteristics they could be very good precursors for the production of large quantities of superconductive ceramics in different forms. The precipitated gel is dried, calcinated, pressed in the form of cylindrical pellets which are sintered up to 960 degrees C. No griding or different thermal treatments are needed. The sintered material has low electric resistence, shows a clear Meissner effect and has a transition temperature of between 91 and 95 K

  6. Manufacture of Regularly Shaped Sol-Gel Pellets

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  7. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle

    Science.gov (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro

    2013-04-01

    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  8. [Chemical constituents from endophyte Chaetomium globosum in Imperata cylindrical].

    Science.gov (United States)

    Shen, Li; Zhu, Li; Wei, Zhong-qi; Li, Xiao-wen; Li, Ming; Song, Yong-chun

    2015-12-01

    Isolation and purification of chemical constituents from solid culture of endophyte Chaetomium globosum in Imperata cylindrical was performed through silica gel column chromatography, gel filtration over Sephadex LH-20 and preparative HPLC. Nine compounds were obtained and their structures were determined as chaetoglobosin F(1), chaetoglobosin Fex(2), chaetoglobosin E(3) cytoglobosin A(4), penochalasin C(S), isochaetoglobosin D (6), N-benzoylphenylalaninyl-N-benzoyphenylalaninate(7), uracil(8) and 5-methyluracil(9), respectively, based on HR-MS and NMR data and comparison with literatures. Compound 7 was isolated from Chaeeomium sp. for the first time. In vitro cytotoxicity of compounds was evaluated using MTT mothed and 1,3,4 and 5 showed inhibition activity to the human cervical carcinoma cell HeLa with IC50 values of 99.43, 23.77, 97.92, 86.25 micromol x L(-1), while positive cotolocisnin Ad apno1ch alse IC50 24.33 micromol x L(-1).

  9. Application of gel dosimetry - A preliminary study on verification of uniformity of activity and length of source used in Beta-Cath system

    International Nuclear Information System (INIS)

    Subramaniam, S.; Rabi Raja Singh, I.; Visalatchi, S.; Paul Ravindran, B.

    2002-01-01

    Recently the intraluminal irradiation of coronary arteries following balloon angioplasty is found to reduce proliferation of smooth muscle cells and restenosis. Among the isotopes used for the intracoronary irradiation, 90 Sr/Y appears to be ideal (H I Almos et al, 1996). In 1984 Gore et al proposed that radiation induced changes in the well-established Fricke solution could be probed with Nuclear Magnetic Resonance (NMR) relaxation measurements rather than using conventional spectrophotometry measurements. This was a major step in the development of gel dosimetry and since then gel dosimetry has been one of the major advances in the dosimetry of complex radiation fields has been in the area of gel dosimetry. In this preliminary work on gel dosimetry we present the verification of uniformity of activity along the length of the source train and verification of the length of the source used in the Beta-Cath system used for intracoronary brachytherapy with ferrous gel dosimeter. The Beta-Cath system obtained from Novoste, Norcross, GA was used in this study. It consists of a source train of 16 90 Sr/Y sources each of length 2.5mm. The total length of the source train is 40mm. For preparation of the Ferrous-Gelatin Gel, the recipe provided by the London Regional Cancer Center, London Ontario, Canada was used. Stock solutions of 50mM H 2 SO 4 , 0.3 mM ferrous ammonium sulphate, 0.05mM Xylenol orange was first prepared. The gel was prepared by mixing 4% gelatin with distilled water while stirring in a water bath at 40-42 deg. C. Acid solution, Ferrous ammonium sulphate solution and Xylenol orange were added and stirred in the water bath for about an hour to allow aeration. The mixture was poured in to three 20ml syringes to form the gel and stored in the refrigerator at 5 deg. C. For irradiation with Beta-Cath, the gel was prepared in three cylindrical 20ml syringes. A nylon tube having the same dimension as that of the delivery catheter used in intra-coronary was placed

  10. A mucoadhesive in situ gel delivery system for paclitaxel.

    Science.gov (United States)

    Jauhari, Saurabh; Dash, Alekha K

    2006-06-02

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at drug loads of 0.18%, 0.30%, and 0.54% (wt/wt), in Sorensen's phosphate buffer (pH 7.4) at 37 degrees C. Different mucin-producing cell lines (Calu-3>Caco-2) were selected for PTX transport studies. Transport of PTX from solution and gel delivery system was performed in side by side diffusion chambers from apical to basal (A-B) and basal to apical (B-A) directions. In vitro release studies revealed that within 4 hours, only 7.61% +/- 0.19%, 12.0% +/- 0.98%, 31.7% +/- 0.40% of PTX were released from 0.18%, 0.30%, and 0.54% drug-loaded gel formulation, respectively, in absence of Tween 80. However, in presence of surfactant (0.05% wt/vol) in the dissolution medium, percentages of PTX released were 28.1% +/- 4.35%, 44.2% +/- 6.35%, and 97.1% +/- 1.22%, respectively. Paclitaxel has shown a polarized transport in all the cell monolayers with B-A transport 2 to 4 times higher than in the A-B direction. The highest mucin-producing cell line (Calu-3) has shown the lowest percentage of PTX transport from gels as compared with Caco-2 cells. Transport of PTX from mucoadhesive gels was shown to be influenced by the mucin-producing capability of cell.

  11. A mucoadhesive in situ gel delivery system for paclitaxel

    OpenAIRE

    Jauhari, Saurabh; Dash, Alekha K.

    2006-01-01

    MUC1 gene encodes a transmembrane mucin glycoprotein that is overexpressed in human breast cancer and colon cancer. The objective of this study was to develop an in situ gel delivery system containing paclitaxel (PTX) and mucoadhesives for sustained and targeted delivery of anticancer drugs. The delivery system consisted of chitosan and glyceryl monooleate (GMO) in 0.33M citric acid containing PTX. The in vitro release of PTX from the gel was performed in presence and absence of Tween 80 at d...

  12. Introduction of a deformable x-ray CT polymer gel dosimetry system

    Science.gov (United States)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the

  13. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    Science.gov (United States)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  14. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    Science.gov (United States)

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  15. Controlling an acoustic wave with a cylindrically-symmetric gradient-index system

    International Nuclear Information System (INIS)

    Zhang Zhe; Li Rui-Qi; Liang Bin; Zou Xin-Ye; Cheng Jian-Chun

    2015-01-01

    We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential to numerically control acoustic waves in different ways. The trajectory of an acoustic wave within the system is derived by employing the theory of geometric acoustics, and the validity of the theoretical descriptions is verified numerically by using the finite element method simulation. The results show that by tailoring the distribution function of the refractive index, the proposed system can yield a tunable manipulation of acoustic waves, such as acoustic bending, trapping, and absorbing. (paper)

  16. In situ gel systems as 'smart' carriers for sustained ocular drug delivery.

    Science.gov (United States)

    Agrawal, Ashish Kumar; Das, Manasmita; Jain, Sanyog

    2012-04-01

    In situ gel systems refer to a class of novel delivery vehicles, composed of natural, semisynthetic or synthetic polymers, which present the unique property of sol-gel conversion on receipt of biological stimulus. The present review summarizes the latest developments in in situ gel technology, with regard to ophthalmic drug delivery. Starting with the mechanism of ocular absorption, the review expands on the fabrication of various polymeric in situ gel systems, made up of two or more polymers presenting multi-stimuli sensitivity, coupled with other interesting features, such as bio-adhesion, enhanced penetration or sustained release. Various key issues and challenges in this area have been addressed and critically analyzed. The advent of in situ gel systems has inaugurated a new transom for 'smart' ocular delivery. By virtue of possessing stimuli-responsive phase transition properties, these systems can easily be administered into the eye, similar to normal eye drops. Their unique gelling properties endow them with special features, such as prolonged retention at the site of administration, followed by sustained drug release. Despite the superiority of these systems as compared with conventional ophthalmic formulations, further investigations are necessary to address the toxicity issues, so as to minimize regulatory hurdles during commercialization.

  17. Bio-Inspired Wide-Angle Broad-Spectrum Cylindrical Lens Based on Reflections from Micro-Mirror Array on a Cylindrical Elastomeric Membrane

    Directory of Open Access Journals (Sweden)

    Chi-Chieh Huang

    2014-06-01

    Full Text Available We present a wide-angle, broad-spectrum cylindrical lens based on reflections from an array of three-dimensional, high-aspect-ratio micro-mirrors fabricated on a cylindrical elastomeric substrate, functionally inspired by natural reflecting superposition compound eyes. Our device can perform one-dimensional focusing and beam-shaping comparable to conventional refraction-based cylindrical lenses, while avoiding chromatic aberration. The focal length of our cylindrical lens is 1.035 mm, suitable for micro-optical systems. Moreover, it demonstrates a wide field of view of 152° without distortion, as well as modest spherical aberrations. Our work could be applied to diverse applications including laser diode collimation, barcode scanning, holography, digital projection display, microlens arrays, and optical microscopy.

  18. Radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems

  19. High-resolution simulations of unstable cylindrical gravity currents undergoing wandering and splitting motions in a rotating system

    Science.gov (United States)

    Dai, Albert; Wu, Ching-Sen

    2018-02-01

    High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the

  20. Characteristics of a delay-line readout in a cylindrical drift chamber system

    International Nuclear Information System (INIS)

    Barber, R.; Ahmed, M.W.; Dzemidzic, M.; Empl, A.; Hungerford, E.V.; Lan, K.J.; Wilson, J.; Cooper, M.D.; Gagliardi, C.A.; Haim, D.; Kim, G.J.; Koetke, D.D.; Tribble, R.E.; Van Ausdeln, L.A.

    2002-01-01

    This paper reports on the design, construction, and operational characteristics of a delay-line readout implemented on the cathode foils of a cylindrical drift chamber system. The readout was used to determine the position of an event along the length of the 1.74 m drift wires in the MEGA detectors used at the Los Alamos Meson Physics Facility. The performance of the system is interpreted by comparison to a PSPICE simulation, and to simple analytical models

  1. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NARCIS (Netherlands)

    Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.

    2006-01-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons

  2. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  3. Sustained subconjunctival protein delivery using a thermosetting gel delivery system.

    Science.gov (United States)

    Rieke, Erin R; Amaral, Juan; Becerra, S Patricia; Lutz, Robert J

    2010-02-01

    An effective treatment modality for posterior eye diseases would provide prolonged delivery of therapeutic agents, including macromolecules, to eye tissues using a safe and minimally invasive method. The goal of this study was to assess the ability of a thermosetting gel to deliver a fluorescently labeled protein, Alexa 647 ovalbumin, to the choroid and retina of rats following a single subconjunctival injection of the gel. Additional experiments were performed to compare in vitro to in vivo ovalbumin release rates from the gel. The ovalbumin content of the eye tissues was monitored by spectrophotometric assays of tissue extracts of Alexa 647 ovalbumin from dissected sclera, choroid, and retina at time points ranging from 2 h to 14 days. At the same time points, fluorescence microscopy images of tissue samples were also obtained. Measurement of intact ovalbumin was verified by LDS-PAGE analysis of the tissue extract solutions. In vitro release of Alexa 488 ovalbumin into 37 degrees C PBS solutions from ovalbumin-loaded gel pellets was also monitored over time by spectrophotometric assay. In vivo ovalbumin release rates were determined by measurement of residual ovalbumin extracted from gel pellets removed from rat eyes at various time intervals. Our results indicate that ovalbumin concentrations can be maintained at measurable levels in the sclera, choroid, and retina of rats for up to 14 days using the thermosetting gel delivery system. The concentration of ovalbumin exhibited a gradient that decreased from sclera to choroid and to retina. The in vitro release rate profiles were similar to the in vivo release profiles. Our findings suggest that the thermosetting gel system may be a feasible method for safe and convenient sustained delivery of proteins to choroidal and retinal tissue in the posterior segments of the eye.

  4. Read/write performance of perpendicular double-layered cylindrical media

    International Nuclear Information System (INIS)

    Yamada, H.; Shimatsu, T.; Watanabe, I.; Tsuchiyama, R.; Aoi, H.; Muraoka, H.; Nakamura, Y.

    2005-01-01

    A cylindrical magnetic storage system using perpendicular double-layered media has been developed. CoCrTa/CoZrNb deposited on a rotating cylindrical substrate shows perpendicular anisotropy and magnetic properties, which have almost the same characteristics as conventional disk-media. The fundamental read/write characteristics of perpendicular double-layered cylindrical media were measured using a single-pole-type (SPT) writer with a sliding-contact-type slider and a merged giant magneto-resistive (GMR) reader with a one-pad-type slider designed for use with cylindrical media. Preliminary studies for improving the characteristics of the recording layer are also described

  5. Sampling tritiated water vapor from the atmosphere by an active system using silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Alegria, N., E-mail: natalia.alegria@ehu.es [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain); Idoeta, R.; Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, E.T.S.I. de Bilbao, University of the Basque Country (UPV/EHU), Alameda de Urquijo, s/n 48013 Bilbao (Spain)

    2011-11-15

    Among the different methods used to collect the tritiated water vapor (HTO) contained in the atmosphere, one of the most worldwide used is its collection using an air pump, which forces the air to pass through a dry silica gel trap. The silica gel is then distilled to remove the water collected, which is measured in a liquid scintillation counting system. In this paper, an analysis of the water collection efficiency of the silica gel has been done as a function of the temperatures involved, the dimensions of the pipe driving the air into the silica gel traps, the air volume passing through the trap and the flow rates used. Among the obtained conclusions, it can be pointed out that placing the traps inside a cooled container, the amount of silica gel needed to collect all the water contained in the air passing through these traps can be estimated using a weather forecast and a psychometric chart. To do this, and as thermal equilibrium between incoming and open air should be established, a suitable design of the sampling system is proposed. - Highlights: > To recollect the atmosphere air tritiated water vapor, an active system was used. > The system is an air pump and three traps with silica gel connected by a rubber pipe. > The silica gel retention depends on the meteorological conditions and the flow rate. > The amount of water collected and the mass of silica gel need were calculated, F.

  6. In situ production of microporous foams in sub-millimeter cylindrical gold targets

    International Nuclear Information System (INIS)

    Fan Yongheng; Luo Xuan; Fang Yu; Ren Hongbo; Yuan Guanghui; Wang Honglian; Zhou Lan; Zhang Lin; Du Kai

    2009-01-01

    The preparation of microcellular foam in sub-millimeter cylindrical gold targets is described. Small, open-ended, gold cylinders of 400 μm diameter, 700 μm length, and 20 μm wall thickness were fabricated by electroplating gold onto a silicon bronze mandrel and leaching the mandrel with concentrated nitric acid. After several rinsing and cleaning steps, the cylinders were filled with a solution containing acrylate monomers. The solution was polymerized in situ with ultraviolet light to produce a gel. Precipitation of these gels in a non-solvent such as methanol and subsequent drying by means of a critical point drying apparatus produced cylinders filled with microporous foams. The foams have densities of 50 mg · cm -3 and cell sizes on more than 1 μm. They fill the cylinders completely without shrinkage during the drying process, and need no subsequent machining. (authors)

  7. Development of new cylindrical magnetrons for industrial use

    International Nuclear Information System (INIS)

    Clayton, B.

    2000-09-01

    A number of alternative techniques were considered and tested with a view to the construction of a cylindrical sputtering device. This device was required to be capable of depositing tribological coatings inside approximately cylindrical substrates of diameters less than 100mm, in an industrial situation. A cylindrical magnetron device was designed, and constructed as a prototype, using a magnetic assembly inside a cylindrical target with outside diameter (o.d.) 40mm. Two alternative magnetic assemblies were tested, and found to have complimentary advantages. The magnetron characteristics of the device were tested, as were key properties (such as adhesion level and hardness) of the coatings deposited. In all cases good results were obtained. A 22mm o.d. device based on the same design was shown to operate, but with less satisfactory characteristics. In an attempt to improve the miniaturised design, the feasibility of gas cooling (rather than water cooling) the cylindrical magnetron was demonstrated. A system incorporating four 40mm o.d. cylindrical magnetrons was designed, constructed and briefly tested. This was intended to prove the feasibility of using a multi-magnetron system to reduce the cost to coat. Its dimensions and design were tailored to an industrially specified engine block. In use the plasma rings formed on the 40mm magnetron target surfaces during operation were found to be of unequal intensities, especially on the shorter magnetron design used in the four-fold system. In an attempt to tackle this problem, a finite element model of the magnetic field generated by the magnetic assembly was built, run and verified. Changes were made to this model, and a new .magnet assembly was built and tested based on the results obtained. This did not lead to a final solution of the problem, but has set bounds within which the solution must lie. (author)

  8. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits.

    Science.gov (United States)

    Pang, Xiaochen; Li, Jiawei; Pi, Jiaxin; Qi, Dongli; Guo, Pan; Li, Nan; Wu, Yumei; Liu, Zhidong

    2018-03-01

    Systemic absorption of ocularly administered Brimonidine Tartrate has been reported to give rise to several side-effects. Hence, it has become crucial to develop a delivery system that could increase efficacy and reduce systemic absorption. Therefore, the present work aims to develop Brimonidine Tartrate gels with different concentrations (0.05%, 0.1%, and 0.2% w/v, respectively) using Carbopol 974 P and HPMC E4M, and compare the therapeutic efficacy and systemic absorption with that of eye drop (0.2%, w/v) by UPLC-MS/MS. The result of histological analysis did not show any morphological or structural changes after the administration of formulations. In vitro residence time studies demonstrated that the gels exhibited a better precorneal residence time as compared with the eye drop. The gels with lower concentrations of the drug (0.05% and 0.1%, w/v) could significantly decrease intraocular pressure (IOP) in both normal and water-loaded rabbits as compared to the eye drop. Finally, the values of the ratio of AUC (0→∞) in comparison to eye drop showed the gels with lower concentrations of Brimonidine Tartrate could decrease the systemic absorption. From the result, it can be concluded the 0.1% ophthalmic gel has a potential to improve therapeutic efficacy and reduce the potential toxicity caused by systemic absorption.

  9. A kinetic study of drying of TEOS-derived gels under nearly isothermal conditions

    Directory of Open Access Journals (Sweden)

    Donatti Dario A.

    1999-01-01

    Full Text Available The drying of wet Tetraethoxysilane-derived gels was studied by means of thermogravimetric analysis as a function of the time, from the instant when the samples were placed into a pre-heated oven, kept at 70, 83 and 100 °C. The precursor sol of the gel was obtained by sono-hydrolysis of the Tetraethoxysilane under acid condition and the final [Water]/[Tetraethoxysilane] molar ratio was adjusted to 30. The wet gels were cylindrical (2.5 cm height and 1.2 cm diameter after 30 days of aging at 30 °C in a hermetically sealed container. The changes in volume and weight during drying are compatible with a mechanism controlled by evaporation from a flat liquid-vapour interface at the surface of the body and contraction of the gel by capillary forces, together with structural changes induced by polycondensation, which partially account for the irreversible shrinkage of the gel. The employed thermogravimetric method does not permit to unequivocally follow the small and slow final loss of weight associated to the falling rate periods.

  10. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Safety, tolerability, and systemic absorption of dapivirine vaginal microbicide gel in healthy, HIV-negative women.

    Science.gov (United States)

    Nel, Annalene M; Coplan, Paul; van de Wijgert, Janneke H; Kapiga, Saidi H; von Mollendorf, Claire; Geubbels, Eveline; Vyankandondera, Joseph; Rees, Helen V; Masenga, Gileard; Kiwelu, Ireen; Moyes, Jocelyn; Smythe, Shanique C

    2009-07-31

    To assess the local and systemic safety of dapivirine vaginal gel vs. placebo gel as well as the systemic absorption of dapivirine in healthy, HIV-negative women. Two prospective, randomized, double-blind, placebo-controlled phase I/II studies were conducted at five research centers, four in Africa and one in Belgium. A total of 119 women used dapivirine gel (concentrations of 0.001, 0.002, 0.005, or 0.02%), and 28 used placebo gel twice daily for 42 days. The primary endpoints were colposcopic findings, adverse events, Division of AIDS grade 3 or grade 4 laboratory values, and plasma levels of dapivirine. Safety data were similar for the dapivirine and placebo gels. None of the adverse events with incidence more than 5% occurred with greater frequency in the dapivirine than placebo groups. Similar percentages of placebo and dapivirine gel users had adverse events that were considered by the investigator to be related to study gel. A total of five serious adverse events occurred in the two studies, and none was assessed as related to study gel. Mean plasma concentrations of dapivirine were approximately dose proportional, and, within each dose group, mean concentrations were similar on days 7, 28, and 42. The maximum observed mean concentration was 474 pg/ml in the 0.02% gel group on day 28. Two weeks after the final application of study gel, mean concentrations decreased to 5 pg/ml or less. Twice daily administration of dapivirine vaginal gel for 42 days was safe and well tolerated with low systemic absorption in healthy, HIV-negative women suggesting that continued development is warranted.

  12. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  13. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  14. CYBPET: a cylindrical PET system for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Karimian, A. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj, Iran, Islamic Republic of and Department of Experimental Medicine and Pathology, University of Rome, La Sapienza, Rome (Italy)]. E-mail: akarimian@nrcam.org; Thompson, C.J. [Montreal Neurological Institute, McGill University, Montreal QC (Canada); Sarkar, S. [Medical physics Department of Tehran University of Medical Sciences and (RCSTIM), Tehran (Iran, Islamic Republic of); Raisali, G. [Nuclear Research Center for Agriculture and Medicine (NRCAM-AEOI), P.O. BOX. (31485-498), Karaj (Iran, Islamic Republic of); Pani, R. [Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Rome (Italy); Davilu, H. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Sardari, D. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2005-06-11

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 {mu}Ci/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET.

  15. CYBPET: a cylindrical PET system for breast imaging

    International Nuclear Information System (INIS)

    Karimian, A.; Thompson, C.J.; Sarkar, S.; Raisali, G.; Pani, R.; Davilu, H.; Sardari, D.

    2005-01-01

    We propose a Cylindrical Breast PET (CYBPET) system for breast imaging with patients in the prone position. An individual pendulous breast is covered by thin plastic to provide reduced pressure fixation and surrounded by the crystals inside the CYBPET ring. Each breast is imaged separately. The rest of the body is shielded properly to minimize the contribution of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET (WB-PET) the simulations of CYBPET and a WB-PET (GE-Advance) for a 10 mm tumor inside the breast with a lesion to background (breast) activity concentration of 6 to 1 were made. The noise effective count rate (NECR) of CYBPET is about twice that of WB-PET at activity concentrations less than 3.1 μCi/cc. The spatial resolution of CYBPET is better by 25% than the WB-PET

  16. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    International Nuclear Information System (INIS)

    Kocakaplan, Yusuf; Keskin, Mustafa

    2014-01-01

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement

  17. Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system

    Energy Technology Data Exchange (ETDEWEB)

    Kocakaplan, Yusuf [Graduate School of Natural and Applied Sciences, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2014-09-07

    The hysteresis and compensation behaviors of the spin-3/2 cylindrical Ising nanotube system are studied within the framework of the effective-field theory with correlations. The effects of the Hamiltonian parameters are investigated on the magnetic and thermodynamic quantities, such as the total magnetization, hysteresis curves, and compensation behaviors of the system. Depending on the Hamiltonian parameters, some characteristic hysteresis behaviors are found, such as the existence of double and triple hysteresis loops. According to Néel classification nomenclature, the system displays Q-, R-, P-, N-, M-, and S- types of compensation behaviors for the appropriate values of the system parameters. We also compare our results with some recently published theoretical and experimental works and find a qualitatively good agreement.

  18. A three-dimensional, two-way, parabolic equation model for acoustic backscattering in a cylindrical coordinate system

    DEFF Research Database (Denmark)

    Zhu, Dong; Jensen, Leif Bjørnø

    2000-01-01

    . The major drawback of using the cylindrical coordinate system, when the backscattering solution is valid within a limited area, is analyzed using a geometrical-optical interpretation. The model may be useful for studying three-dimensional backscattering phenomena comprising azimuthal diffraction effects...

  19. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems.

    Science.gov (United States)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da; Boyd, Ben J; Rades, Thomas; Hook, Sarah

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil A and monophosphoryl lipid A), were free-flowing liquids at room temperature and formed stable gels at physiological temperatures. Rheological results showed that both systems meet the criteria of being thermoresponsive gels. The P407-25R4 sol-gels did not significantly sustain the release of antigen in vivo while the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate synchronous vaccine release and may in fact retard release, reducing efficacy in some cases. From these results, chitosan-MC sol-gels show potential as sustained release vaccine delivery systems, as compared to the P407-25R4 system that had a limited ability to sustain antigen release. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of long-term dose stability of N-isopropylacrylamide polymer gel dosimetry

    International Nuclear Information System (INIS)

    Chang, Y.J.; Central Taiwan University of Science and Technology, Taichung City, Taiwan, ROC; Chen, C.H.; Hsieh, B.T.

    2014-01-01

    In this study, the detailed characteristics, including spatial uniformity, dose distributions, inter-batch variability, reproducibility, and long-term temporal stability, of N-isopropylacrylamide (NIPAM) polymer gel dosimeter were investigated. A commercial 10x fast optical computed tomography scanner (OCTOPUS TM -10×, MGS Research, Inc., Madison, CT, USA) was used to measure NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom that measured 10 cm × 10 cm was irradiated via a single-field treatment plan with a field size of 4 cm × 4 cm. The maximum standard deviation of spatial uniformity for NIPAM gel was less than 0.29 %. The average standard deviation among the three batches of gel dosimeters was less than 1 %. The gamma pass rate could reach as high as 96.76 % when a 3 % dose difference and a 3 mm dose-to-agreement criteria were used. The long-term measurement of irradiated NIPAM gel dosimeter indicated that the dose maps attained a gradually stable value 15 h post-irradiation and remained stable until 72 h post-irradiation. The gamma pass rate could achieve a maximum value between 24 and 72 h post-irradiation. The edge enhancement effect that occurred around the irradiated region was observed 72 h post-irradiation. Thus, the results from this study suggest that NIPAM gel dosimeter should be measured approximately 24 h post-irradiation to reduce the occurrence of the edge enhancement effect. (author)

  1. Self shielding in cylindrical fissile sources in the APNea system

    International Nuclear Information System (INIS)

    Hensley, D.

    1997-01-01

    In order for a source of fissile material to be useful as a calibration instrument, it is necessary to know not only how much fissile material is in the source but also what the effective fissile content is. Because uranium and plutonium absorb thermal neutrons so Efficiently, material in the center of a sample is shielded from the external thermal flux by the surface layers of the material. Differential dieaway measurements in the APNea System of five different sets of cylindrical fissile sources show the various self shielding effects that are routinely encountered. A method for calculating the self shielding effect is presented and its predictions are compared with the experimental results

  2. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  3. Fast and facile preparation of CTAB based gels and their applications in Au and Ag nanoparticles synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Ravi Kant, E-mail: rkupadhyay85@gmail.com [Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India); Soin, Navneet, E-mail: n.soin@bolton.ac.uk [Knowledge Centre for Materials Chemistry (KCMC), Institute for Materials Research and Innovation (IMRI), University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Saha, Susmita, E-mail: ssaha@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Barman, Anjan, E-mail: abarman@bose.res.in [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Sinha Roy, Susanta, E-mail: susanta.roy@snu.edu.in [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, 201314 Uttar Pradesh (India)

    2015-04-15

    We have demonstrated that the gel-like mesophase of Cetyltrimethylammonium bromide (CTAB) can be synthesized by judicial adjustment of water to surfactant molar ratio (W{sub 0}), without using any additional salts, gelating agents or co-surfactants. Gel formation was found to be highly dependent on the water to surfactant molar ratio (W{sub 0}), with the lowest value of W{sub 0} (41.5) resulting in rapid gel formation. Environmental scanning electron microscope (ESEM) analysis revealed that the gel was comprised of interconnected cylindrical structures. The presence of hydrogen bonding in the gel-like mesophase was confirmed by Fourier Transform Infrared spectroscopy (FTIR) analysis. Rheology measurements revealed that all the gel samples were highly viscoelastic in nature. Furthermore, Au and Ag containing CTAB gels were explored as precursors for the preparation of spherical Gold (Au) and Silver (Ag) nanoparticles using Sodium borohydride (NaBH{sub 4}) as reducing agent. The effects of NaBH{sub 4} concentration on the particle size and morphology of the Au and Ag nanoparticles have also been studied. - Highlights: • A facile synthesis of CTAB based gel-like mesophase is reported. • CTAB gels were obtained by adjusting water to surfactant molar ratio (W{sub 0}). • FTIR analysis revealed that hydrogen bonding plays a key role in gel formation. • Au, Ag nanoparticles were synthesized by using CTAB gel and NaBH{sub 4}.

  4. Safety, tolerability, and systemic absorption of dapivirine vaginal microbicide gel in healthy, HIV-negative women

    NARCIS (Netherlands)

    Nel, Annalene M.; Coplan, Paul; van de Wijgert, Janneke H.; Kapiga, Saidi H.; von Mollendorf, Claire; Geubbels, Eveline; Vyankandondera, Joseph; Rees, Helen V.; Masenga, Gileard; Kiwelu, Ireen; Moyes, Jocelyn; Smythe, Shanique C.

    2009-01-01

    To assess the local and systemic safety of dapivirine vaginal gel vs. placebo gel as well as the systemic absorption of dapivirine in healthy, HIV-negative women. Two prospective, randomized, double-blind, placebo-controlled phase I/II studies were conducted at five research centers, four in Africa

  5. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  6. Photovoltaic modules with cylindrical waveguides in a system for the secondary concentration of solar radiation

    Science.gov (United States)

    Andreev, V. M.; Davidyuk, N. Yu.; Ionova, E. A.; Rumyantsev, V. D.

    2013-09-01

    The parameters of the concentrating photoelectric modules with triple-junction (InGaP/GaAs/Ge) solar cells whose focusing system contains an original secondary optical element are studied. The element consists of a plane-convex lens in optical contact with the front surface of an intermediate glass plate and a cylindrical waveguide that is located on the rear side of the glass plate above the surface of the solar element. It is demonstrated that the structure of the secondary optical element provides a wide misorientation characteristic of the concentrator and the cylindrical waveguide allows a more uniform radiation density over the surface of the solar cell. The effect of chromatic aberration in the primary and secondary optical systems on the parameters of photoelectric modules is analyzed. It is demonstrated that the presence of waveguides with a length of 3-5 mm leads to effective redistribution of radiation over the surface of the solar cell whereas shorter and longer waveguides provide the local concentration of radiation at the center of the photodetecting area.

  7. Ophthalmic gels: Past, present and future.

    Science.gov (United States)

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Jirasek, A; Hilts, M; McAuley, K B

    2010-01-01

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  9. Micropatterning on cylindrical surfaces via electrochemical etching using laser masking

    International Nuclear Information System (INIS)

    Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces

  10. Design and Evaluation of Microemulsion Gel System of Nadifloxacin

    Science.gov (United States)

    Shinde, Ujwala; Pokharkar, Sharda; Modani, Sheela

    2012-01-01

    Topical microemulsion systems for the antiacne agent, nadifloxacin were designed and developed to overcome the problems associated with the cutaneous delivery due to poor water solubility. The solubility of nadifloxacin in oils, surfactants and cosurfactants was evaluated to screen the components of the microemulsion. Various surfactants and cosurfactants were screened for their ability to emulsify the selected oily phase. The pseudoternary diagrams were constructed to identify the area of microemulsion existence. The influence of km (surfactant/cosurfactant) ratio on the microemulsion existence region was determined and optimum systems were designed. The systems were assessed for drug-loading efficiency and characterised for optical birefringence, pH and refractive index, robustness to dilution, globule size, drug content and thermodynamic stability. Optimised microemulsion systems were formulated into gel form and evaluated for viscosity, spreadability, drug content, ex vivo skin permeation and antibacterial activity. The maximum solubility of nadifloxacin in the microemulsion system was found to be 0.25%. The nadifloxacin microemulsions had a small and uniform globule size (67.3-121.23 nm). The stability results revealed that all formulations showed a stable globule size and the polydispersity index under stress conditions. Incorporation of nadifloxacin in microemulsion gel increased the ex vivo skin permeation and antibacterial activity when compared to marketed cream. PMID:23439454

  11. Development of an in situ evaluation system for neural cells using extracellular matrix-modeled gel culture.

    Science.gov (United States)

    Nagai, Takayuki; Ikegami, Yasuhiro; Mizumachi, Hideyuki; Shirakigawa, Nana; Ijima, Hiroyuki

    2017-10-01

    Two-dimensional monolayer culture is the most popular cell culture method. However, the cells may not respond as they do in vivo because the culture conditions are different from in vivo conditions. However, hydrogel-embedding culture, which cultures cells in a biocompatible culture substrate, can produce in vivo-like cell responses, but in situ evaluation of cells in a gel is difficult. In this study, we realized an in vivo-like environment in vitro to produce cell responses similar to those in vivo and established an in situ evaluation system for hydrogel-embedded cell responses. The extracellular matrix (ECM)-modeled gel consisted of collagen and heparin (Hep-col) to mimic an in vivo-like environment. The Hep-col gel could immobilize growth factors, which is important for ECM functions. Neural stem/progenitor cells cultured in the Hep-col gel grew and differentiated more actively than in collagen, indicating an in vivo-like environment in the Hep-col gel. Second, a thin-layered gel culture system was developed to realize in situ evaluation of the gel-embedded cells. Cells in a 200-μm-thick gel could be evaluated clearly by a phase-contrast microscope and immunofluorescence staining through reduced optical and diffusional effects. Finally, we found that the neural cells cultured in this system had synaptic connections and neuronal action potentials by immunofluorescence staining and Ca 2+ imaging. In conclusion, this culture method may be a valuable evaluation system for neurotoxicity testing. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria BC V6R 2B6 (Canada); McAuley, K B, E-mail: jirasek@uvic.c [Department of Chemical Engineering, Queens University, Kingston, ON K7 L 3N6 (Canada)

    2010-09-21

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  13. Energy corrections in pulsed neutron measurements for cylindrical geometry

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Woznicka, U.

    1982-01-01

    A solution of the thermal neutron diffusion equation for a two-region concentric cylindrical system, with a constant neutron flux in the inner medium assumed, is given. The velocity-averaged dynamic parameters for thermal neutrons are used in the method. The corrections due to the diffusion cooling are introduced into the dynamic material buckling and into the velocity distribution of the thermal neutron flux. Detailed relations obtained for a hydrogenous moderator are given. Results of the measurements of the thermal neutron macroscopic absorption cross-sections for the samples in the two-region cylindrical systems are presented. (author)

  14. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection.

    Science.gov (United States)

    Sohrabi, Shohreh; Haeri, Azadeh; Mahboubi, Arash; Mortazavi, Alireza; Dadashzadeh, Simin

    2016-04-01

    The purpose of this study was to prepare and characterize a hybrid system of moxifloxacin loaded niosomes incorporated into chitosan gel as a potential carrier for topical antimicrobial delivery. The prepared system was characterized regarding entrapment efficiency, particle size, zeta potential, in vitro drug release kinetics, morphology, FTIR analysis, bioadhesive strength and rheological behavior. The effect of different formulation parameters (surfactant type, surfactant to drug ratio, cholesterol percentage and loading methodology) on moxifloxacin entrapment and drug release was evaluated. The antibacterial effectiveness of various formulations was also assessed by measuring the minimal inhibitory concentrations, minimal bactericidal concentrations and agar diffusion assay using Pseudomonas aeruginosa and Staphylococcus aureus as model pathogens. The optimized niosomal formulation showed 73% drug entrapment, 47% drug release in 8h and was ∼290 nm in particle diameter and negatively charged (ζ∼-23 mV). The gel-embedded niosomes exhibited pseudo-plastic flow behavior and more sustained drug release profile compared to niosomes. The niosomal formulation of moxifloxacin was the most efficient system against P. aeruginosa, while gel based formulations were superior against S. aureus. Taken together, moxifloxacin-in-niosomes-in-gels hold great promise for topical microbial infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Review of Fricke gel dosimeters

    International Nuclear Information System (INIS)

    Schreiner, L J

    2004-01-01

    The innovation of adding a gel matrix to the traditional Fricke dosimeter to stabilize geometric information established the field of gel dosimetry for radiation therapy. A discussion of Fricke gels provides an overview of the issues that determine the dose response of all gel dosimeters in general. In this paper we review some of the features of Fricke systems to illustrate these issues and, in addition, to motivate renewed clinical interest in Fricke gels

  16. Cylindrical fabric-confined soil structures

    Science.gov (United States)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  17. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  18. Comparative study of tool machinery sliding systems; comparison between plane and cylindrical basic shapes

    Science.gov (United States)

    Glăvan, D. O.; Babanatsas, T.; Babanatis Merce, R. M.; Glăvan, A.

    2018-01-01

    The paper brings in attention the importance that the sliding system of a tool machinery is having in the final precision of the manufacturing. We are basically comparing two type of slides, one constructed with plane surfaces and the other one with circular cross-sections (as known as cylindrical slides), analysing each solution from the point of view of its technology of manufacturing, of the precision that the particular slides are transferring to the tool machinery, cost of production, etc. Special attention is given to demonstrate theoretical and to confirm by experimental works what is happening with the stress distribution in the case of plane slides and cylindrical slides, both in longitudinal and in cross-over sections. Considering the results obtained for the stress distribution in the transversal and longitudinal cross sections, by composing them, we can obtain the stress distribution on the semicircular slide. Based on the results, special solutions for establishing the stress distribution between two surfaces without interact in the contact zone have been developed.

  19. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    Science.gov (United States)

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1gels made of cylindrical sticks of diameter d, density ρ, and average length 〈L〉, joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η = ξ/ξ0 and have Dm ∼1.2–1.6. The in silico gels’ structure is quantitatively analyzed by its 3D spatial correlation function g3D(r) and corresponding power spectrum I(q) = FFT3D[g3D(r)], from which ρ, d, Dm, η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels’ I(q) compares quite well with real gels’ elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels’ structural parameters. PMID:23473498

  20. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  1. arXiv The new cylindrical GEM inner tracker of BESIII

    CERN Document Server

    Lavezzi, L.; Amoroso, A.; Ferroli, R. Baldini; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Carassiti, V.; Cerioni, S.; Chai, Jy; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Garzia, I.; Gatta, M.; Greco, M.; Leng, Cy; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo,; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-05-03

    The Cylindrical GEM-Inner Tracker (CGEM-IT) is the upgrade of the internal tracking system of the BESIII experiment. It consists of three layers of cylindrically-shaped triple GEMs, with important innovations with respect to the existing GEM detectors, in order to achieve the best performance with the lowest material budget. It will be the first cylindrical GEM running with analog readout inside a 1T magnetic field. The simultaneous measurement of both the deposited charge and the signal time will permit to use a combination of two algorithms to evaluate the spatial position of the charged tracks inside the CGEM-IT: the charge centroid and the micro time projection chamber modes. They are complementary and can cope with the asymmetry of the electron avalanche when running in magnetic field and with non-orthogonal incident tracks. To evaluate the behaviour under different working settings, both planar chambers and the first cylindrical prototype have been tested during various test beams at CERN with 150 GeV/c...

  2. Millimeter Wave Imaging System Using Monopole Antenna with Cylindrical Reflector and Silicon Lens

    Science.gov (United States)

    Mizuno, Maya; Fukunaga, Kaori; Suzuki, Masaki; Saito, Shingo; Fujii, Katsumi; Hosako, Iwao; Yamanaka, Yukio

    2011-04-01

    We built a reflection imaging system that uses a monopole antenna with a cylindrical reflector and silicon semi-spherical lens for millimeter waves to identify detachments of alabaster from support material such as wood and stone, which can be subject to painting deterioration. Based on the electric field property near the monopole antenna in the system and the lens effect, the system was able to clearly image a test sample made of 2-mm width aluminium tape, which was placed within a range of approximately 10 mm from the lens. In practical imaging testing using a detachment model, which consists of alabaster and wood plating, the result also showed the possibility of observing slight detachment of the alabaster from the wood more easily than an imaging with large numerical aperture.

  3. A study on the reproducibility and spatial uniformity of N-isopropylacrylamide polymer gel dosimetry using a commercial 10X fast optical-computed tomography scanner

    International Nuclear Information System (INIS)

    Chang, Y J; Lin, J Q; Hsieh, B T; Chen, C H

    2013-01-01

    This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.

  4. A study of correlations between the release of drugs from petrolatum-based gels containing nonionic surfactants and some physical and physico-chemical characteristics of the gel systems.

    Science.gov (United States)

    Colo, G D; Nannipieri, E; Serafini, M F; Vitale, D

    1986-06-01

    Synopsis The in vitro release of benzocaine and 2-ethyIhexyl p-di-methylaminobenzoate (EH-PABA) from petrolatum-based gels either containing two nonionic surfactants, or not, was compared with some physical and/or physico-chemical characteristics of the drugs, the gels and the drug-gel systems. The surfactants had no effect on the release of EH-PABA, the less polar drug, whereas they decreased the release of benzocaine. Moreover, the release data show a complex dependence of diffusive properties of ben-zocaine on drug and surfactant concentration. Benzocaine appears to form mixed micelles with each of the two surfactants and/or undergoes self-aggregation phenomena within surfactant micelles. The results indicate that drug diffusion is influenced by gel porosity, drug molecular size and polarity and molecular interactions. Etude des corrélations entre la disponibilité des medicaments dans les gels a base de vaseline contenant des surfactifs non ioniques et quelques propriétés physiques et physicochimiques des gels.

  5. PMR spectra and proton magnetic relaxation in uranyl nitrate-hexamethylenetetramine-urea-water gel forming system

    International Nuclear Information System (INIS)

    Vashman, A.A.; Pronin, I.S.; Brylkina, T.V.; Makarov, V.M.

    1979-01-01

    PMR spectra and proton relaxation in the nitrate-hexamethylenetetramine (HMTA)-urea-water gelling system are studied. According to PMR spectra products of HMTA chemical decomposition, which are supposed to be formed in the gelling process, have not been detected. Effect of hydrogen exchange upon PMR spectra of urea and water in the presence of HMTA and uranyl nitrate is studied. Periods of spin-lattice and spin-spin relaxations of water and HMTA protons in gels on the base of uranyl nitrate are found. Data on relaxation permitted to make qualitative conclusions upon the gel structure and HMTA molecule distribution over ''phases''. Nonproducibility of the results of period measurements in gels is the result of nonproducibility of the gel structure in the course of transformation of liquid solution into gel. Temperature dependences of proton relaxation in the gels are impossible yet to interpret on the basis of temperature behaviour of one correlation period, controlling dipole-dipole nuclear magnetic relaxation, and obeying Arrhenius dependence on the temperature

  6. The cylindrical GEM detector of the KLOE-2 experiment

    International Nuclear Information System (INIS)

    Bencivenni, G.; Ciambrone, P.; De Lucia, E.; Domenici, D.; Felici, G.; Fermani, P.; Morello, G.; Branchini, P.; Cicco, A. Di; Czerwinski, E.

    2017-01-01

    The KLOE-2 experiment started its data taking campaign in November 2014 with an upgraded tracking system at the DAΦNE electron-positron collider at the Frascati National Laboratory of INFN. The new tracking device, the Inner Tracker, operated together with the KLOE-2 Drift Chamber, has been installed to improve track and vertex reconstruction capabilities of the experimental apparatus. The Inner Tracker is a cylindrical GEM detector composed of four cylindrical triple-GEM detectors, each provided with an X-V strips-pads stereo readout. Although GEM detectors are already used in high energy physics experiments, this device is considered a frontier detector due to its fully-cylindrical geometry: KLOE-2 is the first experiment benefiting of this novel detector technology. Alignment and calibration of this detector will be presented together with its operating performance and reconstruction capabilities.

  7. Sensitivity calibration procedures in optical-CT scanning of BANG 3 polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Wuu, Cheng-Shie; Maryanski, Marek J. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States); Department of Radiation Oncology, Columbia University, New York, New York 10032 and MGS Research Inc., Madison, Connecticut 06443 (United States)

    2010-02-15

    The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4x4 cm{sup 2} photon fields or 6x6 cm{sup 2} electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6x6 cm{sup 2}, 12 and 16 MeV electron fields. The dose response of the BANG 3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752{+-}3%, 0.0756{+-}3%, 0.0767{+-}3%, and 0.0759{+-}3% cm{sup -1} Gy{sup -1}) and the PDD matching methods (0.0768{+-}3% and 0.0761{+-}3% cm{sup -1} Gy{sup -1}) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6x6 cm{sup 2} electron field. Three-dimensional dose distributions

  8. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  9. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    Science.gov (United States)

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto

    2015-01-01

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  11. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  12. Analysis of a cylindrical shell vibrating in a cylindrical fluid region

    International Nuclear Information System (INIS)

    Chung, H.; Turula, P.; Mulcahy, T.M.; Jendrzejczyk, J.A.

    1976-08-01

    Analytical and experimental methods are presented for evaluating the vibration characteristics of cylindrical shells such as the thermal liner of the Fast Flux Test Facility (FFTF) reactor vessel. The NASTRAN computer program is used to calculate the natural frequencies, mode shapes, and response to a harmonic loading of a thin, circular cylindrical shell situated inside a fluid-filled rigid circular cylinder. Solutions in a vacuum are verified with an exact solution method and the SAP IV computer code. Comparisons between analysis and experiment are made, and the accuracy and utility of the fluid-solid interaction package of NASTRAN is assessed

  13. Multi-gel casting apparatus for vertical polyacrylamide gels with in-built solution flow system and liquid level detectors.

    Science.gov (United States)

    Maurye, Praveen; Basu, Arpita; Bandyopadhyay, Tapas Kumar; Biswas, Jayanta Kumar; Mohanty, Bimal Prasana

    2017-08-01

    PAGE is the most widely used technique for the separation and biochemical analysis of biomolecules. The ever growing field of proteomics and genomics necessitates the analysis of many proteins and nucleic acid samples to understand further about the structure and function of cells. Simultaneous analysis of multiple protein samples often requires casting of many PAGE gels. Several variants of multi-gel casting/electrophoresis apparatuses are frequently used in research laboratories. Requirement of supplementary gels to match the growing demand for analyzing additional protein samples sometimes become a cause of concern. Available apparatuses are not amenable to and therefore, not recommended for any modification to accommodate additional gel casting units other than what is prescribed by the manufacturer. A novel apparatus is described here for casting multiple PAGE gels comprising four detachable components that provide enhanced practicability and performance of the apparatus. This newly modified apparatus promises to be a reliable source for making multiple gels in less time without hassle. Synchronized functioning of unique components broaden the possibilities of developing inexpensive, safe, and time-saving multi-gel casting apparatus. This apparatus can be easily fabricated and modified to accommodate desired number of gel casting units. The estimated cost (∼$300) for fabrication of the main apparatus is very competitive and effortless assembly procedure can be completed within ∼30 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

    International Nuclear Information System (INIS)

    Yang, Xiao-Jun; Srivastava, H.M.; He, Ji-Huan; Baleanu, Dumitru

    2013-01-01

    In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.

  15. Phase fluctuations in two coaxial quasi-one-dimensional superconducting cylindrical surfaces serving as a model system for superconducting nanowire bundles

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.H., E-mail: ch.kh.vong@urfu.ru [Institute of Physics and Technology, Ural Federal University, Clear Water Bay, Kowloon (Russian Federation); Wu, R.P.H., E-mail: pak-hong-raymond.wu@connect.polyu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (Hong Kong); Lortz, R., E-mail: lortz@ust.hk [Department of Physics, Hong Kong University of Science and Technology (Hong Kong)

    2017-03-15

    The dimensional crossover from a 1D fluctuating state at high temperatures to a 3D phase coherent state in the low temperature regime in two coaxial weakly-coupled cylindrical surfaces formed by two-dimensional arrays of parallel nanowires is studied via an 8-state 3D-XY model. This system serves as a model for quasi-one-dimensional superconductors in the form of bundles of weakly-coupled superconducting nanowires. A periodic variation of the dimensional crossover temperature T{sub DC} is observed when the inner superconducting cylindrical surface is rotated in the angular plane. T{sub DC} reaches a maximum when the relative angle between the cylinders is 2.81°, which corresponds to the maximum separation of nanowires between the two cylindrical surfaces. We demonstrate that the relative strength of phase fluctuations in this system is controllable by the rotational angle between the two surfaces with a strong suppression of the fluctuation strength at 2.81°. The phase fluctuations are suppressed gradually upon cooling, before they abruptly vanish below T{sub DC}. Our model thus allows us to study how phase fluctuations can be suppressed in quasi-one-dimensional superconductors in order to achieve a global phase coherent state throughout the nanowire array with zero electric resistance.

  16. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  17. The electrostatic cylindrical sheath in a plasma

    International Nuclear Information System (INIS)

    Wang Chunhua; Sun Xiaoxia; Bai Dongxue

    2004-01-01

    The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)

  18. Calculation of beam paths in optical systems containing inhomogeneous isotropic media with cylindrical distribution of the refractive index

    International Nuclear Information System (INIS)

    Grammatin, A.P.; Degen, A.B.; Katranova, N.A.

    1995-01-01

    A system of differential equations convenient for numerical computer integrating is proposed to calculate beam paths, elementary astigmatic beams, and the optical path in isotropic media with cylindrical distribution of the refractive index. A method for selecting the step of this integration is proposed. This technique is implemented in the program package for computers of the VAX series meant for the computer-aided design of optical systems. 4 refs

  19. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  20. Cylindrically converging blast waves in air

    Science.gov (United States)

    Matsuo, H.; Nakamura, Y.

    1981-07-01

    Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.

  1. FEATURES OF ELECTROMECHANICAL ACOUSTIC ENERGY CONVERSION BY CYLINDRICAL PIEZOCERAMIC TRANSDUCERS WITH INTERNAL SCREENS IN COMPOSITION OF FLAT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. G. Leiko

    2018-01-01

    Full Text Available The problem of sound emission is considered by a system formed from cylindrical piezoceramic radiators with internal acoustically soft screens. Longitudinal axis of emitters lie in one plane. This system is characterized by the interaction of electric, mechanical and acoustic fields in the process of conversion electrical energy to acoustical energy and acoustic fields in the process of forming them in the environments. The purpose of the work is to determine the peculiarities of the electromechanical acoustic transformation of energy by cylindrical piezoceramic radiators with internal screens in the composition of flat systems, taking into account all types of interaction.The research was carried out by the method of bound fields in multiply connected domains with the use of addition theorems for the cylindrical wave functions. The physical fields arising from the emission of sound by such a system are determined by the joint solution of the system of differential equations: the wave equation; equations of motion of thin piezoceramic shells with circular polarization in displacements; the equations of forced electrostatics for piezoceramics at given boundary conditions, the conditions of conjugation of fields at the boundaries of the division of domains and electric conditions.The solution of the problem is reduced to the solution of an infinite system of linear algebraic equations with respect to unknown coefficients of field expansions.An analysis of the results of numerical calculations, performed on the basis of the obtained analytical relations, called to establish a number of features in the electromechanical acoustic transformation of energy by emitters in the composition of flat systems. They include: the role of acoustic interaction in the process of energy conversion; determination of the mechanism of quantitative assessment of the influence of interaction on these processes; the dependence of the degree of violation of the radial

  2. A NOVEL GEL ELECTROLYTE FOR VALVE-REGULATED LEAD ACID BATTERY

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2017-03-01

    Full Text Available A novel gel electrolyte system used in lead-acid batteries was investigated in this work. The gel systems were prepared by addition different amount of Al2O3, TiO2 and B2O3 into the gelled system consisting of 6 wt% fumed silica and 30 wt% sulfuric acid solution. The anodic peak currents and peak redox capacities of the gel electrolytes were characterized by cyclic voltammetric method. They decreased by the time B2O3 and Al2O3 were used as additives in fumed silica based gel electrolyte system. However, these values increased by the adding 3.0 wt% of TiO2. The solution and charge transfer resistances of the gel electrolytes were investigated by electrochemical impedance spectroscopy. While the solution resistances were lower in gel systems having different amount additives than pure fumed silica based gel, the charge transfer resistance was the lowest in gel electrolytes consisting fumed silica and fumed silica-TiO2. The battery performances were studied by obtaining discharge curves of prepared gel electrolytes. The performance of gelled systems were higher than that of non-gelled electrolyte at room temperature. The mixture of fumed silica-TiO2 was suggested an alternative gel formulation for gel VRLA batteries.

  3. Forced Vibration Analysis for a FGPM Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Hong-Liang Dai

    2013-01-01

    Full Text Available This article presents an analytical study for forced vibration of a cylindrical shell which is composed of a functionally graded piezoelectric material (FGPM. The cylindrical shell is assumed to have two-constituent material distributions through the thickness of the structure, and material properties of the cylindrical shell are assumed to vary according to a power-law distribution in terms of the volume fractions for constituent materials, the exact solution for the forced vibration problem is presented. Numerical results are presented to show the effect of electric excitation, thermal load, mechanical load and volume exponent on the static and force vibration of the FGPM cylindrical shell. The goal of this investigation is to optimize the FGPM cylindrical shell in engineering, also the present solution can be used in the forced vibration analysis of cylindrical smart elements.

  4. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  5. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  6. Sealing wells with gel

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, E C

    1967-10-01

    A new system is being used in Mexico to temporarily plug producing wells. The temporary seal is a gel with a catalyst. The use of this temporary plug allows gas-lift wells to be taken off production in order to carry out emergency repairs. The gel solidifies by the action of the catalyst to a high temperature (70 - 150/sup 0/C). By locating the bottom of the tubing at the top of the production interval, the gel material will go into the permeable formation, and immediately set. When the gel has solidified, it seals off the horizon that must not be stimulated, and leaves the others exposed to the acid action. When the treatment is finished, the gel, by action of the catalyst, is liquefied and removed from the formation, being produced with the oil.

  7. NMR mechanisms in gel dosimetry

    International Nuclear Information System (INIS)

    Schreiner, L J

    2009-01-01

    Nuclear magnetic resonance was critical to the development of gel dosimetry, as it established the potential for three dimensional dosimetry with chemical dosimeter systems through magnetic resonance imaging [1]. In the last two decades MRI has served as the gold standard for imaging, while NMR relaxometry has played an important role in the development and understanding of the behaviour of new gel dosimetry systems. Therefore, an appreciation of the relaxation mechanisms determining the NMR behaviour of irradiated gel dosimeters is important for a full comprehension of a considerable component of the literature on gel dosimetry. A number of excellent papers have presented this important theory, this brief review will highlight some of the salient points made previously [1-5]. The spin relaxation of gel dosimeters (which determines the dose dependence in most conventional MR imaging) is determined principally by the protons on water molecules in the system. These water protons exist in different environments, or groups (see Figure 1): on bulk water, on water hydrating the chemical species that are being modified under irradiation, and on water hydrating the gel matrix used to spatially stabilize the dosimeter (e.g., gelatin, agarose, etc). The spin relaxation depends on the inherent relaxation rate of each spin group, that is, on the relaxation rate which would be observed for the specific group if it were isolated. Also, the different water environments are not isolated from each other, and the observed relaxation rate also depends on the rate of exchange of magnetization between the groups, and on the fraction of protons in each group. In fact, the water exchanges quickly between the environments, so that relaxation is in what is usually termed the fast exchange regime. In the limit of fast exchange, the relaxation of the water protons is well characterized by a single exponential and hence by a single apparent relaxation rate. In irradiated gel dosimeters this

  8. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    International Nuclear Information System (INIS)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V b ) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel's color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber

  9. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  10. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  11. Structured cylindrical targets

    International Nuclear Information System (INIS)

    Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.

    1986-01-01

    A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)

  12. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    International Nuclear Information System (INIS)

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-01-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  13. System of two-coordinate cylindrical proportional chambers with resistive cathode

    International Nuclear Information System (INIS)

    Golubev, V.B.; Peryshkin, A.N.; Red'ko, I.Yu.; Serednyakov, S.I.

    1981-01-01

    A system of two-coordinate cylindrical proportional chambers is developed for experiments on studying the e + e - annihilation. The system consists of 6 independent proportional chambers of semicylindrical configuration with a gap between anode and cathode equal to 5 mm. The diameter of an external chnsamber equals 25 cm and its length cotitutes 40 cm. Anode wires 20 μm in-diameter are fixed in parallel to the system axis with a pitch of 2-3 mm. The use of a resisti ve cothode permitting to maintain the anode wires and delay circuits under the ground potential is one of the specific feabures of the given chamber. The resistive layer is produced by sputtering the aquadag aqueous suspension with the polyvinylacetate emulsion on a fibregrass-textolite. 8 delay circuits is mounted outside of each chamber from the side of the cathode. A functional flowsheet of a data readout system is given. The track angte is determined directiy according to the numbers of operated wires; coordinates along the axis are determined by means of the delay circuits placed outside the chamber near the resistive cathode. The accuracy of the coordinate measurement in both directions constitutes about 1 mm. Each chamber permits to measure the coordinates of several particles, if they entry into different delay circuits. The proportional chambers are filled with the mixture of Ar+30%CO 2 . Anode and cathode efficiencies in the plateau region (150-250) exceed 99%

  14. Sol-gel-state of hydrated zirconium dioxide

    International Nuclear Information System (INIS)

    Karakchiev, L.G.; Lyakhov, N.Z.

    1995-01-01

    The change in viscosity and density of a system in the course of sol-gel-xerogel has been traced. The size and molecular mass of particles in sol have been determined. Initial sol is practically a monodisperse system. Gel is a spatial net of similar particles. Reversible character of sol-gel transition with a change in water content in the system suggests instability of the bond between the particles in the structure of the solid state body formed. 11 refs.; 4 figs

  15. Magnetostatic interactions and forces between cylindrical permanent magnets

    International Nuclear Information System (INIS)

    Vokoun, David; Beleggia, Marco; Heller, Ludek; Sittner, Petr

    2009-01-01

    Permanent magnets of various shapes are often utilized in magnetic actuators, sensors or releasable magnetic fasteners. Knowledge of the magnetic force is required to control devices reliably. Here, we introduce an analytical expression for calculating the attraction force between two cylindrical permanent magnets on the assumption of uniform magnetization. Although the assumption is not fulfilled exactly in cylindrical magnets, we obtain a very good agreement between the calculated and measured forces between two identical cylindrical magnets and within an array of NdFeB cylindrical magnets.

  16. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    Science.gov (United States)

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  17. Experiments on cylindrically converging blast waves in atmospheric air

    Science.gov (United States)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  18. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    Science.gov (United States)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  19. Structure of mineral gels

    International Nuclear Information System (INIS)

    Miranda Salvado, I.M.; Margaca, F.M.A.; Teixeira, J.

    1999-01-01

    Small Angle Neutron Scattering (SANS) measurements have been performed to investigate the nanoscale structure of materials of the systems xTiO 2 -(1-x)SiO 2 and xZrO 2 -(1-x)SiO 2 with x ≤ 10 mol % at different processing stages. The materials were prepared by sol-gel using the alkoxides method, in strong acidic conditions. Samples were studied as xerogels heat-treated at 120 and 850 deg. C and as wet gels at gel point and after aging. All samples showed identical microstructure at gel point, extended linear chains ∼10 nm long. The aged gel has a mass fractal structure with fractal dimension of 1.7 - 1.9. The 120 deg. C heat-treated xerogels show homogeneous oxide regions with mass fractal structure. For the 850 deg. C heat-treated xerogel the oxide regions average size has reduced and it has densified as compared to 120 deg. C heat-treated sample. (author)

  20. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  1. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    Science.gov (United States)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  2. Study on magnetic field mapping within cylindrical center volume of general magnet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2016-06-15

    For the magnetic field analysis or design, it is important to know the behavior of the magnetic field in an interesting space. Magnetic field mapping becomes a useful tool for the study of magnetic field. In this paper, a numerical way for mapping the magnetic field within the cylindrical center volume of magnet is presented, based on the solution of the Laplace's equation in the cylindrical coordinate system. The expression of the magnetic field can be obtained by the magnetic flux density, which measured in the mapped volume. According to the form of the expression, the measurement points are arranged with the parallel cylindrical line (PCL) method. As example, the magnetic flux density generated by an electron cyclotron resonance ion source (ECRIS) magnet and a quadrupole magnet were mapped using the PCL method, respectively. The mapping results show the PCL arrangement method is feasible and convenience to map the magnetic field within a cylindrical center volume generated by the general magnet.

  3. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  4. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  5. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  6. Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor.

    Science.gov (United States)

    El-Sayed, Marwa M; Hussein, Amal K; Sarhan, Hatem A; Mansour, Heba F

    2017-06-01

    The present work aimed to prolong the contact time of flurbiprofen (FBP) in the ocular tissue to improve the drug anti-inflammatory activity. Different niosome systems were fabricated adopting thin-film hydration technique and using the nonionic surfactant Span 60. The morphology of the prepared niosomes was characterized by scanning electron microscopy (SEM). Physical characterization by differential scanning calorimetry, X-ray powder diffraction and Fourier transform infrared spectroscopy were conducted for the optimized formula (F5) that was selected on the basis of percent entrapment efficiency, vesicular size and total lipid content. F5 was formulated as 1% w/w Carpobol 934 gel. Pharmacokinetic parameters of FBP were investigated following ocular administration of F5-loaded gel system, F5 niosome dispersion or the corresponding FBP ocular drops to albino rabbits dispersion. Anti-inflamatory effect of F5-loaded carbopol gel was investigated by histopathological examination of the corneal tissue before and after the treatment of inflamed rabbit eye with the system. Results showed that cholesterol content, surfactant type. and total lipid contents had an apparent impact on the vesicle size of the formulated niosomes. Physical characterization revealed reduced drug crystallinity and incidence of interaction with other niosome contents. F5-loaded gel showed higher C max , area under the curve (AUC 0-12 ), and thus higher ocular bioavailability than those of the corresponding FBP ocular solution. F5-loaded gel showed a promising rapid anti-inflammatory effect in the inflamed rabbit eye. These findings will eradicate the necessity for frequent ocular drug instillation and thus, improve patient compliance.

  7. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  8. Investigation of optimal scanning protocol for X-ray computed tomography polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Sellakumar, P. [Bangalore Institute of Oncology, 44-45/2, II Cross, RRMR Extension, Bangalore 560 027 (India)], E-mail: psellakumar@rediffmail.com; James Jebaseelan Samuel, E. [School of Science and Humanities, VIT University, Vellore 632 014 (India); Supe, Sanjay S. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Hosur Road, Bangalore 560 027 (India)

    2007-11-15

    X-ray computed tomography is one of the potential tool used to evaluate the polymer gel dosimeters in three dimensions. The purpose of this study is to investigate the factors which affect the image noise for X-ray CT polymer gel dosimetry. A cylindrical water filled phantom was imaged with single slice Siemens Somatom Emotion CT scanner. The imaging parameters like tube voltage, tube current, slice scan time, slice thickness and reconstruction algorithm were varied independently to study the dependence of noise on each other. Reductions of noise with number of images to be averaged and spatial uniformity of the image were also investigated. Normoxic polymer gel PAGAT was manufactured and irradiated using Siemens Primus linear accelerator. The radiation induced change in CT number was evaluated using X-ray CT scanner. From this study it is clear that image noise is reduced with increase in tube voltage, tube current, slice scan time, slice thickness and also reduced with increasing the number of images averaged. However to reduce the tube load and total scan time, it was concluded that tube voltage of 130 kV, tube current of 200 mA, scan time of 1.5 s, slice thickness of 3 mm for high dose gradient and 5 mm for low dose gradient were optimal scanning protocols for this scanner. Optimum number of images to be averaged was concluded to be 25 for X-ray CT polymer gel dosimetry. Choice of reconstruction algorithm was also critical. From the study it is also clear that CT number increase with imaging tube voltage and shows the energy dependency of polymer gel dosimeter. Hence for evaluation of polymer gel dosimeters with X-ray CT scanner needs the optimization of scanning protocols to reduce the image noise.

  9. Chain-based communication in cylindrical underwater wireless sensor networks.

    Science.gov (United States)

    Javaid, Nadeem; Jafri, Mohsin Raza; Khan, Zahoor Ali; Alrajeh, Nabil; Imran, Muhammad; Vasilakos, Athanasios

    2015-02-04

    Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs). Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS) and Congestion adjusted PEGASIS (C-PEGASIS). Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  10. Chain-Based Communication in Cylindrical Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-02-01

    Full Text Available Appropriate network design is very significant for Underwater Wireless Sensor Networks (UWSNs. Application-oriented UWSNs are planned to achieve certain objectives. Therefore, there is always a demand for efficient data routing schemes, which can fulfill certain requirements of application-oriented UWSNs. These networks can be of any shape, i.e., rectangular, cylindrical or square. In this paper, we propose chain-based routing schemes for application-oriented cylindrical networks and also formulate mathematical models to find a global optimum path for data transmission. In the first scheme, we devise four interconnected chains of sensor nodes to perform data communication. In the second scheme, we propose routing scheme in which two chains of sensor nodes are interconnected, whereas in third scheme single-chain based routing is done in cylindrical networks. After finding local optimum paths in separate chains, we find global optimum paths through their interconnection. Moreover, we develop a computational model for the analysis of end-to-end delay. We compare the performance of the above three proposed schemes with that of Power Efficient Gathering System in Sensor Information Systems (PEGASIS and Congestion adjusted PEGASIS (C-PEGASIS. Simulation results show that our proposed 4-chain based scheme performs better than the other selected schemes in terms of network lifetime, end-to-end delay, path loss, transmission loss, and packet sending rate.

  11. Adsorption Characteristics of Water and Silica Gel System for Desalination Cycle

    KAUST Repository

    Cevallos, Oscar R.

    2012-07-01

    An adsorbent suitable for adsorption desalination cycles is essentially characterized by a hydrophilic and porous structure with high surface area where water molecules are adsorbed via hydrogen bonding mechanism. Silica gel type A++ possesses the highest surface area and exhibits the highest equilibrium uptake from all the silica gels available in the market, therefore being suitable for water desalination cycles; where adsorbent’s adsorption characteristics and water vapor uptake capacity are key parameters in the compactness of the system; translated as feasibility of water desalination through adsorption technologies. The adsorption characteristics of water vapor onto silica gel type A++ over a temperature range of 30 oC to 60 oC are investigated in this research. This is done using water vapor adsorption analyzer utilizing a constant volume and variable pressure method, namely the Hydrosorb-1000 instrument by Quantachrome. The experimental uptake data is studied using numerous isotherm models, i. e. the Langmuir, Tóth, generalized Dubinin-Astakhov (D-A), Dubinin-Astakhov based on pore size distribution (PSD) and Dubinin-Serpinski (D-Se) isotherm for the whole pressure range, and for a pressure range below 10 kPa, proper for desalination cycles; isotherms type V of the International Union of Pure and Applied Chemistry (IUPAC) classification were exhibited. It is observed that the D-A based on PSD and the D-Se isotherm models describe the best fitting of the experimental uptake data for desalination cycles within a regression error of 2% and 6% respectively. All isotherm models, except the D-A based on PSD, have failed to describe the obtained experimental uptake data; an empirical isotherm model is proposed by observing the behavior of Tóth and D-A isotherm models. The new empirical model describes the water adsorption onto silica gel type A++ within a regression error of 3%. This will aid to describe the advantages of silica gel type A++ for the design of

  12. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  13. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  14. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    Science.gov (United States)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  15. 3D MR gel dosimetry with lung equivalent gel

    International Nuclear Information System (INIS)

    Scherer, J.; Solleder, M.; Schiessl, I.; Bogner, L.; Herbst, M.

    1998-01-01

    The MR gel dosimetry is used to verify complex 3D treatment plans. Till now this method served only for dose evaluation in homogeneous phantoms. On the way to build a heterogeneous anthropomorphic gel phantom, a lung equivalent gel with the density 0.4 g/cm 3 was developed. First experiments show a 1.55 times higher dose reponse in the low density gel (LD gel). The comparison of a dose distribution in a gel/LD gel/gel slab phantom with Monte Carlo calculations shows good agreement within 5%. More over the accuray of the measuring device magnetic resonance imager was studied in respect to the now exclusive digital image processing with the software MRD (MR dosimetry). Because of the dimensions of the Fricke gel phantom an artefact correction, based on the data from the unirradiated phantom proved to be essential. (orig.) [de

  16. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition.

    Science.gov (United States)

    Wang, Wenjie; Shen, Mingyue; Liu, Suchen; Jiang, Lian; Song, Qianqian; Xie, Jianhua

    2018-07-15

    Effect of different salt ions on the gel properties and microstructure of Mesona blumes polysaccharide (MBP)-soy protein isolates (SPI) mixed gels were investigated. Sodium and calcium ions were chosen to explore their effects on the rheological behavior and gel properties of MBP-SPI mixed gels were evaluated by using rheological, X-ray diffraction, protein solubility determination, and microstructure analysis. Results showed that the addition of salt ions change the crystalline state of gels system, the crystal of gel was enhanced at low ion concentrations (0.005-0.01 M). The two peaks of gel characteristic at 8.9° and 19.9° almost disappeared at high salt ions concentrations (0.015-0.02 M), and new crystallization peaks appeared at around 30° and 45°. The elasticity, viscosity, gel strength, water holding capacity, and thermal stability of gel were increased at low ion concentration. Results showed that the main interactions which promoted gel formation and maintain the three-dimensional structure of the gel were electrostatic interactions, hydrophobic interactions, and disulfide interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  18. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  19. Robotic Hand with Flexible Fingers for Grasping Cylindrical Objects

    OpenAIRE

    柴田, 瑞穂

    2015-01-01

    In this manuscript, a robotic hand for grasping a cylindrical object is proposed. This robotic hand has flexible fingers that can hold a cylindrical object during moving. We introduce a grasping strategy for a cylindrical object in terms of state transition graph. In this strategy the robotic hand picks up the cylindrical object utilizing a suction device before the hand grasp the object. We also design the flexible fingers; then, we investigate the validity of this robotic hand via several e...

  20. Cylindrical continuous martingales and stochastic integration in infinite dimensions

    NARCIS (Netherlands)

    Veraar, M.C.; Yaroslavtsev, I.S.

    2016-01-01

    In this paper we define a new type of quadratic variation for cylindrical continuous local martingales on an infinite dimensional spaces. It is shown that a large class of cylindrical continuous local martingales has such a quadratic variation. For this new class of cylindrical continuous local

  1. Fast calculation method for computer-generated cylindrical holograms.

    Science.gov (United States)

    Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi

    2008-07-01

    Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.

  2. Cylindrical Taylor states conserving total absolute magnetic helicity

    Science.gov (United States)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  3. Bounds of thermal stability of infinite cylindrical structures with non-uniform internal heat generation

    International Nuclear Information System (INIS)

    Gadalla, M.A.

    1992-01-01

    This paper presents an overview analyses of the thermal instability or thermal viability of infinite cylindrical structures with non-linear and non-uniform internal heat generation. The structure may be subjected to different and combined boundary conditions. An analytical solution is obtained for the generalized problem in spite of the non-linearity and the non-homogeneity of the source term. Four case studies with different boundary conditions are presented. The analyses show that the critical parameter for thermal stability may be though of as an altitude of surface below which the cylindrical structure will be thermally stable and performance worthy. The results also show that the bounds of thermal stability of a cylindrical structure system (solid or hollow) is eminently determined by the boundary conditions to which the system is subjected and can significantly alter the life-span of the structure

  4. A mathematical model of microalgae growth in cylindrical photobioreactor

    Science.gov (United States)

    Bakeri, Noorhadila Mohd; Jamaian, Siti Suhana

    2017-08-01

    Microalgae are unicellular organisms, which exist individually or in chains or groups but can be utilized in many applications. Researchers have done various efforts in order to increase the growth rate of microalgae. Microalgae have a potential as an effective tool for wastewater treatment, besides as a replacement for natural fuel such as coal and biodiesel. The growth of microalgae can be estimated by using Geider model, which this model is based on photosynthesis irradiance curve (PI-curve) and focused on flat panel photobioreactor. Therefore, in this study a mathematical model for microalgae growth in cylindrical photobioreactor is proposed based on the Geider model. The light irradiance is the crucial part that affects the growth rate of microalgae. The absorbed photon flux will be determined by calculating the average light irradiance in a cylindrical system illuminated by unidirectional parallel flux and considering the cylinder as a collection of differential parallelepipeds. Results from this study showed that the specific growth rate of microalgae increases until the constant level is achieved. Therefore, the proposed mathematical model can be used to estimate the rate of microalgae growth in cylindrical photobioreactor.

  5. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle [Clean Tech Innovations, Bartlesville, OK (United States)

    2017-08-08

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mud losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability for use in

  6. Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed

    Science.gov (United States)

    Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.

    2004-01-01

    The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.

  7. Magnetic resonance imaging inside cylindrical metal containers with an eddy current self-compensated method

    International Nuclear Information System (INIS)

    Han, Hui; Balcom, Bruce J

    2011-01-01

    Magnetic resonance imaging (MRI) measurements inside cylindrical metal structures have recently been proposed and form the basis for new high-pressure MRI studies. The critical problem for MRI inside cylindrical metal structures is significant eddy currents induced by the switched magnetic field gradients, which usually corrupt spatial and motion encoding without appropriate correction. In this work a so-called standard SPRITE (single point ramped imaging with T 1 enhancement) technique is applied for imaging inside cylindrical metal structures. We show that the standard SPRITE technique is fundamentally immune to large-scale eddy current effects and yields artifact-free high-quality images with no eddy current correction required. Standard SPRITE image acquisition avoids the complications involved in the measurement and compensation of eddy current effects for MRI with cylindrical metal structures. This work is a substantial advance toward the extension of MRI to new challenging systems, which are of practical importance

  8. Study of nuclear glasses alteration gel and synthesis of some model gels

    International Nuclear Information System (INIS)

    Ricol, S.

    1995-01-01

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs

  9. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    International Nuclear Information System (INIS)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I

    2008-01-01

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO 2 /SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO 2 /SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO 2 /PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO 2 nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO 2 , as evaluated by UV-vis spectroscopy

  10. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    Energy Technology Data Exchange (ETDEWEB)

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  11. Electroblotting from Polyacrylamide Gels.

    Science.gov (United States)

    Goldman, Aaron; Ursitti, Jeanine A; Mozdzanowski, Jacek; Speicher, David W

    2015-11-02

    Transferring proteins from polyacrylamide gels onto retentive membranes is now primarily used for immunoblotting. A second application that was quite common up to about a decade ago was electroblotting of proteins for N-terminal and internal sequencing using Edman chemistry. This unit contains procedures for electroblotting proteins from polyacrylamide gels onto a variety of membranes, including polyvinylidene difluoride (PVDF) and nitrocellulose. In addition to the commonly used tank or wet transfer system, protocols are provided for electroblotting using semidry and dry systems. This unit also describes procedures for eluting proteins from membranes using detergents or acidic extraction with organic solvents for specialized applications. Copyright © 2015 John Wiley & Sons, Inc.

  12. Implementation of an algorithm for cylindrical object identification using range data

    Science.gov (United States)

    Bozeman, Sylvia T.; Martin, Benjamin J.

    1989-01-01

    One of the problems in 3-D object identification and localization is addressed. In robotic and navigation applications the vision system must be able to distinguish cylindrical or spherical objects as well as those of other geometric shapes. An algorithm was developed to identify cylindrical objects in an image when range data is used. The algorithm incorporates the Hough transform for line detection using edge points which emerge from a Sobel mask. Slices of the data are examined to locate arcs of circles using the normal equations of an over-determined linear system. Current efforts are devoted to testing the computer implementation of the algorithm. Refinements are expected to continue in order to accommodate cylinders in various positions. A technique is sought which is robust in the presence of noise and partial occlusions.

  13. High lane density slab-gel electrophoresis using micromachined instrumentation.

    Science.gov (United States)

    Papautsky, I; Mohanty, S; Weiss, R; Frazier, A B

    2001-10-01

    In this paper, micromachined pipette arrays (MPAs) and microcombs were studied as a means of enabling high lane density gel electrophoresis. The MPA provide a miniaturized format to interface sub-microliter volumes of samples between macroscale sample preparation formats and microscale biochemical analysis systems. The microcombs provide a means of creating sample loading wells in the gel material on the same center-to-center spacing as the MPAs. Together, the two micromachined instruments provide an alternative to current combs and pipetting technologies used for creating sample loading wells and sample delivery in gel electrophoresis systems. Using three designs for the microcomb-MPA pair, center-to-center spacings of 1.0 mm, 500 microm, and 250 microm are studied. The results demonstrate an approximate 10-fold increase in lane density and a 10-fold reduction in sample size from 5 microL to 500 pL. As a result, the number of theoretical plates has increased 2.5-fold, while system resolution has increased 1.5-fold over the conventional agarose gel systems. An examination of changes in resolution across the width of individual separation lanes in both systems revealed dependence in the case of the conventional gels and no dependence for the gels loaded with the micromachined instrumentation.

  14. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems

    Science.gov (United States)

    Fesmire, J. E.; Johnson, W. L.

    2018-01-01

    Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.

  15. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  16. PHYSICAL FIELDS OF CIRCULAR CYLINDRICAL PIEZOCERAMIC RECEIVER IN PRESENCE OF A FLAT ACOUSTIC SOFT SCREEN

    Directory of Open Access Journals (Sweden)

    A. V. Derepa

    2017-01-01

    Full Text Available System in the form of a circular cylindrical piezoceramic transducer near a flat acoustic screen was analyzed. The aim of the work was to solve the problem of receiving plane sound waves by «cylindrical piezoceramic transducer – flat acoustically soft screen» system.Considered system was characterized by a violation of the radial symmetry of the radiation load of the transducer while maintaining the radial symmetry of the electric load. At the same time, the energy perceived by the system under consideration is distributed between all modes of oscillation of the transducer, while the conversion of mechanical energy into electric is realized only at zero mole of oscillations.Special attention was paid to the method of coupled fields in multiply connected domains using the imaging method. The design model of the «transducer–creen» system was formulated taking into account the interaction of acoustic, mechanical and electric fields in the process of energy conversion, the interaction of a cylindrical transducer with a flat screen and the interaction of a converter with elastic media outside and inside it. The physical fields of the system under consideration were determined by following solutions: the wave equation; equations of motion of thin piezoceramic cylindrical shells in displacements; equations of stimulated electrostatics for piezoceramics for given boundary conditions, conditions for coupling fields at interfaces and electrical conditions.A general conclusion was made concerning solving of an infinite system of linear algebraic equations with respect to the unknown coefficients of the expansion of the fields. As an example of the application of the obtained relations, a calculation was made and an analysis of the dependences of the electric fields of the system under consideration for various parameters of its construction on the direction of arrival on the plane wave system was conducted.

  17. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  18. Evaluation of the Accuracy of Polymer Gels for Determining Electron Dose Distributions in the Presence of Small Heterogeneities.

    Science.gov (United States)

    Asl, R Ghahraman; Nedaie, H A; Banaee, N

    2017-12-01

    The aim of this study is to evaluate the application and accuracy of polymer gels for determining electron dose distributions in the presence of small heterogeneities made of bone and air. Different cylindrical phantoms containing MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gel were used under the slab phantoms during irradiation. MR images of the irradiated gel phantoms were obtained to determine their R2 (spin-spin) relaxation maps for conversion to absorbed dose. One- and 2-dimensional lateral dose profiles were acquired at depths of 1 and 4 cm for 8 and 15 MeV electron beams. The results were compared with the doses measured by a diode detector at the same positions. In addition, the dose distribution in the axial orientation was measured by the gel dosimeter. The slope and intercept for the R2 versus dose curve were 0.509 ± 0.002 Gy s and 4.581 ± 0.005 s, respectively. No significant variation in dose-R2 response was seen for the two electron energies within the applied dose ranges. The mean dose difference between the measured gel dose profiles was smaller than 3% compared to those measured by the diode detector. These results provide further demonstration that electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavity and that MAGIC gel is a useful tool for 3-dimensional dose visualization and qualitative assessment of tissue inhomogeneity effects in electron beam dosimetry.

  19. Experimental investigation of a multi-stage humidification-dehumidification desalination system heated directly by a cylindrical Fresnel lens solar concentrator

    International Nuclear Information System (INIS)

    Wu, Gang; Zheng, Hongfei; Ma, Xinglong; Kutlu, Cagri; Su, Yuehong

    2017-01-01

    Highlights: • A solar desalination system heated directly by curved Fresnel lens concentrator. • Desalination system is based on the humidification-dehumidification process. • Four-stage multi-effect desalination system is proposed. • Condensation latent heat and residual heat in the brine are recycled and reutilized. • The maximum yield and GOR of the unit can reach 3.4 kg/h and 2.1, respectively. - Abstract: This study demonstrates a multi-stage humidification-dehumidification (HDH) solar desalination system heated directly by a cylindrical Fresnel lens concentrator. In this novel system, the solar radiation is sent directly into desalination unit. That is to say, the solar receiver and the evaporator of the system are a whole in which the black fillers in seawater directly absorb the concentrated solar lights to heat the seawater film to produce the evaporation. The configuration and working processes of the proposed design are described in detail. In order to analyze its performance, a small solar desalination prototype unit incorporated with a cylindrical Fresnel lens concentrator was designed and built in our laboratory. Using three-stage isothermal tandem heating mode, the variation of the fresh water yield rate and the absorber temperature with time were measured experimentally and were compared with theoretical calculations. The experimental results show that the maximum yield of the unit is about 3.4 kg/h, the maximum gained output ratio (GOR) is about 2.1, when the average intensity of solar radiation is about 867 W/m"2. This study indicates that the proposed system has the characteristics of compact structure and GOR high. It still can be improved when the design and operation are optimized further.

  20. A review of the cylindrical heat source method for the design and analysis of vertical ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2000-12-01

    The successful design and analysis of ground-coupled heat pump (GCHP) systems depends in large part on the adequate prediction of ground water heat transfer. The author presented a detailed review of the cylindrical heat source method utilized for the prediction of transient heat transfer in vertical U-tube ground heat exchangers. The physics that underlies the theory applicable to this technology is explained in a step-by-step manner. Explanations are also provided for the equations that govern the determination of design lengths for the cylindrical heat method, as presented in the ASHRAE handbook. Some improvements were recommended by the author, such as the calculation of the effective thermal resistances using the borehole diameter instead of the equivalent U-tube diameter now in use. Annual hour-by-hour building load calculations should be used to calculate ground loads. 8 refs., 2 tabs., 5 figs., 3 appendices.

  1. Electron beam dosimetry in heterogeneous phantoms using a MAGIC normoxic polymer gel

    International Nuclear Information System (INIS)

    Ghahraman Asl, R.; Nedaie, H.; Bolouri, B.; Arbabi, A.

    2010-01-01

    Nowadays radiosensitive polymer gels are used as a reliable dosimetry tool for verification of 3D dose distributions. Special characteristics of these dosimeters have made them useful for verification of complex dose distributions in clinical situations. The aim of this work was to evaluate the capability of a normoxic polymer gel to determine electron dose distributions in different slab phantoms in presence of small heterogeneities. Materials and Methods: Different cylindrical phantoms consisting gel were used under slab phantoms during each irradiation. MR images of irradiated gel phantoms were obtained to determine their R2 relaxation maps. 1D and 2D lateral dose profiles were acquired at depths of 1 cm for an 8 MeV beam and 1 and 4 cm for the 15 MeV energy, and then compared with the lateral dose profiles measured using a diode detector. In addition, 3D dose distributions around these heterogeneities for the same energies and depths were measured using a gel dosimeter. Results: Dose resolution for MR gel images at the range of 0-10 Gy was less than 1.55 Gy. Mean dose difference and distance to agreement for dose profiles were 2.6% and 2.2 mm, respectively. The results of the MAGIC-type polymer gel for bone heterogeneity at 8 MeV showed a reduction in dose of approximately 50%, and 30% and 10% at depths 1 and 4 cm at 15 MeV. However, for air heterogeneity increases in dose of approximately 50% at depth 1 cm under the heterogeneity at 8 MeV and 20% and 45% respectively at 15 MeV were observed. Discussion and Conclusion: Generally, electron beam distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities, this being related to mass stopping and mass scattering powers of heterogeneous materials. At the same time, hot and cold scatter lobes under heterogeneity regions due to scatter edge effects were also seen. However, these effects (increased dose, reduced dose, hot and cold spots) at deeper depths, are

  2. Sol-gel system study of Zr O2- Co3 O-4

    International Nuclear Information System (INIS)

    Cerri, J.A.; Matos, E.M.R.; Longo, E.; Varela, J.A.; Santos, C.O.P.

    1992-01-01

    Phases present in the system Zr O 2 + Co 3 O 4 were studied through X-Ray diffraction. The processing of the powder was developed through a modified sol-gel method, where the precursors Zr O (N O 3)2 and Co (N O 3)2 were in an ethanol solution. To verify the influence of CO 3 O 4 on the stabilization and phases formation, the crystallite size and the lattice parameter were determined considering as standard, the system without cobalt. (author)

  3. Effect of calcium/sodium ion exchange on the osmotic properties and structure of polyelectrolyte gels.

    Science.gov (United States)

    Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik

    2015-12-01

    We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.

  4. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  5. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    International Nuclear Information System (INIS)

    Mahon, A.R.; MacDonald, J.H.; Mainwood, A.; Ott, R.J.

    1999-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards. (author)

  6. Initial evaluation of commercial optical CT-based 3D gel dosimeter

    International Nuclear Information System (INIS)

    Islam, K.T.S.; Dempsey, James F.; Ranade, Manisha K.; Maryanski, Marek J.; Low, Daniel A.

    2003-01-01

    We evaluated the OCTOPUS-ONE trade mark sign research laser CT scanner developed and manufactured by MGS Research, Inc. (Madison, CT). The scanner is designed for imaging 3D optical density distributions in BANG registered gels. The scanner operates in a translate-rotate configuration with a single scanning laser beam. The rotating cylindrical gel phantom is immersed in a refractive index matching solution and positioned at the center of a square tank made of plastic and glass. A stationary polarized He-Ne laser beam (633 nm) is reflected from a mirror moving parallel to the tank wall and scans the gel. Another mirror moves synchronously along the opposite side of the tank and collects the transmitted light and sends it to a single stationary silicon photodetector. A filtered backprojection algorithm is used to reconstruct projection data in a plane. The laser-mirrors-detector assembly is mounted on a horizontal platform that moves vertically for slice selection. We have tested the mechanical and optical setup, projection centering on the axis of rotation, linearity, and spatial resolution. We found the optical detector to respond linearly to transmitted light from control samples. The spatial resolution of the scanner was determined by employing a split field resolution technique. We obtained the horizontal and vertical full widths at half maxima of the laser beam intensity profiles as 0.6 and 0.8 mm, respectively. Dose calibration tests of the gel were performed using a nine-field (2x2 cm 2 each) dose pattern irradiated at different dose levels. Finally, we compared gel-derived 2D planar dose distribution against radiochromic film measured dose distribution for both the nine-field and a uniform 5x5 cm 2 field of 6 MV x rays. Very similar dose distributions were observed in gel and radiochromic film except in regions of steep dose gradient and highest dose. A dose normalization of 15.6% was required between the two dosimeters due to differences in overall

  7. Plastic buckling of cylindrical shells

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-01-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads

  8. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  9. Effectiveness of lidocaine Denti patch ® system versus lidocaine gel as topical anesthetic agent in children

    Directory of Open Access Journals (Sweden)

    Lara Anwar Shehab

    2015-01-01

    Full Text Available Background: New methods have been introduced to facilitate dental procedures, but the administration of local anesthesia is still necessary to perform pain control during several dental procedures. Aim: To evaluate the effectiveness of the lidocaine Denti-patch ® system versus the lidocaine topical anesthetic gel in children concerning pain reaction during injection. Materials and Methods: One hundred 9-12-year-old cooperative children weighing more than 29 kg in need of bilateral dental treatment requiring maxillary and mandibular injection and not suffering from acute pain as a result of pulpits on the day of treatment were selected. The children were then divided into two groups: Group 1 comprising of 50 children in need of bilateral maxillary treatment and Group 2 compromising of 50 children requiring bilateral mandibular treatment. These groups were further subdivided into subgroups A and B; those receiving Denti-patch ® on one side and lidocaine gel on the contralateral side, respectively. Pain or comfort was evaluated during injection using sound, eye, motor (SEM scale (objective method while, using faces pain rating scale (FPS scale (subjective method after injection by a trained assistant blinded to the procedure. Statistical Analysis Used: Comparison of the results was performed using Mann-Whitney U-test and Wilcoxon signed-ranks test for SEM and FPS score. Result: There was a statistically significant difference between the patch and the gel group for maxilla (P < 0.0001, as well as mandible (P = 0.01 with respect to SEM score given by the children. Similarly, with FPS scale, there was a statistically significant difference between the patch and the gel groups in both maxilla and mandible (P < 0.0001. However, there was no statistical difference between the patch Groups 1A and IIA or the gel Groups 1B and II B. Conclusion: The Denti-patch ® system can significantly reduce the needle injection pain more than the gel.

  10. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  11. Spatially resolved speckle-correlometry of sol-gel transition

    Science.gov (United States)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  12. Ingestion of six cylindrical and four button batteries

    DEFF Research Database (Denmark)

    Nielsen, Simon U; Rasmussen, Morten; Hoegberg, Lotte C G

    2010-01-01

    We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis.......We report a suicidal ingestion of six cylindrical and four button batteries, in combination with overdosed prescription medicine and smoking of cannabis....

  13. Cylindric-like algebras and algebraic logic

    CERN Document Server

    Ferenczi, Miklós; Németi, István

    2013-01-01

    Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.

  14. Identification of Cysteine Proteases and Screening of Cysteine Protease Inhibitors in Biological Samples by a Two-Dimensional Gel System of Zymography and Reverse Zymography

    OpenAIRE

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-01-01

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the fi rst-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic...

  15. Identification of cysteine proteases and screening of cysteine protease inhibitors in biological samples by a two-dimensional gel system of zymography and reverse zymography.

    Science.gov (United States)

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-11-18

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.

  16. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations

    International Nuclear Information System (INIS)

    Hilts, M; Jirasek, A; Duzenli, C

    2004-01-01

    Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (Δρ gel ) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (Δρ polymer ). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (Δρ gel dose response) are discovered. The first property is that Δρ polymer depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher Δρ polymer than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the Δρ gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T≤12%, monomer consumption and Δρ polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that Δρ polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, Δρ polymer and %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the

  17. Mucosal effects of tenofovir 1% gel.

    Science.gov (United States)

    Hladik, Florian; Burgener, Adam; Ballweber, Lamar; Gottardo, Raphael; Vojtech, Lucia; Fourati, Slim; Dai, James Y; Cameron, Mark J; Strobl, Johanna; Hughes, Sean M; Hoesley, Craig; Andrew, Philip; Johnson, Sherri; Piper, Jeanna; Friend, David R; Ball, T Blake; Cranston, Ross D; Mayer, Kenneth H; McElrath, M Juliana; McGowan, Ian

    2015-02-03

    Tenofovir gel is being evaluated for vaginal and rectal pre-exposure prophylaxis against HIV transmission. Because this is a new prevention strategy, we broadly assessed its effects on the mucosa. In MTN-007, a phase-1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies (15 subjects/arm). We also treated primary vaginal epithelial cells from four healthy women with tenofovir in vitro. After seven days of administration, tenofovir 1% gel had broad-ranging effects on the rectal mucosa, which were more pronounced than, but different from, those of the detergent nonoxynol-9. Tenofovir suppressed anti-inflammatory mediators, increased T cell densities, caused mitochondrial dysfunction, altered regulatory pathways of cell differentiation and survival, and stimulated epithelial cell proliferation. The breadth of mucosal changes induced by tenofovir indicates that its safety over longer-term topical use should be carefully monitored.

  18. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs.

    Science.gov (United States)

    Phaechamud, Thawatchai; Mahadlek, Jongjan

    2015-10-15

    Solvent-exchanged in situ forming gel is a drug delivery system which is in sol form before administration. When it contacts with the body fluid, then the water miscible organic solvent dissipates and water penetrates into the system, leading the polymer precipitation as in situ gel at the site of injection. The aim of this research was to study the parameters affecting the gel properties, drug release and antimicrobial activities of the in situ forming gels prepared from ethyl cellulose (EC) dissolved in N-methyl pyrrolidone (NMP) to deliver the antimicrobial agents (doxycycline hyclate, metronidazole and benzyl peroxide) for periodontitis treatment. The gel appearance, pH, viscosity, rheology, syringeability, gel formation, rate of water diffusion into the gels, in vitro degradation, drug release behavior and antimicrobial activities against Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans and Porphyrommonas gingivalis were determined. Increasing the amount of EC increased the viscosity of system while still exhibiting Newtonian flow and increased the work of syringeability whereas decreased the releasing of drug. The system transformed into the rigid gel formation after being injected into the simulated gingival crevicular fluid. The developed systems containing 5% w/w antimicrobial agent showed the antimicrobial activities against all test bacteria. Thus the developed solvent exchange-induced in situ forming gels comprising EC-antimicrobial drugs exhibited potential use for periodontitis treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  20. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters

    Science.gov (United States)

    Zhang, Xueliang; Wen, Bangchun; Zhao, Chunyu

    2017-11-01

    In present work vibratory synchronization transmission (VST) of a cylindrical roller with dry friction in a vibrating mechanical system excited by two exciters, is studied. Using the average method, the criterion of implementing synchronization of two exciters and that of ensuring VST of a roller, are achieved. The criterion of stability of the synchronous states satisfies the Routh-Hurwitz principle. The influences of the structural parameters of the system to synchronization and stability, are discussed numerically, which can be served as the theoretical foundation for engineering designs. An experiment is carried out, which approximately verify the validity of the theoretical and numerical results, as well as the feasibility of the method used. Utilizing the VST theory of a roller, some types of vibrating crushing or grinding equipments, etc., can be designed.

  1. TU-C-BRE-04: 3D Gel Dosimetry Using ViewRay On-Board MR Scanner: A Feasibility Study

    International Nuclear Information System (INIS)

    Zhang, L; Du, D; Green, O; Rodriguez, V; Wooten, H; Xiao, Z; Yang, D; Hu, Y; Li, H

    2014-01-01

    Purpose: MR based 3D gel has been proposed for radiation therapy dosimetry. However, access to MR scanner has been one of the limiting factors for its wide acceptance. Recent commercialization of an on-board MR-IGRT device (ViewRay) may render the availability issue less of a concern. This work reports our attempts to simulate MR based dose measurement accuracy on ViewRay using three different gels. Methods: A spherical BANG gel dosimeter was purchased from MGS Research. Cylindrical MAGIC gel and Fricke gel were fabricated in-house according to published recipes. After irradiation, BANG and MAGIC were imaged using a dual-echo spin echo sequence for T2 measurement on a Philips 1.5T MR scanner, while Fricke gel was imaged using multiple spin echo sequences. Difference between MR measured and TPS calculated dose was defined as noise. The noise power spectrum was calculated and then simulated for the 0.35 T magnetic field associated with ViewRay. The estimated noise was then added to TG-119 test cases to simulate measured dose distributions. Simulated measurements were evaluated against TPS calculated doses using gamma analysis. Results: Given same gel, sequence and coil setup, with a FOV of 180×90×90 mm3, resolution of 3×3×3 mm3, and scanning time of 30 minutes, the simulated measured dose distribution using BANG would have a gamma passing rate greater than 90% (3%/3mm and absolute). With a FOV 180×90×90 mm3, resolution of 4×4×5 mm3, and scanning time of 45 minutes, the simulated measuremened dose distribution would have a gamma passing rate greater than 97%. MAGIC exhibited similar performance while Fricke gel was inferior due to much higher noise. Conclusions: The simulation results demonstrated that it may be feasible to use MAGIC and BANG gels for 3D dose verification using ViewRay low-field on-board MRI scanner

  2. Tearing instability in cylindrical plasma configuration

    International Nuclear Information System (INIS)

    Zelenyj, L.M.

    1979-01-01

    The effect of the neutral-layer cylindrical geometry on the development of the tearing instability has been investigated in detail. The increments of the instability for all the regimes have been found. The influence of cylindrical effects becomes manifesting itself at small, as compared to the layer characteristic thickness, distances from the axis, and, finally, the electron regime of the instability development transforms into an ion one. The results obtained are of interest for studying the plasma stability in the devices of the ''Astron'' type and in magnetospheres of cosmic objects

  3. Magnetic guns with cylindrical permanent magnets

    DEFF Research Database (Denmark)

    Vokoun, David; Beleggia, Marco; Heller, Luděk

    2012-01-01

    The motion of a cylindrical permanent magnet (projectile) inside a tubular permanent magnet, with both magnets magnetized axially, illustrates nicely the physical principles behind the operation of magnetic guns. The force acting upon the projectile is expressed semi-analytically as derivative...... of the magnetostatic interaction energy. For comparison, the forces involved are also calculated numerically using finite elements methods. Based on the conservation of the magnetostatic and kinetic energies, the exit and asymptotic velocities are determined. The derived formulas can be used to optimize the generated...... forces and motion of the inner cylindrical magnet....

  4. Phase domain structures in cylindrical magnets under conditions of a first-order magnetic phase transition

    International Nuclear Information System (INIS)

    Dzhezherya, Yu.I.; Klymuk, O.S.

    2011-01-01

    The magnetic and resonance properties of cylindrical magnets at first-order phase transition from paramagnetic to ferromagnetic state were theoretically studied. It has been shown that in the external magnetic field directed perpendicularly to the rotation axis, formation of a specific domain structure of paramagnetic and ferromagnetic layers can be energetically favorable. The parameters of cylindrical phase domains as well as their dependences on temperature, magnetic field and material characteristics have been calculated. Peculiarities of the magnetic resonance spectra appearing as a result of the phase domain formation have been considered. Dependence of the resonance field of the system of ferromagnetic domains on magnetization and temperature has been obtained. - Highlights: → Parameters of the equilibrium system of cylindrical phase domains are calculated. → The range of fields for PM and FM phases coexistence is found. → FMR field of the disk domains is found to be lower than that of the PMR field.→ The resonance field increases with the decrease of temperature lower than T || .

  5. Cylindrical dust acoustic waves with transverse perturbation

    International Nuclear Information System (INIS)

    Xue Jukui

    2003-01-01

    The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation

  6. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...

  7. Conceptual design of primary coolant purification system using cylindrical membrane for nuclear energy system base on HTGR

    International Nuclear Information System (INIS)

    Piping Supriatna

    2011-01-01

    The recent progress of reactor technology design for next generation reactor will be implemented on cogeneration reactor, which the aim of reactor operation not only for generating electrical energy, but also for other application like desalination, industrial manufacturing process, hydrogen production, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor concept developed for generate energy effectively, efficiently and sustainable, which reserve of uranium and thorium nuclear fuel for cogeneration reactor is supply able for world energy demand until next thousand years. The cogeneration reactor produce temperature output higher than commonly Nuclear Power Plant (NPP), and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this research has been designed modeling and assessment of primary coolant gas purification system with purify and fill up helium gas continuously, by using Cylindrical Helium Splitting Membrane and helium gas inventory system. The result of flow rate helium assessment for the purification system is 0.844x10 -3 kg/sec, where helium flow rate of reactor primary coolant is 120 kg/sec. The result of study show that the Primary Coolant Gas Purification System is enable to be implemented on Cogeneration Reactor HTGR200C. (author)

  8. Numerical modelling and experimental study of liquid evaporation during gel formation

    Science.gov (United States)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  9. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  10. Determination dimension and technical specification of the cylindrical pneumatics for the tote movement on multipurpose the gamma irradiator BATAN

    International Nuclear Information System (INIS)

    Muhammad Subhan; Ari Satmoko

    2016-01-01

    BATAN develops irradiator gamma category IV in cooperation with IZOTOP (Hungary). Transportation technology products that will be developed uses rail system to pool. Products that will be irradiated are put into tote then placed on the transportation rail, when tote has been in irradiated room tote enters into irradiated rack. The movement of the tote during on irradiated rack will be driven by the pneumatic system. Based on data from Isotop there are 14 cylindrical pneumatics that are in the irradiated room. Through the results analysis then used double acting cylinder type from the Festo pneumatics catalog. Through the results calculation that the force used on all types of cylinders for movement tote still much smaller than of force bent permitted. Beside that there are 4 group a pneumatic have common specifications they are group one cylindrical C1, C3, C12 and C14 they are group two cylindrical C2, C4, C11, and C13 they are group three cylindrical C7, C9, C15 and C17 they are group four cylindrical C10 and C17. (author)

  11. MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water

    Directory of Open Access Journals (Sweden)

    F. M. Abbasi

    2015-07-01

    Full Text Available Advancements in the biomedical engineering have enhanced the usage of magnto-nanoparticles in improving the precision and efficiency of the magneto-drug delivery systems. Such systems make use of the externally applied magnetic fields to direct the drug towards a specific target in the human body. Peristalsis of magneto-nanofluids is of significant importance in such considerations. Hence peristaltic transport of Fe3O4-water nanofluid through a two-dimensional symmetric channel is analyzed in the presence of an externally applied constant magnetic field. Hamilton-Crosser’s model of the thermal conductivity is utilized in the problem development. The nanofluid saturates a non-uniform porous medium in which the porosity of the porous medium varies with the distance from the channel walls. Analysis is performed for the spherical and the cylindrical nanoparticles. Resulting system of equations is numerically solved. Impacts of sundry parameters on the axial velocity, temperature, pressure gradient and heat transfer rate at the boundary are examined. Comparison between the results for spherical and cylindrical nanoparticles is also presented. Results show that the nanoparticles volume fraction and the Hartman number have increasing effect on the pressure gradient throughout the peristaltic tract. Effective heat transfer rate at the boundary tends to enhance with an increase in the nanoparticles volume fraction. Use of spherical nanoparticles results in a higher value of axial velocity and the temperature at the center of channel when compared with the case of cylindrical nanoparticles.

  12. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  13. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  14. A Clustering Method for Data in Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Kazuhisa Fujita

    2017-01-01

    Full Text Available We propose a new clustering method for data in cylindrical coordinates based on the k-means. The goal of the k-means family is to maximize an optimization function, which requires a similarity. Thus, we need a new similarity to obtain the new clustering method for data in cylindrical coordinates. In this study, we first derive a new similarity for the new clustering method by assuming a particular probabilistic model. A data point in cylindrical coordinates has radius, azimuth, and height. We assume that the azimuth is sampled from a von Mises distribution and the radius and the height are independently generated from isotropic Gaussian distributions. We derive the new similarity from the log likelihood of the assumed probability distribution. Our experiments demonstrate that the proposed method using the new similarity can appropriately partition synthetic data defined in cylindrical coordinates. Furthermore, we apply the proposed method to color image quantization and show that the methods successfully quantize a color image with respect to the hue element.

  15. Sol-Gel Production; Proceedings of the First International Conference on Application and Commercialization of Sol-Gel Processing Held in Saarbruecken, Germany on 24-25 May 1993

    National Research Council Canada - National Science Library

    Schmidt, Helmut

    1998-01-01

    ...; Sol-Gel Coatings on Large Glass Substrates for Multilayer Interference Systems; A SiO2-ZrO2 Gel Film doped with Organic Pigments Made by the Sol-Gel Method for Contrast Enhancement of Color Picture Tubes...

  16. Research on a lubricating grease print process for cylindrical cylinder

    Science.gov (United States)

    Yang, Liu; Zhang, Xuan; Wang, XianYan; Tan, XiaoYan

    2017-09-01

    In vehicle braking system and clutch system of transmission, there is always a kind of cylindrical component dose reciprocating motion. The main working method is the reciprocating motion between the rubber sealing parts and cylindrical parts, the main factor affects the service life of the product is the lubricating performance of the moving parts. So the lubricating performance between cylinders and rubber sealing rings is particularly important, same as the quality of the grease applies on the surface of the surface of cylinder. Traditional method of manually applying grease has some defects such as applying unevenly, applying tools like brush and cloth easily falls off and affect the cleanness of products, contact skin easily cause allergy, waste grease due to the uncontrollable of grease quantity using in applying, low efficiency of manual operation. An automatic, quantitative and high pressure applying equipment is introduced in this document to replace the traditional manually applying method, which can guarantee the applying quality of the grease which are painted on the surface of cylinder and bring economic benefits to the company.

  17. MRI gel dosimetry for verification of mono-isocentric junction doses in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Back, S.A.J.; Jayasekera, P.M.; Lepage, M.; Baldock, C.; Menzies, N.; Back, P.

    2000-01-01

    Full text: The use of independent collimators in the abutment of two adjacent treatment volumes, as in head and neck radiation treatments, consists typically of positioning the collimator rotation axis (CRA) at the junction of the volumes, and offsetting each field by its half-field width. This has the effect of positioning one of the collimator jaws at the CRA for each field. However, misalignment of the jaws can lead to variations in dose uniformity in the junction region. We have used gel dosimetry to measure junction doses in three dimensions. PAG gel MRI was used to investigate junction dosimetry for a mono-isocentriic treatment of two orthogonal pairs of opposed (ant/post and lateral) 6 MV x-ray beams. PAG gels in an 11cm diameter cylindrical gel phantom were imaged using a Siemens Vision 1.5 T MRI. The exposures were made using a Philips SL 20 linear accelerator with independent jaws that were known to overlap at the isocentre for sequential abutting offset (within manufacturer's specifications for symmetric fields). X-Omat V films were exposed in mono-directional beams, and optically scanned for comparison. Measurements of off-axis ratios and of relative depth profiles using gel MRI and perpendicular film were in excellent agreement with each other. Measurements through the multi-directional junction at the isocentre are illustrated in the graph, for orthogonal planes centred at the isocentre of the neck phantom. They demonstrate a minimum dose of 75 % of that of the adjacent 'treatment' regions, which agrees closely with the results measured (72%) in the mono-directional case with film. We conclude that this measurement confirms that junction dosimetry at the isocentre measured with perpendicular film for a single direction is a good approximation to the situation in multiple directions. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  18. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.

    2015-05-27

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain wall types, and state diagrams in cylindrical nanowires of different types and sizes. The results of the hysteresis process in individual nanowires and nanowire arrays also are presented. Modeling results are compared with experimental ones. The chapter also discusses future trends in nanowire applications in relation to simulations, such as current-driven dynamics, spintronics, and spincaloritronics. The main micromagnetic programs are presented and discussed, together with the corresponding links.

  19. Numerical Research on Flow Characteristics around a Hydraulic Turbine Runner at Small Opening of Cylindrical Valve

    Directory of Open Access Journals (Sweden)

    Zhenwei Mo

    2016-01-01

    Full Text Available We use the continuity equation and the Reynolds averaged Navier-Stokes equations to study the flow-pattern characteristics around a turbine runner for the small-opening cylindrical valve of a hydraulic turbine. For closure, we adopt the renormalization-group k-ε two-equation turbulence model and use the computational fluid dynamics (CFD software FLUENT to numerically simulate the three-dimensional unsteady turbulent flow through the entire passage of the hydraulic turbine. The results show that a low-pressure zone develops around the runner blades when the cylindrical valve is closed in a small opening; cavitation occurs at the blades, and a vortex appears at the outlet of the runner. As the cylindrical valve is gradually closed, the flow velocity over the runner area increases, and the pressure gradient becomes more significant as the discharge decreases. In addition, the fluid flow velocity is relatively high between the lower end of the cylindrical valve and the base, so that a high-velocity jet is easily induced. The calculation and analysis provide a theoretical basis for improving the performance of cylindrical-valve operating systems.

  20. Estimation of surface temperature by using inverse problem. Part 1. Steady state analyses of two-dimensional cylindrical system

    International Nuclear Information System (INIS)

    Takahashi, Toshio; Terada, Atsuhiko

    2006-03-01

    In the corrosive process environment of thermochemical hydrogen production Iodine-Sulfur process plant, there is a difficulty in the direct measurement of surface temperature of the structural materials. An inverse problem method can effectively be applied for this problem, which enables estimation of the surface temperature using the temperature data at the inside of structural materials. This paper shows analytical results of steady state temperature distributions in a two-dimensional cylindrical system cooled by impinging jet flow, and clarifies necessary order of multiple-valued function from the viewpoint of engineeringly satisfactory precision. (author)

  1. A cylindrical specimen holder for electron cryo-tomography

    International Nuclear Information System (INIS)

    Palmer, Colin M.; Löwe, Jan

    2014-01-01

    The use of slab-like flat specimens for electron cryo-tomography restricts the range of viewing angles that can be used. This leads to the “missing wedge” problem, which causes artefacts and anisotropic resolution in reconstructed tomograms. Cylindrical specimens provide a way to eliminate the problem, since they allow imaging from a full range of viewing angles around the tilt axis. Such specimens have been used before for tomography of radiation-insensitive samples at room temperature, but never for frozen-hydrated specimens. Here, we demonstrate the use of thin-walled carbon tubes as specimen holders, allowing the preparation of cylindrical frozen-hydrated samples of ribosomes, liposomes and whole bacterial cells. Images acquired from these cylinders have equal quality at all viewing angles, and the accessible tilt range is restricted only by the physical limits of the microscope. Tomographic reconstructions of these specimens demonstrate that the effects of the missing wedge are substantially reduced, and could be completely eliminated if a full tilt range was used. The overall quality of these tomograms is still lower than that obtained by existing methods, but improvements are likely in future. - Highlights: • The missing wedge is a serious problem for electron cryo-tomography. • Cylindrical specimens allow the missing wedge to be eliminated. • Carbon nanopipettes can be used as cylindrical holders for tomography of frozen-hydrated specimens. • Cryo-tomography of cylindrical biological samples demonstrates a reduction of deleterious effects associated with the missing wedge

  2. Highly-correlated charges in polyelectrolyte gels

    Science.gov (United States)

    Sing, Charles; Zwanikken, Johannes; Olvera de La Cruz, Monica

    2013-03-01

    Polyelectrolyte gels are ubiquitous in polymer physics due to their attractive combination of structural and chemical features that permit the realization of ``environmentally responsive'' systems. The conventional conceptual picture of the volume response of these systems is based on a competition between osmotic and elastic effects. We elaborate on this fundamental understanding by including ion correlations through the use of liquid-state integral equation theory. This allows for a statistical mechanical representation of the state of the system that not only surpasses traditional Poisson-Boltzmann theories but also renders structural features in a highly accurate fashion. In particular, the local ion structure is elucidated, allowing for detailed articulation of charge inversion and condensation effects in the context of gel swelling. The inclusion of correlations has a number of ramifications that become apparent, with enhanced gel collapse and excluded volume competitions that give rise to novel and ion-dependent reentrant swelling effects. We expect this rigorous theory to prove instructive in understanding any number of gelated structures, such as chromosomes or designed synthetic materials for drug delivery.

  3. Low-energy impact of adaptive cylindrical piezoelectric-composite shells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanos, D.A. [University of Patras (United Kingdom). Dept. of Mechanical Engineering and Aeronautics; Christoforou, A.P. [Kuwait Univ. (Kuwait). Dept. of Mechanical Engineering

    2002-04-01

    A theoretical framework for analyzing low-energy impacts of laminated shells with active and sensory piezoelectric layers is presented, including impactor dynamics and contact law. The formulation encompasses a coupled piezoelectric shell theory mixing first order shear displacement assumptions and layerwise variation of electric potential. An exact in-plane Ritz solution for the impact of open cylindrical piezoelectric-composite shells is developed and solved numerically using an explicit time integration scheme. The active impact control problem of adaptive cylindrical shells with distributed curved piezoelectric actuators is addressed. The cases of optimized state feedback controllers and output feedback controllers using piezoelectric sensors are analyzed. Numerical results quantify the impact response of cylindrical shells of various curvatures including the signal of curved piezoelectric sensors. Additional numerical studies quantify the impact response of adaptive cylindrical panels and investigate the feasibility of actively reducing the impact force. (author)

  4. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    International Nuclear Information System (INIS)

    Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di

    2015-01-01

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained

  5. Buckling tests of sandwich cylindrical shells with and without cut-outs

    NARCIS (Netherlands)

    Bisagni, C.; Davidson, B.D.; Czabaj, M.W.; Ratcliffe, J.G.

    2016-01-01

    The results of buckling tests performed during the project DESICOS funded by the European Commission in the FP7 Programme are here presented. The tested structures are sandwich cylindrical shells that consist of reduced models of a component of the Ariane 5 launcher: the Dual Launch System. In

  6. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.

    2003-01-01

    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as

  7. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  8. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  9. Epidemic models for phase transitions: application to a physical gel

    Science.gov (United States)

    Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.

    2017-09-01

    Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.

  10. An Investigation of the Dose Distribution from LDR Ir-192 Wires in the Triangular Implants of the Paris System using Polymer Gel Dosimetry

    Directory of Open Access Journals (Sweden)

    Azizollah Rahimi

    2010-12-01

    Full Text Available Introduction: Polymer gels are modern dosimeters providing three dimensional dose distributions. These dosimeters can be used in brachytherapy in which the tumor dimension is relatively small and the dose gradient is high. In this study, the ability of the MAGICA polymer gel was investigated for assessing the absolute dose values as well as the dose distribution of low dose rate (LDR Ir-192 wires in interstitial brachytherapy based in triangular implants of the Paris system. Material and Methods: A suitable phantom was made from Perspex. Glass tubes were used as the external tubes for holding the Ir-192 wires in the phantom. The MAGICA polymer gel was made and placed in the phantom. The phantom and the calibration tubes were irradiated using LDR Ir-192 wires and a Co-60 teletherapy unit respectively. They were subsequently imaged using an MRI scanner. The R2 (=1/T2 maps were extracted from several sequential T2-weighted MRI images. The dose values resulting from the polymer gel measurements at the reference points were compared with those from the common calculation method at the same points. In addition, the isodose curves resulting from gel dosimetry were compared with those from a brachytherapy treatment planning system (Flexiplan. Results: The average of the dose values measured with the gel at the reference points was 62.75% higher than those calculated at the same points. Investigating the isodose curves revealed that the maximum distance to agreement (DTAmax between the isodoses resulting from the gel and those obtained from the treatment planning system was less than 3 mm at different dose levels. Discussion and Conclusion: Although the MAGICA gel indicates a higher absolute dose value than those calculated commonly, it can give the relative dose values accurately. Therefore, it can be recommended to be used for the assessment of dose distributions for the treatment of tissues as well as quality control of the treatment planning systems.

  11. Sensitivity optimization in whispering gallery mode optical cylindrical biosensors

    Science.gov (United States)

    Khozeymeh, F.; Razaghi, M.

    2018-01-01

    Whispering-gallery-mode resonances propagated in cylindrical resonators have two angular and radial orders of l and i. In this work, the higher radial order whispering-gallery-mode resonances, (i = 1 - 4), at a fixed l are examined. The sensitivity of theses resonances is analysed as a function of the structural parameters of the cylindrical resonator like different radii and refractive index of composed material of the resonator. A practical application where cylindrical resonators are used for the measurement of glucose concentration in water is presented as a biosensor demonstrator. We calculate the wavelength shifts of the WG1-4, in several glucose/water solutions, with concentrations spanning from 0.0% to 9.0.% (weight/weight). Improved sensitivity can be achieved using multi-WGM cylindrical resonators with radius of R = 100 μm and resonator composed material of MgF 2 with refractive index of nc = 1.38. Also the effect of polarization on sensitivity is considered for all four WGMs. The best sensitivity of 83.07 nm/RIU for the fourth WGM with transverse magnetic polarization, is reported. These results propose optimized parameters aimed to fast designing of cylindrical resonators as optical biosensors, where both the sensitivity and the geometries can be optimized.

  12. Two-dimensional polyacrylamide gel analysis of Plodia interpunctella granulosis virus

    International Nuclear Information System (INIS)

    Russell, D.L.; Consigli, R.A.

    1986-01-01

    The structural polypeptides of purified Plodia interpunctella granulosis virus were analyzed by three different two-dimensional gel systems. Isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of 53 acidic polypeptides in the enveloped nucleocapsid of the virus ranging in molecular weight from 97,300 to 8000. Nine of these polypeptides were shown to be glycoproteins by the technique of radiolabeled lectin blotting. Separation of the granulin in this system allowed resolution of five species, all of which have identical tryptic peptide maps. This matrix protein was demonstrated to be a phosphoglycoprotein by radiolabeled lectin blotting and acid phosphatase dephosphorylation. Nonequilibrium pH gel electrophoresis followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed resolution of the major basic protein of the virus, VP12, from a more acidic protein of the same molecular weight. Tryptic peptide analysis demonstrated that these two proteins were indeed different and acid urea gels followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis allowed localization of the acidic protein to the envelope and the basic protein to the nucleocapsid of the virus. Finally, probing of the separated envelope nucleocapsid proteins in both the isoelectric focusing and nonequilibrium pH gel electrophoresis two-dimensional systems after transfer to nitrocellulose with iodinated, purified viral proteins allowed further insight into reactions which may be important in the maintenance of the virion structure

  13. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  14. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  15. Fluid free surface effect on the vibration analysis of cylindrical shells

    International Nuclear Information System (INIS)

    Lakis, A.A.; Brusuc, G.; Toorani, M.

    2007-01-01

    The present study is to investigate the effect of free surface motion of the fluid on the dynamic behavior of the thin-walled cylindrical shells. This paper outlines a semi-analytical approach to dynamic analysis of the fluid-filled horizontal cylindrical shell taking into account the free surface motion effect. The aim of the method is to provide a general approach that can be used for both analysis and synthesis of fluid structure interaction problems in the horizontal cylindrical shells where the dynamic interaction of a flexible structure and incompressible and inviscid flow is in focus. The approach is very general and allows for dynamic analysis of both uniform and non-uniform cylindrical shell considering the fluid forces including the sloshing effect exerted on the structure. The hybrid method developed in this work is on the basis of a combination of the classical finite element approach and the thin shell theory to determine the specific displacement functions. Mass and stiffness matrices of the shell are determined by precise analytical integration. A potential function is considered to develop the dynamic pressure due to the fluid. The kinetic and potential energies are evaluated for a range of fluid height to find the influence of the fluid on the dynamic responses of the structure. The influence of the physical and geometrical parameters on the fluid-structure system has been considered in the numerical solutions. When these results are compared with corresponding results available in the literature, both theory and experiment, very good agreement is obtained. (authors)

  16. Cylindrical and spherical dust-acoustic wave modulations in dusty ...

    Indian Academy of Sciences (India)

    Abstract. The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distribu- tions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified ...

  17. Settling of a cylindrical particle in a stagnant fluid

    DEFF Research Database (Denmark)

    Sørensen, Henrik; Rosendahl, Lasse; Yin, Chungen

    The objective of this work is to collect data and develop models for cylindrical particles which could be used in numerical multiphase flow modeling. Trajectories of cylindrical particles settling in stagnant water are filmed from two directions in order to derive detailed information on their mo...

  18. Power deposition in a cylindrical geometry using B-10 coatings

    International Nuclear Information System (INIS)

    Chung, A.K.; Prelas, M.A.

    1983-01-01

    The transport of charged particles produced by 10 B (n, α) Li and 235 U (n, νn) ff nuclear reactions in a two region cylindrical geometry is predicted. We employed a mean-range straight-flight approximation to calculate the power deposition by the charged particles in a gaseous medium. Our model demonstrated some features in a cylindrical experiment which were suspected but not proven. In the common slab model used by Guyot et al 1 and Romero 2 , the spatial distribution of power deposition is much flatter than it would be in a cylindrical model. A steeper gradient in the power deposition is expected in a cylindrical geometry than in a slab geometry. We also found that for a standard thickness of Boron-10 coating (1.73 μm) used in NPLs, the expected efficiency of a cylindrical geometry (7.5%) is much lower than the 12% efficiency predicted by the slab model. Indeed the use of slab geometry in modeling current NPL experimental devices is not accurate

  19. Tight multilattices calculated by extended-cell cylindrization

    Energy Technology Data Exchange (ETDEWEB)

    Segev, M; Carmona, S

    1983-01-01

    Among the common features of advanced LWR concepts are the tightness of lattices and the symbiotic setting of different fuels. Such symbioses often come in the form of multilattices, whose numerically-repeated unit is a configuration of several pins, typically with one pin type at the center and pins of a second type surrounding the center pin. If this extended-cell (EC) unit is cylindricized, then a simple transport calculation of the unit will be possible. If the lattice of such units is tight, there is further an a priori reason to expect the cylindrization to introduce only a small distortion of the true neutron fluxes in the lattice. A strict numerical validation of the EC cylindrization approximation is impractical, but similar validations can be carried out for regular lattices, viewed as being made up of multicell units whose centers are moderators and whose peripheries are fuel pins. In these comparisons the EC cylindrization approximation gives good results.

  20. The K-property of 4D billiards with nonorthogonal cylindric scatterers

    International Nuclear Information System (INIS)

    Simanyi, N.; Szasz, D.

    1994-01-01

    The K-property of cylindric billiards give on the 4-torus is established. These billiards are neither open-quotes orthogonal,close quotes where general necessary and sufficient conditions were obtained by D.Szasz, nor isomorphic to hard-ball systems, where the connecting path formula of N. Simanyi is a hand

  1. Scattering of spermatozoa off cylindrical pillars

    Science.gov (United States)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  2. Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seungho; Choi, Youngin; Ha, Kyungrok [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Kyoung-Su, E-mail: pks6348@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, No-Cheol; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Jeong, Kyeong-Hoon; Park, Jin-Seok [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-303 (Korea, Republic of)

    2011-10-15

    Highlights: > A 1/12 scaled-down flow skirt is manufactured and a modal test is performed. > A finite element model predicts the added mass effect of the perforated cylindrical shell. > Modal characteristics are extracted by considering the fluid-structure interaction. - Abstract: The System-integrated Modular Advanced ReacTor (SMART) is a small nuclear reactor under development in Korea. It is equipped with a perforated cylindrical shell, which is called a flow skirt, in the lower plenum of the reactor for uniform flow distribution and to prevent inflow of debris into the core. This perforated cylindrical shell can be excited by external forces such as seismic or pump pulsation loads. The dynamic characteristics of the perforated cylindrical shell must be identified for further dynamic analysis. This research explores the modal analysis of the scaled-down flow skirt model submerged in coolant water. For the numerical simulation, finite element analysis is carried out to extract modal characteristics of the structure considering the fluid-structure interaction and we introduce the NAVMI factor for similarity analysis. In the finite element model, the whole shape of the perforated cylindrical shell is simulated instead of using the effective material properties. In addition, a 1/12 scaled-down flow skirt is manufactured, and an experiment is designed using an exciter and waterproof accelerometers for the modal test. Due to excellent agreement between the modal test results and the finite element analysis results such as natural frequencies and mode shapes, the finite element model is validated and can be used to predict the dynamic characteristics of the real flow skirt. Moreover, the natural frequency of the real flow skirt can be calculated from the NAVMI factor and is in good agreement with the FEM result.

  3. Device for storage of cylindrical objects with quick loading-unloading system

    International Nuclear Information System (INIS)

    Besnier, J.

    1995-01-01

    This device comprises one or more co-axial rotative racks with radially distributed alveoles for the storage of cylindrical objects such as small jugs filled with radioactive samples. An opening is managed in each alveole for the ejection of the object towards a receptacle and alveoles are inclined with respect to the rotation axis of the rack to avoid casual fall of the objects. Selective ejection of the samples is obtained with ab toggle lever fitted inside each alveole and controlled by a single pneumatic jack. Details of manufacturing and description of parts are given. (J.S.). 6 refs., 2 figs

  4. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  5. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application.

    Science.gov (United States)

    Lu, Zheng; Fassihi, Reza

    2015-06-01

    The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations.

  6. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  7. Study on the kinetics of gel formation in the radiation crosslinking reaction

    International Nuclear Information System (INIS)

    Wang Mingjun; Liu Yuming

    1988-01-01

    From the kinetic equation of gel formation obtained by the authors, the mechanism of gel formation may be interpreted clearly as follows: (1) When the degree of crosslinking q g , the system is sol and the crosslinking reaction is only carried out between the sol molecules. (q g is the gel point). (2) When q=q g , there exists a beginning point where the gel is coexisted with the sol, and the system is still sol, and the crosslinking reaction is still carried out between the sol molecules. (3) When q>q g , the crosslinking reaction exceeds the gel point and the gel is coexisted with the sol. The kinetic equation shows clearly that the transformation from sol into gel is caused by crosslinking reaction of the uncrosslinked chain units between the sol and gel molecules. As a result the sol molecules are transformed into the gel molecules gradually, and the sol fraction is reduced. When the chain units P-barw(s)S(1-s)dq in sol are crosslinked with gel, the sol fraction in the system is reduced ds (where P-barw(s) is a function of the radiation dose and s is sol frection). The degree of crosslinking per unit dose (q 0 ) is a reduced function of dose (R). The equation for calculating its value for every irradiation dose is obtained. After knowing the correlation between P-bar W(s) vs R and q 0 vs R, the distribution of gel and sol in the process of radiation crosslinking can be discussed as well

  8. Electron Raman scattering in a cylindrical quantum dot

    International Nuclear Information System (INIS)

    Zhong Qinghu; Yi Xuehua

    2012-01-01

    Electron Raman scattering (ERS) is investigated in a CdS cylindrical quantum dot (QD). The differential cross section is calculated as a function of the scattering frequency and the size of the QD. Single parabolic conduction and valence bands are assumed, and singularities in the spectrum are found and interpreted. The selection rules for the processes are also studied. The ERS studied here can be used to provide direct information about the electron band structure of these systems. (semiconductor physics)

  9. DNA gel electrophoresis: the reptation model(s).

    Science.gov (United States)

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  10. Ultraviolet absorption detection of DNA in gels

    International Nuclear Information System (INIS)

    Mahon, A.R.

    1998-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled deoxyribonucleic acid (DNA) in agarose gels is presented. The technique is based on ultra-violet (UV) absorption by nucleotides. A deuterium lamp was used to illuminate regions of an electrophoresis gel. As DNA bands passed through the illuminated region of the gel the amount of UV light transmitted was reduced due to DNA absorption. Two detection systems were investigated. In the first system, synthetic chemical vapour deposition (CVD) diamond strip detectors were used to locate regions of DNA in the gels by detecting the transmitted light. CVD diamond has a high indirect band gap of 5.45 eV and is therefore sensitive to UV photons of wavelengths < 224 nm. A number of CVD diamond samples were characterised to investigate their suitability as detectors for this application. The detectors' quantum efficiency, UV response and time response were measured. DNA bands containing as little as 20 ng were detected by the diamond. In a second system, a deuterium lamp was used to illuminate individual sample lanes of an electrophoresis gel via an array of optical fibres. During electrophoresis the regions of DNA were detected with illumination at 260 nm, using a UV-sensitive charge coupled device (CCD). As the absorption coefficient of a DNA sample is approximately proportional to its mass, the technique is inherently quantitative. This system had a detection limit of 0.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. Using this detection technique, the DNA sample remains in its native state. The removal of carcinogenic dyes from the detection procedure greatly reduces associated biological hazards. (author)

  11. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  12. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  13. Dry Gel Containing Optimized Felodipine-Loaded Transferosomes: a Promising Transdermal Delivery System to Enhance Drug Bioavailability.

    Science.gov (United States)

    Kassem, Mohammed Ali; Aboul-Einien, Mona Hassan; El Taweel, Mai Magdy

    2018-04-30

    Felodipine has a very low bioavailability due to first-pass metabolism. The aim of this study was to enhance its bioavailability by transdermal application. Felodipine-loaded transferosomes were prepared by thin-film hydration using different formulation variables. An optimized formula was designed using statistical experimental design. The independent variables were the used edge activator, its molar ratio to phosphatidylcholine, and presence or absence of cholesterol. The responses were entrapment efficiency of transferosomes, their size, polydispersity index, zeta potential, and percent drug released after 8 h. The optimized formula was subjected to differential scanning calorimetry studies and its stability on storage at 4°C for 6 months was estimated. This formula was improved by incorporation of different permeation enhancers where ex vivo drug flux through mice skin was estimated and the best improved formula was formulated in a gel and lyophilized. The prepared gel was subjected to in vivo study using Plendil® tablets as a reference. According to the calculated desirability, the optimized transferosome formula was that containing sodium deoxycholate as edge activator at 5:1 M ratio to phosphatidylcholine and no cholesterol. The thermograms of this formula indicated the incorporation of felodipine inside the prepared vesicles. None of the tested parameters differed significantly on storage. The lyophilized gel of labrasol-containing formula was chosen for in vivo study. The relative bioavailability of felodipine from the designed gel was 1.7. In conclusion, topically applied lyophilized gel containing felodipine-loaded transferosomes is a promising transdermal delivery system to enhance its bioavailability.

  14. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  15. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  16. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  17. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  18. Integral-equation formulation for drift eigenmodes in cylindrically symmetric systems

    International Nuclear Information System (INIS)

    Linsker, R.

    1980-12-01

    A method for solving the integral eigenmode equation for drift waves in cylindrical (or slab) geometry is presented. A leading-order kinematic effect that has been noted in the past, but incorrectly ignored in recent integral-equation calculations, is incorporated. The present method also allows electrons to be treated with a physical mass ratio (unlike earlier work that is restricted to artificially small m/sub i//m/sub e/ owing to resolution limitations). Results for the universal mode and for the ion-temperature-gradient driven mode are presented. The kinematic effect qualitatively changes the spectrum of the ion mode, and a new second region of instability for k/sub perpendicular to/rho/sub i/greater than or equal to 1 is found

  19. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, O. A.; Sriprisan, S. I.; Lopatiuk-Tirpak, O.; Kupelian, P. A.; Meeks, S. L.; Hsi, W. C.; Li, Z.; Palta, J. R.; Maryanski, M. J. [M. D. Anderson Cancer Center Orlando, Orlando, Florida 32806 (United States); University of Florida Proton Therapy Institute, Jacksonville, Florida 32206 (United States); MGS Research, Inc., Madison, Connecticut 06443 (United States)

    2010-05-15

    Purpose: The aim of this study is to evaluate the dosimetric performance of a newly developed proton-sensitive polymer gel formulation for proton therapy dosimetry. Methods: Using passive scattered modulated and nonmodulated proton beams, the dose response of the gel was assessed. A next-generation optical CT scanner is used as the readout mechanism of the radiation-induced absorbance in the gel medium. Comparison of relative dose profiles in the gel to ion chamber profiles in water is performed. A simple and easily reproducible calibration protocol is established for routine gel batch calibrations. Relative stopping power ratio measurement of the gel medium was performed to ensure accurate water-equivalent depth dose scaling. Measured dose distributions in the gel were compared to treatment planning system for benchmark irradiations and quality of agreement is assessed using clinically relevant gamma index criteria. Results: The dosimetric response of the gel was mapped up to 600 cGy using an electron-based calibration technique. Excellent dosimetric agreement is observed between ion chamber data and gel. The most notable result of this work is the fact that this gel has no observed dose quenching in the Bragg peak region. Quantitative dose distribution comparisons to treatment planning system calculations show that most (>97%) of the gel dose maps pass the 3%/3 mm gamma criterion. Conclusions: This study shows that the new proton-sensitive gel dosimeter is capable of reproducing ion chamber dose data for modulated and nonmodulated Bragg peak beams with different clinical beam energies. The findings suggest that the gel dosimeter can be used as QA tool for millimeter range verification of proton beam deliveries in the dosimeter medium.

  20. Dosimetric evaluation of a novel polymer gel dosimeter for proton therapy

    International Nuclear Information System (INIS)

    Zeidan, O. A.; Sriprisan, S. I.; Lopatiuk-Tirpak, O.; Kupelian, P. A.; Meeks, S. L.; Hsi, W. C.; Li, Z.; Palta, J. R.; Maryanski, M. J.

    2010-01-01

    Purpose: The aim of this study is to evaluate the dosimetric performance of a newly developed proton-sensitive polymer gel formulation for proton therapy dosimetry. Methods: Using passive scattered modulated and nonmodulated proton beams, the dose response of the gel was assessed. A next-generation optical CT scanner is used as the readout mechanism of the radiation-induced absorbance in the gel medium. Comparison of relative dose profiles in the gel to ion chamber profiles in water is performed. A simple and easily reproducible calibration protocol is established for routine gel batch calibrations. Relative stopping power ratio measurement of the gel medium was performed to ensure accurate water-equivalent depth dose scaling. Measured dose distributions in the gel were compared to treatment planning system for benchmark irradiations and quality of agreement is assessed using clinically relevant gamma index criteria. Results: The dosimetric response of the gel was mapped up to 600 cGy using an electron-based calibration technique. Excellent dosimetric agreement is observed between ion chamber data and gel. The most notable result of this work is the fact that this gel has no observed dose quenching in the Bragg peak region. Quantitative dose distribution comparisons to treatment planning system calculations show that most (>97%) of the gel dose maps pass the 3%/3 mm gamma criterion. Conclusions: This study shows that the new proton-sensitive gel dosimeter is capable of reproducing ion chamber dose data for modulated and nonmodulated Bragg peak beams with different clinical beam energies. The findings suggest that the gel dosimeter can be used as QA tool for millimeter range verification of proton beam deliveries in the dosimeter medium.

  1. Cylindrical pressure vessel constructed of several layers

    International Nuclear Information System (INIS)

    Yamauchi, Takeshi.

    1976-01-01

    For a cylindrical pressure vessel constructed of several layers whose jacket has at least one circumferential weld joining the individual layers, it is proposed to provide this at least at the first bending line turning point (counting from the weld between the jacket and vessel floor), which the sinusoidally shaped jacket has. The section of the jacket extending in between should be made as a full wall section. The proposal is based on calculations of the bending stiffness of cylindrical jackets, which could not yet be confirmed for jackets having several layers. (UWI) [de

  2. Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi; Mooij, Rob; Mark Perera, G.; Maryanski, Marek J.

    2004-01-01

    Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 registered polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D

  3. Effects of Boundary Conditions on the Parametric Resonance of Cylindrical Shells under Axial Loading

    Directory of Open Access Journals (Sweden)

    T.Y. Ng

    1998-01-01

    Full Text Available In this paper, a formulation for the dynamic stability analysis of circular cylindrical shells under axial compression with various boundary conditions is presented. The present study uses Love’s first approximation theory for thin shells and the characteristic beam functions as approximate axial modal functions. Applying the Ritz procedure to the Lagrangian energy expression yields a system of Mathieu–Hill equations the stability of which is analyzed using Bolotin’s method. The present study examines the effects of different boundary conditions on the parametric response of homogeneous isotropic cylindrical shells for various transverse modes and length parameters.

  4. A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Maltz, Jonathan

    2008-01-01

    A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy

  5. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ke [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-09-15

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums.

  6. Novel spherical hohlraum with cylindrical laser entrance holes and shields

    International Nuclear Information System (INIS)

    Lan, Ke; Zheng, Wudi

    2014-01-01

    Our recent works [K. Lan et al., Phys. Plasmas 21, 010704 (2014); K. Lan et al., Phys. Plasmas 21, 052704 (2014)] have shown that the octahedral spherical hohlraums are superior to the cylindrical hohlraums in both higher symmetry during the capsule implosion and lower backscatter without supplementary technology. However, both the coupling efficiency from the drive laser energy to the capsule and the capsule symmetry decrease remarkably when larger laser entrance holes (LEHs) are used. In addition, the laser beams injected at angles > 45° transport close to the hohlraum wall, thus the wall blowoff causes the LEH to close faster and results in strong laser plasma interactions inside the spherical hohlraums. In this letter, we propose a novel octahedral hohlraum with LEH shields and cylindrical LEHs to alleviate these problems. From our theoretical study, with the LEH shields, the laser coupling efficiency is significantly increased and the capsule symmetry is remarkably improved in the spherical hohlraums. The cylindrical LEHs take advantage of the cylindrical hohlraum near the LEH and mitigate the influence of the blowoff on laser transport inside a spherical hohlraum. The cylindrical LEHs can also be applied to the rugby and elliptical hohlraums

  7. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  8. Modeling the fusion of cylindrical bioink particles in post bioprinting structure formation

    Science.gov (United States)

    McCune, Matt; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2015-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method to describe the shape evolution and biomechanical relaxation processes in multicellular systems. Thus, CPD is a useful tool to predict the outcome of post-printing structure formation in bioprinting. The predictive power of CPD has been demonstrated for multicellular systems composed of spherical bioink units. Experiments and computer simulations were related through an independently developed theoretical formalism based on continuum mechanics. Here we generalize the CPD formalism to (i) include cylindrical bioink particles often used in specific bioprinting applications, (ii) describe the more realistic experimental situation in which both the length and the volume of the cylindrical bioink units decrease during post-printing structure formation, and (iii) directly connect CPD simulations to the corresponding experiments without the need of the intermediate continuum theory inherently based on simplifying assumptions. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  9. Electrophoretic Porosimetry of Sol-Gels

    Science.gov (United States)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  10. SHADOK-3-6, Transport Equation with Anisotropic Diffusion in P1 Approximation for Spherical and Cylindrical Geometry

    International Nuclear Information System (INIS)

    Ligou, J.; Thomi, P.A.

    1973-01-01

    1 - Nature of physical problem solved: Integral transport equation, anisotropy of diffusion in P1 approximation. SHADOK3 - cylindrical geometry; direct solution of the linear system. SHADOK4 - cylindrical geometry; Thermalization iteration; solution of the linear system with inverse matrix calculation. SHADOK5 - like SHADOK3 for spherical geometry. SHADOK6 - like SHADOK4 for spherical geometry. 2 - Method of solution: Analysis in terms of annuli for each of which polynomial approximation is applied. Dynamic allocation (for formulas see report TM(10)). 3 - Restrictions on the complexity of the problem: Relative accuracy of the Bickley functions about 1.0E-13

  11. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  12. Analysis of radial vibrations of poroelastic circular cylindrical shells ...

    African Journals Online (AJOL)

    DR OKE

    vanished, the considered problem reduces to the problem of radial vibrations of fluid-filled poroelastic circular cylindrical shell. (2). When the .... the volume change of the solid to that of liquid. ..... When the outer fluid density is zero, that is, ρof = 0 then the poroelastic cylindrical shell immersed in an acoustic medium will.

  13. Experimental determination of order in non-equilibrium solids using colloidal gels

    International Nuclear Information System (INIS)

    Gao Yongxiang; Kilfoil, Maria

    2004-01-01

    The idea of quantifying order in disordered systems has been introduced recently by Torquato and co-workers (2000 Phys. Rev. E 62 993-1001). We are interested in the application of this idea to measure structure in non-equilibrium systems. Here we focus on gels, using as a model system colloidal gels formed from hard spheres with polymer added to the systems to induce a controlled, weak attraction. To describe the structure of the gels we use real space imaging via confocal microscopy to obtain the full three-dimensional structure. We measure experimentally both translational order and bond angle correlations, defining a new (refined) translational order parameter that is sensitive to long range order in these non-random packings. This metric is also sensitive to anisotropy, which should be important in the many physical situations where an external force is present. The bond angle distribution shows coordinated organization. To give a clearer physical picture for gels, we compare the experimental data to computer generated hard sphere systems

  14. Microstructural development of superconducting phases in Pb-BSCCO system derived from sol-gel technique

    International Nuclear Information System (INIS)

    Qureshi, A.H.; Hussain, N.; Durrani, S.K.; Waqas, H.; Arshad, M.

    2010-01-01

    Sol-gel processing technique has been utilized to produce the gel of Pb-BSCCO system (Bi/sub 2/-xPbxSr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10/+-y, where x 0.2, 0.4, and 0.8, are the mole fraction of Pb substituted against Bi). The gel samples were subsequently heated to 800 deg. C for 2 h to obtain the powders which were then pressed and sintered at 845 deg. C for 60 h. The morphologies in the Pb-BSCCO gel, powder and sintered products were observed with scanning electron microscope (SEM) and optical microscope. The plate-like growths of the superconducting phases are evident from the SEM micrographs. The optical micrographs of sintered samples showed that the samples containing 0.2 and 0.8 mole fraction of Pb mainly consisted of dark grey and white regions, while sample having 0.4 mole fraction of Pb comprised of dark grey, light grey, and white regions. The different regions were analyzed by using energy dispersive X-rays (EDX) analyzer attached with SEM. The results revealed that the dark grey regions in all the samples represented the Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8/ +- y (2212) phase whereas, light grey regions in sample (x = 0.4) constituted the Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10/ +- y (2223) phase. The white regions in all samples depicted the presence of CuO. The best result in term of larger fraction of superconducting phase (2223) has been observed in sample containing 0.4 mole fraction of Pb. (author)

  15. On cylindrically converging shock waves shaped by obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, V; Henshaw, W D; Appelo, D

    2007-07-16

    Motivated by recent experiments, numerical simulations were performed of cylindrically converging shock waves. The converging shocks impinged upon a set of zero to sixteen regularly space obstacles. For more than two obstacles the resulting diffracted shock fronts formed polygonal shaped patterns near the point of focus. The maximum pressure and temperature as a function of number of obstacles were studied. The self-similar behavior of cylindrical, triangular and square-shaped shocks were also investigated.

  16. Comparison of systemic absorption between ofloxacin ophthalmic in situ gels and ofloxacin conventional ophthalmic solutions administration to rabbit eyes by HPLC-MS/MS.

    Science.gov (United States)

    Li, Jiawei; Zhao, Hainan; Okeke, Chukwunweike Ikechukwu; Li, Lin; Liu, Zhidong; Yin, Zhongpeng; Zhuang, Pengwei; Sun, Jingtong; Wu, Tao; Wang, Meng; Li, Nan; Pi, Jiaxin; Zhang, Qian; Zhang, Rui; Ma, Li; Pang, Xiaochen; Liu, Zhanbiao; Zhang, Li; Fan, Lili

    2013-06-25

    In recent years, many pharmaceutical scientists have focused on developing the in situ gel-forming systems to overcome the poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid pre-corneal elimination of the drug. The present work was to compare the systemic absorptions of ophthalmic ofloxacin in situ gel with the conventional ofloxacin eye drop after topical instillation to rabbit eyes by HPLC-MS/MS method and also determine the relative contribution of the nasal and the conjunctival mucosae to systemic ofloxacin absorption following topical instillation. The systemic AUC, Cmax, Tmax and Ke for ophthalmic in situ gel and ophthalmic solution after ocular instillation were 202.63±118.85 and 202.25±57.74 ng mL(-1) h, 54.22±28.31 and 48.4±25.97 ng mL(-1), 1.08±0.20 and 1.25±0.88 h, 0.0576±0.0207 and 0.0388±0.0248, respectively. And the values for the ratios of the AUC of anterior chamber of rabbit eye to blood plasma, AUCac/AUCpl, for ofloxacin conventional eye drop and in situ gel were 0.25 and 0.52, respectively. Statistic results showed that there was no significant difference in systemic absorption between the test groups and the reference groups (P>0.05) as both formulations have an AUCsa/AUCpl of 0.35. Therefore, the ophthalmic in situ gel may not decrease the drugs systemic absorption when administered in an equivalent dose as ophthalmic solutions into the rabbit eyes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Preparation And Evaluation Of Fluconazole Gels | Abdel-Mottaleb ...

    African Journals Online (AJOL)

    Gels dosage forms are successfully used as drug delivery systems considering their ability to control drug release and to protect medicaments from a hostile environment. Thus, it was desired in this study to formulate fluconazole into a gel that could be used locally in the treatment of different skin fungal infections. Cellulose ...

  18. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  19. Sol-gel synthesis and characterization of fine-grained ceramics in the alumina-titania system

    Energy Technology Data Exchange (ETDEWEB)

    Otterstein, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)], E-mail: otterstein@physik1.uni-rostock.de; Karapetyan, G. [Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock (Germany); Nicula, R. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); Stir, M. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany); National Institute for Materials Physics, 105b Atomistilor Strasse, P.O.B. MG7, 077125 Bucharest-Magurele (Romania); Schick, C. [Institute of Physics, University of Rostock, Universitaetsplatz 3, 18051 Rostock (Germany); Burkel, E. [Institute of Physics, University of Rostock, August-Bebel-Strasse 55, 18055 Rostock (Germany)

    2008-02-05

    Fine-grained ceramics of the Al{sub 2}O{sub 3}-TiO{sub 2} system were synthesised by reactive sintering of sol-gel precursors (Al- and Ti-alkoxides). The thermal behaviour of the as-prepared xerogels was examined by thermal analysis and X-ray powder diffraction. Preliminary results concerning powder consolidation into bulk ceramic parts using spark plasma sintering (SPS) are discussed.

  20. Structural Evolution and Stability of Sol-Gel Biocatalysts

    International Nuclear Information System (INIS)

    Rodgers, L.E.; Foster, L.J.R.; Holden, P.J.; Knott, R.B.; Bartlett, J.B.

    2005-01-01

    Full text: Immobilisation strategies for catalytic enzymes are important as they allow reuse of the biocatalysts. Sol-gel materials have been used to immobilise Candida antarctica lipase B (CALB), a commonly used industrial enzyme with a known crystal structure. The sol-gel bioencapsulate is produced through the condensation of suitable metal alkoxides in the presence of CALB, yielding materials with controlled pore sizes, volume and surface chemistry. Sol-gel matrices have been shown to prolong the catalytic life and enhance the activity of CALB, although the molecular basis for this effect has yet to be elucidated due to the limitations of analysis techniques applied to date. Small angle neutron scattering (SANS) allows such multicomponent systems to be characterised through contrast matching. In the sol-gel bioencapsulate system, at the contrast match point for silica, residual scattering intensity is due to the CALB and density fluctuations in the matrix. A SANS contrast variation series found the match point for the silica matrix, both with and without enzyme present, to be around 35 percent. The model presented here proposes a mechanism for the interaction between CALB and the surrounding sol-gel matrix, and the observed improvement in enzyme activity and matrix strength. The SANS protocol developed here may be applied more generally to bioencapsulates. (authors)

  1. Dismantling OPAL's cylindrical magnet core

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.

  2. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    International Nuclear Information System (INIS)

    Gambarini, G.; Agosteo, S.; Marchesi, P.; Nava, E.; Palazzi, P.; Pecci, A.; Rosa, R.; Rosi, G.; Tinti, R.

    2001-01-01

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10 B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1 H(n,γ) 2 H and 14 N(n,p) 14 C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  3. Deposition of Al/Cu Multilayer By Double Targets Cylindrical DC Magnetron Sputtering System

    Directory of Open Access Journals (Sweden)

    P. Balashabadi

    2013-12-01

    Full Text Available A cylindrical direct current magnetron sputtering coater with two targets for deposition of multilayer thin films and cermet solar selective surfaces has been constructed. The substrate holder was able to rotate around the target for obtaining the uniform layer and separated multilayer phases. The Al/ Cu multilayer film was deposited on the glass substrate at the following conditions: Working gas = Pure argon, Working pressure = 1 Pa, Cathode current = 8 A and cathode voltage = -600 V .Microstructure of the film was investigated by X-Ray Diffraction and the scanning electron microscopy analyses. The elements profile was determined by glow discharge–optical emission spectroscopy analysis. During deposition, both targets with magnetron configuration were sputtered simultaneously by argon ions. A Plasma column on the targets surface was generated by a 290 G permanent magnet unit. Two DC power supply units with three phases input and maximum output of 12 A/1000V were used to deposit the multilayer thin films. A control phase system was used to adjust output voltage.

  4. Nonlinear Vibration and Mode Shapes of FG Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    Saeed Mahmoudkhani

    Full Text Available Abstract The nonlinear vibration and normal mode shapes of FG cylindrical shells are investigated using an efficient analytical method. The equations of motion of the shell are based on the Donnell’s non-linear shallow-shell, and the material is assumed to be gradually changed across the thickness according to the simple power law. The solution is provided by first discretizing the equations of motion using the multi-mode Galerkin’s method. The nonlinear normal mode of the system is then extracted using the invariant manifold approach and employed to decouple the discretized equations. The homotopy analysis method is finally used to determine the nonlinear frequency. Numerical results are presented for the backbone curves of FG cylindrical shells, nonlinear mode shapes and also the nonlinear invariant modal surfaces. The volume fraction index and the geometric properties of the shell are found to be effective on the type of nonlinear behavior and also the nonlinear mode shapes of the shell. The circumferential half-wave numbers of the nonlinear mode shapes are found to change with time especially in a thinner cylinder.

  5. Monte Carlo calculations and experimental results of Bonner spheres systems with a new cylindrical Helium-3 proportional counter

    CERN Document Server

    Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L

    2002-01-01

    The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...

  6. Waveguide fabrication in UV-photocurable sol-gel materials: Influence of the photoinitiating system

    International Nuclear Information System (INIS)

    Versace, D.L.; Oubaha, M.; Copperwhite, R.; Croutxe-Barghorn, C.; MacCraith, B.D.

    2008-01-01

    In this paper we identify and explain the different chemical interactions involved between a sol-gel matrix and photoinitiators used in the fabrication of optical waveguides. A well-established sol-gel matrix composed of 3-methacryloxypropyltrimethoxysilane, zirconium n-propoxide and methacrylic acid was developed, and two different photoinitiators (Irgacure (registered) 819 and 1800) were added to the host matrix. Optical microscopy was used to characterise the structure of the waveguides as a function of the photoinitiator nature and concentration, and aging of the hybrid sol-gel material. It is clearly demonstrated that the width of the waveguides is strongly influenced by the sol aging. Furthermore, it is shown that degradation of photoinitiators occurs during the sol-gel process. Oxidation of the phosphonyl groups by the zirconium complex accounts for this results

  7. Cylindric partitions, {{\\boldsymbol{ W }}}_{r} characters and the Andrews-Gordon-Bressoud identities

    Science.gov (United States)

    Foda, O.; Welsh, T. A.

    2016-04-01

    We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.

  8. Colloid molecular weight estimation by gel chromatography/acrylamide gel electrophoresis

    International Nuclear Information System (INIS)

    Liberatore, F.A.; Dearborn, C.; Nigam, S.; Poon, C.; Camin, L.; Liteplo, M.

    1984-01-01

    Size or molecular weight (MW) estimation of radiolabeled collides in aqueous solutions has long been a problem. The authors have prepared several minimicroaggregated albumin colloids (mμAA) by heat denaturation of stannous-containing HSA solutions at pH 7.0, 7.5, and 8.5). The resulting colloids were labeled with Tc-99m and compared with Au-198 colloid and Tc-99m-antimony sulfide colloid (Tc-99m-Sb/sub 2/S3) by gel chromatography and gel electrophoresis. Tc-99mm-mμAA aggregated at pH 7.0 and the Au-198 colloid appeared in the external void volume of a BioRad A5.0 agarose column indicating an apparent MW of > 5 x 10/sup 6/ daltons. The pH7.5 Tc-99m-mμAA, migrated within the filtration range of the column as did a small fraction of Tc-99m-Sb/sub 2/S/sub 3/, suggesting that the MW is between 6 x 10/sup 4/ - 5 x 10/sup 6/ daltons. The Tc-99m-mμAA, aggregated at pH 8.5, had an apparent MW on gel filtration similar to that of untreated albumin, MW 6.6 x 10-/sup 4/ daltons. The mobilities of the colloids, on acrylamide disc gel electrophoresis, were consistent with the results on gel chromatography. The largest colloids, Au-198 colloid and pH 7.0 Tc-99m-mμAA, barely entered the separating gel; intermediate sized colloids, a small fraction of Tc-99m-Sb/sub 2/S/sub 3/ and pH 7.5 Tc-99m-mμAA migrated farther into the separating gel; while pH 8.5 Tc-99m-mμAA had mobility approaching that of untreated albumin. Lymphoscintigraphy studies using these colloids in animals showed the predicted, particle size-related differences in migration and clearance. The authors conclude that gel chromatography and gel electrophoresis are useful methods for estimating the apparent size of the colloidal particles

  9. High performance CCD camera system for digitalisation of 2D DIGE gels.

    Science.gov (United States)

    Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf

    2016-07-01

    An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Forced vibrations of rotating circular cylindrical shells

    International Nuclear Information System (INIS)

    Igawa, Hirotaka; Maruyama, Yoshiyuki; Endo, Mitsuru

    1995-01-01

    Forced vibrations of rotating circular cylindrical shells are investigated. Basic equations, including the effect of initial stress due to rotation, are formulated by the finite-element method. The characteristic relations for finite elements are derived from the energy principle by considering the finite strain. The equations of motion can be separated into quasi-static and dynamic ones, i.e., the equations in the steady rotating state and those in the vibration state. Radial concentrated impulses are considered as the external dynamic force. The transient responses of circular cylindrical shells are numerically calculated under various boundary conditions and rotating speeds. (author)

  11. Two-point method uncertainty during control and measurement of cylindrical element diameters

    Science.gov (United States)

    Glukhov, V. I.; Shalay, V. V.; Radev, H.

    2018-04-01

    The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.

  12. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  13. Development of an injectable chitosan/marine collagen composite gel

    International Nuclear Information System (INIS)

    Wang Wei; Itoh, Soichiro; Aizawa, Tomoyasu; Demura, Makoto; Okawa, Atsushi; Sakai, Katsuyoshi; Ohkuma, Tsuneo

    2010-01-01

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-α) assay by ELISA. The inflammatory cell infiltration and release of TNF-α were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  14. Cylindrical thin-shell wormholes

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2004-01-01

    A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity

  15. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    Directory of Open Access Journals (Sweden)

    Toda Tosifusa

    2006-10-01

    Full Text Available Abstract Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved.

  16. Formation of vortex breakdown in conical–cylindrical cavities

    International Nuclear Information System (INIS)

    Martins, Diego Alves de Moro; Souza, Francisco José de; Salvo, Ricardo de Vasconcelos

    2014-01-01

    Highlights: • Rotating flows in conical–cylindrical cavities were simulated via an in-house code using unstructured meshes. • The vortex breakdown phenomenon was verified in the geometries analyzed. • The influence of Stewartson and Bödewadt layers was observed in the vortex breakdown formation. • A curve of stability and number of breakdowns was obtained as a function of Reynolds number. • Spiral vortex breakdown was observed in some situations. - Abstract: Numerical simulations in confined rotating flows were performed in this work, in order to verify and characterize the formation of the vortex breakdown phenomenon. Cylindrical and conical–cylindrical geometries, both closed, were used in the simulations. The rotating flow is induced by the bottom wall, which rotates at constant angular velocity. Firstly the numerical results were compared to experimental results available in references, with the purpose to verify the capacity of the computational code to predict the vortex breakdown phenomenon. Further, several simulations varying the parameters which govern the characteristics of the flows analyzed in this work, i.e., the Reynolds number and the aspect ratio, were performed. In these simulations, the limits for the transitional regime and the vortex breakdown formation were verified. Steady and transient cases, with and without turbulence modeling, were simulated. In general, some aspects of the process of vortex breakdown in conical–cylindrical geometries were observed to be different from that in cylinders

  17. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...

  18. PREPARATION AND PROPERTIES OF COMPOUND ARNEBIAE RADIX MICROEMULSION GEL.

    Science.gov (United States)

    Chen, Jing; He, Yanping; Gao, Ting; Zhang, Licheng; Zhao, Yuna

    2017-01-01

    Compound Arnebiae radix oil has been clinically applied to treat burns and scalds for a long time. However, it is unstable and inconvenient to use. The aim of this study was to prepare a compound Arnebiae radix microemulsion gel for transdermal delivery system and evaluate its characteristics. Based on the solubility of Shikonin, the active component of Arnebiae radix and the results of phase studies, adequate ratio of each component in microemulsion was determined. The optimized microemulsion gel was prepared using Carbomer 940. The gels were characterized in terms of appearance, preliminary stability test and the content of Shikonin in the compound Arnebiae radix microemulsion gel with HPLC analysis. The optimized conditions for preparing microemulsion were Tween-80, glycerin, isopropyl myristate (IPM) with the ratio of 6:3:2. The optimal microemulsion gel was obtained with Carbomer 940 (1.0%). The prepared compound Arnebiae radix microemulsion gel showed good stability over time. It is more convenience in application than the previous used formulations.

  19. Micromagnetic simulations of cylindrical magnetic nanowires

    KAUST Repository

    Ivanov, Yurii P.; Chubykalo-Fesenko, O.

    2015-01-01

    This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain

  20. Characteristics of the low power cylindrical anode layer ion source

    International Nuclear Information System (INIS)

    Zhao Jie; Tang Deli; Cheng Changming; Geng Shaofei

    2009-01-01

    A low power cylindrical anode layer ion source and its working characteristic, and the beam distribution are introduced. This ion source has two working states, emanative state and collimated state, and the normal parameters of this system are: working voltage 200-1200 V, discharge current 0.1-1.4A, air pressure 1.9 x 10 -2 -1.7 x 10 -1 Pa, gas flow 5-20 sccm. (authors)

  1. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  2. Evaluation of a New and Rapid Serologic Test for Detecting Brucellosis: Brucella Coombs Gel Test.

    Science.gov (United States)

    Hanci, Hayrunisa; Igan, Hakan; Uyanik, Muhammet Hamidullah

    2017-01-01

    Many serological tests have been used for the diagnosis of human brucellosis. A new serological method is identified as Brucella Coombs gel test based on the principle of centrifugation gel system similar to the gel system used in blood group determination. In this system, if Brucella antibodies were present in the serum, antigen and antibody would remain as a pink complex on the gel. Otherwise, the pink Brucella antigens would precipitate at the bottom of the gel card system. In this study, we aimed to compare the Brucella Coombs gel test, a new, rapid screen and titration method for detection of non-agglutinating IgG with the Brucella Coombs test. For this study, a total of 88 serum samples were obtained from 45 healthy persons and 43 individuals who had clinical signs and symptoms of brucellosis. For each specimen, Rose Bengal test, standard agglutination test, Coombs test and Brucella Coombs gel test were carried out. Sensitivity and specificity of Brucella Coombs gel test were found as 100.0 and 82.2%, respectively. Brucella Coombs gel test can be used as a screening test with high sensitivity. By the help of pink Brucella antigen precipitation, the tests' evaluation is simple and objective. In addition, determination of Brucella antibody by rapid titration offers another important advantage.

  3. Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem

    International Nuclear Information System (INIS)

    Wei, J.; Yang, S.

    2013-01-01

    In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)

  4. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.; Tabor, M.

    2013-01-01

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells

  5. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  6. Polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baldock, C [Institute of Medical Physics, School of Physics, University of Sydney (Australia); De Deene, Y [Radiotherapy and Nuclear Medicine, Ghent University Hospital (Belgium); Doran, S [CRUK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Surrey (United Kingdom); Ibbott, G [Radiation Physics, UT M D Anderson Cancer Center, Houston, TX (United States); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC (Canada); Lepage, M [Centre d' imagerie moleculaire de Sherbrooke, Departement de medecine nucleaire et de radiobiologie, Universite de Sherbrooke, Sherbrooke, QC (Canada); McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON (Canada); Oldham, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Schreiner, L J [Cancer Centre of South Eastern Ontario, Kingston, ON (Canada)], E-mail: c.baldock@physics.usyd.edu.au, E-mail: yves.dedeene@ugent.be

    2010-03-07

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. (topical review)

  7. Experimental transient natural convection heat transfer from a vertical cylindrical tank

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Alberto Dopazo, J.

    2011-01-01

    In this paper heat transfer experimental data is presented and compared to general correlations proposed in the literature for transient laminar free convection from a vertical cylindrical tank. The experimental data has been obtained from heating and cooling experiments carried out with a cylindrical full-scale hot water storage tank working under real operating conditions. The experimental device and the data acquisition system are described. The calculation procedures established to obtain the experimental values of the heat transfer coefficients, as well as the data reduction process, are detailed. The local convection and radiation heat transfer coefficients are obtained from different heating power conditions for local Rayleigh numbers within the range of 1x10 5 -3x10 8 . The great quantity of available experimental data allows a detailed analysis with a reliable empirical base. The experimental local convection heat transfer coefficients are correlated and compared to correlations proposed in open literature for engineering calculations. - Highlights: → Experimental data of transient local convection heat transfer coefficients from a cylindrical tank for heating and cooling processes is obtained. → The transient behaviour of the convection coefficients is dependent on temperature difference evolutions between the surface and the air. → The Nu.Ra -1/4 ratio decreases proportionally in (T s -T ∞ ) -0.9 . → A new correlation based on the semi-infinite region theory for laminar transient free convection is proposed.

  8. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  9. Applications of gel dosimetry

    International Nuclear Information System (INIS)

    Ibbott, Geoffrey S

    2004-01-01

    Gel dosimetry has been examined as a clinical dosimeter since the 1950s. During the last two decades, however, a rapid increase in the number of investigators has been seen, and the body of knowledge regarding gel dosimetry has expanded considerably. Gel dosimetry is still considered a research project, and the introduction of this tool into clinical use is proceeding slowly. This paper will review the characteristics of gel dosimetry that make it desirable for clinical use, the postulated and demonstrated applications of gel dosimetry, and some complications, set-backs, and failures that have contributed to the slow introduction into routine clinical use

  10. Spin-wave propagation spectrum in magnetization-modulated cylindrical nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Wang, Meng-ning; Nie, Yao-zhuang; Wang, Dao-wei; Xia, Qing-lin [School of Physics and Electronics, Central South University, Changsha 410083 (China); Tang, Wei [School of Physics and Electronics, Central South University, Changsha 410083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zeng, Zhong-ming [Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2016-09-15

    Spin-wave propagation in periodic magnetization-modulated cylindrical nanowires is studied by micromagnetic simulation. Spin wave scattering at the interface of two magnetization segments causes a spin-wave band structure, which can be effectively tuned by changing either the magnetization modulation level or the period of the cylindrical nanowire magnonic crystal. The bandgap width is oscillating with either the period or magnetization modulation due to the oscillating variation of the spin wave transmission coefficient through the interface of the two magnetization segments. Analytical calculation based on band theory is used to account for the micromagnetic simulation results. - Highlights: • A magnetization-modulated cylindrical nanowire magnonic crystal is proposed. • Propagating characteristics of spin waves in such magnonic crystal are studied. • Spin-wave spectra can be manipulated by changing modulation level and period.

  11. Cylindrical concave body of composite fibrous material

    International Nuclear Information System (INIS)

    1979-01-01

    The invention is concerned with a cylindrical concave body of compound fibrous material which is intended to be exposed to high rotation speeds around its own longitudinal axis. The concave body in question has at least one layer of fibrils that are interwoven and enclose an identical angle with the longitudinal axis of the concave body in both directions. The concave body in question also has at least a second layer of fibrils that run in the direction of the circumference and are fitted radially to the outside. The cylindrical concave body of the invention is particularly well suited for application as a rotor tube in a gas ultra-centrifuge

  12. Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition.

    Science.gov (United States)

    Onoda, Michika; Ueki, Takeshi; Tamate, Ryota; Shibayama, Mitsuhiro; Yoshida, Ryo

    2017-07-13

    In the field of polymer science, many kinds of polymeric material systems that show a sol-gel transition have been created. However, most systems are unidirectional stimuli-responsive systems that require physical signals such as a change in temperature. Here, we report on the design of a block copolymer solution that undergoes autonomous and periodic sol-gel transition under constant conditions without any on-off switching through external stimuli. The amplitude of this self-oscillation of the viscosity is about 2,000 mPa s. We also demonstrate an intermittent forward motion of a droplet of the polymer solution synchronized with the autonomous sol-gel transition. This polymer solution bears the potential to become the base for a type of slime-like soft robot that can transform its shape kaleidoscopically and move autonomously, which is associated with the living amoeba that moves forward by a repeated sol-gel transition.

  13. Removing water from gels

    International Nuclear Information System (INIS)

    Lane, E.S.; Winter, J.A.

    1982-01-01

    Water is removed from a gel material by contacting the gel material with an organic liquid and contacting the organic liquid with a gas such that water is taken up by the gas. The invention, in one embodiment, may be used to dry gel materials whilst maintaining an open porous network therein. In one example, the invention is applied to gel precipitated spheres containing uranium and plutonium. (author)

  14. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces

    International Nuclear Information System (INIS)

    Wang, L. F.; He, X. T.; Wu, J. F.; Zhang, W. Y.; Ye, W. H.

    2013-01-01

    A weakly nonlinear (WN) model has been developed for the incompressible Rayleigh-Taylor instability (RTI) in cylindrical geometry. The transition from linear to nonlinear growth is analytically investigated via a third-order solutions for the cylindrical RTI initiated by a single-mode velocity perturbation. The third-order solutions can depict the early stage of the interface asymmetry due to the bubble-spike formation, as well as the saturation of the linear (exponential) growth of the fundamental mode. The WN results in planar RTI [Wang et al., Phys. Plasmas 19, 112706 (2012)] are recovered in the limit of high-mode number perturbations. The difference between the WN growth of the RTI in cylindrical geometry and in planar geometry is discussed. It is found that the interface of the inward (outward) development spike/bubble is extruded (stretched) by the additional inertial force in cylindrical geometry compared with that in planar geometry. For interfaces with small density ratios, the inward growth bubble can grow fast than the outward growth spike in cylindrical RTI. Moreover, a reduced formula is proposed to describe the WN growth of the RTI in cylindrical geometry with an acceptable precision, especially for small-amplitude perturbations. Using the reduced formula, the nonlinear saturation amplitude of the fundamental mode and the phases of the Fourier harmonics are studied. Thus, it should be included in applications where converging geometry effects play an important role, such as the supernova explosions and inertial confinement fusion implosions.

  15. An Eulerian finite volume solver for multi-material fluid flows with cylindrical symmetry

    International Nuclear Information System (INIS)

    Bernard-Champmartin, Aude; Ghidaglia, Jean-Michel; Braeunig, Jean-Philippe

    2013-01-01

    In this paper, we adapt a pre-existing 2D cartesian cell centered finite volume solver to treat the compressible 3D Euler equations with cylindrical symmetry. We then extend it to multi-material flows. Assuming cylindrical symmetry with respect to the z axis (i.e. all the functions do not depend explicitly on the angular variable h), we obtain a set of five conservation laws with source terms that can be decoupled in two systems solved on a 2D orthogonal mesh in which a cell as a torus geometry. A specific up-winding treatment of the source term is required and implemented for the stationary case. Test cases will be presented for vanishing and non-vanishing azimuthal velocity uh. (authors)

  16. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of

  17. Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novoseltseva, N. A.

    2015-09-01

    A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.

  18. Gravitational Instability of Cylindrical Viscoelastic Medium ...

    Indian Academy of Sciences (India)

    similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.

  19. Confined and interface phonons in combined cylindrical nanoheterosystem

    Directory of Open Access Journals (Sweden)

    O.M.Makhanets

    2006-01-01

    Full Text Available The spectra of all types of phonons existing in a complicated combined nanoheterosystem consisting of three cylindrical quantum dots embedded into the cylindrical quantum wire placed into vacuum are studied within the dielectric continuum model. It is shown that there are confined optical (LO and interface phonons of two types: top surface optical (TSO and side surface optical (SSO modes of vibration in such a nanosystem. The dependences of phonon energies on the quasiwave numbers and geometrical parameters of quantum dots are investigated and analysed.

  20. Gel electrophoretic isolation, in the hundred microgram range, of recombinant SDS-syntaxin from sea urchin egg cortical vesicles.

    Science.gov (United States)

    Li, Y M; Chrambach, A

    2001-11-01

    Recombinant urchin syntaxin [Xa cut], electrophoresed at pH 9.0 (25 degrees C) or 10.2 (0 degrees C) in a discontinuous Tris-chloride-glycinate buffer system in the presence of 0.03% SDS in the catholyte, exhibits a multicomponent pattern in gels of a polyacrylamide concentration of 12% and 3% crosslinking. The position in the pattern of the syntaxin band was identified by reference to electropherograms of a previous study (P. Backlund, pers. comm.). The complexity of the protein composition of the preparation was reduced by selective stacking of proteins with mobilities greater than that of syntaxin. This provides a gel pattern consisting of two bands with mobilities close to that identified as syntaxin, as well as a minor, more slowly migrating, contaminant. The two major components are designated as S1 and S2, the latter being the larger species. In the absence of SDS, the preparation exhibits two pairs of protein components. Three of the proteins are charge isomers, i.e., of equal size, differing only in net charge, assumed to be forms of S1, while the fourth component is larger and is assumed to be S2. Aliquots of the preparation, containing 150 microg of protein were loaded on a cylindrical polyacrylamide gel of 18 mm diameter, and separated S1 and S2 were excised in a position defined by their characteristic values of relative mobility (Rf). Two or three gel slices, corresponding in Rf to S1 or S2, were pooled and loaded onto a Stacking Gel (5% polyacrylamide, 20% cross-linked) of 18 mm diameter, equipped with a collection chamber of 200 microL volume. The protein was electroeluted from the gel slices and concentrated into a stack by electrophoresis. The stack, marked by bromphenolblue, was allowed to migrate into the collection chamber, was collected and analyzed by protein assay and re-electrophoresis. Re-electrophoresis of S1 shows that it consists of at least three components. Recovered S1 constitutes 47% of the preparation, based on protein assay, S2 4

  1. Cylindrical-confinement-induced phase behaviours of diblock copolymer melts

    International Nuclear Information System (INIS)

    Mei-Jiao, Liu; Shi-Ben, Li; Lin-Xi, Zhang; Xiang-Hong, Wang

    2010-01-01

    The phase behaviours of diblock copolymers under cylindrical confinement are studied in two-dimensional space by using the self-consistent field theory. Several phase parameters are adjusted to investigate the cylindrical-confinement-induced phase behaviours of diblock copolymers. A series of lamella-cylinder mixture phases, such as the mixture of broken-lamellae and cylinders and the mixture of square-lamellae and cylinders, are observed by varying the phase parameters, in which the behaviours of these mixture phases are discussed in the corresponding phase diagrams. Furthermore, the free energies of these mixture phases are investigated to illustrate their evolution processes. Our results are compared with the available observations from the experiments and simulations respectively, and they are in good agreement and provide an insight into the phase behaviours under cylindrical confinement. (cross-disciplinary physics and related areas of science and technology)

  2. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...

  3. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  4. Light scattering from a binary-liquid entanglement gel

    Science.gov (United States)

    Xia, K.-Q.; Maher, J. V.

    1987-09-01

    Light-scattering experiments have been carried out on an entanglement gel with a binary-liquid mixture as solvent. The onset temperature for critical opalescence has a composition dependence which is similar to the coexistence curve of the free-liquid mixture. This system resembles previously reported work on the cross-linked gel polyacrylamide in two ways: (1) As temperature is lowered toward the critical temperature of the free-liquid mixture, the binary-fluid gel exhibits a strong and increasing light scattering over a broad temperature region of several kelvins, and (2) no appreciable temporal fluctuations are observed throughout this temperature region. Two added features are observed in the present, entanglement-gel measurements: (a) Gel samples with solvent composition both near and off the critical composition of the free-liquid mixture exhibit similar light-scattering behavior, and (b) a Lorentzian-squared fit to the light-scattering angular distributions yields a characteristic wave number which does not change with temperature and an amplitude which shows a very strong dependence on the temperature.

  5. Modified thermoresponsive Poloxamer 407 and chitosan sol-gels as potential sustained-release vaccine delivery systems

    DEFF Research Database (Denmark)

    Kojarunchitt, Thunjiradasiree; Baldursdottir, Stefania; Dong, Yao-Da

    2015-01-01

    Thermoresponsive, particle-loaded, Poloxamer 407 (P407)-Pluronic-R® (25R4) or chitosan-methyl cellulose (MC) formulations were developed as single-dose, sustained release vaccines. The sol-gels, loaded either with a particulate vaccine (cubosomes) or soluble antigen (ovalbumin) and adjuvants (Quil...... the chitosan-MC sol-gels sustained the release of antigen up to at least 14 days after administration. The chitosan-MC sol-gels stimulated both cellular and humoral responses. The inclusion of cubosomes in the sol-gels did not provide a definitive beneficial effect. Further analysis of the formulations...... with small-angle X-ray scattering (SAXS) revealed that while cubosomes were stable in chitosan-MC gels they were not stable in P407-25R4 formulations. The reason for the mixed response to cubosome-loaded vehicles requires more investigation, however it appears that the cubosomes did not facilitate...

  6. Reproducibility and signal response linearity of Alanine gel dosimeter

    International Nuclear Information System (INIS)

    Silva, Cleber Feijo Silva; Campos, Leticia Lucente

    2008-01-01

    Gel Dosimetry has been studied mainly for medical applications, because it presents signal response in the dose range used in radiotherapy treatments and it can be applied for three dimensional dosimetry. Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. These ferric ions concentration can be measured by spectrophotometry technique. This work aims to study the reproducibility of the alanine gel solutions and the signal response as a function of gamma radiation dose, considering that these two properties are very important for characterizing and standardizing any dosimeter. (author)

  7. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  8. Silica Gel Behavior Under Different EGS Chemical And Thermal Conditions: An Experimental Study

    International Nuclear Information System (INIS)

    Hunt, J.D.; Ezzedine, S.M.; Bourcier, W.; Roberts, S.

    2012-01-01

    Fractures and fracture networks are the principal pathways for migration of water and contaminants in groundwater systems, fluids in enhanced geothermal systems (EGS), oil and gas in petroleum reservoirs, carbon dioxide leakage from geological carbon sequestration, and radioactive and toxic industrial wastes from underground storage repositories. When dealing with EGS fracture networks, there are several major issues to consider, e.g., the minimization of hydraulic short circuits and losses of injected geothermal fluid to the surrounding formation, which in turn maximize heat extraction and economic production. Gel deployments to direct and control fluid flow have been extensively and successfully used in the oil industry for enhanced oil recovery. However, to the best of our knowledge, gels have not been applied to EGS to enhance heat extraction. In-situ gelling systems can either be organic or inorganic. Organic polymer gels are generally not thermostable to the typical temperatures of EGS systems. Inorganic gels, such as colloidal silica gels, however, may be ideal blocking agents for EGS systems if suitable gelation times can be achieved. In the current study, we explore colloidal silica gelation times and rheology as a function of SiO 2 concentration, pH, salt concentration, and temperature, with preliminary results in the two-phase field above 100 C. Results at 25 C show that it may be possible to choose formulations that will gel in a reasonable and predictable amount of time at the temperatures of EGS systems.

  9. Thoria sol-gel processes

    International Nuclear Information System (INIS)

    Matthews, R.B.

    1978-10-01

    Alternate fuel fabrication techniques are being developed at WNRE as part of the thorium fuel cycle program. The sol-gel techniques are attractive and this report assembles and summarizes information relating to thoria sol-gel fuels. Some background information on the behaviour and advantages of sol-gel fuel forms is presented, followed by a review of relevant colloid chemistry and an explanation of the fundamental steps of sol-gel processes. Finally, several variants to the basic process are reviewed and evaluated. (author)

  10. Characteristic Determination Of Self Shielding Factor And Cadmium Ratio Of Cylindrical Probe

    International Nuclear Information System (INIS)

    Hamzah, Amir; Budi R, Ita; Pinem, Suriam

    1996-01-01

    Determination of thermal, epithermal and total self shielding factor and cadmium ratio of cylindrical probe has been done by measurement and calculation. Self shielding factor can be determined by dividing probe activity to Al-alloy probe activity. Due to the lack of cylindrical probe made of Al-alloy, self shielding factor can be determined by parabolic extrapolation of measured activities to 0 cm radius to divide those activities. Theoretically, self shielding factor can be determined by making numerical solution of two dimensional integral equations using Romberg method. To simplify, the calculation is based on single collision theory with the assumption of monoenergetic neutron and isotropic distribution. For gold cylindrical probe, the calculation results are quite close to the measurement one with the relative discrepancy for activities, cadmium ratio and self shielding factor of bare probe are less then 11.5%, 3,5% and 1.5% respectively. The program can be used for the calculation of other kinds of cylindrical probes. Due to dependency to radius, cylindrical probe made of copper has the best characteristic of self shielding factor and cadmium ratio

  11. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    International Nuclear Information System (INIS)

    Xie, Zhong-Xiang; Zhang, Yong; Zhang, Li-Fu; Fan, Dian-Yuan

    2017-01-01

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  12. Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhong-Xiang [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Yong [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China); Zhang, Li-Fu, E-mail: zhanglifu68@hotmail.com [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Fan, Dian-Yuan [SZU-NUS Collaborative Innovation Center for Optoelectronic Science Technology, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2017-05-03

    Thermal transport contributed by the torsional phonons in cylindrical nanowires is investigated by using the isotropic elastic continuum theory. The numerical calculations for both the concavity-shaped and convexity-shaped cylindrical structures are made to reveal the role of the evanescent modes. Results show that the evanescent modes play an important role in influencing the thermal transport in such structures. For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, the evanescent modes can suppress the thermal conductance by 6 percent. It is also shown that the influence of the evanescent modes on the thermal conductance is strongly related to the attenuation length of the evanescent modes. A brief analysis of these results is given. - Highlights: • The evanescent modes play an important role in influencing thermal transport contributed by torsional phonons in cylindrical nanowires. • For the concavity-shaped cylindrical nanowire, the evanescent modes can enhance the thermal conductance by about 20 percent, while for the convexity-shaped cylindrical nanowire, they can suppress the thermal conductance by 6 percent.

  13. Gel nano-particulates against radioactivity; Des nanoparticules en gel contre la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Deroin, Ph

    2004-11-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  14. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  15. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne.

    Science.gov (United States)

    Mokhtari, Fatemeh; Faghihi, Gita; Basiri, Akram; Farhadi, Sadaf; Nilforoushzadeh, Mohammadali; Behfar, Shadi

    2016-01-01

    Acne vulgaris is the most common skin disease. Local and systemic antimicrobial drugs are used for its treatment. But increasing resistance of Propionibacterium acnes to antibiotics has been reported. In a double-blind clinical trial, 40 patients with mild to moderate acne vulgaris were recruited. one side of the face was treated with Clindamycin Gel 1% and the other side with Azithromycin Topical Gel 2% BID for 8 weeks and then they were assessed. Average age was 21. 8 ± 7 years. 82.5% of them were female. Average number of papules, pustules and comedones was similarly reduced in both groups and, no significant difference was observed between the two groups (P > 0.05, repeated measurs ANOVA). The mean indexes of ASI and TLC also significantly decreased during treatment in both groups, no significant difference was observed between the two groups. (P > 0.05, repeated measurs ANOVA). Also, impact of both drugs on papules and pustules was 2-3 times greater than the effect on comedones. Average satisfaction score was not significant between the two groups (P = 0.6, repeated measurs ANOVA). finally, frequency distribution of complications was not significant between the two groups (P > 0.05, Fisher Exact test). Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy.

  16. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  17. Determination of the shear impedance of viscoelastic liquids using cylindrical piezoceramic resonators.

    Science.gov (United States)

    Kiełczyński, Piotr; Pajewski, Wincenty; Szalewski, Marek

    2003-03-01

    In this paper, a new method for determining the rheological parameters of viscoelastic liquids is presented. To this end, we used the perturbation method applied to shear vibrations of cylindrical piezoceramic resonators. The resonator was viscoelastically loaded on the outer cylindrical surface. Due to this loading, the resonant frequency and quality factor of the resonator changed. According to the perturbation method, the change in the complex resonant frequency deltaomega = deltaomega(re) + jdeltaomega(im) is directly proportional to the specific acoustic impedance for cylindrical waves Zc of a viscoelastic liquid surrounding the resonator, i.e., deltaomega is approximately equal to jZc, where j = (-1)1/2. Hence, the measurement of the real and imaginary parts of the complex resonant frequency deltaomega determines the real part, Rc, and imaginary part, Xc, of the complex acoustic impedance for cylindrical waves Zc of an investigated liquid. Furthermore, the specific impedance ZL for plane waves was related to the specific impedance Zc for cylindrical waves. Using theoretical formulas established and the results of the experiments performed, the shear storage modulus mu and the viscosity eta for various liquids (e.g., epoxy resins) were determined. Moreover, the authors derived for cylindrical resonators a formula that relates the shift in resonant frequency to the viscosity of the liquid. This formula is analogous to the Kanazawa-Gordon formula that was derived for planar resonators and Newtonian liquids.

  18. Improved recovery of DNA from polyacrylamide gels after in situ DNA footprinting

    NARCIS (Netherlands)

    van Keulen, G; Meijer, WG

    Methods used to date for the isolation of DNA from polyacrylamide gels are elution based, time-consuming and with low yield in DNA. This paper describes an improved system employing polyacrylamide gels made of a meltable matrix. The new system was successfully applied to in situ DNA footprinting

  19. Large strain deformation behavior of polymeric gels in shear- and cavitation rheology

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.

  20. Solar heat gain through vertical cylindrical glass

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-10-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  1. Solar heat gain through vertical cylindrical glass

    International Nuclear Information System (INIS)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F.

    1999-01-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  2. Solar heat gain through vertical cylindrical glass

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.A.; Kaseb, S.; El-Refaie, M.F. [Cairo Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    1999-07-01

    Spaces with nonplanar glazed envelopes are frequently encountered in contemporary buildings. Such spaces represent a problem when calculating the solar heat gain in the course of estimating the cooling or heating load; and hence, sizing of cooling or heating systems. The calculation, using the information currently available in the literature, is tedious and/or approximate. In the present work, the computational procedure for evaluating the solar heat gain to a space having a vertical cylindrical glass envelope is established, and, a computer program is coded to carry out the necessary computations and yield the results in a detailed usable form. The program is versatile and allows for the arbitrary variation of all pertinent parameters. (Author)

  3. Study of Cylindrical Honeycomb Solar Collector

    Directory of Open Access Journals (Sweden)

    Atish Mozumder

    2014-01-01

    Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.

  4. Implementation of MRI gel dosimetry in radiation therapy

    International Nuclear Information System (INIS)

    Baeck, S.Aa.J.

    1998-12-01

    Gel dosimetry was used together with magnetic resonance imaging (MRI) to measure three-dimensional absorbed dose distributions in radiation therapy. Two different dosimeters were studied: ferrous- and monomer gel, based on the principles of radiation-induced oxidation and polymerisation, respectively. Single clinical electron and photon beams were evaluated and gel dose distributions were mainly within 2% of conventional detector results. The ferrous-gel was also used for clinical proton beams. A decrease in signal per absorbed dose was found close to the end of the range of the protons (15-20%). This effect was explained as a linear energy transfer dependence, further supported with Monte Carlo simulations. A method for analysing and comparing data from treatment planning system (TPS) and gel measurements was developed. The method enables a new pixel by pixel evaluation, isodose comparison and dose volume histogram verification. Two standard clinical radiation therapy procedures were examined using the developed TPS verification method. The treatment regimes included several beams of different radiation qualities. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous-gel. However, in a beam abutment region, larger dose difference was found. Beam adjustment errors and a minor TPS underestimation of the lateral scatter contribution outside the primary electron beam may explain the discrepancy. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimised MRI acquisition protocol and a new MRI scanner. The relative dose uncertainty was found to be better than 3.3% for all dose levels (95% confidence level). Using the method developed for comparing measured gel data with calculated treatment plans, the gel dosimetry method was proven to be a useful tool for radiation treatment planning verification

  5. Implementation of MRI gel dosimetry in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Baeck, S.Aa.J

    1998-12-01

    Gel dosimetry was used together with magnetic resonance imaging (MRI) to measure three-dimensional absorbed dose distributions in radiation therapy. Two different dosimeters were studied: ferrous- and monomer gel, based on the principles of radiation-induced oxidation and polymerisation, respectively. Single clinical electron and photon beams were evaluated and gel dose distributions were mainly within 2% of conventional detector results. The ferrous-gel was also used for clinical proton beams. A decrease in signal per absorbed dose was found close to the end of the range of the protons (15-20%). This effect was explained as a linear energy transfer dependence, further supported with Monte Carlo simulations. A method for analysing and comparing data from treatment planning system (TPS) and gel measurements was developed. The method enables a new pixel by pixel evaluation, isodose comparison and dose volume histogram verification. Two standard clinical radiation therapy procedures were examined using the developed TPS verification method. The treatment regimes included several beams of different radiation qualities. The TPS calculated data were in very good agreement with the dose distribution measured by the ferrous-gel. However, in a beam abutment region, larger dose difference was found. Beam adjustment errors and a minor TPS underestimation of the lateral scatter contribution outside the primary electron beam may explain the discrepancy. The overall uncertainty in the ferrous-gel dose determination was considerably reduced using an optimised MRI acquisition protocol and a new MRI scanner. The relative dose uncertainty was found to be better than 3.3% for all dose levels (95% confidence level). Using the method developed for comparing measured gel data with calculated treatment plans, the gel dosimetry method was proven to be a useful tool for radiation treatment planning verification 103 refs, 20 figs, 6 tabs

  6. Dynamic plastic buckling of cylindrical and spherical shells

    International Nuclear Information System (INIS)

    Jones, N.; Okawa, D.M.

    1975-01-01

    A theoretical analysis is developed to predict the dynamic plastic buckling of a long, impulsively loaded cylindrical shell in order to examine various features of plastic buckling and to assess the importance of several approximations with previous authors have introduced in dynamic plastic buckling studies. The influence of a time-dependent circumferential membrane force, the sharpness of the peaks in the displacement and velocity amplification functions, the restrictions which are implicit when employing the Prandtl-Reuss equations in this class of problems, and the limitations due to elastic unloading are examined in some detail. A summary of all previously published theoretical investigations known to the authors is undertaken for the dynamic plastic behavior of cylindrical shells and rings which are made from rigid-plastic, rigid-visco-plastic, elastic-plastic and elastic-visco-plastic materials and subjected to initial axisymmetric impulsive velocity fields. The theoretical predictions of the dominant motions, critical mode numbers, and threshold impulses are compared and critically reviewed. An experimental investigation was also undertaken into the dynamic plastic buckling of circular rings subjected to uniformly distributed external impulsive velocities. It appears that no experiments have been reported previously on mild steel cylindrical shells with an axial length (L) less than four times the shell radius (R). The experimental values of the average final radial deflections, critical mode numbers and dimensions of the permanent wrinkles in the mild steel and some aliminium 6,061 T6 specimens are compared with all the previously published theoretical predictions and experimental results on cylindrical shells with various axial lengths. (orig./HP) [de

  7. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  8. Recent developments in polymer gel dosimetry

    International Nuclear Information System (INIS)

    John Schreiner, L.; Olding, Tim; Holmes, Oliver; McAuley, Kim

    2008-01-01

    Modern radiation therapy particularly with intensity modulation techniques (IMRT) offers the potential to improve patient outcomes by better limiting high doses to the tumour alone. In this presentation we report our progress in developing gel dosimetry with new less toxic dosimeters using a fast commercial optical computed tomography (OCT) scanner. We will demonstrate that these adjustments in the approach to gel dosimetry help facilitate its introduction into clinical use. We will review practical advances in system quality assurance and scatter correction to improve optical CT quantification, and show an example of a clinical implementation of an IGRT treatment validation

  9. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application of the cylindrically guided wave technique for bolt and pump shaft inspections

    International Nuclear Information System (INIS)

    Light, G.M.; Ruescher, E.H.; Bloom, E.A.; Joshi, N.R.; Tsai, Y.M.; Liu, S.N.

    1993-01-01

    Elastic wave propagation in a bounded medium significantly differs from that in an unbounded medium. The bounded medium in the form of a cylinder acts like a solid waveguide directing the wave with its geometry. A continuous or a pulsed wave interacts with cylindrical boundaries producing mode-converted signals in addition to the backwall echo. The signals are received at constant time intervals directly proportional to the diameter of a solid cylindrical object such as a bolt or an anchor stud. The Cylindrically Guided Wave Technique (CGWT) makes intelligent use of the mode-converted signals, or trailing pulses, to detect corrosion wastages and cracks in cylindrical objects. (orig.)

  11. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  12. Control System Design for Cylindrical Tank Process Using Neural Model Predictive Control Technique

    Directory of Open Access Journals (Sweden)

    M. Sridevi

    2010-10-01

    Full Text Available Chemical manufacturing and process industry requires innovative technologies for process identification. This paper deals with model identification and control of cylindrical process. Model identification of the process was done using ARMAX technique. A neural model predictive controller was designed for the identified model. The performance of the controllers was evaluated using MATLAB software. The performance of NMPC controller was compared with Smith Predictor controller and IMC controller based on rise time, settling time, overshoot and ISE and it was found that the NMPC controller is better suited for this process.

  13. Comparison of the Remineralizing Effects of Sodium Fluoride and Bioactive Glass Using Bioerodible Gel Systems

    Directory of Open Access Journals (Sweden)

    Attiguppe Ramashetty Prabhakar

    2009-12-01

    Full Text Available Background and aims. A carious lesion is the accumulation of numerous episodes of de- and remineralization, rather than a unidirectional demineralization process. Tooth destruction can be arrested or reversed by the frequent delivery of fluoride or calcium/phosphorous ions to the tooth surface. The present study compared and evaluated the remineralization potential of sodium fluoride and bioactive glass delivered through a bioerodible gel system. Materials and methods. Longitudinal sections of artificial carious lesions, created at the gingivofacial surface of 64 primary maxillary incisors were photographed under a polarized light microscope and quantified for demineralization. The sections were repositioned into the tooth form and randomly mounted in sets of four that simulated an arch form. The teeth were divided into 4 groups: 1 sodium fluoride films, 2 bioactive glass films, 3 control films placed interproximally and 4 nontreatment group. Following exposure to artificial saliva for 30 days, the lesions were again photographed and quantified as above. The recorded values were statistically analyzed using Student’s paired t-test for intragroup comparison, one-way ANOVA and Post-Hoc Tukey’s test for pairwise comparison. Results. The sodium fluoride and bioactive gel groups showed significant remineralization compared with the control groups (P < 0.001. Conclusion. Bioerodible gel films can be used to deliver remineralizing agents to enhance remineralization.

  14. Diclofenac systemic bioavailability of a topical 1% diclofenac + 3% menthol combination gel vs. an oral diclofenac tablet in healthy volunteers: a randomized, open-label, crossover study
.

    Science.gov (United States)

    Moreira, Sebastian A; Liu, D Jeffery

    2017-04-01

    Evaluate systemic exposure with repeated topical application of a fixed-combination topical gel product containing 1% diclofenac sodium and 3% menthol in either of 2 formulation packages relative to oral administration. In this phase 1, single-center, 4-way crossover study, healthy volunteers aged 18 - 50 years underwent consecutive 3-day treatment regimens in a randomly assigned sequence with each of 4 treatment groups: 4 g of topical 1% diclofenac + 3% menthol gel administered via an aluminum tube or roll-on device applied 4 times daily; 4 g of topical 1% diclofenac sodium gel (Voltaren Gel) applied 4 times daily; and oral diclofenac sodium tablets 50 mg 3 times daily. Treatment regimens were separated by 2-day washout periods. A total of 18 subjects enrolled and completed the study. Relative to oral administration, area under the concentration time curve from 48 to 72 hours (AUC48-72) with topical administration of 1% diclofenac + 3% menthol gel from a tube or roll-on device was 16.1% (90% CI: 12.2 - 21.1%) and 14.4% (90% CI: 11.0 - 19.0%), respectively. The diclofenac/menthol combination delivered significantly higher exposures of diclofenac compared with Voltaren Gel. A higher number of adverse events (AEs) occurred with the topical diclofenac/menthol combination (61%) vs. Voltaren Gel (22%) or oral diclofenac (6%); most were local skin reactions. No difference in systemic AEs was observed among the groups. As expected, systemic exposure was significantly lower with the topical diclofenac/menthol treatment regimens compared with oral diclofenac. Local skin AEs were increased with the topical combination product, but the risk of systemic AEs was low.
.

  15. Linear extrapolation distance for a black cylindrical control rod with the pulsed neutron method

    International Nuclear Information System (INIS)

    Loewenhielm, G.

    1978-03-01

    The objective of this experiment was to measure the linear extrapolation distance for a central black cylindrical control rod in a cylindrical water moderator. The radius for both the control rod and the moderator was varied. The pulsed neutron technique was used and the decay constant was measured for both a homogeneous and a heterogeneous system. From the difference in the decay constants the extrapolation distance could be calculated. The conclusion is that within experimental error it is safe to use the approximate formula given by Pellaud or the more exact one given by Kavenoky. We can also conclude that linear anisotropic scattering is accounted for in a correct way in the approximate formula given by Pellaud and Prinja and Williams

  16. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Directory of Open Access Journals (Sweden)

    Chen D

    2012-05-01

    Full Text Available Daquan Chen,1,2 Kaoxiang Sun,1,2 Hongjie Mu,1 Mingtan Tang,3 Rongcai Liang,1,2 Aiping Wang,1,2 Shasha Zhou,1 Haijun Sun,1 Feng Zhao,1 Jianwen Yao,1 Wanhui Liu1,21School of Pharmacy, Yantai University, 2State Key Laboratory of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of ChinaBackground: In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS polymer was used for vaginal administration.Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment.Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0. Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0.Conclusion: This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery.Keywords: mPEG-Hz-CHEMS polymer, pH-sensitive liposomes, thermosensitive

  17. Preliminary measurement performance evaluation of a new white light interferometer for cylindrical surfaces

    International Nuclear Information System (INIS)

    Albertazzi, Armando Jr; Pont, Alex Dal

    2005-01-01

    This paper introduces a new design of a white light interferometer, suitable for measurement of cylindrical or quasi-cylindrical parts. A high precision 45 deg. conical mirror is used to direct collimated light radially, making it possible to measure in true cylindrical coordinates. The image of the measurand, distorted by the conical mirror, is projected in a high resolution digital camera. A mapping algorithm is used to reconstruct the cylindrical geometry from the distorted image. The rest of the interferometer is quite similar to a conventional white light interferometer: A flat reference mirror is scanned through the measurement range while an algorithm is searching for the maximum contrast position of the interference pattern. The performance evaluation of a configuration suitable for measurement of external cylindrical surfaces is also presented in this paper. A master cylinder was used as reference. Uncertainties of about 1.0 μm were found at the present stage of development

  18. Ocular and systemic pharmacokinetics of lidocaine hydrochloride ophthalmic gel in rabbits after topical ocular administration.

    Science.gov (United States)

    Liu, Bing; Ding, Li; Xu, Xiaowen; Lin, Hongda; Sun, Chenglong; You, Linjun

    2015-12-01

    Lidocaine hydrochloride ophthalmic gel is a novel ophthalmic preparation for topical ocular anesthesia. The study is aimed at evaluating the ocular and systemic pharmacokinetics of lidocaine hydrochloride 3.5 % ophthalmic gel in rabbits after ocular topical administration. Thirty-six rabbits were randomly placed in 12 groups (3 rabbits per group). The rabbits were quickly killed according to their groups at 0 (predose), 0.0833, 0.167, 0.333, 0.667, 1, 1.5, 2, 3, 4, 6, and 8 h postdose and then the ocular tissue and plasma samples were collected. All the samples were analyzed by a validated LC-MS/MS method. The test result showed that the maximum concentration (C max) of lidocaine in different ocular tissues and plasma were all achieved within 20 min after drug administration, and the data of C max were (2,987 ± 1814) μg/g, (44.67 ± 12.91) μg/g, (26.26 ± 7.19) μg/g, (11,046 ± 2,734) ng/mL, and (160.3 ± 61.0) ng/mL for tear fluid, cornea, conjunctiva, aqueous humor, and plasma, respectively. The data of the elimination half-life in these tissues were 1.5, 3.2, 3.5, 1.9, and 1.7 h for tear fluid, cornea, conjunctiva, aqueous humor, and plasma, respectively. The intraocular lidocaine levels were significantly higher than that in plasma, and the elimination half-life of lidocaine in cornea, conjunctiva, and aqueous humor was relatively longer than that in tear fluid and plasma. The high intraocular penetration, low systemic exposure, and long duration in the ocular tissues suggested lidocaine hydrochloride 3.5 % ophthalmic gel as an effective local anesthetic for ocular anesthesia during ophthalmic procedures.

  19. Diffusion in a cylindrical plasma

    International Nuclear Information System (INIS)

    Reid, J.

    1977-04-01

    Modern plasma containment devices, such as the Tokamak, employ magnetic fields which are toroidal in shape. They are able to contain a plasma for times approaching a second. Magnetohydrodynamics (M.H.D.) is one of the most attractive theoretical methods for understanding their behaviour, but the equations involved are complex non-linear partial differential equations, and analytic methods are not available for their solution. Numerical methods must be used. A model system of equations representing a cylindrical plasma with no axial variation is considered. It is convenient to introduce a flux function psi for the component of the magnetic field directed around the axis of the cylinder, called the poloidal field, and the M.H.D. equations are rewritten in terms of psi. This produces a set of highly coupled equations describing the evolution of the flux function, the axial field and the plasma pressure. Various steps are taken to gain a better understanding of the properties of these equations. (author)

  20. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  1. Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Aravena, D.; Corona, R.M. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Goerlitz, D.; Nielsch, K. [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg (Germany); Escrig, J., E-mail: jescrigm@gmail.com [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 917-0124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Avda. Ecuador 3493, 917-0124 Santiago (Chile)

    2013-11-15

    The magnetic properties in multisegmented cylindrical nanostructures comprised of nanowire and nanotube segments are investigated numerically as a function of their geometry. In this work we report systematic changes in the coercivity and remanence in these systems. Besides, we have found the ideal conditions for a magnetic configuration with two antiparallel domains that could be used to help to stabilize magnetic nanoparticles inside ferromagnetic multisegmented cylindrical nanoparticles. This magnetic behavior is due to the fact that the tube segment reverses its magnetization before the wire segment, allowing the control of the magnetic domain walls motion between two segments. In this way, these magnetic nanoobjects can be an alternative to store information or even perform logic functions. - Highlights: • Magnetic states of wire/tube were investigated as a function of their geometry. • Multisegmented systems present two well-defined jumps in the hysteresis curve. • It is possible to prepare an antiparallel magnetic configuration. • The step width for the optimum condition reaches 60 mT. • The tube segments reverse their magnetization first than the wire segments.

  2. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R

    2002-01-01

    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  3. Evaluation of a preservative system in a gel containing hydroalcoholic extract of Schinus terebinthifolius

    Directory of Open Access Journals (Sweden)

    Túlio Flávio A. L. Moura

    2011-06-01

    Full Text Available Currently, microbial contamination is one of the major problems faced by the phytomedicine industry with respect to the quality of the raw materials. The objective of this study was to evaluate the effectiveness of a preservative system in a formulation with hydrogel containing hydroalcoholic extract of Schinus terebinthifolius Raddi, Anacardiaceae ("aroeira" or "Brazilian Peppertree", through the challenge test. The extracts were prepared by maceration at a ratio of 1:10 plant/solvent in 40% alcohol. Gel samples were artificially contaminated with separate inocula of Aspergillus niger, Candida albicans, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and the number of viable microorganisms determined in triplicate by the "pour plate" method for counting colonies at 0, 24 and 48h, 7, 14, 21 and 28 days. The addition of the preservatives (methyl and propylparaben in the "aroeira" gel proved to be effective against the studied species when the samples were evaluated using the challenge test. According to the criterion A of the European Pharmacopoeia, it was verified that the hydrogel product showed good conservation in a 28 days period.

  4. Preparation of continuous alumina gel fibres by aqueous sol–gel ...

    Indian Academy of Sciences (India)

    Abstract. Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1·5. Thermogravimetry– differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction ...

  5. Analytical modeling of threshold voltage for Cylindrical Gate All Around (CGAA MOSFET using center potential

    Directory of Open Access Journals (Sweden)

    K.P. Pradhan

    2015-12-01

    Full Text Available In this paper, an analytical threshold voltage model is proposed for a cylindrical gate-all-around (CGAA MOSFET by solving the 2-D Poisson’s equation in the cylindrical coordinate system. A comparison is made for both the center and the surface potential model of CGAA MOSFET. This paper claims that the calculation of threshold voltage using center potential is more accurate rather than the calculation from surface potential. The effects of the device parameters like the drain bias (VDS, oxide thickness (tox, channel thickness (r, etc., on the threshold voltage are also studied in this paper. The model is verified with 3D numerical device simulator Sentaurus from Synopsys Inc.

  6. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  7. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  8. Research on cylindrical indexing cam’s unilateral machining

    Directory of Open Access Journals (Sweden)

    Junhua Chen

    2015-08-01

    Full Text Available The cylindrical cam ridge of the indexer is a spatial curved surface, which is difficult to design and machine. The cylindrical cam has some defects after machining because conventional machining methods have inaccuracies. This article aims at proposing a precise way to machine an indexing cam, using basic motion analysis and analytic geometry approach. Analytical methodology is first applied in the cam’s motion analysis, to obtain an error-free cam follower’s trajectory formula, and then separate the continuous trajectory curve by thousandth resolution, to create a three-dimensional discrete trajectory curve. Planar formulae and spherical formulae can be built on the loci. Based on the machine principle, the cutting cutter’s position and orientation will be taken into account. This article calculates the formula set as presented previously and obtains the ultimate cutter path coordinate value. The new error-free cutter path trajectory is called the unilateral machining trajectory. The earned results will compile into numerical control processing schedule. This processing methodology gives a convenient and precision way to manufacture a cylindrical indexing cam. Experimental results are also well supported.

  9. Wellposedness of a cylindrical shell model

    International Nuclear Information System (INIS)

    McMillan, C.

    1994-01-01

    We consider a well-known model of a thin cylindrical shell with dissipative feedback controls on the boundary in the form of forces, shears, and moments. We show that the resulting closed loop feedback problem generates a s.c. semigroup of contractions in the energy space

  10. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    Science.gov (United States)

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  11. A two-electrode multichannel analyzer of charged particles with discrete outer cylindrical and flat end electrodes

    Science.gov (United States)

    Fishkova, T. Ya.

    2017-06-01

    Using computer simulation, I have determined the parameters of a multichannel analyzer of charged particles of a simple design that I have proposed having the form of a cylindrical capacitor with a discrete outer cylinder and closed ends in a wide range of simultaneously recorded energies ( E max/ E min = 100). When introducing an additional cylindrical electrode of small dimensions near the front end of the system, it is possible to improve the resolution by more than an order of magnitude in the low-energy region. At the same time, the energy resolution of the analyzer in all the above energy range is ρ = (4-6) × 10-3.

  12. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  13. SU-F-BRA-11: An Experimental Commissioning Test of Brachytherapy MBDCA Dosimetry, Based On a Commercial Radiochromic Gel/optical CT System

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, E; Karaiskos, P; Zourari, K; Peppa, V; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens (Greece)

    2015-06-15

    Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attached was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin brachytherapy

  14. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    Science.gov (United States)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  15. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  16. Scattering of electromagnetic waves by an non-uniform cylindrical plasma; Diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene

    Energy Technology Data Exchange (ETDEWEB)

    Faugeras, P E [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires. Groupe de recherches sur la fusion controlee

    1967-07-01

    The problem of the scattering of plane electromagnetic waves from a non-uniform, cylindrically symmetrical plasma is solved analytically, by a self-consistent field method, for a wave with the electric field parallel to the cylinder axis. Numerical results for the diffracted field are plotted for interesting ranges of the parameters involved: diameter, density on the axis, radial profile of the density, and collision frequencies. The case where the incident field is cylindric (waves surfaces parallel to the cylinder axis) is examined - this permits to connect theoretical calculations and experimental diffraction patterns, and also to explain the diffraction effects observed in a classical microwave interferometry experiment. These results, and the possibility of measuring exactly the diffracted field (showed by experiments with dielectric and metallic rods) lead to a new plasma diagnostic method, based on the diffraction, which has no theoretical limitations and it usable when the classical free-space wave methods are not (plasma diameter lower than 10 wave lengths). The feasibility of this method is tested with a plasma at atmospheric pressure and a 2 mm incident wavelength. The plasma is obtained by the laminar flow of a plasma torch, with a working gas (He or Ar) seeded by potassium (density continuously variable between 10{sup 11} and 10{sup 15} e/cm{sup 3}. Some diffraction patterns by this plasma and for various incident waves, are also given and explained with theoretical calculations. (author) [French] On etudie la diffusion coherente d'une onde electromagnetique par un cylindre de plasma inhomogene par une methode de champ self-consistant, et pour une onde de vecteur electrique parallele a l'axe du cylindre. On a calcule le champ diffracte en faisant varier le diametre du cylindre, la densite sur l'axe, le profil de densite et les frequences de collisions, et on donne ici les principaux resultats. On examine ensuite le cas d'une onde incidente cylindrique

  17. Design of Self-Oscillating Gels and Application to Biomimetic Actuators

    Directory of Open Access Journals (Sweden)

    Ryo Yoshida

    2010-03-01

    Full Text Available As a novel biomimetic polymer, we have developed polymer gels with an autonomous self-oscillating function. This was achieved by utilizing oscillating chemical reactions, called the Belousov-Zhabotinsky (BZ reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. Under the coexistence of the reactants, the polymer gel undergoes spontaneous swelling-deswelling changes without any on-off switching by external stimuli. In this review, our recent studies on the self-oscillating polymer gels and application to biomimetic actuators are summarized.

  18. High transparent shape memory gel

    Science.gov (United States)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  19. Force percolation of contractile active gels

    NARCIS (Netherlands)

    Alvarado, José; Sheinman, Michael; Sharma, Abhinav; MacKintosh, Fred C.; Koenderink, Gijsje H.

    2017-01-01

    Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and

  20. On the dynamics of cylindrical z-pinch

    International Nuclear Information System (INIS)

    Solov'ev, L.S.

    1984-01-01

    The stationary configurations of cylindrical plasma flow in the framework of two-liquid relativistic electromagnetic gas dynamics (REMG)) and nonlinear radial oscillations of the plasma cylinder with longitudinal current in the framework of classical monoliquid MGD are considered. It is shown that at sufficiently high conductivity Z-pinch is stable relative to one-dimensional radial perturbations and its motion represents respectively nonlinear radial oscillations. In case of a rather low conductivity or low particle concentration there is in cross section a stability also in relation to the development of sausage type instability. The performed investigations of cylindrical equilibrium and radial oscillations give a qualitative representation on plasma behaviour in Z-pinch at the initial stage of it compression and expansion as well as on motion in an average plane of the developing sausage type instability

  1. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    Science.gov (United States)

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P cooking. Gel-setting conditions had a greater (P cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  2. A novel three-axis cylindrical hohlraum designed for inertial confinement fusion ignition

    Science.gov (United States)

    Kuang, Longyu; Li, Hang; Jing, Longfei; Lin, Zhiwei; Zhang, Lu; Li, Liling; Ding, Yongkun; Jiang, Shaoen; Liu, Jie; Zheng, Jian

    2016-10-01

    A novel ignition hohlraum for indirect-drive inertial confinement fusion is proposed, which is named three-axis cylindrical hohlraum (TACH). TACH is a kind of 6 laser entrance holes (LEHs) hohlraum, which is orthogonally jointed of three cylindrical hohlraums. Laser beams are injected through every entrance hole with the same incident angle of 55°. A view-factor simulation result shows that the time-varying drive asymmetry of TACH is less than 1.0% in the whole drive pulse period without any supplementary technology. Coupling efficiency of TACH is close to that of 6 LEHs spherical hohlraum with corresponding size. Its plasma-filling time is close to that of typical cylindrical ignition hohlraum. Its laser plasma interaction has as low backscattering as the outer cone of the cylindrical ignition hohlraum. Therefore, TACH combines most advantages of various hohlraums and has little predictable risk, providing an important competitive candidate for ignition hohlraum.

  3. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Gregory Russ [Portland State Univ., Portland, OR (United States)

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle

  4. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A numerical study of Richtmyer endash Meshkov instability driven by cylindrical shocks

    International Nuclear Information System (INIS)

    Zhang, Q.; Graham, M.J.

    1998-01-01

    As an incident shock wave hits a material interface between two fluids of different densities, the interface becomes unstable. Small disturbances at the interface start to grow. This interfacial instability is known as a Richtmyer endash Meshkov (RM) instability. It plays an important role in the studies of inertial confinement fusion and supernova. The majority of studies of the RM instability were in plane geometry emdash namely, plane shocks in Cartesian coordinates. We present a systematic numerical study of the RM instability driven by cylindrical shocks for both the imploding and exploding cases. The imploding (exploding) case refers to a cylindrical shock colliding with the material interface from the outside in (inside out). The phenomenon of reshock caused by the waves reflected from the origin is also studied. A qualitative understanding of this system has been achieved. Detailed studies of the growth rate of the fingers at the unstable interface are presented. copyright 1998 American Institute of Physics

  6. Cylindrical collapse and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)

    2005-06-21

    We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.

  7. Chemical Gel for Surface Decontamination

    International Nuclear Information System (INIS)

    Jung, Chong Hun; Moon, J. K.; Won, H. J.; Lee, K. W.; Kim, C. K.

    2010-01-01

    Many chemical decontamination processes operate by immersing components in aggressive chemical solutions. In these applications chemical decontamination technique produce large amounts of radioactive liquid waste. Therefore it is necessary to develop processes using chemical gels instead of chemical solutions, to avoid the well-known disadvantages of chemical decontamination techniques while retaining their high efficiency. Chemical gels decontamination process consists of applying the gel by spraying it onto the surface of large area components (floors, walls, etc) to be decontaminated. The gel adheres to any vertical or complex surface due to their thixotropic properties and operates by dissolving the radioactive deposit, along with a thin layer of the gel support, so that the radioactivity trapped at the surface can be removed. Important aspects of the gels are that small quantities can be used and they show thixitropic properties : liquid during spraying, and solid when stationary, allowing for strong adherence to surfaces. This work investigates the decontamination behaviors of organic-based chemical gel for SS 304 metallic surfaces contaminated with radioactive materials

  8. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  9. Visualization of the flow in a cylindrical container with a rotating disk

    Science.gov (United States)

    Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun

    2017-11-01

    We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.

  10. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  11. Meso-Decorated Switching-Knot Gels

    Science.gov (United States)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  12. Formulation of Bioadhesive Carbomer Gel Incorporating Drug ...

    African Journals Online (AJOL)

    incorporated into carbomer gel and evaluated for drug release. Results: ... localized delivery system for the treatment inflammation and infection in periodontal pockets. ..... loaded with diclofenac sodium for intra- articular administration. J Drug ...

  13. Ultrapure glass optical waveguide: Development in microgravity by the sol gel process

    Science.gov (United States)

    Mukherjee, S. P.; Debsikdar, J. C.; Beam, T.

    1983-01-01

    The sol-gel process for the preparation of homogeneous gels in three binary oxide systems was investigated. The glass forming ability of certain compositions in the selected oxide systems (SiO-GeO2, GeO2-PbO, and SiO2-TiO2) were studied based on their potential importance in the design of optical waveguide at longer wavelengths.

  14. Shear stresses around circular cylindrical openings

    NARCIS (Netherlands)

    Hoogenboom, P.C.J.; Van Weelden, C.; Blom, C.M.B.

    2010-01-01

    In this paper stress concentrations are studied around circular cylindrical openings or voids in a linear elastic continuum. The loading is such that a uniform shear stress occurs in the continuum, which is disturbed by the opening. The shear stress is in the direction of the centre axis of the

  15. User`s guide and documentation manual for ``PC-Gel`` simulator

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ming-Ming; Gao, Hong W.

    1993-10-01

    PC-GEL is a three-dimensional, three-phase (oil, water, and gas) permeability modification simulator developed by incorporating an in-situ gelation model into a black oil simulator (BOAST) for personal computer application. The features included in the simulator are: transport of each chemical species of the polymer/crosslinker system in porous media, gelation reaction kinetics of the polymer with crosslinking agents, rheology of the polymer and gel, inaccessible pore volume to macromolecules, adsorption of chemical species on rock surfaces, retention of gel on the rock matrix, and permeability reduction caused by the adsorption of polymer and gel. The in-situ gelation model and simulator were validated against data reported in the literature. The simulator PC-GEL is useful for simulating and optimizing any combination of primary production, waterflooding, polymer flooding, and permeability modification treatments. A general background of permeability modification using crosslinked polymer gels is given in Section I and the governing equations, mechanisms, and numerical solutions of PC-GEL are given in Section II. Steps for preparing an input data file with reservoir and gel-chemical transport data, and recurrent data are described in Sections III and IV, respectively. Example data inputs are enclosed after explanations of each input line to help the user prepare data files. Major items of the output files are reviewed in Section V. Finally, three sample problems for running PC-GEL are described in Section VI, and input files and part of the output files of these problems are listed in the appendices. For the user`s reference a copy of the source code of PC-GEL computer program is attached in Appendix A.

  16. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    Science.gov (United States)

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  17. January: IBM 7094 programme for the resolution of cell problems in planar, spherical and cylindrical geometry using the double Pn approximation

    International Nuclear Information System (INIS)

    Amouyal, A.; Tariel, H.

    1966-01-01

    Code name: January 1 st SCEA 011S. 2) Computer: IBM 7094; Programme system: Fortran II, 2 nd version. 3) Nature of the problem: resolution of cell problems with one space variable (planar, spherical and cylindrical geometries) and with one energy group, with isotropic sources in the double P n approximation (DP 1 and DP 3 approximation in planar and spherical geometries, DP 1 and DP 2 in cylindrical geometry). 4) Method used: the differential equations with limiting conditions are transformed into differential system with initial conditions which are integrated by a separate-step method. 5) Restrictions: number of physical media [fr

  18. Cylindrical acoustic levitator/concentrator having non-circular cross-section

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2003-11-11

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow piezoelectric crystal which has been formed with a cylindrical cross-section to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. By deforming the circular cross-section of the transducer, the acoustic force is concentrated along axial regions parallel to the axis of the transducer. The cylinder does not require accurate alignment of a resonant cavity. The concentrated regions of acoustic force cause particles in the fluid to concentrate within the regions of acoustic force for separation from the fluid.

  19. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system.

    Science.gov (United States)

    Frkanec, Leo; Jokić, Milan; Makarević, Janja; Wolsperger, Kristina; Zinić, Mladen

    2002-08-21

    The photoinduced gelation system based on 1 (non-gelling) to 2 (gelling) molecular photoisomerization in water results by microspheres (1) to gel fibers (2) transformation at the supramolecular level.

  20. In Vitro and In Vivo Evaluation of Diclofenac Sodium Gel Prepared ...

    African Journals Online (AJOL)

    Purpose: To develop diclofenac sodium gel using high molecular weight hydroxypropyl methylcellulose (HPMC) and Carbopol 934P for topical and systemic delivery. Methods: Diclofenac sodium gel was prepared with HPMC K100M and Carbopol 934P as gelling agents. The formulations were examined for pH, ...

  1. Design, fabrication and comparison of two power combiners: cylindrical and coaxial cavities

    Directory of Open Access Journals (Sweden)

    A M Poursaleh

    2017-08-01

    Full Text Available Resonant structure is one of the proposed methods in combining power in RF systems of  RF accelerators. In this structure, fabrication of RF power divider or combiner using coaxial and cylindrical cavity is important. In this study, two combiners, in the same frequency band, are designed and fabricated; and their results are compared. The experimental results confirmed the simulation results and showed that compared with cyclical cavity, the power combiner with coaxial cavity is smaller, more easily adjustable, and is more suitable for use in RF systems of RF accelerators

  2. SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bosma, S; Sanders, M; Aryal, P [University Kentucky - Chandler Medical Ctr, Lexington, KY (United States)

    2016-06-15

    Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were delivered for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.

  3. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    shapes and sizes while sparing normal tissue. The situation is further complicated if the normal tissues are critical organs or are particularly sensitive to radiation. Radiotherapy techniques employed to obtain a closer conformation of the dose distribution to the tumour volume are referred to as conformal radiotherapy techniques. The clinical implementation of conformal therapy has been delayed by limitations in the verification of conformal dose distributions calculated by treatment planning systems prior to the irradiation of the patient and the verification of complex treatments during its delivery to the patient. There are several aspects of conformal therapy that complicate dose verification. To achieve the dose distributions conforming to complex 3D volumes, high dose gradients arise in the treatment volume. Further, overdose or underdose regions can exist when separate radiation fields are used to deliver additional radiation. These aspects require that practical dose measurement (dosimetry) techniques be able to integrate dose over time and easily measure dose distributions in 3D with high spatial resolution. Traditional dosimeters, such as ion chambers, thermoluminescent dosimeters and radiographic film do not fulfil these requirements. Novel gel dosimetry techniques are being developed in which dose distributions can potentially be determined in vitro in 3D using anthropomorphic phantoms to simulate a clinically irradiated situation. As long ago as the 1950's, radiation-induced colour change in dyes was used to investigate radiation doses in gels. It was subsequently shown that radiation induced changes in nuclear magnetic resonance (NMR) relaxation properties of gels infused with conventional Fricke dosimetry solutions could be measured using magnetic resonance imaging (MRI). In Fricke gels, Fe 2+ ions in ferrous sulphate solutions are usually dispersed throughout a gelatin, agarose or PVA matrix. Radiation-induced changes in the dosimeters are considered to

  4. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  5. Investigation on Surface Roughness in Cylindrical Grinding

    Science.gov (United States)

    Rudrapati, Ramesh; Bandyopadhyay, Asish; Pal, Pradip Kumar

    2011-01-01

    Cylindrical grinding is a complex machining process. And surface roughness is often a key factor in any machining process while considering the machine tool or machining performance. Further, surface roughness is one of the measures of the technological quality of the product and is a factor that greatly influences cost and quality. The present work is related to some aspects of surface finish in the context of traverse-cut cylindrical grinding. The parameters considered have been: infeed, longitudinal feed and work speed. Taguchi quality design is used to design the experiments and to identify the significantly import parameter(s) affecting the surface roughness. By utilization of Response Surface Methodology (RSM), second order differential equation has been developed and attempts have also been made for optimization of the process in the context of surface roughness by using C- programming.

  6. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Science.gov (United States)

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  7. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Directory of Open Access Journals (Sweden)

    Yucong Chen

    Full Text Available Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF for the reference craniofacial model. Second, the thin-plate spline transform (TPST is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  8. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of separation quality of scandium-46 and titanium using silica gel column

    International Nuclear Information System (INIS)

    Muhamad Basit Febrian; Yanuar Setiadi; Duyeh Setiawan; Titin Sri Mulyati; Nana Suherman

    2015-01-01

    In this study, quality test of scandium and titanium mixture separation system using a silica gel column has been conducted. This system will be used in the separation of medical radioisotopes of 47 Sc from TiO 2 enriched targets. 20 mg of TiO 2 and 5 mg of Sc 2 O 3 dissolved using 0.5 mL of 50% HF solvent with gentle heating at 60°C - 80°C for 1 hour then 4.5 mL H 2 O was added. Sc and Ti mixture is separated by passing it through a column of silica gel. In the determination of scandium released from silica gel, Sc-46 radiotracer was used. Only 51.60 ± 4.5% of 5 mg of scandium could be retained in the silica gel column. From 51.60% of absorbed scandium in the column, 98.29 ± 3.4% were eluted with 5 mL of H 2 O eluent. During elution of scandium from silica gel column, 2.81 grams of 20 mg of titanium came apart as breakthrough. In determination of recovery of titanium from silica gel, 51.76 ± 5.5% of the 20 mg Ti can be recovered from silica gel column using 5M HCl eluent, whereas remaining Ti were eluted using 40 ml of HCl 5M. Based on those result, it can be concluded that there are still titanium portion in scandium after the separation using a silica gel column. Further purification step using fresh silica gel column, can separate escaped titanium from scandium. (author)

  10. Acoustic characteristics of sand sediment with circular cylindrical pores

    International Nuclear Information System (INIS)

    Roh, Heui-Seol; Lee, Kang-Il; Yoon, Suk-Wang

    2004-01-01

    The acoustic pressure transmission coefficient and the phase velocity are experimentally measured as functions of the frequency and the porosity in sand sediment slabs with circular cylindrical pores filled with water and air. They are also theoretically estimated with the modified Biot-Attenborough (MBA) model, which uses a separate treatment of the viscous and the thermal effects in a non-rigid porous medium with water- and air-filled cylindrical pores. In this study, the fast (first kind) wave and the slow (second kind) wave are not separated in the transmitted signals through a sediment slab without the circular cylindrical pores, but they are separated in the transmitted signals through a sediment slab with pores. Both the phase velocities and the transmission coefficients of the fast wave and the slow wave in the sediment slabs with water- and air-filled cylindrical pores are sensitive to the air and the water porosities. It is proposed that the fast and the slow waves have opposite behaviors for several acoustic characteristics. The generalized tortuosity factor and the dynamic shape factor are introduced from the acoustic characteristics of the fast wave. The experimental results show reasonable agreement with the theoretical results estimated with the MBA model. These results suggest the possibility of predicting the acoustic characteristics of a sediment as functions of arbitrary water and air porosities. This study may also be applicable to understanding acoustic wave propagations in a bubbly liquid sediment for underwater applications and in cancellous bone for the diagnosis of osteoporosis.

  11. Computer Modeling of the Dynamic Strength of Metal-Plastic Cylindrical Shells Under Explosive Loading

    Science.gov (United States)

    Abrosimov, N. A.; Novosel'tseva, N. A.

    2017-05-01

    A technique for numerically analyzing the dynamic strength of two-layer metal-plastic cylindrical shells under an axisymmetric internal explosive loading is developed. The kinematic deformation model of the layered package is based on a nonclassical theory of shells. The geometric relations are constructed using relations of the simplest quadratic version of the nonlinear elasticity theory. The stress and strain tensors in the composite macrolayer are related by Hooke's law for an orthotropic body with account of degradation of the stiffness characteristics of the multilayer package due to local failure of some its elementary layers. The physical relations in the metal layer are formulated in terms of a differential theory of plasticity. An energy-correlated resolving system of dynamic equations for the metal-plastic cylindrical shells is derived by minimizing the functional of total energy of the shells as three-dimensional bodies. The numerical method for solving the initial boundary-value problem formulated is based on an explicit variational-difference scheme. The reliability of the technique considered is verified by comparing numerical results with experimental data. An analysis of the ultimate strains and strength of one-layer basalt-and glass-fiber-reinforced plastic and two-layer metalplastic cylindrical shells is carried out.

  12. Moment scaling at the sol-gel transition

    International Nuclear Information System (INIS)

    Botet, R.

    1998-01-01

    Two standard models of sol-gel transition are revisited here from the point of view of their fluctuations in various moments of both the mass-distribution and the gel-mass. Bond-percolation model is an at-equilibrium system and undergoes a static second-order phase transition, while Monte-Carlo Smoluchowski model is an off-equilibrium one and shows a dynamical critical phenomenon. It is shown that the macroscopic quantities can be splitted into the three classes with different scaling properties of their fluctuations, depending on whether they correspond to: (i) non-critical quantities, (ii) critical quantities or to (iii) an order parameter. (author)

  13. Plasma waves in an inhomogeneous cylindrical plasma

    International Nuclear Information System (INIS)

    Pesic, S.S.

    1976-01-01

    The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied

  14. Preparation of UO2 dense spherical particles by sol-gel technique

    International Nuclear Information System (INIS)

    Urbanek, V.; Dolezal, J.

    1977-01-01

    The results of the basic research and development of processes of preparation of dense UO 2 spherical particles by sol-gel technique are presented. Attention was paid to the study of chemistry of internal gelation step in the uranylnitrate-urea-hexamethylentetramine system. The existence regions of several stable gels with different properties were established in connection with variable ratio of basic gel's components and the appropriate ''Phase diagrams'' were drawn. From these diagrams, two of the most interesting types of uranyl gels were chosen for the subsequent thermal processing which included drying, reduction and sintering. The detailed studies of each step of the whole process enabled preparation of UO 2 dense spheres with well defined microstructure

  15. Penetration of sub-micron aerosol droplets in composite cylindrical filtration elements

    International Nuclear Information System (INIS)

    Geurts, Bernard J.; Pratte, Pascal; Stolz, Steffen; Stabbert, Regina; Poux, Valerie; Nordlund, Markus; Winkelmann, Christoph

    2011-01-01

    Advection-diffusion transport of aerosol droplets in composite cylindrical filtration elements is analyzed and compared to experimental data. The penetration, characterizing the fraction of droplets that passes through the pores of a filtration element, is quantified for a range of flow rates. The advection-diffusion transport in a laminar Poiseuille flow is treated numerically for slender pores using a finite difference approach in cylindrical coordinates. The algebraic dependence of the penetration on the Peclet number as predicted theoretically, is confirmed by experimental findings at a variety of aspect ratios of the cylindrical pores. The effective penetration associated with a composite filtration element consisting of a set of parallel cylindrical pores is derived. The overall penetration of heterogeneous composite filtration elements shows an algebraic dependence to the fourth power on the radii of the individual pores that are contained. This gives rise to strong variations in the overall penetration in cases with uneven distributions of pore sizes, highly favoring filtration by the larger pores. The overall penetration is computed for a number of basic geometries, providing a point of reference for filtration design and experimental verification.

  16. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications.

    Science.gov (United States)

    Elnaggar, Yosra S R; El-Refaie, Wessam M; El-Massik, Magda A; Abdallah, Ossama Y

    2014-04-28

    Conventional carriers for skin delivery encounter obstacles of drug leakage, scanty permeation and low entrapment efficiency. Phospholipid nanogels have recently been recognized as prominent delivery systems to circumvent such obstacles and impart easier application. The current review provides an overview on different types of lecithin nanostructured gels, with particular emphasis on liposomal versus microemulsion gelled systems. Liposomal gels investigated encompassed classic liposomal hydrogel, modified liposomal gels (e.g. Transferosomal, Ethosomal, Pro-liposomal and Phytosomal gels), Microgel in liposomes (M-i-L) and Vesicular phospholipid gel (VPG). Microemulsion gelled systems encompassed Lecithin microemulsion-based organogels (LMBGs), Pluronic lecithin organogels (PLOs) and Lecithin-stabilized microemulsion-based hydrogels. All systems were reviewed regarding matrix composition, state of art, characterization and updated applications. Different classes of lecithin nanogels exhibited crucial impact on transdermal delivery regarding drug permeation, drug loading and stability aspects. Future perspectives of this theme issue are discussed based on current laboratory studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Gravitational collapse of a cylindrical null shell in vacuum

    Directory of Open Access Journals (Sweden)

    S. Khakshournia

    2008-03-01

    Full Text Available   Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .

  18. Dapsone gel 5% in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer for the treatment of acne vulgaris: a 12-week, randomized, double-blind study.

    Science.gov (United States)

    Fleischer, Alan B; Shalita, Alan; Eichenfield, Lawrence F; Abramovits, William; Lucky, Anne; Garrett, Steven

    2010-01-01

    To evaluate the safety and efficacy of dapsone gel 5% in the treatment of acne when used in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer. This was a twelve-week, randomized, double-blind study. Patients aged 12 years and older (n=301) applied dapsone gel twice daily and were randomly assigned (1:1:1) to one of three additional treatments, applied once daily. By week 12, dapsone gel combined with any of the three additional treatments reduced the mean number of inflammatory lesions. However, the authors did not detect a significant difference in the reduction of inflammatory lesions when dapsone was used in combination with adapalene gel or with benzoyl peroxide gel compared to the dapsone plus moisturizer combination group (P=0.052 for both versus moisturizer combination). Patients treated with dapsone gel combined with adapalene showed a significantly better response in reduction in non-inflammatory and total acne lesion count than those who received the moisturizer combination. Local adverse reactions in all three treatment groups were minimal and generally mild in severity. Dapsone gel in combination with adapalene gel or benzoyl peroxide gel is safe and well tolerated for the treatment of acne vulgaris.

  19. Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition

    Directory of Open Access Journals (Sweden)

    Qiansheng Tang

    2016-01-01

    Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.

  20. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials

    Directory of Open Access Journals (Sweden)

    Ivana M. Geremias-Andrade

    2016-08-01

    Full Text Available Emulsion-filled gels are classified as soft solid materials and are complex colloids formed by matrices of polymeric gels into which emulsion droplets are incorporated. Several structural aspects of these gels have been studied in the past few years, including their applications in food, which is the focus of this review. Knowledge of the rheological behavior of emulsion-filled gels is extremely important because it can measure interferences promoted by droplets or particle inclusion on the textural properties of the gelled systems. Dynamic oscillatory tests, more specifically, small amplitude oscillatory shear, creep-recovery tests, and large deformation experiments, are discussed in this review as techniques present in the literature to characterize rheological behavior of emulsion-filled gels. Moreover, the correlation of mechanical properties with sensory aspects of emulsion-filled gels appearing in recent studies is discussed, demonstrating the applicability of these parameters in understanding mastication processes.

  1. Silver nitrate based gel dosimeter

    International Nuclear Information System (INIS)

    Titus, D; Samuel, E J J; Srinivasan, K; Roopan, S M; Madhu, C S

    2017-01-01

    A new radiochromic gel dosimeter based on silver nitrate and a normoxic gel dosimeter was investigated using UV-Visible spectrophotometry in the clinical dose range. Gamma radiation induced the synthesis of silver nanoparticles in the gel and is confirmed from the UV-Visible spectrum which shows an absorbance peak at around 450 nm. The dose response function of the dosimeter is found to be linear upto12Gy. In addition, the gel samples were found to be stable which were kept under refrigeration. (paper)

  2. Entrapment of Probiotics in Water Extractable Arabinoxylan Gels: Rheological and Microstructural Characterization

    Directory of Open Access Journals (Sweden)

    Adriana Morales-Ortega

    2014-03-01

    Full Text Available Due to their porous structure, aqueous environment and dietary fiber nature arabinoxylan (AX gels could have potential applications for colon-specific therapeutic molecule delivery. In addition, prebiotic and health related effects of AX have been previously demonstrated. It has been also reported that cross-linked AX can be degraded by bacteria from the intestinal microbiota. However, AX gels have not been abundantly studied as carrier systems and there is no information available concerning their capability to entrap cells. In this regard, probiotic bacteria such as Bifidobacterium longum have been the focus of intense research activity lately. The objective of this research was to investigate the entrapment of probiotic B. longum in AX gels. AX solution at 2% (w/v containing B. longum (1 × 107 CFU/cm formed gels induced by laccase as cross-linking agent. The entrapment of B. longum decreased gel elasticity from 31 to 23 Pa, probably by affecting the physical interactions taking place between WEAX chains. Images of AX gels containing B. longum viewed under a scanning electron microscope show the gel network with the bacterial cells entrapped inside. The microstructure of these gels resembles that of an imperfect honeycomb. The results suggest that AX gels can be potential candidates for the entrapment of probiotics.

  3. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel

  4. Performance comparison of a silica gel-water and activated carbon-methanol two beds adsorption chillers

    Directory of Open Access Journals (Sweden)

    Szelągowski Adam

    2017-01-01

    Full Text Available The aim of the study is to compare the efficiency of adsorption refrigerating equipment working with different working pairs. Adsorption cooling devices can operate with a relatively low temperature of heat sources while consuming only a small amount of electricity for the operation of auxiliary equipment. Refrigerants used in adsorption devices are substances that do not have a negative impact on the environment. All that makes that adsorption refrigeration seems to be a good solution for utilizing renewable and waste heat sources for cold production. To carry out the experiment the adsorption cooling device has been developed and researched in Institute of Heat Engineering at Warsaw University of Technology. The test bench consisted of two cylindrical adsorbers, condenser, evaporator, oil heater and two oil coolers. In order to perform the correct action it has been developed and implemented special control algorithm device, allowed to keep the temperature in the evaporator at a preset level. The unit tested for two sorption pairs: activated carbon – methanol, and silica gel – water. For activated carbon - methanol working pair it was obtained energy efficiency rating (EER equals to 0.14 and specific cooling power (SPC of 16 W/kg. For silica gel - water EER of refrigeration unit was 0.25 and SPC was equal to 208 W/kg.

  5. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  6. Sol-to-Gel Transition in Fast Evaporating Systems Observed by in Situ Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Innocenzi, Plinio; Malfatti, Luca; Carboni, Davide; Takahashi, Masahide

    2015-06-22

    The in situ observation of a sol-to-gel transition in fast evaporating systems is a challenging task and the lack of a suitable experimental design, which includes the chemistry and the analytical method, has limited the observations. We synthesise an acidic sol, employing only tetraethylorthosilicate, SiCl4 as catalyst and deuterated water; the absence of water added to the sol allows us to follow the absorption from the external environment and the evaporation of deuterated water. The time-resolved data, obtained by attenuated total reflection infrared spectroscopy on an evaporating droplet, enables us to identify four different stages during evaporation. They are linked to specific hydrolysis and condensation rates that affect the uptake of water from external environment. The second stage is characterized by a decrease in hydroxyl content, a fast rise of condensation rate and an almost stationary absorption of water. This stage has been associated with the sol-to-gel transition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Contribution to analytical theory of neutron resonance absorption in heterogeneous reactor systems with cylindrical geometry

    International Nuclear Information System (INIS)

    Slipicevic, K.

    1968-12-01

    Following a review of the existing theories od resonance absorption this thesis includes a new approach for calculating the effective resonance integral of absorbed neutrons, new approximate formula for the penetration factor, an analysis of the effective resonance integral and the correction of the resonance integral taking into account the interference of potential and resonance dissipation. A separate chapter is devoted to calculation of the effective resonance integral for the regular reactor lattice with cylindrical fuel elements

  8. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    International Nuclear Information System (INIS)

    Kim, Dae-Sung; Ryu, Bong-ki

    2017-01-01

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P 2 O 5 -CaO-Na 2 O-TiO 2 system with a high TiO 2 content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO 2 enters the network as (TiO 6 ), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO 2 content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  9. Sol-Gel Synthesis of Phosphate-Based Glasses for Hydrophilic Enamel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Sung; Ryu, Bong-ki [Pusan National University, Busan (Korea, Republic of)

    2017-04-15

    In this study, quaternary phosphate-based sol-gel derived glasses were synthesized from a P{sub 2}O{sub 5}-CaO-Na{sub 2}O-TiO{sub 2} system with a high TiO{sub 2} content of up to 50 mol%. The sol-gel method was chosen because incorporating a high percentage of titanium into a phosphate network via traditional melt-quench methods is non-trivial. The structure and thermal properties of the obtained stabilized sol-gel glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC). The XRD results confirmed the amorphous nature of all of the stabilized sol–gel derived glasses. The FTIR results revealed that added TiO{sub 2} enters the network as (TiO{sub 6}), which likely acts as a modifier oxide. Consequently, the number of terminal oxygen atoms increases, leading to an increase in the number of P-OH bonds. In addition, DSC results confirmed a decrease in glass transition and crystallization temperatures with increasing TiO{sub 2} content. This is the first report of a sol-gel synthesis strategy combined with enameling to prepare glass at low processing temperatures and the first use of such a system for both hydrophilic and chemical resistance purposes.

  10. Errors due to the cylindrical cell approximation in lattice calculations

    Energy Technology Data Exchange (ETDEWEB)

    Newmarch, D A [Reactor Development Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1960-06-15

    It is shown that serious errors in fine structure calculations may arise through the use of the cylindrical cell approximation together with transport theory methods. The effect of this approximation is to overestimate the ratio of the flux in the moderator to the flux in the fuel. It is demonstrated that the use of the cylindrical cell approximation gives a flux in the moderator which is considerably higher than in the fuel, even when the cell dimensions in units of mean free path tend to zero; whereas, for the case of real cells (e.g. square or hexagonal), the flux ratio must tend to unity. It is also shown that, for cylindrical cells of any size, the ratio of the flux in the moderator to flux in the fuel tends to infinity as the total neutron cross section in the moderator tends to zero; whereas the ratio remains finite for real cells. (author)

  11. A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data

    Science.gov (United States)

    Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.

    2011-01-01

    A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.

  12. Determination of formaldehyde in frozen fish with formaldehyde dehydrogenase using a flow injection system with an incorporated gel-filtration chromatrography column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ell

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster...

  13. Determination of Formaldehyde in Frozen Fish with Formaldehyde Dehydrogenase Using a Flow Injection System with an Incorporated Gel-filtration Chromatography Column

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard

    1996-01-01

    in a FIA system. The FIA system is furnished with a gel-filtration chromatography column for on-line removal of the proteins from the extract before the enzymatic analysis is performed. Compared with the standard methods for determination of formaldehyde in fish products the present method is much faster...

  14. Computational design of active, self-reinforcing gels.

    Science.gov (United States)

    Yashin, Victor V; Kuksenok, Olga; Balazs, Anna C

    2010-05-20

    Many living organisms have evolved a protective mechanism that allows them to reversibly alter their stiffness in response to mechanical contact. Using theoretical modeling, we design a mechanoresponsive polymer gel that exhibits a similar self-reinforcing behavior. We focus on cross-linked gels that contain Ru(terpy)(2) units, where both terpyridine ligands are grafted to the chains. The Ru(terpy)(2) complex forms additional, chemoresponsive cross-links that break and re-form in response to a repeated oxidation and reduction of the Ru. In our model, the periodic redox variations of the anchored metal ion are generated by the Belousov-Zhabotinsky (BZ) reaction. Our computer simulations reveal that compression of the BZ gel leads to a stiffening of the sample due to an increase in the cross-link density. These findings provide guidelines for designing biomimetic, active coatings that send out a signal when the system is impacted and use this signaling process to initiate the self-protecting behavior.

  15. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against...... detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross...

  16. Three dimensional gel dosimetry by use of nuclear magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    De Deene, Y; De Wagter, C; Van Duyse, B; Achten, E; De Neve, W [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; De Poorter, J [Ghent Univ. (Belgium). Dept. of Magnetic Resonance

    1995-12-01

    As co-monomers are found to polymerize by radiation, they are eligible for constructing a three dimensional dosimeter. Another kind of three dimensional dosimeter, based on the radiation sensitivity of the ferrous ions in a Fricke solution, was tested in a previous study. However, a major problem that occurs in this kind of gel dosimeters is the diffusion of the ferric and ferrous ions. The co-monomer gels are more stable. The degree of polymerisation is visualized with a clinical MRI system. Acrylamide and N,N-methylene-bis-acrylamide are dissolved in a gel composed of gelatin and water. By irradiation the co-monomers are polymerized to polyacrylamide. The gel is casted in humanoid forms. As such, a simulation of the irradiation of the patient can be performed. Magnetic resonance relaxivity images of the irradiated gel display the irradiation dose. The images of the gel are fused with the radiological images of the patient. Quantitation of the dose response of the co-monomer gel is obtained through calibration by test tubes.

  17. Three dimensional gel dosimetry by use of nuclear magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    De Deene, Y.; De Wagter, C.; Van Duyse, B.; Achten, E.; De Neve, W.; De Poorter, J.

    1995-01-01

    As co-monomers are found to polymerize by radiation, they are eligible for constructing a three dimensional dosimeter. Another kind of three dimensional dosimeter, based on the radiation sensitivity of the ferrous ions in a Fricke solution, was tested in a previous study. However, a major problem that occurs in this kind of gel dosimeters is the diffusion of the ferric and ferrous ions. The co-monomer gels are more stable. The degree of polymerisation is visualized with a clinical MRI system. Acrylamide and N,N-methylene-bis-acrylamide are dissolved in a gel composed of gelatin and water. By irradiation the co-monomers are polymerized to polyacrylamide. The gel is casted in humanoid forms. As such, a simulation of the irradiation of the patient can be performed. Magnetic resonance relaxivity images of the irradiated gel display the irradiation dose. The images of the gel are fused with the radiological images of the patient. Quantitation of the dose response of the co-monomer gel is obtained through calibration by test tubes

  18. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  19. Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2016-12-01

    Full Text Available In this study, the effect of temperature on the electrochemical behaviors of gel electrolyte systems was investigated for valve regulated lead-acid battery at 0≤ T ≤50 oC. Fumed silica and mixture of fumed silica and TiO2 were used as gel electrolytes. TiO2 has a good combination with fumed silica. They were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and battery tests. The anodic peak currents and redox capacities of the gel electrolytes increased with increasing of temperature. The highest anodic peak current and redox capacity were observed at 30 oC in fumed silica and at 40 oC in fumed silica:TiO2 based gel systems. The solution and charge transfer resistance values decreased in fumed silica:TiO2 gel system by increasing temperature. In battery tests, discharge curves were obtained for each gel system at 0, 25 and 50 oC. The discharge time of mixture gel electrolyte system was higher than that of fumed silica based gel electrolyte at low (0 oC and high (50 oC temperatures. The best performance was obtained in fumed silica based gel electrolyte at 25 oC.

  20. Electrostatic resonances and optical responses of cylindrical clusters

    International Nuclear Information System (INIS)

    Choy, C W; Xiao, J J; Yu, K W

    2008-01-01

    We developed a Green function formalism (GFF) for computing the electrostatic resonance in clusters of cylindrical particles. In the GFF, we take advantage of a surface integral equation to avoid matching the complicated boundary conditions on the surfaces of the particles. Numerical solutions of the eigenvalue equation yield a pole spectrum in the spectral representation. The pole spectrum can in turn be used to compute the optical response of these particles. For two cylindrical particles, the results are in excellent agreement with the exact results from the multiple image method and the normal mode expansion method. The results of this work can be extended to investigate the enhanced nonlinear optical responses of metal-dielectric composites, as well as optical switching in plasmonic waveguides.

  1. Vertical load analysis of cylindrical ACS support structures

    International Nuclear Information System (INIS)

    Kennedy, J.M.; Belytschko, T.B.

    1984-01-01

    A new concept in LMFBR design ACS (above-core structures) supports which has generated some interest is to use a single large radius cylinder. The advantages of a single cylinder are reduced cost of fabrication, increased lateral stiffness, which enhances seismic resistance, and easier access to the fuel. However, the performance of these support structures when submitted to vertical loads from the core area may be substantially different, for the buckling and postbuckling behavior of a cylinder differs substantially from that of cylindrical beams. In this paper, a comparative analysis of an old prototypical support by 4 columns is compared with a cylindrical support. It is assumed that the single cylinder replaces the 4 columns in the original design. The dimensions of the two designs are compared

  2. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  3. Antimicrobial efficacy of alcohol-based hand gels.

    Science.gov (United States)

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  4. Effectiveness of Gel Repellents on Feral Pigeons

    Directory of Open Access Journals (Sweden)

    Birte Stock

    2013-12-01

    Full Text Available Millions of feral pigeons (Columba livia live in close association with the human population in our cities. They pose serious health risks to humans and lead to high economic loss due to damage caused to buildings. Consequently, house owners and city authorities are not willing to allow pigeons on their buildings. While various avian repellents are regularly introduced onto the market, scientific proof of efficacy is lacking. This study aimed at testing the effectiveness of two avian gel repellents and additionally examined their application from animal welfare standpoint. The gels used an alleged tactile or visual aversion of the birds, reinforced by additional sensory cues. We mounted experimental shelves with the installed repellents in a pigeon loft and observed the behavior of free-living feral pigeons towards the systems. Both gels showed a restricted, transient repellent effect, but failed to prove the claimed complete effectiveness. Additionally, the gels’ adhesive effect remains doubtful in view of animal welfare because gluing of plumage presents a risk to feral pigeons and also to other non-target birds. This study infers that both gels lack the promised complete efficacy, conflict with animal welfare concerns and are therefore not suitable for feral pigeon management in urban areas.

  5. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  6. Method of dismantling cylindrical structure by cutting

    International Nuclear Information System (INIS)

    Harada, Minoru; Mitsuo, Kohei; Yokota, Isoya; Nakamura, Kenjiro.

    1989-01-01

    This invention concerns a method of cutting and removing cylindrical structures, for example, iron-reinforced concrete materials such as thermal shielding walls in BWR type power plants into block-like form. That is, in a method of cutting and removing the cylindrical structure from the side of the outer wall, the structural material is cut from above to below successively in the axial direction and the circumferential direction by means abrasive jet by remote operation and cut into blocks each of a predetermined size. The cut out blocks are successively taken out. Cutting of the material from above to below by remote operation and taking out of small blocks causes no hazards to human body. Upon practicing the present invention, it is preferred to use a processing device for slurry and exhaust gases for preventing scattering of activated dismantled pieces or powdery dusts. (K.M.)

  7. Preparation of zirconium molybdate gel for 99mTc gel generator

    International Nuclear Information System (INIS)

    Aliludin, Z.; Ohkubo, Masatake; Kushita, Kouhei

    1988-09-01

    Zirconium molybdate gel has excellent characteristics for use as column matrix material of 99m Tc generators. In this work, zirconium molybdate gels were prepared under different conditions; pH's of molybdate solutions from 2.5 to 7.0, Mo:Zr molar ratios from 0.7:1.0 to 1.3:1.0, drying temperatures from an ambient temperature to 200 deg C, and drying times from 1 h to 25 h. Contents of water, nitrate, molybdenum and zirconium were measured to examine the fundamental conditions in gel preparation. The Mo:Zr molar ratio was 1.0:1.0 for the most of gels obtained. A 99m Tc generator was prepared with an amorphous zirconium molybdate containing a tracer level of 99 Mo as column matrix material. Elution of 99m Tc was rapid and the average elution efficiency was 90 % for 6 ml elutions. Contents of radionuclidic impurities, Zr and Mo in the eluates, were low enough to meet the pharmacopoeia requirements for human use. (author)

  8. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  9. Initial investigation of a novel light-scattering gel phantom for evaluation of optical CT scanners for radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Bosi, Stephen; Naseri, Pourandokht; Puran, Alicia; Davies, Justin; Baldock, Clive

    2007-01-01

    There is a need for stable gel materials for phantoms used to validate optical computerized tomography (CT) scanners used in conjunction with radiation-induced polymerizing gel dosimeters. Phantoms based on addition of light-absorbing dyes to gelatine to simulate gel dosimeters have been employed. However, to more accurately simulate polymerizing gels one requires phantoms that employ light-scattering colloidal suspensions added to the gel. In this paper, we present the initial results of using an optical CT scanner to evaluate a novel phantom in which radiation-exposed polymer gels are simulated by the addition of colloidal suspensions of varying turbidity. The phantom may be useful as a calibration transfer standard for polymer gel dosimeters. The tests reveal some phenomena peculiar to light-scattering gels that need to be taken into account when calibrating polymer gel dosimeters

  10. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    Directory of Open Access Journals (Sweden)

    C. Velescu

    2015-01-01

    Full Text Available We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids’ motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i velocity and pressure distributions, (ii average velocity, (iii volume flow rate of the liquid, (iv pressures difference, and (v radial clearance.

  11. Experimental validation of the intrinsic spatial efficiency method over a wide range of sizes for cylindrical sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile); Camilla, S. [Departamento de Física, Universidad Tecnológica Metropolitana (Chile)

    2016-07-07

    The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the reference material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.

  12. Emission and formation of electromagnetic pulses in cylindrical systems

    International Nuclear Information System (INIS)

    Lomize, L.G.; Sveshnikova, N.N.; Kuz'min, V.A.

    1983-01-01

    During the passage of a charged particle bunch through a cylindrical resonator after the process of field formation has been over the radiation, having separated from the intrinsic field, freely propagates over the resonator volume while undergoing multiple reflections from the resonator walls. As the numerical experiments have shown not only localized reflections from the resonator walls but the distributed reflections from the near-axial region take place; they result in the formation of a short intense pulse of the accelerating field along the resonator axis. The pulse runs in the direction of the bunch motion and is responsible for the process of particle autoacceleration. Transformations of the electromagnetic pUlse shape at subsequent reflections are rather of a regular character and repeated almost periodically in a certain period of time during which the light in the vacuum covers eight radii of the resonator. Conservation of the pulse shape from a period to another proceeds the more precisely, the shorter the range of the electromagnetic pulse is as compared with the resonator radius. If the resonator is permeated by successive bunches, then at a pulse frequency, for which the wave length is equal to eight radii of the resonator, a pulse resonance should arise, while at the wave length eqUal to four resonator radii a pulse antiresonance should arise

  13. Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav

    2009-01-01

    A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...

  14. Sol-gel technology for biomedical engineering

    International Nuclear Information System (INIS)

    Podbielska, H.; Ulatowska-Jarza, A.

    2005-01-01

    Sol-gel derived silica possess many promising features, including low-temperature preparation procedure, porosity, chemical and physical stability. Applications exploiting porous materials to encapsulate sensor molecules, enzymes and many other compounds, are developing rapidly. In this paper some potential applications, with emphasis on biomedical and environmental ones, are reviewed. The material preparation procedure is described and practical remarks on silica-based sol-gels are included. It is reported that sol-gels with entrapped various molecules may be used in construction of implants and coatings with bioactive properties. It is shown how to exploit the sol-gel production route for construction of sol-gel coated fiberoptic applicators for laser therapy. The applications of bioactive materials are discussed, as well. It is demonstrated that it is possible to immobilize photosensitive compounds in sol-gel matrix without loosing their photoactivity. Some examples of sol-gel based biosensors are demonstrated, as well, showing their potential for detecting various gases, toxic substances, acidity, humidity, enzymes and biologically active agents. (authors)

  15. Water equivalence of polymer gel dosimeters

    International Nuclear Information System (INIS)

    Sellakumar, P.; James Jebaseelan Samuel, E.; Supe, Sanjay S.

    2007-01-01

    To evaluate the water equivalence and radiation transport properties of polymer gel dosimeters over the wide range of photon and electron energies 14 different types of polymer gels were considered. Their water equivalence was evaluated in terms of effective atomic number (Z eff ), electron density (ρ e ), photon mass attenuation coefficient (μ/ρ), photon mass energy absorption coefficient (μ en /ρ) and total stopping power (S/ρ) tot of electrons using the XCOM and the ESTAR database. The study showed that the effective atomic number of polymer gels were very close ( en /ρ for all polymer gels were in close agreement ( tot of electrons in polymer gel dosimeters were within 1% agreement with that of water. From the study we conclude that at lower energy (<80keV) the polymer gel dosimeters cannot be considered water equivalent and study has to be carried out before using the polymer gel for clinical application

  16. Design of a cylindrical LED substrate without radiator

    Science.gov (United States)

    Tang, Fan; Guo, Zhenning

    2017-12-01

    To reduce the weight and production costs of light-emitting diode (LED) lamps, we applied the principle of the chimney effect to design a cylindrical LED substrate without a radiator. We built a 3D model by using Solidworks software and applied the flow simulation plug-in to conduct model simulation, thereby optimizing the heat source distribution and substrate thickness. The results indicate that the design achieved optimal cooling with a substrate with an upper extension length of 35 mm, a lower extension length of 8 mm, and a thickness of 1 mm. For a substrate of those dimensions, the highest LED chip temperature was 64.78 °C, the weight of the substrate was 35.09 g, and R jb = 7.00 K/W. If the substrate is powered at 8, 10, and 12 W, its temperature meets LED safety requirements. In physical tests, the highest temperature for a physical 8 W cylindrical LED substrate was 66 °C, which differed by only 1.22 °C from the simulation results, verifying the validity of the simulation. The designed cylindrical LED substrate can be used in high-power LED lamps that do not require radiators. This design is not only excellent for heat dissipation, but also for its low weight, low cost, and simplicity of manufacture.

  17. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions

    KAUST Repository

    Zhang, Hefeng

    2015-05-01

    We report in this paper an easy method for the synthesis of cylindrical polymer brushes with dendritic side chains through anionic reaction. The synthesis is accomplished by iteratively grafting a living block copolymer, polyisoprene-. b-polystyrenyllithium (PI-. b-PSLi), to the main chain and subsequently to the branches in a divergent way. PI segment is short and serves as a precursor for multifunctional branching unit. The grafting reaction involves two successive steps: i) epoxidation of internal double bonds of PI segments, either in main chain or side chains; ii) ring-opening addition to the resulting epoxy group by the living PI-. b-PSLi. Repeating the two steps affords a series of cylindrical polymer brushes with up to 3rd generation and extremely high molecular weight. The branching multiplicity depends on the average number of oxirane groups per PI segment, usually ca. 8 in the present work. The high branching multiplicity leads to tremendous increase in molecular weights of the cylindrical products with generation growth. Several series of cylindrical polymer brushes with tunable aspect ratios are prepared using backbones and branches with controlled lengths. Shape anisotropy is investigated in dilute solution using light scattering technique. Worm-like single molecular morphology with large persistence length is observed on different substrates by atomic force microscopy.

  18. Metallurgical Evaluation of the Five-Inch Cylindrical Induction Melter

    International Nuclear Information System (INIS)

    Imrich, K.J.

    2000-01-01

    A metallurgical evaluation of the 5-inch cylindrical induction melter (CIM) vessel was performed by the Materials Technology Section to evaluate the metallurgical condition after operating for approximately 375 hours at 1400 to 1500 Degrees Celsius during a 2 year period. Results indicate that wall thinning and significant grain growth occurred in the lower portion of the conical section and the drain tube. No through-wall penetrations were found in the cylindrical and conical sections of the CIM vessel and only one leak site was identified in the drain tube. Failure of the drain tube was associated with a localized over heating and intercrystalline fracture

  19. Analysis of the retention of water vapor on silica gel; Analisis de la retencion del vapor de agua en silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M.; Pinilla, J. L.; Alegria, N.; Idoeta, R.; Legarda, F.

    2011-07-01

    Among the various sampling systems tritium content in the atmosphere as water vapor, one of the most basic and, therefore, of widespread use in the environmental field, is the retention on silica gel. However, the behavior of the collection efficiency of silica gel under varying conditions of air temperature and relative humidity makes it difficult to define the amount of this necessary for proper completion of sampling, especially in situations of prolonged sampling. This paper presents partial results obtained in a study on the analysis of these efficiencies under normal conditions of sampling. (Author)

  20. Gel nano-particulates against radioactivity

    International Nuclear Information System (INIS)

    Deroin, Ph.

    2004-01-01

    The Argonne research center (USA) has developed a 'super-gel' compound, a polymer close to those used in baby's diapers, which can reach a 90% efficiency in the radioactive decontamination of porous materials, like bricks or concrete. The contaminated materials are sprayed with a mixture of polymer gel and wetting agent with nano-particulates in suspension. Under the action of the wetting agent, radioactivity migrates from the pores to the gel and is trapped by the nano-particulates. The drying and recycling of the gel allows to reduce the volume of radioactive wastes. Short paper. (J.S.)

  1. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    Energy Technology Data Exchange (ETDEWEB)

    Shah, S.M.; Abbas, G. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)

    2017-11-15

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations. (orig.)

  2. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    Science.gov (United States)

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  3. A cylindrical drift chamber for radiative muon capture experiments at TRIUMF

    International Nuclear Information System (INIS)

    Henderson, R.S.; Dawson, R.J.; Azuelos, G.; Robertson, B.C.; Hasinoff, M.D.; Ahamad, S.; Gorringe, T.P.; Serna-Angel, A.; Blecher, M.; Wright, D.H.

    1990-01-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. Radiative muon capture (RMC), μ - Z → ν(Z-1)γ, is a process which is particularly sensitive to the induced pseudoscalar coupling constant, g p , which is still very poorly determined experimentally. Due to the extremely small branching ratio (∼ 6 x 10 -8 ), the elementary reaction μ - p → νnγ has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of g p with an error of 10%. The detection system is based on a large volume cylindrical drift chamber, in an axial magnetic field, acting as an e + e - pair spectrometer with a solid angle of ≅ 2 π. The design, construction and performance of the cylindrical drift chamber are discussed

  4. A far-from-CMC existence result for the constraint equations on manifolds with ends of cylindrical type

    International Nuclear Information System (INIS)

    Leach, Jeremy

    2014-01-01

    We extend the study of the vacuum Einstein constraint equations on manifolds with ends of cylindrical type initiated by Chruściel and Mazzeo (2012) and Chruściel et al (2012 Adv. Theor. Math. Phys. at press) by finding a class of solutions to the fully coupled system on such manifolds. We show that given a Yamabe positive metric g which is conformally asymptotically cylindrical on each end and a 2-tensor K such that (tr g K) 2 is bounded below away from zero and asymptotically constant, then we may find an initial data set ( g-bar , K-bar ) such that g-bar lies in the conformal class of g. (paper)

  5. Physical Properties of Silicone Gel Breast Implants.

    Science.gov (United States)

    Jewell, Mark L; Bengtson, Bradley P; Smither, Kate; Nuti, Gina; Perry, TracyAnn

    2018-04-28

    Surgical applications using breast implants are individualized operations to fill and shape the breast. Physical properties beyond shape, size, and surface texture are important considerations during implant selection. Compare form stability, gel material properties, and shell thickness of textured shaped, textured round, and smooth round breast implants from 4 manufacturers: Allergan, Mentor, Sientra, and Establishment Labs through bench testing. Using a mandrel height gauge, form stability was measured by retention of dimensions on device movement from a horizontal to vertical supported orientation. Dynamic response of gel material (gel cohesivity, resistance to gel deformation, energy absorption) was measured using a synchronized target laser following application of graded negative pressure. Shell thickness was measured using digital thickness gauge calipers. Form stability, gel material properties, and shell thickness differed across breast implants. Of textured shaped devices, Allergan Natrelle 410 exhibited greater form stability than Mentor MemoryShape and Sientra Shaped implants. Allergan Inspira round implants containing TruForm 3 gel had greater form stability, higher gel cohesivity, greater resistance to gel deformation, and lower energy absorption than those containing TruForm 2 gel and in turn, implants containing TruForm 1 gel. Shell thickness was greater for textured versus smooth devices, and differed across styles. Gel cohesivity, resistance to gel deformation, and energy absorption are directly related to form stability, which in turn determines shape retention. These characteristics provide information to aid surgeons choosing an implant based on surgical application, patient tissue characteristics, and desired outcome.

  6. Digital image processing: Cylindrical surface plane development of CAREM fuel pellets

    International Nuclear Information System (INIS)

    Caccavelli, J; Cativa Tolosa, S; Gommes, C

    2012-01-01

    As part of the development of fuel pellets (FPs) for nuclear reactor CAREM-25, is necessary to systematize the analysis of the mechanical integrity of the FPs that is now done manually by a human operator. Following specifications and standards of reference for this purpose, the FPs should be inspected visually for detecting material discontinuities in the FPs surfaces to minimize any deterioration, loss of material and excessive breakage during operation and load of fuel bars. The material discontinuities are classified into two defects: surface cracks and chips. For each of these surface defects exist acceptance criteria that determine if the fuel pellet (FP) as a whole is accepted or rejected. One criteria for surface cracks is that they do not exceed one third (1/3) of the circumferential surface of the FP. The FP has cylindrical shape, so some of these acceptance criteria make difficult to analyze the FP in a single photographic image. Depending on the axial rotation of the FP, the crack could not be entirely visualized on the picture frame. Even a single crack that appears in different parts of the FP rotated images may appear to be different cracks in the FP when it is actually one. For this reason it is necessary, for the automatic detection and measurement of surface defects, obtain the circumferential surface of the FP into a single image in order to decide the acceptance or reject of the FP. As the FP shape is cylindrical, it is possible to obtain the flat development of the cylindrical surface (surface unrolling) of the FPs into a single image combining the image set of the axial rotation of the FP. In this work, we expose the procedure to implement the flat development of the cylindrical surface (surface unrolling). Starting from a photographic image of the FP surface, which represents the projection of a cylinder in the plane, we obtain three-dimensional information of each point on the cylindrical surface of the FP (3D-mapping). Then, we can

  7. An intelligent biopolymer gel with pendant L-proline methyl ester

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Safranj, A.; Omichi, Hideki; Katakai, Ryoichi.

    1995-01-01

    Linear poly(acryloyl-L-proline methyl ester, A-ProOMe), obtained by radiation-induced polymerization of its monomer in ethanol, exhibits a lower critical solution temperature (LCST) at 14degC. A-ProOMe was copolymerized with a minor amount of 2-hydroxypropyl methacrylate (HPMA) or 2-hydroxyethyl methacrylate (HEMA), to obtain intelligent biopolymer gels for application in drug delivery systems. The poly(A-ProOMe/HPMA) gel was characterized by an initial rapid shrinkage at the surface in the swollen state, as resulting in formation of a rigid membrane barrier devoid of micropores. This gel is called a surface regulated matrix. In the case of poly(A-ProOMe/HEMA), no such a barrier formed, instead, the whole matrix shrunk without the disappearance of micropores. This gel is called a matrix pumping gel. Testosterone (T) was incorporated into the poly(A-ProOMe/HPMA) gel, and it was found that the daily dose of T released in vivo from this formulation remained constant at approximately 30 μg/day throughout an experimental period of 54 weeks. On the other hand, 9-β-D-arabinofuranosyladenine (Ara-A) was incorporated into the poly(A-ProOMe/HEMA) gel to evaluate the pulsatile drug release when cycled at 10 and 37degC. The in vitro release rate of Ara-A was found to be 11 ng/h at 10degC and 33 ng/h at 37degC. (author)

  8. Gauge fixing and the Hamiltonian for cylindrical spacetimes

    Science.gov (United States)

    Mena Marugán, Guillermo A.

    2001-01-01

    We introduce a complete gauge fixing for cylindrical spacetimes in vacuo that, in principle, do not contain the axis of symmetry. By cylindrically symmetric we understand spacetimes that possess two commuting spacelike Killing vectors, one of them rotational and the other one translational. The result of our gauge fixing is a constraint-free model whose phase space has four field-like degrees of freedom and that depends on three constant parameters. Two of these constants determine the global angular momentum and the linear momentum in the axis direction, while the third parameter is related with the behavior of the metric around the axis. We derive the explicit expression of the metric in terms of the physical degrees of freedom, calculate the reduced equations of motion and obtain the Hamiltonian that generates the reduced dynamics. We also find upper and lower bounds for this reduced Hamiltonian that provides the energy per unit length contained in the system. In addition, we show that the reduced formalism constructed is well defined and consistent at least when the linear momentum in the axis direction vanishes. Furthermore, in that case we prove that there exists an infinite number of solutions in which all physical fields are constant both in the surroundings of the axis and at sufficiently large distances from it. If the global angular momentum is different from zero, the isometry group of these solutions is generally not orthogonally transitive. Such solutions generalize the metric of a spinning cosmic string in the region where no closed timelike curves are present.

  9. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  10. Ion currents to cylindrical Langmuir probes for finite ion temperature values: Theory

    International Nuclear Information System (INIS)

    Ballesteros, J.; Palop, J.I.F.; Colomer, V.; Hernandez, M.A.

    1995-01-01

    As it is known, the experimental ion currents to a cylindrical Langmuir probe fit quite well to the radial motion theory, developed by Allen, Boyd and Reynolds (ABR Model) and generalized by Chen for the cylindrical probe case. In this paper, we are going to develop a generalization of the ABR theory, taking into account the influence of a finite ion temperature value

  11. Evolution of transverse instability in a hollow cylindrical weakly-ionized plasma column

    International Nuclear Information System (INIS)

    Kuedyan, H.M.

    1978-01-01

    Having observed formation of plasma striations in an Electron Cyclotron Resonance Heating (ECRH) device, we have studied the conditions under which the hollow cylindrical plasma columns would develop into striations. We first present the observed conditions of the hollow cylindrical plasma which would develop into plasma striations, the measured characteristics of the transverse oscillations and a simple small signal model for a transverse instability in a weakly-ionized hollow cylindrical plasma. This linearized model, which assumes flowing cold ion fluid (T/sub i/ approximately < 0.1 eV) in warm electron fluid (T/sub e/ approximately 1 eV) and background neutrals, reveals a transverse flute-type electrostatic instability whose characteristics are in qualitative and quantitative agreement with the measured values of the oscillations in our experiment

  12. The vertex detector of the UA2 experiment (a low mass self sustaining system of cylindrical multiwire proportional chambers)

    International Nuclear Information System (INIS)

    Dialinas, M.; Forget, J.; Geoffroy, D.; Jean, P.; Vergand, M.

    1983-07-01

    The construction of the cylindrical proportional strip chambers of the UA2 vertex detector is reported. The mechanical design, the engineering and the effective realization are described in detail. Possible improvements for the construction of such chambers are also given

  13. The Effect of Gel Microstructure on Simulated Gastric Digestion of Protein Gels

    NARCIS (Netherlands)

    Opazo-Navarrete, Mauricio; Altenburg, Marte D.; Boom, Remko M.; Janssen, Anja E.M.

    2018-01-01

    The objective of this study was to analyse the impact of the gel structure obtained by different heat-induced temperatures on the in vitro gastric digestibility at pH 2. To achieve this, gels were prepared from soy protein, pea protein, albumin from chicken egg white and whey protein isolate at

  14. Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel.

    Science.gov (United States)

    Patel, Ashok R; Dewettinck, Koen

    2015-11-01

    In lipid-based food products, fat crystals are used as building blocks for creating a crystalline network that can trap liquid oil into a 3D gel-like structure which in turn is responsible for the desirable mouth feel and texture properties of the food products. However, the recent ban on the use of trans-fat in the US, coupled with the increasing concerns about the negative health effects of saturated fat consumption, has resulted in an increased interest in the area of identifying alternative ways of structuring edible oils using non-fat-based building blocks. In this paper, we give a brief account of three alternative approaches where oil structuring was carried out using wax crystals (shellac), polymer strands (hydrophilic cellulose derivative), and emulsion droplets as structurants. These building blocks resulted in three different types of oleogels that showed distinct rheological properties and temperature functionalities. The three approaches are compared in terms of the preparation process (ease of processing), properties of the formed systems (microstructure, rheological gel strength, temperature response, effect of water incorporation, and thixotropic recovery), functionality, and associated limitations of the structured systems. The comparative evaluation is made such that the new researchers starting their work in the area of oil structuring can use this discussion as a general guideline. Various aspects of oil binding for three different building blocks were studied in this work. The practical significance of this study includes (i) information on the preparation process and the concentrations of structuring agents required for efficient gelation and (ii) information on the behavior of oleogels to temperature, applied shear, and presence of water. This information can be very useful for selecting the type of structuring agents keeping the final applications in mind. For detailed information on the actual edible applications (bakery, chocolate, and

  15. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  16. Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles.

    Science.gov (United States)

    Isabettini, Stéphane; Stucki, Sandro; Massabni, Sarah; Baumgartner, Mirjam E; Reckey, Pernille Q; Kohlbrecher, Joachim; Ishikawa, Takashi; Windhab, Erich J; Fischer, Peter; Kuster, Simon

    2018-03-14

    Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln 3+ )-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH 2 )-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm 3+ and Dy 3+ . These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide

  17. Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions.

    Science.gov (United States)

    Sarkar, Anwesha; Juan, Jean-Marc; Kolodziejczyk, Eric; Acquistapace, Simone; Donato-Capel, Laurence; Wooster, Tim J

    2015-10-14

    The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.

  18. Comparative study on the effects of negatively-charged biopolymers on chitosan-based gels for the development of instantaneous gels

    International Nuclear Information System (INIS)

    Jimeno, Austin Ed B.; Chakraborty, Soma

    2015-01-01

    Polymeric electrolytic complexes are solutions of charged/ionized chains. These solutions of positive and negative charge can be combined to make instantaneous networks bonded by electrostatic interactions, a gel network. These electrostatic interaction allows for easy application in injectable gels as the network can be temporarily distributed with the application of force and reformed on the relief of it. Possible applications for these injectable gels include drug delivery and wound-healing. κ-Carrageenan, dextran sulfate, alginate, and chitosan are polyelectrolytic biocompatible polymers which are widely studied and used for a variety of biomedical applications. Gel networks are made by combining a negatively-charged (κ-Carrageenan, dextran sulfate, or alginate) and positively charged (chitosan) solutions. The strong electrostatic interaction between the opposite charges from the gel network and the inherent biocompatibility of the polymers allow future biomedical applications. Quat 188-modified chitosan has additional sites for electrostatic bonding, can be dissolved in neutral, basic, and acidic pH, and has shown inherent antibacterial activity. The objectives of this study are the following: to formulate chitosan-based gels mixing solutions of chitosan with solutions of either κ-Carrageenan, dextran sulfate, or alginate, study the gelation of the gels as function of time and pH (4, 7, and 9) using UV-Vis, characterize the chitosan-based gels through DSC and DMA, characterize the physiological degradation of the chitosan-based gels, and compare results with those from Quat 188-modified chitosan-based gels. Polyelectrolytic solutions of chitosan and negatively-charged biopolymer of similar viscosities were mixed. It was determined from the UV-Vis spectroscopy of the chitosan-carrageenan gels under pH7 buffer that the increase of concentration by a factor of 5 for 0.006M-0.0095M and 1.25 for 0.0095M-0.0150M Chitosan-Carrageenan gels improved gelation by the

  19. Surfactant-assisted sol–gel synthesis of forsterite nanoparticles as a novel drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Hassanzadeh-Tabrizi, S.A., E-mail: tabrizi1980@gmail.com [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Bigham, Ashkan [Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan (Iran, Islamic Republic of); Rafienia, Mohammad [Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of)

    2016-01-01

    In the present study, forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method using cetyltrimethyl ammonium bromide (CTAB) as a surfactant. The effects of CTAB contents and heat treatment on the textural properties and drug release from nanoparticles were investigated. The synthesized powders were studied by X-ray diffraction, Fourier transform infrared spectra, Brunauer–Emmett–Teller surface area analysis and transmission electron microscope images. Mg{sub 2}SiO{sub 4} materials demonstrated mesoporous characteristics and large specific surface area ranging from 159 to 30 m{sup 2}/g. The TEM results showed that forsterite nanorods had diameters about 4 nm and lengths ranging from 10 to 60 nm. It was found that the samples with 6 g CTAB show slower drug release rate than the other specimens, which is due to smaller pore size. This study revealed that the drug delivery of forsterite can be tailored by changing the amount of surfactant. - Highlights: • Forsterite nanoparticles were synthesized via surfactant-assisted sol–gel method. • Nanoparticles were loaded with ibuprofen as a novel drug delivery system. • Synthesized nanoparticles had a rod-like morphology. • CTAB concentration strongly affected the textural properties and drug release of the nanoparticles.

  20. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  1. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    Science.gov (United States)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  2. An investigation on cylindrical imploding turbulent mixing

    International Nuclear Information System (INIS)

    Liao Haidong; Yang Libin; Zhang Xilin; Ouyang Kai; Li Jun

    2001-01-01

    The interfacial instability experiments in cylindrically convergent geometry are performed by imploding jelly liner with high pressure gases; and instability growth were observed with high-speed framing camera. The relevant 2D numerical simulation programs were developed and their results are in good agreement with those of experiments

  3. Natural gels: crystal-chemistry of short range ordered components in Al, Fe, and Si systems

    International Nuclear Information System (INIS)

    Ildefonse, Ph.; Calas, G.

    1997-01-01

    In this review, the most important inorganic natural gels are presented: opal, aluminosilicate (allophanes) and hydrous iron oxides and silicates. It is demonstrated that natural gels are ordered at the atomic scale. In allophanes, Al is distributed between octahedral and tetrahedral sites. The amount of Al increases as Al/Si ratio decreases. Si-rich allophane have a local structure around Al and Si very different of that is known in kaolinite or halloysite. Transformation of Si-rich allophanes to crystallized minerals implies dissolution-recrystallization processes. On the contrary, in iron silicate with Fe/Si = 0.72, Si and Fe environments are close to those found in nontronite. The gel transformation to Fe-smectite may occur by long range ordering during ageing. In ferric silicate gels, the similarity of local structure around Fe in poorly ordered precursors and what is known in crystallized minerals suggests a solid transformation during ageing. This difference between iron and aluminium is mainly due to the ability of Al to enter both tetrahedral and octahedral sites, while the affinity of iron for octahedral sites is higher at low temperature

  4. Numerical determination of transmission probabilities in cylindrical geometry

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1989-11-01

    Efficient methods for numerical calculation of transmission probabilities in cylindrical geometry are presented. Relative errors of the order of 10 -5 or smaller are obtained using analytical solutions and low order quadrature integration schemes. (author) [pt

  5. Purification of Peptide Components including Melittin from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Young Chon Choi

    2006-06-01

    Full Text Available Objectives : This study was conducted to carry out Purification of Melittin and other peptide components from Bee Venom using gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis Methods : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. Results : Melittin and other peptide components were separated from bee venom by using gel filtration chromatography on Sephadex G-50 column in 0.05M ammonium acetate buffer. The fractions obtained from gel filtration chromatography was analyzed by using SDS-PAGE and propionic acid/urea polyacrylamide gel electrophoresis. The melittin obtained from the gel filtration contained residual amount of phospholipase A2 and a protein with molecular weight of 6,000. The contaminating proteins were removed by the second gel filtration chromatography. Conclusion : Gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis are useful to separate peptide components including melittin from bee venom.

  6. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  7. Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.

    Science.gov (United States)

    van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P

    2012-12-20

    A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.

  8. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Science.gov (United States)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  9. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    International Nuclear Information System (INIS)

    Betancourt-Riera, Re.; Betancourt-Riera, Ri.; Nieto Jalil, J. M.; Riera, R.

    2015-01-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al 0.35 Ga 0.65 As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted. (paper)

  10. Neutron diffusion approximation solution for the the three layer borehole cylindrical geometry. Pt. 1. Theoretical description

    International Nuclear Information System (INIS)

    Czubek, J.A.; Woznicka, U.

    1997-01-01

    A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial geometry. The calculation is performed in two neutron-energy groups which distinguish the thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source. The aim of the calculation is to define the neutron slowing down and migration lengths which are observed at a given point of the system. Generally, the slowing down and migration lengths are defined for an infinite homogenous medium (irradiated by the point neutron source) as a quotient of the neutron flux moment of the (2n + 2)-order to the moment of the 2n-order. Czubek(1992) introduced in the same manner the apparent neutron slowing down length and the apparent migration length for a given multi-region cylindrical geometry. The solutions in the present paper are applied to the method of semi-empirical calibration of neutron well-logging tools. The three-region cylindrical geometry corresponds to the borehole of radius R 1 surrounded by the intermediate region (e.g. mud cake) of thickness (R 2 -R 1 ) and finally surrounded by the geological formation which spreads from R 2 up to infinity. The cylinders of an infinite length are considered. The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive list of the solutions for integrals containing Bessel functions or their derivatives, which are absent in common tables of integrals, is also included. (author)

  11. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel.

    Science.gov (United States)

    Fukui, Takaaki; Kitamura, Nobuto; Kurokawa, Takayuki; Yokota, Masashi; Kondo, Eiji; Gong, Jian Ping; Yasuda, Kazunori

    2014-04-01

    Implantation of PAMPS/PDMAAm double-network (DN) gel can induce hyaline cartilage regeneration in the osteochondral defect. However, it is a problem that the volume of the regenerated cartilage tissue is gradually reduced at 12 weeks. This study investigated whether intra-articular administration of hyaluronic acid (HA) increases the volume of the cartilage regenerated with the DN gel at 12 weeks. A total of 48 rabbits were used in this study. A cylindrical osteochondral defect created in the bilateral femoral trochlea was treated with DN gel (Group DN) or left without any implantation (Group C). In both Groups, we injected 1.0 mL of HA in the left knee, and 1.0 mL of saline solution in the right knee. Quantitative histological evaluations were performed at 2, 4, and 12 weeks, and PCR analysis was performed at 2 and 4 weeks after surgery. In Group DN, the proteoglycan-rich area was significantly greater in the HA-injected knees than in the saline-injected knees at 12 weeks (P = 0.0247), and expression of type 2 collagen, aggrecan, and Sox9 mRNAs was significantly greater in the HA-injected knees than in the saline-injected knees at 2 weeks (P = 0.0475, P = 0.0257, P = 0.0222, respectively). The intra-articular administration of HA significantly enhanced these gene expression at 2 weeks and significantly increased the volume of the hyaline cartilage regenerated by implantation of a DN gel at 12 weeks. This information is important to develop an additional method to increase the volume of the hyaline cartilage tissue in a potential cartilage regeneration strategy using the DN gel.

  12. Study of the characterization and formulation of the decontamination gels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youn Bong; Bang, In Bae; Bae, Bong Moon; Oh, Gyu Hwan [Chungnam National University, Daejeon (Korea, Republic of)

    2011-04-15

    To develop a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels we have prepare gels with CAB-O-SIL M-5 or Aerosil 380 as viscosifier and some non-ionic surfactants such as diethylene glycol hexyl ether, triethylene glycol dodecyl ether, polyethylene glycol 600, and triethylene glycol butyl ether. Surfactants are playing important roles in manipulating the properties of decontamination the gels. We have found the CAB-O-SIL with triethylene glycol butyl ether and Aerosil with triethylene glycol dodecyl ether systems promising for the decontamination work

  13. Study of the characterization and formulation of the decontamination gels

    International Nuclear Information System (INIS)

    Park, Youn Bong; Bang, In Bae; Bae, Bong Moon; Oh, Gyu Hwan

    2011-04-01

    To develop a chemical gel decontamination technology for a removal of non-fixed contaminants during the maintenance and decommissioning works of high radiation hot cells which have been used for a recycling or treatment of spent fuels we have prepare gels with CAB-O-SIL M-5 or Aerosil 380 as viscosifier and some non-ionic surfactants such as diethylene glycol hexyl ether, triethylene glycol dodecyl ether, polyethylene glycol 600, and triethylene glycol butyl ether. Surfactants are playing important roles in manipulating the properties of decontamination the gels. We have found the CAB-O-SIL with triethylene glycol butyl ether and Aerosil with triethylene glycol dodecyl ether systems promising for the decontamination work

  14. Design of Hybrid Gels Based on Gellan-Cholesterol Derivative and P90G Liposomes for Drug Depot Applications

    Directory of Open Access Journals (Sweden)

    Nicole Zoratto

    2017-05-01

    Full Text Available Gels are extensively studied in the drug delivery field because of their potential benefits in therapeutics. Depot gel systems fall in this area, and the interest in their development has been focused on long-lasting, biocompatible, and resorbable delivery devices. The present work describes a new class of hybrid gels that stem from the interaction between liposomes based on P90G phospholipid and the cholesterol derivative of the polysaccharide gellan. The mechanical properties of these gels and the delivery profiles of the anti-inflammatory model drug diclofenac embedded in such systems confirmed the suitability of these hybrid gels as a good candidate for drug depot applications.

  15. Allopurinol gel mitigates radiation-induced mucositis and dermatitis

    International Nuclear Information System (INIS)

    Kitagawa, Junichi; Nasu, Masanori; Okumura, Hayato; Matsumoto, Shigeji; Shibata, Akihiko; Makino, Kimiko; Terada, Hiroshi

    2008-01-01

    It has not been verified whether allopurinol application is beneficial in decreasing the severity of radiation-induced oral mucositis and dermatitis. Rats were divided into 4 groups and received 15 Gy irradiation on the left whisker pad. Group 1 received only irradiation. Group 2 was maintained by applying allopurinol/carrageenan-mixed gel (allopurinol gel) continuously from 2 days before to 20 days after irradiation. Group 3 had allopurinol gel applied for 20 days after radiation. Group 4 was maintained by applying carrageenan gel continuously from 2 days before to 20 days after irradiation. The intra oral mucosal and acute skin reactions were assessed daily using mucositis and skin score systems. The escape thresholds for mechanical stimulation to the left whisker pad were measured daily. In addition, the irradiated tissues at the endpoint of this study were compared with naive tissue. Escape threshold in group 2 was significantly higher than that in group 1, and mucositis and skin scores were much improved compared with those of group 1. Concerning escape threshold, mucositis and skin scores in group 3 began to improve 10 days after irradiation. Group 4 showed severe symptoms of mucositis and dermatitis to the same extent as that observed in group 1. In the histopathological study, the tissues of group 1 showed severe inflammatory reactions, compared with those of group 2. These results suggest that allopurinol gel application can mitigate inflammation reactions associated with radiation-induced oral mucositis and dermatitis. (author)

  16. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  17. Design algorithm for generatrix profile of cylindrical crowned rollers

    Directory of Open Access Journals (Sweden)

    Creţu Spiridon

    2017-01-01

    Full Text Available The cross-section of roller profile controls the pressure distribution in the contact area and radically affects the roller bearings basic dynamic load rating and rating lives. Today the most used roller profiles are the logarithmic profile and cylindrical-crowned (ZB profile. The logarithmic profile has a continuous evolution with no discontinuities till the intersection with the end fillet while ZB profile has two more discontinuities at the intersections points between the crowning circle and straight line generatrix. Using a semianalytical method, a numerical study has been carried out to find the optimum ZB profile for rollers incorporated in cylindrical rollers bearings. The basic reference rating life (L10_r has been used as optimization criterion.

  18. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    Science.gov (United States)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  19. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin.

    Science.gov (United States)

    Yao, Yashu; Xia, Mengxin; Wang, Huizhen; Li, Guowen; Shen, Hongyi; Ji, Guang; Meng, Qianchao; Xie, Yan

    2016-08-25

    A novel nanogel/gel based on chitosan (CS) for the oral delivery of myricetin (Myr) was developed and evaluated comprehensively. The particle size of the obtained Myr-loaded CS/β-glycerol phosphate (β-GP) nanogels was in the range of 100-300nm. The rheological tests showed that the sol-gel transition happened when the nanogels were exposed to physiological temperatures, and 3D network structures of the gelatinized nanogels (gels) were confirmed by Scanning Electron Microscopy. Myr was released from CS/β-GP nanogel/gel in acidic buffers via a Fickian mechanism, and this release was simultaneously accompanied by swelling and erosion. Moreover, the nanogel/gel exhibited no cytotoxicity by MTT assay, and the oral bioavailability of Myr in rats was improved with an accelerated absorption rate after Myr was loaded into CS/β-GP nanogel/gel. In summary, all of the above showed that CS/β-GP nanogel/gel was an excellent system for orally delivering Myr. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  1. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  2. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    Science.gov (United States)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  3. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2017-12-19

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  4. Sol-gel process for preparation of YBa2Cu4O8 from acidic acetates/ammonia/ascorbic acid systems

    International Nuclear Information System (INIS)

    Deptula, A.; Lada, W.; Olczak, T.; Goretta, K.C.

    1997-01-01

    YBa 2 Cu 4 O x sols were prepared by addition of ammonia to acidic acetate solutions of Y 3+ , Ba 2+ , and Cu 2+ . Ascorbic acid was added to part of the sol. The resultant sols were gelled to a shard or a coating by evaporation at 60 C. Addition of ethanol to the sols facilitated formation of gel coatings, fabricated by a dipping technique, on Ag or glass or substrates. At 100 C, gels formed in the presence of ascorbic acid were perfectly amorphous, in contrast to crystalline acetate gels. The quality of coatings prepared from ascorbate gels was superior to that of acetate gel coatings

  5. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    Science.gov (United States)

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  6. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison effect of azithromycin gel 2% with clindamycin gel 1% in patients with acne

    Directory of Open Access Journals (Sweden)

    Fatemeh Mokhtari

    2016-01-01

    Conclusion: Azithromycin gel has medical impact at least similar to Clindamycin Gel in treatment of mild to moderate acne vulgaris, and it may be consider as suitable drug for resistant acne to conventional topical therapy.

  8. Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels.

    Science.gov (United States)

    Clark, A H; Saunderson, D H; Suggett, A

    1981-03-01

    Infrared and laser-Raman spectroscopy have been used to follow secondary structure changes during the heat-set gelation of a number of aqueous (D2O) globular protein solutions. Measurements of the infrared Amide I' absorption band around 1650 cm-1, for BSA gels of varying clarity and texture, have shown that the very considerable variations in network structure underlying these materials are not reflected in obvious differences in secondary structure. In all cases aggregation is accompanied by development of beta-sheet of a kind common in fibrous protein systems, but for BSA at least this does not appear to vary significantly in amount from one gel type to another. Infrared studies of gels formed from other protein systems have confirmed this tendency for beta-sheet to develop during aggregation, and the tendency is further substantiated by laser-Raman evidence which provides the extra information that in most of the examples studied alpha-helix content simultaneously falls. From these, and other observations, some generalisations are made about the thermally-induced sol-to-gel transformations of globular proteins.

  9. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  10. A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels

    International Nuclear Information System (INIS)

    Sedighi, M R; Shakeri, M

    2009-01-01

    This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results

  11. Spectroscopic and electrochemical characterization of cytochrome c encapsulated in a bio sol-gel matrix.

    Science.gov (United States)

    Deriu, Daniela; Pagnotta, Sara Emanuela; Santucci, Roberto; Rosato, Nicola

    2008-08-01

    Sol-gel technique represents a remarkably versatile method for protein encapsulation. To enhance sol-gel biocompatibility, systems envisaging the presence of calcium and phosphates in the sol-gel composition were recently prepared and investigated. Unfortunately, the low pH at which solutions were prepared (pH proteins, because the acidic environment induces protein denaturation. In this paper we apply a new protocol based on the introduction of calcium nitrate to the inorganic phase, with formation of a binary bioactive system. In this case protein encapsulation results versatile and secure, being achieved at a pH close to neutrality (pH 6.0); also, the presence of calcium is expected to enhance system biocompatibility. To determine the properties of the salt-doped sol-gel and the influence exerted on entrapped biosystems, the structural and functional properties of embedded cytochrome c have been investigated. Data obtained indicate that the salt-doped sol-gel induces no significant change in the structure and the redox properties of the embedded protein; also, the matrix increases protein stability. Interestingly, the presence of calcium nitrate appears determinant for refolding of the acid-denatured protein. This is of interest in the perspective of future applications in biosensoristic area.

  12. Simulation and Visualization of Flows Laden with Cylindrical Nanoparticles in a Mixing Layer

    Directory of Open Access Journals (Sweden)

    Wenqian Lin

    2018-01-01

    Full Text Available The motion of cylindrical particles in a mixing layer is studied using the pseudospectral method and discrete particle model. The effect of the Stokes number and particle aspect ratio on the mixing and orientation distribution of cylindrical particles is analyzed. The results show that the rollup of mixing layer drives the particles to the edge of the vortex by centrifugal force. The cylindrical particles with the small Stokes number almost follow fluid streamlines and are mixed thoroughly, while those with the large Stokes number, centrifugalized and accumulated at the edge of the vortex, are poorly mixed. The mixing degree of particles becomes worse as the particle aspect ratio increases. The cylindrical particles would change their orientation under two torques and rotate around their axis of revolution aligned to the vorticity direction when the shear rate is low, while aligning on the flow-gradient plane beyond a critical shear rate value. More particles are oriented with the flow direction, and this phenomenon becomes more obvious with the decrease of the Stokes number and particle aspect ratio.

  13. Development of waste packages for TRU-disposal. 5. Development of cylindrical metal package for TRU wastes

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mizubayashi, Hiroshi; Asano, Hidekazu; Owada, Hitoshi; Otsuki, Akiyoshi

    2005-01-01

    Development of the TRU waste package for hulls and endpieces compression canisters, which include long-lived and low sorption nuclides like C-14 is essential and will contribute a lot to a reasonable enhancement of safety and economy of the TRU-disposal system. The cylindrical metal package made of carbon steel for canisters to enhance the efficiency of the TRU-disposal system and to economically improve their stacking conditions was developed. The package is a welded cylindrical construction with a deep drawn upper cover and a disc plate for a bottom cover. Since the welding is mainly made only for an upper cover and a bottom disc plate, this package has a better containment performance for radioactive nuclide and can reduce the cost for construction and manufacturing including its welding control. Furthermore, this package can be laid down in pile for stacking in the circular cross section disposal tunnel for the sedimentary rock, which can drastically minimize the space for disposal tunnel as mentioned previously in TRU report. This paper reports the results of the study for application of newly developed metal package into the previous TRU-disposal system and for the stacking equipment for the package. (author)

  14. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  15. Circumferential buckling instability of a growing cylindrical tube

    KAUST Repository

    Moulton, D.E.; Goriely, A.

    2011-01-01

    A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common

  16. A single-electron current in a cylindrical nanolayer

    International Nuclear Information System (INIS)

    Kazaryan, E.M.; Aghekyan, N.G.; Sarkisyan, H.A.

    2012-01-01

    The orbital current and the spin magnetic moment current of an electron in a cylindrical nanolayer are investigated. It is shown that under certain conditions, the main contribution to the total current is specified by the spin magnetic moment current

  17. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  18. Full-field peak pressure prediction of shock waves from underwater explosion of cylindrical charges

    NARCIS (Netherlands)

    Liu, Lei; Guo, Rui; Gao, Ke; Zeng, Ming Chao

    2017-01-01

    Cylindrical charge is a main form in most application of explosives. By employing numerical calculation and an indirect mapping method, the relation between peak pressures from underwater explosion of cylindrical and spherical charges is investigated, and further a model to predict full-field peak

  19. Use of Magic polymer gels for dosimetry of unsealed source of yttrium 90

    International Nuclear Information System (INIS)

    Meynard, K.; Bordage, M.C.; Cassol, E.; Courbon, F.; Ravel, P.

    2007-01-01

    Polymer gels are relative chemical dosimeters. They allow to access to three-dimensional dose distribution. The aim of this study has been to investigate the preparation and the use of a polymer gel with a tissue equivalent density known as MAGIC gel from magnetic resonance imaging and x-ray computed tomography for non-sealed source dosimetry. This kind of gel is 'normoxic' because it can be manufactured and used in normal room atmosphere. In the first part of this study, its accuracy and sensibility were studied using external beam irradiation by photons. Spin-spin relaxation rate (R 2 ) and Computed Tomography (CT) number had been used to record gel responses. Using the same manufacture process. radiolabelled gels composed of 95% MAGIC gel and 5% of 90 Y termed 90 Y-MAGIC 95 with varying activity ranged from 0 to 30 MBq were made. In case of photon external beam irradiation, a linear response is observed whatever the calibration method and the imaging system used (the correlation coefficient r 2 > 0.98 in all cases). 90 Y-MAGIC 95 radiolabelled gel responses were recorded after 28. 76 and 124 h. The R 2 /dose curves are not linear: three phases can be described. the first being linear with a slow slope (0.14 s -1 Gy -1 instead of 0.41 s -1 Gy -1 for external beam irradiation of the same gel batch). This study shows safety of radiolabelled MAGIC gels manufacturing process and their large dosimetric feasibility. 90 Y-MAGIC 95 gel response appears to be reproducible and related to the absorbed dose, thus this gel is a promising tool for non-sealed source dosimetry. (authors)

  20. K-Basin gel formation studies

    International Nuclear Information System (INIS)

    Beck, M.A.

    1998-01-01

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates